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ABSTRACT 

In this Dissertation a nonlinear modeling and control method for magnetic bearings is proposed, considering 

the core material nonlinear high flux behavior for the first time. A combination of the generalized Lur’e method 

and linear matrix inequalities is used during the modeling and control design process. The nonlinear modeling 

makes it possible to operate an existing industrial AMB system with larger electric currents and thus achieve a 

larger maximum load capacity than existing AMB modeling and control practices allow. As a result, existing 

industrial AMB’s can be tuned to become more resilient in dealing with external disturbances. In addition, 

smaller and lighter AMBs can be designed by using the proposed method, which enables achievement of the 

same maximum force requirement of present-day larger AMB systems.  

The proposed control method is verified by experimental data drawn from a balance beam test rig designed for 

this project and very good correlation was obtained between the experimental data and theoretical predictions.  

In comparison to classical control design, a significantly improved transient response and a significantly higher 

dynamic load capacity was achieved through the use of the proposed modeling and control design. 

The control synthesis based on the nonlinear model with a generalized sector condition offered little or no 

performance improvement over the control synthesis based on the nonlinear model with a regular sector 

condition for the problem considered. Despite this fact, using the generalized sector condition was proven to be 

necessary to guarantee a less conservative design compared to classical control design.  

The uncertainty descriptions developed in this work were appropriate and because of the use of the 

generalized sector condition, guaranteed not to be overly conservative. 

While the nonlinear behavior of the magnetic bearings due to the material magnetization has been studied and 

modeled previously, the extra load capability within the nonlinear region has not been optimally used in the 

control strategies. A combined approach for modeling and control of magnetic bearing that counts on the extra 

load capability within the nonlinear magnetization region is proposed in this work. Various optimized controllers 

with different objectives are designed using the extra load capability for the first time on this dissertation. 
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Nomenclature 
 
A Cross sectional area of the coil  
A System matrix 

€ 

ABeam  Cross sectional area of the beam 

€ 

Ag  Pole face area  

€ 

Awire  Cross sectional area of each wire 
a Relative permeability constant 1 

€ 

B Saturation input matrix 
B Magnetic flux density 

€ 

B1 Magnetic flux in the magnetic actuator 

€ 

B2 Magnetic flux in the target lamination 

€ 

Bg  Magnetic flux in the airgap 

€ 

BKnee  Flux density at the end of the linear range 

€ 

BSat  Saturation flux density 

€ 

Bu Input matrix 

€ 

Bw  Disturbance matrix 
b Relative permeability constant 2 

€ 

C  Output matrix 

€ 

D  Balance beam’s friction coefficient 
d Wire diameter 

€ 

E  Disturbance Input Matrix 
F Electromagnet force 

€ 

FI  Nonlinear force assuming zero displacement 

€ 

FL  Total force linearized w.r.t displacement 

€ 

Fw  Amplitude of the external disturbance 

€ 

f1 First bending frequency 

€ 

f2 Second bending frequency 

€ 

f3 Third bending frequency 

€ 

fcut  Cutoff frequency 

€ 

fpole  The frequency of the unstable pole 

€ 

fw  Frequency of the external disturbance 

€ 

dF /dt  Slew rate 

€ 

dF /dtDisturbance  The required slew rate to balance the beam under an external disturbance 

€ 

dF /dtWeight  The required slew rate to balance the beam under it’s off-centered weight 

€ 

G  State constraint matrix 
G(s) Balance beam transfer function 

€ 

g Airgap 

€ 

g0  Nominal Airgap 
H Magnetic flux 

€ 

H1 Magnetic field in the magnetic actuator 

€ 

H2 Magnetic field in the target lamination 

€ 

Hg Magnetic field in the airgap 

€ 

Hs  Magnetic field in the magnetic material 
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h Thickness of the balance beam 

€ 

Ib  Bias current 

€ 

IBeam  Area moment of inertia of the beam 

€ 

Ic  Control Current 

€ 

Icmax  Maximum control current  

€ 

Iknee  Current that produce the knee flux density 

€ 

Imax  Current corresponding to the end of the nonlinear range 
I Electrical current 

€ 

dIc /dt  Current slew rate 

€ 

J  Balance beam’s mass moment of inertia 

€ 

Jcoil  Current density of the coil 

€ 

Jmax  Maximum current density  

€ 

k1i Slope of segment I of the first sector bound 

€ 

k2i  Slope of segment I of the second sector bound 

€ 

kd  Derivative gain 

€ 

kp  Proportional gain 

€ 

Ka  Actuator gain 

€ 

KI  Current coefficient of the force 

€ 

Ks Sensor gain 

€ 

KX  Displacement coefficient of the force 

€ 

L  Inductance of each electromagnet with two coils 

€ 

L1 Length of the magnetic circuit in the magnetic actuator  

€ 

L2 Length of the magnetic circuit in the target lamination  

€ 

La  Distance between the pivot and the electromagnet at each end 

€ 

LBeam  Total length of the beam 

€ 

Lg  Distance between the beam’s center of gravity and pivot 

€ 

Lmax  Maximum tolerable inductance of the amplifier 

€ 

Ls Distance the flux travels inside the magnetic material 

€ 

Lse  Distance between the sensor and the pivot 

€ 

Lw  Distance between the external force and the pivot 

€ 

Mp  Overshoot 
N Number of turns 
NI Magneto-motive force 

€ 

P  Variable matrix 

€ 

Q Variable matrix inverse 

€ 

q  Control input 
r Distance from the center of the flywheel 

€ 

T  Total balance beam torque 

€ 

Tp  Peak time 

€ 

Tr  Rise time 

€ 

Ts  Settling time 

€ 

u  Input vector 

€ 

V  Lyaponov function 

€ 

Vc  Amplifier voltage 

€ 

W  Weigh of the beam 
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€ 

w  Disturbance vector 

€ 

wd  Damped natural frequency 

€ 

wn  Natural frequency  
x Vertical displacement of the beam at the actuator location 

€ 

α  Disturbance signal energy index 

€ 

β  Transient response speed index 

€ 

ζ  Damping ratio 

€ 

η  Ellipsoid size index 

€ 

Θ Normalized angle from horizon 

€ 

θ  Angular displacement of the beam with respect to the horizon 

€ 

θmax  Maximum angular displacement of the beam with respect to the horizon 

€ 

λ  Normalized control current 

€ 

µ0  The permeability of free space 

€ 

µr  Relative permeability of the magnetic material.  

€ 

η  Packing density 

€ 

ρ  Density 

€ 

ρ  Ellipsoid radius index 

€ 

φ  Magnetic flux 

€ 

ψ  Nonlinear input function 

€ 

ψ1 First sector bound 

€ 

ψ2  Second sector bound 

€ 

ω  Rotational velocity 
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1 Introduction 

1.1 Motivation 

In industrial AMB practice, the capability of generating larger force is highly desirable. 

Magnetic bearings are usually operated in the linear region of the magnetic core’s 

magnetization curve. Figure 1 shows that even after the linear region, there is still a 

significant capacity for producing larger flux densities (B) and, therefore, larger forces. 

Current AMB practice using linear control does not take advantage of this. In addition, 

magnetic bearings are normally designed to be able to handle the worst-case scenario 

of external disturbances. Therefore a safety factor is applied in AMB designs. As a result 

AMB’s are generally significantly overdesigned, which increases their cost and limits 

their implementation. 

 

 

Figure 1-1 Magnetic Core Magnetization 

 

In this thesis, a nonlinear model is introduced that enables the control engineer to 

potentially utilize that extra magnetization capacity. 

When designing new AMB’s, the proposed nonlinear model can potentially reduce the 

size and cost of the bearings. The bearing can be designed to operate in the linear 
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region for standard operation and in the case of an extreme load condition; the bearing 

can be operated in the nonlinear magnetic region in order to balance the system. In the 

case of existing AMBs, the extra amplifier and AMB capacity is normally already 

available, and therefore with a change of control software only, the suggested modeling 

and control method can be used to improve the performance of the system. 

1.2 Energy Storage Incentive 

A long-term goal and future work for this project is to develop a new software 

modification, modeling, and magnetic bearing control algorithm that would enable 

increased energy density of energy storage flywheels. This software modification could 

be implemented on existing flywheel systems and make them safer and more efficient. 

Based on our theoretical work, the new software would potentially allow up to 2 times 

more energy to be stored in existing flywheel systems. As a result, energy storage costs 

would be significantly reduced, saving hundreds of millions of dollars in the United 

States alone.  

1.3 An Introduction to Flywheels 

A flywheel is a mechanical device that stores energy in the form of kinetic energy, such 

that it can be converted to another form of energy for future use. The first flywheels in 

use were pottery wheels. After the industrial revolution, flywheels found a wider variety 

of use in steam and internal combustion engines. In recent years, the use of flywheels 

as mechanical batteries for different applications has gained momentum. 

The main goal of a flywheel’s mechanical design is to maximize the kinetic energy stored 

in the system. The kinetic energy of a disk with moment of inertia J that is rotating with 

rotational velocity 

€ 

ω  can be calculated as: 
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€ 

K .E.= 1
2
Jω2                                                                                                                           1−1( ) 

 

Therefore to increase the energy stored either 

€ 

J , 

€ 

ω  or both should be increased. 

€ 

J  is 

related to the mass of the system and it’s distance from the axis of rotation (

€ 

J = r 2dm∫ ). 

Therefore flywheels usually have a disk-like shape with the most mass on the outmost 

part.  The other way to increase the stored energy is to increase the rotational speed. 

The challenge here is the bearings. In fluid film or ball bearings, increasing the speed 

yields very large friction losses. Therefore for high-speed flywheels the natural choice is 

the magnetic bearing. Magnetic bearings are friction-free and are therefore highly 

suitable for high-speed operation.  

1.4 Recent Developments in Flywheel Energy Storage systems 

In 2011, the first grid-size energy storage flywheel unit (20 MW capacity) was installed in 

the United States.  Since then, flywheels have become an increasingly popular way to 

store energy.  Even though predictions indicate that flywheels will account for just 2% of 

the energy storage market in the near future, the flywheel’s long life, low environmental 

impact, and novelty make it very attractive. In 2011, 15% of the smart grid grants in the 

US were invested in flywheels. In this thesis a method is proposed to safely increase the 

rotational speed and therefore the energy storage capacity of flywheel energy storage 

systems. 
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Figure 1-2 Department of Energy Smart Grid Demonstration Grants (Total $184.8m) 

!
Even though investors and grants have supported the development of flywheels, a lack 

of familiarity with the technology poses challenges to the growth of this market. A 

significant gap exists between the current safety and cost of energy storage flywheels 

and the requirements needed by the energy industry to make the technology more 

economical and competitive.  

