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Introduction 

The U.S. Army Combat Capabilities Development Command (DEVCOM) group sponsors a 

nationwide competition to identify systems engineering artifacts that build trust in Artificial Intelligence 

(AI)-enabled systems. As AI advances, it offers significant advantages over traditional methods in 

military logistics and planning (Szabadföldi, 2021). The superiority of high-complexity AI systems, 

however, often sacrifices human readability and understandability (Dwivedi et al., 2023). Without 

validation and transparency built into the design, allowing users and operators to audit accuracy and 

verify performance at all times, AI systems will face significant challenges to adoption (Svenmarck et al., 

2018). Trust—ensuring that users, operators, and decision-makers can rely on AI systems—is crucial, 

even if the entire decision-making process is not fully understood (Leike et al., 2017). Trust is a factor 

that affects all autonomous systems, but in most control environments, statistical modeling and proven 

techniques are able to provide support to decision making (Matt et al., 2014). AI has no such statistics 

underpinning performance, and with lives potentially at stake, a lack of trust has delayed the integration 

of AI into current warfare tactics (Castelvecchi, 2016).  

This project explores the intersection of trust in AI, specifically in ways to increase visibility, 

verifiability, and understanding in decision-making through the context of a life critical control problem. 

Trust is contextualized in this case through the exercise of troop movement and minefield traversal, a 

problem characterized by uncertainty and high risk. In this problem, soldiers must navigate a simulated 

minefield with unreliable mine detection methods. My technical topic seeks to improve operational 

robustness and user confidence, or trust, in AI enabled systems through the integration of explainable 

statistical models, data, and decision methods into opaque AI architecture. Next, I will focus on the 

requirements of the adoption and usage of AI in military operations through the Social Construction of 

Technology framework, focusing on the social and ethical dynamics shaping its acceptance. 

 

Developing Strategies for Safe and Trusted Minefield Navigation 

To explore methods of improving trust in AI pipelines, the goal of this work is to create a system 

that can efficiently route mine-defusing Unmanned Ground Vehicles (UGVs) and troops through 

simulated mine-laden terrain under various environmental conditions, as quickly as possible. The 

complexity of this problem stems from varying accuracy of mine detection methods. In this work, two 

systems are employed: a human observer and an AI. These methods have different accuracies depending 

on environmental factors such as visibility, time of day, and precipitation. Additionally, the processing 

times differ significantly with the AI able to evaluate a cell in one minute, whereas the human takes 30 

minutes to evaluate the same cell. To enable the mine detection methods, a routable Unmanned Aerial 
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Vehicle (UAV) is utilized to provide aerial reconnaissance of each possible traversal location. The overall 

problem can be visualized in the following objective tree (Figure 1). 

Figure 1: Technical Objective Tree 

 

 

Hierarchy of system objectives 

 

With the scale of the United States military, the complexity of moving troops, supplies, and other 

goods from point A to B becomes a logistical challenge that is compounded by potentially hazardous 

terrain, inaccurate and delayed evaluation systems, and the countless environmental conditions 

encountered across all seven continents (Siegel, 2002). Ultimate decisions regarding current traversal 
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methods are primarily human based using statistical prediction models, and heuristic planning to 

determine the safest path available (Serrano et al., 2023). Additionally, there are limitations of current 

technologies (e.g., mine detection systems) where operational efficiency, resource utilization, and 

accuracy is highly variable (McCormack, 2014). Although there has been some exploration in 

incorporating AI based hazard detection and routing methods, the dependency of an autonomous system 

that must prioritize the preservation of life requires ethical consideration in the design of the AI model  

(Sarker, 2024). AI can help optimize paths, predict risks dynamically, and adapt to rapidly changing 

conditions, such as evolving enemy tactics or environmental hazards using a variety of inputs (Bistron & 

Piotrowski, 2021). 

To simplify the overall approach, the overall problem is considered a system of subsystems in 

three parts: Evaluation of which method (human or AI) should scan the potential location, Routing of the 

UAV, and Routing the UGV and troops.  

 

Modeling Detection Reliability 

The first step is modeling the inherent unreliability of AI and human detection methods in a way 

that subsequent decision making can be validated and audited through statistical techniques. Bayesian 

estimation can be employed to update the probability of mine presence per cell as additional data is 

provided (Zyphur & Oswald, 2015) (Figure 2). The accuracy, or inaccuracy, of prediction are constantly 

updating to maximize performance. 

 

Figure 2: Accuracy Prediction Flow 

 

Process of converting metadata into prediction accuracy 

 

 

Optimizing UAV Routing 

Optimizing UAV routing (Figure 3) is essential in reducing mine encounters. Incorporating 

Baysesian estimation into Deep Reinforcement Learning (RL) (Li, 2018), we seek to create adaptive UAV 
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pathfinding. Modeled as a Markov Decision Process (MDP) (Puterman, 1990), with states including UAV 

position and scanned data, while actions involve choosing cells to scan. Bayesian estimates provide an 

accuracy and performance metric, demystifying some of the black box aspects of RL. 

