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Abstract	

Atherosclerosis	is	the	primary	cause	of	coronary	artery	disease	(CAD),	ischemic	stroke	

and	peripheral	arterial	disease.	Despite	major	achievements	made	in	the	past	few	decades,	CAD	

and	atherosclerosis-related	events	remain	the	number	one	cause	of	death	in	the	United	States	

and	other	developed	countries.	Therefore,	there	is	a	critical	medical	need	to	develop	novel	and	

effective	therapies.		

An	effective	way	to	find	new	targets	for	intervention	is	through	conducting	genetic	

studies	in	animal	models.	When	deficient	in	Apoe,	mouse	strains	BALB/cJ	and	SM/J	exhibit	

distinct	differences	in	atherosclerosis	and	its	associated	risk	factors.		We	hypothesized	that	

linkage	analysis	of	progeny	derived	from	these	inbred	strains	would	lead	to	the	discovery	of	

new	genes	and	new	pathways	in	atherosclerosis	and	its	associated	cardiometabolic	phenotypes.		

F2	mice	were	generated	from	an	intercross	between	the	two	Apoe-/-	strains	and	fed	12	weeks	of	

Western	diet.		Many	QTL	loci	were	mapped	for	plasma	lipids	and	glucose,	carotid	lesion	size,	and	

aortic	lesion	size.	This	included	a	significant	QTL	for	aortic	atherosclerosis,	Ath49,	which	was	

mapped	to	the	major	histocompatibility	region.	Moreover	four	novel	QTLs	for	carotid	

atherosclerosis,	two	significant	QTLs	named	Cath7	on	chromosome	5	and	Cath8	on	chromosome	

9	and	two	suggestive	QTLs,	Cath5	and	Cath6	on	chromosomes	15	and	18	respectively,	were	

mapped.	Through	a	combination	of	haplotype	analysis	and	a	novel	strategy	employing	gene	

expression,	aortic	lesion	size	correlation,	and	eQTL	data,	we	prioritized	Mep1α	as	a	promising	

candidate	gene	for	Ath49.		We	generated	double	knockouts	and	found	that	Mep1α	is	a	novel	gene	

negatively	affecting	plaque	formation.	Finally,	we	developed	a	method	utilizing	machine	

learning-based	segmentation	to	accurately	quantify	subcutaneous	and	visceral	fat	volumes	in	

mice	using	MRI	and	humans	using	CT.		We	found	that	BMI,	a	commonly	used	measure	for	

diagnosing	obesity,	is	only	moderately	associated	with	subcutaneous	fat	and	has	no	association	

with	visceral	fat	volume	in	humans.	
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oxLDL	 	 oxidized	low-density	lipoprotein	

IL-1β	 	 interleukin	1	beta	

SMC	 	 smooth	muscle	cell	 	

GWAS	 	 genome-wide	association	study	

SNP	 	 single-nucleotide	polymorphism	

QTL	 	 quantitative	trait	locus	

Apoe	 	 apolipoprotein	E	

LDLR	 	 low-density	lipoprotein	receptor	

Mb	 	 megabase	

eQTL	 	 expression	quantitative	trait	locus	

CI	 	 confidence	interval	

WGCNA	 weighted	gene	co-expression	network	analysis	

HDMP	 	 hybrid	diversity	mouse	panel	

MHC	 	 major	histocompatibility	complex	

Mep1α		 meprin	1	alpha	

MRI	 	 magnetic	resonance	imaging	
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CT	 	 computed	tomography	

B6	 	 C57BL/6	inbred	mouse	strain	

C3H	 	 C3H/HeJ	inbred	mouse	strain	

BALB	 	 BALB/cJ	inbred	mouse	strain	

SM	 	 SM/J	inbred	mouse	strain	

LOD	 	 logarithm	of	odds	

HbA1c	 	 glycated	hemoglobin	

OR	 	 odds	ratio	

H&E	 	 hematoxylin	and	eosin	

SMC-A	 	 smooth	muscle	cell	actin	

MAC3	 	 galectin	3	

LY6G	 	 leukocyte	antigen-6	

CXCL5	 	 C-X-C	Motif	Chemokine	Ligand	5	

MDA	 	 malondialdehyde	

ECM	 	 extracellular	matrix	

PFA	 	 paraformaldehyde	

BMI	 	 body	mass	index	

ANTs	 	 advanced	normalization	tools	

RMSE	 	 root	mean	squared	error	

ANOVA		 analysis	of	variance	

SAT	 	 subcutaneous	adipose	tissue	

VAT	 	 visceral	adipose	tissue	

RSE	 	 residual	squared	error	

HU	 	 hounsfield	units	

PACS	 	 picture	archiving	and	communication	system	
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1.1	Atherosclerosis	Pathogenesis	

1.1.1	Atherosclerosis	Is	The	Leading	Health	Burden	Worldwide	

	 Atherosclerosis	is	a	complex	disease	that	is	the	primary	contributor	to	coronary	

artery	disease	(CAD)	and	cardiovascular	disease	(CVD),	the	two	major	causes	of	heart	

attack,	ischemic	stroke	and	peripheral	arterial	disease.	Despite	decades	of	work	combating	

CAD	and	CVD,	cardiovascular-related	events	remain	the	number	one	cause	of	death	in	the	

United	States	and	throughout	the	world.	In	2013,	they	accounted	for	approximately	17.3	

million	of	the	54	million	total	deaths,	or	31.5%	(95%	uncertainty	interval,	30.3%–32.9%)	of	

all	global	deaths1.	In	2016,	heart	disease	accounted	for	635,260	deaths,	or	23.1%	of	all	

deaths	in	the	United	States2.	This	number	is	comparable	to	the	number	of	all	deaths	from	

malignant	neoplasms	and	accidents,	the	second	and	third	leading	causes	of	death,	combined	

(27.6%).	Despite	it	being	the	world’s	largest	health	problem,	death	rates	attributable	to	CVD	

have	declined	25.3%	from	2004	to	2014.	However	by	2030,	43.9%	of	the	US	adult	

population	is	projected	to	have	some	form	of	CVD.	So	while	the	percentage	of	deaths	has	

been	declining,	the	number	of	cardiovascular	related	mortalities	will	still	remain	the	most	

significant	public	health	risk.		

Common	risk	factors	for	CAD	include	high	low-density	lipoprotein	(LDL)	levels,	

obesity,	and	diabetes3.	In	the	United	States,	in	adults	aged	≥	20	years,	the	co-occurrence	of	

age-adjusted	hypertension	is	30.0%,	the	co-occurrence	of	high	cholesterol	is	27.8%	(>240	

mg/dL	or	high-cholesterol	medication),	and	diagnosed	and	undiagnosed	type-2	diabetes	

mellitus	(T2D)	is	11.4%.		

The	largest	amount	of	co-occurrence	is	with	individuals	considered	overweight	or	

obese,	where	68.8%	have	both	high	body	mass	index	(BMI)	and	CAD.	The	diagnosis	of	

obesity	has	primarily	relied	on	a	few	anthropometric	measurements,	such	as	body	mass	

index	(BMI),	waist	circumference,	or	waist-to-hip	ratio.	A	BMI	of	≥30	kg/m2	is	considered	
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obese,	and	a	BMI	of	25	to	<30	kg/m2	is	defined	as	overweight.	However,	these	indirect	

measurements	neither	allows	for	distinguishing	fat	from	skeletal	muscle	nor	distinguishing	

between	visceral	and	subcutaneous	fat.	Excessive	body	fat	rather	than	skeletal	muscle	is	

related	to	both	increased	plasma	levels	of	free	fatty	acids	and	proinflammatory	cytokines	as	

well	as	endoplasmic	reticulum	stress,	all	of	which	contribute	to	development	of	insulin	

resistance,	type	2	diabetes,	and	atherosclerosis4.	Central	or	abdominal	obesity	has	been	

shown	to	be	more	closely	associated	with	risk	of	coronary	artery	disease	and	type	2	

diabetes5,6.	

Thus,	there	is	a	medical	demand	for	accurately	measuring	the	amount	and	

distribution	of	body	fat	to	better	understand	its	impact	on	health	and	disease.	Such	imaging	

modalities	as	magnetic	resonance	imaging	(MRI)	and	computed	tomography	(CT)	can	

clearly	distinguish	fat	from	other	tissues	and	thus	allow	for	accurate	measurement	of	fat	

and	non-fat	tissue	amounts7.	Quantification	of	body	fat	volume	using	MRI	or	CT	involves	

analysis	of	many	cross-sectional	or	longitudinal	slices	across	the	region	of	interest.	Thus,	

manual	measurement	of	fat	volume	with	MRI	or	CT	images	is	a	tedious	and	time-consuming	

task.	To	save	time	and	also	reduce	subjective	influences	from	observers,	several	semi-

automated	algorithms	have	been	developed	for	quantifying	body	fat8–11.	However,	nearly	all	

of	the	algorithms	are	still	dependent	on	expert	knowledge	for	tuning	the	features	of	images	

and	their	accuracy	and	reliability	are	often	low.	Thus,	there	is	a	large	demand	for	techniques	

that	can	feasibly	quantify	these	fat	deposits	and	accelerate	our	understanding	of	the	

pathogenesis	of	obesity	and	it’s	relationship	with	T2D	and	atherosclerosis.	

There	is	strong	evidence	to	support	the	claim	that	insulin	resistance,	

hyperinsulinemia,	and	parental	and	familial	history	of	diabetes	mellitus	or	impaired	glucose	

tolerance	is	associated	with	a	higher	probability	in	adult	offspring	of	exhibiting	a	CAD	risk	

profile	or	experiencing	myocardial	infarction12–15.	Moreover,	diabetic	patients	have	a	2~4	



	 4	

fold	increased	risk	of	developing	CAD	in	general.	Therefore	while	T2D	has	a	lower	co-

occurrence	rate	than	other	risk	factors,	it	is	also	included	in	the	risk	profile	for	CAD.		

While	each	of	these	risk	factors	individually	increases	a	person’s	risk	for	CAD,	the	

presence	of	multiple	risk	factors	translates	to	an	even	higher	risk	level.	These	observations	

have	led	to	the	widespread	popularity	of	the	metabolic	syndrome	concept,	a	constellation	of	

risk	factors	that	confers	an	elevated	risk	of	CAD	and	CVD.	This	metabolic	syndrome	concept	

has	been	accepted	by	the	medical	community	and	is	the	current	strategy	used	by	clinicians	

for	predicting	overall	risk	of	CAD	complications	or	development	of	T2D16.	Therefore	

understanding	hyperlipidemia,	obesity,	T2D,	and	hypertension	will	inevitably	also	enhance	

our	understanding	of	atherosclerosis	and	provide	novel	avenues	for	discovering	new	and	

better	ways	of	preventing	both	CAD	and	it’s	associated	health	complications.		

1.1.2	Current	Treatment	Strategies	For	Atherosclerosis	

Numerous	therapeutic	strategies	have	been	developed	over	the	years	for	prevention	

and	treatment	of	CVD17.	Those	predicted	to	have	a	mild	risk	of	developing	cardiovascular	

disease	are	recommended	to	change	lifestyle	habits	to	help	with	reducing	dyslipidemia,	

obesity,	and	T2D.	The	idea	behind	this	is	that	with	reductions	in	the	co-occurring	diseases,	

chances	of	a	CAD-related	event	will	also	decrease.	These	lifestyle	changes	include	eating	less	

fats	and	sugar	and	eating	more	whole	grains,	fruits,	vegetables,	and	fish,	an	increase	in	

exercise,	a	reduction	in	alcohol	intake,	and	a	cessation	of	smoking18,19.	If	the	risk	of	

developing	CAD	is	high	enough,	additional	drug	therapy	is	typically	considered.	These	drugs	

are	primarily	focused	on	attenuating	dyslipidemia	through	reducing	LDL-C,	NonHDL-C,	and	

TG	levels	while	increasing	HDL-C	levels	(Table	1.1).	More	recently	some	alternative	

medications	have	been	explored,	including	additional	application	of	aspirin	and	long-term	

antiplatelet	therapies.	However,	neither	these	nor	lipid	medication-based	strategies	have	

shown	large	amounts	of	success20,21.	For	severe	cases	in	which	patients	have	already	
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developed	CAD,	interventional	strategies	such	as	angioplasty,	endarterectomy,	and	bypass	

surgery	are	employed22–24.	These	strategies	are	implemented	with	a	high	degree	of	efficacy	

and	a	low	degree	of	interventional-related	mortalities,	and	do	decrease	the	overall	number	

of	heart	attacks	and	stroke	occurrences1,23.	Despite	this,	CAD	remains	the	number	one	cause	

of	death	worldwide2.	Therefore,	there	is	a	large	window	for	improvement	in	our	prevention	

regimens	and	discovering	novel	players	in	atherosclerosis	in	order	to	develop	more	

effective	therapeutics	is	of	great	importance.	

	

Table	1.1	List	of	current	therapeutics	for	treatment	of	dyslipidemia	in	relation	to	

cardiovascular	disease	

Category	 Major	drug	name	

Statin	 Pravastatin,	Simvastatin,	Fluvastatin,	

Atorvastatin,	Pitavastatin,	Rosuvastatin	

Intestinal	cholesterol	transporter	

inhibitor	(Cholesterol	absorption	

inhibitor)	

Ezetimibe	

Anion	exchange	resin	 Colestimide,	Cholestyramine	

Probucol	 Probucol	

PCSK9	inhibitor	 Evolocumab,	Alirocumab	

MTP	Inhibitor	 Lomitapide	

Fibrate	 Bezafibrate,	Fenofibrate,	Clinofibrate,	

Clofibrate	

Selective	peroxisome	proliferator- Pemafibrate	
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activated	receptor	α	modulator	

(SPPARMα)	

Nicotinic	acid	derivative	 Niceritrol,	Nicomol,	Tocopheryl	

Nicotinate	

N-3	polyunsaturated	fatty	acid	 Ethyl	icosapentate,	Omega-3-acid	ethyl	

ester	

Table	adapted	from	19.	

	

1.1.3	Atherosclerotic	Plaque	Formation	

	Atherosclerosis	refers	to	the	development	of	atheromatous	plaques	in	the	inner	

lining	of	large	and	medium-sized	arteries.	Though	murine	experiments	and	observations	in	

human	specimens,	we	have	greatly	increased	our	understanding	of	how	these	plaques	

develop.	Most	schemes	of	atherogenesis	highlight	the	initial	instigator	as	a	change	in	the	

monolayer	of	endothelial	cells	that	lines	the	inner	arterial	surface25–27.	This	process	is	

initiated	by	the	deposition	of	lipids	within	in	the	aortic	wall.	This	lipid	deposition,	despite	a	

systemic	rise	in	risk	factors	such	as	increased	LDL	levels	or	blood	pressure,	is	likely	due	to	

differing	haemodynamics	in	specific	parts	of	the	arterial	tree.	In	these	specific	locations,	the	

ability	of	normal	laminar	shear	stress	to	cause	the	endothelium	to	express	an	

atheroprotective	gene	expression	profile	is	inhibited28,29.	This	change	in	endothelial	gene	

expression	then	permits	the	lipids	to	transmigrate	and	deposit	into	the	intimal	space	at	

these	locations.	

Once	within	the	intimal	space	between	the	endothelial	and	medial	layers,	these	

lipids	become	oxidized	due	to	oxygen	free	radicals	which	have	been	hypothesized	to	be	

produced	by	resident	arterial	macrophages,	endothelial	cells,	and	smooth	muscle	cells30.	
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Once	the	oxidized	lipids	are	recognized	by	the	resident	macrophages’	and	mast	cells’	

scavenger	receptors,	they	express	pro-inflammatory	cytokines.	These	cytokines	cause	

arterial	endothelial	cells	to	express	adhesion	molecules	that	capture	leukocytes	on	their	

surfaces,	the	primary	of	which	is	vascular	cell	adhesion	molecule	1	(VCAM-1)31,32.	After	

monocytes	adhere	to	the	endothelium,	they	migrate	into	the	intima	under	the	influence	of	

produced	chemokines	such	as	monocyte	chemotractant	protein-1	(MCP-1)33.	These	

chemokines	are	typically	produced	by	endothelial	cells,	macrophages	and	smooth	muscle	

cells34,35.		

This	process	of	endothelial	cell	activation	and	monocyte	invasion	is	already	

occurring	in	individuals	where	risk	factors	such	as	hypertension	and	endothelial	cell	

damage	are	present27.	Added	strain	from	hypertension	or	the	wound	healing	response	from	

endothelial	cell	damage	can	both	cause	an	innate	immune	response	that	will	bring	about	the	

pro-atherosclerotic	changes	in	the	surrounding	endothelial	cells.	These	changes	will	

subsequently	permit	easier	uptake	of	circulating	LDL,	even	if	it	is	not	present	in	increased	

amounts32.		

Once	in	the	intima,	monocytes	differentiate	into	M1	macrophages	in	order	to	

process	the	oxLDL36.	The	uptake	of	large	amounts	of	oxLDL	results	in	excess	cholesterol	

deposition	in	macrophages	and	ultimately	leads	to	the	formation	of	foam	cells.	These	foam	

cells	produce	a	variety	of	pro-inflammatory	cytokines,	the	primary	of	which	is	IL-1β37,38.	

These	pro-inflammatory	cytokines	are	released	into	the	blood	and	promote	the	recruitment	

of	other	leukocytes,	inducing	a	feed-forward	mechanism	of	immune	cell	recruitment	and	a	

chronic	local	and	systemic	pro-inflammatory	environment.	The	foam	cells	collect	in	the	

intimal	space	and	over	time	a	large	percentage	of	these	foam	cells	die,	primarily	through	

apoptosis.	Upon	death	they	release	the	lipids	and	cholesterol	into	the	surrounding	intimal	
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space.	This	collection	of	apoptotic	cells	forms	a	lipid-rich	pool	called	the	necrotic	core	of	the	

plaque39.	

The	other	major	factor	involved	in	plaque	progression	is	smooth	muscle	cell	(SMC)	

migration	and	fibrous	cap	development	40.	In	the	arterial	intima	layer,	SMCs	migrate	and	

produce	extracellular	matrix	proteins,	including	interstitial	collagen	and	elastin.	These	

migratory	cells	primarily	locate	to	the	intimal	space	proximal	to	the	endothelial	cell	layer.	

Once	there,	these	SMCs	form	a	fibrous	cap	that	typically	covers	the	necrotic	core	and	

protects	the	plaque	from	rupture.	SMCs	can	also	play	an	inflammatory	role	akin	to	

macrophages.	An	alternative	gene	expression	profile	is	activated	when	the	SMCs	uptake	

oxidized	lipids.	This	alternate	gene	expression	involves	an	activation	of	macrophage	

markers	and	a	gain	of	phagocytic	activity41–43.	In	this	way,	these	SMCs	act	in	a	similar	

fashion	to	transmigrated	M1	macrophages	and	promote	the	pro-inflammatory	environment	

of	the	plaques.		

Thrombi	are	the	final	consequence	of	the	growth	of	atherosclerotic	plaques	and	are	

the	ultimate	cause	of	heart	attack	and	stroke.	Thrombi	often	occur	after	the	plaque	is	

physically	disrupted,	most	commonly	through	a	combination	of	erosion	and	rupture	of	the	

fibrous	cap.	This	rupture	causes	pro-coagulant	material	in	the	plaque	to	be	exposed	to	

coagulation	proteins	in	the	blood.	This	clot	enters	the	bloodstream	and	triggers	a	heart	

attack	or	stroke,	depending	on	the	location	of	the	plaque.	Plaques	that	rupture	typically	

have	thin,	collagen-poor	fibrous	caps	with	few	SMCs	and	abundant	macrophages	with	a	

large	necrotic	core44.	Large	amounts	of	inflammatory	cells	may	hasten	plaque	disruption	

due	to	their	expression	and	release	of	collagenolytic	enzymes	that	can	degrade	collagen.	

They	can	also	generate	mediators	that	promote	the	death	of	SMCs,	the	source	of	arterial	

collagen45.	Overall,	plaque	formation	is	primarily	mediated	through	the	abundance	of	

circulating	lipids	and	the	pro-inflammatory	response	induced	by	both	M1	macrophages	and	
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migrating	SMCs.	The	likelihood	of	plaque	rupture	and	the	occurrence	of	heart	attack	or	

stroke	is	primarily	determined	through	the	plaque	composition.	While	our	knowledge	of	

atherosclerosis	has	greatly	improved	over	the	last	few	decades,	a	large	amount	of	work	

remains	in	understanding	the	intricate	processes	that	influence	it.	One	promising	tactic	for	

discovering	novel	pathways	and	players	involved	is	to	discover	the	underlying	genetic	

architecture	influencing	an	individual’s	susceptibility	to	atheromic	plaque	formation.	

	

	

	

1.2	Genetics	of	Atherosclerosis	

1.2.1	Before	GWAS	

The	important	role	of	genetic	factors	in	atherosclerosis	has	been	clearly	

demonstrated	in	numerous	early	studies,	including	prospective	studies	of	twins,	families	

and	 cohorts46–48.	Through	measures	of	atherosclerosis	such	as	myocardial	infarction,	

carotid	intima-media	thickness	or	coronary	angiography,	and	measurements	of	risk	factors	

such	as	plasma	lipid	levels	or	blood	pressure,	these	studies	have	found	the	heritable	

component	to	be	somewhere	in	the	range	of	30-60%25,46,49.	While	the	influence	of	genetics	

was	apparent,	finding	the	genetic	components	involved	remained	difficult	with	the	limited	

genetic	resources	available.	Most	candidate	gene	experiments	in	mice	were	underpowered	

and	were	met	with	little	success,	with	the	exception	of	a	select	few	genes	including	ABO,	

LDLR,	APOB,	CBS,	and	ATPA150,51.	Therefore	more	powerful	techniques	for	uncovering	the	

heritable	components	were	needed,	and	these	came	in	the	form	of	Genome-Wide	

Association	Studies	(GWAS).	

1.2.2	Human	Genome-Wide	Association	Studies	(GWAS)	for	Coronary	Artery	Disease	
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	 Over	the	past	decade	and	a	half,	genome-wide	association	studies	(GWAS)	have	

yielded	remarkable	advances	in	the	understanding	of	complex	traits.	Hundreds	of	

thousands	of	genetic	risk	variants	have	been	identified	in	humans	for	a	wide	variety	of	

heritable	traits	and	complex	diseases52–54.	As	of	10-14-2019,	the	GWAS	Catalog	

contains	7796	publications	and	159202	associations	(https://www.ebi.ac.uk/gwas/).	A	

typical	GWAS	analyzes	on	average	hundreds	of	thousands	to	millions	of	single-nucleotide	

polymorphisms	(SNPs)	from	each	individual	to	test	for	an	association	between	each	variant	

and	a	phenotype	of	interest55(p20).	GWAS	have	confirmed	the	heritability	of	many	human	

traits56,	clarified	their	underlying	genetic	architecture57,	and	have	identified	novel	biological	

mechanisms	and	drug	targets58.	Over	the	years,	a	number	of	GWAS	have	been	performed	for	

case-control	diagnosis	of	coronary	artery	disease	(CAD)	and	cardiovascular	disease	(CVD)	

and	have	managed	to	identify	hundreds	of	associated	loci59–61.	With	increasing	availability	

of	genotyped	individuals	and	a	larger	number	of	individuals	being	introduced	into	the	

analyses,	the	heritable	component	underlying	CAD/CVD	that	has	been	identified	has	been	

continually	improving.	Novel	strategies	using	a	5%	FDR	cutoff	instead	of	the	typical	–log(P)	

cutoff	for	significant	associations	of	108	have	uncovered	the	most	associations,	for	a	current	

number	of	304	independent	variants	at	243	loci62.	However	even	with	this	strategy,	only	

21.2%	of	the	heritable	component	of	CAD/CVD	has	been	identified.		This	does	not	come	

close	to	the	30-60%	heritability	predicted	through	early	twin	studies,	and	highlights	the	fact	

that	a	large	amount	of	genetic	influence	remains	to	be	uncovered.		

One	novel	hypothesis	for	how	to	find	the	total	influence	of	genetics	on	a	phenotype	

is	called	the	omnigenic	model63.	In	essence,	it	describes	a	situation	in	which	a	network	of	

genes	with	small	effect	sizes	work	through	primary	core	genes,	or	the	genes	having	a	direct	

influence	on	the	phenotype.	The	SNPs	influencing	CAD	are	working	either	in	cis	through	

direct	regulation	of	the	core	genes,	or	in	trans	through	peripheral	genes	of	small	effect	size	
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that	are	in	turn	affecting	the	core	genes.	From	this	hypothesis,	the	304	variants	for	CAD	and	

CVD	that	have	been	identified	to	date62	are	cis-effectors	for	the	core	genes	with	large	effect	

sizes	involved	in	CAD.	However,	lots	of	trans-effectors	with	very	small	effect	sizes	that	

influence	these	core	genes	remain	to	be	discovered.	The	way	to	find	the	missing	heritability	

is	to	find	these	trans-effector	SNPs	and	understand	the	genomic	landscapes	of	how	all	of	

these	SNPs	are	contributing.	According	to	the	model,	this	would	most	likely	consist	of	the	

majority	of	the	genome.	However,	these	omnigenic	model	ideas	are	new	concepts,	and	

strategies	to	find	these	trans-effector	SNPs	remain	undiscovered	to	date.	Therefore	to	

uncover	this	missing	heritability	that	current	human	GWAS	has	not	found,	the	option	we	

and	others	have	chosen	is	to	use	model	organisms.	

	

	

1.2.3	Linkage	Analysis	in	Mice	for	Aortic	Atherosclerosis	

	 Model	organisms	like	mice	can	facilitate	the	discovery	of	the	missing	genes	by	taking	

advantage	of	the	genetic	differences	between	inbred	strains.	By	using	these	genetic	

differences,	one	can	discover	genomic	regions	linked	to	atherosclerosis	progression	and	

susceptibility	using	quantitative	trait	locus	(QTL)	analysis.	The	QTL	analysis	process	

typically	involves	generating	a	cross	between	inbred	strains	that	differ	in	one	or	more	

phenotypes	of	interest	(typically	an	F2	intercross).	These	F2	mice	are	then	genotyped	with	

genetic	markers	evenly	spaced	across	the	genome	and	phenotyped	for	the	traits	of	interest.	

The	final	step	is	the	linking	of	the	genotypes	at	those	markers	with	the	phenotype	to	find	

specific	parts	of	the	genome	that	are	likely	influencing	the	phenotype64–66.	This	linkage	

analysis	is	primarily	performed	using	either	the	qtl	package	for	R,	a	program	commonly	

used	for	the	statistical	analysis	of	rodent	QTL	crosses,	or	a	Java-based	graphical	interface	for	

R/qtl,	J/qtl67,68.	
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	 There	are	major	benefits	to	using	mice	for	genetic	studies	compared	to	humans.	

Firstly,	it	allows	for	strict	control	over	environmental	influence	to	minimize	variability	

between	individuals.	Second,	it	allows	for	accurate	phenotypic	characterization	of	the	

atherosclerotic	lesions	through	direct	quantification	of	the	lesion	size.	While	these	two	

things	can	help	uncover	loci	human	models	cannot,	one	important	limitation	to	using	mice	

is	that	wild-type	inbreds	or	outbreds	do	not	naturally	produce	atherosclerotic	lesions.	To	

circumvent	this,	models	were	created	in	which	Apolipoprotein	E	(Apoe)	or	LDL	receptor	

(Ldlr)	were	knocked	out	to	induce	an	extremely	hyperlipidemic	state69.	This	large	influx	of	

circulating	lipids,	primarily	low-density	lipoprotein	(LDL),	inevitably	causes	LDL	to	be	

deposited	in	the	aorta	and	for	atherosclerotic	plaques	to	reliably	develop.	This	increase	in	

LDL	co-occurs	with	a	decrease	in	the	athero-protective	high-density	lipoprotein	(HDL).	This	

hyperlipidemia	is	exacerbated	when	mice	are	fed	a	high-fat,	high-cholesterol	diet,	termed	

Western	diet.	Using	this	model,	a	large	number	of	QTLs	for	LDL	and	HDL	have	been	

discovered	from	10	separate	studies	involving	23	different	inbred	strains	of	mice	spanning	

every	chromosome	in	the	mouse	genome70.		

Intercrosses	of	inbred	strains	on	an	Apoe−/−or	LDL	Lldlr−/−	background	reproduce	all	

phases	of	atherosclerotic	lesions	seen	in	humans	and	have	therefore	been	the	models	of	

choice	for	QTL	generation	for	aortic	atherosclerosis71,72.	Depending	on	the	inbred	strain,	

Apoe-/-	mice	display	a	large	range	of	susceptibility	to	developing	atherosclerosis,	with	

females	having	larger	lesion	sizes	than	males	(Figure	1.2).	For	this	reason,	females	have	

been	primarily	used	for	aortic	QTL	studies.	This	diversity	is	observed	even	amongst	the	

more	commonly	used	inbred	strains	such	as	C57BL/6	and	C3H/HeJ	and	remains	consistent	

when	fed	either	a	normal	(chow)	diet	or	Western	diet	(Figure	1.3).	When	choosing	two	

inbred	strains	to	generate	an	intercross,	one	should	pick	two	with	a	large	difference	in	

atherosclerosis	susceptibility.	This	will	cause	the	F2	mice	to	have	a	large	amount	of	
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phenotypic	variation,	typically	forming	a	normal	distribution	of	aortic	lesion	sizes.	This	

large	amount	of	F2	phenotype	variation	yields	the	highest	likelihood	of	discovering	genetic	

loci	linked	to	the	phenotype	of	interest.	This	has	held	true	for	aortic	atherosclerosis	QTL	

studies	we	and	others	have	performed.	To	date,	119	suggestive	and	significant	QTLs	have	

been	discovered	over	15	male	and	female	intercrosses	spanning	13	inbred	strains	and	every	

chromosome	on	the	mouse	genome,	many	of	which	overlap	on	similar	regions	of	the	mouse	

genome	(Figure	1.4)	(Table	1.1)	73–90.		

	

	

	

Figure	1.1	Aortic	lesion	sizes	of	inbred	and	recombinant	inbred	strains	on	the	Apoe-/-	

background	fed	Western	diet	for	16	weeks.	Strains	highlighted	in	blue	or	red	are	

inbred	strains	we	have	previously	(blue	+	BALB/cJ)	or	are	currently	using	(BALB/cJ	+	

SM/J)	for	F2	intercrosses	to	discover	QTLs	for	aortic	atherosclerosis.	Figure	adapted	

from	91.	
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Figure	1.2	Cross-sections	of	aortic	lesions	in	the	aortic	root	from	inbred	strains	with	

different	atherosclerosis	susceptibility	on	an	Apoe-/-	background.	Aortic	lesions	are	

stained	with	Oil-Red-O	(red)	when	C57BL.6	(left)	or	C3H/HeJ	(right)	mice	were	fed	

either	chow	(top)	or	Western	(bottom)	diet.	
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Figure	1.3	All	published	quantitative	trait	loci	(QTLs)	for	aortic	lesion	size	in	Apoe-/-	

or	Ldlr-/-	mice	fed	Western	diet.	Horizontal	dashes	indicate	recorded	QTL	peak	and	

vertical	lines	indicate	the	95%	confidence	intervals	(CI).	QTLs	were	visualized	using	a	

custom	track	imported	into	the	UCSC	genome	browser	using	mouse	genome	mm10.	

The	custom	track	is	available	as	S1.1.	

	

Table	1.2:	QTLs	identified	for	aortic	lesion	area	in	Apoe-/-	and	Ldlr-/-	mice	

Chr	 QTLa	 peak	(Mb)b	 CI	(Mb)c	 Cross	 High	Alleled	 M/F	 PMID	

1	 Suggestive	 19,292,010	 1	-	37,906,000	 BALB	x	SMJ	 BALB	 F	 27736672	

	
Suggestive	 20,871,663	 20,871,663	-	68,723,270	 B6	x	FVB	 ?	 M	+	F	 11973313	

	
Suggestive	 59,000,000	 6,000,000	-	138,000,000	 DBA	x	129S	 DBA	 M	+	F	 24586312	

	
Suggestive	 73,000,000	 56,000,000	-	90,000,000	 DBA	x	129S	 DBA	 F	 24586312	

	
Ath30	 75,956,444	 72,000,000	-	80,000,000	 C3H	x	B6	 B6	 F	 17641228	

	
Ath43	 139,000,000	 121,000,000	-	169,000,000	 DBA	x	129S	 DBA	 F	 24586312	

	
Ath1	 155,924,281	 135,000,000	-	161,000,000	 C3H	x	B6	 B6	 M	+	F	 17641228	

	
Ath44	 158,300,000	 153,000,000	-	168,000,000	 DBA	x	129S	 DBA	 M	+	F	 24586312	



	 16	

	
Suggestive	 171,000,000	 162,000,000	-	183,000,000	 DBA	x	129S	 DBA	 M	 24586312	

	
Suggestive	 177,269,841	 162,250,311	-	177,269,841	 BALB	x	SMJ	 SMJ	 F	 27736672	

	
Ath9	 177,285,317	 157,361,794	-	192,529,115	 B6	x	FVB	 FVB	 M	 11973313	

	
Ath1	 183,092,234	 172,000,000	-	193,241,301	 BALB	x	B6	 B6	 F	 22294616	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	2	 Ath47	 34,400,000	 3,886,211	-	84,817,798	 BALB	x	B6	 B6	 F	 21252064	

	
Ath39	 38,239,859	 25,000,000	-	47,000,000	 BALB	x	B6	 B6	 M	 21252064	

	
Ath41	 71,964,058	 45,000,000	-	130,000,000	 BALB	x	B6	 B6	 F	 22294616	

	
Ath46	 139,000,000	 106,000,000	-	150,000,000	 DBA	x	129S	 DBA	 M	 24586312	

	
Athla1	 148,680,255	 115,000,000	-	150,000,000	 PERA	x	B6	 B6	 M	+	F	 15514201	

	
Ath45	 162,000,000	 157,000,000	-	165,000,000	 DBA	x	129S	 DBA	 M	+	F	 24586312	

	
Ath35	 172,000,000	 139,000,000	-	173,000,000	 DBA	x	129S	 DBA	 M	 24586312	

	
Ath28	 178,800,659	 162,355,057	-	181,873,487	 B6	x	C3H	 C3H	 M	 23938286	

	
Ath28	 179,574,406	 174,000,000	-	179,000,000	 DBA	x	AKR	 DBA	 M	 16373612	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	3	 Ath23	 66,450,410	 54,000,000	-	90,000,000	 DBA	x	AKR	 AKR	 F	 16373612	

	
Ascla4	 115,830,548	 ?	 B6	x	FVB	 B6	 F	 16380418	

	
Ascla3	 148,143,886	 ?	 B6	x	FVB	 B6	 F	 16380418	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	4	 Ath8	 55,251,078	 45,230,241	-	150,592,401	 B6	x	C3H	 B6	 M	 23938286	

	
Ath8	 59,552,657	 45,658,566	-	105,299,798	 NZB	x	SMJ	 SMJ	 F	 15530921	

	
Ath4	 86,450,248	 9,702,715	-	107,112,550	 B6	x	C3H	 B6	 F	 17916774	

	
Suggestive	 119,721,657	 63,898,275	-	129,953,782	 BALB	x	SMJ	 Heterosis	 F	 27736672	

	
Athsq1	 129,572,122	 110,000,000	-	136,927,309	 BALB	x	B6	 BALB	 F	 22294616	

	
Athsq1	 149,926,199	 137,890,684	-	151,570,093	 B6	x	MOLF	 MOLF	 F	 11438740	

	
Athsq3	 151,077,699	 145,000,000	-	153,000,000	 B6	x	C3H	 B6		 F	 17641228	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	5	 Suggestive	 61,506,687	 44,971,670	-	69,163,000	 BALB	x	SMJ	 SMJ	 F	 27736672	

	 	
77,028,226	 65,000,000	-	92,000,000	 B6	x	C3H	 B6	 M	+	F	 17641228	

	
Ath42	 104,351,018	 99,690,738	-	124,829,348	 BALB	x	B6	 B6	 F	 22294616	

	
Suggestive	 108,384,913	 69,163,000	-	120,578,000	 BALB	x	SMJ	 SMJ	 F	 27736672	

	
Ath24	 146,583,524	 130,000,000	-	149,000,000	 DBA	x	AKR	 DBA	 M	+	F	 16373612	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	6	 Ath37	 124,468,231	 116,665,031	-	128,519,025	 CAST	x	B6	 B6	 M	+	F	 16624897	

	
Artles	 133,853,029	 107,795,846	-	145,656,013	 CAST	x	B6	 B6	 M	+	F	 11463718	

	
Athsq2	 134,083,123	 121,115,387	-	145,656,013	 B6	x	MOLF	 B6	 M	+	F	 11438740	

	
Ath38	 134,184,819	 128,519,025	-	136,316,178	 CAST	x	B6	 B6	 M	+	F	 16624897	
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	 	 	 	 	 	 	 	7	 Aorls2	 49,744,933	 ?	 B6	x	DBA	 DBA	 M	+	F	 12925895	

	
Ath31	 74,629,649	 50,000,000	-	100,000,000	 B6	x	C3H	 B6	 F	 17641228	

	
Suggestive	 78,000,000	 55,000,000	-	97,000,000	 DBA	x	129S	 129S	 M	+	F	 24586312	

	
Suggestive	 78,000,000	 54,000,000	-	91,000,000	 DBA	x	129S	 129S	 F	 24586312	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	8	 Ath40	 42,935,531	 21,959,500	-	71,045,600	 BALB	x	B6	 B6	 M	 21252064	

	
Suggestive	 89,351,811	 57,763,542	-	89,351,811	 BALB	x	SMJ	 SMJ	 F	 27736672	

	
Suggestive	 ?	 ?	 B6	x	DBA	 B6	 M	+	F	 12925895	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	9	 Ath29	 37,133,055	 32,500,594	-	68,829,021	 BALB	x	B6	 B6	 F	 22294616	

	
Ath29	 44,340,026	 34,067,647	-	69,831,153	 B6	x	C3H	 B6	 M	+	F	 17916774	

	
Ath29	 49,500,000	 9,140,000	-	59,140,000	 BALB	x	SM	 Heterosis	 M	 27736672	

	
Ath29	 74,700,643	 68,829,021	-	80,091,050	 B6	x	C3H	 B6	 F	 16387874	

	
Ath29	 80,091,050	 80,091,050	-	96,397,888	 B6	x	C3H	 B6	 M	 23938286	

	
Ath29	 83,693,797	 45,000,000	-	89,000,000	 B6	x	C3H	 B6	 M	+	F	 17641228	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	10	
	

6,202,049	 ?	 B6	x	FVB	 ?	 M	 11973313	

	
Ascla2	 18,806,860	 ?	 B6	x	FVB	 FVB	 M	 16380418	

	
Ath11	 20,407,588	 6,202,049	-	50,788,902	 B6	x	FVB	 FVB	 M	+	F	 11973313	

	
Ath11	 20,203,863	 9,160,000	-	23,160,000	 BALB	x	SMJ	 BALB	 M	 27736672	

	
Ath20	 20,407,588	 9,413,521	-	75,681,262	 129S	x	B6	 129S	 F	 14592847	

	
Ascla1	 21,715,442	 ?	 B6	x	FVB	 FVB	 F	 16380418	

	
Suggestive	 28,450,065	 26,797,957	-	67,821,343	 BALB	x	SMJ	 BALB	 F	 27736672	

	
Ath17	 68,255,809	 45,000,035	-	68,255,809	 129S	x	B6	 129S	 F	 14592847	

	
Aorls1	 82,655,287	 ?	 B6	x	DBA	 DBA	 M	+	F	 12925895	

	
Suggestive	 104,516,306	 86,301,142	-	104,516,306	 BALB	x	SMJ	 BALB	 F	 27736672	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	11	
	

45,275,149	 19,745,966	-	68,609,504	 B6	x	C3H	 C3H	 F	 16387874	

	
Ath19	 104,398,884	 64,000,000	-	113,000,000	 B6	x	C3H	 B6	 F	 17641228	

	
Ath19	 108,713,906	 89,927,907	-	108,713,906	 129S	x	B6	 129S	or	B6	 F	 14592847	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	12	 Ascla5	 14,347,013	 ?	 B6	x	FVB	 B6	 F	 16380418	

	
Ath6	 16,749,351	 10,870,733	-	27,065,736	 BKS	x	B6	 BKS	 F	 10393218	

	
Ath18	 35,210,068	 27,570,810	-	35,210,068	 129S	x	B6	 B6	or	129S	 F	 14592847	

	
Ascla6	 53,972,026	 ?	 B6	x	FVB	 B6	 M	 16380418	

	
Ath21	 102,995,424	 27,570,810	-	113,361,762	 129S	x	B6	 B6	 F	 14592847	
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	 	 	 	 	 	 	 	13	 Ath25	 42,683,303	 40,000,000	-	52,000,000	 DBA	x	AKR	 DBA	 M	+	F	 16373612	

	
Ath32	 92,906,389	 86,000,0000	-	110,000,000	 B6	x	C3H	 B6	 F	 17641228	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	14	 Ath13	 47,097,924	 25,856,310	-	71,917,665	 B6	x	FVB	 B6	 M	+	F	 11973313	

	
Suggestive	 56,000,000	 17,000,000	-	91,000,000	 DBA	x	129S	 129S	 M	+	F	 24586312	

	
Ath36	 73,000,000	 21,000,000	-	106,000,000	 DBA	x	129S	 129S	 M	 24586312	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	15	 Ath22	 20,464,816	 10,000,000	-	29,000,000	 DBA	x	AKR	 DBA	 F	 16373612	

	
Ath33	 71,152,437	 67,000,000	-	78,000,000	 B6	x	C3H	 C3H	 M	+	F	 17641228	

	
Ath33	 76,258,033	 52,153,986	-	90,057,489	 B6	x	C3H	 C3H	 M	 23938286	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	16	 Suggestive	 31,984,214	 ?	 B6	x	FVB	 ?	 M	+	F	 11973313	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	17	 Ath34	 27,579,594	 22,000,000	-	28,000,000	 B6	x	C3H	 B6	 M	+	F	 17641228	

	
Ath26	 36,360,361	 33,000,000	-	53,000,000	 DBA	x	AKR	 AKR	 M	+	F	 16373612	

	 	
43,089,482	 43,089,482	-	61,294,637	 BALB	x	SMJ	 BALB	 F	 27736672	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	18	 Ath27	 40,324,813	 38,000,000	-	56,000,000	 DBA	x	AKR	 Heterosis	 M	 16373612	

	
Suggestive	 53,000,000	 17,000,000	-	68,000,000	 DBA	x	129S	 DBA	 M	+	F	 24586312	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	19	 Ath16	 42,438,566	 35,317,981	-	47,152,941		 B6	x	FVB	 FVB	 M	+	F	 11973313	
a	Published	name	of	QTL.	QTLs	found	to	be	suggestive	in	the	original	publication	are	
labeled	as	“Suggestive”.	
b	Published	peak	of	QTL	in	megabases	(Mb).	Peak	location	was	determined	as	the	
physical	location	of	the	marker	closest	to	the	peak.	
c	Published	95%	confidence	interval	(CI)	in	Mb.	CI	location	in	Mb	was	determined	as	
the	location	of	the	markers	closest	to	the	edges	of	the	reported	CI	in	centimorgans	
(cM).	QTLs	that	do	not	have	a	published	CI	are	denoted	with	“?”.	
d	Allele	linked	to	larger	aortic	lesion	size.	QTLs	that	do	not	have	a	published	high	allele	
are	denoted	with	“?”.	
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1.3	Going	from	QTL	to	gene	

These	linkage	QTLs	are	large,	often	spanning	10	megabases	(Mb)	or	more,	and	

finding	the	causal	genes	remains	a	significant	challenge.	Multiple	strategies	have	been	

developed	in	other	complex	traits	to	try	and	narrow	down	these	windows	to	a	more	

manageable	set	of	genes.	These	strategies	include	human-mouse	comparative	genomics,	

combined	cross	analysis,	haplotype	analysis,	gene	expression	analysis,	in	silico	mapping,	

and	fine	mapping70,92,93.	Therefore	when	trying	to	find	candidate	genes	for	aortic	lesion	size	

QTLs,	we	apply	these	successful	methods.	Each	of	these	methods	has	their	strengths	and	

weaknesses,	so	a	combination	of	multiple	methods	is	the	most	reliable	way	to	ensure	all	the	

candidate	genes	are	found	for	a	locus.	The	three	methods	that	have	been	the	most	

successful	for	plasma	lipids	are	comparative	genomics,	haplotype	analysis,	and	gene	

expression	analysis.	Thus	the	combination	of	these	three	provides	the	highest	chance	of	

discovering	novel	influences	on	atherosclerosis.	

1.3.1	Comparative	Genomics	Between	Mouse	and	Human	

The	first	method	used	involves	human-mouse	comparative	genomics,	or	the	

identification	of	overlapping	loci	between	mouse	QTLs	and	human	GWAS	data.	A	large	

percentage	of	the	genome	is	conserved	between	humans	and	mice,	particularly	at	loci	

containing	genes.	The	assumption	of	this	analysis	is	that	when	mouse	linkage	QTLs	and	

GWAS	associations	both	appear	in	the	same	conserved	region,	there	is	a	shared	genetic	

component	affecting	both	mice	and	humans70.	Therefore,	using	bioinformatics	data	to	find	

candidate	genes	in	one	species	could	also	help	discover	candidate	genes	in	the	other94.	For	

atherosclerosis,	comparative	genomics	between	the	aortic	lesion	QTLs	in	mice	and	the	

syntenic	regions	in	humans	using	GWAS	data	for	CAD61	uncovers	a	large	number	of	

suggestive	or	significant	GWAS	loci	that	overlap	with	significant	or	suggestive	QTLs	(Table	

1.2).	Of	the	significant	aortic	QTLs,	53	(44.5%)	contained	a	GWAS	association	that	could	be	
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considered	potentially	suggestive	(-log(p)	>	5),	and	29	(24.4%)	of	these	contained	a	

significant	GWAS	association.	These	significant	GWAS	associations	account	for	24	(40%)	of	

the	recorded	genes	published	from	the	meta-analysis.	This	strategy	has	the	potential	to	

provide	novel	insight	into	QTLs	or	GWAS	loci	whose	causal	genes	have	previously	gone	

undiscovered.	Moreover,	regions	in	which	a	significant	linkage	QTL	in	mice	overlaps	a	

suggestive	association	in	human	GWAS	for	CAD	can	provide	a	way	to	discern	whether	

suggestive	GWAS	loci	have	potential	phenotypical	significance.	This	list	compiled	here	can	

be	used	by	future	studies	to	help	find	things	previously	undiscovered	in	mice	or	humans	

and	should	be	the	first	step	in	generating	candidate	genes	for	aortic	QTL	loci.	