In the past, the limiting factor in flywheel design has been the rotor material’s yielding 

stress. Even though more energy can be stored in the flywheel by spinning it faster, this 

increase in speed subjects the material to immense centrifugal forces. Recently, new 

rotor materials, such as carbon fiber, have been used to increase the material yield 

stress and therefore increase the maximum allowable rotational speed of the shaft.  

These design modifications increase the energy storage density of the unit and thereby 

reduce the overall cost of energy storage. However, during this same period of time, no 

major advancement has been made to improve the load density of magnetic bearings. 

Therefore, in many cases, the magnetic bearing has become the performance limiter in 

the overall flywheel energy storage design. The force exerted on the radial magnetic 
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bearings inside flywheel energy storage systems, is caused by small unbalanced 

weights: 

 

€ 

F = mrω2                                                                                                                             1−2( ) 

 

Since the unbalanced weight (m) and distance from the center of the flywheel (r) does 

not change over time, increasing the magnetic bearing’s load capacity enables the 

flywheel to tolerate higher rotational speeds. 

 

  

Figure 1-3 Energy Storage Flywheel (archthings 2010) 

 

Based on Equations (1-1) and (1-2), it is estimated that the flywheels could achieve up to 

two times higher load capacity by implementing magnetic bearing systems capable of 

operating into the nonlinear magnetization region. Today’s state-of-the-art magnetic 

bearing systems operate based on linear magnetization models and can therefore use 

only about half of the available load capacity. The main reasons for the shortcoming are: 

1-Current magnetic bearings operate in the low end of the linear magnetic region, the 

majority of the linear region is reserved for safety considerations and the nonlinear 

region is left completely unused. 
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2- Previously available modeling and control strategies (absolute stability theory) were 

not accurate enough to be of practical advantage. To compensate for the inaccuracy, the 

nonlinear control design was overly conservative and would not allow a significant 

increase in the load capacity.  

The modeling and control method proposed in this thesis will significantly increase the 

performance and capacity of flywheels by more fully utilizing the magnetic bearing’s load 

capability. The following plan was followed: 

1-A comprehensive analytical study of the nonlinear behavior, modeling, and control of 

the magnetic bearings, as an important part of the flywheel system was carried out. In 

this work, the extra magnetization capability lying in the nonlinear region of the 

magnetization curve was explored and utilized.  Due to some recent developments in 

nonlinear modeling, the practical use of this extra capacity has become feasible. This 

development enables standard operation in the mid-linear magnetization region while 

reserving the upper-linear and nonlinear magnetization regions as a factor of safety.  

2-The new nonlinear modeling and control strategy is then used to operate a test rig to 

validate the proposed method. For this phase, a balance beam (see Fig. 4) was built as 

a simple experimental test rig to capture the fundamental magnetic bearing dynamics.  

These dynamics are directly related to the requirements for their use on a flywheel 

energy storage system. The experiments act as an initial proof of concept of the theory, 

models and simulations developed in step 1.  

3-As future work, based on the experimental proof of concept results in step 2, the 

design can be refined and optimized for a flywheel storage application.  A full flywheel 

system simulation should be developed in order to predict performance capabilities, 

compare results to the present state-of-the-art, and pave the way toward applying these 

methods to a full-scale flywheel system in the future.  
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Figure 1-4 The Balance Beam Test Rig 

 

This breakthrough AMB control technique could be used to either increase the load 

capacity of the existing magnetic bearing by adding a module to the controller or to 

design smaller new magnetic bearings (about 20% smaller in outer diameter). The 

proposed design will make flywheel systems more efficient in the following ways: 

1-Increase the energy density of existing stationary flywheel systems 

2-Increase the safety of existing mobile and stationary flywheel systems 

3-Decrease the size of new flywheel designs 

4-Reduce the maintenance costs of new and currently operational flywheel systems 

1.5 Economic outcomes and external validation 

The annual global demand for grid-scale energy storage will reach an astounding 185.4 

gigawatt-hours (GWh) by 2017 and represent a $113.5 billion incremental revenue. In 

the grid-scale sector alone, an average year-on-year demand growth of 231% from 2012 

through 2015 and 43% per year for 2016 and 2017 is predicted [John Petersen, Lux 

Research, 2012]. The US will account for about 23% of this market.  Flywheels will retain 

at least 2% of the grid scale energy storage market in 2017 and will continue to grow. 
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This prediction makes the flywheel energy storage a 0.5 billion-dollar market in the U.S. 

alone. Other industries including trains, motor sports, etc. make the global flywheel 

energy storage larger than a $2 billon market by 2017.  Since the technology is 

relatively new, the main concerns about the flywheel system are its safety and high cost.  

Our proposed upgrade and design strategy could impact the market with regards to both 

of these areas in the following ways: 

 

Cost per kWh  

Based on current flywheel technology, which uses stronger and lighter materials, such 

as carbon fiber, magnetic bearings are rapidly becoming one of the key limiting factors in 

total energy storage capacity. Our modeling and control strategy allows 50% more 

magnetic flux which subsequently increases the magnetic bearing’s force capacity by a 

factor of two. As a result, the flywheel can support faster rotational speeds, which results 

in a higher energy storage capacity. This increase in energy storage capacity results in 

an increase in energy density, which in turn results in energy storage cost reduction, 

saving hundreds of millions of dollars in United States alone. 

 

Safety 

Failure in flywheels occur due to three primary factors: 

1-Manufacturing defects: The total failure rate of flywheels from manufacturing defects is 

about 1%. 

2-Wear and Tear: Given the average operation expectancy for the installed flywheel 

capacity in power grids, one would expect up to 0.6% of flywheels to fail each year, or up 

to 12% over the plant's expected 20 year lifetime [Tom Konard, Altenergystocks, 2011].  

3-Unexpected dynamic load: This failure can happen to flywheels in transportation 

systems.  
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Based on this information, an estimate of the likely failure rate of flywheels over a plant's 

20 year planned life is between 4% and 13% in stationary systems. A significant 

percentage of these failures can be prevented by a combination of predictive 

maintenance and our proposed modeling and control strategy. By enabling operation in 

the nonlinear magnetic region, the safety factor can potentially be increased up to 2 

times by the inclusion of software upgrades alone. This can save tens of millions of 

dollars in maintenance costs. 

  

Size and Weight 

The use of the proposed concept could result in a reduction of the magnetic bearing 

outer diameter by 20% and the weight by 35%.   In some applications, such as satellites 

and space stations, this upgrade would be critical (considering that it currently costs 

$10,000 to send one pound of material into space).  

1.6 Significance of the envisioned commercial product, market size and 

competitors 

The U.S. grid scale energy storage industry, with an estimated size of $25 billion, is the 

primary market for the proposed technology. For flywheel frequency regulation, the new 

technology can lead to savings of hundreds of millions of dollars in investments and 

operational costs. Data centers and metro systems are two other emerging markets for 

the flywheels systems and therefore the proposed technology. The currently available 

high-end flywheel systems are, and are therefore not exploiting the full potential of the 

magnetic material. Based on the results of this study, a 2x performance improvement of 

flywheel systems is envisioned via the implementation of the proposed modeling and 

control strategy.  
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1.7 Literature Review 

Extensive research has been done to take into account some AMB nonlinearities. These 

studies can be divided into categories based on the nonlinearity that is modeled, the 

modeling method and the control method used. 

1-Modeled Nonlinearity: The force created by an electromagnet is proportional to the 

square of the current intensity and inversely proportional to the air-gap between the rotor 

and the stator. The model of an AMB is thus nonlinear, and leads to many complexities 

in control synthesis. Much work has been devoted to the synthesis of such control laws. 

The majority of the research in nonlinear AMB’s has considered this nonlinearity. Yin [1], 

Inoue [2], Abdelfatah [3], Hong [4], Smith [5] are just a few out of the many references. 

The force, displacement, and current relationship have usually been studied with single-

DOF systems. Also quite a few studies have been performed on two or more DOF 

systems in order to model geometric coupling and gyroscopic effects. Walsh [6] 

considered the geometric coupling of a 2-DOF AMB and studied the changes in stiffness 

and the resulting bifurcation. Abdelfatah [3] studied the nonlinear oscillations caused by 

the gyroscopic effect. He [7] and Huang [8] modeled and controlled 5 and 6-DOF 

systems. Other researchers have considered geometric nonlinearity Hu [9], amplifier 

nonlinearities Inoue [2], hysteresis Wang [10] and control system delays Tsuyoshi [2,11], 

Zheng [12,13]. More recently, self-sensing magnetic bearings Noh [14] and contact 

between rotor and auxiliary bearing Foiles [15] have been studied. 

2-Modeling Method: AMB nonlinearities have been modeled with different methods 

ranging from ordinary differential equations and state dependant parameters Truong [16] 

to neural network methods Jeng [17] and fuzzy modeling methods Lee [18], Xu [19], Yu 

[20] and Hong[4]. Feedback linearization has also been used to introduce auxiliary 

nonlinear feedback, [5,21,22,23] such that the system can be treated as linear for control 
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design purposes. 

3-Control strategy: Extensive studies have been carried out on suitable strategies for  

the control of nonlinear AMB’s, ranging from state-space and transfer function 

approaches to 

€ 

H∞ control Matsumura [24], and sliding mode control Tian [25] and Cho 

[26]. Fuzzy control techniques have been applied [8,12,27], as well as optimal control 

approaches such as discrete dynamic programming Steffani [28]. To reduce power 

losses, Two Flatness-based designs; Constant Current Sum (CCS) by Löwis [29] and 

Current Almost Complementary (CAC) by Grochmal [30] were introduced for low-bias 

and zero-bias control of active magnetic bearings. 

1.8 Overview of the thesis 

In this work, the Lur’e problem is considered for AMB modeling. It consists of a nonlinear 

feedback analysis problem. It evaluates the stability of a linear dynamical system that 

has a nonlinear feedback component, which satisfies a sector condition. New conditions 

for global asymptotic stability and absolute stability in Lur’e systems have been 

investigated and derived by various research groups. However, while using Lur’e 

systems are common in the subject of chaotic synchronization, have been used to model 

the AMB core material magnetization for the first time in this thesis. 

A combination of absolute stability with the generalized sector condition of a Lur’e 

system and linear matrix inequalities was used during the modeling and control process. 