 

Figure 3: UAV Navigation 

 

Framework for UAV routing across cells 

 

 

Routing UGV and Troops 

Finally in routing the UGV and soldiers, a method is needed to minimize traversal time and avoid 

mines using the UAV data. Pathfinding algorithms are able to calculate the cost for each move (Foead et 

al., 2021), and find the shortest possible path based on the likelihood of a mine. For instance, if a mine 

adds 40 minutes to a cell traversal, a cell with a 50% mine probability adds 20 minutes to the base time. 

This ensures the UGV selects the safest and most efficient route, updating paths in real-time to align with 

mission goals and enhance operational efficiency. 

Figure 4: UGV Navigation 

 

Framework for routing the UGV through prescanned cells 
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Evaluation Criteria 

To evaluate the success of the overall system, several criteria must be addressed to ensure optimal 

performance and mission success. The primary criterion is trust and reliability. This encompasses 

verifying that the system functions as intended and inspires confidence in soldiers to rely on AI. 

Evaluating trust involves analyzing metrics such as accuracy, false positive/negative rates, and the 

system's consistency across varied environmental conditions. Although false positives would require 

rerouting but maintain safety, a false negative is unacceptable. The system would be trained to minimize 

this feature at all costs so that troops are not unknowingly directed to a mine. Traversal time is another 

essential criteria, focusing on minimizing the duration of missions to reduce exposure to potential threats. 

This metric includes the expected time under normal conditions and variance to capture delays caused by 

obstacles like mines or shifting environments. Performance variability under different environmental 

conditions must also be assessed. This ensures the system’s resilience and reliability when faced with 

diverse, unpredictable situations. Key indicators include how environmental changes affect detection 

accuracy and the system’s adaptability to unforeseen conditions and thus, environmental resilience is an 

important outcome. Lastly, resource utilization is critical for operational efficiency, involving concurrent 

processing by both AI and human systems. Effective parallel processing ensures real-time data analysis 

and decision-making. Metrics such as the average number of concurrent processes and server utilization 

rates help identify how well resources are managed throughout identification, routing, and mine-clearing 

operations. 

 

 

Analyzing the Adoption of AI in Military Operations 

For AI to be trusted in control of critical, life-sensitive scenarios, methods must be developed to 

ensure performance with or without human involvement. The Social Construction of Technology (SCOT) 

framework (Pinch & Bijker, 1984) provides a lens to examine how relevant social groups - users, 

decision-makers, and other stakeholders -  shape the design and adoption of technology. SCOT highlights 

the process of interpretive flexibility, where these groups ascribe different meanings, uses, and priorities 

to the technology. Over time, as negotiations between social groups resolve conflicting interpretations, 

closure and stabilization occur, solidifying the technology's form and function. In the context of this 

project, these stages will be analyzed in the remainder of this section. 

The adoption of human-out-of-the-loop systems is shaped by the expectations and needs of its 

relevant social groups. Factors such as human impact, ethical considerations, and international law are 

critical in influencing these groups' interpretations and acceptance (Amoroso & Tamburrini, 2020). For 

example, autonomous systems that cannot be fully explained require mechanisms to ensure their 

5 



functionality and accuracy (Umbrello et al., 2020). Without sufficient trust in these systems, relevant 

social groups may resist their adoption, regardless of technical improvements. Military leaders, as a key 

social group, must balance innovation with strategic, ethical, and safety considerations, prioritizing 

systems that allow human oversight and maintain consistent performance (Nuechterlein, 1976). This 

drives developers to incorporate trust mechanisms, such as real-time anomaly detection and explainable 

outputs, to meet the standards set by these influential groups. 

The trust gap between humans and autonomous systems presents a significant barrier. Soldiers, as 

another relevant social group, may resist adopting systems perceived as "black boxes" due to their lack of 

interpretability, even if these systems demonstrate superior performance. Leaders face the challenge of 

reconciling the potential benefits of these systems with the need for rigorous validation and ethical 

deployment. These conflicts underscore the importance of developing hybrid control systems and 

explainable AI methods that allow human oversight without compromising efficiency (Bao et al., 2021). 

Stabilization in the context of autonomous systems for military operations can only occur when 

both soldiers and leaders reach a consensus on the systems’ trustworthiness and reliability. This requires 

technologies that incorporate explainable outputs and verifiable decision-making models. When these 

systems satisfy the needs and expectations of relevant social groups, the technology can transition from 

contested adoption to widespread use, achieving closure. 

The interpretive flexibility inherent in SCOT is evident in how different social groups engage 

with autonomous systems. For soldiers, these systems must instill confidence and facilitate 

decision-making, while for leaders, they must align with broader strategic objectives and uphold 

accountability. These differing interpretations shape the trajectory of the technology, guiding it toward 

designs that incorporate transparency and explainability to gain the full trust and acceptance of all 

relevant social groups. 

