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Abstract 

Bacteria commonly live in dense and diverse communities, known as biofilms. As the 

major mode of microbial life, biofilms have been widely recognized for their impact on global 

biogeochemical cycling and the health of higher living organisms. Commonly used assays to study 

biofilm probe biofilm formation and behavior using ensemble averaged data. However, to better 

understand how the individual behaviors of biofilm dwelling cells contribute to the emergent 

macroscopic properties of biofilms, cellular level information needs to be extracted from densely 

packed bacterial biofilms. In this work, we integrated lattice light sheet microscopy (LLSM) and 

microfluidic systems for non-invasive, high-resolution time-lapse imaging of live bacterial 

communities under precisely controlled physical and chemical conditions. With this combination, 

we successfully imaged the colonization of glass surfaces by S. oneidensis MR-1 biofilms, a well-

studied biofilm formation species, under media flow over a time period of three days, visualizing 

the evolution of single surface-attached cells into a dense 3D biofilm. To quantitatively analyze 

biofilm-dwelling cells, we developed Bacterial Cell Morphometry 3D (BCM3D), an integrated 

image analysis package that combines deep learning with conventional image analysis, and its 

novel extension version BCM3D 2.0, which enables measurement of cellular phenotypes such as 

cell size and distance to the nearest neighboring cell. With this quantitative analysis ability, we 

demonstrated that the presence of bile salts leads to aggregation of S. flexneri, an intracellular 

pathogen that causes watery or bloody diarrhea, at a cellular level, which had previously only been 

shown at an ensemble level. This cellular level imaging and analysis ability enables us to study 

the emergent properties of bacterial biofilms in terms of the fully-resolved behavioral phenotypes 

of individual cells, which provides a more complete understanding of bacterial biofilms.  
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Chapter 1 Introduction 

 

1.1 Overview 

 Bacteria commonly live in dense and diverse communities, named biofilms, which 

colonize various biotic and abiotic surfaces1-3. As the major mode of microbial life, biofilms have 

been widely recognized for their impact on the global biogeochemical cycling4-6 and the health of 

higher living organisms7-9, including humans. Stream biofilms4, the major mode of microbial life 

in streams and rivers for example, contribute substantially to the nitrogen cycle by denitrifying 

streams and emitting the resulting nitrogen gas or nitrous oxide into the atmosphere. Besides the 

nitrogen cycle, stream biofilms are also recognized as substantial contributors to the global carbon 

flux by degrading organic matter and ultimately emitting a large amount of carbon dioxide into 

the atmosphere, which makes them an indispensable component of global biogeochemical fluxes. 

In human health, commensal biofilms benefit us by warding off pathogens, performing key 

digestive functions, and being directly involved in host homeostasis10. On the other hand, biofilms 

are responsible for 75% of human microbial infection in medical treatments11. In American 

hospitals alone, these biofilm infections account for over 1 million healthcare related infections 

and an estimated 100,000 deaths per year12.  

 Dense multicellular communities promote intimate interaction and phenotypic diversity 

among individual cells. Phenotypic behaviors, such as gene expression or growth rate, vary 

dramatically in spatial and temporal scales among biofilms13, 14. Phenotypic diversity and 

coordination of cellular behaviors provide bacterial biofilms with emergent functional capabilities 

beyond those of planktonic cells through division of labor and nutrient sharing strategies1, 15, 16. In 

fact, owing to their cooperative and collective behaviors, biofilm-dwelling cells have shown 
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substantial advantages compared to planktonic cells, including a higher resilience against external 

threats7, 17 and an increased efficiency in digesting complex nutrients15, 18.  

To enable either efficient suppression of pathogenic biofilm formations or sufficient 

utilization of beneficial properties of biofilms, it is necessary to better understand how 

macroscopic biofilm properties, such as its biochemical metabolism and its geometry shape, 

emerge from the collective behaviors of individual cells. Specifically, we need to understand the 

cellular biochemical and mechanical mechanisms used by biofilm-dwelling cells to cooperate or 

antagonize each other in temporally and spatially heterogeneous biofilm microenvironments19-21. 

To gain this understanding, non-invasive imaging systems and powerful image analysis methods 

that are capable of resolving and tracking individual cells in 3D dense biofilms are required. 

1.2 Biofilm constitution 

As the term biofilm suggests, the microorganisms in biofilms are encased in a self-

produced extracellular matrix, known as extracellular polymeric substances (EPS). In fact, in most 

biofilms, the microorganisms only account for less than 10% of the dry mass, whereas EPS can 

account for more than 90%22. As the major component of biofilms, EPS forms the scaffold for the 

three-dimensional structure of biofilms and provides an immediate environment for biofilm-

dwelling cells, which enables a lifestyle that is entirely different from the planktonic state.  

Though important, our current understanding of EPS is still at a very early stage23. In fact,  

EPS were initially denoted as ‘extracellular polysaccharides’ but redefined, as it is clear that the 

matrix also contains DNAs, proteins and other biopolymers such as lipids24. Although the precise 

functions and molecule level interactions of the various matrix components are still poorly 

understood25, several functions of EPS have been determined, showcasing the benefits of the 

biofilm lifestyle. Extracellular enzymes, for example, make the matrix act as an external digestive 
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system that breaks down polymers, like trapped organic particles22, into low-molecular mass 

products that can then be utilized by biofilm-dwelling cells as energy and carbon sources. As a 

major fraction of the EPS matrix26, polysaccharides are responsible for the mechanical stability of 

biofilms and are involved in the maintenance of biofilm architecture27, which provides biofilms 

with better tolerance towards mechanical stress, such as shear forces3. Extracellular DNA is also 

a major structural component in some biofilms28, for example, the formation of P.aeruginosa 

biofilms is inhibited by DNase29. Put simply, these EPS components work closely with each other, 

providing biofilm-dwelling cells substantial advantages compared with solitary cells. Though 

important for biofilms, EPS could be a problem in biofilm imaging, as the light scattering caused 

by them will result in lower signal and higher background30, thus presenting an additional 

challenge for imaging biofilms with sufficient resolution and contrast to monitor individual cells.  

1.3 Biofilm imaging 

Optical microscopy has long been an important tool for characterizing and understanding 

microbial communities. A key advantage of optical microscopy over other techniques, such as 

electron microscopy, for characterizing microbes is that it is capable of monitoring live cells31. 

Among various optical microscopies, fluorescence microscopy, which combines high spatial-

temporal resolution with highly specific fluorescence probes32, 33, provides a unique way to study 

the spatial and temporal contexts that affect cellular behaviors in biofilm environments.  

For simple systems, such as monolayer bacterial communities on surfaces, imaging is 

straightforward. With proper sample preparation, a simple wide-field fluorescence microscope is 

adequate for obtaining cellular level images with high temporal resolution. In fact, with properly 

designed experiments, many important properties of biofilms, such as inter-bacterial signaling34, 

periodic growth of biofilms21, have been revealed by using wide-field fluorescence microscopy.  



12 
 

Most bacterial biofilms of interest, however, are more challenging to image. The most 

obvious obstacle is dimensionality. Without the ability to block out-of-focus light, wide-field 

microscopy is not able to resolve the intrinsic 3D structure of biofilms35. In addition, fast dynamics 

and long developing time of biofilms also requires fast acquisition speeds and a long imaging 

duration. Confocal microscopy, the current standard approach to 3D fluorescence imaging,  makes 

use of a pinhole conjugate to the focal point to filter out-of-focus light and only allow signal from 

the focal point to reach the detector36. While versatile and powerful, it suffers from limitations in 

acquisition speeds and photodamage37, 38. As any information is collected from a single point, 

constructing a 3D image requires scanning this point through all three spatial dimensions. This 

issue can be partially resolved by parallelizing with multi pinholes, but nonetheless creates 

limitations on overall acquisition speed39, 40. More importantly, though useful information is 

obtained from the focal point, the entire biofilm is under repeated and strong illumination. This 

inefficient use of the photon budget leads to severe phototoxicity as well as photobleaching, which 

limits total imaging duration and temporal resolution41, 42.  

Light sheet fluorescence microscopy, in contrast, utilizes a separate excitation lens 

perpendicular to the wide-field detection objective to confine the illumination to the vicinity of the 

focal plane by generating a thin light sheet and is thus more photon efficient38, 43. Constructing 3D 

images only requires scanning the light sheet along the axial axis of the detection objective thus 

enabling high speed acquisition. Furthermore, as illumination light is evenly distributed along the 

focal plane rather than concentrated at a single point, the illumination intensity of light sheet 

microscopy is much lower than that of confocal microscopy, which significantly reduces 

photodamage38, 42, 44, 45. With these characteristics and newly achieved high spatial resolution, light 
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sheet microscopy has become a unique non-invasive high spatial-temporal resolution imaging 

technique for not only biofilms but also the overall microbial world46, 47.  

1.4 Sample system for biofilm imaging 

In addition to a non-invasive imaging technique, a suitable device that can provide a proper 

environment for biofilms is also required for live imaging48-50. Among various biofilm formation 

devices, microtiter plates or microwell plates have long been the most commonly used due to their 

low cost and ease of use. However, microwell plates can only provide static environments, which 

limits their ability to mimic natural environments and achieve long term imaging51. Furthermore, 

due to the non-custom forms of microwell plates, it is extremely difficult to integrate them into the 

limited sample space of a conventional light sheet microscope52, 53. 

Luckily, microfluidic devices, which combine easily changeable flow conditions and 

various custom forms, now provide a promising platform for live bacterial biofilm imaging 54, 55. 

The continuous flow not only provides a continuous supply of nutrients that is necessary for 

biofilms’ long-term growth, but also presents opportunities for studying effects of hydrodynamics 

on biofilm formation56, 57. Furthermore, customizable microfluidic systems can mimic various 

conditions, which enable us to study biofilms in various conditions and their responses to 

environmental change. In fact, many important properties have been revealed by imaging biofilms 

in microfluidic systems. For example, Nadell et al. demonstrated that matrix organization and 

hydrodynamic flow interact to shape competitive dynamics in P. aeruginosa biofilms by imaging 

biofilms under conditions that mimical natural flow58. Similarly, Singh et al. have shown that 

biofilm-dwelling V. cholerae cells integrate nutrient starvation pathways and quorum sensing to 

govern active dispersal by imaging biofilms in various flow and nutrient conditions59. Ultimately, 
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as an easily customizable device, microfluidic devices can be integrated with various imaging 

systems including light sheet microscopy60. 

1.5 Biofilm imaging analysis 

Combining the non-invasive imaging technique with the microfluidic system allows for 

long duration, high resolution imaging of biofilms. Indeed, lattice light sheet microscopy (LLSM) 

can be combined with microfluidic systems to provide unique information about biofilms, 

including long term growth dynamics of biofilms, 3D complex structure of mature biofilms, and 

quick motion of bacteria within biofilms. After the acquisition of fluorescence images, the 

extraction of quantitative information from such images is a crucial step in the imaging analysis31. 

In order to quantitatively analyze biofilm-dwelling cells, each individual cell needs to be detected 

from images, and this is typically referred to as segmentation61. To this end, image processing 

pipelines based on intensity thresholding and the watershed algorithm have been developed over 

the years31. These pipelines have shown their ability to achieve reasonable single-cell 

segmentations at certain conditions55, 62, 63. Their wide applicability is limited, however, because 

reasonable segmentations from these pipelines require manual optimization of many user selected 

parameters. Usually, these parameters need to be optimized according to characteristics of input 

images, such as image backgrounds, cell sizes, cell densities and signal-to-background ratios 

(SBRs)64. As a result, especially when SBRs are low, cell densities high, and fluorescence intensity 

not uniform across cells, even with optimal parameters, these imaging processing pipelines often 

only produce suboptimal segmentation results30, 65.  

To overcome the limitations of traditional image analysis approaches, deep learning 

methods, such as convolutional neural networks (CNNs), have been used in recent years with great 

success not only in biofilm image analysis but also in general biology image analysis66. Given 
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sufficient training data and computing resources, a properly designed CNN can achieve highly 

accurate segmentation results on a wide variety of cell and image types67-69. For object detection 

tasks, training data are typically composed of raw data and its corresponding segmentation in 

which the position of each cell is annotated. However, obtaining sufficient training data is not a 

trivial task. When using experimentally acquired images as raw data in training pairs, this ground 

truth usually needs to be obtained through manual annotation, a labor-intensive task that simply 

becomes impossible when thousands or even more cells need to be annotated, which is very 

common in biofilm data70, 71. Besides, it is noteworthy that manual annotation is not free from 

errors and uncertainty31, 65. Inaccuracies in training data can be inherited by the CNNs and cause 

systematic errors in segmentation results.  

An alternative way to generate sufficient training data without any manual annotation is to 

provide simulated training data rather than experimentally obtained images. With simulated 

training data, flawless ground truth is automatically available, as spatial arrangements among 

individual cells are known precisely and accurately30, 72. It is worth noting that current methods do 

have some limitations, such as spatial differences of background and resolution potentially not 

being reflected in the simulated images, thus examples of training CNNs with simulated data is 

still rare. Fortunately, recently developed deep learning based image transfer methods, such as 

CycleGAN, have shown their potential for resolving these limitations73, 74.  

With the introduction of user-friendly tools, now even a non-expert user can easily 

manipulate and train CNNs, which allows CNNs based image processing to be widely used in 

microbiology studies75, 76. In addition, CNNs or machine learning methods in general don’t 

necessarily need to be used alone; combined with the conventional image processing methods, 

more efficient image analysis pipelines are now available30, 77.  
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1.6 Shigella flexneri biofilm 

S. flexneri is an intracellular pathogen that causes watery or bloody diarrhea by invading 

epithelial cells in the colonic mucosa78, 79. Though many aspects of the S. flexneri invasion process 

have been thoroughly studied, there is a significant knowledge gap in how the bacterium survives 

during host gastrointestinal transit, where it is exposed to numerous hazardous factors such as 

antimicrobial peptides, proteases, and particularly bile salts in the small intestine80-84. As an 

essential component of digestion, the amphipathic structure of bile salts results in detergent-like 

properties that provide antimicrobial activity by compromising bacterial membrane integrity85. 

Recent studies have indicated the possibility of S. flexneri using biofilm formation as a survival 

strategy in the presence of bile salts83, 86. Though biofilm formation is a commonly adaptive trait 

of microorganisms under harsh conditions, previous studies have shown that S. flexneri lacks 

various adherence factors that are thought to be important to biofilm formation, including type 1 

fimbria, flagella, and Type IV 86, 87. Thus, this observation may reveal some different mechanisms 

utilized by microorganisms in biofilm formation. However, current studies of S. flexneri biofilms 

are limited to static culture conditions and ensemble-level analysis83, 86. To further confirm biofilm 

formation of S. flexneri in the presence of bile salts, an experiment performed at biologically 

relevant conditions with single cell level information of live S. flexneri biofilms is necessary. Our 

above-mentioned tools are well matched with these experimental requirements, and some 

preliminary results of S. flexneri biofilm formation in the presence of bile salts have been obtained.  

1.7 Dissertation overview 

A non-invasive 3D imaging system with advanced computational image analysis 

algorithms enables studies of live 3D bacterial biofilms at the cellular level. In this dissertation, 
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descriptions of the non-invasive 3D imaging system will be divided into two chapters, Chapter 2 

and Chapter 3. While Chapter 2 will detail the imaging platform, the LLSM, Chapter 3 will 

describe the LLSM integrated flow system that provides suitable environmental conditions for 

biofilm imaging. Chapter 4 and 5 will move to the computational image analysis part, covering 

BCM3D 1.0, BCM3D 2.0, respectively, both automatic image analysis workflows that can extract 

cellular information of 3D biofilms. In Chapter 6, I will describe how we combine and apply these 

methods for the study of S. flexneri biofilm. Finally, significance and future directions of the work 

will be discussed in Chapter 7. 
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Chapter 2 Lattice Light Sheet Microscopy (LLSM) 

 

2.1 Introduction 

Live cell compatible imaging provides a window into the spatially complex, rapidly 

evolving dynamics of biofilms that fixed-cell imaging cannot1, 2. However, observing these 

dynamics directly involves inevitable tradeoffs of spatial resolution, temporal resolution and 

phototoxicity3, 4. Confocal microscopy, the most commonly used imaging modality for biofilms, 

is able to provide  3D volumes of biofilms at single cell resolution, yet it is not able to monitor fast 

dynamics of individual cells within biofilms over extended periods of time5, 6. This is due to the 

fact that confocal microscopy illuminates the whole thickness of the specimen, though useful 

information is only obtained from a single focal point7, 8 (Figure 2.1a). This fact not only results 

in wasting of photon budget but also leads to premature phototoxicity and photobleaching, limiting 

imaging duration and altering the physiological state of the specimen9, 10. 

To overcome the drawbacks of confocal microscopy, light sheet-based fluorescence 

excitation and imaging approaches have been developed in recent years11-13. Unlike confocal 

microscopy, which uses the same objective for illumination and detection, light sheet microscopy 

generally uses a separate excitation lens perpendicular to the wide-field detection lens to confine 

the illumination to the vicinity of the focal plane14, 15 (Figure 2.1b). The thinness of the light sheet 

leads to high axial resolution and negligible phototoxicity, photobleaching and background outside 

of the focal plane16, 17. Furthermore, as it simultaneously illuminates the entire field of view (FOV), 

fast 3D volume acquisition is able to be achieved with low peak excitation intensities through 

plane by plane scanning, which not only achieves high temporal resolution but also minimizes 
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phototoxicity and photobleaching within the focal plane7, 9. However, conventional light sheets 

created from Gaussian beams are limited by the fact that uniform thickness area is limited by the 

Rayleigh range and further related with the beam waist. Thus, there is always a tradeoff between 

the thickness of light sheets and the FOV of images14. 

 

Figure 2.1 Comparison of confocal and light sheet microscopy. (a) In confocal microscopy, 

fluorescence excitation (green) is confined to cones of light that repeatedly illuminate the sample 

(blue) during laser scanning, though useful fluorescence signal (red) only comes from the focal 

point. (b) In light sheet microscopy fluorescence excitation and detection is confined to a single 

plane that section through the sample. 

To further improve the performance of light sheet microscopy, ‘nondiffracting’ light has 

been introduced18, 19. Compared to Gaussian beams, the cross section profile of a nondiffracting 

beam will not change along its propagation direction, which removes the tradeoff between the 

thickness of light sheets and the FOV of images in theory20, 21. In 2012, Planchon et al. introduced 

‘nondiffracting’ Bessel beams into a light sheet microscope and showed that such beams can create 
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a light sheet of submicrometer thickness well suited to noninvasive, high-speed, 4D live cell 

imaging22. In 2014, Chen et al. further introduced ‘nondiffracting’ 2D optical lattices involving 

linear arrays of coherent Bessel beams for fluorescence excitation1. Compared to a single Bessel 

beam, the linear array of multi-Bessel beams spread the excitation across many foci, greatly 

reducing the peak intensity at any single focus and in turn reducing the effect of photodamage, 

making it become the preferred choice for noninvasive imaging.  

2.2 Bessel beams and linear arrays of Bessel beams 

If the transverse intensity distribution is independent of the propagation distance, this beam 

will be defined as a nondiffracting beam21, 23. Bessel beams are nondiffracting beams whose 

transverse amplitude is described by the circularly symmetric zero-order Bessel function of the 

first kind19, 20. As shown in Figure 2.2a, the transverse profile of an ideal Bessel beam consists of 

a narrow central peak surrounded by an infinite series of concentric side lobes. The narrow central 

peak and the propagation-independent transverse profile make an ideal Bessel beam an attractive 

candidate for light sheet microscopy. 
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Figure 2.2 Simulated Bessel beam. (a) The xz cross-section of a simulated Bessel beam 

propagating in y direction. (b) The xz cross-section of a swept Bessel beam. (c) The coordinate 

system of our home-built LLSM. 

However, an ideal Bessel beam is not directly useful for creating thin light sheets. Each 

ring (including the central peak) in the ideal Bessel beam contains the exact same amount of 

energy.  Thus, sweeping such a beam across the detection focal plane produces unwanted 

fluorescence outside of the focal plane and in turn weakens optical sectioning ability of light sheet 

microscopy (Figure 2.2b). Furthermore, producing an ideal Bessel beam requires illuminating the 

rear pupil with an infinitesimally thin ring of light, which is impractical. 

In practice, an annulus of finite width is used to produce a finite thin ring of illumination 

at the rear pupil. The resulting beam is no longer strictly nondiffracting, but will still keep a nearly 

constant cross section profile over the needed field of view in y, defined by the annulus width. 

This nonideal Bessel beam is named Bessel-Gauss beam. As its name suggest, a Bessel-Gauss 

beam has characteristics of each: a suppression of higher order Bessel side lobes due to the 

Gaussian envelope, and a much longer waist than a conventional Gaussian beam owning to the 

propagation-independent cross section profile of the Bessel beam. 

A previous study18 has shown the effectiveness of reducing phototoxicity by using an array 

of seven Bessel-Gauss beams. Motivated by this, Chen et al. have introduced linear arrays of 

closely spaced Bessel-Gauss beams to spread the excitation across the entire field of view1. They 

have further demonstrated that Bessel-Gauss beam arrays are bounded 2D optical lattices. An ideal 

2D optical lattice is a nondiffracting beam which has the cross-sectional symmetry of a 2D Bravias 

lattice. Like ideal Bessel beams, an ideal 2D optical lattice is also not directly useful for light sheet 

microscopy because of its unconfined extension in all 3D space. To use 2D optical lattice, 
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confinement must be applied to its z direction extension limiting the excitation outside of the focal 

plane, also known as a bounded 2D optical lattice. Owing to its low peak intensity and submicron 

thickness, this Bessel-Gauss beam array generated light sheet becomes a superior choice for 

noninvasive imaging.    

2.3 Generate desired thin light sheets 

In LLSM, the lattice light sheet is generated by a binary ferroelectric spatial light modulator 

(SLM) that is conjugate to the front focal plane of the excitation objective. An annual mask located 

in a conjugate plane to the rear pupil of the excitation objective is used to filter the light diffracted 

by the SLM. This annual mask filters out unwanted zeroth and higher order diffracted light and 

ensures desired illumination profiles at the specimen. To generate a lattice light sheet with desired 

properties (e.g., excitation confinement in z, overall axial resolution), we need to find a proper 

binary pattern for the SLM and theoretically confirm that beams diffracted by this pattern and 

further filtered by the designed annulus do produce the desired lattice light sheets at the specimens. 

This theoretical confirmation is done by a Fourier optics based simulation in MATLAB (code was 

adapted from Chen et al.) 1, and details of the procedures are shown in Figure 2.3. Although the 

periodical intensity profiles of lattice light sheets enable the LLSM to achieve super resolution by 

structure illumination, multiple images need to be recorded at each z plane, which limits imaging 

speed. To reduce the motion blur due to bacterial motility, all of our biofilm images are recorded 

in the dithered mode. In the dithered mode, a galvanometer is used to oscillate the lattice pattern 

along the x axis at a speed fast enough to compared to the camera exposure time and an amplitude 

larger than the lattice period, creating a time-averaged uniform light sheet across the xy plane. 