	

	

	

Table	1.3:	Overlap	between	published	mouse	aortic	QTLs	and	human	coronary	artery	
disease	(CAD)	GWAS	

Chr	 QTL	
Peak	Mouse	

(Mb)	
CI	Mouse	
(Mb)	

CI	Human	
Syntenic	

Chromosome	

CI	Human	
Syntenic	Bp	

(Mb)	

GWAS	Hit	
(-log(p)	
>5)	

Called	GWAS	
Gene	(-log(p)	

>8)	 Cross	
High	
Allele	 MF	 PMID	

1	 Suggestive	 19,292,010	 1	-	37,906,000	 Chr2	 97-99	 -	
	

BALB	x	SMJ	 BALB	 F	 27736672	

	 	 	 	 	
128-132	 -	

	 	 	 	 	

	 	 	 	
Chr6	 49-52	 -	

	 	 	 	 	

	 	 	 	 	
56-57	 -	

	 	 	 	 	

	 	 	 	 	
62-64	 -	

	 	 	 	 	

	 	 	 	 	
69-73	 -	

	 	 	 	 	

	 	 	 	
Chr8	 50-56	 -	

	 	 	 	 	

	 	 	 	 	
67-75	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Suggestive	 20,871,663	

20,871,663	-	
68,723,270	

	 	 	 	
B6	x	FVB	 ?	 M	+	F	 11973313	

	
Suggestive	 59,000,000	

6,000,000	-	
138,000,000	

	 	 	 	
DBA	x	129S	 DBA	 M	+	F	 24586312	

	
Suggestive	 73,000,000	

56,000,000	-	
90,000,000	

	 	 	 	
DBA	x	129S	 DBA	 F	 24586312	

	
Ath30	 75,956,444	

72,000,000	-	
80,000,000	 Chr2	 216-224	 +	

	
C3H	x	B6	 B6	 F	 17641228	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath43	 139,000,000	

121,000,000	-	
169,000,000	 Chr1	 150.2	 -	

	
DBA	x	129S	 DBA	 F	 24586312	

	 	 	 	 	
164-186	 -	

	 	 	 	 	

	 	 	 	 	
190-193	 -	

	 	 	 	 	

	 	 	 	 	
196-207	 -	
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Chr2	 114.4-114.6	 -	

	 	 	 	 	

	 	 	 	 	
133-137	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath1	 155,924,281	

135,000,000	-	
161,000,000	 Chr1	 150.2	 -	

	
C3H	x	B6	 B6	 M	+	F	 17641228	

	 	 	 	 	
164-186	 -	

	 	 	 	 	

	 	 	 	 	
190-193	 -	

	 	 	 	 	

	 	 	 	 	
196-202	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath44	 158,300,000	

153,000,000	-	
168,000,000	 Chr1	 150.2	 -	

	
DBA	x	129S	 DBA	 M	+	F	 24586312	

	 	 	 	 	
164-183	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Suggestive	 171,000,000	

162,000,000	-	
183,000,000	

	 	 	 	
DBA	x	129S	 DBA	 M	 24586312	

	 	
177,269,841	

162,250,311	-	
177,269,841	 Chr1	 145.5	 -	

	
BALB	x	SMJ	 SMJ	 F	 27736672	

	 	 	 	 	
158-171	 +	

	 	 	 	 	

	 	 	 	 	
240-243	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath9	 177,285,317	

157,361,794	-	
192,529,115	 Chr1	 145.5	 -	

	
B6	x	FVB	 FVB	 M	 11973313	

	 	 	 	 	
150.2	 -	

	 	 	 	 	

	 	 	 	 	
158-178	 +	

	 	 	 	 	

	 	 	 	 	
210-227	 *	 MIA3	

	 	 	 	

	 	 	 	 	
241-246	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath1	 183,092,234	

172,000,000	-	
193,241,301	 Chr1	 145.5	 -	

	
BALB	x	B6	 B6	 F	 22294616	

	 	 	 	 	
158-160	 +	

	 	 	 	 	

	 	 	 	 	
209-227	 *	 MIA3	

	 	 	 	

	 	 	 	 	
240-246	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
2	 Ath47	 34,400,000	

3,886,211	-	
84,817,798	 Chr2	 113-114	 -	

	
BALB	x	B6	 B6	 F	 21252064	

	 	 	 	 	
138-140	 -	

	 	 	 	 	

	 	 	 	 	
143.8	 -	

	 	 	 	 	

	 	 	 	 	
145.1	 -	

	 	 	 	 	

	 	 	 	 	
148-188	 +	

	 	 	 	 	

	 	 	 	
Chr9	 123-140.13	 +	,	*	 ABO	

	 	 	 	

	 	 	 	
Chr10	 6-8Mb	 -	

	 	 	 	 	

	 	 	 	 	
11-18Mb	 -	

	 	 	 	 	

	 	 	 	 	
20-27	 -	

	 	 	 	 	

	 	 	 	
Chr11	 57-58	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath39	 38,239,859	

25,000,000	-	
47,000,000	 Chr2	 141	 -	

	
BALB	x	B6	 B6	 M	 21252064	
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145.1	 -	

	 	 	 	 	

	 	 	 	
Chr9	 123-140.13	 +	,	*	 ABO	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath41	 71,964,058	

45,000,000	-	
130,000,000	 Chr2	 87.1	 -	

	
BALB	x	B6	 B6	 F	 22294616	

	 	 	 	 	
95-97	 -	

	 	 	 	 	

	 	 	 	 	
110-114	 -	

	 	 	 	 	

	 	 	 	 	
145.1	 -	

	 	 	 	 	

	 	 	 	 	
148-184	 +	

	 	 	 	 	

	 	 	 	 	
187-189	 -	

	 	 	 	 	

	 	 	 	
Chr11	 27-28	 -	

	 	 	 	 	

	 	 	 	 	
32-37	 -	

	 	 	 	 	

	 	 	 	 	
43-49	 -	

	 	 	 	 	

	 	 	 	 	
55-58	 -	

	 	 	 	 	

	 	 	 	
Chr15	 32-52	 -	

	 	 	 	 	

	 	 	 	
Chr20	 1.9Mb	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath46	 139,000,000	

106,000,000	-	
150,000,000	 Chr1	 203.8	 -	

	
DBA	x	129S	 DBA	 M	 24586312	

	 	 	 	
Chr2	 87.1	 -	

	 	 	 	 	

	 	 	 	 	
95-97	 -	

	 	 	 	 	

	 	 	 	 	
110-114	 -	

	 	 	 	 	

	 	 	 	
Chr11	 27-28	 -	

	 	 	 	 	

	 	 	 	
Chr15	 32-52	 -	

	 	 	 	 	

	 	 	 	
Chr20	 1.8-2	 -	

	 	 	 	 	

	 	 	 	 	
2.6-24.5	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Athla1	 148,680,255	

115,000,000	-	
150,000,000	 Chr2	 87.1	 -	

	
PERA	x	B6	 B6	 M	+	F	 15514201	

	 	 	 	 	
95-97	 -	

	 	 	 	 	

	 	 	 	 	
110-114	 -	

	 	 	 	 	

	 	 	 	
Chr15	 36-52	 -	

	 	 	 	 	

	 	 	 	
Chr20	 1.8-2	 -	

	 	 	 	 	

	 	 	 	 	
2.6-24.5	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath45	 162,000,000	

157,000,000	-	
165,000,000	 Chr20	 34-45	 +	

	
DBA	x	129S	 DBA	 M	+	F	 24586312	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath35	 172,000,000	

139,000,000	-	
173,000,000	 Chr3	 175.4	 -	

	
DBA	x	129S	 DBA	 M	 24586312	

	 	 	 	
Chr20	 .2-1.4	 -	

	 	 	 	 	

	 	 	 	 	
13.3-14.3	 -	

	 	 	 	 	

	 	 	 	 	
16.23-25.4	 +	

	 	 	 	 	

	 	 	 	 	
30-56	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath28	 178,800,659	

162,355,057	-	
181,873,487	 Chr3	 175.4	 -	

	
B6	x	C3H	 C3H	 M	 23938286	

	 	 	 	
Chr16	 0.097	 -	
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Chr19	 11.72-12.39	 -	

	 	 	 	 	

	 	 	 	
Chr20	 40.7-62.89	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath28	 179,574,406	

174,000,000	-	
179,800,000	 Chr20	 57-60	 -	

	
DBA	x	AKR	 DBA	 M	 16373612	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
3	 Ath23	 66,450,410	

54,000,000	-	
90,000,000	 Chr1	 154-157	 *	 IL6R	 DBA	x	AKR	 AKR	 F	 16373612	

	 	 	 	
Chr3	 149-162	 +	

	 	 	 	 	

	 	 	 	 	
164.9	 -	

	 	 	 	 	

	 	 	 	 	
167-168	 -	

	 	 	 	 	

	 	 	 	
Chr4	 150-161	 +	,	*	 GUCY1A3	

	 	 	 	

	 	 	 	
Chr13	 36-38.5	 -	

	 	 	 	 	

	 	 	 	
ChrX	 0.6	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ascla4	 115,830,548	 ?	

	 	 	 	
B6	x	FVB	 B6	 F	 16380418	

	
Ascla3	 148,143,886	 ?	

	 	 	 	
B6	x	FVB	 B6	 F	 16380418	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
4	 Ath8	 55,251,078	

45,230,241	-	
150,592,401	 Chr1	 8.41-67.47	 +,		+		*	,	*	 PCSK9;	PAP2B	 B6	x	C3H	 B6	 M	 23938286	

	 	 	 	
Chr9	 13	 -	

	 	 	 	 	

	 	 	 	 	
15-27	 *	 9p21	

	 	 	 	

	 	 	 	 	
86	 -	

	 	 	 	 	

	 	 	 	 	
100-105	 -	

	 	 	 	 	

	 	 	 	 	
107-123.37	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath8	 59,552,657	

45,658,566	-	
105,299,798	 Chr1	 57-67	 *	 PAP2B	 NZB	x	SMJ	 SMJ	 F	 15530921	

	 	 	 	
Chr9	 13	 -	

	 	 	 	 	

	 	 	 	 	
15-27	 *	 9p21	

	 	 	 	

	 	 	 	 	
86	 -	

	 	 	 	 	

	 	 	 	 	
100-105	 -	

	 	 	 	 	

	 	 	 	 	
107-123.37	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath4	 86,450,248	

9,702,715	-	
107,112,550	 Chr1	 54.6-67.5	 +	,	*,	*	 PCSK9;	PAP2B	 B6	x	C3H	 B6	 F	 17916774	

	 	 	 	
Chr6	 87.79-90.6	 -	

	 	 	 	 	

	 	 	 	 	

96.65-
100.05	 +	

	 	 	 	 	

	 	 	 	
Chr8	 87.38-97.15	 -	

	 	 	 	 	

	 	 	 	
Chr9	 13	 -	

	 	 	 	 	

	 	 	 	 	
15-27	 *	 9p21	

	 	 	 	

	 	 	 	 	
32.4-37.91	 -	

	 	 	 	 	

	 	 	 	 	
86	 -	

	 	 	 	 	

	 	 	 	 	

100.68-
123.36	 +	
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119,721,657	

63,898,275	-	
129,953,782	 Chr1	 32.37-67.46	 +,		+		*	,	*	 PCSK9;	PAP2B	 BALB	x	SMJ	 Heterosis	 F	 27736672	

	 	 	 	
Chr9	 12.77-27.1	 *	 9p21	

	 	 	 	

	 	 	 	 	
86	 -	

	 	 	 	 	

	 	 	 	 	

117.78-
123.36	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Athsq1	 129,572,122	

110,000,000	-	
136,927,309	 Chr1	 22.97-50.57	 +	

	
BALB	x	B6	 BALB	 F	 22294616	

	 	 	 	 	 	 	 	 	 	 	 	

	
Athsq1	 149,926,199	

137,890,684	-	
151,570,093	 Chr1	 6.84-12.8	 -	

	
B6	x	MOLF	 MOLF	 F	 11438740	

	 	 	 	 	
15.48-21.13	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Athsq3	 151,077,699	

145,000,000	-	
153,000,000	 Chr1	 5.92-12.29	 -	

	
B6	x	C3H	 B6		 F	 17641228	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
5	

	
61,506,687	

44,971,670	-	
69,163,000	 Chr1	 64.05	 -	

	
BALB	x	SMJ	 SMJ	 F	 27736672	

	 	 	 	
Chr4	 17.51-	17.88	 -	

	 	 	 	 	

	 	 	 	 	
24.52-26.86	 -	

	 	 	 	 	

	 	 	 	 	
30.72	 -	

	 	 	 	 	

	 	 	 	 	
36.06-42.89	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	
77,028,226	

65,000,000	-	
92,000,000	 Chr4	 39.06-48.88	 -	

	
B6	x	C3H	 B6	 M	+	F	 17641228	

	 	 	 	 	
52.70-57.89	 *	 REST-NOA1	

	 	 	 	

	 	 	 	 	
62.36-76.40	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath42	 104,351,018	

99,690,738	-	
124,829,348	 Chr1	 89.99-93.81	 -	

	
BALB	x	B6	 B6	 F	 22294616	

	 	 	 	
Chr4	 .49-1.1	 -	

	 	 	 	 	

	 	 	 	 	
83.40-88.72	 -	

	 	 	 	 	

	 	 	 	
Chr5	 138.94	 -	

	 	 	 	 	

	 	 	 	
Chr12	

108.91-
124.24	 *,	+	 SH2B3	

	 	 	 	

	 	 	 	 	

132.37-
133.41	 -	

	 	 	 	 	

	 	 	 	
Chr22	 25.33-28.37	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Suggestive	 108,384,913	

69,163,000	-	
120,578,000	 Chr1	 89.99-93.81	 -	

	
BALB	x	SMJ	 SMJ	 F	 27736672	

	 	 	 	
Chr4	 .49-1.1	 -	

	 	 	 	 	

	 	 	 	 	
44.62-48.88	 -	

	 	 	 	 	

	 	 	 	 	
52.70-57.89	 *	 REST-NOA1	

	 	 	 	

	 	 	 	 	
62.36	 -	

	 	 	 	 	

	 	 	 	 	
65.14	 -	

	 	 	 	 	

	 	 	 	 	
68.42-88.72	 +,		+	

	 	 	 	 	

	 	 	 	
Chr5	 138.94	 -	

	 	 	 	 	

	 	 	 	
Chr12	

108.91-
124.24	 	+	
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132.37-
133.41	 -	

	 	 	 	 	

	 	 	 	
Chr22	 25.33-28.37	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath24	 146,583,524	

130,000,000	-	
149,000,000	 Chr7	 .19-6.68	 -	

	
DBA	x	AKR	 DBA	 M	+	F	 16373612	

	 	 	 	 	
66.23-66.45	 -	

	 	 	 	 	

	 	 	 	 	
69.06-76.1	 -	

	 	 	 	 	

	 	 	 	 	

97.61-
102.22	 -	

	 	 	 	 	

	 	 	 	
Chr13	 27.21-30.78	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
6	 Ath37	 124,468,231	

116,665,031	-	
128,519,025	 Chr2	 132.23	 -	

	
CAST	x	B6	 B6	 M	+	F	 16624897	

	 	 	 	
Chr10	 43.57-45.45	 *	 Cxcl12	

	 	 	 	

	 	 	 	
Chr12	 .17-9.07	 -	

	 	 	 	 	

	 	 	 	
Chr22	 17.59-18.27	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Artles	 133,853,029	

107,795,846	-	
145,656,013	 Chr2	 130.94	 -	

	
CAST	x	B6	 B6	 M	+	F	 11463718	

	 	 	 	 	
132.23	 -	

	 	 	 	 	

	 	 	 	
Chr3	 4.53-12.87	 -	

	 	 	 	 	

	 	 	 	 	

129.15-
129.27	 -	

	 	 	 	 	

	 	 	 	
Chr10	 38.12	 -	

	 	 	 	 	

	 	 	 	 	
43.57-51.82	 *	 Cxcl12	

	 	 	 	

	 	 	 	
Chr12	 .17-25.35	 +	

	 	 	 	 	

	 	 	 	 	
118.57	 -	

	 	 	 	 	

	 	 	 	
Chr22	 17.59-18.27	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Athsq2	 134,083,123	

121,115,387	-	
145,656,013	 Chr2	 130.94	 -	

	
B6	x	MOLF	 B6	 M	+	F	 11438740	

	 	 	 	 	
132.23	 -	

	 	 	 	 	

	 	 	 	
Chr12	 .175-.299	 -	

	 	 	 	 	

	 	 	 	 	
3.31-25.34	 +	

	 	 	 	 	

	 	 	 	 	
118.57	 -	

	 	 	 	 	

	 	 	 	
Chr22	 18.27	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath38	 134,184,819	

128,519,025	-	
136,316,178	 Chr12	 9.38-13.71	 -	

	
CAST	x	B6	 B6	 M	+	F	 16624897	

	 	 	 	 	
118.57	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
7	 Aorls2	 49,744,933	 ?	

	 	 	 	
B6	x	DBA	 DBA	 M	+	F	 12925895	

	
Ath31	 74,629,649	

50,000,000	-	
100,000,000	 Chr1	 28.42	 -	

	
B6	x	C3H	 B6	 F	 17641228	

	 	 	 	 	
156.69	 -	

	 	 	 	 	

	 	 	 	 	

247.83-
248.52	 -	

	 	 	 	 	

	 	 	 	
Chr2	 71.33	 -	

	 	 	 	 	

	 	 	 	
Chr11	 20.69-22.84	 -	
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24.51	 -	

	 	 	 	 	

	 	 	 	 	
49.16	 -	

	 	 	 	 	

	 	 	 	 	
74.45-78.36	 +	

	 	 	 	 	

	 	 	 	 	
82.44-89.05	 -	

	 	 	 	 	

	 	 	 	
Chr15	 22.89-32.32	 -	

	 	 	 	 	

	 	 	 	 	
80.41-94.84	 *,		*	

MFGE8-ABHD2;	
FURIN	

	 	 	 	

	 	 	 	 	
98.5-101.84	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Suggestive	 78,000,000	

55,000,000	-	
97,000,000	

	 	 	 	
DBA	x	129S	 129S	 M	+	F	 24586312	

	
Suggestive	 78,000,000	

54,000,000	-	
91,000,000	

	 	 	 	
DBA	x	129S	 129S	 F	 24586312	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
8	 Ath40	 42,935,531	

21,959,500	-	
71,045,600	 Chr4	

164.24-
178.35	 -	

	
BALB	x	B6	 B6	 M	 21252064	

	 	 	 	 	

183.81-
190.86	 -	

	 	 	 	 	

	 	 	 	
Chr8	 8.17-20.10	 +	

	 	 	 	 	

	 	 	 	 	
29.19-42.99	 -	

	 	 	 	 	

	 	 	 	
Chr13	 41.3	 -	

	 	 	 	 	

	 	 	 	 	
41.36	 -	

	 	 	 	 	

	 	 	 	 	
52.50-52.98	 -	

	 	 	 	 	

	 	 	 	
Chr19	 12.49	 -	

	 	 	 	 	

	 	 	 	 	
17.83-19.62	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	
89,351,811	

57,763,542	-	
89,351,811	 Chr1	 89.44	 -	

	
BALB	x	SMJ	 SMJ	 F	 27736672	

	 	 	 	
Chr4	

141.26-
172.73	 +,		*,		*	

EDNRA;	
GUCY1A3	

	 	 	 	

	 	 	 	
Chr8	 18.07-20.10	 +	

	 	 	 	 	

	 	 	 	
Chr16	 46.69-51.17	 -	

	 	 	 	 	

	 	 	 	
Chr19	 11.72-19.75	 +,		+	

	 	 	 	 	

	 	 	 	
Chr22	 33.66-35.94	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Suggestive	 ?	 ?	

	 	 	 	
B6	x	DBA	 B6	 M	+	F	 12925895	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
9	 Ath29	 37,133,055	

32,500,594	-	
68,829,021	 Chr11	

107.46-
128.62	 -	

	
BALB	x	B6	 B6	 F	 22294616	

	 	 	 	
Chr15	 51.34-51.74	 -	

	 	 	 	 	

	 	 	 	 	
60.78	 -	

	 	 	 	 	

	 	 	 	 	
62.14-78.91	 *	 SMAD3	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath29	 44,340,026	

34,067,647	-	
69,831,153	 Chr11	

107.46-
126.29	 -	

	
B6	x	C3H	 B6	 M	+	F	 17916774	

	 	 	 	
Chr15	 51.34-51.74	 -	

	 	 	 	 	

	 	 	 	 	
60.78	 -	
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62.14-78.91	 *	 SMAD3	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath29	 74,700,643	

68,829,021	-	
80,091,050	 Chr6	 52.60-55.62	 -	

	
B6	x	C3H	 B6	 F	 16387874	

	 	 	 	 	
74.07-76.31	 -	

	 	 	 	 	

	 	 	 	
Chr15	 51.97-60.79	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath29	 80,091,050	

80,091,050	-	
96,397,888	 Chr3	

141.59-
147.13	 -	

	
B6	x	C3H	 B6	 M	 23938286	

	 	 	 	
Chr6	 76.31-86.33	 +	

	 	 	 	 	

	 	 	 	
Chr15	 78.28-80.25	 *	 ADAMTS7	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath29	 83,693,797	

45,000,000	-	
89,000,000	 Chr6	 52.60-55.62	 -	

	
B6	x	C3H	 B6	 M	+	F	 17641228	

	 	 	 	 	
74.07-86.32	 +	

	 	 	 	 	

	 	 	 	
Chr11	

107.46-
118.18	 -	

	 	 	 	 	

	 	 	 	
Chr15	 51.34-78.11	 *	 SMAD3	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
10	

	
6,202,049	 ?	

	 	 	 	
B6	x	FVB	 ?	 M	 11973313	

	
Ascla2	 18,806,860	 ?	

	 	 	 	
B6	x	FVB	 FVB	 M	 16380418	

	
Ath11	 20,407,588	

6,202,049	-	
50,788,902	 Chr6	

100.83-
101.84	 -	

	
B6	x	FVB	 FVB	 M	+	F	 11973313	

	 	 	 	 	

105.17-
116.95	 -	

	 	 	 	 	

	 	 	 	 	

123.31-
139.69	 *	 TCF21	

	 	 	 	

	 	 	 	 	

142.39-
154.72	 +	

	 	 	 	 	

	 	 	 	
ChrY	 21.15	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath20	 20,407,588	

9,413,521	-	
75,681,262	 Chr2	

109.06-
110.37	 -	

	
129S	x	B6	 129S	 F	 14592847	

	 	 	 	
Chr6	

100.83-
101.84	 -	

	 	 	 	 	

	 	 	 	 	

105.17-
116.95	 -	

	 	 	 	 	

	 	 	 	 	

123.31-
139.69	 *	 TCF21	

	 	 	 	

	 	 	 	 	

142.39-
147.52	 +	

	 	 	 	 	

	 	 	 	
Chr10	 55.56	 -	

	 	 	 	 	

	 	 	 	 	
59.95-74.76	 -	

	 	 	 	 	

	 	 	 	
Chr22	 18.76-25.01	 *	

POM121L9P-
ADORA2A	

	 	 	 	

	 	 	 	
ChrY	 21.15	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ascla1	 21,715,442	 ?	

	 	 	 	
B6	x	FVB	 FVB	 F	 16380418	

	 	
28,450,065	

26,797,957	-	
67,821,343	 Chr2	

109.06-
110.37	 -	

	
BALB	x	SMJ	 BALB	 F	 27736672	

	 	 	 	
Chr6	

100.83-
101.84	 -	

	 	 	 	 	

	 	 	 	 	

105.17-
129.98	 -	

	 	 	 	 	

	 	 	 	
Chr10	 64.56-74.76	 -	

	 	 	 	 	

	 	 	 	
ChrY	 21.15	 -	
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Ath17	 68,255,809	

45,000,035	-	
68,255,809	 Chr2	

109.06-
110.37	 -	

	
129S	x	B6	 129S	 F	 14592847	

	 	 	 	
Chr6	

100.83-
101.84	 -	

	 	 	 	 	

	 	 	 	 	

105.17-
123.11	 -	

	 	 	 	 	

	 	 	 	
Chr10	 63.66-74.76	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Aorls1	 82,655,287	 ?	

	 	 	 	
B6	x	DBA	 DBA	 M	+	F	 12925895	

	 	
104,516,306	

86,301,142	-	
104,516,306	 Chr12	 56.66	 -	

	
BALB	x	SMJ	 BALB	 F	 27736672	

	 	 	 	 	

85.25-
104.32	 *	 ATP2B1	

	 	 	 	

	 	 	 	
Chr22	 32.89-33.20	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
11	

	
45,275,149	

19,745,966	-	
68,609,504	

	 	 	 	
B6	x	C3H	 C3H	 F	 16387874	

	
Ath19	 104,398,884	

64,000,000	-	
113,000,000	 Chr3	 186.5	 -	

	
B6	x	C3H	 B6	 F	 17641228	

	 	 	 	
Chr17	 .062-20.35	 +,	+	

	 	 	 	 	

	 	 	 	 	
25.62-70.11	 +,	+,	*	 BCAS3	

	 	 	 	

	 	 	 	
ChrX	 152.85	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath19	 108,713,906	

89,927,907	-	
108,713,906	 Chr17	 32.36-53.82	 +,	+	

	
129S	x	B6	 129S	or	B6	 F	 14592847	

	 	 	 	 	
60.45-66.03	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
12	 Ascla5	 14,347,013	 ?	

	 	 	 	
B6	x	FVB	 B6	 F	 16380418	

	
Ath6	 16,749,351	

10,870,733	-	
27,065,736	 Chr2	 6.98-18.11	 -	

	
BKS	x	B6	 BKS	 F	 10393218	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath18	 35,210,068	

27,570,810	-	
35,210,068	 Chr2	 .21-3.71	 -	

	
129S	x	B6	 B6	or	129S	 F	 14592847	

	 	 	 	
Chr7	 17.83-19.73	 *	 HDAC9	

	 	 	 	

	 	 	 	 	

105.24-
107.56	 +	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ascla6	 53,972,026	 ?	

	 	 	 	
B6	x	FVB	 B6	 M	 16380418	

	
Ath21	 102,995,424	

27,570,810	-	
113,361,762	 Chr2	 .21-3.71	 -	

	
129S	x	B6	 B6	 F	 14592847	

	 	 	 	
Chr7	 12.61-19.73	 *	 HDAC9	

	 	 	 	

	 	 	 	 	

105.24-
112.12	 +	

	 	 	 	 	

	 	 	 	
Chr14	 25.28-47.31	 -	

	 	 	 	 	

	 	 	 	 	
50.05-52.15	 -	

	 	 	 	 	

	 	 	 	 	
58.66-81.94	 +	

	 	 	 	 	

	 	 	 	 	

85.99-
105.95	 *	 HHIPL1	
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13	 Ath25	 42,683,303	

40,000,000	-	
52,000,000	 Chr6	 10.40-19.84	 *	 PHACTR1	 DBA	x	AKR	 DBA	 M	+	F	 16373612	

	 	 	 	
Chr9	 91-96.87	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath32	 92,906,389	

86,000,000	-	
110,000,000	 Chr5	 58.26-85.91	 -	

	
B6	x	C3H	 B6	 F	 17641228	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
14	 Ath13	 47,097,924	

25,856,310	-	
71,917,665	 Chr3	 15.24-16.34	 -	

	
B6	x	FVB	 B6	 M	+	F	 11973313	

	 	 	 	 	
52.35-57.74	 +	

	 	 	 	 	

	 	 	 	
Chr8	 9.91-12.17	 -	

	 	 	 	 	

	 	 	 	 	
21.55-29	 +	

	 	 	 	 	

	 	 	 	
Chr10	 46.55-51.59	 -	

	 	 	 	 	

	 	 	 	 	
81.31-88.85	 +	

	 	 	 	 	

	 	 	 	
Chr13	 19.77-26.62	 -	

	 	 	 	 	

	 	 	 	 	
49.34-52.23	 -	

	 	 	 	 	

	 	 	 	
Chr14	 20.24-25.10	 -	

	 	 	 	 	

	 	 	 	 	
52.73-58.47	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Suggestive	 56,000,000	

17,000,000	-	
91,000,000	

	 	 	 	
DBA	x	129S	 129S	 M	+	F	 24586312	

	
Ath36	 73,000,000	

21,000,000	-	
106,000,000	 Chr3	 15.24-16.34	 -	

	
DBA	x	129S	 129S	 M	 24586312	

	 	 	 	 	
52.35-57.74	 +	

	 	 	 	 	

	 	 	 	
Chr8	 9.91-12.17	 -	

	 	 	 	 	

	 	 	 	 	
21.55-29	 +	

	 	 	 	 	

	 	 	 	 	
39.6	 -	

	 	 	 	 	

	 	 	 	
Chr10	 46.55-51.59	 -	

	 	 	 	 	

	 	 	 	 	
75.75-88.85	 +	

	 	 	 	 	

	 	 	 	
Chr13	 19.77-26.62	 -	

	 	 	 	 	

	 	 	 	 	
41.50-53.61	 +	

	 	 	 	 	

	 	 	 	 	
58.20-61.99	 -	

	 	 	 	 	

	 	 	 	 	
66.87-80.91	 -	

	 	 	 	 	

	 	 	 	
Chr14	 20.24-25.10	 -	

	 	 	 	 	

	 	 	 	 	
52.73-58.47	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
15	 Ath22	 20,464,816	

10,000,000	-	
29,000,000	 Chr5	 13.69-26.88	 -	

	
DBA	x	AKR	 DBA	 F	 16373612	

	 	 	 	 	
31.19-35.07	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath33	 71,152,437	

67,000,000	-	
78,000,000	 Chr8	

134.46-
146.27	 +	

	
B6	x	C3H	 C3H	 M	+	F	 17641228	

	 	 	 	
Chr22	 36-36.96	 -	
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Ath33	 76,258,033	

52,153,986	-	
90,057,489	 Chr8	

118.14-
136.47	 +	

	
B6	x	C3H	 C3H	 M	 23938286	

	 	 	 	 	

139.14-
146.28	 +	

	 	 	 	 	

	 	 	 	
Chr12	 33.52	 -	

	 	 	 	 	

	 	 	 	
Chr22	 36-51.18	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
16	 Suggestive	 31,984,214	 ?	

	 	 	 	
B6	x	FVB	 ?	 M	+	F	 11973313	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
17	 Ath34	 27,579,594	

22,000,000	-	
28,000,000	 Chr2	 95.53	 -	

	
B6	x	C3H	 B6	 M	+	F	 17641228	

	 	 	 	
Chr5	

172.06-
172.66	 -	

	 	 	 	 	

	 	 	 	
Chr6	 33.36-34.86	 -	

	 	 	 	 	

	 	 	 	
Chr16	 .23-3.19	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Ath26	 36,360,361	

33,000,000	-	
53,000,000	 Chr3	 16.62-19.19	 -	

	
DBA	x	AKR	 AKR	 M	+	F	 16373612	

	 	 	 	
Chr6	 29.07-33.37	 +,		+	

	 	 	 	 	

	 	 	 	 	
39.82-49.80	 -	

	 	 	 	 	

	 	 	 	
Chr19	 8.36-8.81	 -	

	 	 	 	 	

	 	 	 	
Chr21	 18.96	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	
43,089,482	

43,089,482	-	
61,294,637	 Chr2	

108.6-
108.91	 -	

	
BALB	x	SMJ	 BALB	 F	 27736672	

	 	 	 	 	
124.78	 -	

	 	 	 	 	

	 	 	 	
Chr3	 16.62-20.11	 -	

	 	 	 	 	

	 	 	 	
Chr6	 39.82-46.97	 -	

	 	 	 	 	

	 	 	 	
Chr19	 4.2-6.77	 -	

	 	 	 	 	

	 	 	 	
Chr21	 18.96	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
18	 Ath27	 40,324,813	

38,000,000	-	
56,000,000	 Chr5	

112.31-
115.78	 -	

	
DBA	x	AKR	 Heterosis	 M	 16373612	

	 	 	 	 	

118.17-
123.97	 -	

	 	 	 	 	

	 	 	 	 	
137.2	 -	

	 	 	 	 	

	 	 	 	 	

141.23-
147.45	 -	

	 	 	 	 	

	 	 	 	
Chr8	 101.71	 -	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
Suggestive	 53,000,000	

17,000,000	-	
68,000,000	

	 	 	 	
DBA	x	129S	 DBA	 M	+	F	 24586312	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
19	 Ath16	 42,438,566	

35,317,981	-	
47,152,941		 Chr10	 92.5-105.21	 *	

CYP17A1-
CNNM2-NT5C2	 B6	x	FVB	 FVB	 M	+	F	 11973313	
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The	regions	of	the	human	genome	corresponding	to	the	mouse	genomic	regions	within	
the	95%	confidence	interval	of	an	aortic	QTL	were	probed	for	suggestive	or	significant	
associations	with	coronary	artery	disease	in	human	GWAS	meta-analysis	studies61.		
	-	=	No	GWAS	association	
	+	=	Suggestive	association	(-log(p)	>	5)	
	*	=	Significant	association	(-log(p)	>	8)	
	

1.3.2	Haplotype	Analysis	

The	second	common	strategy	for	prioritizing	candidate	genes	at	QTL	loci	is	through	

the	use	of	haplotype	analysis.	This	method	is	performed	at	loci	where	mouse	linkage	QTLs	

identified	in	separate	intercrosses	overlap.	The	assumption	of	haplotype	analysis	is	that	at	a	

locus,	inbred	strains	linked	to	higher	amounts	of	the	phenotype	(in	this	case	aortic	lesion	

size)	share	a	common	ancestor	(high	alleles)	while	those	linked	to	lower	amounts	of	the	

phenotype	share	a	different	common	ancestor	(low	alleles).	Using	this	assumption,	

comparison	of	the	genomic	sequence	between	the	two	groups	of	inbred	strains	is	used	to	

find	SNPs	that	are	shared	between	the	high	allele	strains	and	differ	from	the	SNPs	shared	by	

the	low	allele	strains.	These	sequence	differences	can	cause	potential	changes	in	gene	

expression	through	changing	an	enhancer	or	promoter	site,	or	protein	sequence	through	

nonsynonymous	changes	in	amino	acid	sequence.	By	looking	at	these	two	types	of	SNP	

changes,	one	can	highlight	candidate	genes	for	further	studies.		

This	strategy	has	been	implemented	numerous	times	for	HDL,	Triglyceride,	and	

aortic	lesion	QTLs	with	a	high	degree	of	success70,92,95,96.	With	the	availability	of	high-density	

SNP	mapping	and	whole-genome	sequencing	by	the	Sanger	Mouse	Genomes	Project	

(https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1505),	the	ability	to	find	SNPs	

that	could	have	a	potential	role	at	a	QTL	locus	has	significantly	improved.	Thus	this	method	

remains	effective	and	should	be	considered	the	second	step	in	generating	candidate	genes.	

1.3.3	Gene	Expression	Changes	Through	eQTLs		
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The	third	primary	way	of	prioritizing	candidate	genes	for	overlapping	QTLs	is	

through	the	discovery	of	SNPs	linked	to	changes	in	gene	expression.	The	improvements	in	

RNA	quantification	methodologies	have	permitted	fast,	cheap,	high-throughput	generation	

of	gene	expression	data	from	large	numbers	of	mice.	If	gene	expression	data	and	phenotypic	

data	are	collected	from	a	large	intercross	of	mice,	one	can	determine	the	correlation	of	gene	

expression	with	phenotypes	of	interest.	With	the	inclusion	of	high-density	SNP	data,	linkage	

QTLs	linking	specific	SNPs	to	the	gene	expression	of	a	gene	can	be	found	(eQTLs).	This	is	

repeated	for	each	gene,	and	a	comprehensive	list	of	all	SNPs	influencing	gene	expression	

can	be	generated.	This	list	also	contains	which	genes	each	individual	SNP	on	that	list	is	

affecting.	Finally,	QTL	data	is	obtained	from	linkage	analysis	for	the	phenotype.	The	

integration	of	the	correlation	of	gene	expression	with	the	phenotype,	the	eQTLs,	and	the	

phenotype’s	QTLs	allows	for	discovery	of	high-confidence	candidate	genes	at	the	

phenotype’s	QTL	peaks.	A	SNP	in	this	list	is	a	SNP	in	the	linkage	QTL	affecting	a	gene’s	

expression,	which	is	in	turn	affecting	the	phenotype.		

An	additional	strategy	involves	weighted	gene	co-expression	network	analysis	

(WGCNA).	This	method	can	be	performed	to	create	modules	of	genes	that	are	being	co-

expressed	and	provide	additional	insights	into	the	pathways	or	clusters	of	genes	that	could	

be	the	most	influential	to	the	phenotype.	This	has	been	done	for	aortic	lesion	size	and	other	

phenotypes	to	successfully	find	new	pathways	involved	in	atherosclerosis	and	

osteoporosis91,97–99.	If	a	gene	implicated	through	the	integration	of	phenotype	QTLs,	eQTLs,	

and	gene	expression	resides	in	one	of	these	modules,	it	has	an	even	higher	likelihood	of	

being	a	gene	affecting	the	phenotype.	

Gene	expression	correlation	analysis,	eQTL	generation,	and	WGCNA	have	been	done	

for	aortic	atherosclerosis	on	a	large	cohort	of	inbred	and	recombinant	inbred	strains	of	

mice	called	the	Hybrid	Diversity	Mouse	Panel	(HDMP)91.	The	mice	were	fed	16	weeks	of	
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Western	diet,	aortic	lesion	areas	were	quantified	(n=	4-5	mice	per	strain),	and	both	aortic	

and	hepatic	gene	expression	data	was	generated.	Correlations	between	aortic	and	hepatic	

gene	expression	and	aortic	lesion	size	were	calculated.	WGCNA	was	done	to	identify	

multiple	modules	significantly	affecting	atherosclerosis	through	either	the	aorta	or	the	liver.	

This	study	provides	a	large	repository	of	information	with	which	to	investigate	other	

linkage	QTLs	both	our	lab	and	others	have	discovered.	Through	grouping	of	high	and	low	

alleles	in	a	way	akin	to	haplotype	analysis,	we	can	find	gene	expression	differences	in	the	

aorta	and	liver	between	the	two	groups.	We	can	then	filter	these	genes	to	those	with	a	

significant	correlation	to	aortic	lesion	size.	The	final	filter	determines	whether	there	are	any	

significant	eQTLs	in	the	aortic	QTL’s	95%	confidence	interval	(CI)	and	if	so,	whether	there	

are	any	sequence	differences	between	the	two	groups	at	said	SNPs.	Through	this	strategy,	

we	can	significantly	improve	our	ability	to	find	gene	expression-based	candidate	genes	in	a	

way	that	was	previously	not	possible.	This	strategy	should	be	the	third	strategy	used	when	

generating	candidate	genes	for	QTLs.	This	strategy,	in	combination	with	haplotype	analysis	

and	overlap	with	human	GWAS	for	CAD/CVD,	provides	a	hitherto	unprecedented	ability	to	

uncover	the	genes	influencing	mouse	aortic	QTL	loci	whose	candidate	genes	have	remained	

elusive	for	years.		

	

1.4	Aims		

While	studies	on	atherosclerosis	have	been	ongoing	for	decades,	cardiovascular-

related	death	still	remains	the	most	significant	cause	of	mortality	the	world	over.	Current	

treatment	strategies	leave	much	to	be	desired,	and	thus	discovering	novel	influencers	and	

targets	for	therapy	of	cardiovascular	disease	and	its	related	cardiometabolic	disorders	

remains	a	pressing	matter.	The	best	way	to	accomplish	this	task	is	to	discover	the	genetic	

underpinnings	of	said	diseases.	Over	the	past	decade,	genetic	studies	in	mice	using	linkage	
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analysis	for	aortic	lesion	size	and	in	humans	using	GWAS	for	CAD/CVD	have	provided	

unprecedented	understanding	of	how	genetic	variation	influences	both	atherosclerotic	

plaque	progression	and	other	cardiometabolic	disorders.	Hundreds	of	significant	loci	have	

been	identified	in	humans	that	have	influences	on	CAD	susceptibility,	and	over	a	hundred	

QTLs	have	been	discovered	in	mice	for	aortic	lesion	size.	However,	discerning	the	casual	

genes	underlying	these	genetic	associations	remains	a	difficult	task.	This	is	especially	true	

in	mice	where	QTLs	have	large	confidence	intervals.	More	recent	advances	in	technology	

has	allowed	for	high-throughput	dense	genotyping	and	gene	expression	generation	in	mice.	

These	advances	have	vastly	improved	our	abilities	to	prioritize	candidate	genes	for	aortic	

lesion	QTLs.	Despite	the	quantity	of	QTLs,	a	large	amount	of	work	remains	uncovering	the	

genes	causing	the	observed	linkage	and	a	large	amount	of	the	heritable	component	of	

atherosclerosis	remains	undiscovered.	We	hypothesize	that	through	generating	novel	

linkage	data	using	rarely	used	inbred	strains,	we	will	be	able	to	discover	novel	insights	into	

the	heritable	components	of	atherosclerosis	and	its	associated	cardiometabolic	disorders.	

We	plan	to	accomplish	this	through	QTL	analysis	of	aortic	lesion	size,	carotid	lesion	size,	

hyperlipidemia,	and	type	2	diabetes.		Furthermore,	we	hypothesize	that	through	modern	

strategies	utilizing	the	large	amounts	of	publicly	available	data,	we	will	be	able	to	uncover	

novel	genes	influencing	atherosclerosis.	Finally,	we	hypothesize	that	by	developing	novel,	

more	accurate	ways	to	quantify	abdominal	fat	deposits,	we	will	be	able	to	create	a	platform	

in	which	to	improve	our	understanding	of	the	genetics	underlying	obesity,	the	

cardiometabolic	disease	with	the	highest	co-occurrence	with	atherosclerosis.	We	aim	to	

investigate	these	hypotheses	in	the	following	studies:	

(1)				In	Chapter	2,	we	generate	QTLs	for	plasma	lipids	and	fasting	plasma	glucose	in	

an	intercross	between	a	commonly	used	inbred	strain	of	mice	BALB/cJ,	which	

has	lower	LDL,	lower	glucose,	and	higher	HDL,	and	a	rarely	used	inbred	strain	
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SM/J,	which	has	higher	LDL,	higher	glucose,	and	lower	HDL.	From	performing	

linkage	analysis	on	plasma	lipids	and	glucose	from	F2	mice,	we	find	a	

significant	QTL	for	fasting	glucose,	named	Bglu17,	that	coincides	with	a	

significant	QTL	for	HDL	and	a	suggestive	QTL	for	non-HDL	cholesterol	levels.	

Haplotype	analysis	reveals	that	"lipid	genes"	Sik3,	Apoa1,	and	Apoc3	are	

probable	candidates	for	Bglu17.	In	this	chapter,	we	find	that	the	colocalization	

of	QTLs	for	multiple	phenotypes	and	the	sharing	of	potential	candidate	genes	

demonstrates	genetic	connections	between	dyslipidemia	and	type	2	diabetes.	

(2)				In	Chapter	3,	we	use	the	same	intercross	as	Chapter	2	to	generate	QTLs	for	

carotid	lesion	size	in	order	to	find	novel	genetic	influences	on	stroke.	QTL	

analysis	reveals	eight	loci	for	carotid	lesion	sizes.	Combined	cross-linkage	

analysis	using	data	from	this	cross	and	two	previous	F2	crosses	derived	from	

BALB,	C57BL/6J	and	C3H/HeJ	strains,	identifies	five	significant	and	nine	

suggestive	QTLs.	Of	them,	the	QTL	on	chromosome	12	is	the	most	prominent.	

Bioinformatic	analysis	prioritizes	nine	probable	candidate	genes	for	this	QTL.	

In	this	chapter,	we	 demonstrate	 the	 polygenic	 control	 of	 carotid	

atherosclerosis	 in	mice.	

(3)			In	Chapter	4,	we	use	the	same	intercross	as	Chapters	2	and	3	to	generate	QTLs	

for	aortic	lesion	size	in	order	to	find	novel	genetic	influences	on	aortic	

atherosclerosis.	A	significant	locus,	named	Ath49,	for	atherosclerosis	maps	to	

the	H2	complex	[mouse	major	histocompatibility	complex	(MHC)]	on	

chromosome	17.	Bioinformatics-based	analysis	identifies	a	single	likely	

candidate	gene	Mep1α.	In	this	chapter,	we	identify	the	MHC	as	a	major	genetic	

determinant	of	atherosclerosis,	highlighting	the	importance	of	inflammation	in	

atherogenesis.	
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(4)				In	Chapter	5,	we	further	investigate	Mep1α	as	a	novel	influencer	of		

atherosclerosis	by	generating	Mep1α-/-.Apoe-/-	double	knockout	mice.	Double	

knockout	mice	show	decreased	lesion	size,	changes	in	plaque	stability	

markers,	and	changes	in	lesion	cell	content.	In	this	chapter,	we	discover	that	

Mep1α	is	a	novel	gene	negatively	influencing	atherosclerosis.	

(5)				In	Chapter	6,	we	present	a	novel	machine	learning-based	methodology	for	

quantifying	abdominal	subcutaneous	and	visceral	fat	volume	in	mice	using	

magnetic	resonance	imaging	(MRI).	Analysis	with	this	automated	method	of	

C57BL/6	mice	and	chromosome	9	congenic	mice,	in	which	a	small	region	of	

chromosome	9	in	C57BL/6	mice	was	replaced	with	the	sequence	from	

C3H/HeJ	mice,	shows	significant	reductions	in	the	volumes	of	visceral	and	

subcutaneous	fat	but	not	non-fat	tissues.	In	this	chapter,	we	show	the	accuracy	

of	deep	learning	in	quantification	of	abdominal	fat	and	its	significance	in	

determining	body	weight.	