 

 

Research Question and Methods: 

Through the SCOT framework, I seek to answer: What factors are influencing social groups in 

adopting AI technology in military environments? This research examines how different 

stakeholders—military decision-makers, academic researchers, and engineering practitioners—evaluate 

trust in AI systems, using the Trusted AI Challenge as a structured case study. Given DEVCOM’s direct 

involvement in shaping AI adoption, the competition provides a controlled environment to analyze how 

trust is assessed, quantified, and framed across professional perspectives. 

This study employs a mixed-methods approach. Quantitatively, judges from government, 

academia, and industry scored each team across ten categories relevant to AI trustworthiness. These 

6 



scores were aggregated and compared across affiliations to identify trends in how different social groups 

prioritize aspects like risk management, explainability, and engineering rigor. 

Qualitatively, written research papers and judge comments from the top-performing teams were 

thematically coded across four core dimensions: Best Practices, Novel Approaches, Systems Engineering 

Activities, and Trust Infrastructure. These categories reflect recurring themes in how teams justified their 

designs and how evaluators interpreted trustworthiness. 

By combining these methods, this study explores both numerical trends and interpretive 

flexibility within SCOT—highlighting how professional backgrounds shape expectations of trusted AI 

and where consensus or divergence emerges between stakeholder groups. 

 

Data Sources and Selection of Focus 

Quantitative Scoring 

Seven judges rated teams on a 1–7 scale across ten categories relevant to trusted AI systems: 

●​ SE Activities – How well systems engineering practices were applied. 

●​ Trust Infrastructure – Measures ensuring explainability and oversight. 

●​ Key Workforce Skills – Technical competencies necessary for AI trust. 

●​ Design Patterns – Architectural decisions that promote reliability. 

●​ Risk-Based Monitoring – Mechanisms for mitigating AI failures. 

●​ Quantitative Methods – Use of data-driven validation techniques. 

●​ Best Practices – Alignment with established industry and academic standards. 

●​ Novel Approaches – Innovation in AI methodologies. 

●​ Future Plans – Sustainability and adaptability of AI solutions. 

●​ Transition – Feasibility of real-world implementation. 

These judges, affiliated with industry, academia, or government, represent different social groups whose 

perspectives shape interpretations of what constitutes a “trusted AI solution.” In keeping with SCOT’s 

interpretive flexibility, each affiliation potentially ascribes distinct importance to certain categories (e.g., 

risk-based management vs. design patterns). From the seven participating teams, the top three (by highest 

mean overall score) were selected for deeper qualitative examination (Figure 5), as these submissions 

most successfully represent the principles of trusted AI according to the evaluators. Analyzing these 

high-scoring entries offers insight into which strategies resonated most across stakeholder groups and 

provides representative examples of how trust is constructed in practice. 
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Figure 5:

Average total score for each team across the seven judges. The maximum possible score is 70. 

Team 1 came in first with an average score of 59, followed by Team 7, and Team 2.  

Quantitative Analysis 

Score Aggregation and Ranking 

The judges’ ratings formed a matrix (Figure 6), where each row represented a team and each column 

represented a scoring category. Mean scores were calculated per category to assess trends, and overall 

team rankings were determined by averaging across all categories. 

This ranking guided the selection of teams for deeper qualitative examination. An additional analysis 

explored whether specific social groups favored particular teams, highlighting potential biases introduced 

by professional backgrounds. 
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Figure 6 (Example Judge Scoring):

 

Judge color labeling indicates their background, with green representing government, orange academia, 

and yellow being the sole industry judge. 

Affiliation-Based Cross-Check 

To investigate interpretive flexibility, scoring patterns were compared across the three social groups. 

Industry, academia, and government judges each have distinct concerns when evaluating AI: 

●​ Industry tends to emphasize efficiency, practicality, and scalability, favoring approaches that are 

immediately implementable (Peres et al., 2020). 

●​ Academia values novelty, methodological rigor, and quantitative validation, prioritizing 

innovative techniques even if they require additional testing (Uddin, 2024). 

●​ Government places the highest weight on risk-based monitoring, explainability, and oversight 

mechanisms, ensuring that AI systems align with regulatory and security standards (Ahn & Chen, 

2022). 

By analyzing how each group scored different categories, patterns of divergence and consensus were 

identified. 
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Qualitative Analysis 

Qualitative Research Papers and Coding Approach 

Each of the top three teams submitted a research paper detailing their approach to building trusted 

AI systems. Within the SCOT framework, these documents serve as a lens into how trust is interpreted 

and prioritized by different social groups. To systematically analyze these strategies, the papers were 

thematically coded across four dimensions central to AI adoption: Best Practices, Novel Approaches, 

Systems Engineering (SE) Activities, and Trust Infrastructure. 

These categories capture a range of design priorities, from alignment with industry and 

government standards, to the use of innovative methodologies, structured engineering practices, and 

mechanisms for reliability and oversight. This structure allows for a direct comparison of how teams 

balanced innovation with feasibility and how those choices resonated with evaluators from different 

backgrounds. 