Thus, only one 2D image needs to be recorded at each z plane. 
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Figure 2.3 Steps in the simulation for the generation of the SLM pattern for a desired lattice light 

sheet.  (a) An ideal coherent Bessel light sheet intensity. (b) SLM pattern obtained by cropping 



33 
 

and binarizing the ideal coherent Bessel light sheet shown in (a). (c) Predicted diffraction pattern 

on the annular mask, produced by the light that is phase modulated by the SLM.  (d) Simulated 

annulus mask. The inner and outer Numerical Aperture (NA) of the annulus is 0.44 and 0.55 

respectively, which matches our experimental set-up. (e) Predicted illumination intensity after the 

annulus mask. (f) Predicted xz cross-section of the lattice light sheet at the sample. (g) Predicted 

xz cross-section of the dithered lattice light sheet. (h) Predicted overall PSF of LLSM in the 

dithered mode. Inset is a higher magnification view. 

2.4 Detailed optical path of LLSM 

Our home-built lattice light sheet microscope generally follows the original design from 

the Betzig lab1 with a key modification in the detection path. The original path only has a 500mm 

focal length tube lens to provide an overall magnification of 62.5X. Our new design instead 

consists of a tube lens (250 mm FL/50.8 mm dia, Edmund), providing a 31.25X magnification, 

and a pair of achromatic relay lenses (80 mm FL/25.4 mm dia Thorlabs AC254-080-A, 160 mm 

FL/25 mm dia, Edmund 67-331-INK) in a 4f arrangement to obtain a total magnification of 62.5X. 

Thus, our new emission path provides the same overall magnification as the original one, but 

adding the 4f system provides more function extension space for the microscope (Figure 2.4ab).  

2.4.1 Main optical path 

The microscope contains four lasers in the excitation pathway: a 405 nm laser (250mW, 

Coherent OBIS, OBIS 405nm LX), a 488 nm laser (1000 mW, Genesis, MX488-1000 STM), a 

560 nm laser (1000 mW, MPB Communications, 2RU-VFL-P-1000-560-B1R), and a 641 nm laser 

(1000 mW, MPB Communications, 2RU-VFL-P-1000-647-B1R). Lasers are expanded to a 1/e2 

diameter of 4 mm by two lenses (50 mm FL/25.4 mm dia, Thorlabs, 200 mm FL/25.4 mm dia, 
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Thorlabs) before passing through an acousto-optic tunable filter (AA Quanta Tech, Optoelectronic 

AOTF AOTFnC-400.650-TN). The AOTF is used to select the beam wavelengths, control 

illumination intensities and synchronize with the spatial light modulator (SLM). A flip mirror is 

placed behind the AOTF, allowing the beam to switch between the main optical path (mirror down) 

and the epi-illumination path (mirror up). Following the flip mirror in the main optical path, a pair 

of cylindrical lenses (25 mm FL/12.5 mm dia, Edmund NT68-160 and 200 mm FL/25.4 mm dia, 

Thorlabs, ACY254-200-A) are positioned to expand the beam in the x direction. The expanded 

beam uniformly illuminates a strip of the SLM on which the lattice light sheet pattern is displayed. 

The SLM is composed of 2048 x 1536 ferroelectric-liquid-crystal pixels (Forth Dimension, 

QXGA-3DM). Each pixel of the SLM can be digitally set to on or off, which together with a 

polarizing cube beamsplitter (Newport, 10FC16PB.3) and a half-wave plate (Bolder Vision Optik, 

BVO AHWP3) provide a 0 or π phase shift to the diffracted beam24. The diffracted light from the 

SLM is then focused though a 500 mm focal length achromatic lens (500 mm FL/40 mm dia, 

Edmund 49-283) onto an annular mask (Photo Sciences Inc). The unwanted zeroth and higher 

order diffracted light caused by the finite-sized (8.2 μm) pixels of the SLM is physically filtered 

out by the annular mask. After passing through the mask, the desired beam is demagnified 0.75X 

through two relay lenses (80 mm FL/12.5 mm dia, Edmund NT47-670, 60 mm FL/12.5 mm dia, 

Edmund NT47-668) and conjugated to a scanning system composed of two 3 mm galvos 

(Cambridge Technology, 6215H) and a pair of equal focal length achromatic relay lenses (25 mm 

FL/12.5 mm dia, Edmund NT47-662) in a 4f arrangement. As each galvo is positioned conjugate 

to the back pupil of the excitation objective, this system provides scanning along the x and z axis 

at the sample. After passing through the scanning system, the annular mask filtered beam pattern 

is re-magnified 3.2X through relay lenses (125 mm FL/25 mm dia, Edmund NT49-361, 400 mm 
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FL/25 mm dia, Edmund 47-650) and conjugated to the back pupil of a custom water immersion 

excitation objective (Special Optics, 0.65 NA, 3.74 mm WD). Overall, the SLM and the front focal 

plane of the detection objective form one set of conjugate planes in the illumination path, and the 

annular mask, scanning galvos, and the back pupil form another set.  

After the lattice light sheet is projected onto the front focal plane of the excitation objective, 

the excited fluorescence of the sample is collected by an orthogonally mounted detection objective 

(Nikon, CFI Apo LWD 25XW, 1.1 NA, 2 mm WD). The detection objective is positioned on a 

piezo stage (Physik Instrumente, P-621.1CD), which keeps the focal plane of the detection 

objective coincident with the lattice light sheet illumination and provides z-scan ability to the 

detection objective. The fluorescence signal is then imaged through an emission filter onto a 

sCMOS camera (Hamamatsu, Orca Flash 4.0 v2 sCMOS) by our custom emission path. Two 

inspection cameras (Imaging Source, DMK 33UP1300), located in planes conjugate to either the 

back pupil of the excitation objective or the front focal plane of the excitation objective, aid in 

aligning and verifying the lattice pattern. 

2.4.2 Epi-illumination path 

As the flip mirror behind the AOTF is flipped up, the beam will pass through the epi 

illumination path. The beam is expanded 3.75X with two achromatic lenses (20 mm FL/12.5 mm 

diameter, Edmund 47-661, 75 mm FL/12.5 mm diameter Edmund 47-669). It then passes through 

a 200 mm focal length achromatic lens (200 mm FL/25 mm, Edmund 49-364). Following this lens, 

a 90:10 (Reflection : Transmission) non-polarizing beamsplitter cube (Thorlabs, BS028) is 

positioned. The beamsplitter transmits 10% of incoming light, which is then projected onto the 

sample by a water immersion objective (Olympus LUMPLFLN 40XW, 0.8 NA, 4.5 mm WD). 

This objective shares the same focal point with the excitation objective and the detection objective 
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in the main optical path, thus providing epi-illumination for the sample. Besides, an emission path 

composed of a 100mm tube lens (100mm FL/25mm diameter, Edmund NT47-641), an emission 

filter, and a CMOS camera (Imaging Source, DMK 33UP1300) is set at the reflection path of the 

90:10 (R:T) beamsplitter, which provides extra wide field imaging ability.      
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Figure 2.4 Schematic of our home-built lattice light sheet microscope. (a) Optical path of the 

LLSM, Focal length was simplified as FL, PBS represents polarization beam splitter. (b) 3D model 

(SolidWorks 2020, Dassault Systèmes) of the LLSM, the red line indicates the emission path. (c) 

The core of our microscope, with orthogonal excitation and detection objectives dipped in a media-

filled bath. Inset is a higher magnification view, showing the excitation and detection objectives, 

which share a same focal point within a specimen that is mounted onto a cover glass within the 

media. The x, y, and z directions are indicated. The s-axis defines the direction the specimen moves 

from image plane to image plane.  

2.5 Recording 3D stacks and raw data processing 

For 3D stacks recording, a specimen mounted onto a coverslip was moved through the 

dithered light sheet using a piezo nano-positioning stage (Mad City Labs, NanoOP100HS), shown 

in Figure 2.4c. The fluorescence signal thereby generated was recorded as a series of 2D slices 

and then combined into a 3D stack. However, unlike conventional microscopy, these LLSM 

obtained 2D slices cannot be directly rebuilt into 3D stacks. As shown in Figure 2.5a, the fact that 

the detection objective lens of the LLSM is tilted at an angle with respect to the axis of stage 

movement results in an unconventional geometry for the acquired image stack, i.e., an offset 

between each slice. Thus, a conventional 3D stack rendering will result in a skewed result, as 

shown in Figure 2.5b. To remove this artifact, a deskewing process is employed, i.e., 

computationally adding offset back, as shown in Figure 2.5c. If preferred, background subtraction 

and Richardson-Lucy based deconvolution can be further applied to improve resolution and 

contrast of the images1, 10, 25.  
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Figure 2.5 Schematic of raw data processing for the LLSM. (a) Geometry of the acquired image 

stacks, LLSM vs conventional microscope. (d) A skewed stack of the LLSM raw data. (c) A 

deskewing-processed LLSM stack. 
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Chapter 3 Optically Accessible Microfluidic Flow Channels for Non-

Invasive High-Resolution Biofilm Imaging using Lattice Light Sheet 

Microscopy 

 

This chapter is adapted from Zhang, J., Zhang, M., et al. J. Phys. Chem. B. 2021, 125 (44), 12187-

121961. 

3.1 Introduction 

Bacterial biofilms are microbial communities that grow on various surfaces and encase 

themselves in a self-produced extracellular matrix (ECM) containing proteins, DNA, and 

polysaccharides2-4. Owing to their communal and cooperative behaviors, biofilm-dwelling cells 

have shown emergent capabilities beyond those of the planktonic phase cells4-6. Consequently, 

biofilms are orders of magnitude more tolerant towards external threats, including antibiotic 

treatments and immune system clearance5, 7-9. Because biofilms are a major component of 

microbial life, it is vitally important to understand how population-level capabilities emerge from 

the coordination of individual cell behaviors10. To gain this understanding, non-invasive imaging 

techniques that are capable of resolving and tracking individual cells in 3D biofilms are required.  

Fluorescence microscopy is one of the best tools to reveal both the spatial and temporal 

contexts that affect cellular behaviors in a biofilm11-13. However, conventional widefield and 

confocal techniques illuminate the entire thickness of the specimen, even though useful 

information is only obtained from a single slice in the specimen that is coincident with the 

microscope’s focal plane14, 15. Repeated illumination of the entire specimen results in increased 
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phototoxicity and photodamage, which results in a disadvantageous tradeoff between temporal 

resolution and total imaging time16. In contrast, light sheet fluorescence microscopy approaches, 

while achieving similar resolution to confocal microscopy, are more photon efficient, because they 

utilize coincident excitation and detection planes, so that out-of-focus specimen regions are not 

illumilated17-19. Among light sheet-based fluorescence microscopies, lattice light sheet microscopy 

(LLSM) has proven especially powerful for noninvasive 3D live imaging of embryos and 

organelles at high spatial and temporal resolution20-23. Dual inverted selective plane illumination 

microscopy (diSPIM)24 is another high-resolution light sheet-based fluorescence microscopy 

modality that has recently been applied to biofilm imaging13. With the ability to acquire images 

from two orthogonal views (dual view), diSPIM can provide isotropic resolution. However, it is 

important to note that isotropic resolution comes at the cost of twice the number of image 

exposures. If the goal is to reduce the amount of photobleaching and phototoxicity, the number of 

image frames should be kept to a minimum, if at all possible.  

Bacterial biofilms pose an additional challenge for high numerical aperture LLSM, 

diSPIM, and similar dual-objective light sheet implementations. The high numerical aperture water 

immersion objective lenses require the sample to be in close proximity to the objective lenses. In 

the original LLSM implementation23, the sample is therefore not physically separated from the 

objective lenses, but is simply mounted on a spoon-like sample holder and then immersed into an 

aqueous growth medium for imaging. This is in contrast to conventional inverted fluorescence 

microscopy setups, where a glass coverslip provides a physical barrier between the microscope 

and the specimen23, 25. The open-on-top sample mounting approach allows for direct optical access, 

but it is not suitable for long-term biofilm imaging. First, biofilms eventually grow on the objective 

lenses themselves and thereby attenuate the excitation and emission light intensities leading to a 
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loss of signal. Second, colonized microscope components could expose microscope users to 

potentially harmful bacterial pathogens26, 27. Third, an open sample basin makes any biological 

sample vulnerable to airborne biological and chemical contaminants, which could affect a living 

specimens in unpredictable ways28. Containing living biological specimen in an enclosed 

environment, separate from the microscope components, is necessary to ensure well-controlled 

experimental conditions and the safety of laboratory personnel who work with pathogenic 

specimens.  

Microfluidic channels, made from biocompatible polydimethylsiloxane (PDMS) adhered 

to a glass coverslip, have been widely used for live-cell biofilm imaging on conventional inverted 

microscopes29, 30. These studies have demonstrated that shear forces due to fluid flow is a critical 

factor influencing the growth of biofilms; in some cases, fluid flow is arguably a necessary factor 

to image biofilms in physiologically relevant environments. Hartmann et al. have recorded the 

growth dynamics of Vibrio cholerae using a spinning disk confocal microscope using PDMS-

based microfluidic flow systems12. Thomen et al. studied the effects of hydrodynamics on growing 

biofilms by utilizing PDMS flow channels of various sizes with bright-field and epifluorescent 

microscopes31. Coyte et al. studied the hydrodynamic interactions between competing biofilms 

through a Y-shaped microfluidic system with bright-field and epifluorescent microscopes32. Due 

to the widespread use of single-objective inverted microscope implementations, recent 

developments have also enabled high-numerical aperture light sheet imaging using only a single 

objective lens33-35. These implementations share many of the critical benefits of LLSM (low 

phototoxicity/photodamage and high spatial and temporal resolution) while also enabling high 

resolution bottom-to-top imaging of cells in a biofilm. However, the necessity of the biofilm 
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growth substrate to be optically transparent is an inherent drawback of such inverted microscope 

imaging geometries.     

Integrating microfluidic technology with LLSM is challenging for two reasons. First, the 

space between the two LLSM objective lenses is very small, which necessitates a small 

microfluidic device footprint. Typical PDMS-based microfluidic devices are tens of milimeters in 

size29, 36, 37 and therefore too large for LLSM. Second, the refractive index of PDMS does not 

match the refractive index of the aqueous growth media38, which would result in unacceptable 

optical aberrations25, 39. Due to these challenges, LLSM-integrated microfluidic channels are rare. 

Only very recently, Fan et.al reported an LLSM-integrated channel sealed with Sarstedt Lumox® 

film, a biocompatible material that has a refractive index similar to water40. However, repeated 

high-resolution imaging of living cells over time was not possible, because the numerical aperture 

(NA) of that imaging system was 0.8 (the imaging system used here has an NA of 1.1) and the 

channel was not mounted on a motorized sample stage which would enable imaging of large 

specimen volumes by stage scanning. Instead, 3D imaging was achieved by flowing unattached 

cells through the light sheet. To imagesessile cell populations repeatedly over time at high 

resolution, a more versatile imaging system and flow channel integration is needed.  

Here, we report a flow channel design that is fully compatible with high-resolution LLSM 

and demonstrate its application in extended time live-cell biofilm imaging. A 3D-printed folded 

channel architecture ensures full compatibility with the original and most widely adapted LLSM 

implementation. A refractive index matched polymer film was used to seal the observation window 

on the top channel. We found that precise refractive index matching (1.333) substantially reduces 

optical aberrations thus enabling close to optimal imaging conditions. Using this channel, we 

obtained high quality time-lapse images of growing biofilms over several days with the possibility 
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to extend the imaging duration even further. Single-cell resolution was maintained at all time 

points. A completely enclosed flow channel, as describe here, can benefit any water-dipping dual-

objective light sheet implementation, including diSPIM. Although diSPIM imaging of Vibro 

cholera biofilms could be performed for 16 hours with an open top chamber containg growth 

medium13, an enclosed channel could further enhance the versatility of diSPIM for biofilm 

research, specifically, by providing better control over physical and chemical growth conditions 

and by preventing airborne contaminants from reaching the biofilm. We anticiapte that the 

integration of microfluidic technologies with non-invasive, high-resolution imaging technologies 

and computational image analysis41, 42 will enable studies on how individual cells’ behavioral 

phenotypes, as well as chemical and mechanical driving forces shape bacterial communities and 

determine their emergent functional capabilities.  

3.2 Materials and Methods 

3.2.1 Flow channel design and fabrication 

The flow channel was designed using SolidWorks 2020 (Dassault Systèmes 

SOLIDWORKS Corp) (Figure 3.1). The main chamber is 12.10 mm long and 4.40 mm wide. To 

physically isolate the inner chamber space from the outside environment, a detection window with 

a length of 5.00 mm is draped over the top of the channel to allow light transmission into the entire 

collection solid angle of the detection objective. A platform holding an arbitrary substrate for 

biofilm growth is positioned in the middle of the main chamber. A folded channel architecture was 

chosen to minimize channel/sample drift and to ensure easy routing of plastic tubing away from 

optical and optomechanical components of the LLSM. These measures also made it easier to 

mount and then translate the channel on automated micro- and nano-positioning stages. To reduce 
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the impact of the refractive index boundaries in the excitation and emission light paths, a 50 μm 

thick film of MY133-V2000 polymer (My Polymers, Israel) was used to seal the detection 

window. The refractive index of MY133-V2000 (n = 1.333), which is very close to the refractive 

index of the media used in our experiments.  

Channels were fabricated using Clear Resin V4 in a low force stereolithography Form 3B 

- 3D printer (Form Labs). After printing, the channels were washed with isopropyl alcohol using 

the Form Wash instrument (Form Labs) for 10 minutes to remove uncured resin. Then, the 

channels were removed from the supports and rinsed again in isopropyl alcohol for another 10 

minutes. After washing, the channels were dried for 1 hour at room temperature to allow the 

isopropyl alcohol to evaporate. Finally, the channels were cured by UV light using the Form Cure 

instrument (Form Labs) for 15 minutes at 35 °C.  
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Figure 3.1 Schematic of the experimental setup. (a) Sample area of the custom-built lattice light-

sheet microscope. (b) 3D model of 3D printed microfluidic channel. (c) Cross-section of the 

microfluidic channel, red arrows indicate the flow direction. 
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3.2.2 Refractive index-matched polymer film fabrication  

To create a ~50 µm thick film of MY133-V2000 polymer, we cut a 6 x 6 cm2 square 

opening into a 50 µm Teflon film (FEP Teflon, DuPont). The Teflon film was then put onto a flat 

glass plate (McMaster-Carr, 8476K62) and ~200 µL MY133-V2000 polymer was deposited into 

the opening. A second flat glass plate was then put on the top of the Teflon film opening and ~5 

kg pressure was applied to spread the polymer within (Figure 3.2a). The two glass plates were 

then clamped together using binder clips and the liquid polymer was cured under ultraviolet (UV) 

illumination (~28 mw/cm2) for two hours using a UV/ozone cleaning instrument (Novascan) 

(Figure 3.2b). The UV curing process resulted in a MY133-V2000 film of ~ 50 µm thickness.  

3.2.3 Flow channel assembly 

For channel assembly, a piece of film, slightly larger than the detection window, was cut 

using a razor blade (Figure 3.2c). The film piece was sterilized by immersing it into 70% ethanol 

and allowed to dry out at room temperature. The film piece was then glued onto the channel using 

LOCA-133 adhesive (My Polymers, Israel) to make an optical transparent, hermetically sealed 

window (Figure 3.2d).  
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Figure 3.2 Fabrication of the MY133-V2000 polymer film. (a and b) suitable uniform film 

thickness is achieved by using a Teflon film as a spacer between two glass plates that are pressed 

together. The liquid polymer is then cured using UV light. (c and d) The cured polymer film is cut 

into proper sizes using a razor blade and glued onto the 3D-printed channel. The fully assembled 

channel is hermetically sealed and supports biofilms growth within fluid flow.  

3.2.4 Flow channel operation 

Kanamycin resistant S. oneidensis MR-1, constitutively expressing the green fluorescence 

protein (GFP), were cultured at 30 °C overnight in LB medium with 50 μg/ml Kanamycin. 

Overnight cultures were diluted 100 times into the same culture medium, grown to an optical 
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density at 600 nm (OD600) of 0.4 – 1.0, and then diluted to OD600 = 0.05 by M9 medium with 

0.05% (W/V) casamino acids before channel inoculation. For the results reported in this paper, a 

3 mm square coverslip coated by poly-l-lysine was set on the bottom of the upper channel. The 

channel was then sterilized using 70% ethanol and rinsed with ddH2O (double distilled water). 

The channel was then inoculated with live bacterial cell cultures using a syringe. After inoculation, 

the channel was mounted on a piezo nanopositioning stage (Mad City Labs, NanoOP100HS) and 

immersed in the basin medium (water or sucrose solution to match the refractive index of the 

growth media). The channel inlet port was connected to a syringe pump (Harvard Apparatus, 

Model 22) and the channel outlet port was connected to a waste container using PVC tubing. 

Before the medium flowing through the channel was initiated, cells were given an hour to attach 

to the poly-l-lysine coated coverslip. Then, the flow rate was ramped up to 0.5 ml/h for 20 minutes 

to flush away non-adherent cells. Next, the flow rate was reduced to 0.03 ml/h for the duration of 

imaging.  

GFP fluorescence was excited using 488 nm light sheet excitation. Biofilms were imaged 

every 30 minutes. At each time point, a 3D image stack containing 301 2D slices was recorded 

using a 235 nm step size between slices. Each slice was acquired with a short 10 ms exposure time 

to reduce motion blur from loosely attached and therefore wiggling cells. 

3.2.5 Lattice light sheet evaluation 

The polymer film that confines the live cell specimens in the flow channel introduces 

refractive index boundaries in both the optical excitation and emission paths (Figure 3.3). To 

reduce the optical aberrations that may result because of these refractive index boundaries, the 

objective lenses are immersed in a sucrose solution that has the same refractive index as the 

medium in the channel (RI = 1.3350, M9 medium in this experiment). The refractive index of the 
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polymer film itself is 1.3333. Differences between the refractive index of the immersion medium, 

the polymer film, and the growth medium will lead to refraction of the excitation and emission 

light according to Snell’s law. A previous study has computationally shown that precise refractive 

index matching is crucial for producing a high quality lattice light sheet40. We therefore evaluated 

the importance of refractive index matching experimentally using 488 nm laser excitable 

fluorescent beads (200 nm FluoSpheres®, Thermo Fisher) as calibration samples. Beads were 

coated on a 3 by 3 mm coverslip (Deckglaser). The coverslip was positioned into the channel 

below the observation window (see Figure 3.2d). A hexagonal lattice light sheet and a square 

lattice light sheet were used for illumination separately. By visualizing the intensity change of a 

bead during a scan, a cross section of the lattice pattern at the focal plane is generated, as shown 

previously23. An open window (i.e. no polymer foil) was used as a positive control for perfect 

refractive index matching.  As test cases we used two different polymer foils: a 50 µm thick 

fluorinated ethylene propylene Teflon (FEP Teflon, DuPont) film and MY133-V2000 (My 

Polymers, Israel). FEP Teflon is a commonly used material in light sheet microscopy application, 

because its refractive index is close to that of water (1.3440 vs. 1.3327).  
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Figure 3.3 Schematic for lattice light sheet imaging. (a) Arrangement of two objectives and the 

microfluidic channel. (b) Schematic for excitation and emission light paths for the lattice light 
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sheet imaging. Notice the refractive index difference between the polymer film and medium lead 

to light distortion.  