(6)				In	Chapter	7,	we	adapt	the	machine	learning-based	methodology	for	

quantifying	abdominal	subcutaneous	and	visceral	fat	volume	in	mice	for	use	

with	human	computed	tomography	(CT).	Our	data	demonstrates	the	accuracy	

and	efficiency	of	deep	learning	in	quantifying	abdominal	fat,	particularly	in	the	

central	abdominal	region	containing	more	fat.		Manual	segmentation	of	total	

and	subcutaneous	fat	on	271	CT	slices	took	22	hours	while	automated	

segmentation	took	5	min.	In	this	chapter,	we	provide	a	strategy	for	feasibly	

quantifying	fat	volume	in	humans	and	using	a	phenotype	more	accurate	than	

the	current	metric	of	BMI.		

	 Ultimately,	this	work	contributes	to	our	understanding	of	the	genetic	architecture	of	

atherosclerosis,	both	in	the	aorta	and	the	carotid,	in	addition	to	the	other	cardiometabolic	
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disorders	influencing	it.		Moreover	we	have	outlined	a	strategy	here	utilizing	publicly	

available	data	for	prioritizing	candidate	genes	at	overlapping	QTL	loci	that	can	successfully	

discover	novel	genes	involved	in	atherosclerosis.	Finally,	we	provide	new	tools	to	study	a	

more	accurate	phenotype	for	abdominal	fat	in	both	mice	and	humans	in	order	to	enhance	

our	understanding	of	the	pathogenesis	of	obesity.		
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2.1	Abstract	

Individuals	with	dyslipidemia	often	develop	type	2	diabetes,	and	diabetic	patients	

often	have	dyslipidemia.	It	remains	to	be	determined	whether	there	are	genetic	connections	

between	the	2	disorders.	A	female	F2	cohort,	generated	from	BALB/cJ	(BALB)	and	SM/J	

(SM)	Apoe-deficient	(Apoe-/-)	strains,	was	started	on	a	Western	diet	at	6	weeks	of	age	and	

maintained	on	the	diet	for	12	weeks.	Fasting	plasma	glucose	and	lipid	levels	were	measured	

before	and	after	12	weeks	of	Western	diet.	144	genetic	markers	across	the	entire	genome	

were	used	for	quantitative	trait	locus	(QTL)	analysis.	One	significant	QTL	on	chromosome	9,	

named	Bglu17	[26.4	cM,	logarithm	of	odds	ratio	(LOD):	5.4],	and	3	suggestive	QTLs	were	

identified	for	fasting	glucose	levels.	The	suggestive	QTL	near	the	proximal	end	of	

chromosome	9	(2.4	cM,	LOD:	3.12)	was	replicated	at	both	time	points	and	named	Bglu16.	

Bglu17	coincided	with	a	significant	QTL	for	HDL	(high-density	lipoprotein)	and	a	suggestive	

QTL	for	non-HDL	cholesterol	levels.	Plasma	glucose	levels	were	inversely	correlated	with	

HDL	but	positively	correlated	with	non-HDL	cholesterol	levels	in	F2	mice	on	either	chow	or	

Western	diet.	A	significant	correlation	between	fasting	glucose	and	triglyceride	levels	was	

also	observed	on	the	Western	diet.	Haplotype	analysis	revealed	that	"lipid	genes"	Sik3,	

Apoa1,	and	Apoc3	were	probable	candidates	for	Bglu17.	In	this	study,	we	have	identified	

multiple	QTLs	for	fasting	glucose	and	lipid	levels.	The	co-localization	of	QTLs	for	both	

phenotypes	and	the	sharing	of	potential	candidate	genes	demonstrate	genetic	connections	

between	dyslipidemia	and	type	2	diabetes.	

	

2.2	Introduction	

	 Individuals	with	dyslipidemia	have	an	increased	risk	of	developing	type	2	diabetes	

(T2D),	and	diabetic	patients	often	have	dyslipidemia,	which	includes	elevations	in	plasma	

triglyceride	and	low-density	lipoprotein		(LDL)	cholesterol	levels	and	reductions	in	high-
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density	lipoprotein	(HDL)	cholesterol	levels100.	Part	of	the	increased	diabetic	risk	associated	

with	dyslipidemia	is	due	to	genetic	variations	that	influence	both	lipoprotein	homeostasis	

and	the	development	of	T2D.	Indeed,	a	few	rare	gene	mutations	result	in	both	dyslipidemia	

and	T2D,	which	include	ABCA1101,	LIPE102,	LPL103,	and	LRP6104.	Genome-wide	association	

studies	(GWAS)	have	identified	>150	loci	associated	to	variation	in	plasma	lipids105,106	and	

>70	loci	associated	with	T2D,	fasting	plasma	glucose,	glycated	hemoglobin	(HbA1c),	or	

insulin	resistance107–109.	Nearly	a	dozen	of	the	loci	detected	are	associated	with	both	lipid	

and	T2D-related	traits	at	the	genome-wide	significance	level,	including	GCKR,	FADS1,	IRS1,	

KLF14,	and	HFE	(http://www.genome.gov/GWAStudies/).	Surprisingly,	half	of	them	have	

shown	opposite	allelic	effect	on	dyslipidemia	and	glucose	levels110,	and	this	is	in	contrary	to	

the	positive	correlations	observed	at	the	clinical	level.	Furthermore,	it	is	challenging	to	

establish	causality	between	genetic	variants	and	complex	traits	in	humans	due	to	small	gene	

effects,	complex	genetic	structure,	and	environmental	influences.	

A	complementary	approach	to	finding	genetic	components	in	human	disease	is	to	

use	animal	models.	Apolipoprotein	E-deficient	(Apoe−/−)	mice	are	a	commonly	used	mouse	

model	of	dyslipidemia,	with	elevations	in	non-HDL	cholesterol	levels	and	reductions	in	HDL	

levels,	even	when	fed	a	low	fat	chow	diet111,112.	High	fat	diet	feeding	aggravates	

dyslipidemia.	Moreover,	these	mice	develop	all	phases	of	atherosclerotic	lesions	seen	in	

humans71	and	are	extensively	used	for	atherosclerosis	research113–116.	We	have	found	that	

Apoe−/−	mice	with	certain	genetic	backgrounds	develop	significant	hyperglycemia	and	T2D	

when	fed	a	Western-type	diet	but	become	resistant	with	some	other	genetic	

backgrounds114,117,118.	BALB/cJ	(BALB)	and	SM/J	(SM)	Apoe−/−	mice	exhibit	differences	in	

dyslipidemia	and	T2D-related	phenotypes114.	The	objective	of	the	present	study	was	to	

explore	potential	genetic	connections	between	dyslipidemia	and	T2D	through	quantitative	
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trait	locus	(QTL)	analysis	of	a	female	cohort	derived	from	an	intercross	between	BALB-	

Apoe−/−	and	SM-	Apoe−/−	mice.	

	

2.3	Results	

2.3.1	Trait	value	distributions	

Fasting	plasma	glucose	and	 lipid	 levels	of	F2	mice	were	measured	before	and	

after	12	weeks	of	Western	diet.	Values	 of	 fasting	 plasma	 glucose,	 non-HDL	

cholesterol	 and	triglyceride	levels	of	F2	mice	on	both	chow	and	Western	diets	and	of	

HDL	cholesterol	 level	on	the	 chow	diet		were		normally		or		approximately		

normally	distributed	(Fig.	2.1).	Values	of	square	root-transformed	 HDL	

cholesterol	levels	on	the	Western	diet	showed	a	 normal	distribution.	These	data	

were	then	analyzed	to	 search	for	QTLs	affecting	the	traits.	Loci	with	a	genome-	

wide	suggestive	or	significant	P	value	are	presented	 in	Table	2.1.	
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Figure	2.1	The	distributions	of	trait	values	for	fasting	plasma	glucose,	HDL,	non-HDL	

cholesterol	and	triglyceride	of	228	female	F2	mice	derived	from	an	intercross	between	

BALB-Apoe−/−	and	SM-Apoe−/−	mice.	Fasting	blood	was	collected	once	before	initiation	

of	the	Western	diet	(left	panel)	and	once	after	12	weeks	on	the	Western	diet	(right	

panel).	Graphs	were	created	using	a	plotting	function	of	J/qtl	software.	
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Table	 2.1	 Significant	 and	 suggestive	 QTLs	 for	 plasma	 glucose	 and	 lipid	 levels	 in	

female	F2	mice	derived	from	BALB-Apoe−/−	and	SM-Apoe−/−	mice.	

Locus	 Chr	 Trait	 LODa	 p-valueb	 Peak	(cM)	 95	%	CIc	 High	allele	 Mode	of	inheritenced	
Bglu16	 9	 Glucose-C	 2.214	 0.549	 2.37	 0.37–30.37	 B	 Additive	

Bglu13	 5	 Glucose-W	 2.1.8	 <0.63	 67.4	 45.4–80.03	 S	 Recessive	

-	 5	 Glucose-W	 3.198	 0.097	 101.24	 29.40–101.24	 S	 Additive	

Bglu16	 9	 Glucose-W	 3.12	 <0.63	 2.37	 0–10.37	 B	 Additive	

Bglu17	 9	 Glucose-W	 5.425	 0.001	 26.37	 16.37–40.37	 B	 Additive	

Hdlq5	 1	 HDL-C	 8.64	 0.000	 93.52	 87.52–97.02	 S	 Additive	

Hdlcl1	 7	 HDL-C	 2.668	 0.321	 61.33	 35.57–89.57	 S	 Dominant	

Hdlq17	 9	 HDL-C	 4.614	 0.014	 30.37	 16.37–32.37	 S	 Additive	

Hdlq26	 10	 HDL-C	 2.181	 0.591	 61.22	 25.03–61.22	 S	 Dominant	

Hdlq5	 1	 HDL-W	 13.944	 0.000	 87.52	 83.52–93.52	 S	 Additive	

Hdlcl1	 7	 HDL-W	 3.658	 0.034	 85.57	 77.57–89.67	 S	 Additive	

Hdlq17	 9	 HDL-W	 10.625	 0.000	 30.42	 24.37–30.53	 S	 Additive	

Chol7	 1	 non-HDL-C	 2.093	 0.626	 66.95	 9.52–74.56	 B	 Recessive	

Nhdlq15	 2	 non-HDL-C	 2.56	 0.321	 23.86	 8.73–38.73	 B	 Additive	

Hdlq34	 5	 non-HDL-C	 2.106	 0.614	 19.4	 19.4–30.5	 S	 Additive	

Pnhdlc1	 6	 non-HDL-C	 2.489	 0.362	 57.53	 1.53–77.53	 B	 Recessive	

Nhdlq1	 8	 non-HDL-C	 2.221	 0.537	 44.14	 10.14–60.14	 B	 Additive	

Nhdlq12	 12	 non-HDL-C	 2.73	 0.245	 39.41	 15.41–59.41	 B	 Additive	

Nhdlq15	 2	 non-HDL-W	 4.79	 0.002	 31.80	 22.73–40.73	 B	 Dominant	

Nhdlq11	 9	 non-HDL-W	 2.136	 0.585	 32.37	 0.37–75.33	 B	 Additive	

-	 11	 non-HDL-W	 2.332	 0.436	 1.99	 1.99–17.99	 B	 Dominant	

Nhdlq16	 16	 non-HDL-W	 3.99	 0.011	 46.66	 35.43–46.66	 S	 Dominant	

Tgq11	 2	 Triglyceride-C	 2.952	 0.169	 26.73	 12.73–60.83	 B	 Additive	

-	 5	 Triglyceride-C	 2.759	 0.234	 80.03	 73.40–93.40	 S	 Heterosis	

Trglyd	 1	 Triglyceride-W	 3.291	 0.091	 97.02	 79.24–97.02	 S	 Additive	

	

aLOD	scores	were	obtained	from	genome-wide	QTL	analysis	using	J/qtl	software.	The	

significant	LOD	scores	were	highlighted	in	bold.	The	suggestive	and	significant	

LOD	score	thresholds	were	determined	by	1,000	permutation	tests	for	each	trait.	

Suggestive	and	significant	LOD	scores	were	2.116	and	3.429,	respectively,	for	glucose	

on	the	chow	diet;	2.056	and	3.569	for	glucose	on	the	Western	diet;	2.127	and	3.725	for	

HDL	cholesterol,	2.09	and	3.662	for	non-HDL	cholesterol,	and	2.102	and	3.522	for	

triglyceride	on	the	chow	diet;	2.10	and	3.486	for	HDL,	2.123	and	3.628	for	non-HDL,	

and	2.123	and	3.628	for	triglyceride	on	the	Western	diet.	
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bThe	p-values	reported	represent	the	level	of	genome-wide	significance.	

c95	%	Confidence	interval	in	cM	defined	by	a	whole	genome	QTL	scan.	

dMode	of	inheritance	was	defined	according	to	allelic	effect	at	the	nearest	marker	of	a	

QTL.	

	

	

2.3.2	Fasting	glucose	levels	

A	genome-wide	scan	for	main	effect	QTLs	revealed	a	 suggestive	QTL	near	 the	

proximal	end	of	Chr9	 for	 fasting	glucose	when	mice	were	fed	the	chow	diet	(2.37	cM,	

LOD:	2.21)	(Fig.	2.2	and	Table	2.1).	As	this	QTL	was	replicated	on	the	Western	diet,	

it	was	named	Bglu16.	For	 fasting	 glucose	 levels	 on	 the	Western	diet,	 a	 significant	

QTL	on	Chr9	and	3	suggestive	QTLs,	 including	Bglu16	on	 Chr9,	were	 identified.	 The	

significant	 QTL	 on	 Chr9	peaked	 at	 26.37	 cM	 and	 had	 a	 LOD	 score	 of	 5.425.	 It	was	

named	Bglu17.	The	suggestive	QTL	near	the	middle	portion	of	Chr5	(67.4	cM,	LOD	

2.18)	replicated	Bglu13,	initially	mapped	 in	 a	 B6	 x	 BALB	Apoe−/−		intercross76	 .	The	

suggestive	 QTL	 on	 distal	 Chr5	 (101.24	 cM,	 LOD	3.198)	was	novel.	The	BALB	allele	

conferred	an	increased	 glucose	 level	 for	 both	 of	 the	 Chr9	QTLs	while	 the	SM	allele	

conferred	 increased	glucose	 levels	 for	 the	2	Chr5	QTLs	(Table	2.2).	
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Figure	2.2	Genome-wide	scans	to	search	for	main	effect	loci	influencing	fasting	plasma	

glucose	levels	of	female	F2	mice	when	fed	a	chow	(a)	or	Western	diet	(b).	Chromosomes	1	

through	X	are	represented	numerically	on	the	X-axis.	The	Y-axis	represents	the	LOD	score.	Two	

horizontal	dashed	lines	denote	genome-wide	empirical	thresholds	for	suggestive	(P	=	0.63)	and	

significant	(P	=	0.05)	linkage.	
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Table	2.2	Allelic	effects	in	different	QTLs	on	plasma	glucose	and	lipids	of	female	F2	mice	

derived	from	BALB	and	SM	Apoe−/−	mice.	

Locus	name	 Chr	 Trait	 LOD	 Peak	(cM)	 Closest	marker	 BB	 SS	 SB	
Bglu16	 9	 Glucose-C	 2.214	 2.37	 rs13480073	 109.0	±	28.7	(n	=	44)	 93.9	±	22.9	(n	=	43)	 97.4	±	22.6	(n	=	141)	

Bglu13	 5	 Glucose-W	 2.1.8	 67.4	 rs3726547	 144.4	±	30.6	(n	=	43)	 153.5	±	40.4	(n	=	88)	 142.9	±	35.3	(n	=	97)	

-	 5	 Glucose-W	 3.198	 101.24	 rs13478578	 132.7	±	31.3	(n	=	51)	 158.8	±	41.8	(n	=	63)	 147.5	±	34.0	(n	=	113)	

Bglu16	 9	 Glucose-W	 3.12	 2.37	 rs13480073	 165.3	±	40.9	(n	=	54)	 138.3	±	30.0	(n	=	43)	 144.4	±	35.7	(n	=	141)	

Bglu17	 9	 Glucose-W	 5.425	 26.37	 CEL.9_4918363
6	

168.0	±	39.8	(n	=	42)	 134.7	±	26.5	(n	=	62)	 146.1	±	37.1	(n	=	
124)	Hdlq5	 1	 HDL-C	 8.64	 93.52	 rs13476259	 49.5	±	20.9	(n	=	60)	 73.2	±	26.5	(n	=	62)	 55.1	±	19.4	(n	=	106)	

Hdlcl1	 7	 HDL-C	 2.668	 61.33	 rs3724711	 49.0	±	20.0	(n	=	50)	 58.3	±	21.0	(n	=	63)	 62.9	±	25.5	(n	=	115)	

Hdlq17	 9	 HDL-C	 4.614	 30.37	 CEL.9_4918363
6	

49.5	±	15.9	(n	=	42)	 69.4	±	26.8	(n	=	62)	 56.2	±	22.5	(n	=	124)	

Hdlq26	 10	 HDL-C	 2.181	 61.22	 rs3688351	 50.7	±	19.2	(n	=	60)	 59.4	±	21.9	(n	=	53)	 62.4	±	25.8	(n	=	114)	

Hdlq5	 1	 sqrtHDL-W	 13.944	 87.52	 rs3685643	 66.6	±	50.2	(n	=	57)	 201.1	±	118.8	(n	=	
62)	

117.0	±	97.1	(n	=	
109)	Hdlcl1	 7	 sqrtHDL-W	 3.658	 85.57	 rs6216320	 95.5	±	87.6	(n	=	63)	 173.3	±	126.7	(n	=	

55)	
122.4	±	98.4	(n	=	
110)	Hdlq17	 9	 sqrtHDL-W	 10.625	 30.42	 CEL.9_4918363

6	
57.6	±	49.3	(n	=	42)	 183.3	±	115.0	(n	=	

62)	
122.8	±	101.7	(n	=	
124)	Chol7	 1	 non-HDL-C	 2.093	 66.95	 rs6354736	 279.5	±	62.8	(n	=	56)	 257.8	±	56.9	(n	=	57)	 251.2	±	52.1	(n	=	114)	

Nhdlq15	 2	 non-HDL-C	 2.56	 23.86	 mCV23209429	 273.9	±	56.1	(n	=	55)	 238.0	±	47.0	(n	=	53)	 262.7	±	59.0	(n	=	120)	

Hdlq34	 5	 non-HDL-C	 2.106	 19.4	 rs3658401	 244.5	±	54.7	(n	=	63)	 276.0	±	53.2	(n	=	61)	 259.3	±	58.3	(n	=	104)	

Pnhdlc1	 6	 non-HDL-C	 2.489	 57.53	 rs13478909	 279.6	±	51.3	(n	=	51)	 252.0	±	65.2	(n	=	57)	 254.8	±	53.5	(n	=	120)	

Nhdlq1	 8	 non-HDL-C	 2.221	 44.14	 D8Mit50	 275.0	±	54.5	(n	=	60)	 242.4	±	57.4	(n	=	57)	 262.9	±	55.6	(n	=	96)	

Nhdlq12	 12	 non-HDL-C	 2.73	 39.41	 rs6195664	 278.6	±	52.3	(n	=	62)	 243.8	±	57.8	(n	=	59)	 257.4	±	56.5	(n	=	107)	

Nhdlq15	 2	 non-HDL-W	 4.79	 31.8	 rs13476507	 954.1	±	156.0	(n	=	
56)	

806.9	±	158.2	(n	=	
47)	

915.6	±	166.1	(n	=	
125)	Nhdlq11	 9	 non-HDL-W	 2.136	 32.37	 rs3709825	 958.4	±	211.4	(n	=	42)	 856.8	±	165.3	(n	=	62)	 906.6	±	149.5	(n	=	
124)	-	 11	 non-HDL-W	 2.332	 1.99	 rs4222040	 927.3	±	149.8	(n	=	67)	 849.0	±	165.1	(n	=	69)	 917.0	±	170.5	(n	=	85)	

Nhdlq16	 16	 non-HDL-W	 3.99	 46.66	 rs3721202	 820.2	±	152.7	(n	=	
56)	

931.9	±	146.4	(n	=	
52)	

928.4	±	174.6	(n	=	
120)	Tgq11	 2	 Triglyceride-C	 2.952	 26.73	 mCV23209429	 123.7	±	35.7	(n	=	55)	 101.9	±	34.6	(n	=	53)	 107.3	±	31.8	(n	=	120)	

-	 5	 Triglyceride-C	 2.759	 80.03	 gnf05.120.578	 110.2	±	33.2	(n	=	43)	 119.3	±	35.8	(n	=	88)	 101.6	±	31.3	(n	=	97)	

Trglyd	 1	 Triglyceride-W	 3.291	 97.02	 rs13476259	 94.0	±	28.6	(n	=	59)	 115.3	±	33.0	(n	=	62)	 100.7	±	30.8	(n	=	106)	

Bglu16	 9	 Glucose-C	 2.214	 2.37	 rs13480073	 109.0	±	28.7	(n	=	44)	 93.9	±	22.9	(n	=	43)	 97.4	±	22.6	(n	=	141)	

Bglu13	 5	 Glucose-W	 2.1.8	 67.4	 rs3726547	 144.4	±	30.6	(n	=	43)	 153.5	±	40.4	(n	=	88)	 142.9	±	35.3	(n	=	97)	

-	 5	 Glucose-W	 3.198	 101.24	 rs13478578	 132.7	±	31.3	(n	=	51)	 158.8	±	41.8	(n	=	63)	 147.5	±	34.0	(n	=	113)	

Bglu16	 9	 Glucose-W	 3.12	 2.37	 rs13480073	 165.3	±	40.9	(n	=	54)	 138.3	±	30.0	(n	=	43)	 144.4	±	35.7	(n	=	141)	

Bglu17	 9	 Glucose-W	 5.425	 26.37	 CEL.9_4918363
6	

168.0	±	39.8	(n	=	42)	 134.7	±	26.5	(n	=	62)	 146.1	±	37.1	(n	=	
124)	Hdlq5	 1	 HDL-C	 8.64	 93.52	 rs13476259	 49.5	±	20.9	(n	=	60)	 73.2	±	26.5	(n	=	62)	 55.1	±	19.4	(n	=	106)	

Hdlcl1	 7	 HDL-C	 2.668	 61.33	 rs3724711	 49.0	±	20.0	(n	=	50)	 58.3	±	21.0	(n	=	63)	 62.9	±	25.5	(n	=	115)	

Hdlq17	 9	 HDL-C	 4.614	 30.37	 CEL.9_4918363
6	

49.5	±	15.9	(n	=	42)	 69.4	±	26.8	(n	=	62)	 56.2	±	22.5	(n	=	124)	

Hdlq26	 10	 HDL-C	 2.181	 61.22	 rs3688351	 50.7	±	19.2	(n	=	60)	 59.4	±	21.9	(n	=	53)	 62.4	±	25.8	(n	=	114)	

Hdlq5	 1	 sqrtHDL-W	 13.944	 87.52	 r[55]s3685643	 66.6	±	50.2	(n	=	57)	 201.1	±	118.8	(n	=	
62)	

117.0	±	97.1	(n	=	
109)	Hdlcl1	 7	 sqrtHDL-W	 3.658	 85.57	 rs6216320	 95.5	±	87.6	(n	=	63)	 173.3	±	126.7	(n	=	

55)	
122.4	±	98.4	(n	=	
110)	Hdlq17	 9	 sqrtHDL-W	 10.625	 30.42	 CEL.9_4918363

6	
57.6	±	49.3	(n	=	42)	 183.3	±	115.0	(n	=	

62)	
122.8	±	101.7	(n	=	
124)	Chol7	 1	 non-HDL-C	 2.093	 66.95	 rs6354736	 279.5	±	62.8	(n	=	56)	 257.8	±	56.9	(n	=	57)	 251.2	±	52.1	(n	=	114)	

Nhdlq15	 2	 non-HDL-C	 2.56	 23.86	 mCV23209429	 273.9	±	56.1	(n	=	55)	 238.0	±	47.0	(n	=	53)	 262.7	±	59.0	(n	=	120)	

Hdlq34	 5	 non-HDL-C	 2.106	 19.4	 rs3658401	 244.5	±	54.7	(n	=	63)	 276.0	±	53.2	(n	=	61)	 259.3	±	58.3	(n	=	104)	

Pnhdlc1	 6	 non-HDL-C	 2.489	 57.53	 rs13478909	 279.6	±	51.3	(n	=	51)	 252.0	±	65.2	(n	=	57)	 254.8	±	53.5	(n	=	120)	
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Nhdlq1	 8	 non-HDL-C	 2.221	 44.14	 D8Mit50	 275.0	±	54.5	(n	=	60)	 242.4	±	57.4	(n	=	57)	 262.9	±	55.6	(n	=	96)	

Nhdlq12	 12	 non-HDL-C	 2.73	 39.41	 rs6195664	 278.6	±	52.3	(n	=	62)	 243.8	±	57.8	(n	=	59)	 257.4	±	56.5	(n	=	107)	

Nhdlq15	 2	 non-HDL-W	 4.79	 31.8	 rs13476507	 954.1	±	156.0	(n	=	
56)	

806.9	±	158.2	(n	=	
47)	

915.6	±	166.1	(n	=	
125)	

Nhdlq11	 9	 non-HDL-W	 2.136	 32.37	 rs3709825	 958.4	±	211.4	(n	=	
42)	

856.8	±	165.3	(n	=	
62)	

906.6	±	149.5	(n	=	
124)	

-	 11	 non-HDL-W	 2.332	 1.99	 rs4222040	 927.3	±	149.8	(n	=	
67)	

849.0	±	165.1	(n	=	
69)	

917.0	±	170.5	(n	=	
85)	

Nhdlq16	 16	 non-HDL-W	 3.99	 46.66	 rs3721202	 820.2	±	152.7	(n	=	
56)	

931.9	±	146.4	(n	=	
52)	

928.4	±	174.6	(n	=	
120)	

Tgq11	 2	 Triglyceride-C	 2.952	 26.73	 mCV23209429	 123.7	±	35.7	(n	=	55)	 101.9	±	34.6	(n	=	53)	 107.3	±	31.8	(n	=	
120)	

-	 5	 Triglyceride-C	 2.759	 80.03	 gnf05.120.578	 110.2	±	33.2	(n	=	43)	 119.3	±	35.8	(n	=	88)	 101.6	±	31.3	(n	=	97)	

Trglyd	 1	 Triglyceride-
W	

3.291	 97.02	 rs13476259	 94.0	±	28.6	(n	=	59)	 115.3	±	33.0	(n	=	62)	 100.7	±	30.8	(n	=	
106)	

	

Chr	=	chromosome,	LOD	=	logarithm	of	odds,	C	=	chow	diet,	W	=	Western	diet,	BB	=	

homozygous	BALB	allele,	SS	=	homozygous	SM	allele,	SM	=	heterozygous	allele.	

Data	are	mean	±	SD.	The	units	for	these	measurements	are	mg/dL	for	plasma	glucose	or	lipid	

levels.	The	number	in	the	brackets	represents	the	number	of	progeny	with	a	specific	genotype	

at	a	peak	marker.	The	significant	QTLs	and	their	LOD	scores	were	highlighted	in	bold.	

	

	

2.3.3	Fasting	 lipid	 levels	

Genome-wide	 scans	 for	 main	 effect	 QTLs	 showed	 that	HDL,	non-HDL	

cholesterol,	and	triglyceride	 levels	were	each	controlled	by	multiple	QTLs	(Figs.	

2.3,	2.4,	and	2.5;	Table	2.1).	For	HDL,	3	significant	QTLs,	located	on	Chr1,	Chr7	 and	

Chr9,	 and	 1	 suggestive	 QTL	 on	 Chr10,	were	identified.	All	3	significant	QTLs	for	

HDL	were	detected	when	mice	were	 fed	either	 chow	or	Western	diet,	while	 the	

suggestive	QTL	on	Chr10		was		found		when		mice	were	 on		the		chow		diet.	 The	

significant	QTL	 on	Chr1	replicated	Hdlq5,	which	 had	 been	mapped	 in	 numerous	

crosses92.	 The	 Chr7	 QTL	 replicated	Hdlcl1,	 initially	mapped	 in	 (PERA/EiJ	 x	 B6-

Ldlr))	 x	 B6-Ldlr	backcross78.	 The	 Chr9	QTL	replicated	Hdlq17,	 previously	mapped	

in	B6	x	129S1/SvImJ	F2	mice89	.	The	suggestive	QTL	on	Chr10	overlapped	with	



	 48	

Hdlq26	mapped	in	a	SM/J	x	NZB/BlNJ	intercross82.	For	all	4	HDL	QTLs,	F2		mice	

homozygous	 for	 the	 SS	 allele	 had	 higher	HDL	 levels	than	those	homozygous	for	the	

BB	allele	(Table	2.2).	

For	non-HDL	cholesterol	levels,	6	suggestive	QTLs	were	detected	when	F2	

mice	were	fed	the	chow	diet,	and	2	 significant	 and	 2	 suggestive	 QTLs	 were	

detected	 on	 the	Western	diet		(Fig.	2.4).	The	2	significant		QTLs		on	Chr2	 and	 Chr16	

and	 the	 suggestive	 QTL	 on	 Chr11	 were	novel.	 The	 former	 2	 QTLs	were	 named	

Nhdlq15	 and	Nhdlq16,	 respectively.	Nhdlq15	peaked	at	 31.8	 cM		 on	Chr2	and	affected	

non-HDL	levels	in	a		dominant		mode	 from	 the	BB	 allele	while	Nhdlq16	peaked	 at	 46.66	

cM	on	Chr16	 and	 affected	 non-HDL	 levels	 in	 a	 dominant	 mode	 from	 the	 SS	 allele.	

The	 rest	 replicated	 previously	identified	 ones	 in	 other	 mouse	 crosses:	 The	 Chr1	 QTL	

peaked	at	 66.95	 cM,	 overlapping	with	Chol7	mapped	 in	 an	 intercross	 of	 129S1/SvImJ	

and	 CAST/Ei	 mice119	 .	 The	 Chr5	QTL	overlapped	with	Hdlq34	mapped		in		PERA/EiJ	×	I/	

LnJ	 and	PERA/EiJ	×	DBA/2	 J	 intercrosses120.	 The	Chr6	QTL	 overlapped	with	Pnhdlc1,	

initially	mapped	 in	 a	 B6	 x	CASA/Rk		 intercross		 and		 then		 replicated		 in		 B6		 x		 C3H	

Apoe−/−			 F2			mice121,122.		The		 Chr8		QTL		 replicated	Nhdlq1,	 initially	mapped	in	B6	x		

129S1/SvImJ		F2		mice123.	 The	 Chr9	 QTL		replicated	 Nhdlq11,		initially	 mapped	in	B6	x	

C3H	Apoe−/−	F2	mice122.	The	Chr12		QTL	 peaked	at	44.14	cM,	overlapping	with	

Nhdlq12	mapped	in	 a	B6	x	C3H	Apoe−/−	F2	intercross122.		

For	 triglyceride	 levels,	3	 suggestive	QTLs,	 located	on	Chr1,	2,	and	5,	

respectively,	were	identified	(Fig.	2.5).	The	Chr1	 QTL	 peaked	 at	 97	 cM,	 17	 cM	

distal	 the	 Apoa2	gene	(80	cM).	The	Chr2	QTL	replicated	Tgq11,	mapped	in	an	

intercross	between	DBA/1J	and	DBA/2J124.	The	Chr5	QTL	was	novel.	
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Figure	2.3	Genome-wide	scans	to	search	for	loci	influencing	HDL	cholesterol	levels	of	female	

F2	mice	when	fed	a	chow	(a)	or	Western	diet	(b).	Three	significant	loci	on	chromosomes	1,	7,	

and	9	and	one	suggestive	locus	on	chromosome	10	were	detected	to	affect	HDL	cholesterol	

levels	of	mice.	
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Figure	2.4	Genome-wide	scans	to	search	for	loci	influencing	non-HDL	cholesterol	levels	of	

female	F2	mice	fed	a	chow	(a)	or	Western	diet	(b).	Two	significant	loci	on	chromosomes	2	and	

16	were	identified	to	affect	non-HDL	cholesterol	levels	of	mice	fed	the	Western	diet.	
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Figure	2.5	Genome-wide	scans	to	search	for	loci	influencing	triglyceride	levels	of	female	F2	

mice	fed	a	chow	(a)	or	Western	diet	(b).	Three	suggestive	loci	were	identified	for	triglyceride	

levels.	

	

	

	

2.3.4	Coincident	QTLs	for	fasting	glucose	and	lipids	

LOD	score	plots	for	Chr9	showed	that	the	QTL	for	fasting	glucose	 (Bglu17)	coincided	

precisely	with	the	QTLs	 for	HDL		 (Hdlq17)		 and		 non-HDL		 (Nhdlq11)		 in		 the	

confidence	interval	(Fig.	2.6).	F2	mice	homozygous	for	the	BB	allele	exhibited	
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elevated	levels	of	fasting	glucose	and	non-HDL	but	decreased	levels	of	HDL,	compared	

to	those	homozygous	for	the	SS	allele	(Table	2.2).	These	QTLs	affected	their	

respective	trait	values	in	an	additive	manner.	

	

Figure	2.6	LOD	score	plots	for	fasting	glucose,	HDL,	and	non-HDL	cholesterol	of	F2	mice	fed	

the	Western	diet	on	chromosome	9.	Plots	were	created	with	the	interval	mapping	function	of	

Map	Manager	QTX.	The	histogram	in	the	plot	estimates	the	confidence	interval	for	a	QTL.	Two	

green	vertical	lines	represent	genome-wide	significance	thresholds	for	suggestive	or	

significant	linkage	(P	=	0.63	and	P	=	0.05,	respectively).	Black	plots	reflect	the	LOD	score	

calculated	at	1-cM	intervals,	the	red	plot	represents	the	effect	of	the	BALB	allele,	and	the	blue	

plot	represents	the	effect	of	the	SM	allele.	If	BALB	represents	the	high	allele,	then	the	red	plot	

will	be	to	the	right	of	the	graph;	otherwise,	it	will	be	to	the	left.	
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2.3.5	Correlations	between	plasma	glucose	and	lipid	levels	

The	 correlations	 of	 fasting	 glucose	 levels	 with	 plasma	 levels	of	HDL,	non-HDL	

cholesterol,	or	triglyceride	were	analyzed	with	the	F2	 population	(Fig.	2.7).	A	

significant	inverse	correlation	between	fasting	glucose	and	HDL	cholesterol	 levels	 was	

observed		when	 the	 mice	 were	 fed	 a	chow	(R	=	−0.220;	P	=	8.1E-4)	or	Western	diet	(R	=	

−0.257;	P	=	8.5E-5).	 F2	mice	with	 higher	 HDL	 cholesterol	 levels	 had	 lower	 fasting	

glucose	 levels.	 Conversely,	 significant	 positive		correlations		between		fasting		glucose		

and		non-HDL	cholesterol	levels	were	observed	when	mice	were	fed	either	chow	(R	=	

0.194;	P	=	3.31E-3)	or	Western	diet	(R	=	 0.558;	P	=	4.7E-20).	F2	mice	with	higher	non-

HDL	cholesterol	levels	also	had	higher	fasting	glucose	levels,	especially	 on	the	Western	

diet.	A	significant	positive	correlation	between	plasma	levels	of	fasting	glucose	and	

triglyceride	was	 observed	when	mice	were	fed	the	Western	diet	(R	=	0.377;	P	=	3.9E-9)	

but	not	the	chow	diet	(R	=	0.065;	P	=	0.330).	
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Figure	2.7	Correlations	of	fasting	plasma	glucose	levels	with	plasma	levels	of	HDL,	non-HDL	

cholesterol	and	triglyceride	in	the	F2	population	fed	a	chow	(top	row:	a,	b,	c)	or	Western	diet	

(bottom	row:	d,	e,	f).	Each	point	represents	values	of	an	individual	F2	mouse.	The	correlation	

coefficient	(R)	and	significance	(P)	are	shown.	

	

	

	

2.3.6	Prioritization	 of	 positional	 candidate	 genes	 for	 Chr9	coincident	QTLs	

Bglu17	 on	 Chr9	 has	 been	 mapped	 in	 3	 separate	 intercrosses,	including	previously	

reported	C57BLKS	x	DBA/2	125	and		B6-Apoe−/−			x		BALB-Apoe−/−			crosses76.	Hdlq17	

on	 Chr9	 has	 been	 mapped	 in	 multiple	 crosses,	 including	B6	x	129,	B6	x	CAST/EiJ,	

B6-Apoe−/−	x	 C3H-Apoe−/−,	 and	 B6-Apoe−/−		x	 BALB-Apoe−/−		crosses79,89,121,122,126–128.	

We	conducted	haplotype	analyses	 using	Sanger	SNP	database	 to	prioritize	positional	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Correlations of fasting plasma glucose levels with plasma levels of HDL, non-HDL cholesterol and triglyceride in the F
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candidate	genes	for	both	QTLs.	Prioritized	candidate	genes	for	Hdlq17	and	candidate	

genes	 for	Bglu17	 are	 shown	 in	S2.1.	Most	 candidates	 for	Hdlq17	are	 also	 candidate	

genes	 for	Bglu17.	 These	 candidates	 contain	 one	 or	more	non-synonymous	SNPs	 in	

the	 coding	 regions	or	 SNPs	 in	 the	upstream	regulatory	region	that	are	shared	by	the	

high	 allele	strains	but	are	different	from	the	low	allele	strains	at	 the	QTL.	All	

candidate	 genes	were	 further	 examined	 for	 associations	with	 relevant	human	

diseases	using	 the	NIH	 GWAS	 database	 (http://www.genome.gov/GWAStudies/).	

Sik3,	Apoa1,	and	Apoc3	have	been	shown	to	be	associated	 with	 variations	 in	 total,	

HDL,	 LDL-cholesterol	 or	 triglyceride	 levels105,106,129,	and	Cadm1	with	obesity-related	

traits130.	

	

2.4	Discussion	

BALB	 and	 SM	 are	 two	mouse	 strains	 that	 exhibit	 distinct	differences	in	

HDL,	non-HDL	cholesterol,	and	type	2	diabetes-related	traits	when	deficient	in	

Apoe114.	 BALB-Apoe−/−	mice	have	higher	HDL,	 lower	non-HDL	cholesterol,	and	lower	

glucose	levels	than	SM-Apoe−/−	mice	when	 they	 are	 fed	 a	Western	diet.	 To	 identify	

the	genetic	factors	responsible	for	these	differences,	we	performed	 QTL	 analysis	 on	

a	 female	 cohort	 derived	 from	an	 intercross	 between	 the	 two	Apoe−/−	strains.	We	

have	 identified	four	loci	contributing	to	fasting	glucose	levels,	 four		loci		contributing		

to		HDL		cholesterol		levels,		nine	loci	 for	 non-HDL	 cholesterol	 levels,	 and	 three	 loci	

for	 triglyceride	 levels.	Moreover,	we	 have	 observed	 genetic	 connections	between	

dyslipidemia	and	type	2	diabetes	in	 that	 the	 QTL	 for	 fasting	 glucose	 is	 co-localized	

with	 the	 QTLs	for	HDL	and	non-HDL	cholesterol	on	chromosome	9	and	these	

coincident	QTLs	share	a	large	fraction	of	 potential	candidate	genes.	

We	identified	a	significant	QTL	on	chromosome	9,	peaked	at	26	cM,	which	
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affected	 fasting	plasma	glucose	 levels	when	mice	were	 fed	a	chow	or	Western	diet.	

We	named	 it	 Bglu17	 to	 represent	 a	 novel	 locus	 regulating	 fasting	 glucose	 levels	 in	

the	mouse.	 This	 locus	 is	 overlapping	 with	 a	 significant	 QTL	 (not	 named)	 for	 blood	

glucose	levels	on	the	intraperitoneal	glucose	tolerance	 test	 identified	 in	 a	 BKS-Cg-

Leprdb+/+m	x	 DBA/2	 intercross	and	a	 suggested	QTL	 identified	 in	a	B6-Apoe−/−	x	

BALB-Apoe−/−				intercross76,125.	Interestingly,	we	found	that	Bglu17	coincided	precisely	

with	Hdlq17,	a	QTL	 for	 HDL	 cholesterol	 levels,	 and	Nhdlq11,	 a	 QTL	 for	non-HDL	

cholesterol	levels.	The	co-localization	of	 two	or	more	QTLs	for	different	traits	

suggests	that	these	 traits	are	controlled	either	by	the	same	gene(s)	or	closely	 linked	

but	 different	 individual	 genes.	Hdlq17	 has	 been	mapped	 in	multiple	 crosses	 derived	

from	 inbred	mouse	strains	whose	genomes	have	been	re-sequenced	by	Sanger,	

including		B6,		129,		BALB,		C3H/HeJ,		and		CAST/EiJ79,89,121,122,126–128.	Nhdlq11		was		

previously	 mapped	in	a	NZB/BINJ	x	SM/JF2	cross	and	a	B6-	Apoe−/−	x	C3H-Apoe−/−	

intercross122,131.		To		determine		 whether		 Bglu17		 and		 Hdlq17		 share		 the		 same	

underlying	candidate	genes,	we	performed	haplotype	 analyses	 on	 those	 crosses	 that	

led	 to	 the	 identification	 of	the	QTLs.	The	number	of	shared	genetic	variants	 between	

Bglu17	 and	Hdlq17	was	 surprisingly	 high.	Of	 them,	Sik3,	Apoa1,	 and	Apoc3	are	

located	precisely	 underneath	the	linkage	peak	of		Bglu17		and		Hdlq17,	 and	 they	are	

also	 functional	candidate		genes		of	Hdlq17.	 Indeed,	 recent	 GWAS	 studies	 have	

associated	 these	three	genes	with	dyslipidemia	or	variations	in	 HDL,	LDL	cholesterol,	

and	triglyceride	levels105,129,132.	 The	finding	in	this		study		strongly		suggests		that		one	

or	more	of	these	“lipid	genes”	might	be	the	causal	gene(s)	 of	Bglu17,	 contributing	 to	

variation	in	 fasting	 glucose	 levels.	 Although	 it	 is	 unknown	 how	 they	 affect	 glucose	

homeostasis,	 one	probable	 effect	path	 is	 through	 the	influence	on	plasma	lipid	levels,	

which	then	predispose	variation		 in		glucose-related		traits.		The	current	observation	on	
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the	 significant	 correlations	of	 fasting	glucose	levels	with	HDL,	non-HDL	cholesterol,	and	

triglyceride	 levels	 in	 this	 cross	 supports	 this	 speculation.	 Plasma	 lipid	levels,	

especially	non-HDL	cholesterol,	of	the	F2	mice	 were	 significantly	 elevated	 on	 the	

Western	 diet,	 so	were	 the	fasting		glucose		levels.		When		fed		the		Western		diet,	Apoe−/−		

mice	display	a	rapid	rise	in	non-HDL	cholesterol	levels,	often	reaching	their	peak	

within	a	couple	of	weeks	 (unpublished	data),	whereas	their	blood	glucose	levels	rise	

more	slowly	and	gradually	within	12	weeks133,134.	This	difference	in	onset	suggests	a	

causal	role	for	plasma	lipids	 in	the	rise	of	blood	glucose	in	the	Apoe−/−	mouse	model.	

A	significant	reverse	correlation	was	observed	between	plasma	HDL	

cholesterol	levels	and	fasting	glucose	levels	 in	 this	cross	on	either	chow	or	Western	

diet.	This	result	 is	consistent	with	the	findings	of	prospective	human	studies	 that	

low	HDL	 levels	 can	 predict	 the	 future	 risk	of	developing	T2D	and	low	HDL	levels	

are	more	prevalent	 in	 diabetic	 patients	 than	 in	 the	 normal	 population135,136.	HDL	

can	increase	insulin	secretion	from	β-cells,	improve	insulin	sensitivity	of	the	target	

tissues,	and	accelerate	 glucose	 uptake	 by	muscle	 via	 the	 AMP-activated	protein	

kinase137.	A	significant	correlation	of	 non-HDL	 cholesterol	 levels	 with	 fasting	

glucose	 levels	was	also	observed	 in	 this	 cross,	and	 the	 correlation	was	extremely	

high	 when	 mice	 were	 fed	 the	 Western	 diet.	Emerging	human	studies	have	also	

revealed	associations	of	 non-HDL	 cholesterol	 and	ApoB	with	 fasting	 glucose	 levels	

and	incident	type	2	diabetes138–140.	We	previously	observed	that	the	elevation	of	non-

HDL	cholesterol	levels	 in	Apoe−/−	mice	during	the	consumption		of		a		Western	 diet	

induces	a	chronic,	low-grade	inflammation	state	characterized	by	 rises	 in	 circulating	

cytokines	 and	 infiltration	 of	 monocytes/macrophages	in	various	organs	or		

tissues112,115,118,133.	 Inflammation	 in	 the	 islets	 impairs	β-cell	 function118.	 LDL	 can	 also	

directly	 affect	 function	 and	 survival	of	β-cells141.	In	addition,	high	levels	of	LDL	can	
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induce	insulin	resistance	due	 to	 its	 lipotoxicity	and	effect	 on	endoplasmic	reticulum	

stress100.	

Plasma	triglyceride	levels	were	strongly	correlated	with	 fasting	 glucose	 levels	

in	 this	 cross	 on	 the	Western	diet,	 although	no	significant	correlation	was	found	

when	mice	were	 fed	 the	 chow	diet.	 Despite	 the	 strong	correlation,	 no	 overlapping	

QTLs	 were	 observed	 for	 fasting	 glucose	and	triglyceride.	The	reason	for	the	

discrepancy	 between	 non-HDL	 cholesterol	 and	 triglyceride	 in	 terms	 of	 the	

presence	 or	 absence	 of	 co-localized	 QTLs	 is	 unclear.	

A	 suggestive	 QTL	 for	 fasting	 glucose	 near	 the	 proximal	 end	 of	 chromosome	

9	 (2.37	 cM)	 was	 detected	 in	this	 cross,	 initially	on	 the	 chow	diet	and	 then	

replicated	on	the	Western	diet.	The	LOD	score	plot	for	chromosome	9	has	shown	2	

distinct	peaks,	one	with	a	suggestive	LOD	 score	at	the	proximal	end	and	one	with	a	

significant	LOD	 score	at	a	more	distal	 region,	suggesting	 the	existence	of	 two	loci	for	

fasting	glucose	on	the	chromosome.	The	 bootstrap	 test,	 a	 statistical	 method	 for	

defining	 the	 confidence	interval	of	QTLs	using	simulation142,	also	indicated	the	

existence	of	two	QTLs	for	the	trait	on	 chromosome	 9.	 We	 named	 the	 proximal	 one	

Bglu16	 to	 represent	 a	 new	 QTL	 for	 fasting	 glucose	 in	 the	 mouse.	Naming	a	

suggestive	 locus	 is	considered	appropriate	 if	 it	 is	repeatedly	observed66.	