To deepen this analysis, statistical testing using the Kruskal–Wallis test was conducted across all 

categories. The results showed statistically significant differences in how affiliations scored Best 

Practices, SE Activities, and Trust Infrastructure, providing further insight into the interpretive flexibility 

among social groups and the priorities they emphasize in trusted AI. 

Results 

Overview of Findings 

This section examines how the different social groups, industry, academia, and government, assessed AI 

trustworthiness through both quantitative rankings and qualitative analysis. The results highlight the 

interplay between structured engineering practices, novel methodologies, and risk management in 

high-stakes AI applications. 

The analysis begins by exploring affiliation-based scoring trends (Figure 7), demonstrating how social 

group priorities shaped category rankings. Next, it delves into the top three teams' research papers, 

identifying best practices, innovation, and gaps in trust-building efforts. 
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Affiliation-Based Scoring Analysis 

Figure 7: 

 

Deviation was calculated based on the groups compared to the mean of all judges. Compared across all teams. 

(Figure 7) Illustrates the average point difference from each team's mean across selected factors, 

categorized by judge affiliation. 

●​ Best Practices: Industry judges rated this category the highest, while government judges rated it 

the lowest, suggesting that practical implementation was valued more by industry than 

government evaluators. 

●​ Novel Approaches: Academia scored this category the highest, aligning with their preference for 

innovative methodologies, while government judges rated it below the mean, likely due to 

concerns over unproven techniques. 
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●​ SE Activities: Industry and academia rated this category positively, reinforcing the importance of 

structured engineering processes, while government judges scored it slightly below the mean, 

possibly due to different prioritization of risk-based frameworks. 

●​ Trust Infrastructure: Industry and academia rated this category significantly above the mean, 

whereas government judges rated it well below, confirming that government evaluators prioritize 

explainability and oversight more critically than other groups. 

These trends align with the statistically significant differences found in the Kruskal-Wallis test, 

reinforcing how different groups prioritize AI trustworthiness. 

Comparison of Top Three Teams 

Performance Breakdown 

For each team, several excerpts were selected and coded based on their relevance to these categories. The 

following table (Table 1) summarizes how the top three teams performed in key aspects, emphasizing the 

distinction in their strategies. The full coded analysis is available in (Appendix B). 

Table 1 

Category Team 1 Team 7 Team 2 

Best Practices Explainable AI, 

adaptable frameworks 

Score: 5.57 

Multi-agent 

coordination, structured 

data processing 

Score: 6 

Path-planning 

algorithms, redundancy 

mechanisms 

Score: 5.42 

Novel Approaches Hybrid RL + statistical 

models for 

decision-making 

Score: 5.71 

Trust-dependent 

hierarchy, UAV-UGV 

cooperation 

Score: 6 

Multi-arm bandit for 

AI-human review 

Score: 5.28 

SE Activities Modular design, 

structured reward 

function 

Score: 5.71 

Extended V-Model, 

layered validation 

Score: 6.27 

Large-scale simulation, 

iterative testing 

Score: 5.14 
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Table 1 

Trust Infrastructure Uncertainty 

quantification, real-time 

model interrogation 

Score: 5.42  

AI confidence 

reporting, behavior 

auditing 

Score: 4.21 

Interpretability 

dashboard, 

trust-weighted 

heuristics 

Score: 4.85 

Emerging Trends and Patterns 

Trust Evaluation 

Of the three winning teams, Team 7 excelled in multiple categories, achieving a near-perfect 

score in Systems Engineering Activities. However, their overall ranking was impacted by a lower score in 

Trust Infrastructure, where reliance on automated auditing and hierarchical oversight resulted in lower 

scores from government evaluators. Team 1, the overall winner, scored the highest in Trust Infrastructure 

with an average of 5.42, incorporating uncertainty quantification models, trust calibration thresholds, and 

real time model interrogation to enhance AI reliability and transparency. This approach, which 

emphasizes statistical modeling to characterize uncertainty, was highly rated across all judging categories 

for its auditability and explainability. However, a single government judge assigned them a score of two, 

lowering their average from six. Government evaluators consistently favored explainability and 

human-in-the-loop oversight, making Team 1’s approach particularly well-received. In contrast, Team 2, 

which employed a trust-weighted heuristic and AI-human negotiation model, was rated lower due to its 

less explicit focus on real-time trust calibration, further emphasizing the importance of transparency and 

risk mitigation in military AI adoption. 

 

Emerging Themes and Analysis 

SE Activities: The Most Universally Valued Category​

​ Across all three top-performing teams, a strong emphasis on structured systems engineering 

methodologies was evident. Each team implemented architectures to support human-AI collaboration, 

along with iterative validation cycles to refine AI decision-making over time. These practices were 
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consistently recognized and rewarded by judges regardless of affiliation, suggesting a consensus that 

strong engineering design is foundational to building trust in AI systems. 