3.2.6 Resolution evaluation 

In a second set of measurements, we evaluated the size of the microscope's point-spread 

function (PSF) for different polymer foils. We evaluated the full width at half maximum (FWHM) 

of the PSFs of 200 nm fluorescence beads (FluoSpheres®, Thermo Fisher). We first scanned the 

lattice light sheet and the detection objective simultaneously along the z axis to obtain a 3D volume 

of a fluorescence bead. Then, an XZ image of the PSF was generated by the maximum intensity 

projection. This XZ projection image was then fitted by a 2D gaussian function, 𝑓(𝑥, 𝑧) =

𝐴𝑒𝑥𝑝(−(
(𝑥−𝑥0)2

2𝜎𝑋
2 +

(𝑧−𝑧)2

2𝜎𝑧
2 )), where 𝜎𝑥  is the standard deviation along the x axis and 𝜎𝑧  is the 

standard deviation along the z axis. The FWHM was then calculated using FWHMz/x 

= 2√2 𝑙𝑛 2 𝜎𝑧/𝑥 . 

3.2.7 Biofilm images evaluation 

The quality of experimental biofilm images were evaluated by estimating the resolution 

and signal-to-background ratio. For resolution estimation, we used a previously reported 

decorrelation analysis43. To estimate the signal-to-background ratios (SBRs), we manually 

determined the intensities of five “signal” and five “background” regions in the images. The SBRs 

were computed as the mean signal intensity divided by the mean background intensity. 
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3.2.8 Volumetric image stitching and display 

To image 3D biofilms that are larger than the field-of-view of the LLSM, a tiled scan was 

applied. Volumetric tiles were aligned through pairwise phase correlation and global optimization 

using BigSticher44. To minimize boundary artifacts, less weight (a cosine-shaped fade-out) was 

placed on border voxels of the input stacks. Final 3D views were rendered in ChimeraX45. 

3.3 Results and discussion 

3.3.1 Microscope performance when imaging through polymer films 

The change from an open sample platform to an enclosed channel introduces four 

additional refractive index boundaries; two in the excitation path and two in the emission path 

(Figure 3.3). To determine the influence of these additional refractive boundaries, we recorded 

the xz cross section of the lattice light sheet pattern. The light sheet cross sections show minimal 

distortions from an ideal lattice pattern when the channel window is not covered by a polymer foil 

(Figure 3.4a). When the window is covered with a MY133-V2000 polymer film, slight distortions 

begin to manifest, and when the window is covered by FEP Teflon, more severe blurring is evident 

(Figure 3.4bc). The refractive index difference between FEP Teflon and water is only 0.0113, 

indicating that better refractive index matching is required. The refractive index difference 

between MY133-V2000 and water is 0.0006. Indeed, this polymer material provides a lattice 

pattern that more closely resembles that obtained without a polymer window. These results show 

that refractive index matching is a crucial parameter for optimizing imaging performance in 

LLSM.   
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Figure 3.4 Evaluation effect of refractive index mismatch. Cross-sectional profiles of the lattice 

light sheet at the focal plane when imaged through different window materials: (a) no polymer, (b) 

MY133-V2000 polymer, (c) FEP. Cross-sectional profiles of 200 nm fluorescent beads when 

imaged through different window materials: (d) no polymer, (e) MY133-V2000 polymer, (f) FEP.   
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The superiority of the MY133-V2000 polymer was further confirmed by measuring the 

lateral and longitudinal FWHM of 200 nm fluorescence bead images. These images represent the 

size of the microscopes’ point spread function (PSF) convolved with the size of the 200 nm 

diameter fluorescence beads. As expected, the smallest FWHM values were obtained when no 

polymer is present in the light path (Figure 3.4d). When the channel window is covered with 

MY133-V2000 polymer, the FWHM increases slightly (Figure 3.4e) and when the channel 

window is covered with FEP Teflon, the largest FWHM is obtained for the conditions tested here 

(Figure 3.4f). Since the same type of beads were imaged under all conditions, the increase in the 

FWHM of the bead images can be attributed to an increase in the microscope’s PSF. These results 

show again that better refractive index matching results in less severe optical aberrations and thus 

in smaller PSF sizes, which will ultimately result in crisper, higher resolution images. For the 

materials tested here, MY133-V2000 polymer films produced a smaller PSF than FEP films. 

Therefore, we used the MY133-V2000 polymer for channel construction in all subsequent 

experiments.  

3.3.2 Live-cell LLSM imaging of bacterial biofilms in flow channels 

To test the performance of the flow channels with a live specimen, we acquired time-lapse 

3D stacks of S. oneidensis MR-1 biofilms every thirty minutes for 20 hours at 30 °C.  A small 

number of surface-attached cells developed into a multi-layer biofilm that eventually covered the 

whole field of view at the 20 hour time point (Figure 3.5a). These results indicate that bacteria 

continue to proliferate within the flow channel and build biofilm structures in the presence of fluid 

flow, consistent with previous reports46-48. Leaching of uncrosslinked chemical compounds from 

the 3D-printed channel body is therefore not a phototoxicity concern, at least for S. oneidensis 

MR-1. Visual inspection of the obtained images show densely packed cells bodies, indicating that  
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cellular resolution is obtained at every time point without any noticeable degradation in image 

quality. To quantify these observations, we evaluated the resolution and signal-to-backgrond ratio 

of the images over time (Figure 3.5b). Although the SBR decreases as biofilms grow larger and 

denser, SBRs of >2 were maintained at every time point. The decreased SBRs can be attributed to 

an increased background due to greater light scattering off of the bacterial cells. Estimation of the 

image resolution showed that a spatial resolution ~500 nm was maintained over 20 hours. These 

results demonstrate that long-term single-cell biofilm imaging can be performed using LLSM and 

the flow channels reported here.  
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Figure 3.5 Live-cell imaging of GFP expressing S. oneidensis MR-1 cells. (a) Maximum intensity 

projections show the initial 20 hours of S. oneidensis MR-1 biofilm development under fluid flow. 

The inset in the first image shows a phase contrast image of isolated S. oneidensis MR-1 cells on 

a glass coverslip. (b) Image resolution and SBR over 20 hours of imaging. 

To demonstrate the advantage of using LLSM for long duration imaging, we have 

compared photobleaching between the LLSM and a spinning disk confocal microscope (Nikon 

Ti2 inverted microscope with a Yokogawa CSU-W1 SoRa spinning disk) (Figure 3.6). 

Comparisons were made by recording image volumes with similar voxel resolution (~100 nm) and 

similar initial SBRs using GFP expressing Shewanella oneidensis MR-1 biofilms. Consistent with 

previous reports comparing light sheet- to confocal-based approaches, our results show about an 

order of magnitude slower photobleaching when using LLSM. The decreased photobleaching rate 

of LLSM thus enables either long term time lapse image without substantial degradation of 

fluorescence intensity or increased frame rates (i.e. better time resolution) at comparable 

photobleaching rates. For the last image volume in Figure 3.6, the SBR obtained by the LLSM is 

~56% higher than the SBR obtained by the spinning disk confocal microscope (2.57 vs 1.65). As 

systematically assessed in a recent study41, an SBR of 2.57 vs 1.65 can make a huge difference for 

obtaining (or not obtaining) accurate cell segmentation results. 
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Figure 3.6 Quantitative comparison of photobleaching for LLSM and spinning disk confocal 

microscopy. Image volumes with similar voxel resolution (~100 nm) and initial signal-to-

background ratios were recorded using GFP expressing Shewanella oneidensis MR-1 biofilms. 

Fluorescence intensity (normalized to the intensity of the first image volume I0) decreases as a 

function of acquired image volume. Data fitting using single-exponential decay functions show an 

order of magnitude decrease in the photobleaching rate for LLSM compared to confocal 

microscopy. 

Previous studies have shown that S. oneidensis MR-1 biofilms form mushroom-like 3D 

structures after several days of development under fluid flow conditions46, 47. To test whether such 
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structures also manifest in our flow channels, we repeated the above experiment but continued to 

image until the 72-hour mark. S. oneidensis MR-1 biofilms indeed formed large mushroom-like 

structures that extended to about 20 µm above the growth substrate surface. The size of these 

structures is larger than the field of view of the LLSM. Therefore, a tiled image acquisition had to 

be used to capture these structures in their entirety. These volumetric image tiles were then 

computationally stitched together44 into a 40 x 32 x 22 µm3 image volume (Figure 3.7a). As is the 

case for every optical microscopy modality, image quality decreases when imaging deeper into a 

biological specimen that itself contains numerous refractive index boundaries. To quantify this 

effect in our images, we estimated the image resolution and SBR as a function of biofilm depth 

using the tallest mushroom-like structure in the imaged volume. SBR and spatial resolution in the 

selected image continually decreased as imaging depth increased (Figure 3.7b). However, even at 

the deepest part of the S. oneidensis MR-1 biofilm, cell bodies remain clearly visible at an 

estimated resolution better than 600 nm and an SBR >1.5. Preliminary segmentation results using 

BCM3D41 indeed show physiologically reasonable cell shapes for a vast majority of cells (Figure 

3.7c). We note however that cells located at the deepest parts of thick biofilms are still challenging 

for segmentation, due to the lower contrast and resolution. Future work will therefore focus on 

increasing the contrast and resolution in bacterial biofilm images. While the structure illumination 

mode of the LLSM can provide higher spatial resolution and better contrast, such improvements 

come at a cost of higher photobleaching/phototoxicity23. Software solutions that can process 

images with limited resolution and low SBRs will therefore play a tremendously important role. 

In light of these challenges, we are developing a segmentation pipeline that is more robust to low 

SBR images49. Furthermore, CNN-based image processing modules, such as CARE11, 

Noise2Void50, have shown great promise for contrast and resolution enhancement, and denoising. 
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Incorporating these tools into the segmentation workflow should help to further improve 

segmentation accuracies. 
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Figure 3.7 Live-cell imaging for GFP expressing S. oneidensis MR-1 biofilms. (a) 3D rendering 

and selected 2D slices of a mushroom-like structure with an S. oneidensis MR-1 biofilm after 72 

hours of growth under fluid flow conditions. Colored rectangles in the 3D rendering indicate the 

position for the 2D slices shown to the right. The red dashed rectangle indicates the region used 

for evaluation in panel b.  (b) Resolution and signal-to-background ratio (SBRs) as a function of 

imaging depth. (c) Preliminary segmentation results for the image shown in panel a. Different 

colors indicate different cells. White rectangles indicate two regions whose architectural properties 

are further analyzed in Figure 3.8. Image slices are the same as in panel a, as indicated by the 

colored outlines. 

Two regions (indicated in Figure 3.7c) were further selected for a quantitative analysis of 

architectural parameters, including distance to the nearest neighbor, distance to the substrate 

surface, elevation angle, and azimuthal angle (Figure 3.8). The similar distribution of nearest 

neighbor distances indicates these two biofilm regions have similar cell density. In region 1, 41% 

of cells are more than 10 μm above the substrate surface, compared to only 8% of cells in region 

2, which indicates region 1 is a taller biofilm structure. The generally low elevation indicates the 

number of vertically oriented cells is low in both regions in contrast to what is observed for 

submerged Vibrio cholerae biofilms13, 51, 52. Further, the two peaks at 0°/360° and 180° of the 

azimuthal angle distribution suggests bacterial cells in these two regions tend to align with the 

flow direction, which is consistent with Vibrio cholerae biofilms exposed to high shear stresses 

due to fluid flow12. Together these results demonstrate that our LLSM-compatible flow channels 

enable long-term time-lapse imaging of the complex 3D cellular architecture within bacterial 

biofilms. 
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Figure 3.8 Comparison between cell-resolved biofilm architectural properties from two different 

biofilm regions (indicated in Figure 3.7c). Region 1 contains 1333 cells and Region 2 contains 

871 cells. (a) Distance to the nearest neighbor cell. (b) Distance to the substrate surface. (c) 

Elevation angle of segmented cells. (d) Azimuthal angle of segmented cells.  

3.4 Conclusions 

Owing to its high spatiotemporal resolution, low photobleaching, and minimal 

phototoxicity, LLSM and high-NA light sheet-based fluorescence microscopy modalities in 



67 
 

general have emerged as the method of choice for live-cell imaging. Depending on the 

implementation, specimens are imaged from top to bottom or from bottom to top. Due to the open-

on-top imaging geometry of the initial LLSM implementation, this microscope modality has not 

been applicable for microbiological research for which sample containment is paramount. Here, 

we have addressed this limitation by integrating LLSM with 3D-printed microfluidic flow 

channels. These channels enable top-to-bottom imaging of bacterial biofilms at unprecedented 

spatiotemporal resolution on arbitrary, and even non-transparent surfaces. Imaging is performed 

through an ultrathin polymer film that closely matches the refractive index of the aqueous bacterial 

growth medium and does not itself get colonized by bacterial biofilms. Precise refractive index 

matching (Δn < 10-3) was found to be necessary to minimize optical aberrations and thereby enable 

high resolution imaging. Using MY133-V2000 polymer films, it was possible to record 3D time-

lapse images of bacterial biofilms at cellular resolution over periods of several days without 

noticeable degradation in image quality.  

The reported LLSM-integrated microfluidic system isolates biofilm samples from the 

outside environment, which prevents contamination of the microscope components and provides 

a precisely controllable physico-chemical environment for long duration time-lapse imaging. In 

this study, we recorded the colonization of glass surfaces by S. oneidensis MR-1 biofilms under 

fluid flow over a time period of three days, visualizing the evolution of single surface-attached 

cells into a large 3D biofilm. Longer imaging experiments are possible. While the present channel 

enables imaging of bacterial populations growing on abiotic substrates, we envision that, with 

minor modifications, the current design can be adapted to image bacterial population interacting 

with human organoid-derived epithelia, which have recently been stably reconstituted in dual-

channel microphysiological devices53, 54. Visualizing how single bacterial cells cooperate or 
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antagonize each other in heterogeneous biofilm environments holds the key to rational design of 

microbial ecosystems with desirable functional capabilities in physiologically relevant 

environments55-58. 
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Chapter 4 Non-Invasive Single-Cell Morphometry in Living 

Bacterial Biofilms 

 

This chapter is adapted from Zhang, M., Zhang, J. (contributed equally), et al. Nat Commun. 2020, 

11 (1), 1-131. 

4.1 Introduction 

Biofilms are multicellular communities of microorganisms that grow on biotic or abiotic 

surfaces2-5. In addition to cellular biomass, biofilms also contain an extracellular matrix (ECM) 

which is composed of polysaccharides, DNA, and proteins. Individual cells in biofilms interact 

with other cells, the ECM, or with the substrate surface, and the sum total of these interactions 

provide bacterial biofilms with emergent functional capabilities beyond those of individual cells. 

For example, biofilms are orders of magnitude more tolerant towards physical, chemical, and 

biological stressors, including antibiotic treatments and immune system clearance2, 3, 6-9. 

Understanding how such capabilities emerge from the coordination of individual cell behaviors 

requires imaging technologies capable of resolving and simultaneous tracking of individual 

bacterial cells in 3D biofilms.  

Live cell-compatible imaging technologies, such as optical microscopy, can reveal the 

spatial and temporal context that affects cellular behaviors. However, conventional imaging 

modalities are not able to resolve individual cells within thick 3D biofilms over extended periods 

of time. For example, the diffraction-limited lateral resolution (~230 nm) of a confocal 

fluorescence microscope is barely sufficient to resolve bacterial cells positioned next to each other 

on flat glass coverslips. Even worse, the diffraction-limited axial resolution (570 nm) is 
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comparable to the size of a single bacterial cell, so that densely-packed cells become unresolvable 

in the axial z-dimension10, 11. Notable exceptions include loose biofilms (low cell density), 

spherical cell shapes12, 13, and mutant Vibrio cholera biofilms, in which cell-cell spacing is 

increased through the overproduction of ECM materials14-16. While single-cell resolved images 

have been obtained in such special situations, conventional optical microscopy modalities are not 

generally capable to accurately resolve and quantitatively track individual cells in dense 3D 

biofilms.  

While super-resolution derivatives of confocal microscopy, known as Image Scanning 

Microscopy17, can improve spatial resolution, a perhaps more important limitation for long-term 

live-cell imaging is photodamage to the specimen (phototoxicity) and to the fluorophores used for 

labeling (photobleaching)18-20. In confocal microscopy-based approaches, undesired out-of-focus 

fluorescence emission is filtered out by confocal pinholes to yield optically-sectioned images with 

high contrast, i.e., high signal-to-background ratios (SBRs). However, repeated illumination of 

out-of-focus regions during laser scanning and high light intensities at the focal volume result in 

rapid photobleaching of fluorophores and unacceptable phototoxicity for light sensitive specimens 

18-20. In fact, confocal fluorescence microscopy (as well as its super-resolution derivatives) uses 

illumination light intensities that are two to three orders of magnitude higher than the light 

intensities under which life has evolved19. The high rates of phototoxicity and photobleaching 

make confocal-based microscopy unsuitable for high frame-rate time-lapse imaging of living 

specimens over many hours and days15, 16, 18, 21, 22. 

In recent years, light sheet-based fluorescence excitation and imaging approaches have 

been developed to overcome the drawbacks of confocal microscopy. Among these, lattice light 

sheet microscopy (LLSM)19, 20 and field synthesis variants thereof23, axially-swept light sheet 
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microscopy (ASLM)24, 25, dual-view light sheet microscopy26, 27, and single-objective oblique 

plane light sheet microscopy28-32 now combine excellent 3D spatial resolution with fast temporal 

resolution and low phototoxicity at levels that cannot be matched by confocal microscopy. 

Specifically, light sheet-based microscopy approaches can operate at illumination intensities that 

are below the levels of cellular phototoxicity, even for notoriously light sensitive specimens, and 

reduce fluorophore photobleaching by 20-50 times compared to confocal microscopy, while 

maintaining comparable spatial resolution and contrast/SBR19, 29.  

An additional challenge in high-resolution biofilm imaging is data quantification. Even if 

sufficient resolution and high SBRs can be achieved to visually discern, i.e., qualitatively resolve 

individual cells, robust computational algorithms are still needed for automated cell segmentation 

and quantitative cell tracking. Towards this goal, image processing approaches based on the 

watershed technique and intensity thresholding have been developed over the years for single-cell 

segmentation in bacterial biofilms14-16, 22. The broad applicability of watershed- and threshold-

based image processing algorithms is however limited, because these algorithms require manual 

optimization of many user-selected parameters. Even with optimal parameters, watershed- and 

threshold-based image processing methods often produce sub-optimal segmentation results, 

especially when cell densities are high, when SBRs are low, and when cellular fluorescence 

intensities are not uniform across the cytosol or the cell surface. To overcome the drawbacks of 

traditional mathematical image processing approaches, automated solutions based on supervised 

training of deep convolutional neural networks (CNNs) have been used in recent years with great 

success for a wide range of problems in biomedical image analysis33.  

Here, we present Bacterial Cell Morphometry 3D (BCM3D)34, a generally applicable 

workflow for single-cell segmentation and shape determination in high-resolution 3D images of 
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bacterial biofilms. BCM3D uses CNNs, in silico-trained with computationally simulated biofilm 

images, in combination with mathematical image analysis to achieve accurate single cell 

segmentation in 3D. The CNNs employed in BCM3D are based on the 3D U-Net architecture and 

training strategy, which has achieved excellent performance in biomedical data analysis 

benchmark tests33. The mathematical image analysis modules of BCM3D enable post-processing 

of the CNN results to further improve the segmentation accuracy. We establish that experimental 

bacterial biofilms images, acquired by lattice light sheet microscopy, can be successfully 

segmented using CNNs trained with computationally simulated biofilm images, for which the 

ground-truth voxel-level annotation maps are known accurately and precisely. By systematically 

evaluating the performance of BCM3D for a range of SBRs, cell densities, and cell shapes, we find 

that voxel-level segmentation accuracies of >80%, as well as cell counting accuracies of >90%, 

can be robustly achieved. BCM3D consistently outperforms previously reported image 

segmentation approaches that rely exclusively on conventional image processing approaches. 

BCM3D also achieves higher segmentation accuracy on experimental 3D biofilm data than 

Cellpose35, a state-of-the-art, CNN-based, generalist algorithm for cell segmentation and the 

algorithm used by Hartmann et al.16, a specialized algorithm designed for bacterial cell 

segmentation based on traditional mathematical image processing. We expect that BCM3D, and 

CNN-based single-cell segmentation approaches in general, combined with non-invasive light 

sheet-based fluorescence microscopy will enable accurate cell tracking over time in dense 3D 

biofilms. This capability will launch a new era for bacterial biofilm research, in which the emergent 

properties of microbial populations can be studied in terms of the fully-resolved behavioral 

phenotypes of individual cells. 
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4.2 Methods 

4.2.1 Imaging of bacterial biofilms with LLSM 

Fluorescence images of bacterial biofilms were acquired on a home-built lattice light sheet 

microscope (LLSM). LLSM enables specimen illumination with a thin light sheet derived from 

2D optical lattice19, 36. Here, a continuous illumination light sheet was produced by a time-averaged 

(dithered), square lattice pattern19, and the illumination intensity at the sample was <1 W/cm2. The 

submicrometer thickness of the excitation light sheet is maintained over long propagation distances 

(~30 µm), which enables optical sectioning, and thus high resolution, high contrast imaging of 3D 

specimens comparable to confocal microscopy. However, fluorophore excitation by a 2D light 

sheet reduces phototoxicity, because each excitation photon has multiple opportunities to be 

absorbed by fluorophores in the excitation plane and produce in-focus fluorescence. Widefield 

fluorescence images corresponding to each illuminated specimen plane are recorded on a sCMOS 

detector (Hamamatsu ORCA Flash v2). In this work, 3D biofilm images were acquired by 

translating the specimen through the light sheet in 200 nm steps using a piezo nanopositioning 

stage (Mad City Labs, NanoOP100HS). The data acquisition program is written in LabVIEW 2013 

(National Instruments). 