Two	suggestive	QTLs	 for	 fasting	glucose	on	 chromo-	 some	5	were	identified	

when	mice	were	fed	the	Western	diet.	The	proximal	one	replicated	Bglu13,		recently	

mapped	 in	 the	 B6-Apoe−/−	x	 BALB-Apoe−/−	cross76.	One	probable	candidate		gene		for		

this		QTL		is		Hnf1a,	which	encodes	hepatocyte	nuclear	 factor	1α.	 In	humans,	Hnf1a	

mutations	are	the	most	common	cause	of	maturity-onset	diabetes	of	the	young	

(MODY)143.	The	 suggestive	QTL	in	the	distal	region	was	novel.	

Most	of	the	QTLs	identified	for	plasma	lipids	confirm	 those	 identified	 in	
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previous	 studies,	whereas	 two	QTLs	 for	non-HDL	are	new	and	named	Nhdlq15	and	

Nhdlq16,	 respectively.	The	QTLs	on	distal	chromosome	1	 for	HDL	 and	 triglyceride	

has	 been	mapped	 in	 a	 number	 of	mouse	crosses,	and	Apoa2	has	been	identified	as	

the	underlying	causal	gene144.	However,	the	QTL	(~90	cM)	 mapped	 in	 this	 study	

showed	 that	 it	 was	more	 distal	 to	 the	Apoa2	gene	(80	cM),	thus	suggesting	a	

different	 underlying	causal	gene.	

In	this	study,	we	have	identified	multiple	QTLs	contributing	to	dyslipidemia	and	

hyperglycemia	in	a	segregating	F2	 population.	 The	finding	on	the	co-localization	of	

QTLs	for	fasting	glucose,	HDL	and	non-HDL	cholesterol	 levels	and	the	sharing	of	

probable	candidate	genes	has	demonstrated	genetic	 connections	between	

dyslipidemia	and	type	2		diabetes.	 The	close	correlations	of	fasting	glucose	with	HDL,	

non-HDL	 cholesterol,	 and	 triglyceride	 support	 the	 hypothesis	 that	dyslipidemia	plays	

a	causal	role	in	the	development	of	 type	2	diabetes100.	The	haplotype	analysis	has	

prioritized	 candidates	for	either	chromosome	9	QTL	down	to	a	 handful	of	genes.	

Nevertheless,	 functional	studies	need	to	 be	performed	to	prove	causality.	

	

2.5	Methods		

Ethics	statement	

All	procedures	were	in	accordance	with	current	National	 Institutes	 of	 Health	

guidelines	 (https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-

laboratory-animals.pdf)	 and	 approved	 by	 the	 institutional	 Animal	Care	and	Use	

Committee	(protocol	#:	3109).	Blood	was	drawn	 from	 the	 retro-orbital	 plexus	 of	

overnight	 fasted	mice	with	the	animals	under	isoflurane	anesthesia.	

	

Animals,	experimental	design	and	procedures	
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BALB	and	SM	Apoe−/−	mice	were	created	using	the	classic	congenic	breeding	strategy,	

as	described114.	BALB-	Apoe−/−	mice	were	crossed	with	SM-Apoe−/−	mice	to	 generate	

F1s,	 which	 were	 intercrossed	 by	 brother-sister	mating	 to	 generate	 a	 female	 F2	

cohort.	 Mice	 were	weaned	 at	 3	 weeks	 of	 age	 onto	 a	 rodent	 chow	 diet.	 At	 6	weeks	

of	age,	female	F2	mice	were	started	on	a	Western	diet	containing	21	%	fat,	34.1	%	

sucrose,	0.15	%	cholesterol,	 and	19.5	%	casein	by	weight	 (Harlan	Laboratories,	 TD	

88137)	and	maintained	on	the	diet	for	12	weeks.	Mice	were	bled	twice:	once	before	

initiation	of	the	Western	diet	 and	once	at	the	end	of	the	12-week		 feeding		period.	

Overnight	fasted	mice	were	bled	into	tubes	containing	 8	μL	of	0.5	mol/L	

ethylenediaminetetraacetic	acid.	Plasma	was	prepared	and	stored	at	−80	°C	before	use.	

	

Housing	and	husbandry	

Breeding	pairs	were	housed	in	a	cage	of	1	adult	male	and	2	females,	and	litters	

were	weaned	at	3	weeks	of	age	onto	a	rodent	chow	diet	in	a	cage	of	5	or	less.	At	6	

weeks	of	age,	F2	mice	were	switched	onto	the	Western	diet	and	maintained	on	the	

diet	for	12	weeks.	All	mice	were	housed	 under	a	12-h	light/dark	cycle	at	an	ambient	

temperature	 of	23	°C	and	allowed	free	access	to	water	and	drinking	 food.	Mice	

were	fasted	overnight	before	blood	samples	 were	collected.	

	

Measurements	of	plasma	glucose	and	lipid	levels	

Plasma	glucose	was	measured	with	a	Sigma	glucose	 (HK)	assay	kit,	as	reported	with	

modification	to	a	longer	 incubation	time76.	Briefly,	6	μl	of	plasma		samples	were	

incubated	with	150	μl	of	assay	reagent	in	a	96-well	plate	 for	 30	 min	 at	 30	 °C.	 The	

absorbance	 at	 340	 nm	was	read	on	a	Molecular	Devices	(Menlo	Park,	CA)	plate	

reader.	 The	measurements	 of	 total	 cholesterol,	 HDL	 cholesterol,	 and	 triglyceride	



	 61	

were	performed	as	 reported	previously112.	Non-HDL	cholesterol	was	calculated	as	

the	difference	between	total	and	HDL	cholesterol.	

	

Genotyping	

Genomic	DNA	was	isolated	from	the	tails	of	mice	by	using	the	

phenol/chloroform	extraction	and	ethanol	precipitation	method.	The	Illumina	LD	

linkage	panel	consisting	of	377	SNP	loci	was	used	to	genotype	the	F2	cohort.	

Microsatellite	 markers	 were	 typed	 for	 chromosome	 8	where	SNP	markers	were	

uninformative	in	distinguishing	 the	parental	origin	of	alleles.	DNA	samples	from	the	

two	parental	 strains	and	 their	F1s	 served	as	 controls.	Uninformative	SNPs	were	

excluded	from	QTL	analysis.	SNP	markers	were	also	filtered	based	on	the	expected	

pattern	 in	the	control	samples,	and	F2	mice	were	filtered	based	on	 95	%	call	rates	in	

genotype	calls.	After	filtration,	228	F2s	 and	 144	markers	were	 included	 in	

genome-wide	 QTL	 analysis.	

	

Statistical	 analysis	

QTL	 analysis	was	performed	using	 J/qtl	 and	Map	Manager	QTX	 software	 as	

previously	 reported88,117,145. 	 One	 thousand	 permutations	 of	 trait	 values	 were	 run	

to	define	 the	 genome-wide	LOD	 (logarithm	of	odds)	 score	threshold	needed	 for	

significant	or	suggestive	 linkage	of	each	trait.	Loci	that		exceeded		the		95th		

percentile		of	 the	permutation	distribution	were	 defined	 as	 significant	 (P	<	0.05)	 and	

those	 exceeding	 the	 37th	 percentile	 were	 suggestive	(P	<	0.63).	

	

Prioritization	of	positional	candidate	genes	

The	 Sanger	 SNP	 database	 (http://www.sanger.ac.uk/	 sanger/Mouse_SnpViewer/rel-
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1410)	was	used	to	prioritize	 candidate	 genes	 for	 overlapping	 QTLs	 affecting	 plasma	

glucose	and	HDL	cholesterol	levels	on	chromosome	(Chr)	 9,	 which	 were	 mapped	 in	

two	 or	 more	 crosses	 derived	 from	 different	 parental	 strains	 for	 either	 phenotype.	

We	 converted	 the	 original	 mapping	 positions	 in	 cM	 for	 the	 confidence	 interval	 to	

physical	 positions	 in	Mb	 and	 then	 examined	 SNPs	within	 the	 confidence	 interval.	

Probable	 candidate	 genes	were	defined	as	 those	with	one	or	more	 SNPs	 in	 coding	

or	 upstream	 promoter	 regions	 that	were	shared	 by	 the	 parental	 strains	 carrying	 the	

“high”	 allele	 but	were	 different	 from	 the	 parental	 strains	 carrying	 the	 “low”	allele	at	

a	QTL,	as	previously	reported79.	
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Chapter	3	

Polygenic	Control	of	Carotid	Atherosclerosis	in	a	BALB-cJ	×	SM-J	Intercross	and	a	Combined	

Cross	Involving	Multiple	Mouse	Strains	
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3.1	Abstract	

Atherosclerosis	in	the	carotid	arteries	is	a	major	cause	of	ischemic	stroke,	which	

accounts	for	85%	 of	 all	 stroke	 cases.	 Genetic	 factors	 contributing	 to	 carotid	

atherosclerosis	 remain	 poorly	 understood.	The	aim	of	this	study	was	to	identify	

chromosomal	regions	harboring	genes	contributing	to	carotid	atherosclerosis	in	mice.	

From	an	intercross	between	BALB/cJ	(BALB)	and	SM/J	(SM)	apolipoprotein	E-

deficient	(Apoe-/-)	mice,	228	female	F2	mice	were	generated	and	fed	a	“Western”	diet	

for	12	wk.	Atherosclerotic	lesion	sizes	in	the	left	carotid	artery	were	quantified.	

Across	the	entire	genome,	149	genetic	markers	were	genotyped.	Quantitative	trait	

locus	(QTL)	analysis	revealed	eight	loci	for	carotid	lesion	sizes,	located	on	

chromosomes	1,	5,	12,	13,	15,	16,	and	18.	Combined	cross-linkage	analysis	using	data	

from	this	cross,	 and	 two	 previous	 F2	 crosses	 derived	 from	 BALB,	 C57BL/6J	 and	

C3H/HeJ	 strains,	 identified	 five	significant	 QTL	 on	 chromosomes	 5,	 9,	 12,	 and	 13,	

and	 nine	 suggestive	 QTL	 for	 carotid	 atherosclerosis.	Of	 them,	 the	 QTL	 on	

chromosome	 12	 had	 a	 high	 LOD	 score	 of	 9.95.	 Bioinformatics-based	 analysis	

prioritized	Arhgap5,	Akap6,	Mipol1,	Clec14a,	Fancm,	Nin,	Dact1,	Rtn1,	and	Slc38a6	as	

probable	candidate	genes	for	 this	 QTL.	 Atherosclerotic	 lesion	 sizes	were	 significantly	

correlated	with	 non-HDL	 cholesterol	 levels	 (r	=	0.254;	 p	=	 0.00016)	 but	 inversely	

correlated	with	HDL	 cholesterol	 levels	 (r	=	 20.134;	p	=	 0.049)	 in	 the	current	 cross.	

Thus,	we	 demonstrated	 the	 polygenic	 control	 of	 carotid	 atherosclerosis	 in	mice.	 The	

correlations	of	carotid	 lesion	sizes	with	non-HDL	and	HDL	suggest	 that	genetic	

factors	exert	effects	on	carotid	atherosclerosis	 partially	 through	modulation	 of	

lipoprotein	 homeostasis.	
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3.2	Introduction	

Stroke	is	the	leading	cause	of	extended	disability	and	a	major	cause	of	 mortality	in	the	

United	States146.	800,000	people	 are	estimated	to	experience	a	new	or	recurrent	stroke	and	

131,000	die	of	 stroke	annually	in	this	country.	Ischemic	stroke	accounts	for	~85%	of	 all	stroke	

cases	and	a	large	fraction	of	them	are	caused	by	atheromas	in	 the	carotid	arteries147.	Plaque	in	

the	carotid	arteries	directly	or	indirectly,	though	thrombus	formation,	blocks	the	blood	flow	

to	the	brain148,149.	Genetic	studies	of	twins	and	families	indicate	that	carotid	arterial	intima-

media	thickness	and	plaque,	which	reflect	a	thickening	of	the	carotid	artery	wall	and	the	

presence	of	large	irregular	arterial	wall	deposits,	respectively,	is	a	genetically	determined	

trait	with	heritability	ranging	from	30	to	60%150–152.	Recent	genome-wide	association	

studies	(GWAS)	have	identified	over	a	dozen	common	variants	associated	with	carotid	

intima-media	thickness	and	plaque,	including	LRIG1,	EDNRA,	SLC17A4,	PIK3CG,	PINX1,	

ZHX2,	APOC1,	LDLR,	ANGPT1,	ZBTB7C,	HDAC9,	the	BCAR1-CFDP1-TMEM170A	locus,	EBF1,	

and	PCDH15153–155.	However,	these	variants	explain	only	a	tiny	fraction	of	the	total	

heritability	of	the	traits,	suggesting	that	many	more	remain	to	be	discovered.	Furthermore,	

it	is	challenging	to	assess	causality	between	a	variant	and	disease	in	humans	due	to	small	

gene	effects,	complex	genetic	structures,	and	environmental	influences.		

Genetic	studies	of	animal	models	have	contributed	greatly	to	the	understanding	of	

the	genetic	basis	of	human	diseases,	including	atherosclerosis.	Apoe-/-	mice	develop	all	

phases	of	atherosclerotic	lesions	in	large-	and	medium-sized	arteries,	including	the	carotid	

arteries.	QTL	analysis	for	carotid	atherosclerosis	has	been	performed	on	two	F2	populations	

derived	from	C57BL/6	(B6),	C3H/HeJ	(C3H),	and	BALB/cJ	(BALB)	strains	and	identified	

several	significant	and	suggestive	loci	for	the	trait122,128.	Nevertheless,	more	crosses	are	

needed	to	identify	new	QTL	and	expedite	the	finding	of	underlying	genes	for	carotid	

atherosclerosis.	We	have	recently	found	that	Apoe-/-	mice	with	a	SM/J	(SM)	genetic	
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background	developed	significantly	larger	atherosclerotic	lesions	than	those	with	a	BALB	

background114	.	In	the	present	study,	we	generated	a	female	F2	 cohort	from	an	intercross	

between	the	two	Apoe-/-	strains	to	search	 for	 loci	contributing	to	carotid	atherosclerosis.	

The	combined	cross	 analysis	using	data	from	multiple	intercrosses	has	been	shown	to	

improve	the	resolution	of	shared	QTL	and	increase	the	power	of	identify	 new	QTL	not	found	in	

an	individual	cross156.	Thus,	in	this	 study	we	also	performed	a	combined	cross-linkage	analysis	

using	data	 from	the	current	cross	and	two	previously	reported	B6	x	C3H	and	B6	x	BALB	

intercrosses122,128.	

	

3.3	Results	

3.3.1	Trait	value	frequency	distribution	

Values	of	atherosclerotic	lesion	sizes	in	the	left	carotid	arteries	of	228	F2	mice	were	

distributed	in	the	Pareto	manner:	the	frequency	of	F2	mice	with	a	total	lesion	size	of	

<480x1000	mm2	was	the	highest	and	then	decreased	with	increasing	lesion	sizes	(Figure	

3.1).	After	being	log2-transformed,	these	values	exhibited	a	bimodal	distribution	with	25%	

of	the	F2	mice	(n	=	57)	falling	under	the	no	or	small	lesion	peak	on	the	left	(Log2	value,	2.2)	

and	the	remaining	75%	falling	under	the	bell-	shaped	curve	on	the	right.	
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Figure	3.1	Frequency	distributions	of	untransformed	(A)	and	log2-transformed	(B)	

total	carotid	lesion	areas	of	228	female	F2	mice	derived	from	BALB-Apoe-/-	and	SM-

Apoe-/-	mice.	Each	histogram	indicates	the	number	of	individual	F2	mice	with	a	certain	

lesion	area.		Apoe-/-,	apolipoprotein	E-deficient.	

	

	

	

3.3.2	QTL	analysis	of	carotid	lesion	sizes	

Genome-wide	scans	for	carotid	lesion	sizes	were	performed	using	both	a	nonparametric	

algorithm	to	analyze	non-transformed	lesion	data	and	a	parametric	algorithm	to	analyze	

Log2-transformed	lesion	data	(Figure	3.2).	Eight	suggestive	QTLs,	located	on	chromosomes	

1,	5,	12,	13,	15,	16,	and	18,	were	detected.	With	the	exception	of	the	QTLs	on	distal	

chromosome	5	and	the	one	on	chromosome	15,	which	were	only	detected	with	the	

nonparametric	algorithm,	all	QTL	were	detected	on	both	scans	(Table	3.1).	The	QTL	on	

chromosome	12	peaked	at	30.28	cM	and	had	a	LOD	score	of	2.48.	This	QTL	replicated	Cath1,	

a	locus	for	carotid	atherosclerosis	originally	mapped	in	the	B6	x	C3H	Apoe-/-	intercross	and	

then	replicated	in	the	B6	x	BALB	Apoe-/-	intercross122,128.	Two	QTLs	on	chromosome	5	were	

detected:	the	proximal	one	had	a	suggestive	LOD	score	of	2.33	and	peaked	at	63.4	cM,	and	

the	distal	one	had	a	LOD	score	of	2.03	and	peaked	at	99.4	cM.	The	distal	locus	overlapped	
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with	Cath2,	mapped	initially	in	the	B6	x	C3H	Apoe-/-	intercross	as	a	suggestive	QTL	for	

carotid	atherosclerosis	and	then	replicated	in	the	B6	x	BALB	Apoe-/-	intercross	as	a	highly	

significant	QTL122,128.	The	locus	on	chromosome	13	peaked	at	34.02	cM	and	had	a	suggestive	

LOD	score	of	2.8.	This	QTL	replicated	Cath3,	mapped	in	the	B6	x	BALB	Apoe-/-	intercross128.	

The	QTL	on	chromosome	15	peaked	at	46.74	cM	and	had	a	suggestive	LOD	score	of	2.24.	

This	QTL	overlapped	with	a	suggestive	locus	for	atherosclerosis	in	the	innominate	artery	

and	mapped	a	B6	x	C3H	Apoe-/-	intercross91.	We	named	it	Cath5	as	this	QTL	was	mapped	in	

two	separate	crosses.	The	QTL	on	chromosome	18	had	a	suggestive	LOD	score	of	2.22	and	

peaked	at	16.27	cM.	It	replicated	a	suggestive	QTL	for	carotid	atherosclerosis	mapped	in	the	

B6	x	BALB	Apoe-/-	intercross128,	and	was	named	Cath6.	

The	QTL	on	chromosome	1	peaked	at	91.52	cM	and	had	a	LOD	score	of	2.17.	It	

overlapped	with	Ath1,	a	QTL	for	aortic	atherosclerosis	mapped	in	a	number	of	

crosses76,157,158.	The	QTL	on	chromosome	16	peaked	at	46.66	cM	and	had	a	score	of	2.58,	and	

this	QTL	was	novel.	The	SM	allele	was	associated	with	increased	lesion	sizes	for	

chromosome	12,	13,	15,	and	18	QTL,	while	the	BALB	allele	was	associated	with	increased	

lesion	sizes	for	the	chromosome	5	and	16	QTL	(Table	3.2).	The	chromosome	1	QTL	affected	

lesion	formation	in	a	heterotic	manner	in	that	F2	mice	with	heterozygous	alleles	exhibited	

increased	lesion	size	over	those	with	homozygous	alleles.	
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Figure	3.2	Genome-wide	QTL	analysis	for	carotid	lesion	sizes	in	the	F2	population.	

Chromosomes	1	through	20	are	represented	numerically	on	the	x-axis.	y-axis	

represents	LOD	score.	The	horizontal	dashed	line	denotes	the	genome-wide	threshold	

for	suggestive	linkage,	which	was	determined	by	1000	permutations.	Top	panel:	a	

genome-wide	scan	using	untransformed	carotid	lesion	data	performed	with	the	

nonparametric	algorism;	bottom	panel:	a	genome-wide	scan	using	log2-transformed	

carotid	lesion	data	performed	with	the	parametric	mode.	LOD,	logarithm	of	the	odds;	

QTL,	quantitative	trait	locus.	
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Table	3.1	QTL	identified	for	carotid	lesion	areas	in	female	F2	mice	derived	from	an	

intercross	between	BALB-Apoe-/-	and	SM-Apoe-/-	mice	

Locus	 Chr	 Analysis	 LODa	 p-Valueb	 Peak	(cM)	 95%	C.I.c	 High	Allele	 Mode	of	Inheritanced	

	 1	 Nonparametric	 2.17	 0.535	 91.52	 75.52–97.02	 —	 Heterosis	
	 5	 Nonparametric	 2.33	 0.422	 63.4	 34.19–101.24	 BALB	 Additive	
Cath2	 5	 Nonparametric	 2.03	 0.630	 99.4	 79.4–101.2	 BALB	 Dominant	
Cath1	 12	 Nonparametric	 2.48	 0.324	 30.28	 19.41–63.41	 SM	 Additive	
Cath3	 13	 Nonparametric	 2.8	 0.163	 34.02	 22.02–46.02	 SM	 Dominant	
Cath5	 15	 Nonparametric	 2.24	 0.474	 46.74	 26.74–62.74	 SM	 Recessive	

	 16	 Nonparametric	 2.58	 0.274	 44.66	 13.43–46.66	 BALB	 Dominant	
Cath6	 18	 Nonparametric	 2.22	 0.497	 16.27	 3.73–27.73	 SM	 Additive	

	 1	 Parametric	 2.23	 0.545	 87.52	 77.52–97.02	 —	 Heterosis	

	 5	 Parametric	 2.38	 0.413	 67.27	 33.4–101.4	 BALB	 Additive	
Cath2	 5	 Parametric	 2.03	 0.630	 99.4	 79.4–101.2	 BALB	 Additive	
Cath1	 12	 Parametric	 2.1	 0.644	 30.28	 23.41–65.41	 SM	 Additive	
Cath3	 13	 Parametric	 2.64	 0.267	 32.02	 22.02–47.99	 SM	 Dominant	

	 16	 Parametric	 2.81	 0.205	 46.66	 13.43–46.66	 BALB	 Dominant	
Cath6	 18	 Parametric	 2.21	 0.552	 16.27	 3.73–25.73	 SM	 Additive	

Chr,	chromosome;	LOD,	logarithm	of	the	odds;	QTL,	quantitative	trait	locus.	

a	LOD	scores	were	obtained	from	genome-wide	scans	using	J/qtl.	LOD	score	threshold	

for	suggestive	QTL	.	2.054;	for	significance	.	3.314	established	by	

1000	permutation	tests.	

b	p-values	represent	genome-wide	significance	at	each	locus.	

c	95%	C.I.	was	determined	through	whole-genome	scans.	

d	Inheritance	was	determined	based	on	the	effect	of	each	parental	allele	at	the	nearest	

genomic	marker.	
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Table	3.2	Effects	of	BALB	and	SM	alleles	on	carotid	lesion	area	at	identified	QTL	in	

female	F2	mice	derived	from	BALB-Apoe-/-	and	SM-Apoe-/-	mice	

Locus	Name	 Chr	 Analysis	 Peak	Marker	 Peak	(cM)	 BB	 BS	 SS	 p-Value	

	 1	 Nonparametric	 rs3685643	 91.52	 281.5	6	662.4	 522.8	6	1049.5	 260.9	6	466.9	 0.016	
	 5	 Nonparametric	 rs3726547	 63.4	 604.1	6	1250.9	 341.5	6	710.1	 273.3	6	504.0	 0.006953	
Cath2	 5	 Nonparametric	 rs13478578	 99.4	 454.6	6	629.3	 412.1	6	1023.7	 285.8	6	635.7	 0.008146	
Cath1	 12	 Nonparametric	 rs13481509	 30.28	 171.1	6	389.1	 374.9	6	952.2	 652.9	6	917.3	 0.002917	
Cath3	 13	 Nonparametric	 rs6259014	 34.02	 313.9	6	650.0	 412.7	6	938.2	 427.7	6	793.2	 0.143	
Cath5	 15	 Nonparametric	 rs13482641	 46.74	 244.8	6	397.0	 294.2	6	664.1	 711.2	6	1281.3	 0.03	

	 16	 Nonparametric	 rs3721202	 44.66	 426.5	6	1249.9	 485.8	6	192.8	 192.8	6	405.0	 0.002091	
Cath6	 18	 Nonparametric	 rs3683699	 16.27	 256.1	6	440.2	 423.9	6	1059.8	 539.0	6	759.6	 0.005427	

	 1	 Parametric	 rs3685643	 87.52	 4.3	6	3.8	 6.1	6	3.7	 5.8	6	3.2	 0.01199282	

	 5	 Parametric	 rs3726547	 67.27	 6.8	6	3.3	 5.2	6	3.6	 4.8	6	3.8	 0.00624255	
Cath2	 5	 Parametric	 rs13478578	 99.4	 6.4	6	3.6	 5.6	6	3.5	 4.2	6	3.8	 0.00941731	
Cath1	 12	 Parametric	 rs13481509	 30.28	 4.7	6	3.2	 5.3	6	3.8	 6.8	6	3.8	 0.00787988	
Cath3	 13	 Parametric	 rs6259014	 32.02	 4.6	6	3.8	 5.7	6	3.7	 6.0	6	3.6	 0.14731571	

	 16	 Parametric	 rs3721202	 46.66	 5.8	6	3.4	 6.2	6	3.7	 4.0	6	3.6	 0.00150063	
Cath6	 18	 Parametric	 rs3683699	 16.27	 5.3	6	3.5	 5.0	6	3.9	 7.1	6	3.2	 0.00613849	

Measurements	for	carotid	lesion	areas	are	expressed	as	means	6	SD.	The	unit	for	these	

measurements	is:	mm2	x	1000	for	nonparametric	analysis.	For	parametric	analysis,	the	

values	are	log2-transformed	total	carotid	lesion	areas.	The	Kruskal–Wallis	test	was	

used	on	the	nonparametric	data	and	ANOVA	on	the	parametric	data	to	determine	the	

significance	(p-value)	of	the	differences	among	the	BB,	BS,	and	SS	genotypes.	Chr,	

chromosome;	BB,	homozygous	for	the	BALB	allele	at	the	linked	peak	marker;	BS,	

heterozygous	for	both	BALB	and	SMJ;	SS,	homozygous	for	the	SMJ	allele.	

	

	

3.3.3	Combined	cross	analysis	for	overlapping	QTL	

Combined	cross	analysis	was	performed	for	carotid	atherosclerosis	using	data	from	

the	current	cross	and	two	previously	reported	B6	x	C3H	and	B6	x	BALB	intercrosses	122,128.	

Five	significant	QTL,	located	on	chromosomes	5,	9,	12,	and	13,	and	nine	suggestive	QTL	on	

chromosomes	2,	3,	6,	11,	15,	16,	18,	and	19,	were	identified	(Figure	3.3	and	Table	3.3).	The	

majority	of	these	QTLs	had	been	identified	as	significant	or	suggestive	QTL	in	one	or	more	

individual	crosses,	but	the	LOD	scores	for	the	significant	QTL	on	chromosomes	5,	9,	12,	and	
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13	were	higher	compared	to	those	determined	in	an	individual	cross.	The	95%	C.I.	was	

relatively	smaller	than	that	in	an	individual	cross	for	most	QTL.	A	LOD	score	plot	for	

chromosome	5	revealed	two	disparate	peaks,	indicating	the	presence	of	two	QTL	for	carotid	

atherosclerosis	(Figure	3.4).	The	distal	QTL	replicated	Cath2,	mapped	in	all	the	three	

crosses122,128.	The	proximal	QTL	was	visible	as	a	distinct	peak	in	the	current	cross	as	well	as	

the	previously	reported	B6	x	BALB	intercross128	and	was	named	Cath7	to	represent	a	new	

locus	for	carotid	atherosclerosis.	The	significant	QTL	on	chromosome	9	was	initially	

mapped	as	a	suggestive	QTL	in	the	B6	x	BALB	intercross128,	and	was	named	Cath8.	The	

suggestive	QTL	on	chromosomes	6,	11,	15,	16,	and	18	were	each	mapped	in	one	or	more	

individual	crosses,	while	the	suggestive	QTLs	on	chromosomes	2,	3,	and	19	were	only	

detected	in	the	combined	cross.	

	

	

	

Figure	3.3	Genome-wide	QTL	analysis	for	carotid	lesion	sizes	using	combined	data	

from	the	current	cross	and	two	previously	reported	B6	x	BALB	and	B6	x	C3H	Apoe-/-	
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intercrosses.	The	horizontal	dotted	lines	indicate	the	thresholds	for	genome-wide	

suggestive	and	significant	linkage,	as	determined	by	1000	permutations.	Apoe-/-,	

apolipoprotein	E-deficient;	LOD,	logarithm	of	the	odds;	QTL,	quantitative	trait	locus.	

	

	

	

	

	

	

	

Table	3.3	Significant	and	suggestive	QTL	for	carotid	atherosclerosis	identified	in	

combined	cross	analysis	of	data	from	the	current	cross	and	the	two	previously	

reported	crosses	

Locus	 Chr	 Trait	 LOD	 Peak	(cM)	 95%	C.I.	 Peak	(Mb)	 95%	C.I.	(Mb)	

	 2	 Carotid	lesion	 2.77	 80.22	 44.22–98.22	 159.59	 71.96–170.59	
	 3	 Carotid	lesion	 2.31	 50.01	 26.01–64.01	 114.85	 56.96–138.77	
Cath7	 5	 Carotid	lesion	 3.84	 39.05	 34.19–44.28	 65.31	 61.51–69.16	
Cath2	 5	 Carotid	lesion	 8.06	 66.35	 63.84–70.35	 127.32	 124.83–131.29	
Cath4	 6	 Carotid	lesion	 2.15	 66.21	 1.53–88.79	 120.60	 6.44–145.75	
Cath8	 9	 Carotid	lesion	 3.92	 75.33	 66.37–75.33	 114.09	 103.61–114.09	

	 11	 Carotid	lesion	 3.02	 26.1	 18.2–32.2	 45.28	 30.91–54.19	

	 11	 Carotid	lesion	 3.32	 51	 17.99–69.99	 83.84	 30.91–105.15	
Cath1	 12	 Carotid	lesion	 9.95	 32.59	 23.47–44.59	 70.23	 48.06–88.56	
Cath3	 13	 Carotid	lesion	 9.49	 53.35	 36.02–56.02	 100.5	 68.40–103.48	
Cath5	 15	 Carotid	lesion	 2.35	 11.26	 3.8–37.8	 30.76	 7.87–71.92	

	 16	 Carotid	lesion	 2.94	 41.66	 28.95–43.66	 64.11	 37.35–72.76	
Cath6	 18	 Carotid	lesion	 3.01	 39.73	 31.73–41.73	 62.50	 56.27–65.17	

	 19	 Carotid	lesion	 2.74	 2.43	 2.43–26.43	 3.65	 3.65–36.64	

LOD	score	threshold	for	suggestive	QTL	was	2.128	and	was	3.508	for	significant	QTL.	

Significant	QTL	are	highlighted	in	bold.	Chr,	chromosome;	LOD,	logarithm	of	the	odds;	

QTL,	quantitative	trait	loci.	
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Figure	3.4	Interval	mapping	graph	for	carotid	lesion	size	on	chromosome	5	using	

combined	data	from	the	current	cross	and	previously	reported	B6	x	BALB	and	B6	x	

C3H	Apoe-/-	intercrosses.	The	horizontal	line	denotes	the	threshold	for	significant	

linkage.	Apoe-/-	=	apolipoprotein	E-deficient;	LOD	=	logarithm	of	the	odds.	

	

	

	

3.3.4	Candidate	genes	for	Cath1	

Cath1	on	chromosome	12	was	mapped	in	the	current	cross	and	two	previously	

reported	B6	x	C3H	and	B6	x	BALB	Apoe-/-	intercrosses122,128.	For	this	QTL,	the	B6	and	SM	

alleles	were	associated	with	increased	lesion	sizes,	while	the	C3H	and	BALB	alleles	were	

associated	with	smaller	lesion	sizes.	We	used	the	Sanger	SNP	database	to	search	for	
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positional	candidate	genes	that	contain	non-synonymous	SNP(s)	or	SNP(s)	in	upstream	

regulatory	regions	that	are	shared	by	the	low	allele	strains	(BALB	and	C3H)	but	are	

different	from	ones	carried	by	the	high	allele	strain	(B6)	under	the	linkage	peak.	The	SM	

strain	was	not	included	due	to	its	incomplete	genomic	sequences	for	the	region.	Twenty-

four	candidate	genes	were	identified	(Table	3.4).	Among	them,	Eapp,	Foxa1,	Fancm,	Nin,	

Dact1,	Rtn1,	and	Trmt5	contained	one	or	more	non-synonymous	SNPs	with	a	low	SIFT	

(Sorting	Intolerant	From	Tolerant)	score,	predicting	a	high	likelihood	that	an	amino	acid	

substitution	has	an	adverse	effect	on	protein	function.	

	

	

Table	3.4	Haplotype	analysis	for	Cath1	on	chromosome	12	(52–75	Mb)	

	

	

12	 52006466	 Dtd2	 rs46701436	 A	 	 G	 G	 Missense	variant	 Cn	7:V/A	 0.92	 Yes	
12	 52023971	 Gpr33	 rs29173669	 A	 	 G	 G	 Missense	variant	 Cn	95:V/A	 0.71	 Yes	
12	 52027979	 Gpr33	 rs51561875	 T	 	 G	 G	 5ʹ-UTR	variant	 	 	 	
12	 52027989	 Gpr33	 rs49936313	 T	 	 A	 A	 5ʹ-UTR	variant	 	 	 	
12	 52027993	 Gpr33	 rs47019843	 C	 	 T	 T	 5ʹ-UTR	variant	 	 	 	
12	 52519522	 Arhgap5	 rs29198609	 T	 	 C	 C	 Missense	variant	 Cn	1092:V/A	 1	 Yes	
12	 52887261	 Akap6	 rs29183247	 G	 	 A	 A	 Missense	variant	 Cn	512:R/Q	 0.2	 Yes	
12	 52887389	 Akap6	 rs29223294	 A	 	 G	 G	 Missense	variant	 Cn	555:T/A	 0.47	 Yes	
12	 53140291	 Akap6	 rs48484112	 G	 	 A	 A	 Missense	variant	 Cn	1496:R/H	 1	 Yes	
12	 54203369	 Egln3	 rs29130898	 A	 	 G	 G	 Missense	variant	 Cn	65:C/R	 0.89	 Yes	
12	 54203615	 Egln3	 rs29122127	 T	 	 G	 G	 5ʹ-UTR	variant	 	 	 	
12	 54203690	 Egln3	 rs13473456	 G	 	 A	 A	 5ʹ-UTR	variant	 	 	 	
12	 54695720	 Eapp	 rs29183105	 G	 	 A	 A	 Missense	variant	 Cn	22:A/V	 0.01	 No	
12	 54941453	 Baz1a	 rs29195192	 G	 	 A	 A	 Missense	variant	 Cn	88:L/F	 0.04	 Yes	
12	 54999084	 Baz1a	 rs29196908	 G	 	 C	 C	 5ʹ-UTR	variant	 	 	 	
12	 57303392	 Mipol1	 rs29163022	 G	 	 A	 A	 5ʹ-UTR	variant	 	 	 	
12	 57325598	 Mipol1	 rs46300008	 A	 	 G	 G	 Missense	variant	 Cn	148:K/E	 1	 Yes	
12	 57325623	 Mipol1	 rs13481473	 A	 	 G	 G	 Missense	variant	 Cn	156:H/R	 1	 Yes	
12	 57542267	 Foxa1	 rs13481474	 T	 	 C	 C	 Missense	variant	 Cn	389:H/R	 0	 No	
12	 57576142	 Ttc6	 rs50478178	 G	 	 C	 C	 Missense	variant	 Cn	109:R/P	 1	 Yes	
12	 57725789	 Ttc6	 rs48534883	 T	 	 C	 C	 Splice	region	 	 	 	
	 	 	 	 	 	 	 	 variant	 	 	 	
12	 58267790	 Clec14a	 rs31966428	 T	 	 C	 C	 Missense	variant	 Cn	349:I/V	 0.23	 Yes	
12	 58268339	 Clec14a	 rs13465063	 T	 	 C	 C	 Missense	variant	 Cn	166:T/A	 1	 Yes	
12	 58268988	 Clec14a	 rs29162388	 C	 	 G	 G	 5ʹ-UTR	variant	 	 	 	
12	 58268992	 Clec14a	 rs29194398	 G	 	 C	 C	 5ʹ-UTR	variant	 	 	 	

Chr   

 

 

C57BL/6 

Low Allele 

 

BALB_cJ   C3H_HeH 
 

Amino SIFT 
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12	 64471729	 Fscb	 rs13481500	 G	 	 A	 A	 Missense	variant	 Cn	988:P/S	 1	 Yes	
12	 64472091	 Fscb	 rs29131205	 G	 	 C	 C	 Missense	variant	 Cn	867:A/G	 0.21	 Yes	
12	 64472965	 Fscb	 rs585463036	 C	 	 A	 A	 Missense	variant	 	 	 	
12	 64473313	 Fscb	 rs29220106	 G	 	 A	 A	 Missense	variant	 Cn	460:P/S	 0.2	 Yes	
12	 64950146	 Klhl28	 rs33846378	 C	 	 T	 T	 Missense	variant	 Cn	474:V/I	 0.07	 Yes	
12	 65113969	 Fancm	 rs212043559	 A	 	 T	 T	 Missense	variant	 Cn	1407:N/I	 0	 No	
12	 65130342	 Fancm	 rs29212900	 A	 	 C	 C	 Missense	variant	 Cn	1987:I/L	 0.47	 Yes	
12	 65130397	 Fancm	 rs29213465	 A	 	 T	 T	 Missense	variant	 Cn	2005:Q/L	 1	 Yes	
12	 65130436	 Fancm	 rs29184120	 A	 	 C	 C	 Missense	variant	 Cn	2018:K/T	 0	 No	(low	

confidence)	
12	 65149007	 Mis18bp1	 rs50634267	 C	 	 T	 T	 Missense	variant	 Cn	661:	R/Q	 0.27	 Yes	
12	 65152837	 Mis18bp1	 rs29200949	 T	 	 C	 C	 Splice	region	 	 	 	
	 	 	 	 	 	 	 	 variant	 	 	 	
12	 65172467	 Mis18bp1	 rs3695606	 T	 	 A	 A	 5ʹ-UTR	variant	 	 	 	
12	 65172551	 Mis18bp1	 rs3696207	 A	 	 G	 G	 5ʹ-UTR	variant	 	 	 	
12	 69204274	 Pole2	 rs3704977	 T	 	 C	 C	 Splice	region	 	 	 	
	 	 	 	 	 	 	 	 variant	 	 	 	
12	 69223117	 Pole2	 rs29135637	 T	 	 C	 C	 Missense	variant	 Cn	78:M/V	 0.43	 Yes	
12	 69741794	 Atp5s	 rs29193315	 G	 	 A	 A	 Missense	variant	 Cn	156:	V/I	 1	 Yes	
12	 70043177	 Nin	 rs32225358	 C	 	 T	 T	 Missense	

variant	
Cn	1155:E/K	 0.06	 Yes	

12	 70043386	 Nin	 rs29192398	 C	 	 T	 T	 Missense	
variant	

Cn	1085:R/Q	 0.01	 No	
12	 70043389	 Nin	 rs29159683	 G	 	 T	 T	 Missense	

variant	
Cn	1084:S/Y	 0.02	 No	

12	 70043915	 Nin	 rs29149025	 T	 	 C	 C	 Missense	
variant	

Cn	 909:K/E	 1	 Yes	
12	 70180988	 Abhd12b	 rs29173916	 G	 	 T		 T		 Missense	variant	 Cn	258:M/I	 1	 Yes	
12	 70183081	 Abhd12b	 rs51691757	 A	 	 G	 G	 Splice	region	 	 	 	
	 	 	 	 	 	 	 	 variant	 	 	 	
12	 70183205	 Abhd12b	 rs32247424	 A	 	 G		 G		 Stop	 retained	 	 	 	
	 	 	 	 	 	 	 	 variant,	3ʹ-UTR	 	 	 	
	 	 	 	 	 	 	 	 variant	 	 	 	 	
12	 70193813	 Pygl	 rs32246688	 G	 	 T	 T	 Splice	region	 	 	 	
	 	 	 	 	 	 	 	 variant	 	 	 	
12	 70197551	 Pygl	 rs29151561	 A	 	 G	 G	 Splice	region	 	 	 	
	 	 	 	 	 	 	 	 variant	 	 	 	
12	 70201877	 Pygl	 rs13467444	 T	 	 C	 C	 Missense	variant	 Cn	323:M/V	 1	 Yes	

Functional	candidate	genes	are	denoted	in	bold.	A	smaller	SIFT	score	denotes	a	higher	

likelihood	of	protein	function	change.	Chr,	chromosome;	dbSNP,	Single	Nucleotide	

Polymorphism	Database	identifier;	SIFT,	Sorting	Intolerant	From	Tolerant;	Cn,	Coding	

non-synonymous	polymorphism;	UTR,	untranslated	region.	

	

	

3.3.5	Relationships	of	carotid	atherosclerosis	with	plasma	lipids	and	glucose	

Associations	of	carotid	lesion	sizes	with	plasma	HDL,	non-HDL	cholesterol,	

triglyceride,	and	glucose	levels	were	evaluated	using	the	F2	population	(Figure	3.5).	A	

significant	correlation	with	non-HDL	cholesterol	levels	was	observed	(r	=	0.254;	p	=	

0.00016).	F2	mice	with	higher	non-HDL	cholesterol	levels	tended	to	develop	larger	carotid	
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lesions.	The	value	of	the	correlation	coefficient	r2	indicates	that	non-HDL	accounted	for	

6.45%	of	the	variance	in	carotid	lesion	sizes	among	the	F2	population.	A	marginal,	but	

statistically	significant,	inverse	correlation	with	HDL	cholesterol	levels	was	observed	(r	=	

20.134;	p	=	0.049).	F2	mice	with	higher	HDL	cholesterol	levels	tended	to	develop	smaller	

carotid	lesions.	HDL	accounted	for	1.8%	of	the	variance	in	lesion	sizes	of	the	F2	mice.	No	

correlation	with	triglyceride	levels	was	found	(r	=	0.021;	p	=	0.758).	There	was	a	trend	

toward	a	significant	correlation	with	plasma	glucose	levels	(r	=	0.127;	p	=	0.062).	

	

	

	

Figure	3.5		Scatterplots	showing	the	correlations	of	carotid	lesion	sizes	with	plasma	

non-HDL	(A),	HDL	cholesterol	(B),	triglyceride	(C),	and	glucose	(D)	in	the	F2	

population.	Each	point	represents	an	individual	value	of	a	F2	mouse.	The	correlation	
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coefficient	(r)	and	significance	(p)	are	shown.	Log2-transformed	carotid	total	areas	

were	used	for	the	analyses.	HDL,	high-density	lipoprotein.	

	

	

3.4	Discussion	

Genetic	factors	contributing	to	carotid	atherosclerosis,	which	is	a	major	cause	of	

ischemic	stroke,	are	poorly	understood.	In	this	study,	we	performed	QTL	analysis	using	data	

from	a	newly	generated	intercross	and	combined	data	from	three	independent	intercrosses	

to	search	for	QTL	contributing	to	carotid	atherosclerosis.	Five	significant	QTLs	and	10	

suggestive	QTLs	were	identified	for	the	trait.	Bioinformatics-based	tools	were	successfully	

used	to	reduce	the	number	of	candidate	genes	for	Cath1.	Moreover,	plasma	non-HDL	

cholesterol	was	found	to	explain	6.5%	of	the	variance	in	carotid	lesion	sizes	of	the	F2	

population.	

Atherosclerotic	lesions	in	the	left	carotid	artery	were	measured	after	F2	mice	were	

fed	a	Western	diet	for	12	weeks.	Under	this	condition,	these	mice,	which	were	on	the	Apoe-/-	

background,	developed	severe	hyperlipidemia159	(Chapter	2).	Nevertheless,	we	found	that	

a	large	fraction	of	F2	mice	developed	little	or	no	atherosclerotic	lesions	in	the	carotid	artery.	

The	same	phenomenon	has	also	been	observed	in	two	other	intercrosses	previously	

constructed	for	QTL	analysis	of	carotid	atherosclerosis	in	the	mouse122,128.	In	contrast,	all	

the	F2	mice	developed	atherosclerotic	lesions	in	the	aortic	root158	(Chapter	4).	As	the	aortic	

root	and	the	carotid	arteries	are	exposed	to	the	same	level	of	lipoproteins	and	the	same	

type	of	blood	cells,	the	site-specific	difference	in	the	development	of	atherosclerosis	should	

be	attributable	to	local	factors,	such	as	vascular	geometry,	blood	flow	dynamics,	and	vessel	

wall	properties.	A	genetic	study	of	aortic	arch	curvature	and	atherosclerosis	in	a	mouse	
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cross	has	linked	genetic	factors	regulating	aortic	arch	geometry	to	aortic	lesion	

formation160.	

We	and	others	have	found	that	QTL	identified	for	atherosclerotic	lesions	in	the	

aortic	root	can	be	quite	different	from	those	mapped	in	another	site	of	the	vasculature,	even	

in	the	same	crosses76,122,128,158,161.	Because	the	aortic	root	is	easy	to	study	in	mice,	genetic	

studies	of	atherosclerosis	have	largely	focused	on	this	site.	However,	this	site	has	little	

clinical	significance	to	humans.	In	contrast,	the	carotid	arteries	are	the	most	extensively	

studied	vessels	in	humans	with	ultrasonography	because	of	their	close	association	with	the	

brain	and	ready	accessibility.	

Cath1	on	chromosome	12,	Cath2	on	chromosome	5,	Cath3	on	chromosome	13,	and	

Cath4	on	chromosome	6	are	four	significant	QTLs	for	carotid	atherosclerosis	thus	far	

mapped	in	two	Apoe-/-	mouse	intercrosses122,128.	Three	of	the	four	QTLs	were	replicated	in	

the	current	BALB	x	SM	Apoe-/-	intercross,	and	all	of	them	were	replicated	in	the	combined	

cross	analysis.	The	QTL	on	chromosome	15	overlapped	in	the	C.I.	with	a	suggestive	locus	

affecting	both	atherosclerotic	lesion	size	and	composition	in	the	innominate	artery	of	Apoe-/-	

mice161.	We	named	it	Cath5	to	represent	a	locus	for	carotid	atherosclerosis	in	the	mouse.	

