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Abstract

Gravitational interactions between a planet and its host star may have impor-
tant effects on the orbit and rotation rates of the two bodies. Gravitational
tides, through tidal friction, change the rotation period of a planet, ultimately
synchronizing it with its orbital period and tidally locking it when the orbit is
nearly circular. While the theory of gravitational tidal friction (Darwin 1898)
has been invoked for some time now to understand circularization of orbits and
synchronization of spins, the possibility of additional physical effects which may
compete with tidal friction is relatively less explored.

In this thesis the mechanism of “thermal tides” will be explored through
hydrodynamic simulations, and applied to understand the expected rotation
rates of planets orbiting very close to their host star. Thermal tides describe fluid
flows in planetary atmospheres driven by time-dependent stellar irradiation as
experienced on asynchronously rotating planets. This time-dependent heating
may also generate mass quadrupoles which could then be torqued by the stellar
tidal force. These “thermal tide torques” may either reinforce or counteract
torques from gravitational tidal friction, either trying to accelerate or reverse a
planet’s rotation rate. A balance of opposing torques could occur at a rotation
rate distinct from synchronous rotation, and therefore the addition of thermal
tide effects may allow a theoretical understanding of exoplanet rotation rates,
which are as yet unmeasured.

We conducted four simulations varying the orbital period of a hypotheti-
cal planet. We found that the thermal tide torque increases toward shorter
orbital periods. Additionally, we found that the time scale for torque equi-
librium increases with orbital period. These results can contribute to further
understanding of the effects of stellar irradiation on atmospheric heating and
planetary rotation rates, and can shed light on expected rotation rates of planets
orbiting very near their star, where tidal effects are important.

Keywords: atmospheric thermal tides, thermal forcing, tidal evolution, exo-
planets, Athena++
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1 Introduction

Exoplanets, or planets that orbit around other stars, were first discovered in
the 1990s (Sager and Lissauer 2011). Exoplanets are most easily detected very
near their star, using the radial velocity and transit methods, and as a result
the detected population is quite different from our own solar system, where the
planets are much more distant from the star. The closest exoplanet orbital
separations are just outside the star, more than 10 times closer than Mercury is
from the Sun. The small population of “directly imaged” exoplanets are much
more distant from their star, well outside the orbit of Uranus in our own solar
system. In addition, while gas giants in our solar system are distant from the
Sun, “hot Jupiter” exoplanets can be found orbiting at just a few stellar radii,
in seeming contradiction to pre-1990’s planet formation theories. Lastly, the
full range of exoplanets from sub-Earth sized, to the super-Earth and mini-
Neptune’s not found in our solar system, to planets 10 times more massive than
Jupiter, are found around other stars. The most common type of solar system
found in our galaxy is now thought to be systems of multiple small planets, in
nearly circular orbits, orbiting very near their star, where the star will usually
be much smaller than our Sun (Lissauer and de Pater 2001).

In addition to differences in planet sizes and orbital separations, the rotation
rate of planets close to their parent star may be quite different from rotation
rates in our own solar system. To make a connection with our experience here on
Earth, a planet’s day is the length of time for a planet to make a single rotation
around its axis, and a planet’s year is the length of time for a planet to make one
full revolution around its star. For Earth, a year is 365.25 days, each 24 hours
long. However, some planets have years that are equal to their day–that is, the
length of one rotation is the same as that of one orbit. This is called “tidal
locking”. These interactions are due to friction acting on motions induced by
gravitational tides, or “tidal friction” (Goldreich and Soter 1966). Gravitational
tides are the variation in gravitational acceleration over the body, which tends
to stretch or compress it. If there is some friction acting on these motions (e.g.
viscosity) then there is a lag between the force and the response. This “lagging
tidal bulge” will be misaligned with the line joining the two bodies, and the
tidal force can then apply a non-zero torque to alter the rotation period. The
end state of this process (at least for nearly circular orbits) is a rotation period
synchronized to the orbital period of the planet (Correia and Laskar 2011).

Two examples of gravitational tidal friction effects can be seen for the Earth-
Moon system. First, the Moon’s orbital period and rotational period are equal
to each other, due to tides exerted on the Moon by the Earth, and tidal friction
in the Moon. It is because the Moon’s rotation is tidally locked to its orbit
that we on Earth always see the same face of the moon. The second effect of
tidal friction is for the tide raised in the Earth by the Moon. Soon after it’s
formation, the Moon is thought to have had a much smaller semimajor axis than
it does now (Goldreich and Soter 1966), and the orbit has expanded over time.
At the same time, the Earth is believed to have been rotating much faster in
the past, and to have slowed its rotation over time, with the angular momentum
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transferred to the Moon’s orbit, causing it to move away over time (Goldreich
and Soter 1966; Correia and Laskar 2011).