Ampicillin resistant E.coli K12, constitutively expressing GFP37, were cultured at 37 °C  

overnight in LB medium with 100 μg/ml ampicillin. Overnight cultures were diluted 100 times 

into the same culture medium, grown to an optical density at 600 nm (OD600) of 0.6 – 1.0, and 

then diluted by an additional factor of 10. Round glass coverslips with the diameter of 5 mm were 

put into a 24-well plate (Falcon) and 400 μL of cell culture was added to the well. Cells were 

allowed to settle to the bottom of the well and adhere to the coverslip for 1 hour. The round 
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coverslips were then mounted onto a sample holder and placed into the LLSM sample-basin filled 

with M9 medium. GFP fluorescence was excited using 488 nm light sheet excitation. Biofilm 

growth was imaged at room temperature every 30 min for a total of 20 time points. At each time 

point, a single 3D image stack contained 400 images, each acquired with a 15 ms exposure time 

to avoid motion blur. 

M.xanthus strain LS3908 expressing tdTomato under the control of the IPTG-inducible 

promoter 38 and DK1622 (WT) were cultured in the nutrient rich CYE media at 30 °C until it 

reached an OD600 of 0.6 - 1.0. Media was supplemented with 1 mM IPTG for tdTomato 

expressing cells. Chitosan (Thermo Fisher)-coated 5 mm round glass coverslips were prepared by 

incubating coverslips with 1% (w/v) chitosan (1.5 % glacial acetic acid (v/v)) at room temperature 

for 1 hour. Coverslips were then rinsed with water and placed into a 24-well plate (Falcon) with 

350-400 μL of undiluted cell culture. WT cells were stained directly in the 24 well plate with 5 

ng/ml FM4-64 (Thermo Fisher) dye. Cells were allowed to settle and adhere to the coverslip for 2 

hours. After the settling period, the coverslip was gently rinsed with CYE media to flush away 

unattached cells. The rinsed coverslip was then mounted onto a sample holder and placed into the 

LLSM sample-basin filled with MC7 starvation buffer. tdTomato and FM 4-64 fluorescence was 

excited using 561 nm light sheet excitation. The 3D image stack contained 400 2D images. Each 

2D slice was acquired with an exposure time of 30 ms. 

For mixed population biofilm imaging, ampicillin resistant E.coli K12, constitutively 

expressing GFP37, and ampicillin resistant E.coli K12, expressing mScarlet (pBAD vector, 

arabinose induce) were cultured separately at 37 °C overnight in LB medium with 100 μg/ml 

ampicillin. Overnight cultures were diluted 100 times into the same culture medium, grown to an 

optical density at 600 nm (OD600) of 0.6 – 1.0, and then diluted to an OD of 0.1. After dilution, 
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the two strains were mixed together. Round glass coverslips with the diameter of 5 mm were put 

into a 24-well plate (Falcon) and 500 μL of cell culture was added to the well. Cells were allowed 

to settle to the bottom of the well and adhere to the coverslip for 1 hour. The cell culture medium 

was then removed and replaced by 500 uL M9 medium containing 0.2% (w/v) arabinose. The co-

culture was incubated at 30 °C overnight. 10 mins before imaging, the co-culture was stained with 

5 ng/ml FM4-64 (Thermo Fisher) dye. 3D image stacks of 201 planes with 5 ms exposure time per 

frame were acquired using 488 nm excitation. 

4.2.2 Raw data processing 

Raw 3D images were background subtracted and then deskewed and deconvolved as 

described previously19, 20. The background was estimated by averaging intensity values of dark 

areas (devoid of cells) in the field of view. Deconvolution was performed using the Richardson-

Lucy algorithm with 10 iterations using experimentally measured point spread functions (PSFs) as 

the deconvolution kernel. The experimentally measured PSFs were obtained separately for each 

color channel using fluorescent beads (200 nm FluoSpheres®, Thermo Fisher) coated on a 

coverslip39. 3D images were rendered using the 3D Viewer plugin in Fiji40 or ChimeraX41. 

4.2.3 Generation of simulated biofilm images 

To generate data for training of CNNs, we computationally simulated fluorescence images 

of 3D biofilms, for which spatial arrangements among individual cells are known precisely and 

accurately. Growth and division of individual rod-shaped cells in a population were simulated 

using CellModeller, an individual-based computational model of biofilm growth (Figure 4.1a)42. 

In individual-based biofilm growth models, cells are the basic modeling units. Each cell is 

characterized by a set of parameters, including its 3D position, volume, and spatial orientation. All 
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the cells in the simulated biofilm are then allowed to evolve in time according to predefined 

biological, chemical, and mechanical rules. For example, cells grow at a defined rate and then 

divide after reaching a certain volume threshold. Cellular collisions that are due to cell growth are 

alleviated by imposing a minimum distance criterion between cells at each time point. For our 

simulations, we chose cell diameter and cell length (d, l) parameters consistent with a given 

bacterial species, namely (1 μm, 3 μm) for E. coli43, (0.7 μm, 6 μm) for M. xanthus44, and (1 μm, 

1 μm) for spherically symmetric S.aureus45. While the cell volume can be readily adjusted in 

CellModeller, the cellular volume density, which is determined by the intercellular spacing, is not 

directly adjustable. We therefore adjusted the cellular volume density after each simulation by 

scaling the cellular positions (cell centroids) and thus the intercellular distances by a constant 

factor, while leaving cell sizes, shapes, and orientations unchanged. This post-processing 

procedure enabled simulation of the exact same 3D cell arrangements at adjustable cell volume 

densities.  

We fluorescently labeled simulated cell volumes and surfaces according to two commonly 

used labeling strategies in fluorescence microscopy. To simulate expression of intracellular 

fluorescent proteins, the fluorescence emitters were placed at random positions within the cell 

volume. To simulate membrane staining, the fluorescence emitters were placed at random 

positions on the cell surface. Each cell contained between 500 - 1000 fluorophores to simulate 

expression level variations between cells, which is often observed in experimental images. Once 

the fluorophore spatial distributions were determined, a 3D fluorescence image (Figure 4.1b) was 

computationally generated. Each fluorophore was treated as an isotropic point emitter, so that it 

would produce a diffraction-limited point-spread-function (PSF) on the detector. Experimentally 

measured 3D PSF shapes (see 4.2.2 Raw data processing) were used as the convolution kernel. 
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Next, the fluorescence signal intensity was scaled by multiplying the image by a constant factor 

and then a constant background intensity was added to the image at ~200 photons per pixel, as 

measured in experimental data. This procedure enabled independent adjustments of the 

fluorescence signal and background to obtain signal-to-background ratios (SBRs) consistent with 

experimental data. In a final step, we introduced Poisson-distributed counting noise, based on the 

summed background and signal intensities, as well as Gaussian-distributed camera read-out noise 

(experimentally calibrated for our detector at 3.04 photons per pixel on average)46. This resulting 

image data (Figure 4.1c) was then processed in the same manner as experimental data (see 4.2.2 

Raw data processing). In contrast to experimental data, generation of the corresponding voxel-

level annotation maps is fast and error free, because the underlying ground truth cell arrangements 

are known a priori (Figure 4.1d). 
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Figure 4.1. Simulation of fluorescent biofilms images and annotation maps used for CNN training.  

(a) Representative cell arrangements obtained by CellModeller. Due to the stochastic nature of 

biofilm growth, different cell arrangements are obtained in each new simulation. However, cell 

density is reproducible for each new simulated biofilm. (b) Simulated 3D fluorescence image 

based on the cell arrangements in (a). (c) XY slice through the 3D simulated fluorescence image 

in (b) (upper panel shows cells expressing cytosolic fluorescent proteins, lower panel shows cells 

stained with membrane-intercalating dyes). (d) Ground truth cell arrangements giving rise to the 
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image shown in c. Voxels are displayed as black (background), or in different colors (indicating 

different cells). 

 

To mimic imaging of reporter gene expression in a subset of cells, we simulated biofilm 

images, in which all cells were stained at the cell surface (e.g., with a membrane intercalating 

fluorescent dye) and a subset of cells additionally contained intracellular fluorophores (e.g., 

through the expression of an intracellular fluorescent protein) (Figure 4.2a and b). The mixing 

ratios between membrane-labelled, and membrane and interior labelled cells were 10:90, 30:70, 

50:50, 70:30 and 90:10. Ten different cell arrangements containing ~300 cells were simulated for 

each ratio. To train the CNNs (see next section), six datasets were used, all with a 50:50 mixing 

ratio.  

To mimic imaging of cells with different morphologies, we simulated biofilms containing 

spherical and rod-shaped cells (Figure 4.2c and d). Cell arrangements were first simulated using 

rod shaped cells and then a fraction of rod-shaped cells is replaced with spherical cells. The size 

of the rod-shaped cells is that of E. coli (~3 × 1 μm, length by diameter). The size of the spherical 

cells is that of S. aureus (~1 μm in diameter) 47. Both cell types were labelled by intracellular 

fluorophores, as described above. The mixing ratios between rod-shaped and spherical cells were 

10:90, 30:70, 50:50, 70:30 and 90:10. Ten different cell arrangements containing ~300 cells were 

simulated for each ratio. To train the CNNs (see next section), we picked one image from each 

mixing ratio for a total of five images. 
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Figure 4.2 Simulation of mixed labeling and mixed cell shape biofilms. (a) Cell arrangements 

(green indicates membrane labeled cells, magenta indicates membrane labeled cells that 

simultaneously express interior fluorescence protein). (b) Simulated fluorescence image based on 

the cell arrangements in (a) as displayed by the volume viewer plugin of Fiji40. (c) Cell 

arrangements (green indicates rod-shaped cells, magenta indicates spherical shaped cells). (d) 

Simulated fluorescence image based on the cell arrangements in (c) as displayed by the volume 

viewer plugin of Fiji40. 
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4.2.4 Training the convolutional neural networks 

We trained 3D U-Net CNNs for voxel-level classification tasks48 within the NiftyNet 

platform49 (network architecture depth 4, convolution kernel size 3, ReLU activation function, 32 

initial feature maps, and random dropout of 0.5 during training). To achieve robust performance, 

we trained these networks using five to ten simulated biofilm images with randomly selected cell 

densities and signal-to-background ratios (see 4.2.3 Generation of simulated biofilm images). The 

same raw data processing steps used for experimental data (see 4.2.2 Raw data processing) were 

also applied to simulated data. 3D deconvolved simulated data and their corresponding voxel-level 

annotations were used to train the CNNs. Each image used for training contained ~9 million 

voxels. We trained CNNs by classifying each voxel as ‘background’, ‘cell interior’ or as ‘cell 

boundary’ based on the underlying cell arrangements. For mixed-species biofilms, two additional 

classes, ‘cell interior’ and ‘cell boundary’ of the second species, were used. This type of annotation 

scheme has been shown to increase separation of bacterial cells in 2D50. For data augmentation, 

we applied NiftyNet’s built-in scaling, rotation, and elastic deformation functions. Instead of the 

original cross-entropy loss function combined with uniform sampling, we used the Dice loss 

function and ‘balanced sampler’, so that every label has the same probability of occurrence in 

training. All networks were trained for 2000 to 3600 iterations with a learning rate of 0.0001. Using 

these parameters, it took approximately 24 hours to train the CNNs on a NVIDIA Tesla V100 GPU 

with 16 GB memory. 

4.2.5 Thresholding of CNN-produced confidence maps 

Voxel-level classification by CNNs generates different confidence maps (one confidence 

map for each annotation class). The confidence values range between 0 and 1 and represent the 
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confidence of assigning individual voxels to a given class. After thresholding the ‘cell interior’ 

confidence map to obtain a binary image (Figure 4.3 a-c), connected voxel clusters can be isolated 

and identified as single cell objects using 3D connected component labeling51. A conservative size-

exclusion filter was applied: small objects with a volume ~10 times less than the expected cell size 

were considered background noise and filtered out using an area open operator51. Since the cell-

interior volumes do not contain the cell boundaries, we dilated each object by 1-2 voxels to 

increase the cell volumes using standard morphological dilation51. The threshold value to segment 

individual cell objects based on the ‘cell interior’ confidence map was determined by plotting the 

overall voxel-level segmentation accuracy, quantified as the Intersection-over-Union value (IoU 

value, aka Jaccard index52) versus the confidence value thresholds (Figure 4.3). Optimal voxel-

level segmentation accuracies were consistently obtained using confidence thresholds between 

0.88 and 0.94. Throughout this work, we used 0.94 for cells labeled with intracellular fluorophores 

and 0.88 for cells labeled with membrane-localized fluorophores. 
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Figure 4.3 Binary segmentation result produced by thresholding the ‘cell interior’ confidence map 

at a high value (0.88-0.94). (a) Deconvolved fluorescence image. (b) ‘Cell interior’ confidence 

map. (c) Binary segmentation result (confidence threshold = 0.94). (d and e) Voxel-level 

segmentation accuracy (y axis) versus the confidence value thresholds (x axis) for cells labeled 
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with cytosolic fluorophores (d) and cells labeled with membrane-localized fluorophores (e). Each 

curve is plotted by averaging 500 different datasets. Error bars represent ± one standard deviation. 

4.2.6 Post-processing of U-Net result using a refined LCuts algorithm 

Thresholding of the ‘cell interior’ confidence map produces a binary segmentation result 

(background = 0, cell interior =1), where groups of connected, non-zero voxels identify individual 

cells in most cases (Figure 4.3). However, when cells are touching, they are often not segmented 

as individuals, but remain part of the same voxel cluster (undersegmentation). On the other hand, 

a single cell may be erroneously split into smaller subcellular objects (oversegmentation). Finally, 

in datasets with low SBR, connected voxel clusters may be detected that do not correspond to cells 

and thus produce false positive objects (Figure 4.4a). To address these errors and improve the 

segmentation accuracy further, we included additional mathematical image analysis steps to post-

process the CNN results and reduce undersegmentation and oversegmentation errors. 
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Figure 4.4 Post-processing of CNN-produced confidence maps using a refined LCuts processing 

pipeline. (a) False positive objects are detected and removed by CV- and size- filtering. Under-

segmented clusters that are larger than single cells are selected for further splitting. (b) Illustration 

of modified medial axis (red dashed lines) extraction to generate point cloud data from fused 

clusters of rod-shaped cells using the method of inscribed spheres. When cells are touching, the 

traditional medial axis extraction process fails to align with the actual cell central axis (left). To 

overcome this drawback, we limited the size of the inscribed spheres based on prior knowledge of 

bacterial cell diameters (right). (c) The set of inscribed sphere centers are then treated as a fully-

connected, undirected graph in 3D with two node features: location and direction (see text and 

Figure 4.5 for details). The graph (blue nodes) is then iteratively cut into smaller graphs (red 

nodes) until the stopping criteria are reached (see text for details). (d) Post-processed graphs 
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represented in different color denoting different cells. The 3D surface of individual cells can be 

determined using a geometrical cell shape model (e.g., a spherocylinder for rod shaped bacteria) 

or by calculating the convex hull around the inscribed spheres found in step 2. 

 

Step 1: False positive objects are identified by evaluating the coefficient of variation53, 54 

for each connected voxel cluster i: 

𝐶𝑉𝑖 =  
𝜎𝑖

𝜇𝑖
 

where 𝜎𝑖 and 𝜇𝑖 denote the standard deviation and the mean of the intensity taken over all 

voxels contained in connected voxel cluster i. If the coefficient of variation is larger than ρ, then 

the current object will be classified as a false positive object and removed from the confidence 

map by setting all its voxels to zero. The removed objects will then no longer be counted when 

evaluating the cell counting accuracy. The value of ρ is selected based on the coefficient of 

variation of the background. For the datasets analyzed here, this sample coefficient of variation 

was determined to be ρ = 1.1. After CV-filtering, objects smaller than 25% of the expected 

bacterial cell size are also removed by setting its voxels to zero. The remaining connected voxel 

clusters are then considered for further processing (Figure 4.4a).  

Step 2: To identify and delineate individual cells in the connected voxel clusters identified 

in the previous step, we implemented medial axis extraction using the method of inscribed 

spheres55, with the constraint that the sphere radii do not exceed the expected diameter of a single 

bacterial cell (e.g. d = 0.8 µm) (Figure 4.4b left). The set of N inscribed spheres are tangent to the 

object’s surface and parameterized by (xi, yi, zi; ri<d/2) for i = 1, …, N.  Determination of the (xi, 

yi, zi; ri) coordinates is achieved using the Euclidean distance transform of the objects’ boundary56, 
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so that the points with coordinates (xi, yi, zi) reliably trace out the central cell axes of individual 

bacterial cells (Figure 4.4b right).  

Step 3: To separate different linear segments after cell axis extraction (Figure 4.4c), we 

used a refined version of the linear cuts (LCuts) algorithm57, 58. LCuts is a graph-based data 

clustering method designed to detect linearly oriented groups of points with certain properties. The 

fundamental elements of a weighted mathematical graph are nodes, edges, and edge weights. Here, 

the points with coordinates (xi, yi, zi) represent the graph nodes. Edges are the connections among 

nodes. Edges are assigned weights, for example, to reflect the confidence that two nodes belong 

to the same group. LCuts achieves grouping by assigning weights to edges in the fully connected 

graph to reflect the similarity between two nodes. The features of each node include its location 

and direction, where the location of each node is simply its Cartesian coordinates. The direction 

of each node is found by first determining its 5-hop neighborhood, removing nodes at large relative 

angles, and evaluating the major direction of the outlier removed neighborhood (Figure 4.5).     

 

Figure 4.5 Determination of node direction in an outlier-removed neighborhood57. (a) A 

neighborhood of the target node (in red) is a sub-graph, where all adjacent nodes (in yellow) are 

connected via edges to the target node. Here, if the distance of two nodes is less than a chosen 

value (indicated by the dashed circle), these nodes are adjacent to each other. The blue dots are not 

part of the neighborhood.  (b) A hop is defined as the number of edges that one has to traverse 
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from one node to the other node in the graph. Here, the 5-hop neighborhood of the target node is 

shown. (c) The directional vectors are found from the target node to all the other nodes within the 

5-hop neighborhood (dashed lines). The nodes are classified as outliers if they have large relative 

angles compared to all the other directional vectors (red dashed lines). (d) Finally, the direction 

feature of the current node is evaluated as the major direction of the outlier removed neighborhood 

using principal component analysis. 

 

The algorithm to separate the nodes into different groups is a recursive graph cutting 

method57. Graph cuts (e.g. nCut59) disconnect the edges between two groups of nodes when the 

combined weights of these edges are minimized. The weights, between node i and node j, are 

calculated as follows: 

                                                          𝑤𝑖𝑗 = 𝑤𝐷 ∙ 𝑤𝑇                                                      (4.1) 

where  

                                                𝑤𝐷 = {
𝑒−𝐷𝑖𝑗

2 /𝜎𝐷
2

    if 𝐷𝑖𝑗
2 ≤ 𝑟

0                 if 𝐷𝑖𝑗
2 > 𝑟

                                           (4.2) 

 

                                               𝑤𝑇 = 𝑒−(cos(𝜃𝑖𝑗)−1)
2

/𝜎𝑇
2
                                               (4.3) 

 

𝑤𝐷  weighs the distance between two nodes and 𝑤𝑇  weighs difference between node 

directions. Dij is the Euclidean distance between node i and node j, and r is set to eliminate edges 

between two far away nodes. θij is the relative angle between the directions of nodes i and j. σD 

and σT are adjustable parameters that control the rate of exponential decay. LCuts continues to 

separate groups of nodes until each group satisfies a stopping criterion. The stopping criterion is 
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biologically inspired based on the expected length L of a single bacterial cell and a group’s linearity 

after each recursion. LCuts yields linearly oriented groups of points that trace out the central axes 

of individual cells (Figure 4.4c). Importantly, cell separation is achieved without having to specify 

the number of cells in the biofilm in advance. Furthermore, to limit the need for optimization of 

postprocessing routines, the four adjustable parameters used in LCuts, namely cell diameter d, the 

cell length L, and the decay parameters σD and σT are chosen based on a priori knowledge about 

the bacterial cells under investigation. We found that the performance of LCuts is not sensitive to 

the particular values of d, L, σD and σT as long as they are consistent with the imaged bacterial cell 

sizes and shapes (Figure 4.6). Identification of single cells provided by LCuts alleviates under-

segmentation errors of the CNN-based segmentation.  

Step 4: The final output of linear clustering can provide length, location and orientation of 

each cell. Based on these linear clusters, the cellular architecture of the biofilms can be 

reconstructed by placing geometrical models of cells in space as shown in Figure 4.4d. For fast 

computation, spherocylinders are used as the geometrical model using a radius consistent with the 

known sizes of bacterial cells. To further refine the cell surfaces to better align with the CNN-

segmented volumes, we enclosed the inscribed spheres found in Step 2 in a convex hull (Figure 

4.4d). 
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Figure 4.6   Validation of parameter selection for LCuts postprocessing by grid search. Shown is 

the cell counting accuracy averaged over 20 randomly chosen, simulated datasets of low SBR 

and/or high cell density, for which post-processing is required. (a) Average cell counting accuracy 

as a function of cell diameter d ∈ [0.4, 1.2] µm and cell length L ∈ [2, 9] µm at a fixed σD = 0.5 

µm and σT = 0.2. (b) Average cell counting accuracy as a function of σD ∈ [0.1, 0.8] µm, and σT 

∈ [0.05, 0.6] with fixed (d, L) = (0.8, 4.5) µm. The cell counting accuracy is largely unaffected 

by variations in d, L, σD and σT and robustly remains above 70% for biologically reasonable 

parameter values, such as d ~ 0.8 µm, cell length L ~ 6 µm, for E.coli-like cell shapes. We also 

choose σD = d/2 and σT = 0.2, so that edges between nodes separated by more than a cells radius or 

with relative angles >30° are weighted down. 

4.2.7 Performance Evaluation 

We quantified segmentation accuracy both at the cell-level (object counting) and at the 

voxel-level (cell shape estimation). To quantify the cell-level segmentation accuracy, we 

designated segmented objects as true positive (TP) if their voxel overlap with the ground truth or 

the manual annotation resulted in an IoU value larger than a particular IoU matching threshold. 
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This criterion ensures one-to-one matching. A threshold of 0.5 is typically chosen when reporting 

single cell counting accuracy values35, 60. We follow this convention here. If the segmented cell 

object could not be matched to a ground truth/manually annotated cell volume, then it was counted 

as a false positive (FP) and the IoU value of that segmented object was set to zero. If a ground 

truth/manually annotated cell volume was not identified in the image, then it was counted as false 

negative (FN). The cell (object) counting accuracy was then defined as TP/(TP+FP+FN). The 

average IoU value over all segmented objects in the image quantifies the voxel-level segmentation 

accuracy, i.e. the accuracy of cell shape estimation.  