While the generalized sector condition allows for more flexible modeling of nonlinear 

feedback in Lur’e systems; formulating the conditions in terms of linear matrix 

inequalities (LMIs) makes the optimization-based evaluation easier. Magnetic bearing 

control with the new method demonstrates a larger domain of attraction than that 

achieved using present industrial practices as well as the Popov or circle criterion 

methods. The proposed nonlinear modeling makes it possible to operate the existing 
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industrial AMBs with larger electric currents and therefore achieve larger load capacity. 

The modeling results were verified by experiments on a single-degree-of-freedom test 

rig. The test rig used in this thesis consisted of a beam that pivots around a central 

fulcrum and electro-magnets on each side. The rigid beam rotates freely around the 

pivot and the electro-magnets produce the required force to achieve stabilization. The 

beam balancing test rig acts mimic to the behavior of a single axis active thrust magnetic 

bearing.  

This chapter has explained the motivation for the research and gives a brief introduction 

to flywheel energy storage systems. In Chapter 2, the test rig design is described in 

detail. The system dynamics and nonlinear modeling is explained in Chapter 3. This 

chapter also includes the constraints and a brief introduction to the generalized sector 

condition. The proposed control strategy and design process is presented in Chapter 4. 

Three optimization approaches for maximizing the domain of attraction, improving the 

transient response and operation with exogenous disturbances are addressed, both for 

traditional and generalized sector conditions. Experimental verification is presented in 

Chapter 5. And Chapter 6 summarizes the thesis and makes suggestions for future 

work.  
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2 Test Rig Design 

The main goal of the experimental test rig was to design a system that is simple enough 

for testing a new nonlinear material modeling and control synthesis methodology, yet 

also capable of capturing all of the important aspects of a magnetic bearing system.  

This chapter provides a detailed description of the mechanical, electromagnetic, and 

electronic parts of the test rig, as well as the specifications influencing the design. 

2.1 Problem Statement 

Since the modeling and control method in this thesis is nonlinear, a balance beam test 

rig with the capability of nonlinear operation was chosen. For the core material a 

magnetic material commonly used in industry (M-19 silicon iron) was chosen. The M-19 

silicon iron B-H curve exhibits typical nonlinear behavior for flux densities greater than 

1.2T. And for flux densities greater than 1.6T, the material is fully saturated. Therefore 

the test rig should be able to provide flux densities up to 1.6T. The corresponding 

operating currents can be estimated from the equation: 

 

€ 

B=
µ0NI

2g0 +
Ls
µr

                                                                                                                     2−1( )  

 

Here, B is the flux density, NI is the magneto-motive force, 

€ 

g0  is the nominal airgap, 

€ 

Ls is 

the distance the flux travels inside the magnetic material, 

€ 

µ0  is the permeability of free 

space, and 

€ 

µr  is the relative permeability of the magnetic material. A balance beam test 

rig was already available in the University of Virginia Rotor Machinery and Control 

(ROMAC) lab, however it had to be modified in order to meet the design requirements of 

this work. The coil currents required to operate the existing balance beam were 
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calculated to be between 4.13A and 8.49A. In order to reach these current levels, both 

the coils and the amplifiers must have the ability to generate the necessary electric 

current. 

The maximum current density 

€ 

Jmax( )  is a limit commonly employed to avoid problems 

associated with coil overheating such as wire insulation breakdown. 

 

€ 

Jmax =
NI( )max

A
                                                                                                                     2−2( ) 

 

Here, A is the total coil cross sectional area and NI is the magneto-motive force. The 

maximum current density is primarily dependent on the cooling method (forced vs. 

natural convection), wire material, and wire type (flat or traditional wire). For the case of 

the existing balance beam, a suitable value for 

€ 

Jmax  was determined to be 6 

€ 

A /mm2and 

the coil cross sectional area was 

€ 

A =13mm ×5mm = 65mm2 . Therefore, the maximum 

magneto-motive force was calculated to be 390 A.turns and the maximum allowable flux 

density was calculated to be 0.3T based on Equation 2-1. This value is significantly 

bellow the nonlinear region. In order to solve this problem, the following solutions were 

investigated: 

 

1-Increase the Magneto-Motive Force (MMF): 

There is an empty space between the coils, which can be used for additional coil 

windings. This space is approximately 5 millimeters meaning that, the coil cross 

sectional area could be increased by 50%  

 

€ 

Amax =13mm × 7.5mm = 97.5mm  
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Therefore, the resulting maximum magneto-motive force would be equal to, 

 

€ 

NI( )max = JmaxAmax = 6×97.5 = 585A.Turn  

 

And the corresponding maximum possible flux density would only be 0.45T, which is still 

not adequate. 

 

2- Reduce the Magnetic Material: 

As another solution, some magnetic laminations of the core material could be removed 

in order to make the system saturate with a smaller current. If the laminations were 

reduced evenly there would be no change in the flux density (See Eq. 2-1). The system 

could be made to saturate by reducing the laminations in some parts of the core and 

leaving the laminations as they are in other parts of the core. However this was not 

considered to be a good solution because the resulting test rig would not be a 

representative model of existing industrial AMB’s that have the same lamination cross 

sectional area throughout the entire bearing. In order to have an accurate AMB model, 

the cross sectional area should be consistent everywhere in the magnetic circuit, and in 

that case, Equation (2-1) shows that reducing the magnetic material will not affect the 

flux density generated by the coils. 

 

3-Reduce the airgap: 

A reduction in the airgap could potentially make the system saturate. In order to achieve 

saturation, the already small airgap (20 mils) would have to be reduced to 6 mils. This 

small airgap is very difficult to work with in practice, and it is also much smaller than the 
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airgaps used in practical applications. Therefore, it was decided not to pursue this 

method. 

 

4-Designe a new test rig with nonlinear operation capabilities: 

With the previous alternatives eliminated, this was the only option available. In order to 

meet all the design specifications, the test rig described in the next section was 

developed. 

2.2 System overview 

The experimental test rig is composed of a rigid beam free to rotate around a pivot, two 

electromagnets (actuators), two eddy current displacement sensors, several other 

structural parts to support the beam, and other electrical components including two 

amplifiers, power supplies, one data acquisition card capable of both analog to digital 

and digital to analog conversion, and a computer with a Linux operating system and real 

time application interface (RTAI) which enables real time control. Figure 2-1 shows a 

block diagram of the system.  

 

Figure 2-1 Balance Beam System Block Diagram 
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The displacement, measured as an electric voltage, is sampled by the data acquisition 

card’s A/D convertor and thereby transferred to the computer. The control algorithm in 

turn calculates the appropriate control effort, which is sent out of the D/A ports of the 

data acquisition card. This output voltage is sent to the pulse wide modulation (PWM) 

power amplifiers, which subsequently transform this command to an electrical current, 

which drives the electromagnets. Finally, the electromagnets exert a restoring force on 

the beam to keep it balanced. To monitor the electromagnets’ currents, the current 

monitors from the amplifiers are also wired to the A/D card. A detailed view of the 

mechanical system is provided in Figure 2-2 and detailed drawings of all of the parts can 

be found in Appendix B. The balance beam has three magnetic actuators. The inner two 

are for balancing the beam and the one on the right end is for producing an external 

disturbance. 

 

 

1 Base Plate 7 Core Lamination Clamp 
2 Pivot Plate 8 Target Lamination Clamp 
3 Pivot 9 Beam 
4 Sensor Stand/ backup Bearing 10 Target Lamination Holder 
5 Coil 11 Target lamination 
6 Electromagnet Stand 12 Core lamination 

 
Figure 2-2 Balance Beam Overview and Part Names 
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The test rig design process consisted of several steps. First the actuator related parts 

were designed. Then the actuator parameters were used to design the mechanical and 

electrical portions of the system. Finally, a system-level analysis was conducted to 

ensure that the overall system level performance requirements were met. 
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2.3 Electromagnets 

Airgap 

The nominal airgap is one of the most important design factors. Changing the airgap, 

changes the system’s stiffness, unstable pole, the maximum required electrical current, 

and the design bias current. In the design process, a value for the airgap was assumed 

within the range of common industrial practice. The electromagnets were designed 

based on the assumed value of the airgap and the constraints imposed on them. Then 

the balance beam was designed based on the airgap, the designed electromagnets and 

the constraints on the vibration response of the beam. If the design did not meet the 

frequency response constraints another value for the airgap was chosen and the entire 

process was repeated until a satisfactory design was reached. Table 2-3 shows the 

effect of the airgap on the bias and maximum current of the electromagnets and the 

frequency response of the beam. 

 

Coil Design 

Each electromagnet has two driving coils (one on each leg of the actuator). Each coil 

consists of 110 turns of 14 AWG copper magnet wire with an electrical resistance of 0.11

€ 

Ω at room temperature. A proper wire choice with an appropriate number of turns 

enables an adequate magnetic force without overheating. Therefore, a proper coil 

should satisfy the following four constraints: 

 

Flux Density (Constraint 1) 

The purpose of the new balance beam design is to make sure the system can generate 

flux densities up to 1.6T (

€ 

Bsat =1.6T ), which means: 
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€ 

NI >

Bsat 2g0 +
Ls

µr 1.6( )
" 

# 
$ $ 

% 

& 
' ' 

µ0
= NImin                                                                                            2− 3( )

 

 

Here the relative permeability is dependent on the flux density (see Chapter 3 for more 

details). 

€ 

µr 1.6( )  is the relative permeability at 1.6T. N is the number of coil turns In each 

electromagnet. Since there are two coils in each electromagnet, N is twice the turns in 

each coil. The minimum requirement for the magneto-motive force (NI) is listed in Table 

2-1.  

 

Table 2-1 BALANCE BEAM DESIGN REQUIREMENTS 

Parameter Value Unit Parameter Value Unit 

€ 

NImin  1210 Aturn 

€ 

dF /dtDisturbance  6,906 N/s 

€ 

Amin  201 

€ 

mm2 

€ 

Lmax  40 mH 

€ 

dF /dtWeight  110 N/s    
 

Current Density (constraint 2) 

As was mentioned before, the maximum allowable current density (

€ 

Jmax ) is a constraint 

that prevents problems associated with coil overheating including insulation breakdown. 

This limit varies from 4 to 10 

€ 

A /mm2  [35]. The lower end is acceptable for totally 

enclosed systems and the higher end is acceptable for systems with forced air-cooling. 

This limit also depends on the wire material and type (flat/traditional). The 

€ 

Jmax  for 

traditional copper wire under natural convective cooling was assumed to be 6 

€ 

A /mm2  

[36]. In order to satisfy the maximum current density limit the following condition must be 

satisfied: 
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€ 

0.5NI = JmaxAmin < JmaxA                                                                                      2− 4( ) 

 

Here, A is the cross sectional area of each coil. To obtain the number of turns in each 

coil, N is divided by 2. The minimum requirement for the coil cross sectional area is 

listed in Table 2-1. The designed coil has a cross sectional area of 

€ 

280  mm2  which 

satisfies this constraint. 