We should see similar effects in other binary systems (star-star, planet-
planet, planet-moon, etc.). Yet, we don’t see this same phenomenon occur
with Venus, even though it is closer to the Sun than Earth. The rotation period
of Venus is extremely slow in comparison to Earth, with a single rotation lasting
over 200 days–over a month longer than its revolution (Lissauer and de Pater
2001). In addition to rotating slowly Venus is rotating in the opposite direction
that it is orbiting, counter to expectations from tidal friction torques. While
Venus’ rotation may have been slowed due to tidal friction, it does not have a
synchronous rotation with the Sun that would be expected, given the Earth-
Moon system. One possible explanation for this slow and retrograde rotation
is that there must be another torque altering Venus’ rotation, competing with
tidal friction torques.

Mercury, too, also experiences the effects of gravitational tidal friction, and
these effects are larger because of its close proximity to the Sun. The influence
of solar tides has pushed Mercury into a spin-orbital resonance of 3:2 and an
orbital period to rotation period ratio of 88 to 59 days (Goldreich and Soter
1966). This makes Mercury’s year much closer to the length of Mercury’s day
when compared to a planet like Earth. As noted by Goldreich and Soter (1966),
Mercury is particularly interesting due to its non-synchronous rotation and its
lack of tidal locking, which should be the ultimate goal of exclusive gravitational
tidal systems.

Thermal tides are the result of uneven heating in a planet’s atmosphere that
drive fluid motions (Arras and Socrates 2010). As with all tidal phenomena,
this effect is more important for planets closer to their host star. As the planet
rotates, the dayside is heated and the nightside cools. The atmosphere on the
dayside becomes much hotter and less dense than on the nightside. Because
hot air is less dense than cooler air, the heated air on the dayside will begin to
rise. This creates a density gradient and fluid motion, with heated air rising as
it faces the star, cooling as the air migrates to face outwards due to the planet’s
rotation and sinking, and rising again once it is heated by the star. The peak
of these thermal tides appear when the planet is facing ”noon” and are at their
lowest when the planet is facing ”midnight,” with equilibrium points at dawn
and dusk (Arras and Socrates 2010; Showman et al. 2008). Like gravitational
tides, thermal tide torques can influence the speed of the planet’s rotation,,
either accelerating or decelerating the rotation.

This can help explain the rotation of Venus. Heat radiating from its solid
surface, combined with its daily uneven heating, result in convection within the
atmosphere (Ingersoll and Dobrovolskis 1978). It is believed that the thermal
atmospheric tides caused by this uneven heating–combined with resonance with
Earth–have worked to somewhat cease its synchronous tidal evolution and have
worked to cause retrograde rotation (Ingersoll and Dobrovolskis 1978; Goldreich
and Soter 1966; Gold and Soter 1969). The friction caused by the density gra-
dients and layering within the atmosphere has contributed to this phenomenon
enormously.
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The same logic can be applied to exoplanets with atmospheres. Gravitational
tidal friction tries to synchronize the planet’s rotation rate to that of the orbit.
Similarly, time-dependent irradiation in non-synchronized planets drives fluid
motion which created quadrupole moments in the atmosphere, and the stellar
tidal force can torque these quadrupole moments, possibly creating an opposing
torque. Once a balance of torques is reached, the spin rate is at an equilibrium,
which may deviate from the synchronous rate, so that the same side of the
planet is not always facing the star.

Simulations modeling atmospheric thermal tides and gravitational tides work-
ing in tandem to alter the rotation period of a planet have received less atten-
tion in the literature. While previous work has been conducted to understand
the relationships between thermal tides, gravitational tides, and the effects of
day/night Newtonian cooling, they have rarely been implemented into a single
model. We aim to use the Athena++ software to simulate an exoplanet heated
as it rotates to observe its quadrupole moments, torque, and temperature along
its radius to determine whether its rotation is affected by thermal tides.

2 Methods

2.1 Gravity and Pressure forces in Hydrostatic Balance

For the initial condition of the atmosphere, we assume that the exoplanet exists
in hydrostatic balance - that is, pressure gradient force produced by the planet
is outward and is equal to the gravity pushing inward. This gravity, which can
be described as −GMρ/r2, must be equal to the pressure gradient dP/dr (Vallis
2017).