Through the lens of SCOT, this alignment represents a shared interpretive closure around 

engineering discipline as a baseline requirement for trustworthiness. Regardless of whether evaluators 

prioritized innovation or oversight, the presence of structured systems engineering activities provided a 

common ground that satisfied differing expectations. This highlights the stabilizing role that established 

engineering norms play in facilitating the adoption of new technologies, particularly in high-stakes 

domains like military operations. 

Disparities in Trust Infrastructure Priorities​

​ While the SE Activities of the top performing teams garnered widespread support, significant 

divergence emerged in the evaluation of Trust Infrastructure. Government-affiliated judges placed the 

greatest emphasis on explainability, accountability, and human-in-the-loop oversight. Their preference for 

real time model interrogation, uncertainty quantification, and confidence calibration thresholds reflects a 

strong concern for risk mitigation and operational control, key themes within the government’s role as a 

regulatory and safety focused stakeholder. 

In contrast, industry and academic judges scored Trust Infrastructure more moderately, often 

prioritizing efficiency or algorithmic novelty over exhaustive oversight mechanisms. This difference 

illustrates SCOT’s notion of interpretive flexibility: trust is not a fixed attribute but is socially constructed 

and shaped by the unique concerns of each group. For government evaluators, trust is grounded in 

transparency and verifiability; for others, it may be contingent on performance or theoretical soundness. 

Innovation vs. Practicality: A Key Trade Off​

​ A recurring tension observed across submissions was the trade off between innovation and 

practicality. Teams that pursued novel, complex AI approaches, such as hybrid reinforcement learning 

models or hierarchical trust based architectures, were well received by academic evaluators, who value 

cutting edge research and theoretical advancement. Team 1 and Team 7 represented this with their use of 

deep learning combined with explainability frameworks, which were praised for pushing the boundaries 

of trusted AI design. 

However, these same innovations drew more cautious responses from government judges, who 

favored systems with clear operational feasibility and lower risk. Team 2, which relied on the 

well-established A* algorithm and a conservative trust weighted heuristic, was rated more favorably by 
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both government and industry, suggesting a preference for proven, stable methodologies that prioritize 

control and accountability over novelty. 

Within the SCOT framework, this divergence underscores how stakeholder priorities shape 

technological interpretation. Academia constructs trustworthiness through innovation and exploration, 

while government frames it through regulatory alignment and risk aversion. These competing 

interpretations create friction but also guide the iterative refinement of trusted AI systems as developers 

respond to varied expectations. 

 

Discussion 

This research situates the evaluation of trusted AI in military applications within the SCOT 

framework, demonstrating that AI trustworthiness is not solely a technical concern but also a social 

negotiation. By analyzing how industry, academia, and government assess AI-enabled systems, this study 

highlights how social groups shape technological meaning through their unique priorities, efficiency and 

scalability for industry, methodological innovation for academia, and risk mitigation for government.  

The findings of this study align with broader research on explainable AI (XAI) (Gunning & Aha, 

2019), which emphasizes the need for transparent decision-making frameworks to enhance adoption in 

safety-critical environments. Similar studies on AI trustworthiness have found that stakeholders in 

high-risk applications prioritize clear interpretability over raw performance (Doshi-Velez & Kim, 2017) 

(Glikson & Woolley, 2020). This research reinforces those findings by demonstrating that government 

judges consistently rated AI systems lower in Trust Infrastructure unless clear explainability mechanisms 

were embedded. Unlike prior studies that primarily focus on user acceptance in commercial AI 

applications, this work extends the discussion to military AI evaluation, where stakes are significantly 

higher and oversight is a fundamental requirement for deployment. 

The results also connect to literature on human-AI teaming (ZhangRui et al., 2021), where trust is often 

contingent on predictability, transparency, and control mechanisms. Prior research has shown that 

trust-building in human-AI collaboration depends on a balance between autonomy and human oversight 

(Hancock et al., 2024). The findings from this study confirm this, as government evaluators favored 

systems that explicitly retained human-in-the-loop frameworks, while industry judges were more 

comfortable with higher levels of automation. This adds to the existing body of knowledge by 
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demonstrating that trust evaluations in military AI applications are significantly influenced by evaluator 

affiliation and domain priorities. 

Finally, this research contributes to multi-agent systems research (van der Hoek & Wooldridge, 

2008), particularly regarding trust-weighted AI decision hierarchies like those employed by Team 7. The 

variability in how stakeholders rated novel AI approaches underscores a challenge in emerging AI 

technologies: the trade-off between innovation and operational feasibility. 

From a SCOT perspective, the current state of trusted AI in military applications suggests that we 

are still in an open interpretive phase. While structured engineering practices show signs of interpretive 

closure, being consistently valued across all stakeholder groups, other dimensions, such as Trust 

Infrastructure and Novel Approaches, remain contested. The divergence in how different social groups 

assess transparency, explainability, and autonomy indicates that the field has not yet reached full 

stabilization. Competing interpretations persist, particularly around how much human oversight should be 

retained and how novel methods should be evaluated for safety and reliability. Until consensus emerges 

around these core issues, trusted AI in military contexts will continue to evolve through negotiation, 

iteration, and refinement. 