 

Ampacity (constraint 3) 

National Electrical Safety Codes define ampacity (Amper capacity) as the maximum 

amount of electrical current that a conductor can carry without immediate or progressive 

deterioration. The value for ampacity can be found in American Wire Gauge (AWG) 

tables. The current in the wire should not exceed the wire ampacity, 

 

€ 

Imax < Ampacity                                                                                                        2−5( ) 

 

The ampacity of various AWG wires is listed in Table 2-2.  There are three values of 

ampacity for each wire size, which express the current at which it is safe to operate the 

wire with different temperature limits. These temperatures in Celsius are listed in the 

Ampacity column header. 
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 Table 2-2 Suitable AWG wires (Est. stands for estimated) 

Diameter Ampacity Est. Turns Est. Max Inductance AWG (mm) 60/75/90 (Each Coil) Current (A)  (mH) 
1 7.348 110 / 130 / 150 6 200.40 0.019 
2 6.544 95 / 115 / 130 8 158.94 0.030 
3 5.827 85 / 100 / 110 10 126.02 0.048 
4 5.189 70 / 85 / 95 12 99.94 0.077 
5 4.621   15 79.25 0.122 
6 4.115 55 / 65 / 75 19 62.85 0.194 
7 3.665   24 49.85 0.308 
8 3.264 40 / 50 / 55 30 39.54 0.490 
9 2.906   38 31.34 0.779 

10 2.588 30 / 35 / 40 48 24.86 1.239 
11 2.305   61 19.72 1.969 
12 2.053 25 / 25 / 30 77 15.64 3.129 
13 1.828   97 12.40 4.978 
14 1.628 20 / 20 / 25 122 9.84 7.912 
15 1.45   154 7.80 12.573 
16 1.291 — / — / 18 194 6.19 20.009 
17 1.15   244 4.91 31.779 
18 1.024 — / — / 14 308 3.89 50.551 
19 0.912   389 3.09 80.343 
20 0.812   490 2.45 127.851 
21 0.723   619 1.94 203.411 
22 0.644   780 1.54 323.135 
23 0.573   985 1.22 515.595 

 

Slew Rate Needed for The Beam’s Vibration Without External Disturbance (Constraint 4) 

Using large a number of turns leads to smaller currents and in turn a smaller amplifier to 

maintain the same flux density. On the other hand, this amplifier should provide the 

system with an adequate slew rate, which can be calculated as: 

 

€ 

dF
dt

=
dF
dIc

dIc
dt

= KI
Vc
L

                                                                                                     2−6( ) 

 

Here, 

€ 

KI  is a force coefficient and can be found in Section 3-2, 

€ 

Vc  is the amplifier 

voltage. As can be seen, using higher amplifier voltages yields higher slew rates and 
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therefore a more responsive system. Based on the available amplifiers the voltage 

€ 

Vc( )

was chosen to be 80V. L is the inductance of the coil: 

 

€ 

L =
µ0AgN

2

2g0
                                                                                                                     2− 7( ) 

 

Plugging the inductance into Equation (2-6) yields: 

 

 

€ 

dIc
dt

=
Vc
L

=
2g0Vc

µ0AgN
2                                                                                                        2−8( )

dF
dt

= KI
dIc
dIt

=
µ0N

2AgIb
g0

2
2g0Vc

µ0AgN
2 =

2VcIb
g0

                                                                  2−9( )
 

 

Here, 

€ 

Ag  is the pole face area and 

€ 

Ib is the bias current. The pole face area design can 

be found under the magnetic core in this Section. The bias current is designed to provide 

a flux density in the mid range of the linear region of the magnetization curve. For the 

material used in the balance beam (M19 silicon steel), the end of the linear region of the 

B-H curve is at a flux density of 1.2T (

€ 

BKnee =1.2T ), therefore the bias current is the 

current that can generate a flux density of 0.6T. Based on the Eq. (2-9) it is interesting to 

note that even though the time rate of change of current is heavily dependent on the 

number of turns (N), the time rate of change of force (slew rate) is not dependant on N.  

Generally, the external forces dictate the required force slew rate, but the slew rate 

should also be adequate to balance the beam when the unstable pole is excited. In that 

case, the vibration frequency of the beam is 

€ 

fPole  and the torque acting on the beam is a 

result of the off-centered weight, and the actuator should cancel this torque: 
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€ 

˙ T Actuator = ˙ T Weight  ⇒  La
dF
dt Weight

= LgWfPole  ⇒   dF
dt Weight

= fpoleW
Lg

La

                2−10( )   

 

Here, 

€ 

dF /dtWeight  is the required slew rate to balance the beam under it’s off-centered 

weight (see Table 2-1), 

€ 

W  is the weight of the beam, 

€ 

La  is distance between the pivot 

and the electromagnet at each end, and 

€ 

Lg  is the distance between the beam’s center of 

gravity and pivot.  The unstable pole frequency can be approximated using the system’s 

dynamic equation: 

 

€ 

J ˙ ̇ θ = −D ˙ θ + LaF,    F = KI Ic +KX x,     x = Laθ                                                         2−11( )  

 

Here, 

€ 

J  is the beam’s mass moment of inertia, 

€ 

θ  is the angular displacement of the 

beam with respect to the horizon, and 

€ 

KI  and 

€ 

KX  are the force coefficients that can be 

found in Section 3-2. The transfer function can be calculated as: 

 

€ 

G s( ) =
θ s( )
Ic s( )

=
LaKI

Js2 +Ds− La
2KX

                                                                                  2−12( )  

 

For the test rig used in this work, the friction coefficient (D) is negligible. Therefore, the 

unstable pole can be calculated as follows: 

 

€ 

S = fpole =
La

2Kx

J
=

La
2µ0N

2AgIb
2

Jg0
3                                                                              2−13( )  
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Here, 

€ 

fpole  is the frequency of the unstable pole. The value for the 

€ 

fpole  can be found in 

Table 2-4. 

 

Slew Rate needed for the external dynamic force (constraint 5)  

The test rig will be tested with an external force of up to 600N (the maximum force that 

can be generated using the nonlinear approach), but with low frequencies  (frequencies 

smaller than 50Hz) to resemble scenarios like the effect of earthquake on an energy 

storage flywheel, a storm on a wind turbine, etc. The actuator should have a large 

enough slew rate to deal with the external dynamic force. Basically the time rate of 

change of the actuator torque should be at least equal to the time rate of change of the 

torque generated by the disturbance forces.  

 

€ 

˙ T Actuator = ˙ T Disturbance  ⇒  La
dF
dt Disturbance

= LwFw fw  ⇒   dF
dt Disturbance

= fwFw
Lw

La

      2−14( )
 

 

Here, 

€ 

dF /dtDisturbance  is the required slew rate to balance the beam under an external 

disturbance, while 

€ 

fw  and 

€ 

Fw  are the frequency and the amplitude of the external 

disturbance. 

€ 

Lw  is the distance between the external force and the pivot. The required 

dynamic slew rate value can be found in Table 2-1. 

 

Coil inductance (constraint 6) 

Since there is a limit on the amplifier’s switching frequency, the time rate of change of 

the control current is limited: 

 

€ 

dIc
dt

=
Vc
L

< Switching Frequency                                                                                2 -15( ) 
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Therefore, there is a limitation on the actuator’s inductance and subsequently the 

number of turns: 

 

€ 

L =
µ0Ag N( )2

2g0
< Lmax  ⇒  N <

2g0Lmax

µ0Ag
                                                                      2−16( ) 

 

Since there are two coils in each electromagnet the number of turns is multiplied by 2. In 

the amplifier’s data-sheet there is usually a guide for calibrating the amplifier for different 

inductances of the load. For the amplifier used in this work (Copley 315), the highest 

inductance listed for calibration (

€ 

Lmax ) is 40mH. Therefore the coil inductance should not 

exceed this value. The coil inductance for different AWG wires is listed in Table 2-2.  

 

Wire size and number of turns 

Constraints 1 and 2 determine the maximum required magneto-motive force and the coil 

cross sectional area. In order to apply the constraints, one needs to know the 

approximate number of turns and the operating current for each wire size. The number 

of coil turns that can fit into the coil area can be approximated as follow: 

 

€ 

NAwire =ηA                                                                                                                     2−17( ) 

 

Here, 

€ 

Awire  is the cross sectional area of each wire, A the coil cross sectional area that 

can be found using Constraint 2, and 

€ 

η  is the fraction of the coil area that is filled by the 

wires (packing density). The value of 

€ 

η  depends on the packing shape of the wire. This 
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value ranges from 

€ 

π / 4 ≈ 0.79  for square packing to 

€ 

3π /6 ≈ 0.91 for hexagonal packing 

[37]. Tight coils are hexagonally packed; therefore Equation (2-17) can be rewritten as: 

 

€ 

N ≈
2 3

3
A
d 2                                                                                                            2−18( )

 

 

Here, d is the wire diameter. This approximation is more accurate for a higher number of 

turns but a coil with very few turns needs a huge current supply and is not suitable 

anyway from an amplifier selection prospective. Now that the number of turns is 

estimated, Constraint 1 can be used to approximate the maximum current:  

 

€ 

Imax =

Bsat 2g0 +
Ls
µr

" 

# 
$ 

% 

& 
' 

Nµ0
                                                                                                   2−19( )  

 

In the test rig used for this work, there are two coils per actuator. In addition, when the 

beam is at its maximum angle the airgap is twice the nominal airgap. Therefore N and g 

should be multiplied by two and Equation (2-19) should be modified to the following:  

 

€ 

Imax =

Bsat 4g0 +
Ls
µr

" 

# 
$ 

% 

& 
' 

2Nµ0
                                                                                                     2−20( ) 

 

The value of 

€ 

µr  for different flux densities can be calculated as (see Section 3-3): 

 

€ 

µr = aB+ b                                                                                                                       2−21( )  
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Here a and b are constants obtained from the silicon iron B-H curve with (a=-9434.9, 

b=15650). For each wire size, the ampacity, slew rate, and inductance are listed in Table 

2-2. Using this information, constraints 3-6 can be applied. Table 2-2 indicates that wires 

with large diameter (AWG8 or less) are not appropriate due to the ampacity constraint 

(Constraint 3), and also because the current that is needed is very large and amplifiers 

with such large currents are not available or extremely expensive. The available 

amplifier has a maximum continuous operating current of 15A and peak current of 30A, 

therefore AWG9-12 wires are not appropriate either. Wires with very small diameters 

(AWG18 or higher) do not satisfy the actuator inductance constraint (constraint 6). 