Naming	a	suggestive	locus	is	considered	appropriate	if	it	is	repeatedly	observed66.	The	QTL	

on	chromosome	18	overlapped	in	the	CI	with	a	suggestive	locus	for	carotid	atherosclerosis	

mapped	in	the	B6	x	BALB	Apoe-/-	intercross,	and	was	named	Cath6.	

Five	significant	QTLs	and	nine	suggestive	QTLs	for	carotid	atherosclerosis	were	

identified	in	the	combined	cross	analysis.	Nearly	all	of	these	QTLs	were	mapped	in	one	or	

more	individual	crosses.	However,	the	combined	cross	analysis	had	an	increased	power	of	

detecting	shared	QTL	by	two	or	more	crosses.	Indeed,	all	five	significant	QTLs	had	a	higher	

LOD	score	than	that	achieved	in	an	individual	cross.	The	current	and	previous	B6	x	BALB	F2	

crosses	suggested	the	presence	of	two	QTLs	on	chromosome	5	for	carotid	
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atherosclerosis128,	while	the	combined	cross	analysis	clearly	demonstrated	the	presence	of	

two	disparate	QTL	on	the	chromosome.	We	named	the	proximal	QTL	Cath7	to	represent	a	

new	locus	for	carotid	atherosclerosis.	The	significant	QTL	on	distal	chromosome	9	identified	

by	the	combined	cross	analysis	overlapped	with	a	suggestive	QTL	previously	mapped	in	the	

B6	x	BALB	F2	cross128,	and	was	named	Cath8.	Consistent	with	the	conclusion	drawn	by	Li	et	

al.	(2005)156,	we	found	that	the	C.I.	defined	by	the	combined	cross	analysis	was	smaller	than	

that	defined	in	an	individual	cross	for	most	of	the	QTL.		

Cath1	has	been	mapped	in	three	intercrosses	derived	from	mouse	strains,	including	

B6,	C3H,	and	BALB,	whose	genome	sequences	are	publicly	available	through	the	Sanger	

mouse	genomes	project.	By	examining	genes	containing	variants	that	were	shared	among	

the	low	allele	strains	(BALB	and	C3H)	but	different	from	those	carried	by	the	low	allele	

strain	(B6),	we	reduced	the	number	of	candidate	genes	to	24.	Because	a	QTL	is	yielded	from	

changes	in	the	function	or	the	quantity	of	a	gene	product,	we	concentrated	on	genes	

carrying	a	non-synonymous	SNP	or	a	SNP	in	the	upstream	regulatory	region.	Nin,	Dact1,	and	

Rtn1,	which	are	located	underneath	the	linkage	peak	and	contain	one	or	more	non-tolerated	

non-synonymous	SNPs,	have	shown	suggestive	associations	with	increased	risk	of	ischemic	

stroke162	or	lipoprotein	particle	size163.	

A	significant	correlation	was	observed	between	non-HDL	cholesterol	levels	and	

atherosclerotic	lesion	sizes	in	the	present	cross.	Our	previous	study	of	a	F2	population	also	

showed	a	correlation	between	carotid	lesion	sizes	and	non-HDL	cholesterol	levels128.	A	

marginal	inverse	correlation	of	HDL	cholesterol	levels	with	lesion	sizes	was	observed	in	this	

cross,	and	also	in	two	previous	crosses122,128.	These	findings	are	consistent	with	the	

observations	made	in	humans164,165.	No	correlation	between	carotid	lesion	sizes	and	plasma	

triglyceride	levels	was	observed	in	this	cross,	nor	in	previous	crosses122,128.	We	have	

observed	a	trend	toward	a	significant	correlation	of	carotid	lesion	sizes	with	fasting	plasma	
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glucose	levels	in	this	cross.	Blood	glucose	levels	of	the	F2	mice	were	markedly	elevated	by	

feeding	of	a	Western	diet159	(Chapter	2).	In	humans,	impaired	fasting	glucose	homeostasis	

has	also	been	associated	with	preclinical	carotid	atherosclerosis166.		

In	summary,	we	have	identified	a	number	of	QTLs	for	carotid	atherosclerosis,	

demonstrating	the	polygenic	control	of	the	disorder.	The	significant	correlations	of	carotid	

lesion	sizes	with	HDL	and	non-HDL	cholesterol	levels	suggest	that	some	loci	exert	effects	on	

carotid	atherosclerosis	partially	through	action	on	lipoproteins.	Using	bioinformatics	tools,	

we	have	reduced	the	list	of	candidate	genes	for	a	major	atherosclerosis	locus.	

	

3.5	Methods	

Animals	and	experimental	design	

BALB	and	SM	Apoe-/-	mice	were	generated	in	our	laboratory	using	the	classic	congenic	

breeding	strategy,	as	done	previously76,114.	The	two	Apoe-/-	strains	were	crossed	to	generate	

F1s,	which	were	intercrossed	to	generate	a	F2	population.	Mice	were	weaned	at	3	weeks	of	

age	onto	a	chow	diet.	At	6	weeks	of	age,	female	F2	mice	were	switched	onto	a	Western	diet	

containing	21%	fat,	34.1%	sucrose,	0.15%	cholesterol,	and	19.5%	casein	(TD	88137;	

Envigo)	and	maintained	on	the	diet	for	12	weeks.	

	

	

	

Quantification	of	carotid	atherosclerosis	

Atherosclerotic	lesion	sizes	in	the	left	common	carotid	artery	and	its	main	branches	were	

measured	as	previously	reported	with	minor	modifications122.	Briefly,	the	vasculature	of	

mice	was	perfused	through	the	heart	with	4%	paraformaldehyde,	then	the	distal	portion	of	

the	left	common	carotid	artery	and	its	adjacent	branches	were	dissected	en	bloc	and	
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embedded	in	OCT	compound	(Tissue-Tek).	Cryosections	in	10	um	thickness	were	collected	

in	every	three	sections,	stained	with	oil	red	O	and	hematoxylin,	and	counterstained	with	fast	

green.	Lesion	areas	were	measured	under	a	microscope	using	Zeiss	AxioVision	4.8	software.	

Carotid	lesion	sizes	on	all	sections	were	added	up	for	each	mouse	and	this	sum	was	used	for	

statistical	analysis.	

	

Measurements	of	plasma	lipids	and	glucose	

Plasma	total	cholesterol,	HDL	cholesterol,	triglyceride,	and	glucose	were	measured	using	

assay	kits	as	reported112,159	(Chapter	2).	Non-HDL	cholesterol	was	calculated	as	the	

difference	between	total	and	HDL	cholesterol.		

	

Genotyping	

The	Illumina	mouse	LD	linkage	panel	consisting	of	377	SNP	loci	was	used	to	genotype	F2	

mice,	as	reported159	(Chapter	2).	Microsatellite	markers	were	typed	for	chromosome	8	

where	only	one	SNP	marker	was	informative.	DNA	from	the	two	parental	strains	and	F1s	

served	as	controls.	After	excluding	uninformative	and		poorly		typed		SNPs,	149	markers	

were	included	in	genome-wide	QTL	analysis.	

	

Statistical	analysis	

QTL	analysis	was	performed	using	J/qtl.	Genome-wide	LOD	score	thresholds	for	significant	

or	suggestive	linkage	were	determined	through	1000	permutations,	as	reported88,145,159	

(Chapter	2).	

	

Combined	cross	analysis	
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A	combined	cross	analysis	was	performed	using	data	from	the	current	cross	and	two	

previously	published	B6	x	C3H	and	B6	x	BALB	intercrosses122,128.	Genotype	data	for	the	

chromosomal	regions	where	a	suggestive	or	significant	QTL	was	found	in	an	individual	

cross	were	recoded	as	“High”	for	F2s	homozygous	for	the	allele	contributing	to	a	larger	

lesion	size,	“Low”	for	F2s	homozygous	for	the	allele	contributing	to	a	smaller	lesion	size,	

and	“H”	for	F2s	with	heterozygous	alleles	at	each	marker.	For	all	other	regions	where	no	

QTL	was	found,	alleles	at	each	marker	were	recoded	based	on	the	progenitor	strain	

phenotype	as	reported167.	Phenotype	data	on	carotid	lesion	sizes	were	switched	from	the	

total	lesion	area	to	the	average	of	the	top	five	lesion	sizes	for	each	F2	mouse	in	all	crosses.	

	

Prioritization	of	candidate	genes	

Bioinformatics-based	tools	were	used	to	prioritize	candidate	genes	for	major	QTL	that	were	

mapped	in	two	or	more	crosses	derived	from	different	parental	strains.	Probable	candidate	

genes	were	those	that	contained	one	or	more	non-synonymous	SNPs	or	a	SNP	in	the	

upstream	regulatory	region,	and	that	SNP	was	shared	by	the	progenitor	strains	carrying	the	

high	allele	but	different	from	the	one	shared	by	the	progenitor	strains	carrying	the	low	

allele	at	a	QTL,	as	reported79,158	(Chapter	4).	

	

Data	and	reagent	availability	

BALB-Apoe-/-	mice	are	available	upon	request.	Supplemental	Material,	Supplementary	file	

S3.1	contains	original	genotype	and	phenotype	data	used	for	the	current	study.	
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Chapter	4	

Genetic	analysis	of	atherosclerosis	identifies	a	major	susceptibility	locus	in	the	major	

histocompatibility	complex	of	mice	

	

Andrew	T.	Grainger,	Michael	B.	Jones,	Jing	Li,	Mei-Hua	Chen,	Ani	Manichaikul,		and	Weibin	

Shi	
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Genetic	analysis	of	atherosclerosis	identifies	a	major	susceptibility	locus	in	the	major	

histocompatibility	complex	of	mice.	Atherosclerosis	254	(2016),	124-132.	
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4.1	Abstract	

Recent	genome-wide	association	studies	(GWAS)	have	identified	304	independent	

variants	243	loci	associated	at	5%	FDR	with	coronary	artery	disease.	However,	these	

variants	explain	only	21.2%	of	the	genetic	heritability	of	the	disease,	suggesting	that	many	

more	variants	remain	to	be	discovered.	Here,	we	examined	the	genetic	basis	underlying	the	

marked	difference	between	SM/J-Apoe−/−	and	BALB/cJ-Apoe−/−	mice	in	atherosclerotic	lesion	

formation.	206	female	F2	mice	generated	from	an	intercross	between	the	two	Apoe-/-	strains	

were	fed	12	weeks	of	western	diet.	Atherosclerotic	lesion	sizes	in	the	aortic	root	were	

measured	and	149	genetic	markers	genotyped	across	the	entire	genome.	A	significant	locus,	

named	Ath49	(LOD	score:	4.18),	for	atherosclerosis	was	mapped	to	the	H2	complex	[mouse	

major	histocompatibility	complex	(MHC)]	on	chromosome	17.	Bioinformatics-based	

analysis	identified	a	single	likely	candidate	gene	Mep1α.	Corresponding	human	genomic	

regions	of	Ath49	showed	significant	association	with	coronary	heart	disease.	Five	

suggestive	loci	on	chromosomes	1,	4,	5,	and	8	for	atherosclerosis	were	also	identified.	

Atherosclerotic	lesion	sizes	were	significantly	correlated	with	HDL	but	not	with	non-HDL	

cholesterol,	triglyceride	or	glucose	levels	in	the	F2	cohort.	In	this	study,	we	have	identified	

the	MHC	as	a	major	genetic	determinant	of	atherosclerosis,	highlighting	the	importance	of	

inflammation	in	atherogenesis.	

	

	

	

	

4.2	Introduction	

Atherosclerosis,	the	primary	cause	of	heart	attack,	ischemic	stroke	and	peripheral	

arterial	disease,	is	a	complex	disease	resulting	from	interactions	between	environmental	
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and	genetic	factors146.	The	important	role	of	genetic	factors	in	atherosclerosis	has	been	

clearly	demonstrated	in	numerous	studies,	including	prospective	studies	of	twins,	families	

and	cohorts46–48,	and	genome-wide	association	studies	(GWAS)59–62.	Apart	from	rare	cases	of	

Mendelian	inheritance	that	are	caused	by	missense	or	nonsense	mutations	with	large	effect,	

the	vast	majority	of	coronary	heart	disease	is	complex,	probably	involving	many	genes	of	

small	effect84.	Recent	meta-analysis	of	GWAS	data	have	identified	243	loci	associated	at	5%	

FDR	harboring	304	common	variants	significantly	associated	with	coronary	heart	disease59–

62.	These	variants	implicate	pathways	in	blood	vessel	morphogenesis	as	well	as	lipid	

metabolism,	nitric	oxide	signaling	and	inflammation62.	Together	these	variants	only	explain	

21.2%	of	the	genetic	heritability	of	coronary	heart	disease62,	suggesting	that	many	more	loci	

have	not	been	discovered.	Furthermore,	most	of	the	loci	identified	have	small	effect	sizes	

with	odds	ratios	(OR)	<	1.2561;	thus	it’s	extremely	challenging	to	establish	causality	

between	a	genetic	variant	and	disease	in	humans.	

A	complementary	approach	to	finding	genes	and	pathways	involved	in	

atherosclerosis	is	to	study	animal	models.	This	allows	for	strict	control	over	environmental	

influence	and	accurate	phenotypic	characterization	of	atherosclerotic	lesions.	

Apolipoprotein	E-null	(Apoe–/–)	and	LDL	receptor-null	(Lldlr–/–)	mouse	models	reproduce	all	

phases	of	atherosclerotic	lesions	seen	in	humans71,72.	Over	a	dozen	intercrosses	or	

backcrosses	have	been	generated	from	atherosclerosis-susceptible	and	-resistant	inbred	

strains	with	either	Apoe–/–	or	Lldlr–/–	background,	leading	to	identification	of	50	unique	

atherosclerosis	susceptibility	loci	(http://www.informatics.jax.org/allele).	Unfortunately,	

nearly	all	the	crosses	generated	have	chosen	C57BL/6	(B6)	mice	as	an	atherosclerosis-

susceptible	strain;	thus	limiting	their	mapping	power	and	coverage	of	allelic	diversity.	

Creation	of	new	genetic	crosses	using	a	different	susceptible	strain	may	discover	new	loci	

and	also	empower	bioinformatics	analysis	for	finding	causative	genes.	When	a	QTL	for	the	
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same	trait	has	been	mapped	to	the	same	chromosomal	location	with	multiple	crosses	

derived	from	different	inbred	strains,	whole-genome	sequences	and	SNP	databases	

available	for	them	can	be	utilized	to	prioritize	candidate	genes.	We	recently	have	shown	

that	SM/J	(SM)	and	SWR/J	Apoe–/–	mice	are	susceptible	to	atherosclerosis	compared	to	

BALB/cJ	(BALB)	or	C3H/HeJ	Apoe–/–	mice114.	In	this	study,	we	performed	QTL	analysis	using	

a	female	F2	cohort	derived	from	an	intercross	between	BALB/cJ	(BALB)-Apoe–/–	and	SM-

Apoe–/–	mice	to	understand	the	genetic	control	of	atherosclerosis	susceptibility.	

	

	

4.3	Results	

4.3.1	QTL	analysis	of	atherosclerotic	lesions	

Values	of	atherosclerotic	lesion	areas	in	206	female	F2	mice	were	calculated	by	summing	up	

the	top	eight	sections	for	each	mouse.	These	values	display	a	normal	distribution	(Figure	

4.1).	

Genome-wide	QTL	analysis	of	these	data	revealed	one	significant	QTL	on	chromosome	17	

and	five	suggestive	QTLs	on	chromosomes	1,	4,	5,	and	8	for	atherosclerosis	(Figure	4.2).	

Details	of	the	QTLs	detected,	including	locus	name,	LOD	score,	peak	location,	95%	

confidence	interval	(CI),	genome-wide	P	value,	high	allele,	and	mode	of	inheritance,	are	

shown	in	Table	4.1.	The	QTL	on	chromosome	17	had	a	significant	LOD	score	of	4.18	and	

peaked	at	26.08	cM.	It	exerted	effect	in	a	dominant	mode	of	inheritance	with	the	BALB	allele	

conferring	susceptibility	and	the	SM	allele	conferring	resistance	to	atherosclerosis	(Figure	

4.3A,	Table	4.2).	This	QTL	was	overlapping	in	the	confidence	interval	with	Ath26,	mapped	

in	an	AKR-Apoe–/–	×	DBA-Apoe–/–	intercross80.	Because	this	QTL	was	mapped	in	an	intercross	

derived	from	distinct	parental	strains,	it	was	named	Ath49	in	accordance	to	the	guideline	

provided	by	the	International	Committee	on	Standardized	Genetic	Nomenclature	for	Mice	
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(http://www.informatics.jax.org/mgihome/nomen/gene.shtml).	The	QTL	on	chromosome	

1	had	a	suggestive	LOD	score	of	2.28	and	peaked	at	97.02	cM	(Figure	4.3B).	This	QTL	

replicated	Ath1,	mapped	in	several	crosses76,83,157,160.	The	QTL	on	chromosome	4	peaked	at	

71.37	cM	and	had	a	LOD	score	of	2.52.	It	replicated	Athsq1	mapped	in	a	(MOLF/Ei	×	B6-

Ldlr–/–)	×	B6-Ldlr–/–	backcross84.	Two	suggestive	QTLs	were	detected	on	chromosome	5,	

peaking	at	34.19	and	69.4	cM,	respectively	(Figures	4.2	and	4.3C).	The	distal	QTL	

replicated	Ath42,	mapped	in	a	B6-Apoe–/–	×	BALB-Apoe–/–	intercross76.	The	proximal	QTL	

replicated	a	suggestive	one	mapped	in	a	B6-Apoe–/–	×	C3H-Apoe–/–	intercross83	and	was	

named	Ath50.	The	QTL	on	chromosome	8	peaked	at	46.14	cM	and	had	a	suggestive	LOD	

score	of	2.18.	It	was	partially	overlapping	with	Ath40	mapped	in	a	B6	×	BALB/cByJ	LDLR–/–	

intercross77.	SM	alleles	were	responsible	for	increased	lesion	sizes	for	the	chromosome	1,	5	

and	8	QTLs	but	decreased	lesion	sizes	for	Ath49.	The	chromosome	4	QTL	affected	lesion	

formation	in	a	heterotic	manner	as	F2	mice	with	heterozygous	alleles	exhibited	increased	

lesion	size	over	those	with	homozygous	alleles.	
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Figure	4.1.	Frequency	distributions	of	atherosclerotic	lesion	sizes	in	206	female	F2	

mice	derived	from	BALB-Apoe–/–	and	SM-Apoe–/–	mice.	The	lesion	size	of	each	mouse	

was	the	sum	of	lesion	areas	on	8	cross-sections	with	the	largest	readings.	The	graph	

was	created	using	a	plotting	function	of	J/qtl	software.	
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Figure	4.2.	A	genome-wide	scan	to	search	for	main	effect	QTLs	influencing	

atherosclerotic	lesion	sizes	in	the	F2	cohort.	Chromosomes	1	through	X	are	

represented	numerically	on	the	X-axis.	Each	minor	tick	on	the	X	axis	represents	one	

informative	genetic	marker.	The	Y-axis	represents	the	LOD	score.	Two	horizontal	

dashed	lines	denote	genome-wide	thresholds	for	suggestive	(P	=	0.63)	and	significant	

(P	=	0.05)	linkage.	
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Table	4.1	QTLs	identified	for	aortic	lesion	areas	in	female	F2	mice	derived	from	BALB-

Apoe–/–	and	SM-Apoe–/–	mice.	

Locus	 Chr	 LODa	 p−valueb	 Peak	(cM)	 Peak	(Mb)	 Peak	marker	 95%	CI	(cM)c	 High	allele	 Mode	of	inheritanced	

Athl	 1	 2.28	 0.499	 97.02	 177.27	 rs13476259	 5.52–97.02	 SMJ	 Recessive	

Athsql	 4	 2.524	 0.333	 71.37	 119.72	 rs3688968	 52.32–84.32	 −	 Heterosis	

Ath50	 5	 2.664	 0.263	 34.19	 61.51	 rs6354160	 29.4–45.4	 SMJ	 Recessive	

Ath42	 5	 2.809	 0.191	 69.4	 108.38	 rs3726547	 45.4–75.4	 SMJ	 Recessive	

Ath40	 8	 2.176	 0.585	 46.14	 89.35	 D8Mit50	 20.14–56.14	 SM	 Recessive	

Ath49	 17	 4.184	 0.01	 26.08	 43.09	 rs4231494	 16.08–35.34	 BALB	 Dominant	

aLOD	score	threshold	for	suggestive	QTL:	>	2.108;	for	significant:	>3.448	established	by	

1000	permutation	tests.	

bP-values	represent	genome-wide	significance	at	a	locus.	

c95%	CI	(confidence	interval)	was	obtained	from	whole-genome	scans	with	J/qtl.	

dInheritance	was	determined	based	on	the	effect	of	each	parental	allele	at	the	nearest	

genomic	marker.	
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Figure	4.3.	Interval	mapping	graphs	for	atherosclerotic	lesion	sizes	plotted	by	

MapManager	QTX.	A,	chromosomes	17;	B,	chromosome	1;	and	C,	chromosome	5.	The	

black	line	represents	LOD	scores	calculated	at	a	1-cM	interval,	the	blue	plot	represents	

the	effect	of	BALB	allele,	and	the	red	plot	represents	the	effect	of	SM	allele.	The	

histogram	estimates	the	confidence	interval	of	a	QTL.	Two	green	vertical	lines	

represent	genome-wide	LOD	thresholds	for	suggestive	(left	line)	and	significant	

linkage	(right	line).		
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Table	4.2	Effects	of	BALB	and	SM	alleles	on	aortic	lesion	area	at	identified	QTLs	in	

female	F2s	derived	from	BALB-Apoe–/–	and	SM-Apoe–/–	mice.	

Locus	name	 Chr	 Peak	marker	 Peak	(cM)	 Peak	marker	(Mb)	 BB	 BS	 SS	 p−Value	

Ath1	 1	 rs13476259	 97.02	 177.27	 2.0	±	0.9914	(55)	 2.097	±	0.9426	(95)	 2.561	±	0.975	(56)	 0.00565	

Athsq1	 4	 rs3688968	 71.37	 119.72	 2.107	±	0.8958	(51)	 2.42e	±	0.1025	(103)	 1.875	±	0.892	(52)	 0.00326	

Ath50	 5	 rs6354160	 34.19	 61.51	 2.065	±	0.7986	(55)	 2.046	±	0.9883	(91)	 2.578	±	0.1057	(10)	 0.414	

Ath42	 5	 rs3726547	 69.4	 108.38	 2.037	±	0.8441	(53)	 2.079	±	0.9479	(89)	 2.536	±	0.108	(63)	 0.00599	

Ath40	 8	 D8Mit50	 46.14	 89.35	 1.957	±	9.706	(60)	 2.106	±	0.9422	(86)	 2.525	±	0.9261	(54)	 0.00471	

Ath49	 17	 rs4231494	 26.08	 43.09	 2.259	±	9.691	(55)	 2.415	±	0.9221	(96)	 1.785	±	0.9925	(55)	 0.000577	

Measurements	for	aortic	lesion	areas	are	expressed	as	means	±	SD.	The	unit	for	these	

measurements	is:	mm2	×	106.	BB,	homozygous	BALB	allele;	BS,	heterozygous	allele;	SS,	

homozygous	SMJ	allele.	Anova	was	performed	on	the	data	to	determine	the	

significance	(P−value)	of	the	differences	among	the	BB,	BS,	and	SS	genotypes.	

	

	

4.3.2	Candidate	genes	for	Ath49	

The	QTL	for	atherosclerosis	on	chromosome	17	has	also	been	mapped	in	an	AKR-Apoe–/–	×	

DBA/2-Apoe–/–	intercross	with	the	DBA/2	allele	conferring	susceptibility	and	the	AKR	allele	

conferring	resistance	to	atherosclerosis80	(Figure	4.4).	The	high	allele	strains	BALB	and	

DBA/2	share	the	same	H2d	haplotype,	which	falls	within	the	Ath49	interval,	whereas	the	

low	allele	strains	SM	and	AKR	have	either	H2v	or	H2k	haplotype.		
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Figure	4.4	QTL	locations	of	Ath26	(AKR	x	DBA)	and	Ath49	(BALB	x	SM)	on	mouse	

chromosome	17.	QTL	were	visualized	through	a	custom	track	imported	into	UCSC	

Genome	Browser.	The	overlapping	confidence	interval	is	highlighted	in	red	

	

	

To	find	candidate	genes	for	the	QTL,	we	employed	a	dual-armed	strategy	to	

investigate	SNPs	in	Ath49	that	are	affecting	gene	expression	or	protein	structure	and	

function	(Figure	4.5).	For	gene	expression,	three	filters	were	applied.	Genes	were	initially	

filtered	to	those	in	which	a	significant	change	in	gene	expression	is	observed	between	the	

high	allele	strains	(BALB,	DBA/2)	and	low	allele	strains	(AKR/SM)	in	either	the	aorta	or	the	

liver.	This	data	was	taken	from	the	expression	profiling	in	the	Hybrid	Diversity	Mouse	Panel	

(HMDP)(GEO	accession:	GSE66570)91.		The	second	filter	included	solely	those	genes	whose	

gene	expression	was	significantly	correlated	with	aortic	lesion	size.	This	data	was	obtained	

from	correlations	calculated	between	aortic	lesion	size	and	gene	expression	in	the	HDMP	

(GEO	accession:	GSE66570)91.	The	final	filter	included	only	those	genes	that	had	a	

significant	expression	QTL	(eQTL)	within	the	Ath49	locus.	This	data	was	obtained	for	the	
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HDMP	mice	from	the	Systems	Genetics	Resource	provided	by	the	lab	of	Jake	Lusis	

(https://systems.genetics.ucla.edu/data/hmdp).	In	this	way,	we	are	investigating	only	

those	genes	in	the	aorta	and	liver	that	are	different	between	the	high	and	low	alleles,	have	

an	effect	on	atherosclerosis,	and	whose	expression	is	influenced	by	our	QTL	locus.	From	this	

strategy,	three	genes	remained	from	the	aorta	and	two	from	the	liver.	However,	the	

genotypes	of	the	high	and	low	alleles	were	identical	at	all	of	these	eQTL	loci	(Tables	4.3	

and	4.4).	

	

	

	

	

Figure	4.5	Bioinformatics-based	strategy	for	identifying	candidate	genes.	Candidate	

genes	were	identified	using	independent	datasets	for	looking	at	either	gene	expression	
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(left)	or	protein	structure	change	(right).	The	number	of	candidate	genes	is	indicated	

at	each	step	in	the	filtering	process.	

	

	

	

	

	

Table	4.3	Investigation	of	candidate	genes	using	aortic	gene	expression	data	

	

Results	of	the	candidate	gene	generation	strategy	using	aortic	gene	expression	data	

(n=4/5	mice	per	strain).	

logFC	=	log	fold	change	in	gene	expression	of	the	low	alleles	compared	to	the	high	

alleles.	

P-Value	=	significance	of	logFC	with	a	Benjamini	&	Hochberg	FDR	of	0.05	.	

Correlation	=	Biweight	midcorrelation	of	gene	expression	with	aortic	lesion	size.	

Ath49	eQTL	=	SNP	with	a	significant	eQTL	linking	Ath49	and	gene	expression.	

eQTL	-log(p)	=	Significance	of	eQTL	linkage;	-log(p)	>	5.4	is	considered	significant.	
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Table	4.4	Investigation	of	candidate	genes	using	liver	gene	expression	data	

	

Results	of	the	candidate	gene	generation	strategy	using	liver	gene	expression	data	

(n=4/5	mice	per	strain).	

logFC	=	log	fold	change	in	gene	expression	of	the	low	alleles	compared	to	the	high	

alleles.	

P-Value	=	significance	of	logFC	with	a	Benjamini	&	Hochberg	FDR	of	0.05	.	

Correlation	=	Biweight	midcorrelation	of	gene	expression	with	aortic	lesion	size.	

Ath49	eQTL	=	SNP	with	a	significant	eQTL	linking	Ath49	and	gene	expression.	

eQTL	-log(p)	=	Significance	of	eQTL	linkage;	-log(p)	>	5.4	is	considered	significant.	

	

	

For	protein	structure	and	function,	we	searched	the	Sanger	SNP	database	for	genes	

containing	non-synonymous	SNP(s)	or	SNP(s)	in	upstream	regulatory	regions	that	are	

shared	by	the	high	allele	strains	(BALB,	DBA/2)	but	are	different	from	ones	carried	by	the	

low	allele	strain	(AKR)	in	the	confidence	interval.	SNPs	for	the	SM	were	included	afterword	
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as	its	genomic	sequences	for	the	region	were	not	present	in	the	Sanger	SNP	database.	For	

these	genes,	we	further	searched	other	publicly	available	databases,	including	the	Mouse	

Phenome	Database	(http://	phenome.jax.org/db/q?rtnsnp/home)	and	Ensembl	

(http://www.ensembl.org/index.html),	and	compiled	the	results	in	Table	4.5.	Tnfrsf21,	

Adgrf1,	Adgrf5,	Mep1a,	and	Tdrd6	are	located	precisely	underneath	the	linkage	peak	and	

contain	one	or	more	non-synonymous	SNPs	leading	to	amino	acid	substitutions.	SIFT	

(Sorting	Intolerant	From	Tolerant)	score,	a	parameter	for	estimating	the	impact	of	an	amino	

acid	substitution	on	protein	function,	suggest	that	the	function	of	protein	products	encoded	

by	Adgrf1,	Adgrf5,	and	Mep1α	is	highly	likely	different	between	the	high	and	low	allele	

strains	(Table	4.5).		

Further	investigation	of	these	SNPs	discovered	that	the	non-synonymous	variant	in	

Adgrf1	(Rs47784933;	S/F,	TCC/TTC;	mouse	population	frequency:	C	=	83%,	T	=	17%)	

resides	in	no	known	motif	and	is	not	highly	conserved	(Figure	4.6).	The	variant	in	Adgrf5	

(Rs51535437;	D/V,	GAT/GTT;	mouse	population	frequency:	A	=	78%,	T	=	22%)	is	in	no	

known	motif,	yet	is	highly	conserved	(Figure	4.7).	The	two	variants	in	Mep1α	

(rs215987489;	F/Y;	TTT/TAT;	mouse	population	frequency:	A	=	72%,	T	=	28%)(	

rs218712173;	N/S,	AAC/AGC;	mouse	population	frequency:	T	=	78%,	C	=	22%)	are	both	

highly	conserved	(Figures	4.8	and	4.9).	These	two	variants	in	addition	to	the	other	non-

synonymous	SNPs	all	reside	in	the	metalloprotease	domain	(Figure	4.10).	We	further	used	

online	software	RaptorX	to	predict	the	impact	of	multiple	amino	substitutions	on	the	3D	

structure	of	Mep1α	protein	product	(http://raptorx.uchicago.edu/StructurePrediction/).	

The	predicted	3D	structure	of	the	Mep1α	protein	was	noticeably	different	between	the	high	

allele	strain	BALB	and	the	low	allele	strain	AKR	(Figure	4.11).	
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Table	4.5	Haplotype	analysis	for	Ath49	on	chromosome	17	(43-54Mb)	

	

Analysis	was	performed	using	a	combination	of	SNP	sources,	including	the	Mouse	

Genomes	Project	and	Mouse	Phenome	Database.	Functional	candidate	genes	are	

outlined	in	red.	SIFT	(Sorting	Intolerant	From	Tolerant):	an	algorithm	for	estimating	

the	effect	of	a	nonsynonymous	variant	on	protein	function.	A	smaller	SIFT	score	

denotes	a	higher	likelihood	of	protein	function	change.	
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Figure	4.6	Analysis	of	prioritized	SNP	in	Adgrf1	from	haplotype	analysis	of	Ath49.	

SNP	is	highlighted	in	yellow	and	amino	acid	conservation	was	determined	using	UCSC	

genome	browser	(middle).	Allele	frequency	was	found	using	the	Mouse	Genomes	

Project	data	on	Ensembl.	
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Figure	4.7	Analysis	of	prioritized	SNP	in	Adgrf5	from	haplotype	analysis	of	Ath49.	

SNP	is	highlighted	in	yellow	and	amino	acid	conservation	was	determined	using	UCSC	

genome	browser	(middle).	Allele	frequency	was	found	using	the	Mouse	Genomes	

Project	data	on	Ensembl.	
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Figure	4.8	Analysis	of	first	prioritized	SNP	in	Mep1α	from	haplotype	analysis	of	Ath49.	

SNP	being	analyzed	is	highlighted	in	red	(top).	SNP	is	highlighted	in	yellow	and	amino	

acid	conservation	was	determined	using	UCSC	genome	browser	(middle).	Allele	

frequency	was	found	using	the	Mouse	Genomes	Project	data	on	Ensembl.	
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Figure	4.9	Analysis	of	the	second	prioritized	SNP	in	Mep1α	from	haplotype	analysis	of	

Ath49.	SNP	being	analyzed	is	highlighted	in	red	(top).	SNP	is	highlighted	in	yellow	and	

amino	acid	conservation	was	determined	using	UCSC	genome	browser	(middle).	Allele	

frequency	was	found	using	the	Mouse	Genomes	Project	data	on	Ensembl.	
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Figure	4.10	Conservation	of	Mep1α	metalloprotease	domain.	Fully	conserved	SNPs	

identified	in	the	hapotype	analysis	are	highlighted	in	red.	Partially	conserved	SNPs	are	

highlighted	in	green.	The	catalytic	site	of	Mep1α	is	highlighted	in	yellow.	Protein	

sequences	were	alligned	using	Clustal	Omega.	
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Figure	4.11	Predicted	3D	structure	of	Mep1a	protein	plotted	by	RaptorX	software.	

Left	panel:	AKR	mouse,	and	right	panel:	BALB	mouse.	The	predicted	3D	structure	is	

noticeably	different	between	the	two	mouse	strains,	specifically	for	the	region	pointed	

by	the	arrow.	

	

	

4.3.3	Correlations	of	atherosclerotic	lesion	sizes	with	plasma	lipid	and	glucose	levels	

The	associations	of	atherosclerotic	lesion	sizes	with	fasting	plasma	lipid	and	glucose	

levels	were	evaluated	using	the	F2	population	(Figure	4.12).	A	significantly	inverse	

correlation	with	HDL	cholesterol	levels	was	observed	(r	=	−0.188;	p	=	0.0068).	Those	F2	

mice	with	higher	HDL	cholesterol	levels	tended	to	develop	smaller	atherosclerotic	lesions	

than	those	with	lower	levels.	Nevertheless,	HDL	only	accounted	for	3.5%	of	the	variance	in	

atherosclerotic	lesion	sizes	of	the	F2	population,	as	denoted	by	the	r2	value,	a	measure	of	

the	correlation	between	the	two	variables.	No	significant	correlations	were	found	with	

plasma	levels	of	non-	HDL	cholesterol	(r	=	0.022;	p	=	0.757),	triglyceride	(R	=	−0.093;	p	=	

0.184),	or	glucose	(r	=	0.00021;	p	=	0.998).	
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Figure	4.12	Correlations	of	atherosclerotic	lesion	sizes	with	plasma	levels	of	HDL,	

non-HDL	cholesterol,	triglyceride	and	glucose	in	the	F2	population.	Each	point	

represents	values	of	an	individual	F2	mouse.	The	correlation	coefficient	(r)	and	

significance	(p)	are	shown.	

	

	

	

	

4.4	Discussion	

In	this	study,	we	performed	QTL	analysis	using	a	female	cohort	derived	from	an	

intercross	between	BALB	and	SM	Apoe–/–	mouse	strains	and	identified	one	significant	QTL	

(Ath49)	on	chromosome	17	and	six	suggestive	QTLs	on	chromosomes	1,	4,	5,	and	8	for	
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atherosclerotic	lesion	sizes	in	the	aorta.	We	then	used	bioinformatics-based	tools	to	reduce	

the	number	of	likely	candidate	genes	for	Ath49	down	to	one.	Moreover,	plasma	HDL	

cholesterol	was	found	to	explain	3.5%	of	the	variance	in	lesion	sizes	of	the	F2	population.	

Ath26	is	an	atherosclerosis	susceptibility	QTL	on	chromosome	17,	initially	mapped	

in	an	intercross	between	AKR-Apoe–/–	and	DBA/2-Apoe–/–	mice80.	In	that	cross,	the	QTL	

peaked	at	36	or	47	Mb,	depending	on	whether	or	not	the	lesion	data	were	log-transferred.	

The	confidence	interval	of	Ath26	overlaps	with	the	H2	complex	(mouse	major	

histocompatibility	complex).	The	present	study	also	mapped	an	atherosclerosis	

susceptibility	QTL	to	the	same	region,	but	because	it	was	mapped	with	a	cross	derived	from	

distinct	parental	strains,	the	QTL	was	given	a	new	designation,	Ath49,	according	to	the	

guideline	established	by	the	International	Committee	on	Standardized	Genetic	

Nomenclature	for	Mice	(http://www.informatics.jax.org/mgihome/nomen/gene.shtml).	

Direct	evidence	supporting	an	importance	role	for	the	H2	complex	in	regulation	of	

atherosclerosis	susceptibility	comes	from	our	study	of	C3.SW-H2bApoe–/–	mice113.	C3H/HeJ	

mice	are	extremely	resistant	to	atherosclerosis	even	on	the	Apoe	null	background.	

However,	after	their	H2k	allele	was	replaced	with	H2b	allele	and	bone	marrow	was	

reconstituted	with	syngeneic	or	allogenic	marrow,	these	mice	exhibited	a	21-fold	increase	

in	atherosclerotic	lesion	size113.	

By	examining	gene	expression	and	protein	structure	and	function	influenced	by	

SNPs	that	were	shared	among	the	high	allele	strains	(BALB,	DBA/2)	but	different	from	

those	carried	by	the	low	allele	strain	(AKR),	we	were	able	to	reduce	the	number	of	

candidates	down	to	a	single	gene	in	the	Ath49	interval.	This	analysis	was	based	on	the	

observation	that	genetic	variations	between	mouse	strains	are	primarily	inherited	from	

their	progenitors	M.	m.	musculus	and	M.	m.	domesticus168.	Mouse	strains	carrying	an	allele	

that	results	in	a	high	value	for	a	given	trait	often	share	the	same	ancestral	allele	harboring	
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the	underlying	causal	gene,	while	strains	carrying	an	allele	that	produces	a	low	value	for	the	

trait	share	a	different	ancestral	allele169.	A	limitation	of	this	analysis	was	that	the	causal	

gene	would	be	missed	if	the	QTL	arose	from	a	more	recent	mutation.	

Because	a	QTL	arises	from	changes	in	the	function	or	the	quantity	of	a	gene	product,	

we	took	a	two-armed	approach	to	investigate	these	two	possibilities	separately.	For	

influences	on	gene	expression,	by	focusing	those	genes	in	the	aorta	and	liver	that	are	

different	between	the	high	and	low	alleles,	have	an	effect	on	atherosclerosis,	and	whose	

expression	is	influenced	by	our	QTL	locus	we	were	able	to	dramatically	reduce	the	number	

of	candidate	genes	to	three	in	the	aorta	and	two	in	the	liver.	The	genotypes	of	the	high	and	

low	allele	strains	did	not	differ	for	any	of	these	variants,	so	none	of	these	candidate	genes	

are	responsible	for	Ath49.	However,	this	strategy	we	have	developed	is	applicable	to	any	

overlapping	QTL	locus	and	can	provide	valuable	insight	for	QTLs	whose	causal	genes	

remain	undiscovered.		

For	influences	on	protein	structure	and	function,	we	focused	on	genes	that	carry	a	

non-synonymous	coding	SNP	or	a	SNP	in	the	upstream	regulatory	region	segregating	

between	the	high	allele	and	low	allele	strains	of	the	QTL	crosses.	Tnfrsf21,	Adgrf1,	Adgrf5,	

Mep1α,	and	Tdrd6	are	located	underneath	the	linkage	peak	of	Ath49,	and	contain	one	or	

more	non-synonymous	SNPs	or	a	SNP	in	the	upstream	regulatory	region	segregating	

between	the	high	allele	and	low	allele	parental	strains.	Adgrf1,	Adgrf5,	and	Mep1α	contain	

amino	acid	changes	predicted	to	influence	the	protein’s	structure,	however	only	those	in	

Mep1α	were	shown	to	be	potentially	affecting	protein	structure	and	function.	From	this,	we	

believe	Mep1α	should	be	prioritized	for	future	studies	on	its	influence	in	atherosclerosis.	

Association	of	the	MHC	complex	with	coronary	artery	disease	has	been	observed	in	

recent	human	GWAS	studies61,170.	The	present	analysis	of	human	GWAS	meta-analysis	

dataset	also	revealed	multiple	variants	in	the	MHC	region	associated	with	coronary	artery	



	 109	

disease.	KCNK5	has	been	suggested	to	be	an	underlying	causal	gene	contributing	to	

coronary	artery	disease61.	However,	as	KCNK5	is	located	on	mouse	chromosome	14	but	not	

17,	obviously	it	is	not	the	causal	genes	of	Ath49.	Furthermore,	the	chromosomal	region	

harboring	KCNK5	has	only	shown	a	suggestive	linkage	with	atherosclerotic	lesions73.	

In	this	study,	we	identified	multiple	suggestive	QTLs	for	atherosclerotic	lesion	sizes,	

including	the	ones	on	chromosome	5.	The	LOD	score	plots	for	chromosome	5	revealed	two	

distinct	peaks,	suggesting	the	existence	of	two	QTLs	for	atherosclerosis.	The	distal	QTL	was	

overlapping	with	Ath42	mapped	in	a	B6	×	BALB	Apoe–/–	intercross76.	The	proximal	QTL	

replicated	a	suggestive	QTL	mapped	in	a	B6	×	C3H	Apoe–/–	intercross83	and	was	named	

Ath50.	Naming	a	suggestive	locus	is	considered	appropriate	if	it	is	repeatedly	observed66.	

Promising	candidate	genes	for	this	QTL	include	Lrrc66,	Pdgfra,	Epha5,	Cenpc1,	Uba6,	and	

Tmprss11g.	These	genes	are	located	underneath	the	linkage	peak,	and	contain	one	or	more	

SNPs	segregating	between	the	high	allele	and	low	allele	parental	strains	of	the	QTL	crosses	

(data	not	shown).	Moreover,	the	human	syntenic	region	harboring	these	genes	has	been	

shown	to	be	associated	with	coronary	heart	disease61.	

A	slight	but	statistically	significant	correlation	was	observed	between	HDL	

cholesterol	levels	and	aortic	atherosclerotic	lesion	sizes	in	the	F2	cross.	Similar	findings	

have	been	observed	with	other	mouse	crosses77,79,128.	These	findings	are	consistent	with	the	

observation	made	from	Mendelian	randomization	studies	of	HDL	for	role	in	human	

coronary	heart	disease171,172.	Although	Mendelian	randomization	studies	of	blood	lipids	

have	suggested	a	role	for	triglyceride	and	LDL	cholesterol	in	human	coronary	heart	disease,	

no	significant	correlations	with	atherosclerotic	lesions	were	observed	in	the	present	cross	

or	previous	crosses	88,122.	

In	summary,	we	have	identified	a	major	QTL	for	atherosclerosis	in	the	mouse	MHC	

region	using	a	segregating	F2	population,	and	further	applied	bioinformatics-based	tools	to	
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define	underlying	candidate	genes.	As	the	MHC	region	harbors	genes	that	play	an	important	

role	in	both	innate	and	adaptive	immunity,	our	findings	highlight	the	significance	of	

inflammation	in	atherogenesis	and	its	potential	for	developing	anti-atherosclerotic	therapy.	

	

	

4.5	Methods	

Mice	

BALB-Apoe–/–	and	SM-Apoe–/–	mice	were	made	in	our	laboratory	using	the	congenic	

breeding	method	as	previously	reported114.	The	creation	of	a	female	F2	cohort	from	the	two	

Apoe–/–	strains	was	recently	described159	(Chapter	2).	The	animals	were	weaned	at	3	weeks	

of	age,	and	at	6	weeks	of	age	switched	onto	a	Western	diet.	After	12	weeks	of	Western	diet,	

mice	were	euthanized	for	assessment	of	atherosclerotic	lesion	formation	in	the	aorta.	

	

Quantifiation	of	aortic	atherosclerosis	

Atherosclerotic	lesion	areas	in	the	aortic	root	of	mice	were	measured	as	previously	

reported88.	Lesion	areas	were	measured	on	oil	red	O	stained	sections	using	Zeiss	AxioVision	

4.8	software.	The	eight	largest	lesion	areas	were	added	up	for	each	mouse	and	this	sum	was	

used	for	statistical	analysis.	

	

Measurements	of	plasma	glucose	and	lipid	levels	

Plasma	total	cholesterol,	HDL	cholesterol,	triglyceride	and	glucose	levels	were	measured	

using	commercial	kits	as	reported173.	Non-HDL	cholesterol	was	calculated	as	the	difference	

between	total	and	HDL	cholesterol.	

	

Genotyping	
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F2	mice	were	genotyped	using	the	Illumina	LD	linkage	panel,	as	reported159	(Chapter	2).	

Microsatellite	markers	were	typed	by	PCR	for	regions	of	chromosome	8	that	were	not	

covered	by	informative	SNP	markers.	A	total	of	149	markers	were	included	in	QTL	analysis.	

	

Statistical	analysis	

QTL	analysis	was	performed	using	J/qtl	and	MapManager	QTX	software,	as	reported159	

(Chapter	2).	LOD	threshold	values	were	determined	from	1000	permutations	of	the	

observed	data.	

	

Prioritization	of	candidate	genes	

Bioinformatics-based	tools	were	used	to	prioritize	candidate	genes	for	significant	

atherosclerosis	QTL	that	was	mapped	in	two	or	more	crosses	derived	from	different	

parental	strains.	Two	separate	analyses	were	performed,	one	for	SNPs	influencing	gene	

expression	and	one	for	SNPs	influencing	protein	structure	and	function.	For	the	gene	

expression	analysis,	likely	candidate	genes	were	those	who	showed	a	significant	change	in	

gene	expression	between	the	high	and	low	alleles	in	the	aorta	and	the	liver,	were	

significantly	correlated	with	aortic	lesion	size,	and	had	a	significant	eQTL	linking	the	gene	

expression	to	our	locus	of	interest.	Data	used	for	this	analysis	was	obtained	from	publicly	

available	sources	(aorta	and	liver	gene	expression	and	correlation	with	aortic	lesion	size:	

GEO	accession	=	GSE66570)91	(aorta	and	liver	eQTL	data	

(https://systems.genetics.ucla.edu/data/hmdp).	