 

Limitations and Caveats 

While this study provides valuable insights into AI trust-building, several limitations must be 

acknowledged. First, the sample size was relatively small (seven teams and seven judges), limiting the 

generalizability of findings. A larger-scale study with a broader panel of evaluators could reveal more 

nuanced trends in how social groups prioritize AI attributes. Additionally, the competition setting may not 

fully replicate real-world AI deployment, where factors such as organizational culture, regulatory 

constraints, and long-term performance evaluation also shape trust. 

Another limitation is this study focused primarily on high-level evaluation categories, meaning that 

deeper sub-category analysis (breaking down Trust Infrastructure into explainability, redundancy, and 

failure tolerance) could provide even richer insights. As a final caveat, there was a limited number of 

judges, across categories, with industry having one representative, academia only two, and four from 

government backgrounds. With a greater sample and response rate, a better understanding can be 

determined 
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Future Improvements and Next Steps 

If conducting this research again, several modifications would be beneficial. First, incorporating direct 

end-user feedback (from soldiers, AI engineers, and command decision-makers) would provide a more 

holistic perspective on how AI trustworthiness is assessed beyond competition judges. Expanding the 

quantitative component by applying factor analysis or machine learning clustering on scoring patterns 

could also reveal hidden correlations between scoring categories and social group priorities. 

Another key improvement would be testing AI decision frameworks in simulated or live operational 

environments. While this study analyzes perceptions of AI trust, actual AI trustworthiness should be 

measured through performance benchmarking, stress testing, and real-time explainability demonstrations. 

Additionally, more rigorous interviews or surveys with judges could clarify why certain scoring patterns 

emerged and whether specific AI design choices influenced their evaluations. 

 

Conclusion 

This research provides critical insights into how industry, academia, and government evaluate trusted AI 

in military applications, reinforcing that AI adoption is not just a technical challenge but a social 

negotiation. By applying the SCOT framework, this study demonstrates that different stakeholder groups 

prioritize distinct aspects of AI trustworthiness, with industry valuing practical implementation, academia 

favoring innovation, and government emphasizing risk mitigation and oversight. These findings have 

broader significance for AI development in high-risk, mission-critical environments, where ensuring 

stakeholder alignment is crucial for adoption. 

The key takeaway is that AI trust-building must be approached holistically, integrating structured 

engineering methodologies, transparent decision-making, and trust calibration mechanisms to satisfy 

diverse stakeholder expectations. Future research should build on these findings by expanding the sample 

size of evaluators, incorporating direct operational testing, and examining how trust in AI evolves over 

time. Additionally, policymakers, engineers, and AI developers should collaborate to establish 

standardized frameworks that balance innovation with real-world feasibility, ensuring that AI solutions 

are both technically sophisticated and socially accepted. 

Moving forward, researchers should explore how trust metrics can be operationalized to create AI systems 

that adapt dynamically to user confidence levels, bridging the gap between autonomy and human 
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oversight. By prioritizing transparency, adaptability, and risk-awareness, the AI community can advance 

deployable, trusted AI technologies that meet the demands of military, industry, and regulatory 

stakeholders alike. 
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Appendix A (Team Scoring Evaluation): 

 

 

 
 
 

Appendix B (Coded Research Analysis): 

Team 1 Excerpt Annotation 

Best Practices 

“Our approach adapts quickly to new 
scenarios, provides explainable statistical 
outputs and behavior, and effectively 
manages the variable accuracy of the two 
prediction subsystems.” 

The team emphasizes explainable AI 
and adaptability, which align with 
industry standards for AI transparency 
and robustness. 

Average Score: 5.57 

“We introduce trust into high-complexity AI 
systems by simplifying data inputs and 
providing a structured behavioral framework, 

References best practices in AI 
modeling by reducing complexity and 
aligning AI with established human 
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similar to human decision-making.” decision-making frameworks. 

 

“Our framework incorporates real-time 
model interrogation, allowing users to query 
AI predictions and receive explainable 
outputs.” 

The inclusion of real-time interrogation 
aligns with best practices in AI 
transparency, ensuring verifiability and 
reducing the black-box nature of deep 
learning models. 

 

“By integrating statistical methods with 
reinforcement learning, we create a system 
that enhances mine detection reliability while 
maintaining efficiency.” 

This hybrid approach follows best 
practices by combining statistical 
verification with machine learning, 
reducing the unpredictability of 
AI-based decision-making. 

   

Novel Approaches 

“Our approach uses a detailed minefield 
simulation to train explainable statistical 
models and a reinforcement learning (RL) 
algorithm that guides the UAV in selecting 
scan locations and methods.” 

The use of reinforcement learning for 
UAV path selection is positioned as a 
novel application in military mine 
detection. 