Between the remaining choices AWG14 has a small inductance and its maximum 

operating current is within the amplifier’s operating range and was therefore chosen. 

 

Magnetic Core  

The iron core and target pieces were built from M-19 Silicon steel laminations. Silicon 

steel is probably the most commonly used magnetic material in motion control products. 

Even though it’s a bit more expensive compared to other common materials, the 

performance and low-loss characteristics justify this expense. This material has different 

grades, which is related to the core losses. M19 offers nearly the lowest core loss in this 

class of material, with only a small cost increase. The pole faces of the core and target 

pieces are polished for a more accurate airgap. The sharp corners on the lamination 

stack are lightly rounded in order to prevent damage to the coils. The cross sectional 

area of the core has a direct effect on the force generated by the electromagnets. Large 

cross sectional areas create large forces which means other parts of the test rig should 

be designed accordingly to deal with the large force. Therefore a large cross sectional 

area is not desirable. On the other hand the cross sectional area should be large enough 

for the coil to be wrapped around it. The cross sectional area was designed to be 
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€ 

A = 0.5in ×0.5in for the test rig. The magnetic material is laminated to minimize the 

generation of eddy currents. Each lamination has a thickness of 0.018 inch (0.45 mm). 

Under normal operating conditions the electromagnets should operate without 

saturation; however, for larger currents the entire magnetic circuit should saturate 

uniformly. If only a part of the material saturates, the entire electromagnet will not 

operate properly. Therefore the magnetic material that is not saturated is not benefiting 

the system. Target lamination stacks (bar-shaped lamination stacks) have the same 

cross sectional area as that of the core lamination stacks (U-shaped lamination stacks) 

to maximize the use of the magnetic material and have nearly all of it saturate at the 

same coil current level.  

2.4 Mechanical components 

Beam Bending Modes 

High frequency external disturbances can potentially excite the beam’s first few bending 

modes; therefore the beam’s bending mode frequencies should be calculated to insure 

rigid body motion. The beam is centered on a pivot with forces exerted by two 

electromagnets at both ends. Due to symmetry, the angle of rotation and the 

displacement in the center of the beam is zero. As a result, the beam’s bending modes 

are the same as that of a cantilever half beam (see Fig. 2-3). 

 

 

Figure 2-3 The Balance Beam Bending Mode Model 
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The first two bending mode frequencies are listed below [38] (Thomson & Dahleh, 1997): 

 

€ 

f1 =
1

2π
3.5156
Lbeam

2
EIbeam
ρAbeam

                                                                                                    2−22( )

f2 = 6.268 f1                                                                                                                         2−23( )
 

 

Here, 

€ 

Ε is Young modulus of elasticity and 

€ 

ρ  is the density of aluminum. 

€ 

Ibeam  is the 

area moment of inertia of the beam, and 

€ 

Abeam  is the cross sectional area of the beam. 

Table 2-4 shows the calculated values for these parameters. It’s of importance to note 

that the half-beam models just the symmetric mode shapes. The beam’s first bending 

mode is symmetric; therefore 

€ 

f1 is the first bending frequency. The beam’s second 

mode shape is not symmetric; therefore 

€ 

f2 is the frequency of the third mode shape of 

the beam, which is symmetric. The second bending frequency is between 

€ 

f1 and 

€ 

f2 . The 

experiment in this work will be conducted assuming a rigid beam. Therefore even the 

first bending mode should be far away from the unstable pole frequency and accurate 

calculation of the second and third bending modes are not of concern. As a rule of 

thumb 

€ 

f1  should be at least 5 time larger than 

€ 

fPole . The following table shows how a 

change in the airgap and beam thickness affects the unstable pole frequency and the 

bending modes. 
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 Table 2-3 BALANCE BEAM DESIGN PARAMETERS 

€ 

g0 mils( ) 

€ 

h in( )  

€ 

J gm 2( ) 

€ 

Ib A( ) 

€ 

Imax A( )  

€ 

fPole Hz( )  

€ 

f1 Hz( )  

15 0.75 94.495 1.74 6.26 163 70 
30 0.75 94.495 3.40 10.67 58 70 
45 0.75 94.495 5.05 15.08 31 70 
15 1.75 153.335 1.74 6.26 128 162 
30 1.75 153.335 3.40 10.67 45 162 
45 1.75 153.335 5.05 15.08 25 162 
15 2.75 221.678 1.74 6.26 106 255 
30 2.75 221.678 3.40 10.67 38 255 
45 2.75 221.678 5.05 15.08 20 255 

 

Beam Design  

The beam was designed to be long enough to house the target pieces and thick enough 

to have acceptable bending modes. The beam has an overall length of 18.625 inches 

(473 mm), a depth of 1.75 inches (44 mm), and a width of 3.25 inches (83 mm). It is 

machined from aluminum with a relative permeability of 9.  Each side of the beam has 

19 evenly space threaded holes to allow for the addition of balancing weights or an 

external source of excitation (for instance an electric motor with a half-disk mounted on 

it’s rotor can be used for sinusoidal external excitation). The mass of the beam including 

the target laminations, the target lamination holders and the end caps is 13.519 lb (6.132 

Kg).  

It is very important for the beam to have its center of gravity at the pivot point (see Fig. 2-

2). To verify this, a single mass of 20g was moved along the beam until it was perfectly 

balanced. The distance between the balancing mass and the pivot was then measured 

and used to measure the center of gravity. The center of gravity was calculated to be 

just 1.03 mm from the pivot point, which is good enough for the testing purposes of this 

work. If required for final balancing, small balancing weights can be added to the beam 

to fine tune the center of gravity. 
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Table 2-4 BALANCE BEAM DESIGN PARAMETERS 

Parameter Value Unit Parameter Value Unit 

€ 

Ib  3.3967 A 

€ 

dIc /dt 6214 A/s 

€ 

Vc  80 V 

€ 

dF /dt  713,281 N/s 

€ 

EAluminum  69 GPa 

€ 

fPole  45 Hz 

€ 

ρAluminum  2700 

€ 

kg /m 3  

€ 

f1  162 Hz 

€ 

KI  115 N/A 

€ 

f2  1017 Hz 

€ 

KX  511704 N/m    
 

Pivot design 

To allow rotational freedom a pivot was needed. Here a knife-edge and a thin notch is 

used as the pivot assembly. This method is chosen because of its simplicity and low 

friction. The pivot assembly is composed of the pivot that is screwed to the base plate 

and the balance plate, which is screwed to the beam. The balance plate has a notch 

depth of 0.094 inch (2.39 mm) and notch width of 0.188 inch (4.77 mm). The pivot length 

was chosen to provide the system with the designed nominal airgap of 0.03 inch (0.762 

mm). 

 

Base Plate 

The base plate is a 1.5-inch (38.1 mm) thick plate made of aluminum and weighs 13.312 

lb (6.038 kg) including the electromagnets, sensor stands, and the pivot. It is designed to 

be large enough to hold everything together and thick enough to provide adequate 

rigidity.  

 

Electromagnet and target piece stands 

Each electromagnet is held firmly in its place by an electromagnet stand and a clamp 

that bolts into it. The target laminations are fixed at each end of the electromagnet 

holders by clamps. The target lamination holders are in turn bolted to the beam. The test 
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rig has three electromagnets (two for controls and one for disturbance), therefore there 

are three target laminations. In order to keep the symmetry, a dummy weight is clamped 

to the left side of the left target lamination holder (see Figure 2-2). The dummy weight 

was chosen such that it eliminates the beam’s small unbalance due to machining 

tolerances. 

 

Sensor stands/ Auxiliary bearings 

Eddy current sensors are used to sense the position of the balance beam. Each eddy 

current sensor is housed inside a sensor stand that is designed to protect the sensor 

from impact with the beam, while holding it in place. Each stand has a notched area in 

the middle. The sensors are mounted in this area to ensure the sensor is never closer 

than 0.06 inch (0.13 mm) to the beam. These stands also act as auxiliary stops to 

prevent the beam from contacting and damaging the pole faces of the electromagnets. 

 

Mechanical assembly 

The beam’s length has a direct relationship to its angle of rotation (with a fixed airgap, a 

longer beam means a smaller angle of rotation) and plays an important role in system 

modeling and control. Calibration of precise airgaps between each electromagnet and 

the target lamination is extremely important. The sensor stands, the electromagnet 

holders, and the pivot can be shimmed to adjust the airgap. Shims are positioned under 

the pivot plate to adjust the overall airgap. The airgap for each individual electromagnet 

can be adjusted by placing a shim under the holder. In order to restrict the angular 

motion of the beam, shims can be placed under the sensor stands. The nominal airgap 

is designed to be 30 mils (0.762 mm). There is a 3 mils offset provided by the sensor 

stands to prevent the beam from contacting the electromagnets. Therefore the total 

airgap range is 3-27 mils for each electromagnet. The length from the center of the 
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electromagnet to the pivot is 6.125 inch (155 mm). The disturbance electromagnets are 

placed at 9.0625 inch (230 mm) from the center pivot with an airgap of 30 mils. This 

distance gives the disturbance electromagnet a long enough lever arm to produce the 

same torque as the control electromagnets while operating in the linear region. In other 

words the torque produced by the disturbance electromagnet at 1.2T (end of the linear 

region) equals the torque produced by the control electromagnet at 1.6T (end of the 

nonlinear region). 

2.5 Electrical and electronic components 

Power amplifier 

Table 2-2 indicates that the amplifiers should provide at least 80 volts and 9.61 amperes. 

Based on the Apex amplifier table (see appendix A) a SA12 PWM amplifier was initially 

chosen. SA12 has a very high switching frequency (200 kHz) and can provide a wide 

range of voltages (16-200V) and currents (0-15A continuous). However, two Copley 

Corporation Model 315 amplifiers were available from another test rig. These amplifiers 

can provide voltages in the range of 24-160V and a continuous current of 15A. They are 

PWM amplifiers with a switching frequency of 24 kHz. This type of amplifier is capable of 

operating in both current and voltage mode. Typically in magnetic bearing systems 

current mode is used. This mode maintains the current at a desired level by pulse width 

modulation. In voltage mode operation, the amplifier maintains a constant voltage, which 

can be useful for some other control strategies. Current mode operation was chosen for 

this work. 