For	the	protein	structure	and	function	analysis,	likely	candidate	genes	were	defined	

as	those	containing	a	non-synonymous	SNP	in	a	coding	region,	and	this	SNP	was	shared	by	

the	parental	strains	carrying	the	high	allele	but	different	from	the	one	shared	by	the	

parental	strains	carrying	the	low	allele	of	a	QTL,	as	reported79.	Analysis	was	performed	
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using	a	combination	of	SNP	sources,	including	the	Sanger	Mouse	Genomes	Project,	Mouse	

Phenome	Database,	and	Ensembl.	SNP	frequency	was	determined	from	information	

provided	by	the	WTSI	Mouse	Genomes	Project	in	the	Ensembl	browser.	Amino	acid	

conservation	was	determined	from	information	provided	by	the	UCSC	Genome	Browser.	

Web-based	software	RaptorX	was	used	to	predict	the	potential	impact	of	an	amino	acid	

substitution	on	the	3D	structure	of	protein	product	(http://raptorx.uchicago.edu/	

Structure_	Prediction/predict).	
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5.1	Abstract	

Atherosclerosis	is	a	complex	disease	that	is	the	primary	cause	of	heart	attack,	

ischemic	stroke	and	peripheral	arterial	disease.	We	have	recently	discovered	a	novel	

genetic	locus	influencing	aortic	lesion	size	at	the	major	histocompatibility	complex	(MHC)	

on	mouse	Chromosome	17,	named	Ath49.	Through	bioinformatics,	we	identified	Mep1α	as	a	

gene	at	this	locus	likely	influencing	atherosclerosis.	In	a	Mep1α-/-.Apoe-/-	double	knockout	

mouse	model,	aortic	lesion	size	was	significantly	reduced	when	mice	were	fed	either	chow	

or	Western	diet.	Investigation	of	lesion	stability	showed	a	decrease	in	necrosis	and	fibrous	

cap	thickness	in	Mep1α-/-	mice	and	increase	in	overall	trichrome	stain	area.	

Immunofluorescent	staining	uncovered	a	marked	increase	in	macrophage	and	neutrophil	

content	in	Mep1α-/-	mice.	Investigation	of	plasma	MCP-1,	CXCL5,	and	MDA	levels	showed	

Mep1α-/-	mice	have	a	decrease	in	CXCL5	and	MDA,	suggesting	a	reduction	in	systemic	

inflammation	and	oxidative	stress.	In	this	study,	we	have	discovered	that	Mep1α	is	a	novel	

gene	negatively	influencing	atherosclerosis	through	widespread	influence	on	plaque	

composition.		

	

	

5.2	Introduction	

Atherosclerosis	is	the	primary	cause	of	heart	attack,	ischemic	stroke	and	peripheral	

arterial	disease.	It	is	considered	a	complex	disease	resulting	from	interactions	between	

environmental	and	genetic	factors146.	Numerous	studies	have	highlighted	the	importance	of	

genetic	factors	in	atherosclerosis’	pathogenesis,	including	prospective	studies	of	twins,	

families	and	cohorts46,47,48	and	genome-wide	association	studies	(GWAS)62,61,59,60.	Based	on	

the	results	of	these	studies,	it	is	apparent	that	the	majority	of	the	genome’s	influence	on	

heart	disease	is	complex,	probably	involving	many	genes	of	small	effect.	The	304	
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independent	variants	associated	at	5%	FDR	identify	243	loci	that	implicate	pathways	in	

blood	vessel	morphogenesis	as	well	as	lipid	metabolism,	nitric	oxide	signaling	and	

inflammation	attest	to	this	fact62.	However,	all	the	loci	identified	account	for	only	21.2%	of	

the	genetic	heritability	of	coronary	heart	disease62,	suggesting	that	many	more	loci	remain	

to	be	discovered.			

A	complementary	approach	to	human	studies	in	the	finding	of	novel	genes	and	

pathways	involved	in	atherosclerosis	is	to	study	animal	models.		Animal	models	have	the	

advantage	of	allowing	strict	control	over	environmental	influence	and	accurate	phenotypic	

characterization	of	atherosclerotic	lesions.		Apolipoprotein	E-null	(Apoe−/−)	and	LDL	

receptor-null	(Lldlr−/−)	mouse	models	reproduce	all	phases	of	atherosclerotic	lesions	seen	in	

humans71,72.		Over	a	dozen	intercrosses	or	backcrosses	have	been	generated	from	

atherosclerosis-susceptible	and	atherosclerosis-resistant	inbred	strains	carrying	the	Apoe−/−	

or	Lldlr−/−	gene,	leading	to	identification	of	over	50	unique	atherosclerosis	susceptibility	loci	

(http://www.informatics.jax.org/	allele).			

	 We	have	recently	performed	one	such	study	using	an	intercross	between	

BALB/cJ.Apoe-/-	and	SM/J.Apoe-/-	and	discovered	a	novel	genetic	locus	influencing	aortic	

lesion	size	at	the	major	histocompatibility	complex	(MHC)	on	mouse	Chromosome	17,	

named	Ath49174	(Chapter	4).	Bioinformatics	analysis	identified	Mep1α	as	the	primary	

candidate	gene.	Mep1α	showed	a	large	number	of	amino	acid	changes	in	its	main	

metalloprotease	domain	and	was	the	only	one	that	showed	predicted	changes	in	its	protein	

structure.	For	these	reasons,	Mep1α	was	prioritized	for	further	investigation.		

Mep1α	is	a	metalloprotease	involved	in	a	large	number	of	processes	affecting	

inflammation	and	fibrosis175,176,177,178,179,180,181,182,	many	of	which	have	a	direct	effect	on	

atherosclerosis37.	Moreover	inhibition	of	metalloproteases,	including	Mep1α,	through	

administration	of	actinonin	decreased	atherosclerotic	plaque	formation	in	mice183.	This	
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strongly	suggests	Mep1α	is	playing	a	direct	role	in	atherosclerosis.	Here,	we	investigate	

Mep1α’s	influence	in	atherosclerosis	through	the	characterization	of	a	Mep1α-/-.Apoe-/-	

double	knockout	mouse	model.	

	

	

5.3	Results	

5.3.1	Mep1α-/-	mice	have	normal	lipid	and	glucose	levels	but	decreased	aortic	lesion	

size	

The	normal	mouse	model	for	atherosclerosis	consists	of	Apoe-/-	mice	fed	a	Western	

diet	for	advanced	lesion	formation	and	a	chow	diet	for	early	lesion	formation.	Therefore	to	

asses	the	effects	of	Mep1α	on	atherosclerosis,	Mep1α-/-.Apoe-/-	double	knockout	mice	were	

generated	and	fed	either	a	chow	or		Western	diet	for	12	weeks.	After	12	weeks,	plasma	lipid	

and	glucose	levels	were	measured	from	both	C57BL/6J	(B6)	Mep1α-/-.Apoe-/-	and	normal	

B6.Apoe-/-	mice.	No	difference	in	HDL,	Non-HDL,	or	fasting	glucose	was	observed	in	either	

chow	or	Western	diet	mice,	while	triglycerides	were	lower	in	double	knockout	mice	on	

chow	diet	(Figure	5.1A-D).	Aortic	lesion	size	was	markedly	smaller	in	Mep1α-/-	mice	

compared	to	the	controls	(Figure	5.1E-F).	On	chow	diet,	B6	mice	had	an	average	total	

lesion	size	of	2.95x105	±	6.09x104	while	Mep1α-/-	mice	had	an	average	total	lesion	size	of	

9.78x104	±	1.89x104,	a	66.9%	reduction	(B6	n	=	28,	Mep1α-/-	n	=	13;	p	=	0.0042;	Male	+	

Female).	On	Western	diet,	the	average	of	the	top	5	lesion	areas	was	used	to	assess	aortic	

lesion	changes.	For	females,	B6	mice	showed	an	average	lesion	size	of	5.82x105	±	2.02x104	

while	Mep1α-/-	mice	had	a	significantly	smaller	average	lesion	size	of	4.12x105	±	3.62x104,	a	

25.5%	reduction	(B6	n	=	39,	Mep1α-/-	n	=	15;	p	=	0.0015).		For	males,	B6	mice	showed	an	

average	lesion	size	of	3.83x105	±	3.32x104	while	Mep1α-/-	mice	had	a	smaller	average	lesion	
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size	of	3.83x105	±	4.22x104	(B6	n	=	23,	Mep1α-/-	n	=	11;	p	=	0.59).	However	this	decrease	in	

lesion	area	was	not	significant.		

	

	

	

Figure	5.1	Mep1α-/-	mice	have	normal	lipid	and	glucose	levels	but	decreased	aortic	

lesion	size.	A)	Average	HDL	levels	from	Mep1α+/+	and	Mep1α-/-	mice	fed	chow	(n	=	10	

per	group;	p	=	0.27)	and	western	diet	(n	=	10	per	group;	p	=	0.45)	B)	Average	non-HDL	

levels	from	Mep1α+/+	and	Mep1α-/-	mice	fed	chow	(n	=	10	per	group;	p	=	0.14)	and	

western	diet	(n	=	10	per	group;	p	=	0.16)	C)	Average	triglycerides	levels	from	Mep1α+/+	

and	Mep1α-/-	mice	fed	chow	(n	=	10	per	group;	p	=	0.0041)	and	western	diet	(n	=	10	

per	group;	p	=	0.58)	D)	Average	glucose	levels	from	Mep1α+/+	and	Mep1α-/-	mice	fed	
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chow	(n	=	10	per	group;	p	=	0.53)	and	western	diet	(n	=	10	per	group;	p	=	0.58)	E)	

Total	aortic	lesion	area	quantification	for	mice	fed	chow	diet,	either	male	Mep1α+/+	n	=	

12,	Mep1α-/-	n	=	7	mice;	p	=	0.032)	or	female	(Mep1α+/+	n	=	16,	Mep1α-/-	n	=	5	mice;	p	=	

0.046)	.	F)	Average	lesion	area	of	the	top	five	lesion	sizes	for	mice	fed	western	diet,	

either	Female	(Mep1α+/+	n	=	39,	Mep1α-/-	n	=	15	mice;	p	=	0.0015)	or	male	(Mep1α+/+	n	

=	23,	Mep1α-/-	n	=	11	mice;	p	=	0.59).	

	

5.3.2	Lesion	Stability	Assessment	in	Mep1α-/-	mice	

Mep1α-/-	mice	have	decreased	collagen	content	in	the	dermis,	and	we	wanted	to	

assess	whether	this	persists	in	aortic	lesions	as	changes	in	collagen	content	have	the	

potential	to	affect	overall	lesion	stability178.	The	standard	hallmarks	of	plaque	stability	were	

assessed	using	hematoxylin	and	eosin	(H&E)	and	Masson’s	trichrome	staining	on	aortic	

lesions	from	mice	fed	western	diet	(Figure	5.2).		H&E	staining	appeared	similar	between	

the	Mep1α-/-	mice	and	normal	B6	mice	(Figure	5.2A-B),	however	Masson’s	trichrome	

staining	appeared	markedly	different	(Figure	5.2C-D).	The	percentage	of	necrotic	lesion	

area	was	significantly	decreased	in	Mep1α-/-	mice	(B6	=	25.5%	±	2.2%,	Mep1α-/-	=	9.3%	±	

1.2%;	p	<	0.0001),	whereas	the	overall	unstained	area	in	H&E	stained	lesions	remained	the	

same	(B6	=	33.6%	±	1.2%,	Mep1α-/-	=	35.45%	±	1.2%;	p	=	0.30)	(Figure	5.2E-F).	

Interestingly,	this	unstained	area	significantly	decreased	in	the	Mep1α-/-	mice	in	trichrome-

stained	lesions,	while	the	unstained	area	of	the	B6	mice	remained	the	same	(B6	=	33.2%	±	

2.5%,	Mep1α-/-	=	17.11%	±	1.3%;	p	<	0.0001)	(Figure	5.2G).	The	color	present	in	these	

previously	unstained	locations	within	Mep1α-/-	lesions	was	a	deep	purple,	suggesting	a	

mixture	of	blue	collagen	and	red	muscle	fiber	stains	(Figure	5.2C-D).			
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Quantification	of	average	fibrous	cap	thickness	showed	an	overall	decrease	in	

Mep1α-/-	mice	(B6	=	30.6	±	1.3	um,	Mep1α-/-	=	21.6	±	0.8	um;	p	<0.0001).	The	minimum	(B6	

=	9.0	±	0.5	um,	Mep1α-/-	=	8.9	±	0.5	um;	p	=	0.93)	and	maximum	(B6	=	42.1	±	1.8	um,	Mep1α-

/-	=	43.5	±	2.3	um;	p	=	0.62)	fibrous	cap	thicknesses	remain	unchanged	(Figure	5.2H-J).		

	

	

	

Figure	5.2	Mep1α-/-	mice	have	changes	plaque	stability.	A/B)	Representative	images	

of	HE	staining	for	B6	(A)	and	Mep1α-/-	(B)	mouse	aorta	fed	western	diet.	C/D)	

Representative	images	of	trichrome	staining	for	B6	(C)	and	Mep1α-/-	mice	(D).	

Quantification	of	classic	plaque	stability	metrics	were	performed	using	both	HE	and	

trichrome-stained	sections.	Metrics	pertaining	to	necrosis	included	percentage	of	
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lesion	area	in	HE	stained	slides	that	was	necrotic	(E)	(B6	n=43,	Mep1α-/-	n=44	images,	

n=4	mice	per	group;	p	<	0.0001),	percentage	unstained	(F)(B6	n=43,	Mep1α-/-	n=44	

images,	n=4	mice	per	group;	p	=	0.2954),	and	percentage	of	lesion	area	in	trichrome	

stained	slides	that	was	necrotic	(G)	(B6	n=5,	Mep1α-/-	n=9	images,	n	=	2	B6	mice,	n	=	4	

Mep1α-/-	mice;	p	,	0.0001).	Metrics	pertaining	to	fibrous	cap	formation	included	

average	fibrous	cap	thickness	in	HE	stained	sections	(H)	(B6	n=	129,	Mep1α-/-	n	=	108	

measurements,	two	outer	and	one	middle	measurement	per	image)(n	=	4	mice	per	

group)(p	<	0.0001),	maximum	fibrous	cap	thickness	(I)	(B6	n	=	43,	Mep1α-/-	n	=	36	

images,	n	=	4	mice	per	group;	p	=	0.6155),	and	minimum	fibrous	cap	thickness	(J)	(B6	n	

=	43,	Mep1α-/-	n	=	36	images,	n	=	4	mice	per	group;	p	=	0.9321).	

	

	

5.3.3	Mep1α-/-	lesions	have	increased	macrophage	content		

Mep1α	is	located	proximal	to	the	MHC	and	can	affect	cytokine	production	and	

macrophage	transmigration176.	Therefore	we	wanted	to	investigate	the	role	Mep1α	plays	in	

the	aortic	lesions’	composition,	particularly	in	respect	to	immune	cell	content.	Initial	

immunofluorescent	staining	showed	a	large	amount	of	Mep1α	in	the	chow	diet	lesions	from	

normal	B6	mice	as	well	as	significant	staining	in	Western	diet	lesions	(Figure	5.3A,	C).	Both	

the	chow	and	Western	diet	lesions	of	Mep1α-/-	show	an	increase	in	macrophage	content	

(Figure	5.3B,	D).	The	cells	within	Western	diet	Mep1α-/-	lesions	are	on	average	76.1%	±	

6.0%	macrophages	while	normal	B6	lesions	are	on	average	20.2%	±	3.6%	macrophages,	a	

376%	increase	(P	<	0.0001)	(Figure	5.4A-C).	No	change	in	smooth	muscle	cell	content	was	

observed	between	normal	B6	and	Mep1α-/-	lesions	(B6	=	5.7%	±	4.6%,	Mep1α-/-	=	12.4%	±	

2.9%;	p	=	0.14)	(Figure	5.4D).	Smooth	muscle	cells	in	the	adjacent	medial	layer	of	the	aorta	
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showed	a	trend	towards	an	increase	in	Mep1α-/-	mice	(B6	=	13.6%	±	4.9%,	Mep1α-/-	=	33.1%	

±	11.7%;	p	=	0.056)(Figure	5.4E).	

	

	

	

Figure	5.3	Lesion	morphology	differences	of	B6	and	Mep1α-/-	mice.	Changes	in	lesion	

cell	types	from	B6	mice	(A)	and	Mep1α-/-	(B)	fed	chow	diet	and	from	B6	mice	(C)	and	

Mep1α-/-	(D)	fed	western	diet.	Green	=	macrophage,	red	=	smooth	muscle	cells,	

magenta	=	Mep1α.	White	arrows	indicate	presence	of	aortic	lesions	
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Figure	5.4	Mep1α-/-	lesions	have	increased	macrophage	content.	Representative	

immunofluorescence	images	of	a	normal	B6	mouse	(A)	and	a	Mep1α-/-	mouse	(B)	(Red	

=	SMC-A,	Green	=	Macrophage,	Magenta	=	Mep1α,	Blue	=	DAPI).	Quantification	of	

cellular	components	from	macrophage	(C)	(n	=	9	B6	mice	with	n	=	16	images;	n	=	9	

Mep1α-/-	mice	with	n	=	22	images;	p	<0.0001)	and	smooth	muscle	cells	(D)	(p	=	0.14)	in	

aortic	lesions	and	smooth	muscle	cells	in	the	medial	layer	(E)	(p	=	0.048).	

	

	

5.3.4	Mep1α-/-	lesions	have	increased	neutrophil	content	

	With	a	three-fold	increase	in	macrophage	content	within	the	Mep1α-/-	lesions,	we	

investigated	whether	other	immune-related	cell	types	were	altered.	Neutrophil	content	was	
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significantly	increased	in	Mep1α-/-	lesions,	with	5.4%	±	1.3%	of	the	total	lesion	area	being	

positive	for	neutrophil	marker	Ly6g	compared	to	0.4%	±	0.2%	of	the	total	lesion	area	for	

normal	B6	mice,	a	12-fold	increase	(p	=	0.001)(Figure	5.5A-G).	Staining	for	the	neutrophil	

recruitment	cytokine	CXCL5	showed	significant	co-localization	with	Ly6g	staining,	however	

quantification	showed	the	total	amount	of	CXCL5	present	in	aortic	lesions	remained	

unchanged	(B6	=	17.8%	±	5.7%,	Mep1α-/-	=		13.2%	±	2.7%;	p	=	0.48)(Figure	5.5H).	

	

	

	

Figure	5.5	Mep1α-/-		lesions	have	increased	neutrophil	content.	CXCL5	(red)	and	ly6g	

(green)	presence	and	co-localization	in	B6	(A-C)	and	Mep1a-/-	(D-F)	mice.	

Quantification	of	percentage	lesion	area	of	Ly6g	(n	=	6	B6	mice	with	n	=	13	images;	n	=	
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7	Mep1α-/-		mice	with	n	=	16	images;	p	=	0.0012)	(G)	and	CXCL5	(n	=	4	B6	mice	with	n	=	

7	images;	n	=	5	Mep1α-/-		mice	with	n	=	11	images;	p	=	0.47)	(H)	staining.	

	

5.3.5	Mep1α-/-	mice	have	decreased	plasma	CXCL5	and	oxidative	stress	

		 Because	of	the	increase	in	macrophages	and	neutrophils	in	aortic	lesions,	we	

performed	ELISA	assays	on	chow	and	Western	diet	plasma	to	test	for	MCP-1,	the	primary	

macrophage	recruitment	cytokine,	and	CXCL5,	the	neutrophil	recruitment	cytokine.	

Surprisingly,	there	was	no	change	in	plasma	MCP-1	levels	on	either	chow	(B6	=	14.1	±	8.7	

mg/dl,	Mep1α-/-	=	20.4	±	11.5	mg/dl;	n	=	10	mice	per	group;	p	=	0.22)	or	Western	diet	(B6	=	

75.7	±	45.4	mg/dl,	Mep1α-/-	=	72.0	±	6.0	mg/dl;	n	=	10	mice	per	group;	p	=	0.82)	(Figure	

5.6A).	Mep1α-/-	mice	showed	a	75%	decrease	in	plasma	CXCL5	on	chow	diet	(B6	=	1855.0	±	

1292.43	mg/dl,	Mep1α-/-	=	451.0	±	250.8	mg/dl;	n	=	10	mice	per	group;	p	=	0.008)	and	57%	

decrease	on	Western	diet	(B6	=	1385.6	±	649.3	mg/dl,	Mep1α-/-	=	595.6	±	582.4	mg/dl;	n	=	

10	mice	per	group;	p	=	0.01)	(Figure	5.6B).	MDA,	a	marker	for	oxidative	stress,	showed	a	

significant	decrease	in	Mep1α-/-	mice	for	both	chow	diet	(B6	=	39.6	±	2.6	mg/dl,	Mep1α-/-	=	

33.2	±	0.7	mg/dl;	n	=	10	per	group;	p	=	0.04)	and	Western	diet	(B6	=	76.7	±	6.2	mg/dl,	

Mep1α-/-	=	53.4	±	3.1	mg/dl;	n	=	10	per	group;	p	=	0.006)	(Figure	5.7).	
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Figure	 5.6	Mep1α-/-	mice	 show	decreased	 circulating	CXCL5.	 Plasma	 cytokine	 levels	

for	main	recruiting	 factor	of	macrophage	 (MCP-1)	 (A)	 (n	=	10	per	group;	 chow:	p	=	

0.22,	 western:	 p	 =	 0.82)	 and	 neutrophils	 (CXCL5)	 (B)	 from	mice	 fed	 either	 chow	 or	

Western	diet	(n	=	10	per	group;	chow:	p	=	0.008,	western:	p	=	0.01).	
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Figure	 5.7	Mep1α-/-	 show	 decreased	 oxidative	 stress.	 Plasma	MDA	 levels	 measured	

from	 chow	 and	Western	 diet	mice	 (n	 =	 10	 per	 group;	 chow:	 p	 =	 0.04,	 western:	 p	 =	

0.006).	

	

	

5.4	Discussion	

In	this	study,	we	used	a	Mep1α-/-.Apoe-/-	double	knockout	mouse	to	investigate	

Mep1α’s	involvement	in	both	early	and	late-stage	lesion	formation.	Measurement	of	plasma	

lipid	and	glucose	levels	showed	no	changes	between	normal	B6.	Apoe-/-	mice	and	double	

knockout	mice,	suggesting	that	Mep1α	has	no	influence	over	lipid	or	glucose	production.	

Despite	normal	lipid	and	glucose	levels,	double	knockout	mice	fed	chow	diet	and	female	

mice	on	Western	diet	exhibited	significantly	smaller	lesions.	This	indicates	that	Mep1α	is	

involved	in	lesion	formation,	and	that	we	have	discovered	a	novel	influencer	of	

atherosclerosis.		
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	 H&E	staining	of	Western	diet-fed	B6.	Apoe-/-	and	double	knockout	mice	showed	that	

Mep1α-/-	mice	had	decreased	necrosis	and	fibrotic	cap	thickness.	Normal	stable	plaques	

have	less	necrosis	with	a	thicker	fibrous	cap44,	so	this	data	is	conflicting	in	determining	

overall	lesion	stability.	To	add	to	the	complexity,	we	observed	an	increase	in	overall	positive	

trichrome	stain	area	in	the	Mep1α-/-	lesions.	This	increased	stain	area	was	primarily	

occupied	by	a	purple-colored	stain,	which	indicates	a	mixture	of	the	blue	collagen	stain	and	

red	muscle	fiber	stain.	This	stain	was	unique	to	the	Mep1α-/-	mice.	Mep1α	is	predicted	to	be	

capable	of	degrading	a	large	number	of	extracellular	matrix	(ECM)-related	proteins184,	so	

we	hypothesize	that	this	stain	is	contains	ECM-related	proteins	that	are	either	being	

produced	or	not	being	degraded	in	the	absence	of	Mep1α.		

Immunoflourescent	staining	for	Mep1α	in	B6.	Apoe-/-	mice	showed	a	large	amount	

present	in	chow	diet,	or	early-stage,	lesions.	This	suggests	Mep1α	plays	an	integral	role	in	

early	lesion	formation.	The	Mep1α	stain	persisted	in	the	Western	diet,	or	late-stage,	lesions,	

indicating	that	Mep1α	plays	potential	roles	throughout	the	progression	of	atherosclerosis.		

We	observed	a	marked	increase	in	macrophage	and	neutrophil	content	within	the	

Mep1α-/-	plaques.	Because	the	neutrophil	stain	resided	exclusively	in	areas	of	necrosis,	we	

hypothesize	that	the	necrosis	we	are	observing	in	Mep1α-/-	plaques	is	due	to	dead	

neutrophils	and	not	dead	macrophages,	as	is	normally	the	case.	

We	observed	no	change	in	local	CXCL5	abundance	in	the	aortic	lesions,	however	the	

location	of	the	stain	differed	between	B6	and	Mep1α-/-	mice.	The	CXCL5	localizes	proximal	to	

the	endothelial	cells	in	B6	lesions,	while	it	exclusively	co-localizes	with	Ly6g	stain	in	Mep1α-

/-	mice.	Despite	a	similar	amount	of	CXCL5	in	aortic	lesions,	the	systemic	plasma	CXCL5	was	

significantly	decreased.	Plasma	MCP-1	was	unchanged,	while	the	local	macrophage	content	

of	the	Mep1α	lesions	was	significantly	higher.	A	marked	decrease	in	oxidative	stress	was	

also	observed	in	the	Mep1α-/-	mice.	These	findings	suggest	that	systemic	inflammation	is	
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decreased.	We	hypothesize	that	this	decrease	is	likely	due	to	the	decrease	in	expression	of	

specific	cytokines.	These	findings	indicate	that	Mep1α’s	involvement	in	the	lesion	

microenvironment	is	a	local	phenomenon	and	not	indicative	of	its	influences	on	systemic	

inflammation.		

Because	Mep1α	is	predicted	to	have	over	150	potential	substrates184,	determining	

what	the	substrates	are	in	an	atherosclerotic	setting	will	be	difficult.	Mep1α	is	cleaved	and	

can	be	used	both	intracellularly	or	as	an	extracellular	aggregate,	thus	substrates	in	early	

and	late-staged	lesions	are	potentially	numerous175.	Examples	of	possible	substrates	include	

those	that	both	directly	affect	inflammation	and	have	been	proven	to	influence	

atherosclerosis.	Notable	candidates	that	fit	these	criteria	include	IL-1β	and	IL-6R	181,37.	

Additional	candidates	consist	of	proteins	that	are	predicted	to	be	degraded	by	Mep1α,	are	

relevant	to	ECM	production,	and	influence	atherosclerosis.	These	candidates	include	

Nidogen-1185,	Cadherin-2186,	Tenascin-C187,	Syndecan-1188,189,	Syndecan-4190,191,	TGF-β137,	

Collagen-α2	(Collagen	(I))192,193,	Collagen-α1	(Collagen	(XVIII))192,193,	CTGF194,	MMP144,	and	

ADAM9195,196.	These	candidates	are	expressed	in	the	three	cell	types	with	the	largest	impact	

on	atherosclerotic	lesion	formation:	the	vascular	smooth	muscle	cells,	endothelial	cells,	and	

macrophages27.	We	hypothesize	that	part	of	Mep1α’s	influence	on	atherosclerosis	is	likely	

through	degradation	of	a	subset	of	these	proteins.	

In	summary,	we	discovered	that	Mep1α	is	a	novel	gene	that	is	negatively	affecting	

atherosclerosis.	We	have	found	that	the	plaque	environment	has	significantly	changed	

through	differences	in	the	hallmarks	of	lesion	stability	and	in	the	aortic	lesion’s	cellular	

composition.	Currently,	the	specific	cell	types	and	pathways	through	which	Mep1α	is	acting	

remains	unknown.	Despite	this,	Mep1α	poses	a	promising	potential	target	for	therapeutics	

for	prevention	of	atherosclerosis.		
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5.5	Methods	

Ethics	 statement.	 All	 procedures	were	 in	 accordance	with	 current	National	 Institutes	 of	

Health	 guidelines	 (https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-

laboratory-animals.pdf)	and	approved	by	the	institutional	Animal	Care	and	Use	Committee.	

Blood	was	drawn	 from	 the	 retro-orbital	plexus	of	overnight	 fasted	mice	with	 the	animals	

under	isoflurane	anesthesia.		

	

Animals,	 experimental	 design	 and	 procedures.	 Mep1α-/-Apoe-/-	double	 knockout	 mice	

were	 created	 through	 the	 crossing	 of	 C57BL/6J	Mep1α-/-	 mice	 to	 C57BL/6J	 Apoe-/-	 mice.	

C57BL/6J	Mep1α-/-	mice	were	provided	by	Christoph	Becker-Pauly	at	the	University	of	Kiel.	

Quantitative	PCR	and	western	blotting	were	performed	 to	 validate	double	 knockout	mice	

did	 not	 express	Mep1α	 (Figure	 5.8).	Mice	were	weaned	 at	 3	weeks	 of	 age	 onto	 a	 rodent	

chow	diet.		At	6	weeks	of	age,	the	Western	diet	mouse	group	were	started	on	a	Western	diet	

containing	21%	fat,	34.1%	sucrose,	0.15%	cholesterol,	and	19.5%	casein	by	weight	(Harlan	

Laboratories,	TD	88137)	and	maintained	on	 the	diet	 for	12	weeks.	At	6	weeks	of	age,	 the	

chow	 diet	 group	 remained	 on	 the	 rodent	 chow	 diet	 for	 12	weeks.	Mice	were	 bled	 twice:	

once	 before	 initiation	 of	 the	 Western	 diet	 and	 once	 at	 the	 end	 of	 the	 12-week	 feeding	

period.	 	 Overnight	 fasted	 mice	 were	 bled	into	 tubes	 containing	 8	 μL	 of	 0.5	 mol/L	

ethylenediaminetetraacetic	acid.	Plasma	was	prepared	and	stored	at	-80	oC	before	use.		
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Figure	5.8	Verification	of	Mep1α	knockout	in	Apoe-/-.Mep1α-/-	double	knockout	mice.	

A)	Quantitative	 PCR	 for	Mep1α	 in	 the	 kidney	 of	 B6	 (left)	 and	Mep1α-/-	 (right)	mice.	

Expression	 is	 normalized	 to	 β-actin.	 B)	Western	 blot	 for	Mep1α	 in	 the	 kidney	 of	 B6	

(left)	and	Mep1α-/-	(right)	mice.		

	

Housing	 and	 husbandry.	 Breeding	 pairs	 were	 housed	 in	 a	 cage	 of	 1	 adult	 male	 and	 2	

females,	and	litters	were	weaned	at	3	weeks	of	age	onto	a	rodent	chow	diet	in	a	cage	of	5	or	

less.	All	mice	were	housed	under	a	12-h	light/dark	cycle	at	an	ambient	temperature	of	23	°C	

and	 allowed	free	 access	 to	 water	 and	 drinking	 food.	 	 Mice	 were	 fasted	 overnight	 before	

blood	samples	were	collected.	

	



	 131	

Measurements	of	plasma	glucose	and	lipid	levels.	Plasma	glucose	was	measured	with	a	

Sigma	glucose	(HK)	assay	kit,	as	reported159.		Briefly,	6	μl	of	plasma	samples	were	incubated	

with	 150	μl	 of	 assay	 reagent	 in	 a	 96-well	 plate	 for	 30	min	 at	 30	 oC.	 	 The	 absorbance	 at	

340	nm	was	read	on	a	Molecular	Devices	(Menlo	Park,	CA)	plate	reader.		The	measurements	

of	 total	 cholesterol,	 HDL	 cholesterol,	 and	 triglyceride	 were	 performed	 as	 reported	

previously112.		Non-HDL	cholesterol	was	calculated	as	the	difference	between	total	and	HDL	

cholesterol.	

	

Quantification	of	aortic	atherosclerosis.	Atherosclerotic	lesion	sizes	in	the	aortic	root	of	

mice	 were	 measured	 as	 previously	 reported88.	 	 Briefly,	 the	 vasculature	 of	 mice	 was	

perfusion-fixed	 with	 4%	 PFA	 (paraformaldehyde)	 through	 the	 left	 ventricle	 of	 the	 heart.		

The	 aortic	 root	 and	 adjacent	 heart	 were	 harvested,	 embedded	 in	 optimal	 cutting	

temperature	 compound	 and	 cross-sectioned	 in	 10-μm	 thickness.	 	 Sections	 were	 stained	

with	oil	red	O	and	hematoxylin	and	counterstained	with	fast	green.	 	Atherosclerotic	lesion	

areas	 were	 measured	 using	 Zeiss	 AxioVision	 4.8	 software.	 	 Atherosclerotic	 lesion	 areas	

were	measured	using	Zeiss	AxioVision	4.8	software.	 	For	chow	diet	mice,	 the	aortic	 lesion	

area	from	all	sections	was	measured	and	the	summation	of	all	values	measured	was	used	as	

the	value	 for	statistical	analysis.	For	mice	 fed	Western	diet,	 the	 top	5	 largest	aortic	 lesion	

areas	 were	 averaged	 for	 each	 mouse	 and	 this	 value	 was	 used	 for	 statistical	 analysis.	

Mep1α+/+Apoe-/-	 	 (B6)	 and	 Mep1α-/-Apoe-/-	 littermates	 were	 initially	 used	 for	 lesion	

comparisons.	Because	 the	 lesion	sizes	of	 the	B6	 littermates	were	comparable	 to	 those	we	

had	previously	quantified,	non-littermate	B6	mice	were	 included	 for	 lesion	comparison	to	

increase	the	number	of	mice	used	and	increase	its	accuracy.		

	

Lesion	 Stability	 Assesment.	 Metrics	 pertaining	 to	 aortic	 lesion	 stability	were	measured	
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using	 aortic	 root	 sections	 from	 Western	 diet	 mice	 and	 were	 stained	 using	 either	

hematoxylin	and	eosin	 (H&E)	or	Masson’s	 trichrome.	The	amount	of	necrosis	 and	 fibrous	

cap	 thickness	were	assessed	using	H&E.	Quantification	of	necrotic	area	and	overall	 lesion	

area	was	quantified	by	manual	outlining	using	ImageJ.	Quantification	of	unstained	area	was	

done	using	 the	Versatile	Wand	Tool	plugin	 for	 ImageJ	 to	 select	 the	area	corresponding	 to	

the	color	of	unstained	tissue.	The	amount	of	collagen,	bone,	and	muscle	fibers	were	assessed	

using	 Masson’s	 trichrome.	 Quantification	 of	 necrotic	 area	 and	 overall	 lesion	 area	 was	

quantified	by	manual	outlining	using	ImageJ.	Quantification	of	staining	was	done	using	the	

Versatile	Wand	Tool	plugin	for	 ImageJ	to	select	 the	area	corresponding	to	the	color	of	 the	

stain	in	Masson’s	trichrome.	

	

Immunofluorescent	Staining.	Fluorescent	immunostaining	was	performed	on	frozen	

aortic	root	sections	from	Western	diet	mice.	OCT	(Tissue	Tek)	was	removed	through	

incubation	in	acetone,	then	slides	were	blocked	with	10%	normal	donkey	serum	in	

10%	Bovine	Serum	Albumin	(BSA)	in	PBS.	Slides	were	incubated	with	the	following	

primary	antibodies:	rat	anti-mouse	CD107b	(Mac3)(1:100	dilution;	BD	Pharmigen	

550292),	rat	anti-mouse	Ly6g	(Gr-1)	(1:200	dilution;	clone	RB6-8C5;	eBioscience	14-

5931-82),	goat	anti-mouse	α-smooth	muscle	cell	actin	(SMC-A)	(1:100	dilution;	Ango	

Biosciences	ARG63621),	rabbit	anti-mouse	Mep1α	(1:1000	dilution;	provided	by	

Christoph	Becker-Pauly,	University	of	Kiel),	goat	anti-mouse	LIX	(CXCL5)	(undiluted;	

R&D	Systems	LIX	ELISA	Kit	polyclonal	LIX	Conjugate	P129149).	Slides	were	

incubated	with	the	following	fluorescent	secondary	antibodies:	Goat	anti-rat	IgG	

(H+L)	(1:250	dilution;	Alexa	Fluor	488;	Cell	Signaling	4416S),	donkey	anti-goat	IgG	

(1:250	dilution;	NL557;	R&D	Systems	NL001),	donkey	anti-goat	IgG	(H+L)	(1:250	

dilution;	Alexa	Fluor	633/Cy3;	Invitrogen	A21082).	After	staining,	slides	were	
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mounted	using	Fluoromount-G	with	DAPI	(Southern	Biotech).	Images	were	taken	

using	a	Zeiss	LSM	800	confocal	microscope.	

	
Cell	Component	Analysis.	Immunofluorescent	images	were	analyzed	using	the	Fiji	package	

for	Image	J197.	Cells	positive	for	Mac3	or	SMC-A	were	counted	and	normalized	to	the	total	

number	of	DAPI	positive	cells	in	the	aortic	lesion	to	get	the	percent	positive	cells.	Ly6g	and	

CXCL5	stain	was	not	confined	to	cells,	so	the	area	of	the	stain	was	calculated	and	normalized	

to	the	aortic	lesion	area	to	get	the	percentage	positive	area.		

	

ELISA.	ELISA	assays	for	MCP-1	(R&D),	CXCL5	(R&D),	and	MDA	(TBARS	assay,	Cayman	

Chemical)	were	performed	on	blood	plasma	extracted	from	mice	fed	Western	diet	at	time	of	

sacrifice.		

	

Statistical	Analysis.	For	comparison	of	two	groups	of	continuous	variables	with	normal	

distribution	and	equal	variances,	two-tailed	unpaired	Student’s	t-tests	were	performed	with	

a	confidence	level	of	95%.	All	data	are	presented	as	the	mean	±	SEM.	
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6.1	Abstract	

Obesity	is	increasingly	prevalent	and	associated	with	increased	risk	of	developing	type	2	

diabetes,	cardiovascular	diseases,	and	cancer.	Magnetic	resonance	imaging	(MRI)	is	an	

accurate	method	for	determination	of	body	fat	volume	and	distribution.	However,	

quantifying	body	fat	from	numerous	MRI	slices	is	tedious	and	time-consuming.	Here	we	

developed	a	deep	learning-based	method	for	measuring	visceral	and	subcutaneous	fat	in	

the	abdominal	region	of	mice.	Congenic	mice	only	differ	from	C57BL/6	(B6)	Apoe	knockout	

(Apoe-/-)	mice	in	chromosome	9	that	is	replaced	by	C3H/HeJ	genome.	Male	congenic	mice	

had	lighter	body	weight	than	B6-Apoe-/-	mice	after	being	fed	14	weeks	of	Western	diet.	Axial	

and	coronal	T1-weighted	sequencing	at	1-mm-thickness	and	1-mm-gap	was	acquired	with	a	

7T	Bruker	ClinScan	scanner.	A	deep	learning	approach	was	developed	for	segmenting	

visceral	and	subcutaneous	fat	based	on	the	U-net	architecture	made	publicly	available	

through	the	open-source	ANTsRNet	library	a	growing	repository	of	well-known	neural	

networks.	The	volumes	of	subcutaneous	and	visceral	fat	measured	through	our	approach	

were	highly	comparable	with	those	from	manual	measurements.	The	Dice	score,	root-mean-

square	error	(RMSE),	and	correlation	analysis	demonstrated	the	similarity	between	two	

methods	in	quantifying	visceral	and	subcutaneous	fat.	Analysis	with	the	automated	method	

showed	significant	reductions	in	volumes	of	visceral	and	subcutaneous	fat	but	not	non-fat	

tissues			in	congenic	mice	compared	to	B6	mice.	These	results	demonstrate	the	accuracy	of	

deep	learning	in	quantification	of	abdominal	fat	and	its	significance	in	determining	body	

weight.	
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6.2	Introduction	

Obesity	is	excessive	fat	accumulation	in	the	body	to	the	extent	that	an	individual	has	

increased	risk	for	an	array	of	chronic	diseases,	including	type	2	diabetes	(T2D),	

cardiovascular	diseases,	and	cancer	198.	It	is	a	growing	epidemic	in	the	US	and	globally.	In	

2014,	37.7%	of	adults	and	17%	of	youth	aged	2–19	years	were	obese	in	the	US199,	and	650	

million	adults	aged	18	years	or	older	were	obese	worldwide	

(http://www.who.int/mediacentre/factsheets/fs311/en).	

The	diagnosis	of	obesity	has	primarily	relied	on	a	few	anthropometric	

measurements,	such	as	body	mass	index	(BMI),	waist	circumference,	or	waist-to-hip	ratio.	A	

BMI	of	≥30	kg/m2	is	considered	obese,	and	a	BMI	of	25	to	<30	kg/m2	is	defined	as	

overweight.	However,	these	indirect	measurements	neither	allows	for	distinguishing	fat	

from	skeletal	muscle	nor	distinguishing	between	visceral	and	subcutaneous	fat.	Excessive	

body	fat	rather	than	skeletal	muscle	is	related	to	both	increased	plasma	levels	of	free	fatty	

acids	and	pro-inflammatory	cytokines	as	well	as	endoplasmic	reticulum	stress,	all	of	which	

contribute	to	development	of	insulin	resistance,	type	2	diabetes,	and	atherosclerosis4.	

Central	or	abdominal	obesity	has	been	shown	to	be	more	closely	associated	with	risk	of	

coronary	artery	disease	and	type	2	diabetes5,6.	

Thus,	there	is	a	medical	demand	for	accurately	measuring	the	amount	and	

distribution	of	body	fat	to	better	understand	its	impact	on	health	and	disease.	Such	imaging	

modalities	as	magnetic	resonance	imaging	(MRI)	and	computed	tomography	(CT)	can	

clearly	distinguish	fat	from	other	tissues	and	thus	allow	for	accurate	measurement	of	fat	

and	non-fat	tissue	amounts7.	Compared	to	CT,	MRI	involves	no	ionizing	radiation	and	is	

more	efficient	in	differentiating	fat	from	non-fat	tissues200,201.	Quantification	of	body	fat	

volume	using	MRI	or	CT	involves	analysis	of	many	cross-sectional	or	longitudinal	slices	

across	the	region	of	interest.	Thus,	manual	measurement	of	fat	volume	with	MRI	or	CT	
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images	is	a	tedious	and	time-consuming	task.	To	save	time	and	also	reduce	subjective	

influences	from	observers,	several	semi-automated	algorithms	have	been	developed	for	

quantifying	body	fat8–11.	However,	nearly	all	of	the	algorithms	are	still	dependent	on	expert	

knowledge	for	tuning	the	features	of	images	and	their	accuracy	and	reliability	are	often	low.	

Due	to	recent	successes,	deep	learning	with	convolutional	neural	nets	has	gained	

popularity	in	the	literature	for	tackling	problems	in	the	areas	of	image	recognition,	

classification	and	segmentation202.	Development	of	deep	learning	algorithms	relies	on	

neural	networks,	a	computational	architecture	that	can	be	trained	with	a	large	number	of	

annotated	images	or	data,	identify	features	from	them,	and	make	predictions	of	other	data.	

ANTsRNet	is	a	collection	of	deep	learning	architecture	of	neural	networks	ported	to	the	R	

language	and	built	on	the	Keras	neural	network203.	Here,	we	applied	these	architectures	and	

other	open-source	software	packages	developed	by	the	Advanced	Normalization	Tools	team	

(which	includes	one	of	the	co-authors)	to	provide	a	comprehensive	protocol	for	

automatically	segmenting	abdominal	visceral	and	subcutaneous	fat	of	mice	on	MR	images.	

The	trained	networks	provided	publicly	can	be	directly	applied	to	these	MR	data	for	

conducting	objective	and	expedited	measurements	of	fat	volume	in	mice.	

	

6.3	Results	

6.3.1	Phenotypic	difference	in	body	weight	

Chromosome	9	congenic	mice	were	genetically	identical	to	B6-Apoe-/-	mice	except	for	the	

chromosome	9	region	(15.6–115.6	Mb),	which	was	replaced	with	the	C3H	genome95.	After	

being	fed	14	weeks	of	Western	diet,	male	congenic	mice	displayed	significantly	lighter	body	

weight	than	B6-Apoe-/-	mice	(30.67	±	1.05	vs.	38.81	±	2.66	g;	P	=	0.0021;	n	=	7	and	17,	

respectively)	(Figure	6.1).	This	result	confirmed	the	existence	of	W10q13,	a	locus	for	body	
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weight	on	mouse	chromosome	9	we	previously	mapped	in	an	intercross	derived	from	B6-	

Apoe-/-	and	BALB/cJ-	Apoe-/-	mice76.	

	

	

																	 	

Figure	6.1	Body	weight	(g)	of	male	congenic	and	B6-Apoe-/-	mice	fed	a	Western	diet.	

Results	are	means	±	SE	of	7	B6	and	17	congenic	mice	after	14	weeks	of	Western	diet.	*	

P	<	0.05	vs.	B6	mice.	

	

	

6.3.2	Manual	Measurement	of	body	fat	

MRI	scans	were	performed	within	one	week	before	mice	were	euthanized.	Noticeable	

differences	in	subcutaneous	and	visceral	fat	amounts	between	congenic	and	B6-	Apoe-/-	

mice	could	be	seen	on	MR	images	and	gross	anatomic	examination	(Figure	6.2).	To	quantify	

the	differences,	the	volumes	of	subcutaneous	and	visceral	fat	were	measured	on	4	

representative	slices	(1	slice	at	the	level	of	liver,	2	at	kidney,	1	at	pelvic)	spanning	the	

abdominal	region	for	congenic	and	B6-	Apoe-/-	mice	(4	mice	per	group).	Congenic	mice	had	a	
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subcutaneous	fat	volume	of	284.0	±	72.4	mm3/slice,	significantly	smaller	than	the	volume	of	

627.5	±	29.9	mm3/slice	in	

B6-	Apoe-/-		mice	(p	=	0.0046)	(Figure	6.3).	The	visceral	fat	volume	was	also	significantly	

smaller	in	congenic	mice	(554.6	±	70.3	mm3/slice)	than	in	B6	mice	(1045.6	±	136.4	

mm3/slice)	(p	=	0.019).	In	contrast,	non-fat	tissue	volume	was	comparable	between	

congenic	and	B6-	Apoe-/-	mice	(2603.8	±	66.6	vs.	2597.7	±	189.5	mm3/slice).	