Average Score: 5.71 

“We rely on explainable statistical models in 
the form of linear regressors to infer and 
verify accuracy based on observable 
environmental metadata and prediction 
estimates.” 

This introduces a novel hybrid method 
of integrating statistical inference with 
reinforcement learning. 

 

The simulation environment we developed 
includes a configurable network with 
dynamically generated terrain, 
metadata-driven mine placement, and 
adaptive AI scanning behavior.” 

The team proposes an advanced 
simulation environment that integrates 
AI adaptability and metadata-driven 
risk assessment, which is novel in 
high-risk military contexts. 

   
SE Activities   

Average Score: 5.71 

We developed a modular simulation 
environment to train an intelligent RL agent 
using statistical models that estimate the 
accuracy of mine detection methods.” 

The structured lifecycle approach of 
simulation training aligns with SE 
methodologies. 

 

Our mission wrapper is designed in a 
modular way to extend on functionality 
within the base mission class, providing 
helper functions and streamlining certain 
processes.” 

References structured software 
engineering methodologies, ensuring 
modularity and extendibility. 

 

“We use reinforcement learning with a 
structured reward function that penalizes 
inefficient routing and unsafe traversal while 
prioritizing accuracy.” 

This structured reward function follows 
SE methodologies by ensuring 
systematic, quantifiable optimization 
criteria. 
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Trust Infrastructure 

“We ensure system reliability by integrating 
uncertainty quantification models that 
provide confidence intervals for mine 
detection probabilities.” 

This promotes trust by offering explicit 
uncertainty measures, which allow 
users to assess the reliability of 
AI-driven decisions. 

Average Score: 5.42 

“Trust calibration is built into the system 
through a reinforcement mechanism where 
AI predictions are flagged for human review 
when confidence levels fall below a defined 
threshold.” 

This explicit confidence thresholding 
mechanism ensures that trust is 
dynamically adjusted based on AI 
reliability, reducing risks in high-stakes 
scenarios. 

 

“By maintaining human oversight, human 
control is retained and the AI is prevented 
from overriding human decisions.” 

Ensuring human-in-the-loop oversight 
reinforces trust in AI autonomy. 

 

“Monitoring these metrics provides a 
quantification of trust. Our approach 
prioritizes robustness and reliability, which 
are critical in high-risk tasks like minefield 
traversal.” 

Explicitly addresses quantifiable trust 
metrics, a key factor in AI-enabled 
military operations. 

   
   
   
   
Team 7 Excerpt Annotation 

Best Practices 

“The system implements a structured 
workflow for mine detection and clearance 
operations… The AI system processes data 
significantly faster, completing analyses in 
approximately one minute, though its 
accuracy varies based on environmental 
conditions.” 

Emphasizes efficiency and structured 
data processing, which follows best 
practices in AI reliability. 

Average Score: 6 

“The mine-clearing operation employs a 
multi-agent architecture comprising human 
operators, AI, UAV, and UGV working in 
coordinated roles.” 

This structured multi-agent approach 
aligns with established SE frameworks. 

 

“The system prioritizes explainability by 
implementing an interface that visually 
represents AI confidence scores alongside 
human annotations.” 

This practice aligns with AI 
transparency guidelines, ensuring that 
human operators can visually assess AI 
predictions. 

 

“Our multi-agent system follows a structured 
command hierarchy where AI provides 
initial assessments, but human operators 
have final decision authority.” 

This hybrid AI-human structure follows 
best practices in decision assurance, 
ensuring that AI complements rather 
than overrides human judgment. 
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Novel Approaches 

“The AI’s decision-making is guided by a 
hierarchical model where higher trust in AI 
reduces human intervention, while lower 
trust increases manual validation.” 

The dynamic trust-dependent decision 
hierarchy is an innovative way to 
balance efficiency and human 
oversight. 

Average Score: 6 

“Instead of a static traversal plan, we employ 
real-time environmental adaptation where AI 
adjusts UAV and UGV movement based on 
newly observed terrain conditions.” 

This approach introduces dynamic 
adaptation, making AI decisions more 
context-aware and reducing the risks of 
outdated planning. 

 

“The optimization algorithm incorporates a 
bi-level planning approach to enable the 
independence of the UAV and UGV.” 

Introduces a hierarchical approach to 
autonomous system coordination. 

 

“To configure the UGV for real-time path 
optimization under uncertainty, the D* Lite 
Algorithm will be employed.” 

D* Lite is an advanced path-planning 
method adapted for real-time AI 
decision-making. 

   

SE Activities 

“Applying the Extended V-Model to Foster 
Trust... By treating human operators and 
their interactions with AI as integral 
elements of the system rather than peripheral 
concerns, the extended V-model encourages 
human-centered AI considerations.” 

Clear evidence of SE framework 
integration, particularly for human-AI 
interaction modeling. 