 

Eddy current displacement sensors 

The airgap and consequently the beam angle are measured by multiNCDT 100 model 

DT110(40)-S-U1(29)-A,C4,5 Sensors produced by Micro-Epsilon. The sensor has a 
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nominal range of 40 mils (1 mm), displacement sensitivity of 265 mV/mil, and bandwidth 

of 10 kHz. The output of the sensor is fed to the system’s module that contains the 

circuitry for linearizing the output.  The beam angle can be calculated from the sensor 

measurements, which in turn is used by the control algorithm.  

 

Data Acquisition Card 

For analog to digital (A/D) conversion, a PCI-DAS6034 card, produced by Measurement 

Computing is used. The board provides up to 16 analog inputs. Each input can be 

individually configured as single ended or differential. The board’s input ranges are 

bipolar only and the software can choose any of the four bipolar ranges of 

€ 

±10V, 

€ 

±5V, 

€ 

±

500mV, or 

€ 

±50mV.  The card has a 16-bit resolution. 

For digital to analog (D/A) conversion, a PCI-DDA08/12 card, produced by Measurement 

Computing is used. The board provides up to 8 analog outputs. The D/A converters can 

be independently configured for either bipolar or unipolar. Bipolar ranges are 

€ 

±10V, 

€ 

±

5V, and 

€ 

±2.5V.  Unipolar ranges are 0 to 10V, 0 to 5V, and 0 to 2.5V. The card has a 

12-bit resolution and a minimum of 5,000,000 V/s slew rate on the analog output, which 

is more than adequate. 

 

RTAI and Linux 

Control algorithms are executed in the real time application interface (RTAI) 

environment. Matlab’s xPCTarget was also considered as an option but RTAI proved to 

be easier to use and since it is an open source product operating in Linux, it is also free.  

Control algorithms are developed in Scicos, which is an environment similar to Matlab’s 

Simulink. 

 



! 48!

2.6 System specifications summary 

This chapter has described the reason for developing the test rig as well as the design 

details, calibration, and specifications of different parts of the experimental test rig. Table 

2-5 presents various system specifications and design dimensions. 

 

Table 2-5 BALANCE BEAM DIMENSIONS 

Symbol Specification Value Unit 

€ 

J  Moment of inertia of the beam 153.33 

€ 

gm 2  

€ 

D  Friction coefficient in the pivot 0 

€ 

Ns /m  

€ 

Lg  Distance between the pivot and center of gravity 1.04 

€ 

mm  

€ 

La  Distance between the pivot and the control 
electromagnets 

0.1556 

€ 

m  

€ 

Lse  Distance between the pivot and the sensors 0.0889 

€ 

m  

€ 

Lw  Distance between the pivot and the disturbance 
electromagnets 

0.2302 

€ 

m  

€ 

Lbeam  Total length of the beam 0.4731 

€ 

m  

€ 

g0  Airgap between the core and target lamination 0.762 

€ 

mm  

€ 

Ag  Pole face area of the core lamination 161.3 

€ 

mm2 

€ 

Ls Length in which the flux travels inside the silicon iron 0.178 

€ 

m  

€ 

W  Weight of the beam including the target laminations 60.134 

€ 

N  

€ 

θmax  Maximum angle of rotation of the beam  0.0048 

€ 

Rad  

€ 

N  Number of turns in each electromagnet with two coils 220 

€ 

turns  

€ 

Ib Bias current 3.40  

€ 

IKnee  The current that produces the knee flux density 6.78  

€ 

Imax  Maximum operating current of the electromagnets 10.67  

€ 

Icmax  Maximum control current  7.27  

€ 

L Inductance of each electromagnet with two coils 6.4 mH 
 

€ 

A

€ 

A

€ 

A

€ 

A
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3 Nonlinear Model 

In this chapter a nonlinear model for magnetic bearings is proposed to reach the 

objective of operation in a high flux mode. The nonlinear model includes the nonlinear 

material magnetization behavior for the silicon iron. In the first section, a brief 

background for magnetic circuit modeling is included in which the material magnetization 

nonlinearity is taken into account. In Section 2 the conventional linear force model is 

summarized. A nonlinear force model is proposed in Section 3. In Section 4, the test rig 

used for all experimental work is discussed. Section 5 contains the linear test rig model 

that is used as a benchmark. In Section 6, the nonlinear model for the test rig is 

developed and finally, in Section 7 the physical constraints on the test rig are explained.  

3.1 Nonlinear Magnetic Circuit Analysis 

In this section a magnetic circuit analysis is conducted for a thrust magnetic bearing. 

A magnetic circuit is made up of a closed loop containing the magnetic flux. The flux is 

generated by electromagnets (coils) and sometimes by a combination of permanent and 

electromagnets. The coils are wrapped around the magnetic cores consisting 

of ferromagnetic materials such as silicon iron. There may also be air gaps or other 

materials in the loop as well (see Fig. 3-1). 
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Figure 3-1 Magnetic Circuit of a Thrust AMB 

 

In order to analyze magnetic circuits, two basic laws (Ampere’s integral law and flux 

continuity law) are used. Ampere's integral law applies to a contour such as 

€ 

C1  , which is 

shown in Figure 3-1. It states that, the integral of magnetic field over a contour is equal 

to the net magneto-motive force (MMF). 

 

€ 

H .ds = Jcoil .dA
S1

∫C1
∫                                                                                                                3−1( ) 

 

Here, H is the magnetic field, 

€ 

Jcoil  is the current density and 

€ 

S1 is the area of the contour 

€ 

C1. Ampere's integral law plays a role similar to Kirchhoff's voltage law in electric 

circuits.  The flux continuity law is similar to Kirchhoff's current law. The continuity law 

states that through a closed surface or a node, the net magnetic flux (

€ 

φ ) is zero. 

 

€ 

φ∑ = 0                                                                                                                                 3−2( )  

 

A thrust magnetic bearing consists of a magnetic actuator that is mounted on the stator 

and a disk mounted on the rotor that the magnetic actuator acts upon (see Fig 3-1). For 
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magnetic circuit analysis, the following notations are introduced. 

€ 

H1 is the magnetic field 

in the magnetic actuator (upper part of the magnetic circuit), 

€ 

L1 is the length of the 

magnetic circuit in the magnetic actuator and 

€ 

A1 is the cross-sectional area (pole face 

area) of the magnetic actuator. Similarly 

€ 

H2 ,

€ 

L2, and 

€ 

A2 are the corresponding 

parameters in the disk (lower part of the magnetic circuit) and 

€ 

Hg ,

€ 

Lg , and 

€ 

Ag  are the 

corresponding parameters in the airgap. Applying Ampere’s law yields: 

 

€ 

H1L1 +H2L2 + 2Hgg = NI                                                                                                       3− 3( )  

 

Here, N and I are the number of turns and the electric current in the coil. The magnetic 

flux density (

€ 

Bg ) and the magnetic field (

€ 

Hg ) in the airgap are linearly related as follows, 

 

€ 

Bg = µ0Hg                                                                                                                          3− 4( )  

 

Here, 

€ 

µ0  is the permeability of free space. Unlike in the airgap, the flux density (B) and 

magnetic field (H) in the magnetic material are related nonlinearly. Magnetization tables 

can be used to find one from the other.  

 

€ 

B1 = f H1( ),     B2 = f H2( )                                                                                        3−5( ) 

 

Here, 

€ 

B1 and 

€ 

B2 are the magnetic flux density in the magnetic actuator and the disk 

respectively. The flux continuity law (Eq. 3-2) implies that the net flux through each 

section of the circuit is the same, which results in,  
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€ 

φ = B1A1 = B2A2 = BgAg                                                                                                3−6( ) 

 

In order to use the magnetic material effectively, magnetic bearings are designed in a 

way such that in the case of high electric currents, all the lamination material saturates at 

approximately the same time; therefore, the flux density is approximately the same 

everywhere. To achieve the same flux density, an equal cross sectional area is required 

around the entire circuit (see Eq. (3-7)). 

 

 

€ 

AMB Design      ⇒ A1 = A2 = Ag = Ag
Continuity Law ⇒φ = B1A1 = B2A2 = BgAg

$ 
% 
& 

' & 
 B1 = B2 = Bg = Bg                                      3− 7( )  

 

In addition, since the flux density is the same, the magnetic field should be the same 

everywhere in the magnetic material (see Eq. (3-8)). 

 

€ 

 
B1 = B2

Same Magnetization Properties
" 
# 
$ 

 H1 = H2 = Hs                                                               3−8( )  

 

Here, (

€ 

Hs) is the magnetic field in the magnetic material. Substituting Eqs. 3-4,3-5,3-7 

and, 3-8 into the magnetic circuit laws (Eqs. 3-3 and 3-6) results in: 

 

€ 

φ
Ag

= B1 = Bg ⇒ f H1( ) = µ0Hg

Hs L1 + L2( )+ 2Hgg = NI

$ 

% 
& 

' 
& 

 Hs L1 + L2( )+ 2
f Hs( )
µ0

g = NI                                          3−9( )  
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The goal here is to find the magnetic circuit flux density as a function of the current. The 

magnetic flux density and the magnetic field in the magnetic material are assumed to be 

related via a variable relative permeability (

€ 

µr ). 

 

€ 

f Hs( ) = µ0µr B( )Hs                                                                                                           3−10( ) 

 

By using Eq. (3-10), Eq. (3-9) simplifies to,  

 

 

€ 

HsLs + 2µrHsg = NI  ⇒  Hs =
NI

Ls + 2µrg
                                                                      3−11( ) 

 

€ 

B= µ0µrHs =
NI

Ls
µ0µr B( )

+
2g
µ0

                                                                                            3−12( ) 

 

Where, 

€ 

Ls = L1 + L2 . The flux density is found as a function of the electric current, but  

still needs to be determined from the nonlinear magnetization curve. An approximation 

for  is provided in the next section. The flux is calculated as: 

 

€ 

φ = BAg =
NI

Ls
µ0µr B( )Ag

+
2g

µ0Ag

                                                                                            3−13( )  

 

The first term in the denominator is the reluctance of the silicon iron and the second term 

is the reluctance of the airgap.  
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3.2 Linear Force Model 

Traditionally the magnetic bearing force is calculated by the following equations: 

 

€ 

F =
Ag
µ0

B2                                                                                                                         3−14( )  

 

€ 

B=
µ0NI
2g0

" 

# 
$ 

% 

& 
'                                                                                                                         3−15( )

 

 

Equations (3-14) and (3-15) assume that the reluctance of the magnetic material is 

negligible as compared to the reluctance of the airgap. Substituting Eq. (3-15) into Eq. 

(3-14) yields the electromagnet force equation: 

 

€ 

F =
µ0AgN

2I 2

4g0
2                                                                                                                  3−16( )

 

 

Where the magnetic material is neglected. Electromagnetic force is always attractive; 

therefore, in order to have a stable system, the electromagnets in magnetic bearings 

operate in pairs (Fig. 3-2). 