To evaluate the accuracy of cell segmentation on experimental data, three researchers 

separately traced the cell contours on experimental 2D slices by using freehand selections in Fiji 

ROI Manger40. Because human annotation is very time consuming (about 50 hours for a complete 

3D dataset containing ~300 cells in a 22 x 32 x 12 um3 volume), one to three single 2D slices were 

selected for each dataset. One exception is the 3D M. xanthus, for which the cell outlines in all 

available x, y and z slices were traced manually (Figure 4.7a). For straight, rod-shaped cells, the 

centroids of the resulting 2D cell contours all fall within the cell interior volume. To group together 

the contours belonging to the same cells, the centroid of each contour was projected along the x, y 

and z dimension. If the projected centroid was enclosed by any other contour in a different slice, 

then the centroid of that contour was projected onto the plane of the initial contour. Two contours 

were labeled as related if they contained each other’s projected centroids (Figure 4.7b). This 

process is repeated for all possible contour pairs and their relationship is recorded in an adjacency 

matrix. Next, related contours were assigned to individual cells (Figure 4.7c). To separate 

incorrectly grouped contours, we additionally identified clusters of centroids using the DBSCAN 

point clustering algorithm61 (Figure 4.7d). In a final step, we manually removed incorrectly traced 
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contours (Figure 4.7e). Cells are reconstructed by creating convex hulls with the grouped contours 

(Figure 4.7f and g). This procedure determined the approximate positions, shapes, and orientations 

of individual cells in the 3D biofilm.  

 

 

Figure 4.7 Manually trace cell outline. (a) Cell outlines in all available x, y and z slices were traced 

manually. (b) Find the contours belonging to the same cell. The centroid of each contour was 

projected along the x, y and z dimension. If the projected centroid was enclosed by any other 

contour in a different slice, then the centroid of that contour was projected onto the plane of the 

initial contour. Two contours were labeled as related if they contained each other’s projected 

centroids. This process is repeated for all possible contour pairs and their relationship is recorded 
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in an adjacency matrix. (c) The related contours are grouped as cells. Different colors represent 

different cells. (d) Segment big clusters that contain more than one cell by grouping the centroids 

of the contours. This step will run manually and iteratively to segment all single cells from the big 

cluster. (e) Manually check all contours for each cell. (f) Remove the bad contours, such as 

unreasonably large ones. (g) A convex hull is built based on the contours for each cell. The convex 

hull is then used as the mask to extract cell volume from the raw data.  

 

To estimate the SBRs of both simulated and experimental images, we manually selected 

and determined the intensities of approximately ten ‘signal’ and ten ‘background’ regions in the 

images. We computed the SBR as the mean signal intensity divided by the mean background 

intensity. To estimate the local density of a biofilm, we partitioned the image into several 3D tiles 

of size 64 by 64 by 8 voxels. We then estimated the local density as the total cell volume contained 

in each tile divided by the tile volume. We calculated the mean density of the 10 densest tiles to 

define the ‘local density’ metric reported for each dataset in the paper. To estimate the cell density 

in an experimentally acquired biofilm image, the same calculations were performed on either 3D 

manual annotations (if available) or binary masks obtained by CNN-processing. 

4.3 Results and discussion 

4.3.1 Cell segmentation by thresholding CNN confidence maps 

CNNs have been shown to perform well on pixel-level classification tasks for both 2D and 

3D data62, 63. Bacterial biofilms, however, present a unique challenge in this context. The cell 

shapes to be segmented are densely packed and barely resolvable even with the highest resolution 

optical microscopes. Additionally, living biofilms in fluorescence microscopes can only be imaged 
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with low laser intensities to ameliorate phototoxicity and photobleaching concerns. Unfortunately, 

low intensity fluorescence excitation also reduces the SBR in the acquired images. So far, it 

remains unclear to what extent single-cell segmentation approaches can accurately identify and 

delineate cell shapes in bacterial biofilm images obtained under low intensity illumination 

conditions. To address this question, we implemented an in silico CNN training strategy (4.2 

Methods) and systematically evaluated its voxel-level classification (cell morphometry) and cell 

counting accuracies using simulated biofilm images with varying cell densities and SBRs similar 

to those encountered in experimental data.  

We compared two commonly used cell labeling approaches, namely genetic labeling 

through the expression of cell-internal fluorescent proteins (Figure 4.8a-c) and staining of the cell 

membranes using fluorescent dyes (Figure 4.8d-f). For both labeling approaches, voxel-level 

segmentation and cell counting accuracies, obtained by thresholding CNN confidence maps, 

depend mostly on cell density, whereas the SBR plays a less important role. For cell-internal 

labeling, SBRs of >1.7 and cell densities of <60% consistently produce voxel-level classification 

accuracies of >80% and cell counting accuracies of >95%. On the other hand, SBRs of <1.7 and 

cell densities of >60% lead to lower segmentation accuracies. While lower segmentation 

accuracies are expected for higher cell densities and lower SBRs, the sharp drop-offs observed 

here may indicate a fundamental performance limitation of the CNNs employed. Still, the voxel-

level classification and cell counting accuracies consistently surpass previous approaches for 

bacterial cell segmentation for commonly encountered cell densities and SBRs. Specifically, the 

cell counting accuracies obtained by Hartmann et al.16, Seg3D64, and Yan et al.14 quickly drop to 

zero as a function of increasing IoU matching threshold, indicating that cell shapes are not 

accurately estimated by conventional image processing approaches (Figure 4.8g-i). We also 
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evaluated the segmentation accuracy of Cellpose, a recently developed, CNN-based cellular 

segmentation algorithm35. The segmentation accuracy of Cellpose is comparable or superior to the 

best-performing conventional image processing approaches – a considerable achievement given 

that Cellpose was trained primarily on images of eukaryotic cells. However, being a pre-trained 

generalist model, the segmentation accuracy of Cellpose is lower than the accuracy achieved by 

the specialist in silico-trained CNNs of BCM3D, which were trained specifically for 3D bacterial 

biofilm segmentation. Overall, the cell counting accuracies obtained by BCM3D are higher than 

other methods and remain higher even for IoU matching thresholds larger than 0.5, indicating that 

cell shapes are more accurately estimated by the in silico-trained CNNs. 
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Figure 4.8 Performance of BCM3D using in silico-trained CNNs only on previously unseen 

simulated biofilm images. (a) The voxel-level segmentation accuracy quantifies whether each 

voxel has been assigned to the correct class (‘cell interior’, cell boundary’, or ‘background’). Solid 

circles represent the maximum local density and average SBRs encountered in experimental 

datasets (red, orange and blue: E. coli expressing GFP). (b) The cell counting accuracy (using an 

IoU matching threshold of 0.5 for each segmented object) averaged over n=10 replicate datasets 

for cells labeled with cytosolic fluorophores. (c) Example image of cells labeled with cytosolic 

fluorophores (Cell density = 60.0%, SBR = 1.34, indicated by white rectangle in panels a and b. 

Similar images were generated N = 10 times with different cell arrangements.) (d) Voxel-level 
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segmentation accuracy and (e) cell counting accuracy averaged over N=10 replicate datasets for 

cells labeled with membrane-localized fluorophores. (f) Example image of cells labeled with 

membrane-localized fluorophores (Cell density = 60.0%, SBR = 1.34, indicated by white 

rectangles in panels d and e. Similar images were generated N = 10 times with different cell 

arrangements.). The red arrows indicate a close cell-to-cell contact point. (g), (h) and (i) 

Comparison of segmentation accuracies achieved by conventional segmentation approaches 

(Hartmann et al., Seg3D, Yan et al.), Cellpose, and BCM3D (only using in silico-trained CNNs). 

Three simulated datasets (cytosolic fluorophores) with different SBRs and cell densities are shown. 

Segmentation accuracy is parameterized in terms of cell counting accuracy (y axis) and IoU 

matching threshold (x axis, a measure of cell shape estimation accuracy). Each data point is the 

average of N = 10 independent biofilm images. Data are presented as mean values ± one standard 

deviation indicated by error bars. Curves approaching the upper right-hand corner indicate higher 

overall segmentation accuracy, as indicated by the dashed arrows. 

 

The accuracies of single-cell shape estimation and cell counting are predominantly affected 

by cell density. The variation is more prominent for membrane-stained cells, because inter-cellular 

fluorescence intensity minima are less pronounced when cell membranes are labeled and cells 

physically contact each other (red arrow in Figure 4.8c and f). By contrast, intracellular 

fluorophores produce the highest intensities at the cell center, so that the gaps between cells are 

more readily resolvable. Also noteworthy is the sharp drop-off in segmentation accuracies for 

SBRs of <1.7 for all cases. In such low SBR regimes, fluorescence signals of the cells become too 

difficult to be distinguished from the background. As a result, the CNNs falsely identify random 

noisy patterns in the background as cells. Additionally, thresholding of the CNN confidence maps 
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often yields connected voxel clusters that contain multiple bacterial cells. False identification and 

incomplete delineation of cells cause the pronounced decrease in segmentation accuracy for SBRs 

of <1.7.  

4.3.2 Post-processing of CNN confidence maps  

To better identify individual cells in low SBR and high cell density datasets, we developed 

a graph-based post-processing module that takes advantage of the fact that bacterial cell shapes 

are highly conserved for a given species. Briefly, we transformed the CNN ‘cell interior’ 

confidence maps into 3D point cloud data that trace out the central axes of individual cells. This 

transformation was achieved by medial axis extraction using size-constrained inscribed spheres55 

(Figure 4.4). Single-cell axes are then identified as linearly clustered data points by LCuts – a 

graph-based data clustering method designed to detect linearly oriented groups of points57. The so-

identified single-cell axes are then mapped back onto the original segmentation volumes to obtain 

estimates of the 3D positions, shapes, and orientations of the now separated cells. 

Post-processing with LCuts takes advantage of a priori knowledge about expected bacterial 

cell sizes by removing erroneously segmented volumes that are significantly smaller than the 

expected value and by splitting incompletely segmented volumes representing fused cells. 

Improvements in cell counting accuracy of up to 15% and 36% are observed for cells labeled with 

cytosolic fluorophores (Figure 4.9a-c) and membrane-localized fluorophores (Figure 4.9d-f), 

respectively. The more substantial improvement for membrane-stained cells is due to fact that 

CNNs trained on membrane-stained cells are more prone to erroneously identifying speckled 

background noise as fluorescence signals in low SBR images. In addition, membrane-intercalating 

fluorophores of two adjacent cells are in close proximity, making it difficult to resolve fluorescence 
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signals from two separate cells due to spatial signal overlap (see the red arrow, Figure 4.8c and f). 

LCuts thus provides an important benefit in improving the cell counting accuracy to an extent not 

achieved by currently available thresholding- or watershed-based post-processing algorithms 

(Figure 4.10).  

 

Figure 4.9 Performance of BCM3D (in silico-trained CNNs and additional post-processing by 

LCuts) on previously unseen simulated data. (a) Voxel-level segmentation accuracy and (b) cell 

counting accuracy (using an IoU matching threshold of 0.5 for each segmented object) averaged 

over N=10 replicate datasets for cells labeled with cytosolic fluorophores. (c) Improvement relative 

to silico-trained convolutional neural networks without post-processing. (d) Voxel-level 

segmentation accuracy and (e) cell counting accuracy averaged over N=10 replicate datasets for 

cells labeled with membrane-localized fluorophores. (f) Improvements relative to silico-trained 

convolutional neural networks without post-processing. 
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Figure 4.10 Comparison of LCuts to commonly used image post-processing methods. Shown is 

the cell counting accuracy averaged over 20 randomly chosen, simulated datasets of low SBR 

and/or high cell density, for which post-processing is required. The hysteresis thresholding-based 

algorithm of Ilastik65 improves the cell counting accuracy by less than 6% on average for IoU 

matching thresholds less than 0.6. On the other hand, the watershed-based pipeline used by 

CellProfiler66 provides negligible improvements and even decreases the average cell counting 

accuracy in many cases. This decrease is primarily due to oversegmentation. Among the three 

methods tested, LCuts provides the highest improvement in cell counting accuracy (>12% on 

average for IoU matching thresholds less than 0.6). 

4.3.3 Segmentation of experimental biofilm images 

To test the performance of BCM3D on experimentally acquired biofilm images, we 

acquired time-lapse images of GFP expressing E. coli biofilms every thirty minutes for ten hours. 

We then manually annotated one 2D slice in the 3D images at the t = 5, 6, and 10-hour time points. 

When referenced to these manual segmentation results, the LCuts-processed CNN outputs 
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consistently achieved better cell counting accuracies than conventional segmentation methods 

(Figure 4.11, Figure 4.12). Initially, Cellpose and the Hartmann et al. algorithm outperform the 

in silico-trained CNNs on two out of three of the test images (t = 360 and 600 min), for which our 

in silico-trained CNNs struggle with undersegmentation problems. However, mathematical post-

processing of the CNN outputs by LCuts corrects some of these errors, so that the integrated 

BCM3D workflow achieves improved results compared to Cellpose and Hartmann et al. at each 

of the indicated time points. Visual inspection of the segmentation results is also informative. 

Cellpose accurately segments individual cells in low density regions, but suffers from 

oversegmentation errors in high density biofilm regions (Figure 4.12e). The Hartmann et al. 

algorithm provides reasonable estimates of cell positions in low and high density biofilm regions, 

but again struggles with cell shape estimation (Figure 4.12d). On the other hand, the integrated 

BCM3D workflow (CNN + LCuts) produces biologically reasonable cell shapes regardless of cell 

density (Figure 4.11).  
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Figure 4.11 Comparison of segmentation accuracies achieved by conventional segmentation 

approaches (Hartmann et al., Seg3D, Yan et al.), Cellpose, and BCM3D. The estimated SBRs are 

2.2, 1.8, and 1.3, respectively. The estimated cell densities are 54.8%, 59.0%, and 64.6%, 

respectively. (a-c) Three experimental E. coli datasets (cytosolic expression of GFP) acquired at 

different time points after inoculation of cells. Segmentation accuracy is parameterized in terms of 

cell counting accuracy (y axis) and IoU matching threshold (x axis). Each data point is the average 

of the cell counting accuracies calculated using annotation maps traced by N = 3 different 

researchers. Data are presented as mean values ± one standard deviation indicated by error bars. 
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Curves approaching the upper right-hand corner indicate higher overall segmentation accuracy. 

(d) Comparison of segmentation results achieved at the t= 600 minutes time point by manual 

annotation (shown is one of N = 3 researchers’ annotation result, the other two annotation results 

are shown in Figure 4.12f and g, and by BCM3D using in silico-trained CNNs only and after 

further refinement of CNN outputs using LCuts. Similar results were also obtained at the t = 300 

and t = 360 minute time points. Segmentation results of the other methods are shown in Figure 

4.12. 
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Figure 4.12 Visual comparison of segmentation results achieved by previous segmentation 

approaches. (a) Experimental dataset is the E. coli biofilm containing GFP expressing cells 600 

mins after the inoculation. (b) Segmentation result obtained using Seg3D64. (c) Segmentation result 

obtained using the algorithm in Yan et al.14.  (d) Segmentation result obtained using Hartmann et 
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al.16. (e) Segmentation result obtained using Cellpose35. (f) (g) manual annotation by two 

independent researchers. 

 

We attribute the more rapid drop-off of the cell counting accuracy as a function of 

increasing IoU matching threshold in Figure 4.11 to the following factors. First, human annotation 

of experimentally acquired biofilm images differs from the ground truth segmentation masks that 

are available for simulated data. The shape mismatches between algorithm segmented and 

manually annotated cell shapes (Figure 4.13) lead to a global lowering of voxel-level 

segmentation accuracy and thus a more rapid drop-off of the cell counting accuracy as a function 

of increasing IoU matching threshold. Because bacterial cell shapes are not accurately captured by 

manual annotation (Figures 4.13), cell counting accuracies referenced to manual annotations 

should be compared only at low IoU matching thresholds (0.1-0.3, shaded grey in Figure 4.11a-

c), as also noted previously60. We also note that bacterial cells in experimental images appear 

motion-blurred if they are only partially immobilized and therefore wiggle during image 

acquisition. Furthermore, optical aberrations and scattering effects were not included in training 

data simulations, which may decrease the performance of the CNNs on experimental data. Still, at 

IoU matching threshold < 0.3, the cell counting accuracy of BCM3D remains above 75% while 

also producing biologically reasonable cell shapes. Thus, the bacterial cell segmentation results of 

BCM3D represent a substantial improvement over other approaches (Figure 4.11 and Figure 

4.12). 
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Figure 4.13 (a) Fluorescence image slice of a 3D simulated biofilm and (b) the corresponding 

ground truth 67.  (c) The fluorescence image slice shown in (a) masked by its corresponding GT 

shown in (b). The fluorescence is not completely masked because of the diffraction-limited 

resolution of light microscopy.  (d) Fluorescence image slice of the same simulated biofilm masked 

by the BCM3D segmentation result.  (e) Absolute value of the difference image between the GT 

and the BCM3D segmentation result.  White pixels indicate regions where the two masks do not 

agree.  (f) Absolute value of the difference image between a manual annotated mask (from 

researcher 3) and the BCM3D segmentation result.  (g) Fluorescence image slice of the same 

simulated biofilm masked by the manual annotation result. Researcher 3 chose to draw larger cell 
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boundaries to mask more of the fluorescence intensity.  (h) Absolute value of the difference image 

between the GT and the manually annotated mask. White pixels indicate regions where the two 

masks do not agree.  (I) Segmentation accuracy achieved by manual annotation performed by three 

different researchers. Segmentation accuracy is parameterized in terms of cell counting accuracy 

(y axis) and IoU matching threshold (x axis, a measure of cell shape estimation accuracy. Curves 

approaching the upper right-hand corner indicate higher overall segmentation accuracy with 

respect to the ground truth. While IoU matching thresholds <0.3 yield good cell counting 

accuracies, the cell counting accuracy sharply decreases for IoU matching thresholds >0.3, because 

manually annotated cell shapes differ from the ground truth cell shapes.  

 

To demonstrate that BCM3D can achieve similarly high segmentation accuracies for 

membrane-stained cells in different cellular arrangements, we analyzed a small patch of a 

M. xanthus biofilm, which was stained with the membrane intercalating dye FM4-64 (Figure 

4.14). In contrast to E. coli biofilms, the submerged M. xanthus biofilm imaged here features cells 

in a mesh-like arrangement with close cell-to-cell contacts, which presents a unique challenge for 

3D single-cell segmentation. To obtain reference data for 3D segmentation accuracy 

determination, we manually annotated each xy, xz, and yz slice of an entire 3D image stack 

(Figure 4.14b). When referenced to this 3D manual segmentation result, BCM3D (Figure 4.14c) 

produced cell counting accuracies above 70% at low (0.1-0.3) IoU matching thresholds, whereas 

segmentation results obtained by conventional image processing (Hartmann et al.) and by 

generalist CNN-processing (Cellpose) produced cell counting accuracies <50% in the same IoU 

matching threshold region (Figure 4.14d). We note however that neither Cellpose nor the 

Hartmann et al. algorithm was specifically optimized/designed for segmenting membrane-stained 
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cells. Indeed, the performance of Cellpose on this type of biofilm architecture is inferior to the 

results achieved using the in silico-trained CNNs of BCM3D alone (without using LCuts post-

processing). One reason might be that the pre-trained, generalist Cellpose model has not been 

trained sufficiently on long, thin, and highly interlaced rod-shaped cells, such as those contained 

in a M. xanthus biofilm.   

 

 

Figure 4.14 3D Segmentation accuracy evaluation using M. xanthus biofilm images (cell density 

= 36.2%, and SBR = 1.58) using in silico-trained CNN processing. (a) Maximum intensity 

projection of a 3D M. xanthus fluorescence image. Cells were labeled with membrane-intercalating 

dye, FM4-64. Similar images were obtained at N = 120 different time points. (b) Maximum 

intensity projection of the manually obtained 3D segmentation result. (c) Maximum intensity 
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projection of a CNN-based 3D segmentation result after LCuts post-processing. Cells that can be 

matched with the GT are displayed in the same colors as GT or otherwise colored in white. (d) 

Segmentation accuracy of compared algorithms parameterized in terms of cell counting accuracy 

(y axis) and IoU matching threshold (x axis). 

4.3.4 Morphological separation of mixed cell populations 

Given the improved segmentation results obtained using BCM3D, we reasoned that the 

same CNNs may have additional capacity to assign segmented objects to different cell types based 

on subtle morphological differences in the acquired images. Differences in the imaged cell 

morphologies arise due to physical differences in cell shapes (e.g., spherical vs. rod-shaped cells) 

or due to differences in the fluorescent labeling protocols (e.g., intracellular vs. cell membrane 

labeling), because fluorescence microscopes simply measure the spatial distributions of 

fluorophores in the sample. The ability to separate different cell morphologies is important for the 

study of multispecies biofilms, where interspecies cooperation and competition dictate population-

level outcomes4, 68-75. Separation of differentially labeled cells is also important for the study of 

gene activation in response to cell-to-cell signaling76. Expression of cytosolic fluorescent proteins 

by transcriptional reporter strains is a widely-used technique to visualize activation of a specific 

gene or genetic pathway in living cells. Such genetic labeling approaches can be complemented 

by chemical labeling approaches, e.g. using membrane intercalating chemical dyes that help 

visualize cells non-specifically or environmentally-sensitive membrane dyes that provide 

physiological information, including membrane composition77, 78, membrane organization and 

integrity79-81, and membrane potential82, 83. Chemical and genetic labeling approaches are 

traditionally implemented in two different color channels. However, there are important drawbacks 

to using multiple colors. First and foremost, the amount of excitation light delivered is increased 
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by the necessity to excite differently colored fluorophores, raising phototoxicity and 

photobleaching concerns. Second, it takes N times as along to acquire N-color images (unless 

different color channels can be acquired simultaneously), making it challenging to achieve high 

temporal sampling in time-lapse acquisition. For these reasons, methods that extract 

complementary physiological information from a single-color image are preferable.  

We evaluated the ability of BCM3D to automatically segment and identify rod-shaped and 

spherical bacterial cells consistent with shapes of E. coli and S. aureus in simulated images 

(Figure 4.2cd). To segment cells in two-population biofilms, we trained CNNs that classify pixels 

into five different classes: ‘background’, ‘cell interior of population 1’, ‘cell boundary of 

population 1’, ‘cell interior of population 2’ and ‘cell boundary of population 2’. Thresholding the 

CNNs confidence maps can achieve cell counting accuracies larger than 90% for both cell types 

independent of their population fractions (Figure 4.15a). Post-processing of this result using LCuts 

improved the cell counting accuracy by less than 0.5% on average, indicating that under-

segmented cell clusters are not prevalent in this dataset.  

We next evaluated the ability of BCM3D to automatically segment and separate membrane-

stained cells that express cytosolic fluorescent proteins from those that do not (Figure 4.2ab). 