2.2 Fluid Equations

There are three fluid equations that govern our simulated exoplanet: the mass
continuity equation, the conservation of momentum, and the energy equation.

Mass cannot be created nor destroyed. For fluids, this mass can only be
transferred in and out of a given volume. Because our planet’s atmosphere is
constantly in a state of motion, there is an uneven density distribution. This
means that the mass of the air parcels being heated and cooled are not simply
disappearing in a given space–they are simply being transported to different
positions in the planet.

The gas satisfies Newton’s equation of motion F = ma, as applied to a fluid.
The mass in this instance is representative of multiple particles within the fluid,
which can be translated to ρa, or the mass per volume of a fluid multiplied
by its acceleration. This sum consists of the gravity of the planet (ρG) and
the gas pressure gradient per volume. This accounts for three out of the five
necessary equations used. The gravitational tides of the star can seize onto the
planet’s quadrupole moments and apply the torque to change the planet’s spin.
While we do not directly include the stellar tidal acceleration in the momentum
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equations, we compute this torque in a post-processing of the simulations, given
the measured quadrupole moments.

Lastly, one must account for the conservation of energy. While the internal
energy of the planet is transformed into different forms, the total internal energy
is conserved in the absence of explicit heating or cooling processes. This total
internal energy can be broken down into two different types: the bulk motion
of the fluid and its internal (thermal) motions. This internal motions consists
of individual particles that will move at a faster speed when the fluid is heated,
and will move at a slower speed when it is cooled. This is expected in adiabatic
motion. However, our simulated planet is not purely adiabatic since we include
an explicit heating/cooling term to represent heating by stellar radiation.

2.3 Exoplanet parameters

Our simulation aims to examine the torque on a planet caused by atmospheric
thermal tides, which can ultimately lead to a change in its rotation period. Our
exoplanet will have an angular frequency of rotation of Ωspin = 2π/Pspin, where
Pspin is the rotation period, and will be heated and cooled by a host star. If
the temperature of the planet extends above the chosen “goal” temperature,
then it will be cooled. These interactions should trigger fluid motion which will
redistribute the mass and cause differences in gas density. Ideally, this should
result time-changing quadrupole moments which should allow for a torque to
be generated to change the planet’s rotational period. We should expect to see
a non-zero torque that would result in a rotation period dissimilar to its orbital
period. Our model, however, does not consider the frictional force that would
arise from currents in the atmosphere.

To better understand thermal tides and their resulting quadrupole moments
and torque, we modeled thermal tides on a rotating Hot Jupiter using the
Athena++ software (Princeton University, Version 24.0; Stone et al.). Our
chosen exoplanet atmosphere is assumed to be completely gaseous with an in-
ner computational boundary of R1 = 7.0 × 109 cm, and an outer boundary of
R2 = 7.1× 109 cm. The mass was assumed to be Mp = 2× 1030 g, with a GMp

value of 1.3× 1023g .
Our simulations are carried out in a reference frame rotating at Pspin = 1day

and hence Coriolis and centrifugal forces are included. The latter causes a slight
bulge at the equator. The boundary conditions at the inner and outer radial
boundary are that mass is not allowed to move through the boundaries, so that
the total mass of the atmosphere remained constant. We used an adiabatic
index of γ = 1.4, which is appropriate for translational and rotational motion
of H2 molecules. Initially, our simulation starts with a uniform temperature of
T = 103 K and in hydrostatic balance. All simulations were conducted with a
duration of tlim = 4× 106 s, with 128, 32, and 32 grid points in the r, θ, and ϕ
directions.

The thermal forcing of the atmosphere was included by a Newtonian cooling
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term in the energy equation of the form

ė = −ρCp(T − Tgoal)

τtime
, (1)

where ρ is the mass density, Cp = (5kbT/2µmp) is the specific heat per unit
mass, T is the temperature, Tgoal is a position and time-dependent reference
temperature, and τtime is the thermal time. This thermal forcing tries to force
the fluid to T = Tgoal over a timescale τ . The specific choices for Tgoal and τ
will be discussed below. This Newtonian heating/cooling function causes time-
dependent changes in temperature, and is the driver of the fluid motions.

All simulations were conducted with initial base pressures of Pb = 1 bar at
r = R1. Orbital frequencies were varied to assess their effects (Ωorb = 2π/Porb.)