	

	

	

Figure	6.2	Representative	MR	images	of	congenic	and	B6-Apoe-/-	mice	fed	a	Western	

diet.	Axial	MR	slices	at	the	levels	denoted	by	the	red	(A)	and	green	lines	(B)	across	the	

coronal	slice	(C).	D)	Gross	examination	of	abdominal	fat.	Top	row:	B6-Apoe-/-	mice;	

bottom	row:	congenic	mice.	

	

	

	



	 140	

	

	

Figure	6.3	Fat	and	non-fat	volumes	of	congenic	and	B6-Apoe-/-	mice	measured	

manually	using	axial	MR	slices.	Results	are	means	±	SE	of	4	mice	per	group.	*	P	=	0.012	

	

	

6.3.3	Automatic	measurement	of	visceral	and	subcutaneous	fat	

A	modified	deep	learning	approach	with	a	novel	template-based	data	augmentation	

strategy	was	employed.	The	U-net	model	was	trained	with	axial	MR	images	spanning	the	

entire	abdominal	region	of	mice.	We	then	applied	the	learned	U-net	model	to	analysis	of	60	

water-filtered	evaluation	MR	images	from	three	B6	mice	that	were	previously	quantified	

manually	to	generate	corresponding	probability	image	sets	designating	subcutaneous	and	

visceral	regions.	Automatic	segmentations	of	visceral	and	subcutaneous	fat	for	either	water-

filtered	or	unfiltered	slices	generated	from	corresponding	probability	images	were	highly	

consistent	with	the	manually	generated	segmentations	of	the	same	input	images	(Figures	

6.4	and	6.5).	These	segmentation	images	were	then	used	to	generate	the	regions	of	interest	

on	the	original	MR	slices	for	quantifying	both	visceral	and	subcutaneous	fat	volumes.		
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Figure	6.4	The	accuracy	of	deep	learning	in	deriving	the	area	containing	visceral	fat	

at	three	different	levels:	pelvic,	kidney	and	liver	on	MR	images.	Prediction	of	the	

segmentation	in	the	red	area	by	deep	learning	is	highly	consistent	with	the	input	data.	

The	red	area	is	where	visceral	fat	is	included.	Auto:	prediction	made	by	deep	learning;	

manual:	the	red	line	is	drawn	with	ImageJ	and	the	area	within	the	red	line	is	used	as	

input	for	visceral	fat.	
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Figure	6.5	The	accuracy	of	deep	learning	in	deriving	the	area	containing	

subcutaneous	fat	at	three	different	levels:	Kidney	and	liver	on	MR	images.	The	red	area	

is	where	subcutaneous	fat	is	located.	Auto:	prediction	made	by	deep	learning;	manual:	

the	red	line	is	drawn	with	ImageJ	and	the	area	outside	the	red	line	is	used	as	input	for	

subcutaneous	fat.	

	

	 Comparative	analyses	were	performed	to	verify	the	accuracy	of	the	automated	

method	through	multiple	metrics,	including	Dice’s	similarity	coefficient,	RMSE,	correlation	

coefficient,	and	real	measurement	results.	We	analyzed	43	slices	that	had	not	been	included	

in	the	original	training	set	and	calculated	Dice	coefficient	values	measuring	the	level	of	

overlap	between	the	manual	and	automatic	segmentation	results.	The	average	Dice	

coefficient	value	was	0.968	±	0.00267	(Min	=	0.919,	Max	=	0.987)	(S6.1).		
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The	volumes	of	visceral	fat	measured	from	sequential	water-filtered	slices	were	

comparable	between	the	two	measurements	(Figure	6.6A).	The	total	visceral	fat	volume	

measured	by	the	automated	method	was	also	comparable	to	the	volume	achieved	by	the	

manual	method	(5463	±	625	vs.	5331	±	642	mm3;	p	=	0.890)	(Figure	6.6B).	Correlation	

analysis	showed	an	extremely	high	agreement	in	measurements	made	by	the	two	methods	

(R2	=	0.99;	p	=	9.8E-64)	(Figure	6.6C).	The	RMSE	values	supported	this	close	correlation	

(S6.1).	The	volumes	of	subcutaneous	fat	measured	on	sequential	water-filtered	slices	were	

also	comparable	between	the	two	measurements	(Figure	6.7A).	The	total	subcutaneous	fat	

volume	from	auto-segmentation	was	also	similar	to	the	volume	obtained	from	the	manual	

method	(3571	±	141	vs.	3617	±	122	mm3;	P	=	0.533)	(Figure	6.7B).	Correlation	analysis	

shows	a	high	agreement	in	measurement	results	achieved	from	the	two	methods	(R2	=	0.96)	

(Figure	6.7C).	

The	automated	method	also	applied	to	measurement	of	fat	volumes	on	unfiltered	

MR	slices,	though	they	had	not	been	used	to	train	the	algorism.	The	Dice	coefficient	for	the	

corresponding	unfiltered	images	still	shows	a	high	degree	of	overlap	with	manual	

segmentations	with	a	value	of	0.962	±	.00467	(Min	=	0.772,	Max	=	0.990),	however	the	

overlap	is	slightly	worse	than	with	water-filtered	images.	The	total	visceral	fat	volume	was	

slightly	higher	than	the	volume	measured	manually	on	water-filtered	slices	(6232	±	834	vs.	

5331	±	642	mm3;	p	=	0.565)	(Figure	6.6).	Correlation	analysis	showed	a	high	degree	of	

correlation	between	the	results	achieved	from	the	two	measurements	(R2	=	0.95;	p	=	8.5E-

3).	The	total	subcutaneous	fat	volume	was	3606	±	117	mm3,	comparable	to	the	volume	of	

3571	±	141	mm3	measured	manually	on	water	filtered	slices	(P	=	0.816).	A	significant	

correlation	between	the	manual	measurement	made	on	water-filtered	images	and	the	

automated	measurement	made	on	unfiltered	images	was	observed	(R2	=	0.8278;	p	=	4.9E-
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24).	A	small	mismatch	in	the	measurement	results	was	observed	in	slices	acquired	at	a	

higher	location	where	the	liver	was	located,	though	the	difference	was	not	significant.	

	

	

	

Figure	6.6	Comparison	between	the	automated	and	manual	measurements	in	

quantification	of	visceral	fat.	A)	The	volumes	of	visceral	fat	on	20	sequential	axial	

slices	from	the	tail	root	(slice	1)	to	the	diaphragm	(slice	20)	of	B6-Apoe-/-	mice	

measured	by	manual	(black)	and	deep	learning	(water	filtered	=	solid;	unfiltered	=	

dashed).	B)	The	total	fat	volume	of	B6-Apoe-/-	mice	measured	by	manual	(black)	and	

deep	learning	(grey;	water	filtered	=	solid,	unfiltered	=	dashed).	C)	Correlation	analysis	

of	visceral	fat	volumes	on	water-filtered	MR	slices	measured	with	the	two	methods.	

Each	dot	represents	on	axial	MR	slice.	R2	and	P	values	are	shown	in	the	figure.	D)	
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Correlation	analysis	of	visceral	fat	volumes	on	unfiltered	MR	slices	measured	with	the	

two	methods.	

	

	

	

Figure	6.7	Comparison	between	the	automated	and	manual	measurements	in	

quantification	of	subcutaneous	fat.	A)	The	volumes	of	subcutaneous	fat	on	20	

sequential	axial	slices	from	the	tail	root	(slice	1)	to	the	diaphragm	(slice	20)	of	B6-

Apoe-/-	mice	measured	by	a	manual	(black)	or	automated	method	(water	filtered	=	

solid;	unfiltered	=	dashed).	B)	The	total	subcutaneous	fat	volume	of	B6-Apoe-/-	mice	

measured	by	a	manual	(black)	or	automatic	method	(water	filtered	=	solid;	unfiltered	

=	dashed).	C)	Correlation	analysis	of	subcutaneous	fat	volumes	on	water-filtered	MR	

slices	measured	with	the	two	methods.	Each	dot	represents	a	slice.	R2	and	P	values	are	
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shown	in	the	figure.	D)	Correlation	analysis	of	subcutaneous	fat	volumes	on	unfiltered	

MR	slices	measured	with	the	two	methods.	

	

	

6.3.4	Differences	between	congenic	and	B6-Apoe-/-	mice	in	subcutaneous	and	visceral	

fat	

The	automated	method	was	used	to	measure	fat	volumes	on	axial	water-filtered	

slices	acquired	from	congenic	and	B6-Apoe-/-	mice	(n	=	4	per	group).	Congenic	mice	had	less	

subcutaneous	and	visceral	fat	than	B6-	Apoe-/-	mice	in	most	slices	scanned	(Figure	6.8).	The	

differences	were	more	significant	in	the	lower	half	of	the	abdominal	region	for	visceral	fat.	

The	total	visceral	fat	volume	of	congenic	mice	was	reduced	by	48.8%	relative	to	the	volume	

of	B6	mice	(2652	±	465	vs.	5183	±	523	mm3;	p	=	0.011).	The	subcutaneous	fat	volume	of	

congenic	mice	was	reduced	by	37.1%	(2184	±	363	vs.	3471	±	141	mm3;	p	=	0.016).	
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Figure	6.8	Comparison	between	congenic	and	B6-Apoe-/-	mice	in	visceral	(A)	and	

subcutaneous	fat	volumes	(B)	measured	by	the	automated	method	on	water	filtered	

MR	slices.	MR	slices	span	from	the	pelvic	cavity	(slice	1)	to	the	top	of	the	liver	(slice	20).	

Results	are	means	±	SE	of	4	mice	per	group	on	each	slice.	C)	The	total	volume	of	

visceral	and	subcutaneous	fat	in	the	abdominal	region	of	congenic	and	B6-Apoe-/-	

mice.	*	P	<	0.05.	

	

6.4	Discussion	

An	increasing	prevalence	of	central	obesity	and	its	close	association	with	

cardiovascular	disease	and	type	2	diabetes	demands	a	reliable	technique	for	abdominal	fat	

quantification.	MRI	is	the	most	effective	imaging	modality	currently	used	for	detecting	the	

fat	tissue	in	vivo,	but	quantifying	fat	volume	from	numerous	slices	remains	a	challenge.	In	
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this	study,	we	developed	a	deep	learning-based	method	for	measurement	of	abdominal	fat	

using	MR	images	obtained	from	two	mouse	strains	that	differed	markedly	in	body	weight	

on	a	high	fat	diet.	Volumes	of	visceral	and	subcutaneous	fat	and	non-fat	tissues	measured	by	

the	algorithm	have	shown	a	high	degree	of	consistency	with	those	achieved	by	a	manual	

method.	Moreover,	we	have	found	that	body	fat	rather	than	non-fat	tissues	accounts	for	the	

difference	between	the	two	strains	in	body	weight.	

In	this	study,	we	trained	the	modified	U-net	network	with	37	original	MR	images	

spanning	the	abdominal	region	of	mice.	Despite	the	limited	number,	the	algorithm	has	

shown	a	better	performance	than	the	prior	best	automatic	method	for	quantification	of	

visceral	and	subcutaneous	fat	using	MR	images11.	We	calculated	the	Dice	coefficient	value	to	

determine	the	overlap	between	the	new	algorithm	and	the	manual	method	in	the	

measurement	of	visceral	fat	with	the	same	set	of	MRI	slices.	Our	results	have	shown	a	high	

similarity	between	the	two	methods	in	quantifying	visceral	fat,	by	achieving	an	average	Dice	

value	of	0.968.	Pearson’s	correlation	analysis	was	performed	to	evaluate	the	consistency	of	

subcutaneous	and	visceral	fat	volumes	measured	by	the	two	methods.	The	correlation	

coefficient	of	the	values	obtained	from	the	two	methods	was	0.99	for	visceral	fat	

quantification	and	0.96	for	subcutaneous	fat	quantification	made	on	water-filtered	MR	

images.	Correlation	may	not	be	a	perfect	measure	of	similarity	because	a	predictor	that	

consistently	predicts	half	of	the	actual	weight,	would	yield	a	correlation	coefficient	similar	

to	the	one	when	the	predictor	exactly	predicts	the	actual	weight.	In	contrast,	the	root	mean	

square	error	(RMSE)	does	not	suffer	from	this	caveat.	The	small	differences	between	values	

from	the	two	methods	demonstrate	the	effectiveness	of	deep	learning	in	quantifying	

abdominal	fat	(S6.1).	To	evaluate	performances	of	the	algorithm	at	different	segmentation	

locations,	we	compared	the	volume	values	of	visceral	and	subcutaneous		fat	on	each	of	the	

sequential	MRI	slices	as	well	as	the	total	fat	volumes	obtained	from	the	two	methods.	The	
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automatically	obtained	fat	volumes	have	shown	a	high	consistency	with	those	obtained	

manually.	

We	also	applied	the	algorithm	to	the	quantification	of	visceral	and	subcutaneous	fat	

volumes	on	unfiltered	MR	images	acquired	from	mice.	Though	the	network	had	not	been	

trained	with	unfiltered	MR	images,	the	results	achieved	still	showed	a	high	level	of	

consistency	with	those	achieved	manually	for	both	visceral	and	subcutaneous	fat.	

Automated	segmented	images	had	an	average	Dice	coefficient	of	0.962	compared	to	

manually-generated	counterparts.	The	correlation	coefficient	of	the	fat	volume	results	on	

individual	slices	was	0.95	for	visceral	fat	and	

0.83	for	subcutaneous	fat.	However,	we	did	find	that	the	total	visceral	fat	volume	had	a	

slightly	larger	value	than	the	manual	measurement	and	the	correlation	coefficients	of	the	fat	

volume	results	with	respect	to	the	comparison	between	the	two	measurement	methods	

were	smaller	relative	to	those	achieved	from	water	filtered	MR	images.	A	possible	

explanation	for	the	gap	in	fat	volume	quantification	is	that	the	algorithm	had	not	been	

trained	with	unfiltered	MR	images,	which	have	a	less	clear	contrast	between	the	fat	and	

non-fat	tissue	compared	to	water	filtered	MR	images.	It’s	also	noteworthy	that	the	

automated	and	manual	measurement	results	were	not	made	from	the	same	MR	images	but	

the	images	from	two	separate	scans	at	comparable	locations.	

We	observed	that	adipose	tissue	rather	than	non-fat	tissues	underlies	the	difference	

between	congenic	and	B6-Apoe-/-	mice	in	body	weight	on	the	Western	diet.	Indeed,	congenic	

mice	had	a	~50%	reduction	in	visceral	fat	volume	and	~40%	reduction	in	subcutaneous	fat	

compared	to	the	B6	mice	but	there	was	no	reduction	in	non-fat	tissue	volume.	The	congenic	

mice	were	constructed	to	verify	a	locus	initially	mapped	in	an	intercross	between	B6	and	

C3H	Apoe-/-	mice	and	then	replicated	in	at	least	four	independent	crosses75,79,79,83.	The	

congenic	strain	was	highly	resistant	to	atherosclerosis95.	As	obesity	is	a	major	risk	for	
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atherosclerosis,	the	reduction	in	abdominal	fat	could	contribute	to	the	resistance	of	

congenic	mice	to	atherosclerosis.	Because	congenic	mice	had	reductions	in	both	visceral	

and	subcutaneous	fat,	this	result	does	not	allow	for	judging	which	type	of	fat	might	

contribute	to	their	resistance	to	atherosclerosis.	

In	addition,	we	have	found	that	the	pattern	of	fat	distribution	differed	in	the	two	

strains:	visceral	fat	mostly	accumulated	in	the	lower	half	of	the	abdomen	in	B6-Apoe-/-	mice	

whereas	the	visceral	fat	of	congenic	mice	more	evenly	distributed	in	longitudinal	direction.	

B6-Apoe-/-	mice	showed	much	more	subcutaneous	fat	accumulation	in	the	distal	end	of	the	

abdomen	compared	to	congenic	mice.	

In	summary,	the	use	of	deep	learning	can	accurately	quantify	visceral	and	

subcutaneous	fat	of	mice	on	MR	images.	The	next	logical	step	is	to	determine	whether	this	

new	approach	can	be	applied	to	humans.	Nevertheless,	because	of	the	anatomical	and	

biochemical	similarities	between	the	mouse	and	the	human,	we	are	confident	that	this	

algorithm	should	be	applicable	to	quantification	of	abdominal	fat	in	humans.	

	

	

6.5	Methods	

Ethics	statement	

All	procedures	were	performed	in	accordance	with	the	current	National	Institutes	of	

Health	guidelines		(https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-

laboratory-		animals.pdf)	and	approved	by	the	Institutional	Animal	Care	and	Use	Committee	

of	the	University	of	Virginia	(Assurance	#A3245-01,	Animal	Protocol	#3109).	

	

Animals	
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Apoe	knockout	(Apoe-/-)	mice	with	a	C57BL/6	(B6)	genetic	background	were	

purchased	from	the	Jackson	Laboratory.	Congenic	mice,	which	only	differ	from	B6-	Apoe-/-	

mice	in	chromosome	9	region	from	15.6	to	115.6	Mb,	were	constructed	using	the	classical	

congenic	breeding	method	as	previously	described95.	The	donor	chromosome	9	region	was	

derived	from	C3H/HeJ	(C3H)	mice.	Mice	were	fed	14	weeks	of	Western	diet	(TD88137,	

Envigo),	stating	at	6	weeks	of	age.	

	

Magnetic	resonance	imaging	(MRI)	

MRI	for	the	abdominal	region,	which	extended	from	the	top	of	the	diaphragm	to	the	

bottom	of	the	pelvic	cavity,	was	performed	on	a	7T	Clinscan	system	(Bruker,	Ettlingen,	

Germany).	Mice	were	anesthetized	under	isoflurane	inhalation	during	imaging	and	

respiratory	motion	monitored	with	an	MR-compatible	gating	system	for	mice	(SA	

Instruments,	Inc.,	Stony	Brook,	NY).	Axial	and	coronal	T1-weighted	sequencing	(20	axial	

and	18	coronal	slices;	axial	voxel	size	=	0.156×0.156×1.000	mm;	coronal	voxel	size	=	

0.430×0.430×1.000	mm)	at	1-mm-	thickness	and	1-mm-gap	was	acquired.	Axial	2D	images	

were	acquired	once	with	and	once	without	water	filtration,	and	coronal	imaging	was	

performed	only	under	the	water	filtration	mode.	

	

Manual	measurement	

The	volumes	of	visceral	and	subcutaneous	fat	as	well	as	non-fat	tissues	were	

quantified	on	water-filtered	axial	slices	using	the	auto-thresholding	function	of	the	Fiji	

package	for	ImageJ197.	Briefly,	MR	images	(all	35	x	35	mm;	Pixel	width/height	=	0.182291;	

Voxel	depth	=	2.0)	were	converted	to	binary	ones	with	fat	being	white	and	non-fat	black,	

and	the	“Analyze	Particles”	function	was	then	used	to	determine	the	total	white	area	(mm2)	

on	the	binary	images.	The	volume	of	fat	(mm3)	was	obtained	by	multiplying	each	slice’s	
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total	area	(mm2)	by	2	(1-mm	slice	thickness	+1-mm	interslice	gap),	and	the	total	fat	volume	

was	the	sum	of	the	fat	volumes	measured	from	all	consecutive	slices.	The	manual	

measurement	results	were	used	as	the	gold	standard	for	comparisons	with	the	automated	

measurement	results.	

	

Automatic		measurement	

The	automated	method	for	body	fat	quantification	consists	of	steps,	including	

training	data	preparation,	template-based	data	augmentation,	and	fat	quantitation.	The	

complete	flowchart	of	the	process	is	shown	in	Figure	6.9.	
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Figure	6.9	Flowchart	illustrating	the	major	steps	employed	in	segmentation	and	

quantification	of	subcutaneous	and	visceral	fat	in	MR	images.	MR	images	were	first	

converted	to	a	format	compatible	with	the	ANTs	software	packages	(NifTI;	.nii.gz),	and	

then	processed	for	denoising	and	bias	correction.	37	representative	original	MR	

images	and	their	corresponding	segmentation	images	from	B6	mice	and	congenic	mice	

were	used	for	establishing	the	core	training	dataset.	A	novel	data	augmentation	

strategy	was	used	to	increase	the	number	of	training	images	from	37	to	60,552,	which	

were	used	to	train	a	U-net-based	architecture.	A	testing	dataset	consisting	of	60	MR	

images	from	3	B6	mice	was	run	through	the	model	to	test	for	accuracy	of	the	method.	
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Training	data	preparation	

Original	MR	images	were	converted	to	the	Nifti	format	and	underwent	denoising204	

and	bias	correction205	as	preprocessing	steps	to	improve	image	quality.	The	fat	tissue	

compartment	was	segmented	into	subcutaneous	and	visceral	fat	based	on	the	peritoneal	

wall	on	each	image.	Visceral	fat	is	the	fat	within	the	contour	of	the	abdominal	wall,	and	

subcutaneous	fat	is	the	fat	within	the	abdominal	wall	covering	the	abdominal	muscles.	

Manual	labeling	was	performed	using	the	open	source	segmentation	tool	ITK-SNAP206.	37	

water-filtered	2D	MR	images	from	5	B6	and	3	congenic	mice	were	each	manually	segmented	

with	fully	annotated	area	for	visceral	fat	and	area	for	subcutaneous	fat	and	these	images	

formed	the	core	training	data	set.	Of	them,	26	images	were	obtained	from	B6	mice	and	11	

from	congenic	mice.	These	2D	images	had	a	dimension	of	35	x	35	x	1	mm	with	a	1mm	gap	

between	consecutive	images.	They	were	selected	as	a	diverse	and	representative	set	of	

images	spanning	the	entire	abdominal	region	and	varying	in	intensity	and	fat	amount.	

A	composite	binary	mask	template	was	then	generated	from	the	segmentation	maps	

of	the	core	training	set	using	the	ANTs	toolkit	(https://github.com/ANTsX/ANTs)207.	The	

use	of	the	manually	edited	binary	masks	over	the	original	MR	images	is	due	to	the	lack	of	

correspondence	of	internal	structures	within	the	template	cohort	and	our	interest	in	

capturing	the	global	shape	variation	between	the	visceral	and	subcutaneous	fat	regions	for	

the	purposes	of	data	augmentation	(explained	in	the	next	sub-section).	

	

Template-based	data	augmentation	

The	need	for	large	training	data	sets	is	a	well-known	limitation	associated	with	deep	

learning	algorithms208.	Whereas	the	architectures	developed	for	such	tasks	as	the	ImageNet	

competition	have	access	to	millions	of	annotated	images,	such	data	access	is	not	always	

available	and	such	is	typically	the	case	in	medical	imaging.	In	order	to	achieve	data	set	sizes	
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necessary	for	learning	functional	models,	various	data	augmentation	strategies	have	been	

employed,	including	application	of	intensity	transformations,	such	as	brightening	and	

enhanced	contrast,	and	simple	spatial	transformations,	such	as	arbitrary	rotations	and	

translations.	Regarding	the	latter,	such	transformations	are	not	ideal	as	they	might	not	

reflect	what	is	typically	seen	in	medical	images	and	might	not	sufficiently	sample	the	shape-

space	of	the	population	currently	being	studied	for	generalizability.	

In	this	work,	we	used	a	template-based	approach	whereby	image	data	sampled	from	

the	population	was	used	to	construct	a	representative	template	that	was	optimal	in	terms	of	

both	shape	and	intensity207.	In	addition	to	the	representative	template,	this	template-

building	process	yields	the	transformations	to/from	each	individual	image	to	the	template	

space	(Figure	6.10).	This	permits	a	propagation	of	the	training	data	to	the	space	of	each	

individual	image.	In	the	simplest	case,	the	training	data	was	used	to	construct	the	template	

and	then	each	individual	training	data	was	propagated	to	the	space	of	every	other	

individual	training	data.	In	this	way,	a	training	data	set	of	size	N	can	be	expanded	to	a	data	

set	of	size	N2.	A	more	complicated	use	case	could	build	a	template	from	M	data	sets	(where	

one	would	expect	M	>	N).	Transformations	between	the	training	data	and	the	template	

could	then	be	used	to	propagate	the	training	data	to	the	spaces	of	the	individual	members	of	

the	template-generating	data	for	an	augmented	data	set	size	of	M	x	N.	

We	used	37	MR	images	thus	permitting	372	=	1,369	possible	deformable	shapes	

which	comprise	the	first	level	of	augmented	data	that	can	be	further	augmented	by	more	

conventional	strategies	(e.g.,	brightness	transformations,	translations,	etc.).	The	second	

level	of	augmented	data	created	two	horizontal	flip	images	per	level	one	image	as	well	as	36	

rotation	images	per	flip	image.	In	this	way	we	augmented	the	1,369	first-level	images	to	

98,568	second-level	images	(1,369	*	2	*	36).	
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We	implemented	tailored	batch	generators	to	implement	this	data	augmentation	

strategy	and	to	generate	the	data	batches	per	epoch	on	the	fly.	Although	slower,	this	avoids	

the	problem	of	loading	all	training	data	in	memory	during	learning.	Specific	parameters	

from	training	can	be	found	in	the	scripts	we	wrote	for	the	project	available	in	our	

bitbucket.org	repository	[https://bitbucket.org/atg3qz/unet_fat_mri/src].	

	

	

	

																			 	

Figure	6.10	Example	MR	images	showing	data	augmentation	strategy.	We	introduced	

a	novel	data	augmentation	strategy	for	training	through	ANTs-based	template	
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construction.	A	template	was	created	from	the	training	data	segmentation	images	

where	the	red	area	includes	visceral	fat	and	the	foreground	designates	regions	of	

subcutaneous	fat.	37	images	were	used	to	create	such	a	template	that	permitting	372	

=	1369	possible	deformable	shapes	which	are	further	augmented	by	random	

horizontal	flipping	and	randomized	rotation.	

	

	

	

U-net	for	segmentation	of	abdominal	fat	in	MRI	

U-net	is	a	well-known	convolutional	neural	network	architecture	for	voxelwise	

classification	labeling	[https://arxiv.org/abs/1505.04597].	It	has	been	employed	in	various	

segmentation	applications	such	as	MRI	of	the	knee209,	brain	tumors	in	PET	imaging210,	and	

histology	images211.	We	combined	U-net	with	our	template-based	data	augmentation	

scheme	described	in	the	previous	section	for	segmenting	abdominal	fat	and	subsequent	

quantification.	

	

ANTsRNet,	an	open-source	repository	for	deep	learning	architectures	

We	also	introduced	ANTsRNet	[https://github.com/ntustison/ANTsRNet],	a	

collection	of	well-known	deep	learning	architectures	ported	to	the	R	language.	ANTsRNet	is	

built	using	the	Keras	neural	network	library203	(available	through	R)	and	is	highly	

integrated	with	the	ANTsR	package,	the	R	interface	of	the	ANTs	toolkit.	Consistent	with	

other	ANTs-based	software	offerings,	ongoing	development	is	currently	carried	out	on	

GitHub	using	a	well-commented	coding	style,	thorough	documentation,	and	self-contained	

working	examples.	One	such	architecture	is	the	well-known	U-net	architecture	
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[https://arxiv.org/abs/1505.04597]	where	we	have	replaced	the	cross-entropy	loss	

function	with	a	multi-label	Dice	function	based	on	previous	work	

[http://hdl.handle.net/10380/3141].	

Input	and	testing	nifti	images	are	all	of	size	192	×	192,	as	is	the	template,	such	that	

no	resampling	is	required.	I/O	from	the	disk	to	the	ANTsRNet	software	is	handled	by	

antsReadImage/antsWriteImage	functions	available	as	part	of	ANTsR.	During	data	

augmentation,	the	antsApplyTransforms	program	was	used	to	transform	a	randomly	

chosen	image/segmentation	mask	pair	to	a	randomly	chosen	target	in	the	training	cohort.	

During	data	augmentation,	a	digital	“coin	toss”	was	used	to	randomly	flip	the	

image/segmentation	pair	in	a	left-right	direction	followed	by	a	randomly	chosen	rotation	

angle	between	0	and	359	degrees.	These	latter	operations	were	handled	by	the	magick	

package	in	R.	Specific	parameters	for	the	2-D	U-net	architecture	for	both	models	are	as	

follows:	

• Adam	optimization:	

o learning	rate	=	0.0001.	

o optimization	function:	Dice	coefficient.	

• Number	of	epochs:	40.	

• Convolution	layers:	

o -kernel	size:	3×3.	

o -activation:	rectified	linear	units	(ReLU).	

o -number	of	filters:	doubled	at	every	layer	starting	with	N	=	32.	

• Max	pooling	layers:	

o size:	2×2.	

o stride	length:	2×2.	

• Upsampling/transposed	convolution	(i.e.,	deconvolution)	layers:	
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o kernel	size:	2×2.	

o stride	length:	2×2.	

o activation:	rectified	linear	units	(ReLU).	

Training	took	approximately	1.5	hours.	After	model	construction,	prediction	per	

image	(after	preprocessing)	takes	<	1	second	per	image.	Both	model	construction	and	

prediction	utilized	a	NVIDIA	Titan	Xp	GPU.	Both	training	and	prediction	are	handled	by	

custom-built	R	scripts	available	as	part	of	the	Bitbucket	repository	associated	with	this	

work.	

	

Fat	quantification	with	segmented	images	

The	novel	segmentation	images	were	evaluated	for	accuracy	for	quantitation	of	

visceral	and	subcutaneous	fat	using	the	Fiji	package.	To	measure	visceral	fat,	the	

segmentation	image	was	used	as	a	template	to	generate	a	contour,	which	was	then	

overlapped	onto	the	original	MR	image	to	outline	the	region	containing	visceral	fat	(Figure	

6.11).	The	outlined	area	was	made	binary	with	visceral	fat	to	the	black	color	and	other	

components	to	white.	The	“Create	Selection”	tool	was	then	used	to	generate	a	contour	

perfectly	outlining	the	visceral	fat	component.	The	‘Restore	Selection”	tool	applied	to	place	

this	selection	onto	the	original	MR	image,	giving	an	exact	outline	of	the	visceral	component	

in	the	image.	This	selected	area	was	copied	and	pasted	to	a	new	image	(all	images	35	x	35	

mm;	Pixel	width/height	=	0.182291;	Voxel	depth	=	2.0),	and	the	area	of	the	image	was	

measured	in	the	same	manner	as	described	above	under	“Manual	measurement”.	To	

quantify	subcutaneous	fat,	the	“Make	Inverse”	tool	was	used	to	select	the	inverse	of	the	

visceral	component	and	the	selected	area	was	again	pasted	to	a	new	image.	
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Figure	6.11	Flowchart	showing	major	steps	in	automated	quantification	of	visceral	

and	subcutaneous	fat.	Images	were	created	using	the	Fiji	package	of	ImageJ.	All	MR	

images	were	set	to	the	dimensions	of	35x35	mm,	a	pixel	width	and	height	of	0.182291,	

and	a	voxel	depth	of	2.	1)	Make	the	visceral	segmentation	image	binary	(outside	=	

black,	visceral	component	=	white),	and	use	the	“Create	Selection”	tool	to	generate	a	

selection	perfectly	outlining	the	visceral	component.	2)	Use	the	‘Restore	Selection”	tool	

to	place	this	selection	on	the	original	MR	image,	giving	an	exact	outline	of	the	visceral	

component.	3)	Copy	and	paste	this	selected	area	to	a	new	image,	making	sure	it	is	the	

same	dimensions	as	the	original	MR	image	to	ensure	accurate	quantification	(all	

images	35	x	35	mm;	Pixel	width/height	=	0.182291;	Voxel	depth	=	2.0).	4)	Threshold	

the	image	to	make	a	binary	image	in	which	the	fat	is	one	color	and	everything	else	is	
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another.	5)	Quantify	this	new	image	by	using	the	“Analyze	Particles”	tool.	6)	On	the	

original	MR	image	with	the	visceral	fat	component	selected	(from	2),	use	the	“Make	

Inverse”	tool	to	obtain	the	subcutaneous	fat	component.	7–9)	Repeat	the	same	

quantification	process	as	seen	in	3–5.	

	

Statistical	analysis	

Comparisons	were	made	between	the	automated	and	manual	methods	in	

quantification	of	visceral	and	subcutaneous	fat	as	well	as	between	B6	and	congenic	mice	for	

differences	in	body	weight	and	fat	volume.	The	Dice	score,	generated	from	the	ANTs	Utilizes	

Software	package,	and	the	root-mean-square	error	(RMSE)	were	used	for	comparing	the	

similarity	of	the	values	of	fat	volumes	measured	by	the	manual	and	automatic	methods	in	

the	same	set	of	MR	images.	Correlation	analysis	was	performed	to	determine	the	correlation	

of	visceral	or	subcutaneous	fat	volumes	measured	by	the	two	methods.	For	comparisons	of	

fat	volumes	between	congenic	and	control	mice	at	multiple	slices,	two-way	ANOVA	was	

conducted.	When	the	F	value	was	significant	(P	<	0.05),	Student’s	t-test	was	performed	to	

determine	differences	between	the	groups.	T-test	was	also	used	to	determine	the	difference	

in	body	weight	between	the	2	groups	of	mice.	Differences	were	considered	statistically	

significant	at	P	<	0.05.		
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7.1	Abstract	

Obesity	is	a	growing	global	epidemic	and	associated	with	risk	for	an	array	of	

diseases,	particularly	metabolic	syndrome	and	type	2	diabetes.		Computed	tomography	(CT)	

is	one	of	the	most	accurate	methods	for	quantification	of	body	fat.		Here	we	developed	a	

deep	learning-based	algorithm	using	the	U-Net	architecture	to	measure	abdominal	fat	on	CT	

images.	Sequential	CT	images	spanning	the	abdominal	region	of	seven	subjects	were	

manually	segmented	for	subcutaneous	fat	(SAT)	and	the	abdominal	cavity.	The	resulting	

segmentation	maps	were	augmented	using	a	template-based	data	augmentation	approach	

to	create	a	large	pool	of	data	for	network	training.		Network	performance	was	evaluated	on	

both	sequential	CT	slices	from	three	subjects	and	randomly	selected	CT	images	from	the	

upper,	central,	and	lower	abdominal	regions	of	100	subjects	through	comparison	with	

human	rater	assessments.		Both	subcutaneous	and	visceral	fat	volumes	achieved	by	the	two	

methods	were	highly	comparable	with	an	overall	Dice	similarity	coefficient	of	0.95.		

Pearson’s	correlation	coefficients	between	the	two	methods	were	0.99	and	0.98	and	the	

overall	percent	residual	squared	error	(RSE)	were	6.3%	and	12.9%	for	subcutaneous	and	

visceral	fat,	respectively.		For	the	central	abdominal	region,	the	correlation	coefficient	for	

visceral	fat	reached	0.99	and	percent	RSE	was	down	to	8.5%.		Manual	segmentation	and	

quantification	of	subcutaneous	and	visceral	fat	on	271	CT	slices	took	22	hours	while	

automated	segmentation	took	~5	min.		Our	data	demonstrates	the	accuracy	and	efficiency	

of	deep	learning	in	quantifying	abdominal	fat,	particularly	in	the	central	abdominal	region	

containing	more	fat.			

7.2	Introduction	

Obesity,	defined	as	excessive	fat	accumulation	in	the	body,	is	a	growing	global	

epidemic	with	particular	impact	on	the	US	population	which	has	experienced	a	marked	

increase	in	obesity	levels	over	the	last	50	years199,212.		It	is	associated	with	increased	risk	for	
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a	variety	of	chronic	diseases,	including	metabolic	syndrome,	type	2	diabetes,	cardiovascular	

diseases,	and	cancer198.		Anthropometric	measurements	such	as	body	mass	index	(BMI),	

waist	circumference,	and	waist-to-hip	ratio	are	used	to	diagnose	obesity.		However	these	

indirect	measurements	do	not	account	for	weight	from	skeletal	muscle,	nor	do	they	

distinguish	between	differential	fat	distribution	such	as	visceral	and	subcutaneous	fat.		Fat	

accumulation	in	the	abdominal	region	has	been	shown	to	be	more	closely	associated	with	

increased	risk	of	coronary	artery	disease	and	type	2	diabetes4,5(p).			

Computed	tomography	(CT)	is	an	imaging	modality	that	can	easily	distinguish	fat	

from	other	tissues	and	thus	allow	for	accurate	measurement	of	fat	and	non-fat	tissue	

amounts	in	the	body6.		Quantification	of	body	fat	volume	using	CT	involves	analysis	of	many	

cross-sectional	slices	across	the	region	of	interest	so	manual	measurement	of	fat	volume	

with	this	modality	is	a	laborious	task.		To	simultaneously	expedite	the	process	and	reduce	

subjective	influences	from	observers,	several	semi-automated	algorithms	have	been	

developed	for	quantifying	body	fat7–10.		However,	nearly	all	of	the	algorithms	are	still	

dependent	on	expert	knowledge	for	tuning	the	features	of	images	and	their	accuracy	and	

reliability	are	often	low.	

Deep	learning	using	convolutional	neural	networks	has	gained	recent	popularity	in	

the	literature	for	tackling	problems	in	a	multitude	of	areas,	including	image	recognition,	

classification	and	segmentation202.		Development	of	deep	learning	algorithms	relies	on	large	

cohorts	of	training	data	to	identify	important	features	of	targets	for	predictions	in	new	data.		

ANTsRNet	is	a	collection	of	deep	learning	network	architectures	ported	to	the	R	language	

and	built	on	the	Keras	framework213.		We	have	previously	applied	ANTsRNet	and	other	

open-source	software	packages	developed	by	the	Advanced	Normalization	Tools	team	to	

provide	a	comprehensive	protocol	for	automatically	segmenting	abdominal	fat	using	mouse	
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MR	images214.		Here,	we	tested	the	hypothesis	that	deep	learning	could	accurately	quantify	

abdominal	fat	on	human	CT	images.			

	

	

7.3	Results	

7.3.1	U-net-Based	Deep	Learning	for	Subcutaneous	Fat	Selection.		

A	modified	deep	learning	approach	with	a	template-based	data	augmentation	

strategy	was	employed	to	measure	abdominal	fat	volume	on	CT	images.		Under	this	

modified	approach,	CT	images	from	seven	patients	were	used	to	construct	a	representative	

template	that	allows	each	individual	training	image	to	be	propagated	to	the	space	of	every	

other	individual	training	image	so	as	to	expand	a	training	data	set	of	size	N	to	N2.	The	U-net	

model	was	trained	with	613	axial	CT	images	from	the	seven	full	scans	covering	the	entire	

abdominal	region.		We	then	validated	the	learned	U-net	model	by	analyzing	271	images	

from	three	separate	full	scans	and	300	images	randomly	selected	representing	the	upper,	

middle	and	lower	abdominal	regions	of	100	subjects	that	were	not	used	in	the	training.		The	

U-net-based	algorithm	successfully	generated	the	selections	designating	the	subcutaneous	

fat	and	abdominal	cavity	regions	that	were	highly	consistent	with	the	manually	generated	

selections	created	for	the	same	input	images	(Figure	7.1).		These	area	selections	were	then	

used	to	quantify	both	subcutaneous	and	visceral	fat	volumes.			

	 We	calculated	Dice	coefficient	values	that	measure	the	level	of	overlap	between	the	

manual	and	automatic	segmentation	images.		The	overall	average	Dice	coefficient	value	was	

0.94,	suggesting	a	high	degree	of	similarity	in	selection	shape	and	area	(min	Dice	=	0.80;	

max	Dice	=	0.98)	(see	S7.1).		The	average	Dice	coefficient	at	each	individual	slice	also	

showed	a	high	degree	of	similarity	between	manual	and	automatic	segmentation	images	

across	the	entire	abdominal	scan.	
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Figure	7.1	Deep	learning	properly	generates	SAT	segmentation	images	in	testing	CTs	

at	different	levels.		Representative	images	taken	every	20	slices	from	a	testing	subject	

show	consistency	between	the	manual	and	automatic	methods	in	segmenting	SAT	on	

CT	images.	The	red	area	denotes	the	SAT	segmentation	image	that	will	be	used	for	

quantification	and	the	green	area	denotes	quantified	VAT	after	image	thresholding.	

Predicted:	segmentation	made	by	deep	learning.		

	

	

7.3.2	Comparison	of	Fat	Volume	Measured	from	Manual	and	Deep	Learning-Based	

Methods.		

Initial	comparison	was	made	on	measurements	from	consecutive	CT	slices	from	

three	test	subjects	for	the	measurement	of	SAT	volumes.		As	shown	in	Figure	7.2a,	fat	
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volumes	measured	on	each	sequential	slice	of	all	3	subjects	were	comparable	between	the	

two	methods.		For	each	of	the	three	individual	scans	used	for	testing	the	model,	the	total	

SAT	volume	was	comparable	between	the	two	methods	(Figure	7.2b).		The	difference	for	

scan	1	was	59,155	mm3	or	0.97%	of	the	total	volume,	the	difference	for	scan	2	was	692,520	

mm3	or	5.4%,	and	the	difference	for	scans	3	was	214,197	mm3	or	2.1%	of	the	total	volume.		

The	average	difference	was	28,252	mm3	or	3.0%	of	the	total	volume.		Pearson’s	correlation	

coefficient	suggests	a	high	agreement	in	fat	volumes	measured	on	265	slices	by	the	two	

methods	(Figure	7.2c).	The	residual,	which	is	the	difference	between	the	manual	and	

automated	measurements,	was	also	determined	at	each	sequential	slice	for	the	3	test	

subjects.	The	average	percentage	residuals	for	SAT	fluctuated	between	0~10%	among	all	

individual	slices	(Figure	7.2d).			

	 The	volumes	of	VAT	(visceral	fat)	on	sequential	slices	were	also	comparable	

between	the	two	methods	for	all	three	test	scans	(Figure	7.3a).		The	difference	between	the	

total	VAT	volumes	achieved	from	the	auto-segmentation	and	that	from	the	manual	

segmentation	was	also	small	(Figure	7.3b).		The	difference	for	scan	1	was	59,155	mm3	or	

2.7%	of	the	total	volume,	the	difference	for	scan	2	was	692,520	mm3	or	9.3%	of	the	volume,	

and	the	difference	for	scans	3	was	214,197	mm3	or	5.3%	of	the	total	volume.		The	average	

difference	between	fat	volumes	achieved	from	the	two	methods	was	282,521	mm3,	which	

accounts	for	6.2%	of	the	average	visceral	fat	volume.		Pearson’s	correlation	analysis	showed	

a	high	agreement	in	measurement	results	from	the	two	methods	(Figure	7.3c).		The	

average	percentage	residuals	between	the	two	methods	for	VAT	measurement	fluctuated	

mostly	lower	than	20%	among	individual	slices,	although	a	few	residuals	are	above	30%	at	

the	upper	abdominal	region	(Figure	7.3d).				

	 Performance	of	the	deep	learning-based	algorithm	was	further	validated	with	CT	

images	from	additional	100	subjects	randomly	selected	from	the	University’s	PACS	
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database.		One	image	was	randomly	chosen	from	each	of	the	upper,	middle	and	lower	

abdominal	region	of	an	individual.		For	12	CT	slices,	quantification	of	adipose	tissue	

compartments	was	impossible	with	the	automated	method	because	subcutaneous	fat	area	

was	discontinuous	or	the	muscle	layer	was	incomplete.	The	image	training	did	not	include	

images	in	which	the	SAT	was	discontinuous,	and	therefore	the	algorithm	assumes	a	

continuous	SAT	layer.	When	a	continuous	SAT	layer	is	not	present,	it	artificially	creates	one	

and	over-represents	the	area	in	which	the	SAT	is	predicted	to	reside.		For	the	rest	of	the	288	

slices,	the	mean	Dice	value	was	0.95	(minimum	Dice	=	0.91,	maximum	Dice	=	0.97)	(Table	

7.1).		Correlation	analysis	showed	a	high	degree	of	agreement	between	the	two	methods	in	

measurements	of	SAT	(0.99)	and	VAT	(0.99).	The	random	squared	error	was	8.0%	for	SAT	

and	was	11.3%	for	VAT.		
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Figure	7.2	Comparison	between	the	predicted	and	manual	segmentation	images	in	

quantification	of	SAT.	Images	segmented	using	the	predicted	segmentation	image	can	

adequately	quantify	SAT	volumes.	A)	Comparison	of	SAT	volumes	from	images	using	
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manual	or	predicted	segmented	images	for	SAT	quantification,	from	the	top	(slice	1)	to	

the	bottom	of	the	abdominal	cavity	in	three	independent	CT	scans	(black	=	scan	1,	red	

=	scan	2,	green	=	scan	3;	solid	=	manual,	hollow	=	predicted).	B)	Comparison	between	

SAT	volumes	from	manual	or	predicted	segmentations	(black	=	scan	1,	red	=	scan	2,	

green	=	scan	3;	solid	=	manual,	hollow	=	predicted).	C)	Linear	regression	analysis	of	fat	

volumes	from	manual	or	predicted	segmentation	images	(R2	=	0.991;	p	=	1.369e-269).	

Each	data	point	represents	one	CT	slice.	D)	The	percent	residual	at	each	sequential	CT	

slice	covering	the	abdominal	region	for	the	3	test	subjects.		It	reflects	the	difference	

between	measurements	of	SAT	from	manual	and	predicted	segmentations.	Results	are	

means	±	SE	for	271	consecutive	images	from	3	subjects.	
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Figure	7.3	Automated	segmentation	images	can	adequately	quantify	both	slice-

specific	and	total	VAT	volume.	A)	Comparison	of	VAT	volumes	calculated	from	manual	

and	automated	segmentation	images	from	the	lung	(slice	1)	to	the	end	of	the	
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abdominal	cavity	in	three	independent	CT	scans	(black	=	scan	1,	red	=	scan	2,	green	=	

scan	3;	solid	=	manual,	hollow	=	automated).	B)	Comparison	between	total	VAT	

volumes	(black	=	scan	1,	red	=	scan	2,	green	=	scan	3;	solid	=	manual,	hollow	=	

predicted).	C)	Linear	regression	analysis	of	fat	volumes	(R2	=	0.980;	p	=	1.506e-226).	