Average Score: 6.28 

“The architecture follows a networked 
structure where information flows 
bidirectionally between human operators, AI, 
and unmanned vehicles, enabling real-time 
adaptation to changing conditions while 
maintaining operational coherence.” 

Systems thinking approach ensuring 
flexibility in AI-human interactions. 

 

“We implement an iterative development 
cycle with regular validation checkpoints to 
ensure that AI behavior aligns with human 
expectations.” 

This aligns with SE best practices, 
ensuring that system performance is 
continuously evaluated and improved. 

 

“Our architecture follows a layered 
approach, separating perception, 
decision-making, and execution layers to 
improve system maintainability.” 

This structured design methodology is a 
common SE strategy that improves 
fault tolerance and system scalability. 

   

Trust Infrastructure 

“Operators receive automated reports on AI 
decision confidence, allowing them to review 
potential anomalies before execution.” 

Automated reporting enhances 
transparency and gives human 
operators insight into AI reliability, 
reinforcing trust. 

Average Score: 4.71 

“We introduce an AI behavior auditing 
mechanism where historical decisions are 
logged and compared against human 

This auditing feature enhances 
accountability and provides an 
additional layer of verification to ensure 
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assessments for alignment.” AI trustworthiness. 

 

“Trust becomes essential as operators weigh 
AI-driven rapid assessments against their 
own analyses.” 

Focuses on the trade-off between AI 
speed and human accuracy as a 
trust-building mechanism. 

 

“The trust-weighted heuristic prioritizes 
paths where AI predictions align with human 
assessments.” 

Directly incorporates trust calibration 
into AI decision-making. 

   
   
   
Team 2 Excerpt Annotation 

Best Practices 

“The UAV follows a path planned by the A* 
algorithm… If a mine is detected, the C2 will 
plan a new path, treating the node with a 
mine as an obstacle.” 

References an industry-standard 
path-planning algorithm used in 
robotics. 

Average Score: 5.42 

“Human review can be slow and comes at 
the cost of time. However, this ensures high 
accuracy in high-risk decision-making.” 

Balancing speed and accuracy aligns 
with best practices in AI-human 
teaming. 

 

“The decision system is built using a 
fail-safe redundancy model, ensuring that in 
the event of AI uncertainty, human operators 
assume control.” 

Redundancy is a critical best practice in 
safety-critical AI applications, ensuring 
continued functionality even when AI 
confidence is low. 

 

“All system decisions are validated against 
real-world military traversal data, ensuring 
alignment with historical mission outcomes.” 

Grounding AI decisions in empirical 
data ensures that recommendations 
align with real-world operational 
standards. 

   

Novel Approaches 

“Multi-arm bandit agents determine whether 
to use a human reviewer or AI for reviewing 
footage based on environmental factors.” 

The use of multi-arm bandits for 
dynamic task allocation is a novel 
approach to human-AI interaction. 

Average Score: 5.28 

“We introduce a human-AI negotiation 
model where AI recommendations are 
presented with alternative paths, allowing 
humans to override decisions dynamically.” 

The ability to negotiate AI decisions in 
real-time is a novel approach that 
blends automation with human control. 

 

“A reinforcement learning-based trust model 
continuously updates AI behavior based on 
human feedback, ensuring that AI learns 
from operator preferences.” 

This feedback-driven trust adaptation 
mechanism introduces an interactive, 
evolving model of AI-human trust 
calibration. 
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SE Activities 

“We simulate 10,000 environments with 
1,000 episodes, testing human-AI 
collaboration strategies under different 
reward functions.” 

Large-scale simulation with structured 
experimentation aligns with SE 
validation methodologies. 

Average Score: 5.14 

“The system is tested under multiple 
environmental conditions, including extreme 
weather simulations, to evaluate robustness.” 

Stress testing across variable conditions 
follows SE validation methodologies, 
ensuring AI reliability under diverse 
operational scenarios. 

 

“We employ a structured testing framework 
that includes unit testing, integration testing, 
and field testing before deployment.” 

This staged testing approach aligns with 
SE standards for verifying system 
reliability before real-world 
implementation. 

   
   

Trust Infrastructure 

“The trust-weighted heuristic prioritizes 
paths where AI predictions align with human 
assessments.” 

The explicit weighting of AI-human 
agreement fosters trust. 

Average Score: 4.85 

“If priority is only accuracy, the human 
reviewer is overwhelmingly preferred. When 
we prioritize both cost and accuracy, AI is 
preferred in some cases, but human 
validation remains critical.” 

Balances trust in AI based on 
situational trade-offs. 

 

“The AI system includes an interpretability 
dashboard that visually breaks down decision 
factors, allowing operators to verify logic 
before execution.” 

Providing operators with visual 
explanations of AI decision-making 
fosters transparency and trust. 

 

“To mitigate concerns about AI bias, the 
system uses an ensemble decision-making 
approach where multiple AI models 
independently assess the same data.” 

Using ensemble models reduces 
individual model biases and increases 
confidence in AI recommendations. 
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