Again, the cell counting accuracy is consistently above 80% for all tested mixing ratios (Figure 

4.15b). Finally, we applied BCM3D to experimentally acquired biofilm images of two different E. 

coli strains. Both strains were stained by the membrane intercalating dye FM4-64, but the second 

strain additionally expressed GFP (Figure 4.16). The cells were homogeneously mixed prior to 

mounting to randomize the spatial distribution of different cell types in the biofilm (see 4.2.1 

Imaging of bacterial biofilms with LLSM). Multiple 2D slices from the 3D image stack were 

manually annotated and compared with the results obtained by BCM3D. Consistent with the 
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single-species experimental data, a cell counting accuracy of 50% is achieved for each cell type at 

a 0.5 IoU matching threshold and, at lower IoU matching thresholds, the counting accuracies 

increased to 60% to 70%, (Figure 4.15cd). Thus, using appropriately trained CNNs in BCM3D 

enables automated and accurate cell type assignments based on subtle differences in cell 

morphologies in mixed population biofilms – a capability not available using conventional image 

processing methods. 
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Figure 4.15 Performance of BCM3D on mixed-population biofilm images. (a) Cell counting 

accuracy of BCM3D on simulated images containing different ratios of rod-shaped and spherical 

cells. Black diamonds represent the counting accuracy for N = 10 independently simulated 

datasets. Green dots represent the cell density for each independent dataset. Error bars represent ± 

one standard deviation. (b) Cell counting accuracy of BCM3D on simulated images with different 

ratios of membrane-labeled, and membrane-labeled and interior fluorescent protein expressing 

cells. Black diamonds represent the counting accuracy for N = 10 independently simulated 

datasets. Green dots represent the cell density for N = 10 independent datasets. Error bars represent 

± one standard deviation. (c and d) Cell counting accuracy of BCM3D on experimental images of 

(c) membrane-labeled, and (d) membrane-labeled and interior fluorescent protein expressing E. 

coli cells (mixing ratio ~ 1:1). Each data point is the average of the cell counting accuracies 

calculated using annotation maps traced by three different researchers (N = 3). Data are presented 

as mean values ± one standard deviation indicated by error bars. 
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Figure 4.16 (a) Experimental 2D slice of a mixed E. coli population containing membrane-stained 

cells and membrane-stained cells that additionally express an intracellular fluorescent protein. The 

mixing ratio at the time of inoculation was 50:50. All cells were labeled by the FM4-64 membrane-

intercalating dye. (b) BCM3D segmentation result corresponding to the image shown in (a). 

Membrane-stained cells are displayed in green, and cells that were both membrane-stained and 

cytosolically-labeled are displayed in magenta. 
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4.4 Conclusions 

CNNs have been successful applied to many different problems in biological image 

analysis, but their ability to segment individual cells in 3D and time-lapse 3D bacterial biofilm 

images has not yet been fully explored. Here, we demonstrated a new CNN-based image analysis 

workflow, termed BCM3D, for single-cell segmentation and shape classification (morphometry) 

in 3D images of bacterial biofilms. In this work, we applied BCM3D to 3D images acquired by 

lattice light sheet microscopy. However, BCM3D readily generalizes to 3D images acquired by 

confocal microscopy or advanced super-resolution microscopy modalities, provided that realistic 

image formation models are used to simulate the training datasets. The use of simulated training 

data is a major advantage of BCM3D, because it overcomes inconsistencies inherent in manual 

dataset annotation (Figure 4.13) and thus solves the problem of obtaining sufficient amounts of 

accurately annotated 3D image data. The ability to use simulated training data provides needed 

flexibility not only in terms of the microscope platform used for imaging, but also in terms of the 

bacterial cell shapes that are to be segmented. 

We systematically investigated the advantages and limitations of BCM3D by evaluating 

both voxel- and cell-level segmentation accuracies using simulated and experimental datasets of 

different cell densities and SBRs. BCM3D enabled accurate segmentation of individual cells in 

crowded environments and automatic assignments of individual cells to specific cell populations 

for most of the tested parameter space. Such capabilities are not readily available when using 

previously established segmentation methods that rely exclusively on conventional image and 

signal processing algorithms. 

While BCM3D surpasses the performance of previous approaches, we stress that further 

improvements are possible and, for long-term, high frame-rate time-lapse imaging experiments, 
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absolutely needed. Our systematic analysis revealed that high cell density and low SBR datasets 

are particularly challenging for the CNNs used in this work. Future work will therefore focus on 

increasing the contrast and resolution in bacterial biofilm images. While, the use of optical super-

resolution modalities can provide higher spatial resolution, such resolution improvements often 

come at a cost of reduced image contrast and faster photobleaching/phototoxicity. Software 

solutions that can process images with limited resolution and low SBRs will therefore play a 

tremendously important role in biological imaging. BCM3D is a general workflow that integrates 

computational simulation of training data, in silico-training of CNNs for a specific task or a 

specific cell type, and mathematical post-processing of the CNN outputs. Incorporating different 

training strategies and different CNNs, such as the generalist CNN used in Cellpose35, into the 

BCM3D workflow will enable automated cross-validation of segmentation results when a ground 

truth or manual annotation map is not available. Furthermore, CNN-based image processing 

modules developed for contrast enhancement and denoising have also surpassed the performance 

of conventional methods based on mathematical signal processing84-87. Incorporating these tools 

into the BCM3D workflow promises to further improve the single-cell segmentation accuracies. 

We anticipate that the ability to accurately identify and delineate individual cells in dense 3D 

biofilms will enable accurate cell tracking over long periods of time. Detailed measurements of 

behavioral single-cell phenotypes in larger bacterial communities will help determine how 

macroscopic biofilm properties, such as its mechanical cohesion/adhesion and its biochemical 

metabolism, emerge from the collective actions of individual bacteria. 
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Chapter 5 BCM3D 2.0:  Accurate segmentation of single bacterial 

cells in dense biofilms using computationally generated intermediate 

image representations 
 

This chapter is adapted from Zhang, J., Wang, Y., et al. bioRxiv. 20211. 

5.1 Introduction 

Most terrestrial bacteria live in 3-dimensional tissue-like communities, named biofilms, 

and as multicellular communities, bacteria can colonize various biotic and abiotic surfaces. 

Biofilm-dwelling bacteria interact intimately not only with each other and the surface they reside 

on, but also with a self-produced extracellular matrix (ECM) that consists of proteins, DNA, and 

polysaccharides2-4. The sum total of these interactions helps biofilms develop emergent 

capabilities beyond those of isolated cells2, 3, 5, 6. Most notably, biofilms are more tolerant towards 

physical, chemical, and biological stressors6-8. Understanding how such capabilities emerge from 

the cooperative or antagonistic behaviors among individual cells requires live-cell compatible 

imaging technologies that are capable of resolving and tracking single cells within dense 3D 

biofilms.  

Recently developed light sheet-based fluorescence imaging modalities combine high 

resolution with fast imaging speed and low phototoxicity at levels that cannot be matched by 

confocal microscopy9-11. Light sheet-based microscopy modalities are therefore increasingly used 

for non-invasive time-lapse imaging of eukaryotic cells and tissues12-14 as well as bacterial 

biofilms15-17. Depending on the type of biofilm, the cell density may however be too high to clearly 

resolve the gaps between cells given the diffraction-limited resolution of the microscope. Super-

resolution imaging modalities, such as structured illumination microscopy18, 19, improve the spatial 

resolution, but experimental improvements in spatial resolution always come at the cost of 
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decreased temporal resolution and increased light exposure to the specimen, which again raises 

photobleaching and phototoxicity concerns20, 21. An additional challenge arises for cell tracking 

studies. Tracking motile cells may require high frame rate imaging to achieve sufficient temporal 

resolution. Higher frame rates often need to be accompanied by a proportional decrease in 

excitation laser intensities to mitigate photobleaching and phototoxicity. The decreased excitation 

laser intensities then result in lower signal-to-background ratios (SBRs) in the individual images. 

The inherent trade-offs between spatial and temporal resolution, SBR, and photobleaching and 

phototoxicity is driving the continued development of new and improved image processing 

approaches that extract ever increasing amounts of useful information from the available 

experimental images.    

Image processing pipelines based on supervised training of deep convolutional neural 

networks (CNNs) have been shown to outperform conventional image processing approaches for 

a variety of tasks in biomedical image analysis22, 23. For 3D biofilm image segmentation, we have 

recently developed  Bacterial Cell Morphometry 3D (BCM3D 1.0), which achieved state-of-the-

art performance for bacterial cell counting and cell shape estimation24. BCM3D 1.0 does not rely 

on manually annotated training data, but instead combines in silico-trained CNNs for voxel 

classification with graph-theoretical linear clustering (mLCuts25) to post-process the thresholded 

CNNs outputs (i.e. the confidence maps for voxel-level classification). Using this approach, 

BCM3D 1.0 automatically identifies individual cells in 3D images of 3D bacterial biofilms, reports 

their 3D shape and orientation, and classifies cell types with different morphologies. However, 

processing datasets with low SBRs and high cell densities remains challenging. Specifically, over- 

and under-segmentation errors increase in frequency for low SBR and high cell density datasets.  
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Cellpose26 ,StarDist27 and the work by Scherr et al.,28 are CNN-based approaches that create 

intermediate image representations for better segmentation. We reasoned that solving an image-

to-image translation task may prove to be a more robust strategy for handling extreme imaging 

conditions than the voxel classification approach implemented in BCM3D 1.0 or, at least, yield 

complementary segmentation results to BCM3D 1.0. Two different intermediate image 

representations are generally employed. The first representation is used to locate objects and the 

second representation is used to highlight the boundaries of objects. In previous work26-28, the 

CNN-predicted Euclidean distance to the nearest background pixel/voxel or the CNN-predicted 

object/background probability map was used to locate objects. Generation of boundary 

representations vary more widely: StarDist and Cellpose use star-convex polygons and spatial 

gradients separately to give complete boundaries, which can be used for object shape estimation. 

Scherr et al. instead enhance boundary regions that are close to other objects to prevent them from 

merging. Inspired by these approaches, we expanded the BCM3D workflow with a complementary 

CNN-based processing pipeline that translates the raw 3D fluorescence images into two distinct 

intermediate image representations that, in combination, are more amenable to conventional 

mathematical image processing, namely seeded watershed29 and Otsu thresholding30. For object 

localization, we adapted the approach used by StarDist27 and Scherr et al.28. For boundary 

information, however, we generated a new intermediate image representation that provides a 

complete 3D boundary of an object and additionally highlights whether the boundary is near other 

objects. We establish that, when combined and processed appropriately, these intermediate image 

representations provide biofilm segmentation results with higher accuracy than BCM3D 1.0. 

Importantly and in contrast to BCM3D 1.0, generation of intermediate image representations does 

not require image deconvolution as a pre-processing step. Deconvolution can lead to noise 
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amplification31 that then leads to false positive segmentation objects with physiologically 

unreasonable shapes. We show that, using intermediate image representations, experimentally 

acquired biofilm images can be successfully segmented using CNNs trained with computationally 

simulated biofilm images – a feature that provides the flexibility to segment a wide variety of 

different cell shapes. Finally, we show that improvements in segmentation accuracy enables 

accurate multi-cell tracking, which is demonstrated using 3D simulated and experimental time-

lapse biofilm images. 

5.2 Methods 

5.2.1 Lattice Light Sheet Microscope Imaging of Bacterial Biofilms 

Fluorescence images of bacterial biofilms were acquired on a home-built lattice light sheet 

microscope (LLSM). LLSM enables specimen illumination with a thin light sheet derived from a 

2D optical lattice32, 33; here, an intensity uniform light sheet was produced by dithering a square 

lattice. The average illumination intensity across the light sheet was less than 1 W/cm2. The sub-

micrometer thickness of the light sheet is maintained over a propagation distance of ~30 µm to 

achieve high resolution, high contrast imaging of 3D specimens comparable to confocal 

microscopy but with lower concomitant photobleaching and phototoxicity. Widefield fluorescence 

images of illuminated planes in the specimen are recorded on a sCMOS detector (Hamamatsu 

ORCA Flash v2). 3D biofilm images were acquired by translating the specimen through the light 

sheet in 200 nm step sizes using a piezo nano-positioning stage (Mad City Labs, NanoOP100HS). 

The data acquisition program is written in LabVIEW 2013 (National Instruments). 

Kanamycin resistant S. oneidensis MR-1, constitutively expressing GFP, were cultured at 

30 °C overnight in LB medium with 50 μg/ml Kanamycin. Overnight cultures were diluted 100 

times into the same culture medium, grown to an optical density at 600 nm (OD600) of 0.4 – 1.0, 
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and then diluted to OD600 ~ 0.05 using M9 media with 0.05% (W/V) casamino acids. Poly-l-

lysine coated round glass coverslips with the diameter of 5 mm were put into a 24-well plate 

(Falcon) and 400 μL of diluted cell culture was added to the well. Cells were allowed to settle to 

the bottom of the well and adhere to the coverslip for 1 hour. After the settling period, the coverslip 

was gently rinsed with M9 media to flush away unattached cells. Then 400 μL of M9 media (0.05% 

casamino acids) were added to ensure immersion of the coverslips. The well plate was set in a 30 

°C chamber for 72-96 hours to allow dense biofilms to develop. Media were exchanged every 24 

hours. Before imaging, the coverslip was rinsed again with fresh M9 media. The rinsed coverslip 

was then mounted onto a sample holder and placed into the LLSM sample-basin filled with M9 

media. GFP was excited using 488 nm light sheet excitation. 3D biofilm stacks were acquired by 

translating the specimen through the light sheet in 200 nm or 235 nm steps. Each 2D slice was 

acquired with an exposure time of 5 ms or 10 ms. 

Samples for time-lapse images were prepared by the same procedures, except imaging was 

started after either 24-hour or 48-hour cell attachment period, and the imaging experiment was 

carried out in LM medium (0.02% (W/V) yeast extract, 0.01% (W/V) peptone, 10 mM HEPES 

(pH 7.4), 10 mM NaHCO3) with a lactate concentration of 0.5 mM.34 Time-lapse images were 

recorded every 30 seconds for 15 minutes or 5 minutes for 5 hours for the two datasets shown in 

Figure 5.8 with the same imaging parameters as detailed above.  

5.2.2 Raw Data Processing 

Raw 3D stacks were deskewed and rotated as described previously35, but the deconvolution 

step was omitted. If necessary, background subtraction can be applied to reduce background signal. 

3D images were rendered using the 3D Viewer plugin in Fiji36 or ChimeraX37. Sample drift over 

the course of a time-lapse imaging experiment was corrected by Correct 3D Drift38, a Fiji plug-in 
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that performs registration by phase correlation, a computationally efficient method to determine 

translational shifts between images at two different time points.  

5.2.3 Generation of simulated biofilm images 

Data for CNNs training was computationally generated as described previously24. Briefly, 

CellModeller39, an individual-based computational model of biofilm growth, was used to simulate 

growth and division of individual rod-shaped cells in a population (Figure 5.1a). A minimum 

distance criterion between cells is imposed at each time point to alleviate cellular collisions that 

are due to cell growth. We chose cell diameter and cell length (d, l) parameters consistent with a 

given bacterial species, namely (1 μm, 3 μm) for E. coli40, (0.7 μm, 6 μm) for M. xanthus41, and 

(0.6 μm, 2 μm) for S. oneidensis42. 3D fluorescence intensity images (Figure 5.1b) were generated 

by convolving randomly positioned fluorophores in the cytoplasm or the membranes of simulated 

cells (Figure 5.1cd) with experimentally measured point spread functions (PSFs), and then adding 

experimentally measured background and noise (Poisson detection noise, based on the summed 

background and signal intensities, as well as Gaussian read noise, experimentally calibrated for 

our detector at 3.04 photons per pixel on average)43. 

The fluorescence signal intensity in the simulated images was adjusted to match the signal 

to background ratios (SBRs) of experimentally acquired data. To estimate the SBRs of both 

simulated and experimental images, we manually selected 10 ‘signal’ and 10 ‘background’ regions 

in the images. The SBR was calculated by dividing the mean background intensity by the mean 

signal intensity. To estimate the local density of a biofilm, the image was partitioned into several 

3D tiles 64 by 64 by 8 voxels in size and the total cell volume contained in each tile was divided 

by the tile volume. The reported cell density was computed as the average of the 10 densest tiles 

for each dataset.  
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Figure 5.1 Simulation of fluorescent biofilms images and intermediate image representations.  (a) 

Cell arrangements obtained by CellModeller.  (b) Simulated 3D fluorescence image based on the 

cell arrangements in a.  (c) Ground truth information of a 2D slice. Different cells are shown in 

different colors and intercellular spaces (background voxels) are displayed in black. (d) 2D slices 

of the simulated fluorescence image corresponding to the ground truth shown in c. The upper panel 

shows cells containing cytosolic fluorophores, the lower panel shows cells with fluorescently 

stained membranes. (e and f) Intermediate image representations generated from the ground truth 

information shown in c. See text for details.   

5.2.4 Generation of intermediate image representations 

To generate ‘distance to nearest cell exterior’ images (Figure 5.1e, Figure 5.2) from 

ground truth data (Figure 5.2ab), the Euclidean distance of each voxel inside a cell to the nearest 

voxel not belonging to that cell was calculated. The so-obtained distances were then normalized 

to the maximum value of that cell (Figure 5.2c). In order to obtain a steeper gradient in distance 

values, the distance values were additionally raised to the third power (Figure 5.2d), so that the 

resulting images show highly peaked intensity near the cell center. In a final step, the ‘distance to 

nearest cell exterior’ images were smoothed by Gaussian blurring (kernel size = 5 voxels in each 

dimension) (Figure 5.2e). 

To help distinguish touching cells, we calculated a second image representation, the 

‘proximity enhanced cell boundary’ image (Figure 5.1f, Figure 5.2). First, we subtracted the 

normalized distances to the nearest voxel not belonging to this cell (Figure 5.2c) from the binary 

map (Figure 5.2b). Second, we calculated the inverse of the Euclidean distance of each voxel 

inside a cell to the nearest voxel belonging to another cell, an intermediate image representation 

that has been proven useful to prevent objects merging in 2D28 (Figure 5.2g). These two 
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intermediate images were then multiplied together (Figure 5.2h) and small holes in the resulting 

images (Figure 5.2h inset) were filled using grayscale closing (Figure 5.2i inset). The resulting 

intermediate images provides a complete boundary of an object but also highlights whether the 

boundary is in close proximity to any other objects. Compared to previous methods that only 

provide a complete boundary or only provide boundary areas that are close to any other objects, 

this new intermediate image representation provides a more informative boundary representation. 

In a final step, the ‘proximity enhanced cell boundary’ images were smoothed by Gaussian blurring 

(kernel size = 5 voxels in each dimension) (Figure 5.2i).  
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Figure 5.2 Schematic of generating intermediate image representations. (a) Ground truth cell 

positions. (b) Binary maps based on the ground truth. (c) Images of distance to the nearest voxel 

not belonging to this cell. (d)  A steeper gradient in distance values is obtained by raising each 

voxel value in panel c to the third power. (e) Smooth images to get ‘distance to nearest cell exterior’ 

image representation. (f) Obtain cell boundary by subtracting (c) from (b). (g) Highlight boundary 

areas that are close to other cells by calculating reciprocal of distance to the nearest cell. (h) 

Multiply (f) and (g). The inset shows small holes between two cells’ boundary. (i) Small holes 

(inset) are removed in the ‘proximity enhanced cell boundary’ image by morphological closing 

and Gaussian blurring.    

5.2.5 Training the convolutional neural network  

To generate the above-mentioned intermediate image representations from experimental 

data, we trained 3D U-Net Based CNNs using the CSBDeep Python package20. We employed a 

network architecture depth of 2, a convolution kernel size of 3, 32 initial feature maps, and a linear 

activation function in the last layer. To achieve robust performance, we trained this network using 

ten to twenty simulated biofilm images with randomly selected cell densities and signal-to-

background ratio. To ensure the broad applicability of these networks, half of these images were 

biofilms containing cells expressing cytosolic fluorescence and the other half were biofilms 

containing membrane-stained cells (see Figure 5.1d). Instead of directly learning the intermediate 

image representations g(x) from the input raw data x, the networks were trained to learn the 

residual g ̃(x) to the input of the networks, i.e. g(x) = g ̃(x) + x. This strategy provides better 

performance, because solvers are more efficient in solving residual functions than unreferenced 

functions44. The loss function was taken as the mean absolute error (MAE) between the generated 
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and the target images. The networks were trained for 100 epochs with 100 parameter update steps 

per epoch and an initial learning rate 0.0004. The learning rate is reduced by a half if the validation 

loss is not decreasing over 10 epochs. Using these parameters, it took approximately 1 hour to train 

the CNNs on a NVIDIA Tesla V100 GPU with 32 GB memory. 

To test whether segmentation objects have physiologically reasonable cell shapes, we 

trained a 3D CNNs based classification model using tensorflow 2.0. We adapted a network 

architecture from Zunair et.al.,45; mainly includes three 3D convolutional layers, one global 

average pooling layer and a sigmoid activation function in the last layer. To achieve robust 

performance, we trained this network using 733 manually confirmed segmentation objects from 

experimental data (411 reasonable shaped objects, 322 oddly shaped objects). Training data were 

augmented by rotation and flip. The loss function was taken as the binary cross entropy between 

the model output and the corresponding target value. The networks were trained for 100 epochs 

with a batch size of 5 and an initial learning rate 0.0002. The learning rate is reduced by a half if 

the validation loss is not decreasing over 15 epochs. Using these parameters, it took approximately 

17 mins to train the CNNs on a NVIDIA Tesla V100 GPU with 32 GB memory. 

5.2.6 Thresholding of CNN-produced ‘distance to nearest cell exterior’ images 

We processed the predicted intermediate image representations by using scikit-image 

Python library46. Predicted ‘distance to nearest cell exterior’ images were first normalized by a 

simple percentile-based normalization method (Figure 5.3a), which we define for an input u as 

 

𝑁(𝑢; 𝑝𝑙𝑜𝑤, 𝑝ℎ𝑖𝑔ℎ) =
𝑢 − 𝑝𝑒𝑟𝑐(𝑢, 𝑝𝑙𝑜𝑤)

𝑝𝑒𝑟𝑐(𝑢, 𝑝ℎ𝑖𝑔ℎ) − 𝑝𝑒𝑟𝑐(𝑢, 𝑝𝑙𝑜𝑤)
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Where perc(u,p) is the p-th percentile of all voxel values of u. We typically use plow = 3 and phigh 

∈ (99.5, 99.9). After applying Otsu-thresholding30 to the ‘distance to nearest cell exterior’ image 

to obtain a binary image (Figure 5.3b), connected voxel clusters can be isolated and identified as 

single cell objects by labeling connected regions. To split clusters that are only connected by one 

or two voxels, the boundary voxels of each object were set to zero before labeling connected 

regions (Figure 5.3c). After labeling, the erased boundary voxels were added back to each object 

(Figure 5.3d). A conservative size-exclusion filter was applied: small objects with volume smaller 

than the radius cubed of the targeted cells were considered background noise and filtered out.  
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Figure 5.3 Schematic of thresholding of CNN-produced ‘distance to nearest cell exterior’ image. 