 

 

Figure 3-2 A Pair of Electromagnets 
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The electromagnetic force is highly nonlinear with respect to the input current and the 

airgap. In order to linearize the force equation, the current at each electromagnet is 

typically separated into bias and control components. The left electromagnet current is 

€ 

I1 = Ib + Ic  and the right electromagnet’s current is:

€ 

I2 = Ib − Ic  Therefore, the force 

equation for each actuator can be written as: 

 

 

€ 

F1 =
Aµ0N

2 Ib + Ic( )2

4 g0 + x( )2                                                                                                           3−17( )

F2 =
Aµ0N

2 Ib − Ic( )2

4 g0 − x( )2                                                                                                          3−18( )

 

 

Here, 

€ 

F1 and 

€ 

F2 are the forces of the left and right electromagnets respectively, 

€ 

Ib  is the 

biased current, 

€ 

Ic  is the control current and x is the rotor’s displacement. The net force 

on the rotor is, 

 

€ 

F = F1 −F2                                                                                                                            3−19( )  

 

Substituting Eqs. (3-17) and (3-18) into Eq. (3-19), results in the following force equation,  

 

€ 

F =
µ0N

2Ag
4

Ib + Ic( )2

g0 − x( )2 −
Ib − Ic( )2

g0 + x( )2

# 

$ 

% 
% 

& 

' 

( 
( 
                                                                                   3−20( ) 

 

Using Taylor series expansion, Eqn. (3-20) can be simplified to: 
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€ 

F =
µ0N

2AgIb
2

g0
3 x +

µ0N
2AgIb
g0

2 Ic +H .O.T

F ≈ KX x +KI Ic         KX =
µ0N

2AgIb
2

g0
3       KI =

µ0N
2AgIb
g0

2                                                   3−21( )
 

Eq. (3-21) is linear with respect to both the displacement and the control current. 

3.3 Proposed Nonlinear Force Model 

In the standard linear formulation, it is assumed that the magnetic reluctance of silicon 

iron is negligible compared to the magnetic reluctance of the airgap (these two 

reluctances can be seen in Eq. (3-13)). However, for a large magnetic flux, the magnetic 

reluctance of the silicon iron is significant. This makes the system highly nonlinear. By 

modeling this nonlinearity, the nonlinear flux density was obtained in Eq. (3-12).  

In conventional AMB models it is assumed that the relative permeability is a constant till 

the magnetic flux reaches a knee value (

€ 

Bknee) and then the material saturates. In order 

to get to higher load capacity, a more precise flux model is needed. In this Thesis, silicon 

iron behavior is studied more accurately and therefore the magnetization curve is divided 

into 3 different regions: 

1. Linear region: The reluctance of the magnetic material is not significant (less than 

5% of the airgap reluctance) and Eq. (3-15) can be used for the flux density. 

2. Nonlinear region: The magnetic reluctance of the magnetic material should be 

taken into account Eq. (3-12) and increasing the current yields a significant 

increase in the electromagnet’s force. 

3. Nearly saturated region: The magnetic reluctance of the magnetic material is 

very significant and even a significant increase in the electric current won’t 

increase the force appreciably.  
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In order to determine these regions, the test rig’s electric current, force, and the 

reluctance ratio should be found for a fixed flux density. 

The magnetization curve and relative permeability of M19 silicon iron are shown in the 

following Figures. 

 

 

Figure 3-3 M19 Magnetization Curve 

 

As can be seen, the material is very responsive to the change in magnetic field for 

smaller values of H but at higher values of H (above the knee point in the curve), it 

becomes less responsive and finally saturates. 
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Figure 3-4 M19 Relative Permeability 

 

The relative permeability is very large for smaller values of B and H and usually it is 

considered as a constant. 

 

 

Figure 3-5 M19 Relative Permeability 
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When 

€ 

µr  is large the reluctance of the silicon iron (

€ 

Ls
µ0µrAg

) is negligible compared to 

the reluctance of the airgap (

€ 

2g
µ0Ag

) and Eq. (3-12) simplifies to Eq. (3-15). For large 

values of magnetic flux density, the relative permeability decreases significantly, 

therefore the reluctance of the silicon iron gains more significance compared to the 

airgap and should not be neglected. In order to provide an example for the importance of 

the silicon iron’s reluctance, the specifications of the balance beam test rig (Table 2-3) 

are used. The test rig is explained in more detail in Section 3-4 and Chapter 2. 

Figure (3-6) shows the ratio of the reluctance of the silicon iron to the reluctance of the 

airgap in the balance beam test rig.  

 

Figure 3-6 Magnetic Circuit Reluctance Comparison 

 

 As was mentioned before, Ampere’s law (Eq. (3-3)) can be simplified to,  

 

€ 

HsLs + 2Hgg0 = NI                                                                                                          3−22( ) 
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When the flux density (B) is known, 

€ 

Hs is obtained from the silicon iron magnetization 

table and 

€ 

Hg  is obtained as 

€ 

Hg = B /µ0, Therefore the electric current is calculated as, 

 

€ 

I =
Hs(table)Ls + 2g0B /µ0

N
                                                                                             3−23( ) 

 

The magnetic force is calculated using Eq. (3-14). In Table 3-1 the electric current, the 

nonlinear magnetic force, the estimated linear force, and the reluctance ratio, 

corresponding to a known flux density are tabulated.  
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Table 3-1 Test rig’s force, electric current and (M19-si-Fe) reluctance ratio 

B (T) Hs (A/M) I (A) Force (N) 
Force (linear 
prediction) 

(N) 

Force 
Error (%) 

Reluctance 
Ratio 

0.1 29 0.3 3.5 4 14 0.07 
0.2 36 0.5 13 14 9 0.05 
0.3 43 0.8 29 31 7 0.04 
0.4 48 0.9 41 44 7 0.03 
0.5 55 1.2 70 74 6 0.03 
0.6 63 1.5 101 107 6 0.03 
0.7 69 1.6 119 126 6 0.03 
0.8 81 1.9 161 171 6 0.03 
0.9 96 2.1 208 220 6 0.03 
1.0 118 2.4 262 280 7 0.03 
1.1 147 2.6 314 338 8 0.04 
1.2 196 2.9 373 408 9 0.05 
1.3 293 3.2 437 494 13 0.06 
1.4 534 3.6 509 623 22 0.11 
1.5 1216 4.3 587 883 50 0.23 
1.6 2602 5.4 653 1,391 113 0.46 
1.7 5516 7.5 737 2,707 267 0.92 
1.8 10595 11.0 826 5,857 609 1.7 
1.9 17480 15.7 913 11,890 1,203 2.6 
2.0 36064 28.0 1033 37,940 3,574 5.1 
2.1 79973 56.8 1132 155,490 13,635 10.8 

 

As can be seen in Table 3-1, the reluctance ratio is significant for flux densities larger 

than 1.2T (knee point) and we need to use the nonlinear force model. At a flux density of 

slightly larger than 1.7T the silicon iron reluctance becomes larger than the airgap 

reluctance and the silicon iron magnetization behavior plays a larger role in the flux 

density of the magnetic circuit than the airgap. After 1.6T, the coil current needs to be 

significantly increased in order to increase the force; therefore, at this point the material 

is considered to be fully saturated. By using Eq. (3-23) the electric current was 

calculated assuming the flux density is known. However, for AMB systems, the input is 

the electric current, therefore flux density and force should be found as a function of the 
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electric current. In order to achieve this, the relative permeably as a function of magnetic 

flux is required.  

Using the data from Figure (3-5), a linear curve fit is used to estimate the silicon iron 

relative permeability for flux densities above 

€ 

Bknee  (Fig. 3-7). Quadratic and cubic curve 

fits for the relative permeably were also considered. Even though a higher order 

equation is more accurate, it increases the complexity of the model and in this case, it 

decreases the quadratic error by less than 1 percent. Therefore a linear fit was deemed 

to be accurate enough for this work. 

 

 

Figure 3-7 M19 Relative Permeability (1.2T<B<1.6T) 

 

The relative permeability is estimated as, 

 

€ 

µr = aB+ b,      a = −10198,      b =16709                                                                        3−24( )  
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€ 

2gaB2 + 2gb+ Ls − a( )B−NIµ0b = 0                                                                                3−25( )  

 

Solving Eq. (3-25) and substituting it into the force equation (Eq. (3-14)) yields the 

nonlinear force equation for the right and left actuators in Figure 3-2.  

 

€ 

F1 =
1

g0
2 1+

2x
g0

" 

# 
$ 

% 

& 
' 

c1I1
2 +c2x +c3 + c4I1 +c5x +c6( ) c7I1

2 +c8I1x +c10x +c11
( 
) * 

+ 
, - 
                           3−26( )

 

€ 

F2 =
1

g0
2 1− 2x

g0

# 

$ 
% 

& 

' 
( 

c1I2
2 −c2x +c3 + c4I2 −c5x +c6( ) c7I2

2 −c8I2x −c10x +c11
) 
* + 

, 
- . 
                         3−27( )

  

Here 

€ 

I1 and 

€ 

I2  are the electric currents in the left and right actuators,

€ 

g0 is the nominal 

airgap (the airgap when the rotor is centered), 

€ 

g = g0 ± x , and 

€ 

c1,c2,...,c11  are constants 

that are dependent on the system parameters. 

 

€ 

c1 =
Aµ0

8N 2 ,          c2 =
a L1 + L2( )A+ 2a2Ag0

2µ0b
2

c3 =
A L1 + L2( )2

+ 4a L1 + L2( )Ag0 + 4a2Ag0

8µ0b
2

c4 =
AN
2

,c5 =
aA
bµ0

,c6 =
A L1 + L2( )+ 4Aag0

4bµ0
                                                                                              3−28( )

c7 =
µ0

2

16N 2 ,          c8 =
µ0N 2ag0 − L1 − L2( )

8b

c9 =
µ0Na

4b
,            c10 =

a L1 + L2( )+ 2a2g0

4b2

c11 =
L1 + L2( )2

+ 4a L1 + L2( )g0 + 4a2g0
2

16b2
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3.4 Balance Beam  

In this thesis a balance beam test rig is used for experiments (see Fig. 3-8 and Chapter 

2 for more details).  The dynamic portion of the rig consists of a beam mounted on a 

single DOF pivot with one electromagnet at each end. The beam rotates on the 

mechanical sharp edge pivot and the electromagnets produce the necessary force for 

stabilizing the beam. The test rig’s dynamics are simple however it contains all of the 

important fundamental features of a magnetic bearing system. Dynamics of the rig are 

modeled by the following differential equations, 

 

€ 

J ˙ ̇ θ = −D ˙ θ +T2 −T1 = −D ˙ θ + La F2 −F1( )                                                                                3−29( ) 

 

 

Figure 3-8 The Balance Beam 

 

Here, 

€ 

θ  is the angle between the beam and the horizontal axis. D is the system 

damping due to the pivot and air friction. 