Each	data	point	represents	one	CT	slice	image.	D)	The	percent	residual	at	each	

sequential	CT	slice	for	VAT.		Data	is	the	average	percentage	residual	±	SE	for	271	slices	

from	3	CT	scans.	

	

Table	7.1:	Prediction	Image	and	Fat	Volume	Similarity	of	a	Validation	Cohort	

	

Average	
Dice	Value	

SAT	
Volume	
R2	

SAT	
Volume	
P-Value	

VAT	
Volume	
R2	

VAT	
Volume	P-
Value	

Percent	RSE	SAT	
Volume	 Percent	RSE	VAT	Volume	

Validation	Cohort	Images	(n	=	
288)	

0.953	±	
0.001	 0.992	 1.84E-

100	 0.987	 5.54E-92	 7.965	 11.300	

All	Validation	Images	(n	=	559)	
0.944	±	
0.002	 0.994	 2.49E-

217	 0.989	 8.85E-193	 5.494	 8.510	

	

Image	similarity	(Dice)	and	fat	volume	accuracy	(R2	and	P-Value)	of	images	generated	

using	the	neural	network.	The	mean	difference	between	the	manually	calculated	fat	

volume	and	predicted	fat	volume	(Residual	Standard	Error	(RSE)),	and	the	percentage	

of	total	volume	that	is	calculated	differently	between	the	two	segmentation	images.	

Validation	cohort	data	is	calculated	from	a	validation	cohort	consisting	of	50	adult	

males	and	50	adult	females	with	a	large	range	of	age	and	BMIs.	All	validation	images	

consisted	of	the	combination	of	all	images	from	the	full	abdominal	scans	from	three	

individuals	and	the	validation	cohort.		Values	shown	are	from	bin	2,	or	the	central	

region	of	the	abdomen	spanning	from	below	the	lungs	to	the	top	of	the	hip.	
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7.3.3	Computational	Time	

Manual	segmentation	and	quantification	of	subcutaneous	and	visceral	fat	on	271	

images	from	3	full	CT	scans	took	22	hours.		It	took	~5	minutes	to	perform	the	same	steps	on	

the	same	CT	images	using	the	deep	learning-based	algorithm.			

	

	

7.3.4	Correlations	between	Abdominal	Fat	Volumes	and	Body	Mass	Index	(BMI)	

Correlations	of	total,	subcutaneous	and	visceral	fat	volumes	with	BMI	were	

evaluated	using	data	from	the	above	validation	cohort.		Fat	volumes	in	the	abdominal	region	

from	the	disappearance	of	the	lung	to	the	appearance	of	the	hip	bone	were	measured	using	

the	automated	method.		This	abdominal	region	approximately	corresponds	to	the	range	of	

lumbar	2-5	vertebrae	where	visceral	fat	is	measured	with	CT215,216.		BMI	was	significantly	

correlated	with	total	(R2=0.145;	P<0.001)	and	SAT	volumes	(R2=0.246;	P<0.001)	(Figure	

7.4A,B).		There	was	no	correlation	between	BMI	and	VAT	volume	(R2=0.0134;	P=0.144;	

Figure	7.4C).		Because	the	amounts	of	abdominal	fat	vary	between	individuals,	fat	volume	

was	normalized	to	non-fat	mass	measured	on	each	CT	slice	for	all	subjects	to	account	for	the	

influence	of	abdominal	dimensions	on	individual	variations	in	abdominal	fat.		After	

normalization	with	nonfat	mass,	total	fat	showed	an	improved	association	with	BMI	and	

subcutaneous	fat	showed	a	reduced	association	with	BMI	based	on	R2	and	P	values	(Figure	

7.4D,E).		No	correlation	was	found	between	visceral	fat	volume	and	BMI	(Figure	7.4F).			
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Figure	7.4	Total	fat	and	SAT	are	correlated	with	BMI.	Correlation	of	BMI	with	fat	

volumes	quantified	from	all	slices	within	bin	2	from	the	individuals	used	for	the	

validation	cohort	(n	=	95	people)	A-C)	Total	fat	volume,	SAT	volume,	and	VAT	volume	

calculated	using	the	predicted	segmentation	images.	D-F)	Total	fat	volume,	SAT	

volume,	and	VAT	volume	were	normalized	by	dividing	by	the	nonfat	volume	within	the	

same	region	of	interest	(bin	2).	This	adjusted	value	was	then	used	for	correlation	as	a	

measure	of	the	ratio	of	fat	to	nonfat	within	an	individual.	
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7.4	Discussion	

The	steady	increase	of	central	obesity	as	a	worldwide	epidemic	and	its	close	

association	with	risk	of	cardiovascular	disease	and	type	2	diabetes	demands	an	efficient	

approach	for	abdominal	fat	quantification.		Common	anthropometric	measurements	such	as	

body	mass	index,	waist	circumference,	and	waist-hip	ratio	cannot	accurately	discern	

adipose	tissue	distribution	in	the	body.		The	noninvasive	modalities	MRI	and	CT	allow	

accurate	measurements	of	body	fat	and	non-fat	compositions.		However,	body	fat	is	barely	

quantitatively	assessed	in	clinical	practice	partially	due	to	the	laborious	nature	of	the	

current	available	methods.		We	recently	have	used	the	U-Net	architecture	to	accurately	

measure	the	abdominal	fat	volume	of	mice	using	MR	images214.		However,	a	major	challenge	

with	MR	is	that	T1	images,	commonly	used	for	fat	analysis,	are	not	calibrated	so	the	image	

intensity	can	vary	from	acquisition	to	acquisition	and	scanner	to	scanner.		In	contrast,	CT	is	

a	calibrated	image	and	Hounsfield	units	reflect	tissue	physical	density.		Here	we	have	

successfully	applied	the	deep	learning-based	approach	to	the	measurement	of	abdominal	

fat	on	CT	scans	in	an	efficient	and	quick	fashion.	Volumes	of	visceral	and	subcutaneous	fat	

measured	with	our	algorithm	have	shown	a	high	degree	of	consistency	with	those	measured	

by	the	manual	method.	

A	few	deep	learning-based	methods	to	measure	body	fat	on	CT	scans	have	been	

reported217–219.		Compared	with	the	previous	studies,	our	present	study	has	several	

features:	First,	the	inclusion	of	all	CT	slices	in	the	abdominal	region	was	performed	as	

compared	to	one	or	few	slices	used	in	other	studies.		Previous	studies	have	restricted	

training	and	evaluation	to	one	or	a	few	selected	slices	in	the	abdominal	region,	and	this	both	

prevents	accurate	evaluation	of	regions	outside	of	the	trained	region	and	provides	

incomplete	picture	of	phenotypes	in	the	region.		Fat	distribution	varies	greatly	in	the	

abdominal	region	of	obese	subjects	so	obesity	and	overall	fat	content	may	not	be	accurately	
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reflected	from	one	or	few	slices.		Thus,	our	method	of	including	all	CT	slices	should	benefit	

precision	and	improve	sensitivity	for	detecting	change	over	time	in	abdominal	fat.			

Second,	this	study	employed	a	template-based	data	augmentation	strategy	whereby	

images	sampled	were	used	to	construct	a	representative	template	that	was	optimal	in	terms	

of	both	shape	and	intensity207.		This	approach	permits	a	substantial	augmentation	of	the	

training	dataset	and	overcomes	the	limitation	of	deep	learning	in	most	cases	which	require	

large-scale	training	datasets.		Despite	fewer	CT	slices	used	for	the	training,	our	algorithm	

has	shown	a	comparable	or	even	better	performance	than	the	previous	deep	learning-based	

methods	for	quantification	of	body	fat	using	CT	images217–219.			

Our	algorithm	was	accurate	in	quantifying	both	subcutaneous	fat	and	visceral	fat	

across	the	abdominal	region	on	which	it	was	trained.		There	was	no	significant	difference	

between	performance	at	the	upper	abdominal	region	versus	performance	at	the	central	or	

lower	abdominal	region	for	subcutaneous	fat.		However,	visceral	fat	showed	a	larger	

deviation	than	subcutaneous	fat	based	on	the	correlation	coefficient	and	residuals	values	

yielded	from	comparison	between	the	two	measurements.		Inconsistency	is	particularly	

obvious	in	the	upper	abdominal	region	where	low	adiposity	results	in	a	larger	percentage	

residual.		The	partial	volume	effect	of	gas	and	watery	contents	within	the	gastrointestinal	

tract	whereby	visceral	fat	is	attached	might	also	contribute	to	the	inconsistency	in	visceral	

fat	measurement220.		The	finding	that	subcutaneous	fat	in	the	upper	abdominal	region	did	

not	show	such	a	deviation	supports	this	speculation.	

It’s	extremely	challenging	to	manually	segment	visceral	fat	on	numerous	CT	slices	

due	to	its	irregular	shape	and	extensive	distribution	within	the	abdominal	cavity.		However,	

it’s	easier	to	separate	fat	from	nonfat	elements	(air,	background,	waterish	tissue,	and	bone)	

and	isolate	visceral	fat	on	CT	slices	through	thresholding.		Thus,	we	chose	to	directly	

segment	subcutaneous	fat	and	use	a	segmentation	corresponding	to	the	abdominal	cavity	
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for	visceral	fat	measurement.		The	chance	of	overestimating	visceral	fat	volume	from	other	

fat	deposits	such	as	bone	marrow	fat	and	intermuscular	fat	should	be	minimal	because	the	

lumbar	vertebrae	and	pelvic	bones	are	within	the	abdominal	and	pelvic	wall	while	visceral	

fat	is	located	within	the	abdominal	cavity.		Also,	vertebrae	and	pelvic	bones	are	cancellous	

bones	containing	red	bone	marrow	that	have	higher	CT	values	than	fat.	

Despite	the	success,	our	algorithm	has	limitations:	First,	there	is	a	flaw	associated	

with	the	bone	window	thresholding,	which	was	used	to	separate	fat	from	nonfat	

compositions.		With	this	method,	fat	was	readily	separated	from	gas,	empty	space	and	bone.		

However,	it	was	observed	that	fat	and	soft	tissues	were	not	completely	separable	in	some	

cases	due	to	their	closeness	in	density	and	partial	volume	effect.		Body	fat	has	a	pixel	

density	value	of	−190~−30	HU221,	compared	to	the	values	of	20~50	HU	for	soft	tissues222.		

Second,	2D	CT	slices	were	used	to	measure	the	volume	of	3D	adipose	tissue.	Its	irregular	

shape	and	attachment	to	the	constantly	moving	gastrointestinal	tract	makes	hard	to	

accurately	measure.		

BMI	is	the	most	widely	used	measure	of	body	adiposity	in	clinical	practice.		Here,	the	

associations	of	BMI	with	abdominal	fat	volumes	directly	measured	by	CT	were	tested	with	

the	test	cohort.		The	present	result	shows	that	BMI	is	only	moderately	associated	with	

abdominal	total	and	subcutaneous	fat	and	has	no	association	with	visceral	fat.		In	studies	of	

larger	cohorts,	BMI	has	also	been	found	to	be	more	correlated	with	subcutaneous	fat	over	

visceral	fat215,223,224.		These	results	suggest	that	BMI	is	not	a	reliable	marker	of	abdominal	

fatness	and	is	a	poor	parameter	of	visceral	fat.				

	 In	summary,	we	have	demonstrated	the	accuracy	of	our	deep	learning	based	

algorithm	for	quantifying	abdominal	fat	on	CT	scans.		The	algorithm	has	greatly	sped	up	the	

process	of	measuring	abdominal	fat	volume.		We	have	shown	the	possibility	of	using	a	

relatively	small	dataset	to	effectively	train	a	neural	network	to	segment	different	abdominal	
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fat	deposits.		This	has	important	clinical	implications	as	machine	learning	can	be	readily	

applied	to	other	measurable	traits	using	medical	imaging.	Despite	the	success,	the	algorithm	

has	limitations:	it	performs	poorly	when	an	individual	has	low	subcutaneous	fat	that	fails	to	

form	a	continuous	layer	and	when	a	body	part	is	interfered	with	by	another	body	part	or	

foreign	object.	

	

	

7.5	Methods	

CT	Images	

Abdominal	CT	scans	of	110	patients	(half	men,	half	women),	aged	60	±	16	years	

(range:	19-93	years),	were	retrieved	through	the	Picture	Archiving	and	Communication	

System	(PACS)	at	the	University	of	Virginia.		The	scan	parameters	varied	among	patients	

with	a	tube	current	of	2-395	mA,	slice	thicknesses	of	2.82	±	1.75	mm	(range:	1.25-5	mm),	

and	a	tube	voltage	of	120	kV.	81%	of	the	CT	scans	were	enhanced	with	use	of	iodine-based	

contrast	agents.		Average	BMI	was	28.1	±	0.8	kg/m2	(range:	17.2-52.9)	for	men	and	28.8	±	

1.1	(range:	17.2-52.9)	kg/m2	for	women.		This	large	variation	in	tube	current,	slice	

thickness,	and	BMI	was	purposefully	chosen	to	ensure	the	algorithm	could	properly	

segment	any	novel	CT.	All	procedures	were	conducted	in	compliance	with	the	Health	

Insurance	Portability	and	Accountability	Act	(HIPAA)	and	were	included	within	an	IRB	

approved	retrospective	study	protocol.		CT	images	were	de-identified	before	use	to	protect	

patient	identity.		

	

Manual	segmentation	and	quantification	

The	areas	corresponding	to	the	subcutaneous	fat	and	the	abdominal	cavity	on	each	

of	the	training	CT	images	were	manually	segmented	by	five	coauthors	on	this	article	using	
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ITK-SNAP.		CT	images	were	adjusted	through	windowing	at	PACS	to	a	greyscale	at	which	fat	

was	visually	distinguishable	from	nonfat	components	(bone,	air,	background,	soft	and	

watery	tissue)	and	then	saved	as	TIFF	(Tagged	Image	File	Format)	images	for	fat	

quantification.		A	bone	window	was	found	to	work	better	than	other	windows	in	

distinguishing	fat	from	non-fat	tissues	on	TIFF	images.		

For	quantification	of	fat,	we	developed	an	ImageJ-based	strategy	using	thresholding	

around	a	static	intensity	window	corresponding	to	fat	on	images	adjusted	to	the	bone	

window.	A	flowchart	explaining	the	steps	needed	to	quantify	total	fat	can	be	seen	in	Figure	

7.5.	Briefly,	images	were	adjusted	to	binary	through	thresholding	with	fat	being	black	and	

all	other	tissues	white.		Black	color	areas	were	then	calculated	using	the	“Analyze	Particles”	

function	of	ImageJ.		This	function	also	allows	all	stacked	images	from	a	subject	to	be	

analyzed	for	fat	areas	at	once.		The	resulting	fat	area	for	a	slice	was	multiplied	by	slice	

thickness	to	give	the	fat	volume	of	that	slice.		The	summation	of	the	fat	volumes	measured	

from	all	consecutive	slices	gave	the	total	fat	volume	of	a	subject.	

For	segmentation	of	subcutaneous	fat	(SAT),	we	manually	outlined	the	area	

between	the	skin	and	the	abdominal	muscles.		Thresholding	the	image	and	quantifying	the	

fat	area	within	this	selection	represents	the	SAT	area.		Visceral	fat	(VAT)	is	the	fat	within	the	

abdominal	cavity.		Due	to	its	irregular	shape	and	extensive	distribution	in	the	abdominal	

cavity,	VAT	was	hard	to	manually	segment.	Therefore,	the	area	corresponding	to	the	

abdominal	cavity	was	outlined	and	the	VAT	volume	was	calculated	though	the	

quantification	of	fat	within	this	selection.	
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Figure	7.5	Flowchart	illustrating	the	steps	involved	in	quantification	of	total	fat	using	

CT	images.	CT	images	were	saved	in	the	preset	bone	window	as	.tif	files	and	opened	in	

Fiji.	All	images	are	437	x	437	mm2	in	size	(Pixel	width/height	=	0.8535,	voxel	depth	=	

2.0).	All	images	from	a	full	scan	were	stacked	and	thresholded	on	the	first	major	peak	

to	create	a	binary	image	highlighting	only	fat	(thresholding	values	=	82-97).	The	

“Analyze	Particles”	function	was	used	to	measure	the	black	area	corresponding	to	fat.	

This	area	was	multiplied	by	the	slice	thickness	to	get	the	total	fat	volume	for	an	

individual	slice	in	the	stack.		

	

	

Automatic	Measurement	
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The	creation	of	an	automated	method	for	measurement	of	abdominal	fat	volume	

consists	of	multiple	steps,	including	training	data	preparation,	template-based	data	

augmentation,	and	fat	quantification.		We	employed	a	strategy	similar	to	the	one	previously	

used	for	segmenting	and	quantifying	abdominal	fat	of	mice	on	MR	images	214.		The	complete	

flowchart	of	the	process	is	shown	in	Figure	7.6.	

	 	

	

	

Figure	7.6	Flowchart	illustrating	the	steps	involved	in	the	training	of	a	U-net	model	

for	segmentation	of	SAT	in	human	CT	images.	CT	images	were	saved	in	the	preset	bone	

window	as	.tif	files	and	the	training	set	was	converted	to	NifTI	format	(.nii.gz)	for	

segmentation.	A	combination	of	the	original	.tif	images	and	manually	generated	
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segmentation	images	made	using	ITK-SNAP	were	augmented	using	a	template-based	

strategy	to	create	a	significantly	larger	dataset	for	training.	Training	was	performed	

using	the	ANTsR	and	ANTsRNet	R	packages.	These	training	weights	were	then	applied	

to	a	testing	set	of	novel	.tif	images	to	generate	predicted	segmentation	images.	

Segmentation	images	used	for	SAT	and	VAT	quantification	are	highlighted	in	red.	

	

Training	data	preparation:	613	CT	images	for	the	entire	abdominal	region	of	seven	

individuals	were	selected	for	training.		Of	the	seven	subjects,	two	females	and	three	males	

had	a	normal	BMI	and	one	female	and	one	male	were	obese.		Original	CT	images	were	

adjusted	at	the	PACS	to	bone	windows	and	saved	as	“.tif”	files.		These	images	were	

converted	to	the	Nifti	(.nii.gz)	format	using	the	ANTs	toolkit	

(https://github.com/ANTsX/ANTs).		Each	converted	image	was	segmented	into	two	

contoured	areas,	one	for	SAT	and	one	for	abdominal	muscle	plus	its	encircled	abdominal	

cavity,	using	the	open	source	segmentation	tool	ITK-SNAP	and	saved	as	a	separate	

segmentation	image.			

	 Template-Based	Data	Augmentation	and	Training:	The	need	for	large	training	data	

sets	is	a	major	limitation	associated	with	development	of	deep	learning	algorithms202.		To	

achieve	a	training	data	set	size	that	is	sufficient	for	properly	segmenting	total	and	

subcutaneous	fat,	we	employed	a	template-based	data	augmentation	strategy	that	we	

previously	used	for	segmenting	abdominal	fat	of	mice	on	MR	images214.		With	this	strategy,	

we	are	able	to	augment	the	original	613	CT	images	to	27,055,368	images.	These	images	are	

generated	by	allowing	transformations	to/from	each	individual	image	to	the	template	space	

as	the	template	is	created.	This	permits	a	propagation	of	the	training	data	to	the	space	of	

each	individual	image.		In	the	simplest	case,	the	training	data	is	used	to	construct	the	

template	and	then	each	individual	training	data	is	propagated	to	the	space	of	every	other	
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individual	training	data.		In	this	way,	a	training	data	set	of	size	N	can	be	expanded	to	a	data	

set	of	size	N2.	Using	this	strategy,	we	were	able	to	augment	our	original	613	images	to	6132,	

or	375,769	level	one	images.	The	second	level	of	augmented	data	created	two	horizontal	flip	

images	per	level	one	image	as	well	as	36	rotation	images	per	flip	image.	In	this	way,	the	

375,769	images	were	further	augmented	to	the	final	27,055,368	level	two	images	(375,769	

*	2	horizontal	flip	images	per	image	*	36	rotation	images	per	flip	image).	

	 Training	was	performed	using	a	U-net-based	model	and	with	the	ANTsRNet	and	

Keras	packages	for	R	using	a	Tensorflow	backend,	as	was	done	previously214.		

Validation	dataset:	The	accuracy	of	the	deep	learning-based	algorithm	in	segmenting	

subcutaneous	fat	was	validated	with	sequential	abdominal	CT	images	from	three	separate	

subjects	and	randomly	selected	CT	images	for	the	upper,	central	and	lower	abdominal	

regions	of	100	subjects.		Manual	measurement	results	were	used	as	the	ground	truth	for	

comparisons	with	the	automated	measurement	results.		CT	images	were	prepared	as	

described	above	and	input	into	the	trained	U-net.		Novel	segmentation	images	generated	

from	the	algorithm	were	evaluated	for	accuracy	in	quantification	of	SAT	and	VAT	using	a	

macro	developed	for	the	Fiji	package	for	Image	J197.		The	steps	for	quantifying	subcutaneous	

and	visceral	fat	using	the	macro	are	depicted	in	Figure	7.7.			

Briefly,	all	original	images	from	a	subject	were	opened	and	stacked	(Stack	1),	all	

segmentation	images	corresponding	to	the	SAT	area	(Probability1.nii.gz)	were	opened	and	

stacked	(Stack	2),	and	all	segmentation	images	corresponding	to	the	abdominal	cavity	

(Probability2.nii.gz)	were	opened	and	stacked	(Stack	3).	For	SAT	area:	Stack	2	was	made	

binary,	a	selection	around	the	segmentation	area	was	generated	using	“Create	Selection”,	

this	selection	is	placed	onto	the	original	image	using	“Restore	Selection”,	the	image	is	

thresholded	on	static	values	corresponding	to	the	intensity	of	fat	in	bone-windowed	images	

(82-97),	and	“Analyze	Particles”	is	used	to	calculate	the	fat	area	in	the	selection.	This	



	 184	

process	is	repeated	for	all	corresponding	images	from	Stack	2	and	Stack	1	to	generate	SAT	

area	calculations	for	every	image	in	the	stack.	For	VAT	area:	An	identical	process	is	

performed	with	Stack	3	and	Stack	1	to	generate	VAT	area	calculations	for	every	image.	SAT	

and	VAT	volumes	are	calculated	as	the	SAT	or	VAT	area	*	slice	thickness.		

	

	

	

	

Figure	7.7	Flowchart	describing	SAT	and	VAT	area	using	a	macro	developed	for	

ImageJ.	All	original	images	from	a	subject	were	opened	and	stacked	(Stack	1),	all	

segmentation	images	corresponding	to	the	SAT	area	(Probability1.nii.gz)	were	opened	

and	stacked	(Stack	2),	and	all	segmentation	images	corresponding	to	the	abdominal	
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cavity	(Probability2.nii.gz)	were	opened	and	stacked	(Stack	3).	For	SAT	area:	Stack	2	

was	made	binary,	a	selection	around	the	segmentation	area	was	generated	using	

“Create	Selection”,	this	selection	is	placed	onto	the	original	image	using	“Restore	

Selection”,	the	image	is	thresholded	on	static	values	corresponding	to	the	intensity	of	

fat	in	bone-windowed	images	(82-97),	and	“Analyze	Particles”	is	used	to	calculate	the	

fat	area	in	the	selection.	This	process	is	repeated	for	all	corresponding	images	from	

Stack	2	and	Stack	1	to	generate	SAT	area	calculations	for	every	image	in	the	stack.	For	

VAT	area:	An	identical	process	is	performed	with	Stack	3	and	Stack	1	to	generate	VAT	

area	calculations	for	every	image.	SAT	and	VAT	volumes	are	calculated	as	the	SAT	or	

VAT	area	*	slice	thickness.	

	

Statistical	Analysis	

Comparisons	were	made	between	the	automated	and	manual	methods	in	

quantification	of	visceral	and	subcutaneous	fat	volumes.		The	Dice	metric	was	used	to	

determine	the	similarity	between	a	manually	generated	segmentation	image	and	an	

automatically	generated	one.		If	two	segmentations	completely	overlap,	the	Dice	score	is	1;	

it	is	0	if	there	is	no	overlap.		The	residual	was	determined	from	the	difference	between	

manually	measured	and	automatically	measured	fat	volume	for	each	slice.		In	addition,	

Pearson’s	correlation	analysis	was	done	to	determine	correlations	between	the	manually	

and	automatically	generated	fat	volumes,	as	reported214.		
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8.1	Summary	

A	great	deal	of	work	has	been	done	to	develop	a	thorough	understanding	of	the	

general	processes	involved	in	atherosclerosis,	implicating	pathways	in	blood	vessel	

morphogenesis,	lipid	metabolism,	nitric	oxide	signaling	and	inflammation,	as	well	as	many	

others30,39,147,225–231.	However,	despite	knowing	a	large	number	of	the	players	involved	in	

plaque	formation,	our	current	preventative	therapeutic	strategies	remain	largely	

unsuccessful.		Therefore,	more	work	is	required	to	help	develop	novel	therapeutics.		

The	most	effective	way	of	improving	our	understanding	of	cardiometabolic	

disorders	is	through	discerning	the	genetic	architecture	underlying	the	genetic	associations	

observed	in	mouse	linkage	analyses	and	GWAS.	However	at	present,	this	remains	a	difficult	

task.	This	is	particularly	true	in	mice	where	the	QTLs	have	large	confidence	intervals	

spanning	tens	of	megabases.	More	recent	advances	in	technology	has	allowed	for	high-

throughput	dense	genotyping	and	gene	expression	in	mice.	Because	of	this,	our	ability	to	

prioritize	candidate	genes	for	aortic	lesion	QTLs	has	greatly	improved.	Despite	the	quantity	

of	QTLs	that	have	been	generated,	a	large	amount	of	work	remains	uncovering	the	genes	

causing	the	observed	linkage.	Therefore,	a	large	amount	of	the	heritable	component	of	

atherosclerosis	in	mice	remains	undiscovered.	In	these	studies,	we	hypothesized	that	

through	generating	novel	linkage	data	using	rarely	used	inbred	strains,	we	would	be	able	to	

discover	novel	insights	into	the	heritable	components	of	atherosclerosis	and	its	associated	

cardiometabolic	syndromes.	We	accomplished	this	through	QTL	analysis	of	aortic	lesion	

size,	carotic	lesion	size,	hyperlipidemia,	and	type	2	diabetes.		Furthermore,	we	hypothesized	

that	through	modern	strategies	utilizing	the	large	amounts	of	publicly	available	data,	we	

could	uncover	novel	genes	influencing	atherosclerosis	in	a	fashion	hitherto	unutilized.	We	

accomplished	this	through	a	combination	of	haplotype	analysis	and	a	novel	strategy	

employing	gene	expression,	aortic	lesion	size	correlation,	and	eQTL	data	to	discover	Mep1α.	
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Finally,	we	hypothesized	that	by	developing	novel,	more	accurate	ways	to	quantify	

abdominal	fat	deposits,	we	could	create	a	platform	in	which	to	improve	our	understanding	

of	obesity,	the	cardiometabolic	disease	with	the	highest	co-occurrence	with	atherosclerosis.	

We	accomplished	this	by	utilizing	a	combination	of	machine	learning-based	segmentation	

and	medical	imaging	in	the	form	of	MRIs	and	CTs	to	quantify	SAT	and	VAT	fat	volumes	in	

mice	and	humans.	

	

8.2	An	F2	Intercross	Using	A	Rare	Susceptible	Strain	Discovered	Many	Novel	Insights	

For	Dyslipidemia,	T2D,	Carotid	Atherosclerosis,	and	Aortic	Atherosclerosis	

In	a	F2	intercross	between	BALB/cJ	and	SM/J	mice,	QTL	analysis	for	plasma	lipids	

and	glucose	revealed	one	significant	QTL	on	chromosome	9	for	fasting	glucose,	named	

Bglu17,	that	coincides	with	a	significant	QTL	for	HDL	(high-density	lipoprotein)	and	a	

suggestive	QTL	for	non-HDL	cholesterol	levels.	Haplotype	analysis	revealed	that	"lipid	

genes"	Sik3,	Apoa1,	and	Apoc3	were	probable	candidates	for	Bglu17.	Our	findings	strongly	

suggest	that	one	or	more	of	these	“lipid	genes”	might	be	the	causal	gene(s)	of	Bglu17,	

contributing	to	variation	in	fasting	glucose	levels.	Although	it	is	unknown	how	they	affect	

glucose	homeostasis,	one	probable	effect	path	is	through	the	influence	on	plasma	lipid	

levels,	which	then	predispose	variation	in	glucose-related	traits.		The	current	observation	of	

the	significant	correlations	of	fasting	glucose	levels	with	HDL,	non-HDL	cholesterol,	and	

triglyceride	levels	in	this	cross	supports	this	speculation.	Plasma	lipid	levels,	especially	non-

HDL	cholesterol,	of	the	F2	mice	were	significantly	elevated	on	the	Western	diet,	so	were	the	

fasting	glucose	levels.		When	fed	the	Western	diet,	Apoe−/−	mice	display	a	rapid	rise	in	non-

HDL	cholesterol	levels,	often	reaching	their	peak	within	a	couple	of	weeks	(unpublished	

data),	whereas	their	blood	glucose	levels	rise	more	slowly	and	gradually	within	12	

weeks133,134.	This	difference	in	onset	suggests	a	causal	role	for	plasma	lipids	in	the	rise	of	
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blood	glucose	in	the	Apoe−/−	mouse	model.	From	these	findings	we	have	found	that	the	

colocalization	of	QTLs	for	both	phenotypes	and	the	sharing	of	potential	candidate	genes	

demonstrate	genetic	connections	between	dyslipidemia	and	type	2	diabetes,	and	have	

furthered	our	understanding	of	how	genetics	loci	can	influence	multiple	cardiometabolic	

disorders.	With	this	study,	we	have	confirmed	our	hypothesis	that	though	using	a	lesser-

used	inbred	strain,	we	were	able	to	uncover	novel	insight	into	the	genetics	of	dyslipidemia	

and	type	2	diabetes.		

With	the	BALB/cJ	x	SM/J	F2	intercross,	we	performed	linkage	analysis	for	carotid	

atherosclerosis,	which	is	a	major	cause	of	stroke.	QTL	analysis	revealed	eight	loci	for	carotid	

lesion	sizes.	Cath1	on	chromosome	12,	Cath2	on	chromosome	5,	Cath3	on	chromosome	13,	

and	Cath4	on	chromosome	6	are	four	significant	QTL	for	carotid	atherosclerosis	thus	far	

mapped	in	two	Apoe-/-	mouse	intercrosses122,128.	Performing	combined	cross-linkage	

analysis	using	data	from	this	cross	and	two	previous	F2	crosses	derived	from	BALB,	

C57BL/6J	and	C3H/HeJ	strains,	we	identified	five	significant	and	nine	suggestive	QTLs.	Of	

them	Cath1,	the	QTL	on	chromosome	12,	was	the	most	prominent.	Of	these	QTLs,	four	novel	

QTLs,	two	significant	QTLs	named	Cath7	on	chromosome	5	and	Cath8	on	chromosome	9	and	

two	suggestive	QTLs,	Cath5	and	Cath6	on	chromosomes	15	and	18	respectively,	were	mapped.	

Nearly	all	of	these	QTLs	were	mapped	in	one	or	more	individual	crosses,	but	the	combined	

cross	analysis	had	an	increased	power	of	detecting	shared	QTLs	by	two	or	more	crosses.	

Indeed,	all	five	significant	QTLs	had	a	higher	LOD	score	than	that	achieved	in	an	individual	

cross.	The	significant	correlations	of	carotid	lesion	sizes	with	HDL	and	non-	HDL	cholesterol	

levels	suggest	that	some	loci	exert	effects	on	carotid	atherosclerosis	partially	through	action	

on	lipoproteins.	Bioinformatics-based	analysis	prioritized	nine	probable	candidate	genes	

for	Cath1.	From	these	findings	we	 demonstrated	 the	 polygenic	 control	 of	 carotid	

atherosclerosis	 in	mice	and	show	that	with	the	integration	of	multiple	intercrosses	
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sharing	the	same	QTLs,	we	can	enhance	our	ability	to	discover	loci	that	are	influencing	

a	phenotype.	Through	this	study	we	further	confirm	our	first	hypothesis	by	showing	

that	with	data	generated	through	a	rarely	used	inbred	strain,	we	were	able	to	identify	

hitherto	undiscovered	genetic	architecture	for	carotid	atherosclerosis.	

We	also	performed	linkage	analysis	in	the	BALB/cJ	x	SM/J	F2	intercross	for	aortic	

lesion	size.	We	discovered	that	a	significant	locus,	named	Ath49,	was	mapped	to	the	H2	

complex	[mouse	major	histocompatibility	complex	(MHC)]	on	chromosome	17.	As	the	MHC	

region	harbors	genes	that	play	an	important	role	in	both	innate	and	adaptive	immunity,	

these	findings	highlight	the	significance	of	inflammation	in	atherogenesis	and	its	potential	

for	developing	anti-atherosclerotic	therapy.	We	developed	a	novel	bioinformatics-based	

strategy	using	publicly	available	data	from	the	mouse	HDMP	project	for	developing	

candidate	genes	at	a	mouse	locus	with	overlapping	aortic	lesion	size	QTLs.	Through	this	

strategy	we	provide	a	methodology	for	prioritizing	candidate	genes	at	any	mouse	aortic	

QTL.	With	the	integration	of	this	method	with	mouse-human	comparative	genomics	and	

haplotype	analysis,	two	classical	methods	of	candidate	gene	selection,	we	identified	a	single	

likely	candidate	gene	for	Ath49,	Mep1α.	With	these	findings	we	have	identified	the	MHC	as	a	

major	genetic	determinant	of	atherosclerosis,	highlighting	the	importance	of	inflammation	

in	atherogenesis,	and	show	that	using	a	combination	of	gene	expression,	comparative	

genomics,	and	haplotype	analysis,	we	can	uncover	candidate	genes	at	any	loci.	Through	this	

study	we	further	confirm	our	hypothesis	and	show	that	data	generated	using	a	rare	inbred	

strain	was	integral	in	discovering	novel	genetic	architecture	underlying	aortic	

atherosclerosis.	

An	observation	of	particular	interest	is	the	difference	in	QTLs	mapped	for	carotid	

and	aortic	lesion	size	we	discovered	in	these	studies.	This	phenomenon	has	been	a	

recurring	observation	in	our	labs’	other	linkage	studies	for	carotid	and	aortic	lesion	size	and	
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leads	to	the	hypothesis	that	there	is	unique	genetic	architecture	affecting	plaque	formation	

depending	on	the	location	of	the	atherosclerotic	lesion.	Cellular	components	of	

atherosclerotic	lesions	in	the	carotid	differ	significantly	from	those	seen	in	the	aorta,	further	

supporting	this	hypothesis232.	Moreover	lesion	formation	is	significantly	less	common	in	the	

mouse	carotid,	even	when	fed	Western	diet,	as	seen	from	the	F2	population’s	lesion	size	

distributions	in	Chapters	3	and	4.	This	phenomenon	has	remained	consistent	across	the	

other	F2	intercrosses	our	lab	has	performed	and	suggests	differing	mechanisms	required	

for	lesion	formation	depending	on	location.	Through	this	study	we	have	provided	additional	

support	for	these	hypotheses	and	helped	discover	differences	in	the	genetic	architecture	

that	could	be	unique	to	carotid	and	aortic	atherosclerosis.	

	

8.3	Modern	Bioinformatics	Strategies	Uncovered	a	Novel	Gene	Influencing	

Atherosclerosis	

Our	most	exciting	findings	came	from	investigating	Mep1α,	the	candidate	gene	for	

Ath49.	Double	knockout	mice	for	Mep1α	and	Apoe	discplayed	a	markedly	different	

phenotype	in	regards	to	atherosclerosis.	Double	nockout	mice	had	decreased	aortic	lesion	

size,	alterations	in	plaque	stability	markers,	and	significant	shifts	in	the	plaque’s	cellular	

composition.	Through	our	findings,	we	have	discovered	a	novel	gene	negatively	influencing	

atherosclerosis.	With	this	study	we	have	the	confirmation	of	our	second	hypothesis,	as	

through	the	integration	of	publicly	available	bioinformatics	data	and	linkage	data	from	a	

lesser	used	inbred	strain,	we	were	able	to	successfully	uncover	a	novel	gene	influencing	

atherosclerosis.	

	

8.4	Novel	Methods	For	Fat	Quantification	Provides	a	Platform	For	Improving	Our	

Understanding	of	Obesity	
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There	is	a	difference	in	body	weight	between	C57BL/6	and	chromosome	9	congenic	

mice,	created	by	inserting	the	C3H/HeJ	genome	into	a	B6	background	at	15.6–115.6	Mb.	To	

test	whether	this	difference	is	attributable	to	body	fat,	we	developed	a	machine	learning-

based	method	of	segmenting	and	quantifying	abdominal	fat	into	subcutaneous	(SAT)	and	

visceral	(VAT)	fat	volumes	using	MRI.	After	proving	that	the	method	works,	we	successfully	

used	it	to	compare	the	SAT	and	VAT	volume	and	distribution	between	the	C57BL/6	and	

chromosome	9	congenic	mice.	We	showed	that	chromosome	9	congenic	mice	have	a	

significant	decrease	in	total	SAT	and	VAT	and	that	this	volume	difference	occurs	primarily	

around	the	abdomen.	With	these	findings,	we	have	shown	that	the	region	on	chromosome	9	

linked	to	aortic	lesion	size,	plasma	lipid	and	glucose	levels,	and	body	weight	is	definitively	

affecting	fat	volume.	Moreover,	we	have	created	a	novel	strategy	for	quantifying	abdominal	

fat	in	mice	and	present	a	platform	for	accurately	and	non-invasively	studying	obesity	in	

mouse	models.	Through	this	study	we	have	confirmed	our	third	hypothesis	by	showing	that	

we	can	more	accurately	discern	the	difference	in	fat	composition	between	two	groups	of	

mice,	and	that	genetics	plays	a	role	in	this	fat	distribution.	

CT	is	a	more	widely	used	imaging	technique	compared	to	MRI,	so	when	quantifying	

abdominal	SAT	and	VAT	in	humans	we	adapted	this	machine	learning-based	strategy	we	

have	developed	in	mice	for	use	with	CTs.	After	proving	that	this	method	works	we	then	

used	it	to	show	that	BMI,	the	current	most	commonly	used	metric	for	diagnosis	of	obesity	in	

humans,	is	correlated	with	total	fat	and	SAT,	but	not	VAT.	With	these	findings,	we	provide	a	

novel	tool	for	studying	obesity	in	humans	by	providing	a	feasible	way	to	quantify	a	more	

accurate	and	potentially	more	informative	phenotype	that	until	now	has	been	

unquantifiable.		

	

8.5	Future	Directions	
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With	the	findings	from	these	collected	works,	we	have	opened	a	large	number	of	

doors	moving	forward.	Through	the	BALB/cJ	x	SM/J	F2	intercross	we	have	uncovered	both	

novel	and	recurring	QTLs	for	plasma	lipids,	glucose,	and	carotid	atherosclerosis,	however	

the	genes	underlying	the	linkage	of	these	QTLs	remain	undiscovered.	Cath1	for	carotid	

atherosclerosis	is	of	particular	interest,	as	it	was	replicated	in	every	F2	intercross’	linkage	

analysis	our	lab	has	performed	and	is	the	most	prominent	QTL	of	the	combined	cross	

analysis.	We	have	found	an	effective	strategy	for	prioritizing	candidate	genes	at	overlapping	

loci	and	have	successfully	employed	this	strategy	for	aortic	QTLs.	Moving	forward,	this	

strategy	has	the	potential	to	work	for	plasma	lipids,	glucose,	and	carotid	atherosclerosis	as	

well.	We	have	performed	one	of	the	three	candidate	gene	selection	methods	for	these	QTLs	

through	the	use	of	haplotype	analysis	for	these	traits.	But	candidate	genes	from	mouse-

human	comparative	genomics	based	on	overlap	with	GWAS	data	for	type	2	diabetes,	lipid	

levels,	stroke,	or	BMI	have	not	been	generated.	Moreover,	candidate	genes	prioritized	based	

off	of	gene	expression	data,	phenotype	correlation,	and	eQTLs	remain	to	be	created.	At	the	

current	moment,	no	publicly	available	data	has	been	generated	on	a	large	cohort	of	mice	for	

lipid	levels,	glucose,	or	carotid	atherosclerosis	in	the	same	was	as	it	has	been	for	aortic	

atherosclerosis.	Thus	the	same	strategies	we	used	for	gene	expression-based	candidate	

genes	of	aortic	QTLs	cannot	be	repeated	for	other	cardiometabolic	phenotypes	at	present.	If	

this	data	became	available,	we	would	have	the	ability	to	uncover	genes	that	haplotype	

analysis	and	mouse-human	comparative	genomics	cannot.		

The	additional	candidate	genes	discovered	by	using	mouse-human	comparative	

genomics	has	worked	with	success	in	mouse	HDL	studies,	and	is	a	viable	method	of	

candidate	gene	selection70.	We	have	generated	a	comprehensive	list	of	aortic	QTLs	and	

looked	at	each	of	the	syntenic	regions	in	humans	for	suggestive	and	significant	GWAS	

associations.	However,	this	has	not	been	done	for	glucose	or	carotid	QTLs	and	their	
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respective	GWAS	loci.	In	order	to	generate	candidate	genes	in	this	manner,	this	process	can	

be	repeated	for	plasma	glucose	and	carotid	atherosclerosis.	

Our	gene	that	we	investigated	for	its	impact	on	atherosclerosis,	Mep1α,	has	a	much	

vaster	effect	that	previously	anticipated.	Most	often,	a	single	gene	can	have	significant	

impact,	yet	this	impact	is	small233.	We	have	observed	an	uncommon	phenotype	in	which	the	

impact	is	both	significant	and	large.	The	primary	influence	on	atherosclerosis	appears	to	be	

through	widespread	changes	in	plaque	composition,	however	the	specific	pathways	this	

gene	is	integral	for	and	the	cell	types	contributing	to	this	phenotype	remain	unclear.	Sudies	

on	Mep1α’s	predicted	degradome	show	many	potential	substrates,	so	discerning	which	of	

these	downstream	proteins	and	which	cell	types	are	affecting	plaque	formation	will	be	

difficult184.	Because	of	this,	an	unbiased	comparison	of	the	proteome	of	the	aortic	lesions	of	

Mep1α-/-.Apoe-/-	and	B6.Apoe-/-	mice	might	help	highlight	which	proteins	are	not	being	

degraded	and	can	aid	in	uncovering	the	mechanisms	underlying	the	change	we	observe.	

Additionally,	conditional	knockouts	of	Mep1α		in	endothelial	cells,	macrophages,	and	smooth	

muscle	cells	could	help	eleucidate	which	cell	types	are	the	pirmary	contributors	to	the	

phenotype	we	are	observing.	Much	remains	on	the	further	charactersiation	of	this	gene’s	

impact	on	atherosclerosis,	but	this	gene	provides	a	promising	novel	target	for	therapeutics.	

The	strategies	we	have	developed	for	quantifying	SAT	and	VAT	in	mice	and	humans	

provide	an	entirely	new	avenue	for	studying	obesity.	Before,	the	ability	to	utilize	

subcutaneous	and	visceral	fat	volume,	the	most	accurate	phenotype	for	obesity,	was	

unfeasible	due	to	the	time	it	took	to	manually	segment	and	quantify.	We	have	created	a	way	

to	expedite	the	process	to	a	manageable	timeframe,	and	with	this	give	future	studies	the	

possibility	to	study	how	genes	or	pathways	affect	subcutaneous	or	visceral	fat	volume.	The	

applications	of	this	strategy	are	vast,	as	any	study	that	has	previously	used	less	accurate	

measurements	can	supplant	them	with	SAT	and	VAT	volume.	Moreover	in	humans,	this	
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quantification	method	has	the	potential	to	be	a	novel	predictor	of	metabolic	disorders,	more	

accurate	than	the	currently	used	BMI.		

In	conclusion,	these	studies	have	opened	many	avenues	for	the	further	investigation	

of	the	genetic	components	of	atherosclerosis	and	its	related	cardiometabolic	disorders.	We	

have	significantly	contributed	to	this	ongoing	investigation	by	providing	multiple	novel	

QTLs	for	plasma	lipids,	glucose,	carotid	lesion	size,	and	aortic	lesion	size.	We	have	

developed	strategies	for	accomplishing	the	future	task	of	discovering	the	heritable	

components	of	atherosclerosis,	dyslipidemia,	type	2	diabetes,	and	obesity	including	

candidate	gene	generation	for	linkage	QTLs	and	quantification	of	SAT	and	VAT	volume.	

Moreover,	we	have	significantly	contributed	to	the	understanding	of	aortic	atherosclerosis	

by	implementing	our	candidate	gene	generation	strategy	for	an	aortic	QTL	locus	on	mouse	

chromosome	17	to	uncover	a	novel	and	important	gene	for	atherosclerotic	plaque	

development.	Our	work	presented	here	lays	the	foundation	for	future	studies	to	continue	

discovering	the	genetic	architecture	of	cardiometabolic	disorders.	
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Appendix	A	

Supplemental	Data	

All	supplemental	data	are	available	at:	

https://github.com/atg3qz/Dissertation-Supplementary-Data	
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Supplemental	File	1.1	UCSC	Genome	Browser	track	for	visualizing	the	locations	of	

published	aortic	QTLs.	

Supplemental	File	2.1	Raw	data	used	for	plasma	lipid	and	glucose	QTL	and	correlation	

analysis	in	a	BALB	x	SM	female	F2	intercross.	

Supplemental	File	3.1	Raw	data	used	for	carotid	lesion	size	QTL	analysis	using	data	from	a	

BALB	x	SM	female	F2	intercross	and	from	combined	cross	analysis.	

Supplemental	File	4.1	Raw	data	used	for	aortic	lesion	size	QTL	analysis	in	a	BALB	x	SM	

female	F2	intercross.	

Supplemental	File	5.1	Raw	data	used	for	investigation	of	Mep1α’s	role	in	atherosclerosis	

Supplemental	File	6.1	Raw	data	used	for	validation	of	the	machine	learning-based	model	

for	fat	quantification	in	mouse	MRI	and	for	investigation	of	the	difference	in	fat	content	

between	B6	and	chromosome	9	congenic	mice.		

Supplemental	File	7.1	Raw	data	used	for	validation	of	the	machine	learning-based	model	

for	fat	quantification	in	human	CTs	and	analysis	of	the	relationship	between	SAT	or	VAT	and	

BMI.	
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