(a) ‘Distance to the nearest cell exterior’ image. (b) Apply Otsu-threshold to obtain binary images. 

(c) To split clusters that are only connected by one or two voxels, the boundary voxels of each 

object were set to zero. (d) Identify individual cell objects by labeling connected regions and then 

add back erased boundary voxels. 

5.2.7 Post-processing of initial thresholding result by introducing ‘proximity enhanced cell 

boundary’ images  

Thresholding of the ‘distance to nearest cell exterior’ image produces a binary image 

(background = 0, cell = 1), where groups of connected, non-zero voxels identify individual cells 

in most cases. However, when cells are touching, they are often not segmented as individuals, but 

remain part of the same voxel cluster (undersegmentation). On the other hand, a small part of a 

cell may be erroneously identified as another cell (oversegmentation). To address these errors and 

further improve the segmentation accuracy, we included ‘proximity enhanced cell boundary’ 

image, seeded watershed29, and multi-level Otsu thresholding47 to post-process the binary images 

obtained from the normalized ‘distance to nearest cell exterior’ images (Figure 5.4). 

Step 1. Objects that need further processing were found by evaluating its volume and 

solidity, i.e., the volume to convex volume ratio. Here, volume is defined as the number of voxels 

occupied by an object. Convex volume is defined as the number of voxels of a convex hull, which 

is the smallest convex polygon that encloses an object. The upper limit was found by using the 

interquartile rule, i.e. the upper limit is quartile 3 (Q3) plus 1.5 times interquartile range (IQR). If 

an object's volume or solidity is larger than the upper limit, it will be singled out for further 

processing. All these objects together generate a new binary image (Figure 5.4e). 
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Step 2. To identify and delineate individual cells in the undersegmented connected voxel 

clusters, CNN-produced ‘proximity enhanced cell boundary’ images were first normalized by the 

same percentile-based normalization method. We used seeded watershed after combining ‘distance 

to nearest cell exterior’ images and ‘proximity enhanced cell boundary’ images. Specifically, we 

generated a difference map by subtracting the ‘proximity enhanced cell boundary’ image from the 

‘distance to nearest cell exterior’ image and then set all negative valued voxels to zero (Figure 

5.4abc). This difference map was then multiplied by the binary image generated in Step 1 (Figure 

5.4f). Then, the resulting image was segmented by seeded watershed. Seeds were obtained by Otsu 

thresholding of the difference map and seeds with a volume smaller than 30 voxels were removed 

(Figure 5.4g). These new objects were again evaluated by their volume and solidity; if there still 

exist unmatched objects, a multi-level Otsu thresholding will be applied to further generate seeds. 

Unlike simple Otsu thresholding, which only separates voxels into two classes, foreground and 

background, multi-level Otsu calculates several thresholds, determined by the number of desired 

classes. Here, we used the following five classes: background, transition area between background 

and cell border, cell border, transition area between cell border and cell interior, cell interior. Seeds 

were extracted by using the third and the fourth threshold successively, i.e. the threshold between 

the third and the fourth classes (cell border, transition area between cell border and cell interior), 

and the threshold between the fourth and the fifth classes (transition area between cell border and 

cell interior, cell interior). The same size filter was used to remove unreasonable small seeds 

(Figure 5.4h).  

Step 3: All post-process objects were added together (Figure 5.4i) and combined with the 

initially reasonable objects, i.e., the objects haven’t been singled out in Step 1. A conservative 

size-exclusion filter was applied: small objects with volume 10 times smaller than the upper limit 
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volume were considered unreasonable small parts and filtered out. Since the ‘distance to nearest 

cell exterior’ images were confined to the cell interior, we dilated each object by 1-2 voxels to 

increase the cell volumes using standard morphological dilation (Figure 5.4j). 
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Figure 5.4 Post-processing pipeline using a combination of intermediate image representations. 

(a) ‘Distance to nearest cell exterior’ image. (b) ‘Proximity enhanced cell boundary’ image. (c) 

Generate difference map by subtracting (b) from (a) and set negative values to zero. (d) 
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Segmentation results from Figure 5.3. (e) Identify objects that need further processing using 

volume and solidity filters and transfer to binary map. (f) Mask (c) by multiplying (c) with (e). (g) 

To further split undersegmented clusters, apply seeded-watershed to (f), seeds are obtained by 

applying Otsu-threshold to (f). (h) If there still are undersegmented clusters after (g), more seeds 

are obtained by applying multi-level Otsu-threshold to (f). (i) Combine segmented objects from 

(g) and (h). (j) Combine (i) and (d) to get final segmentation results. 

5.2.8 Tracking 

Simpletracker in MATLAB was used to build tracking graphs and spatially resolved 

lineage trees48. Simpletracker implements the Hungarian algorithm and nearest neighbor trackers 

for particle tracking that links particles between frames in 2D or 3D. We used 1 µm and 1.5 µm as 

the maximum distance threshold for cell linking for simulated and experimental data, respectively. 

We used the nearest neighbor algorithm to associate the centroids of segmented objects in 

subsequent frames, such that the closer pairs of centroids are linked first. In order to determine a 

cell division event, a distance threshold of 1 µm and 1.5 µm for simulated and experimental data, 

respectively, a cell volume threshold of 1.5 (parent cell should be 1.5 times larger than the daughter 

cell), and a cell length threshold of 1.5 (parent cell should be 1.5 times longer than the daughter 

cell), were used to determine parent-daughter relationships between cell pairs on consecutive 

frames. 

5.2.9 Performance evaluation 

Segmentation accuracy was quantified as cell counting accuracy and cell shape estimation 

accuracy. The cell counting accuracy (CA) was calculated as previously described24:  
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𝐶𝐴 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

where, TP is the number of truth positive objects, FP is the number of false positive objects, and 

FN is the number of false positive objects.  Cell shape estimation is evaluated by two separate 

measures. Single-cell segmentation accuracy (SSA) takes the mean Intersection-over-Union (IoU) 

value (aka the Jaccard index49) over segments that have a matching ground truth/manual annotation 

object: 

 

𝑆𝑆𝐴 =  
1

𝑁𝑚𝑎𝑡𝑐ℎ
∑

|𝑆𝑒𝑔𝑖 ∩ 𝐺𝑇𝑖|

|𝑆𝑒𝑔𝑖 ∪ 𝐺𝑇𝑖|

𝑁𝑚𝑎𝑡𝑐ℎ

𝑖

 

where, |𝑆𝑒𝑔𝑖 ∩ 𝐺𝑇𝑖| is volume of overlap between the predicted object and the ground truth object, 

and |𝑆𝑒𝑔𝑖 ∪ 𝐺𝑇𝑖| is the volume enclosed by both the predicted object and the ground-truth object. 

We note that the SSA metric can take on high values even if the shape of a segmented object does 

not accurately represent the shape of the corresponding ground truth object. For example, a 

predicted round object with a diameter of 20 covered by a ground truth square object with a length 

of 20 gives a 0.8 IoU value, which could be interpreted as good performance. From a biological 

perspective however, this would signify a substantial inaccuracy in shape estimation. To measure 

differences in cell shape in a more discriminating way, we additionally computed a single-cell 

boundary F1 score (SBF1)50. The SBF1 of the abovementioned square vs circular object example 

is 0.67. The SBF1 score is computed as   

 

𝑆𝐵𝐹1 =
1

𝑁𝑚𝑎𝑡𝑐ℎ
∑

2 ∙ 𝑝𝑟𝑐𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑐𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑁𝑚𝑎𝑡𝑐ℎ

𝑖
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where precision is the ratio of matching boundary points in a matched segmentation object to the 

total points of its boundary. Similarly, recall is the ratio of the matching boundary points to the 

total points of ground truth boundary. According to the definition of boundary F1 score51, a 

distance error tolerance is used to decide whether a point on the predicted boundary has a match 

on the ground truth boundary. For our 3D data, we use √3 voxels. 

To quantify tracking accuracy, we used the acyclic oriented graph metric (AOGM)52. The 

AOGM value is calculated as the weighted sum of the number of graph operations required to 

convert the estimated graph to the ground truth graph, i.e.: 

𝐴𝑂𝐺𝑀 = 𝑤𝑁𝑆𝑁𝑆 + 𝑤𝐹𝑁𝐹𝑁 + 𝑤𝐹𝑃𝐹𝑃 + 𝑤𝐸𝐷𝐸𝐷 + 𝑤𝐸𝐴𝐸𝐴 + 𝑤𝐸𝐶𝐸𝐶 

The tracking accuracy can then be computed using a normalized AOGM value, where AOGM0 is 

the number of operations to build the ground truth graph from an empty graph: 

𝑇𝑅𝐴 =  1 −  𝑚𝑖𝑛(𝐴𝑂𝐺𝑀, 𝐴𝑂𝐺𝑀0)/𝐴𝑂𝐺𝑀0 

There are three types of graph operations that are associated with detection errors: the number of 

false negatives (FN), the number of false positives (FP), and the number of missed splits (NS: 

m reference cells (m > 1) are assigned to a single segmented cell); and three types of graph 

operations that are associated with object linking: edge deletion (ED), addition (EA), and alteration 

of the semantics of an edge (EC: The semantics of an edge can either represent the same cells over 

time or represent a parent-daughter relationship). To focus on object matching over time (i.e. the 

association performance of the algorithm), we used an equally weighted sum of the lowest number 

of graph operations on edges only (TRA_edge). To give a more comprehensive view, we used an 

equally weighted sum of the number of graph operations on all six operations (TRA_full).  

To estimate tracking accuracy for experimental data, we manually traced a small subset (n 

= 25) ancestor cells over time based on BCM3D 2.0 segmentation masks. Two researchers 
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performed tracking independently, manually determining parent-daughter relationships within the 

lineages originating from the ancestor cells. This lineage information was then used to compute 

TRA_edge. 

5.3 Results 

5.3.1 Cell segmentation using intermediate image representations 

High cell density and low SBR datasets are encountered often in biofilm research, 

especially when cells seem to touch each other and biofilms extend far into the vertical (z-) 

dimension, so that light scattering becomes pronounced 53. We therefore sought to improve 

bacterial cell segmentation accuracy for high cell density and low SBR biofilm images in 

particular. Our previous approach (BCM3D 1.0) relied on deconvolution as a preprocessing step 

to increase the SBR and to sharpen the image. However, deconvolution can introduce artifacts into 

an image, such as ringing54, and noise amplification55, and thereby introduce errors into the 

segmentation results. The segmentation pipeline of BCM3D 2.0, in contrast, works on the raw 

image data directly without the need for deconvolution.  

We compared two commonly used cell labeling approaches, namely cell interior labeling 

through expression of cytosolic fluorescent proteins and cell membrane staining through 

membrane-embedded fluorescent dyes. For cell interior labeling (Figure 5.5ab), BCM3D 2.0 

consistently produces cell counting accuracies of >95%, when SBRs > 1.3 and cell densities < 

65%. A clear drop off in cell counting accuracy is observed for SBRs < 1.3, but >70% is still 

achieved even for high cell densities of 65%. The performance of BCM3D 2.0 on low SBR datasets 

represents a large improvement (>20%) over the performance of BCM3D 1.0. Membrane staining 

(Figure 5.5cd) produces even more challenging images for segmentation, due to the less 

pronounced inter-cellular fluorescence intensity minima (red arrow in Figure 5.5bd). We again 
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observe a drop in cell counting accuracy for SBRs < 1.3. This drop off is however much less 

pronounced than for the previous results obtained with BCM3D 1.0, and represents an even larger 

(>29%) improvement for such extremely low SBR datasets. Visual inspection of slices through 

the image volumes (Figure 5.5bd) reveals that even for SBR = 1.3, the cell bodies are difficult to 

distinguish for expert human annotators, especially for membrane-stained cells. Despite the low 

contrast in the SBR = 1.3 datasets, BCM3D 2.0 is still able to achieve >90% cell counting 

accuracies, which, depending on cell density, represents a 6-26% increase relative to BCM3D 1.0.  

To determine the improvement in cell shape estimation, we plotted the cell counting 

accuracies as a function of IoU matching threshold, a quantitative measure of cell shape similarity 

relative to the ground truth, for SBR = 1.3 and cell density 62% (Figure 5.5ef). The cell counting 

accuracies obtained by BCM3D 2.0 are consistently higher than BCM3D 1.0 for IoU matching 

thresholds larger than 0.5, indicating that cell shapes are more accurately estimated by BCM3D 

2.0. Similar trend is observed for single-cell segmentation accuracy and single-cell boundary F1 

score50 – two additional metrics for segmentation accuracy (Table 5.1).  Taken together, these 

results establish that more robust cell segmentation can be achieved using the BCM3D 2.0 image 

processing pipeline, which uses CNNs to generate intermediate image representations for 

subsequent mathematical processing. 
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Figure 5.5 Performance of BCM3D 2.0 on previously unseen simulated biofilm images. (a) Cell 

counting accuracy (using an IoU matching threshold of 0.5 for each segmented object) averaged 

over N=10 replicate datasets for cells labeled with cytosolic fluorophores.  (b) Example image of 

cells labeled with cytosolic fluorophores (Cell density = 62.2%, SBR = 1.34, indicated by white 

rectangle in panel a).  (c) Cell counting accuracy (using an IoU matching threshold of 0.5 for each 

segmented object) averaged over N=10 replicate datasets for cells labeled with membrane-

localized fluorophores. (d) Example image of cells labeled with membrane-localized fluorophores 

(Cell density = 62.2%, SBR = 1.34, indicated by white rectangles in panel c). The red arrow 

indicates a close cell-to-cell contact. (e and f) Comparison of segmentation accuracies achieved by 

BCM3D 1.0 and BCM3D 2.0 for cytosoclic and membrane labeling, respectively (SBR = 1.34, cell 

density = 62.2%). Segmentation accuracy is parameterized in terms of cell counting accuracy (y 

axis) and IoU matching threshold (x axis). Each data point is the average of N=10 independent 

biofilm images. Data are presented as mean values ± one standard deviation. 

 

 Cytosolic labeling Membrane labeling 

 SSA SBF1 SSA SBF1 

BCM3D 1.0 0.796 ± 0.021 0.983 ± 0.008 0.756 ± 0.009 0.961 ± 0.007 

BCM3D 2.0 0.791 ± 0.004 0.995 ± 0.001 0.773 ± 0.005 0.988 ± 0.002 

 

Table 5.1 Quantitative comparison of single cell level segmentation accuracy between BCM3D 

1.0 and BCM3D 2.0. SSA and SBF1 estimate how accurately the shape of a matched object 

compare with it of the corresponding ground truth. Here, the IoU threshold is 0.5 and the distance 
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error tolerance for SBF1 is √3 voxels. (See methods for details). Data are presented as mean values 

± one standard deviation, the better performance (if different within error) is marked in bold. 

5.3.2 Segmentation of experimentally obtained biofilm images 

To test the performance of BCM3D 2.0 on experimental data, we acquired images of 

S. oneidensis biofilms expressing GFP. Visual inspection of the segmentation results obtained by 

applying BCM3D 2.0 (see Methods), showed physiologically reasonable cell shapes for a majority 

of segmented objects (Figure 5.6). To quantitatively evaluate segmentation performance, manual 

annotation results are often used as references. However, manual annotation of 3D biofilm images 

is inconsistent itself and it therefore very time consuming to provide reliable results24, especially 

for 3D data. We therefore chose to assess the segmentation accuracy using representative 

morphological observables that are available after segmentation, namely object volume, object 

solidity (volume fraction of the object as compared to the smallest convex polygon that encloses 

it), major axis length, longer minor axis length, and the ratio of the two minor axes lengths (longer 

minor axis divided by the shorter one). We performed principal component analysis (PCA) using 

these morphological observables and project each segmented object onto a plane spanned by the 

first two principal components. For simulated data (for which the ground truth is known) this 

approach shows a distribution for which the correctly segmented objects are concentrated near the 

origin, whereas the incorrectly segmented objects are predominantly located at the periphery 

(Figure 5.6a inset). 

We next applied the same PCA approach to experimental segmentation results obtained for 

a S. oneidensis biofilm containing ~3000 cells (Figure 5.6a). Similar to simulated data, most of 

the segmentation objects cluster near the origin of the two principal component axes. However, 

several segmented objects are asymmetrically scattered around the periphery of the distribution. 
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Inspecting the 3D shapes of a few manually selected objects revealed that, consistent with 

simulated data, physiologically reasonable cell shapes cluster near the center of the distribution, 

while oddly shaped objects predominantly localize at the periphery. To automatically separate 

oddly shaped objects from the physiologically reasonable, rod-shape shaped objects, we trained a 

3D CNN with manually validated segmentation objects (obtained from experimental data, see 

methods). The trained network efficiently separates rod-shaped objects (~86% of total) from oddly 

shaped objects (~14% of total). This classification enables the display of both subpopulations 

separately even though they are completely intermixed in 3D space (Figure 5.6bc).   

We further compared the distributions of solidity and minor axis ratio between rod-shaped 

and oddly shaped populations. Rod-shaped objects are characterized high values of solidity and 

minor axis ratio (Figure 5.6de). In contrast, solidity and minor axis ratio for oddly shaped objects 

take on values less than one and thus show a much broader distribution (Figure 5.6de insets). 

These results show that, when using BCM3D 2.0, ~86% of cells are segmented with 

physiologically reasonable cell shapes. The remaining 14% of cells can then either be excluded 

from the analyses or be subjected to further processing to identify and correct the remaining 

segmentation errors24, 25, 50.   
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Figure 5.6 Performance of BCM3D 2.0 on experimental biofilm images. (a) Principal component 

analysis of the segmentation objects (obtained from experimentally acquired images) that were 

classified by a pre-trained 3D CNN into either physiologically reasonable rod-shaped cells or 

oddly shaped (not-rod shaped) cells. Three examples cell shapes of each class are shown to the 

right and left, respectively. Inset: same analysis on simulated biofilm images.  (b) Segmentation 

objects classified as physiologically reasonable rod-shaped cells. (c) Segmentation objects 

classified as oddly shaped. (d) and (e) Comparison of the solidity and minor axis ratio distributions 

of rod-shaped and oddly shaped objects. 

5.3.3 Accurate BCM3D 2.0 segmentation enables multi-cell tracking in biofilms.  

Simultaneous multi-cell tracking and lineage tracing is critical for analyzing single-cell 

behaviors in bacterial biofilms. We asked whether the cell segmentation performance of BCM3D 

2.0 was sufficient to enable accurate tracking of individual cells in biofilms. To address this 

question, we employed a tracking-by-detection approached using simulated biofilm images of 

different SBRs (Figure 5.7a). We evaluated tracking accuracy, as a function of SBR, using the 

widely used TRA metrics based on Acyclic Oriented Graph Matching (AOGM)52. In acyclic 

oriented graphs, cells in different time frame are represented as vertices and linkages between cells 

from frame-to-frame are represented as edges. When the cells (vertices) are placed at their actual 

(x,y,z) spatial coordinates, then the cell linkages (edges) represent the branches of a spatially 

resolved lineage tree (Figure 5.7b). The TRA metrics quantify how many elementary graph 

operations are needed to transform an estimated graph into a ground truth graph. TRA_edge 

considers three edge operations, while TRA_full considers all six graph operations52. 

To link the same cells across two different time points, we used a nearest neighbor 

algorithm56. When using spatial distance as the sole metric for cell linking, the AOGM tracking 
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accuracy has a positive correlation with SBR (Figure 5.7c), which highlights the importance of 

accurate cell segmentation in multi-object tracking-by-detection57. BCM3D 2.0 enables a tracking 

accuracy that is similar to the ground truth tracking accuracy (same nearest neighbor tracking 

algorithm applied to the ground truth segmentation masks) for SBRs of 1.65 and higher. We note 

that, given the high cell density in this test dataset, the ground truth tracking accuracy does not 

reach the optimum (100%) even with error-free segmentation. At SBR’s less than 1.65, tracking 

accuracy decreases rapidly due to the lack of consistent segmentation results. The importance of 

accurate segmentation is further supported, by the linear dependence of TRA as a function of cell 

counting accuracy (Figure 5.7d).   

Another key factor for simultaneous multi-object tracking is the time resolution57. The 

relative movement (RM) of objects from frame to frame is therefore a useful metric to quantify 

the level of difficulty for cell tracking. The relative movement (RMi,j) in time frame i, for a given 

cell j is defined the ration between the distance of cell j to iteself between frame i and i+1 and the 

distance of cell j in frame i to its closest neighbor at frame i + 1. The RM metric is then the average 

RMi,j of all cells for each frame58.  A RM > 1 means that any tracking method that considers only 

distance (and distance related features) is likely to fail, whereas a RM of 0.5 is considered 

challenging58. For the simulated biofilm images here, RM~0.2, which indicates that the time 

resolution is good enough for successful single cell tracking using a nearest neighbor algorithm. 

Indeed, under these conditions, many cells can be tracked for several generations (Figure 5.7b), 

which allows for the estimation single-cell doubling cycles in the biofilm (Figure 5.7e). However, 

even at RM~0.2, some cell division events are missed, so that a few branches of the lineage three 

are not successfully traced. We therefore tested how time resolution affects tracking accuracy. 

When the time resolution is decreased by a factor of two and three, the TRA_edge metrics decrease 
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from 91% to 87% and 81%, respectively. The percentage of the parent-daughter misassignment 

error or edge-correction (EC) error over the number of total errors, increases from 1.4% to 3.6 and 

to 5.2 % (Figure 5.7f). Taken together, these results show that segmentation based multi-object 

tracking accuracy is highly dependent on segmentation accuracy (which depends on image SBR 

and cell density24) and time resolution. It is therefore critical to consider these parameters, when 

single-cell resolved observables, such as cell trajectories, single cell volume increases, and single-

cell doubling times, are measured.   

 

Figure 5.7 Multi-cell tracking in simulated biofilms. (a) Simulated fluorescence time-lapse images 

of growing E. coli-like biofilm. The SBRs of these images are estimated to be 1.65. Contours are 
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color-coded based on segmentation and tracking results. (b)  An example of 3D tracking and 

lineage tracing for simulated biofilm images. For clarity, spatial trajectories and lineages 

originating from a single ancestor cell is displayed. The estimated graph is shown in blue and the 

corresponding ground truth graph is shown in red. The entire biofilm contains over sixty graphs 

of this type. (c) Two AOGM metrics calculated as TRA_edge and TRA_full are plotted against 

image SBRs. The grey dashed line indicates tracking of the GT segmentation using the same 

tracking algorithm.  (d) Same data as in panel c plotted as a function of cell counting accuracy at 

IoU = 0.5, a segmentation accuracy metric that increases for increasing SBR in the raw images59. 

(e) Doubling cycle distribution of simulated data and corresponding tracking results. A completed 

cell cycle is defined as a track in which the parent cell is able to split twice. This threshold results 

in a lower count numbers of estimated cell division, but does not alter the shape of the distribution. 