2.4 Simulation equations

Implementing the rotating reference frame and integrating the effects of the
centrifugal force and Coriolis force, density at any point on the grid was solved
using

ρ = ρbe
(GMp/a

2)(R1/r−1)+Ω2
spin(ϖ

2−R2
1)/(2a

2) (2)

where the cylindrical radius is calculated as ϖ = r sin(θ).
The gravitational acceleration felt by the planet due to a star of mass Ms

at orbital distance D can be written as g = −∇Φ, where Φ is the gravitational
potential. The potential can be broken down into different components, with
the quadrupole piece representing the leading order effect of tides. This one
piece of the potential can be written

Φ = −GMs

D3

(
3

2

(
xxs + yys

D

)2

− 1

2
r2

)
, (3)

where (x, y) are Cartesian coordinates centered on the planet, and (xs, ys) are
the position of the star in that coordinate system, in the orbital plane.

The thermal forcing generates quadrupole moments defined by

Qij =

∫
d3xρ(x⃗)xixj (4)

for i, j = x, y, z. The torque on the planet can then be calculated as an inte-
gral of the tangential tidal acceleration against the mass density, leading to an
expression for the torque τ to be

τ =
3

2
Ω2

orb ((Qxx −Qyy) sin (2[Ωorb − Ωspin]t)− 2Qxy cos (2[Ωorb − Ωspin]t))(5)

To simulate day-night heating and cooling, the Newtonian Cooling function
was implemented. ϕstar = (Ωorb − Ωspin)t was used to describe the azimuthal
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position of the star in the rotating reference frame. We defined a set temperature
to return to once the planet is heated by the equation

Tgoal = T0 + δT2 cos (2[ϕ− ϕstar]) , (6)

where δT2 = 100K, allowing for a fluctuation of 100 K in either direction, and
T0 = 103 K. The actual calculation of temperature caused by day/night heating
and cooling can be calculated from simulation variables as T = µmamuP/(kbρ),
where µ = 2.3, mamu = 1.67× 10−24 g, and kb = 1.38× 10−16erg g−1. Thermal
time τ is defined as τ = τ0(1 + P/P0) where τ0 = 103 s and P0 = 1mbar.

2.5 Experiments

We were interested in examining how the effect of orbital period Porb may effect
the torque of the simulated planet. Therefore, we conducted four simulations,
each altering the orbital period.

For all simulations, Pspin = 1day. Simulations 1-4 (sim1, sim2, sim3, and
sim4) altered the orbital periods of each simulation as Porb = ∞, 4 days, 2 days, 0.5days.
Thermal forcing is dependent on the difference in the angular velocity of the
planet’s spin and orbit.

3 Results

The torque τ(t) is found to exhibit significant oscillations. However, these os-
cillations do not lead to long-term changes as they would integrate to zero. We
time averaged the torque to find the piece which will cause long-term secular
changes in the rotation rate of the planet.

We found that the oscillation frequencies and average torques varied in mag-
nitude and direction depending on the orbital period. At an orbital period of
Porb = ∞, the average torque was exactly zero, and there were no oscillations of
the planet. This was because the prefactor Ωorb = 0. In contrast, simulations of
0.5 days, two days, and four days saw variations in their average torques (Fig-
ures 1.2, 1.3, and 1.4). The four day simulation had the smallest torque in both
magnitude and direction, with an average torque τ = −1.35 × 1029 dyne cm.
Unlike the other simulations, the average torque was in the opposite direction
of spin. The average torques for Porb = 0.5 days and Porb = 2 days are both
positive (Figures 1.4 and 1.3). However, the two day simulation had a smaller
average torque τ = 1.38 × 1029 dyne cm, while the 0.5 day simulation gave
τ = 1.93 × 1029 dyne cm. Larger fluctuations at the beginning of each simula-
tion can largely be attributed to initial transients. These torques were within
a factor of two in magnitude to one another, despite the four day simulation’s
difference in spin direction and the larger differences in orbital period (four
times larger for the two day simulation and eight times larger for the four day
simulation).

We find that the mean torque, averaged over all the time steps in the output
file, has a value much smaller than the oscillating torque. This may imply
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Figure 1: Orbital period simulations conducted for 4 million seconds. Figure
1.1 (top left): Porb = ∞. Figure 1.2 (top right): Porb = four days. Figure 1.3
(bottom left): Porb =two days. Figure 1.4 (bottom right): Porb = 0.5 days.

that the results could be dependent on the time interval used for the averaging
(e.g. if the initial transient phase was ignored). While beyond the scope of this
thesis, future studies should investigate the convergence of the average torque
with both simulation time, number of grid points used, and amplitude of the
temperature variation used in the forcing.