(f) TRA_edge (left axis) and edge correction (EC) percentage (right axis) for different temporal 

sampling. EC percentage indicates how many parent-daughter relationships are misassigned based 

on the tracking results.  

5.3.4 Multi-cell tracking in the initial phase of S. oneidensis biofilm 

Cell segmentation and subsequent multi-cell tracking in experimentally acquired 3D 

images presents additional challenges that were not modeled in the computationally simulated 

data. These challenges include optical aberrations in the imaging system, broader cell shape 

distributions in experimental biofilms, cell motility, and association and dissociation dynamics of 

individual cells to and from the biofilm. To determine whether the BCM3D 2.0 segmentation 

results enable multi-cell tracking using a nearest neighbor algorithm, we manually traced a subset 

of ancestor cells over the course of a 15-minute 3D biofilm movie acquired with a time resolution 

of 30 seconds (Figure 5.8ab). Manual determination of cell-to-cell correspondences in 



163 
 

consecutive image volumes generated 583 cell-cell and 3 parent-daughter linkages. Taking this 

manual annotation as the reference graph, the RM metric was determined to be ~0.2 and the 

TRA_edge metric was determined to be 93.5%. Steadily increasing single cell volumes 

corresponding to growth rates of 7.4×10⁻3, 7.6×10⁻3, 1.2×10⁻3, and 6.8×10⁻3 µm3/min, which are 

followed by cell division events in two cases are readily detected by the algorithm (Figure 5.8c). 

We also found a high number of cell dispersion events resulting in the termination of some 

trajectories, most often right after cell division (Figure 5.8c).   

Although BCM3D 2.0 in combination with high-frame rate imaging enables accurate cell 

tracking, it may not be feasible to maintain high-frame rate volumetric imaging for extended time 

periods due to phototoxicity and photobleaching concerns. To further test the limits of nearest 

neighbor tracking, we tracked S. oneidensis biofilm growth for five hours at a time resolution of 5 

minutes (Figure 5.8de). We manually traced a subset of founder cells over the course of the 

experiment, generating 262 cell-cell and 17 parent-daughter linkages. The RM metric was 

determined to be ~0.4 and TRA_edge metric was determined to be 80.0% for this manually selected 

subset. While the nearest neighbor tracking algorithm is capable of making somewhat accurate 

cell-cell linkages for a few consecutive frames, tracking the same cells for long time periods and 

correctly detecting cell-division events is error-prone, at least for the S. oneidensis biofilms imaged 

here. The red arrow in Figure 5.8f indicates a manually validated cell splitting event that was 

missed by the algorithm due to the distance threshold of 1.5 µm not met when searching for 

potential daughter cells in the next frame (see methods). After the cell division event, daughter cell 

remains tethered to the parent, which resulted in an undersegmentation error in the subsequent 

frame and thus a doubling in cell volume (red box in Figure 5.8f). The magenta box in Figure 

5.8f indicates a second case of failure in which many cells in this biofilm region start moving 
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rapidly, so that trajectories cannot be manually validated. The division event marked on the 

trajectory is thus likely to be a false positive detection in which it is erroneously linked to a 

different neighboring cell.   
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Figure 5.8 (a) Experimentally acquired fluorescence time-lapse images of a growing S. oneidensis 

biofilm with overlaid single-cell segmentation contours. Images were acquired every 30 seconds 

for 15 minutes. Corresponding cells in different frames are displayed in the same color. (b) 

Individual cell trajectories in the biofilm shown in panel a. Cells move very little during the short 

15-minute imaging time.  (c) Cell volume over time for two selected cells. Cell division and 

dispersion events are indicated for each trajectory. (d) Experimentally acquired fluorescence time-

lapse images of a growing S. oneidensis biofilm with overlaid single-cell segmentation contours.  

Images were acquired every five minutes for five hours. Corresponding cells in different frames 

are displayed in the same color. (e) Individual cell trajectories in the biofilm shown in panel a. Cell 

displacements are more pronounced over the 5-hour imaging time. (f) Cell volume over time for a 

selected cell. Cell division and dispersion events are indicated on the trajectory. The red arrow 

indicates a manually determined cell division event. The boxes indicate two separate failure cases 

(see the main text for discussion). 

5.4 Conclusions 

We expanded the BCM3D workflow with a complementary CNN-based processing 

pipeline, named BCM3D 2.0, which transfers raw 3D fluorescence images to intermediate image 

representations that are more amenable to conventional mathematical image processing 

(specifically, seeded watershed and single- and multi-level Otsu thresholding). Using the BCM3D 

2.0 image processing pipeline, improved segmentation results are obtained, especially for 

challenging datasets characterized by low SBRs and high cell densities. BCM3D 2.0 consistently 

achieves better segmentation accuracy than its predecessor, BCM3D 1.0, which represented the 

previous state-of-the-art for 3D cell segmentation in bacterial biofilms.  
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We used the segmentation results provided by BCM3D 2.0 as the input to a nearest 

neighbor tracking algorithm to explore the possibility of simultaneous multi-cell tracking in 3D 

biofilms. We found that accurate multi-cell tracking in 3D time-lapse movies is possible with a 

nearest neighbor tracking algorithm, only if the relative cell movement (RM) between consecutive 

frames is small. Depending on the type of biofilm and the bacterial species, small RM values can 

be achieved using moderate time resolutions of 1-5 minutes. However, for the motile S. oneidensis 

cells imaged here, a time resolution of 5 minutes was insufficient for accurate cell tracking in dense 

biofilm regions. Tracking accuracy is reduced especially if cells undergo large and unpredictable 

displacements within the biofilm, and when cells associate or dissociate to and from the biofilm.  

A clear experimental solution would be to image biofilms at high time resolutions. 

However, every fluorescence imaging modality is subject to trade-offs between the achievable 

spatial and temporal resolution, image contrast (SBR), and phototoxicity and photodamage. When 

imaging S. oneidensis biofilms every 30 s, we did not observe any apparent phototoxicity and 

photodamage to the cells. Even so, after several hours of time-lapse imaging, the majority of cells 

dispersed from the field-of-view. Whether this behavior is part of a negative phototaxis response 

of S. oneidensis remains to be investigated more quantitatively in future work. If reducing the total 

radiation dose delivered to the cells is an experimental necessity, light sheet-based microscopy 

approaches offer substantial advantages over confocal microscopy53. In our lattice light sheet 

microscope, a high (30 s) time resolution could possibly be maintained at a lower, more tolerated 

radiation dose by further decreasing the excitation laser intensities at the sample and acquiring 

images at even lower SBRs. 
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While BCM3D 2.0 is capable of segmenting biofilm datasets of lower SBR than previous 

methods, further modifications to the image processing pipeline may be needed to enable the 

tracking of extremely light sensitive or highly motile bacterial species. Additional modifications 

could be made to further improve segmentation accuracy for datasets with even lower SBRs than 

those successfully segmented here. On the other hand, more sophisticated tracking algorithms 

could be employed that consider additional features beyond the Euclidian distances between 

objects. Recently developed deep learning-based cell trackers for both 2D and 3D data60, 61 are 

primarily designed for mammalian cells that have very unique cell shapes that can be used to define 

similarity features that inform cell linking across different frames. To what extent such approaches 

would improve tracking of bacterial cells that have very homogeneous cell shapes remains to be 

explored. Further benefits may also be gained by utilizing punctate cell labeling schemes62 or 

adaptive microscopy approaches in which higher illumination intensity frames are interspersed 

with lower illumination intensity frames and the segmentation results in lower SBR frames are 

informed by the more accurate results obtained in the higher SBR frames.   

In summary, the ability to accurately identify and track individual cells in dense 3D 

biofilms over long periods of time will require the combination of non-invasive and perhaps 

adaptive fluorescence microscopy approaches for long-term time-lapse imaging, as well as 

sophisticated image analysis and multi-object tracking tools that provide robust results even for 

datasets with limited spatial and temporal resolution, and image contrast. Here, we have presented 

an image processing pipeline that enables improved segmentation of dense biofilm-dwelling cells 

based on 3D fluorescence images of low SBR. The feasibility of simultaneous multi-cell tracking 

using a simple nearest neighbor tracking algorithm was shown to be feasible if a sufficiently high 

time resolution can be maintained. The tools developed here can thus be leveraged to improve our 
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understanding of how coordinated behaviors among biofilm-dwelling cells eventually produce in 

the macroscopic properties of bacterial biofilms.  
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Chapter 6 Imaging the Effect of Bile Salts on Biofilm Formation of 

Shigella flexneri  

6.1 Introduction 

Shigella flexneri is an intracellular pathogen that causes watery or bloody diarrhea by 

invading colonic epithelial cells1, 2. Though many aspects of the S. flexneri invasion process have 

been thoroughly studied, there is a significant knowledge gap in how the bacterium survives during 

host gastrointestinal transit, where it is exposed to numerous hazardous factors such as 

antimicrobial peptides, proteases, and, particularly, bile salts in the small intestine3-8. As an 

essential component of digestion, the amphipathic structure of bile salts results in detergent-like 

properties that provide antimicrobial activity by compromising bacterial membrane integrity9. 

Many enteric pathogens including S. flexneri, however, can exploit bile salts as cues to adjust 

virulence traits6, 10. Pope et al. first reported that S. flexneri shows increased adherence to HeLa 

cells after  exposure to the bile salt deoxycholate 11. Faherty et al. further identified the S. flexneri 

effectors required for bile-induced bacterial adherence, OspE1 and OspE2 proteins12. IcsA is 

another factor that was found to promote hyper-adhesiveness and invasion upon DOC exposure7.  

Recent studies have also hypothesized that S. flexneri may use biofilm formation as a 

survival strategy in the presence of bile salts4, 13. Though biofilm formation is a commonly adaptive 

trait of microorganisms under harsh conditions, previous studies have shown that S. flexneri lacks 

various adherence factors thought to be important for biofilm formation, including type 1 fimbria, 

flagella, and Type IV pilus13, 14. Thus, this observation may suggest alternative mechanisms 

utilized by microorganisms in biofilm formation. However, current studies of S. flexneri biofilms 

are limited to static culture conditions and ensemble-level analysis, due to the lack of high 
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resolution, non-invasive 3D imaging techniques and cellular level image analysis pipelines. To 

characterize biofilm formation of S. flexneri in the presence of bile salts, an experiment performed 

at biologically relevant conditions with single-cell information of live S. flexneri biofilms is 

necessary.  

Here, we imaged biofilm formation of S. flexneri under media flow in the presence and 

absence of bile salts by combining lattice light sheet microscopy (Chapter 2), a microfludic 

system (Chapter 3) and deep-learning based image analysis (Chapter 4 and 5). Preliminary 

experiments and cellular level analysis of image data have shown that S. flexneri exhibits a higher 

degree of aggregation in the presence of bile salts, matching with previous studies performed at 

the static culture conditions4, 13.  

6.2 Materials and Methods 

6.2.1 Flow channel operation 

Spectinomycin resistant S. flexneri 2457T expressing mCherry (pMMB vector, IPTG 

inducible) were cultured at 37 °C overnight in LB medium with 100 μg/ml spectinomycin. 

Overnight cultures were diluted 100 times into the LB and induced with 4mM IPTG. Diluted 

cultures were grown to an optical density at 600 nm (OD600) of 0.4 – 1.0, and then diluted to OD600 

= 0.05 in 25 % TSB medium containing 100 μg/ml spectinomycin and 4mM IPTG with or without 

0.4% bile salts (Fisher Scientific) before channel inoculation (details of the channel were shown 

in Chapter 3). For the results reported in this study, a 3 mm square coverslip coated with poly-L-

lysine was set on the bottom of the upper channel. The channel was then sterilized using 70% 

ethanol and rinsed with ddH2O (double distilled water). The channel was then inoculated with live 

bacterial cell cultures using a syringe. After inoculation, the channel was mounted on a piezo 
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nanopositioning stage (Mad City Labs, NanoOP100HS) and immersed in a sucrose solution in the 

basin. The sucrose solution concentration (~1.5 % w/v) used in the basin was determined by 

matching the refractive index of the growth media, which was 1.3347 and 1.3345 for 25% TSB 

with and without 0.4% bile salts, respectively. The temperature of the basin media was kept at 37 

°C. The channel inlet port was connected to a syringe pump (Harvard Apparatus, Model 22) and 

the channel outlet port was connected to a waste container using PVC tubing. Before initiating 

media flow through the channel, cells were given an hour to attach to the poly-l-lysine coated 

coverslip. Then, the flow rate was increased to 0.5 ml/h for 20 minutes to flush away non-adherent 

cells. The flow rate was reduced to 0.03 ml/h for the duration of imaging.  

A 560 nm light sheet was used to excite mCherry fluorescence. Images were acquired every 

30 minutes. At each time point, a 3D image stack containing 301 2D slices was recorded using a 

235 nm step size between slices. Each slice was acquired with a short 10 ms exposure time to 

reduce motion blur from loosely attached and therefore wiggling cells. 

6.2.2 Raw data processing 

Raw data processing was accomplished using the same procedure as described in 4.2.2 

Raw data processing, which includes deskewing and rotation of image data. All processed data 

have the same volume; 51 x 51 x 12 µm3. ChimeraX was used to render 3D image volumes 15. 

6.2.3 Bacterial cell segmentation 

Cell segmentation was accomplished with BCM3D 2.0 (Chapter 5). The pre-trained model 

for processing E. coli biofilms was applied to infer cells in the convolutional neural network 

module of BCM3D 2.0. The pre-trained model for E. coli was amenable for S. flexneri, because 

they have a similar cell shape and size. 3D rendering of segmentation results was performed by 

3D Viewer in ImageJ16. 
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6.3 Results and discussion 

We acquired 3D image stacks of S. flexneri every thirty minutes for 6 hours under media 

flow in the presence and absence of bile salts separately. As shown in Figure 6.1, S. flexneri 

continued to grow at both conditions, but a quick visual inspection shows that the cells are more 

densely packed when bile salts are present in the medium. To quantify the difference in growth, 

we analyzed the 3D image stacks using cell segmentation.  

 

Figure 6.1 Live imaging of mCherry expressing S. flexneri. (a) Maximum intensity projections 

showing the initial 6 hours of S. flexneri development under fluid flow without bile salts. (b) 

Maximum intensity projections showing the initial 6 hours of S. flexneri development under media 

flow with 0.4% bile salts. 
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Segmentation results show that there are 172 cells in the medium without bile salts and 203 

cells in the medium with 0.4% bile salts at the initial time-point, indicating a similar initial density 

of S. flexneri growth at both conditions. After 6 hours, the number of cells increased to 1229 under 

fluid flow in the presence of 0.4% bile salts, while this number only increased to 464 in the absence 

of bile salts. Previous studies4 have shown that growth of S. flexneri is not significantly altered 

with 0.4% bile salts. Thus, we hypothesize that the difference in cell number is due to increased 

aggregation of cells within the field of view. This is supported by previous studies which have 

shown that S. flexneri more easily aggregate in the presence of bile salts which were performed in 

previous static culture experiments and ensemble analysis4, 13. We further analyzed the structure 

difference between S. flexneri aggregates formed after 6 hours of continuous flow with/without 

0.4% bile salts (Figure 6.2ab). Using the segmentation results, we calculated the Euclidean 

distance between each cell to its nearest neighbor using cells centroids. The median value of the 

nearest neighbor distance in the presence of bile salts is ~23% smaller than the one formed in the 

absence of bile salts (1.48 μm vs 1.92 μm) (Figure 6.2cd), which demonstrates that S. flexneri is 

more densely packed when there are bile salts in the medium. We also analyzed the distance 

between each cell to the substrate surface. Here we used 10 cells that have the lowest z position as 

a proxy of the substrate surface. The median value of this distance in the presence of bile salts is 

~15% larger than the one in absence of bile salts (4.52 μm vs 3.92 μm) (Figure 6.2ef), which 

indicates S. flexneri aggregate formed in the presence of bile salts is thicker. 
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Figure 6.2 Quantitative analysis of S. flexneri aggregates after 6 hours of continuous growth with 

and without bile salts. (a) 3D rendering of S. flexneri aggregation in the absence of bile salts and 

its corresponding segmentation result. (b) 3D rendering of S. flexneri aggregation in the presence 

of 0.4% bile salts and its corresponding segmentation result. (c and d) Comparison of the distance 

to the nearest neighboring cell. (e and f) Comparison of cell distance to the substrate surface. 

Welch's t-test was applied for statistical analysis using MATLAB. *, P value of <0.01. 

6.4 Conclusions and future directions 

S. flexneri has long been a major concern in public health, as Shigellosis caused by S. 

flexneri and other Shigella species leads to millions of deaths each year17. Though many aspects 

of the S. flexneri invasion process have been thoroughly studied, S. flexneri use of biofilm 

formation as a survival strategy during host gastrointestinal transit, especially when there are bile 

salts present, has only been described in recent studies4, 13, 14. In this study, we characterize biofilm 

formation of S. flexneri under media flow in the presence and absence of bile salts through our 

home-built LLSM and custom flow system. Due to the high spatiotemporal resolution and minimal 

phototoxicity provided by the LLSM and the optically accessible channel, cellular resolution time-

lapse images for live S. flexneri were obtained. Cellular level information was extracted using 

BCM3D 2.0. Our preliminary results indicate that S. flexneri exhibited a higher degree of 

aggregation and packed more densely in the media containing bile salts. 

Currently, mechanisms governing this phenomenon are largely unknown. Köseoğlu et al. 

suggest that IcsA, an outer membrane protein required for S. flexneri actin-based motility during 

intracellular infection, plays an important role in aggregative growth of S. flexneri in the presence 

of bile salts by promoting cell-cell contact13. Chanin et al. proposed that though S.flexneri lacks 

fimbriae or other traditional adherence factors in common laboratory media, it still produces at 
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least three potential adherence structures (long polar fimbriae-like structure, type 1 fimbriae-like 

structure, curli-like structure) in the presence of bile salts, which contribute to biofilm formation14. 

However, all these experiments were performed in static culture conditions and lack cellular 

information for live biofilms. With the method we proposed in this study, these hypotheses could 

be tested at the cellular level by imaging live S. flexneri biofilms in the future. Another extension 

of this work could incorporate human organoid-derived epithelia into the flow system, yielding a 

so-called gut-on-a-chip model18-20, thus enabling the study of S. flexneri in a more biologically 

relevant condition.  
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Chapter 7 Significance and Future Directions 

7.1 Significance 

As the major mode of microbial life, biofilms have been widely recognized for their impact 

on the health of higher living organisms, and the global biogeochemical cycling1. To enable either 

efficient suppression of pathogenic biofilm formations or sufficient utilization of beneficial 

properties of biofilms2-4, it is necessary to better understand how macroscopic biofilm properties, 

such as metabolism and geometric shape, emerge from the individual behaviors of cells.  

Fluorescence microscopy, combined with high spatial-temporal resolution and highly 

specific fluorescence probes, provides a unique way to study the spatial and temporal contexts that 

affect cellular behaviors in biofilm environments. However, confocal microscopy, the current 

standard approach to 3D fluorescence imaging, suffers from limitations in acquisition speeds and 

photodamage5. To resolve these limitations, we have utilized lattice light sheet microscopy 

(LLSM), a newly developed imaging technique that effectively combines excellent spatial-

temporal resolution and minimal photodamage, into this study. A LLSM integrated microfluidic 

system was developed to sustain bacterial biofilm growth for multiple days under precisely 

controllable physical and chemical conditions. With these tools, we successfully recorded the 

colonization of glass surfaces by S. oneidensis MR-1 biofilms, a well-studied biofilm formation 

species, under media flow over a time period of three days, visualizing the evolution of single 

surface-attached cells into a large 3D biofilm at cellular level. Furthermore, the combination of 

these tools enabled the study of live S. flexneri biofilms, an intracellular pathogen that causes 

watery or bloody diarrhea, at biologically relevant conditions with single cell resolution.  
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 After the acquisition of fluorescence images, the extraction of quantitative information 

from such images is crucial. In order to quantitatively analyze biofilm-dwelling cells, each 

individual cell needs to be detected from images, and this is typically referred to as segmentation. 

In this study, Bacterial Cell Morphometry 3D (BCM3D), an integrated image analysis package 

that combines deep learning with conventional image analysis, and its novel extension version 

BCM3D 2.0 were developed. Biologically reasonable segmentation results were obtained for 

various biofilms even when they contained thousands of densely packed bacterial cells. With these 

high-performance image analysis pipelines, we demonstrated that the presence of bile salts leads 

to aggregation of S. flexneri at the cellular level, whereas similar results have only been shown at 

ensemble level before6, 7. 

7.2 Future directions 

The combination of the LLSM and the LLSM integrated microfluidic system has proven 

powerful for noninvasive four-dimensional (4D) imaging of bacterial biofilms at single-cell 

resolution. Though this combination has only been applied to the study of single-species biofilms 

in this study, we envision that, it  can also be applied to the study of multi-species biofilms using 

the multi-color imaging ability of our home-built LLSM (three excitation wavelengths now, and 

could be further increased)8, 9. Another extension of this technology could utilize biotic substrates 

in the microfluidic system. We envision that, with minor modifications, the current microfluidic 

design can be adapted to image bacterial populations interacting with human organoid-derived 

epithelia, which have recently been stably reconstituted in dual-channel microphysiological 

devices10, 11. Thus, the system could be used to model the gut microbiome or pathogenesis or gut-

colonizing bacteria. 
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It is important to note that the information derived from imaging data is reliant on a robust 

analysis system. The performance of BCM3D and BCM3D 2.0 is currently limited by the quality 

of training data. The current simulated images lack some characteristics of experimentally obtained 

images, such as unevenly distributed background as well as position-related resolution and 

contrast. Therefore, an important direction of this work is developing novel simulation methods 

that can produce realistic and accurate simulated data that more closely resemble microscopy 

images. Fortunately, recently developed deep learning based image transfer methods, such as 

CycleGAN, have shown potential for achieving this goal12, 13. At present, our simulation of 

bacterial cells only allows for rod- or spherical- shaped cells which limits its applicability to other 

model systems, such as the comma-shaped Vibrio cholerae. To further improve the generality of 

the proposed imaging analysis pipeline,14 we can further modify the simulation algorithm to 

include other cell shapes and sizes.  

Future work for S. flexneri has been discussed in details in Chapter 6. Briefly, we will 

probe the biofilm formation mechanism of S. flexneri in the presence of bile salts at cellular level. 

 

7.3 Summary 

The work presented here enables long duration cellular level imaging of live bacterial 

biofilms under precisely controllable physical and chemical conditions by combining the 

homebuilt LLSM and the custom microfluidic system. BCM3D and its extension version BCM3D 

2.0 were developed to achieve quantitative image analysis at the single cell level. With these tools, 

we were able to image and analyze aggregation of S. flexneri in the presence of bile salts at the 

cellular level. In summary, these novel research tools enable us to study the emergent properties 

of bacterial biofilms in terms of the fully-resolved behavioral phenotypes of individual cells.  
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