4 Discussion

Altering the orbital period seems to have an effect on the calculated average
torque for our exoplanet. Alternatively, an orbital period that was relatively
longer than its spin period (Figure 1.2) resulted in a negative average torque
(τ = −1.35×1029 dyne cm). This result is similar to one of the findings in Arras
and Socrates (2010), where retrograde rotation was associated with longer or-
bital periods in relation to rotational periods in hot Jupiters. The longer orbital
period resulted in an increased rotation period that eventually induced retro-
grade rotation (Arras and Socrates 2010)–though, Arras and Socrates (2010)
also considered eccentricity, which was not included in our simulation. These
average torques were also much smaller than their maximum oscillation ampli-
tudes.

For orbital periods that are closer in magnitude and direction to the one
day rotational period, average torques remained in the original direction and

8



increased in magnitude with a decrease in orbital period (Figures 1.3 and 1.4). A
decreased orbital period would be generally associated with a decreased orbital
angular velocity, since it can be assumed that there is a smaller distance that
a planet has to travel. If the rotation period stays the same in all simulations,
the planet’s rotational angular velocity must also stay constant. A smaller
difference between these two angular velocities would result in a larger torque,
which could be why the 0.5 day orbital period simulation (Figure 1.4) has the
largest average torque magnitude. Smaller orbital periods are also associated
with being closer to the host star, allowing for the planet to be more affected
by heating than for planets further away (longer orbital periods) (Correia and
Laskar 2011). However, a close proximity to the host star would also increase
the effects of gravitational tides (Arras and Socrates 2010).

Despite the exclusion of friction in our model, and the shortened timescale
of the simulations conducted, these experiments can provide valuable insight for
the timescales that tidally locked systems operate on (Arras and Socrates 2010).
Estimates for the formation of tidally locked systems have been calculated to
be much shorter than the age of tidally evolved exoplanets . A negligible torque
generated by tidal interactions would allow for the rotation period of a planet to
be unaltered, therefore allowing for gravitational tides to force the planet into a
tidally locked system. One can relate torque and this timescale by a few general
equations. The spin-up timescale to achieve torque equilibrium, or tspin, can be
calculated using

tspin =
IΩspin

τ

where I represents the moment of inertia. This can be estimated roughly using

I = 0.1MR2
1

. If we define the mass as Mp = 2 × 1030g and our radius as 7.0 × 109cm, we
can then calculate an estimated I and tspin value for our simulations, which we
have outlined below:

Porb Ωspin(
rad
s ) Calculated moment of inertia (I) Torque (τ), dyne-cm) tspin (s)

0.5 days 7.272× 10−5 9.8× 1048 1.92× 1029 3.70× 1015

2 days 7.272× 10−5 9.8× 1048 1.38× 1029 5.16× 1015

4 days 7.272× 10−5 9.8× 1048 −1.34× 1029 5.30× 1015

Table 1: Calculated tspin

As the orbital period increases, the timescale for the exoplanet to reach
torque equilibrium also increases (Table 1). Since the time scale for a tidally
evolved rotational period would be inversely proportional to the torque gener-
ated from thermal forcing, a smaller torque would result in a larger time scale.
Larger orbital periods often indicate a larger semimajor axis, so planets further
from their host star would not experience as much thermal forcing to trigger
strong responses to atmospheric thermal tides. At the same time, they are far
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enough away from their host stars to withstand the gravitational forcing that
would trigger a shorter tspin time scale. The differences in the torque equi-
librium time scale between different orbital periods seems to diminish with a
larger orbital period. We recommend the analysis of the density, velocity, and
temperature profiles in the atmosphere in order to exhibit the fluid motions for
future studies.

In summary, the duration of the orbital period directly impacts the mag-
nitude and direction of a generated torque in hypothetical solid-surface like
exoplanets via differences in angular velocity. A smaller orbital period is most
commonly associated with a larger torque, which can combat the synchronous
tidal locking tendencies of gravitational tides that work to slow a planet’s rota-
tion. In turn, the torques produced by atmospheric thermal tides may work to
decrease the time scales to change the rotation rate of a planet seen in tidal evo-
lutions. Density, velocity, and temperature profiles are recommended to further
understand the physical effects of atmospheric thermal tides.
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