€ 

T1 and 

€ 

T2  are the left and right torques 

provided by the two electromagnets, 

€ 

F1 and 

€ 

F2 are the left and right electromagnetic 

forces and 

€ 

La  is the distance between the electromagnets  and the central pivot. 
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3.5 Linear Balance Beam Model 

In the case of a linear model, Eq. (3-16) is used to calculate the force at each end. The 

airgap at each side is calculated by: 

 

€ 

g1 = g0 − Laθ,               g2 = g0 + Laθ                                                                         3− 30( ) 

 

Substituting Eqs. (3-16) and (3-30) into the system’s dynamic equation yields: 

 

€ 

J ˙ ̇ θ = −D ˙ θ +
Laµ0AN

2

4
I1

2

g0 − Laθ( )2 −
I2

2

g0 + Laθ( )2

$ 

% 

& 
& 

' 

( 

) 
) 
                                                       3− 31( )  

 

Applying the bias current and linearizing the system around its equilibrium point yields 

the following equation,  

 

€ 

˙ θ 
˙ ̇ θ 

# 

$ 
% 
& 

' 
( =

   0          1

4ctLaIb
2

Jg0
  − D

J

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

θ
˙ θ 

# 

$ 
% 
& 

' 
( +

   0  

−
4ctIb
J

# 

$ 

% 
% 

& 

' 

( 
( 
Ic                                                                           3− 32( ) 

 

The constant 

€ 

ct =
µ0LaAN

2

4g0
2  is introduced for simplification [34]. This linearized model is 

used as a benchmark for measuring the effectiveness of the proposed nonlinear model. 

3.6 Nonlinear balance beam Model using Lur’e Method 

In the linear model, a bias current (

€ 

Ib ) was used to linearize the system, which means 

that both of the electromagnets work at the same time even when the beam’s angle of

 

rotation is zero, therefore some energy is always lost. In the nonlinear model a bias 
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current is still used but not for linearizing the system. The bias current provides the 

system with an acceptable slew rate. A single electromagnet’s nonlinear force plot is 

shown in Figure (3-9).  

 

 

Figure 3-9 The Nonlinear Force 

 

As can be seen, for small currents the curve’s slope is close to zero. The slope of the 

curve in Figure (3-9) is the rate of change of force with respect to the current, which is 

directly related to the force slew rate (see Section 2-3). When the slew rate is small, the 

system needs a long reaction time to produce a significant force, which is not desirable 

from a stability prespective.  Figure (3-10) shows the effective force on the balance 

beam for a dual acting actuator with a bias current.  
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Figure 3-10 Nonlinear Force With Bias Current 

 

Using the bias current provides the system with a much better slew rate for small control 

currents.  When the control current is small, both electromagnets work together. When 

increasing the control current, 

€ 

I1 increases and 

€ 

I2  decreases. Consequently when the 

control current is equal to the bias current, 

€ 

I2  becomes zero. The control strategy does 

not allow negative 

€ 

I1 or 

€ 

I2; therefore, for control currents larger than the bias current, 

one electromagnet is off and the other operates in the nonlinear region. For this work, 

the bias current was chosen to be half of the current corresponding to the flux density 

€ 

Bknee  (1.2T). This choice of 

€ 

Ib  makes the second electromagnet turn off at the end of the 

linear region. For flux densities greater than 1.2T (

€ 

Bknee), the nonlinear force is 

calculated by using Eqs. (3-12) and (3-14). In the linear region the relative permeability 

is assumed to be a constant (

€ 

µr = a + bB
B =1.2  Tesla

= a +1.2b ). And the two actuator forces 

are calculated as: 
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€ 

F1 Linear( ) = Aµ0
N Ib + Ic( )
Ls
µr

+ 2 g0 + x( )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

2

F2 Linear( ) = Aµ0
N Ib − Ic( )
Ls
µr

+ 2 g0 − x( )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

2

    

) 

* 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

                                                                       3− 33( )

 

 

Here 

€ 

F1 Linear( ) and 

€ 

F2 Linear( )  are the forces of the left and right electromagnets in 

the linear region. For flux densities between 1.2T and 1.6T, the nonlinear force is 

calculated by using Eqs. (3-26) and (3-27),  

 

€ 

F1 Nonlinear( ) =
1

g0
2 1+

2x
g0

" 

# 
$ 

% 

& 
' 

c1 Ib + Ic( )2
+c2x +c3

+ c4 Ib + Ic( )+c5x +c6( ) c7 Ib + Ic( )2
+c8 Ib + Ic( )2 x +c10x +c11

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 
             3− 34( )  

€ 

F2 Nonlinear( ) =
1

g0
2 1− 2x

g0

# 

$ 
% 

& 

' 
( 

c1 Ib − Ic( )2
−c2x +c3

+ c4 Ib − Ic( )−c5x +c6( ) c7 Ib − Ic( )2
+c8 Ib − Ic( )2 x −c10x +c11

) 

* 

+ 
+ 
+ 

, 

- 

. 

. 

. 
             3− 35( )

 

 

Here 

€ 

F1 Nonlinear( )  and 

€ 

F2 Nonlinear( ) are the forces of the left and right 

electromagnets in the nonlinear region. Since the electric current should not be negative, 

the force equation needs to be modified. The effective electromagnetic force on the 

beam is shown below, 

 

€ 

F1 =

0                             Ic < Ib
F1 Linear( )           − Ib < Ic < Ib                                                                                   

F1 Nonlinear( )        Ib < Ic

# 

$ 
% 

& 
% 
% 

3− 36( )
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€ 

F2 =

0                             Ib < Ic
F2 Linear( )           − Ib < Ic < Ib                                                                                   

F2 Nonlinear( )        Ic < −Ib

# 

$ 
% 

& 
% 
% 

3− 37( )  

 

These equations are highly nonlinear and can’t be written in state space form directly; 

therefore the Lur’e method is used to model the balance beam nonlinearly [39]. The 

control problems described by the Lur’e method have a forward path that is linear and 

time-invariant, and a feedback path that contains a memory-less, possibly time-varying 

nonlinearity 

€ 

ψ( ) (see Fig. 3-11).  

 

 

Figure 3-11 The Lur’e Problem 

 

The Lur’e system can be described by the following equations, 

 

€ 

˙ x = Ax + Buu + Bww,          q = Cq x

y = Cy x,                             u t( )∈ Rm , x ∈ Rn                                                      3− 39( )
ui t( ) =ψ i qi t( )( )                  i =1,...,m
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Here,

€ 

x  is the state vector, 

€ 

A is the system matrix, 

€ 

Bu is the input matrix, u is the input 

vector, 

€ 

Bw  is the disturbance matrix, 

€ 

w is the disturbance vector, 

€ 

Cq  is the control 

matrix, 

€ 

qi’s are the control outputs (in this case the electric current). 

€ 

y  is the output, 

€ 

Cy  

is the output matrix, i is the number of inputs (our system is single input, single output, 

therefore 

€ 

i =1), 

€ 

ui ’s are the different elements of the input vector (magnetic actuator 

force), and 

€ 

ψ i ’s are nonlinear input functions (nonlinear force equation). The functions 

€ 

ψ i should satisfy the following sector condition (see Fig. 3-12), 

 

€ 

k1iσ
2 ≤σψ i σ( ) ≤ k2iσ

2     for all  σ ∈ R                                                                    3− 40( ) 

 

 

Figure 3-12 The Sector Condition 

 

Equations (3-36) and (3-37) are both nonlinear with respect to current and displacement. 

In this thesis, the magnetization nonlinearity, which depends on the electric current, is 

modeled. Therefore the force equation is linearized with respect to the displacement, but 

it remains nonlinear with respect to the electric current, 
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€ 

FL x,Ic( ) =
∂F
∂x x=0, I c =0

x +F x = 0,Ic( ) = KX x +FI                                                 3− 41( )  

 

Here, 

€ 

FL  is obtained by linearizing the net force on the balance beam with respect to 

displacement. By substituting 

€ 

FL  into the balance beam dynamic equation, the balance 

beam is modeled into the Lur’e system form as follows, 

 

€ 

J ˙ ̇ θ = −D ˙ θ + La F1 −F2( ) = −D ˙ θ + La
2KXθ + LaFI                                                       3− 42( )

 

 

In state space form Eq. (3-42) can be written as:
 

 

€ 

˙ θ 
˙ ̇ θ 

# 

$ 
% 
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' 
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J
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J
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θ
˙ θ 

# 
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0
La
J
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& 

' 

( 
( 
FI Ic( )                                                                           3− 43( )

 

 

Here, 

€ 

KX  is obtained by linearizing the beam around its equilibrium point and 

€ 

FI Ic( ) is 

the nonlinear force assuming no displacement. This system has a forward path that is 

linear and time-invariant, and a feedback path that contains the nonlinearity 

€ 

FI  (see Fig. 

3-13). 
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Figure 3-13 The Sector Condition 

 

Validity of the sector bound 

In conventional models, the magnetic bearing force is linearized with respect to both 

current and displacement: 

 

€ 

F x,Ic( ) = KX x +KI Ic( )+H .O.T ≈ KX x +KI Ic( )                                                    3− 44( )  

 

In this process, the higher order terms are assumed to be negligible for small 

displacements and currents. In the nonlinear model proposed in this thesis, the force is 

linearized with respect to displacement, but it remains nonlinear with respect to the 

control current: 

 

  

€ 

F x,Ic( ) = KX x +F x = 0,Ic( )
FI

! " # $ # 
+H .O.T ≈ KX x +FI                                                  3− 45( ) 
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The nonlinear part of the force 

€ 

FI +H .O.T( ) should satisfy the Lur’e system’s sector 

condition (see Eq. 3-40). For small displacements the higher order terms are negligible 

and the sector bound can be found for the force equation at zero displacement 

€ 

FI( )  (see 

Fig. 3-12). 

During the AMB operation, the displacement can grow larger and make the eliminated 

higher order terms significant, which in turn can cloud the validity of the chosen sector 

bounds.  Therefore the validity of the sector bound should be investigated for large 

displacements. The following equation shows the nonlinear portion of the force: 

 

€ 

FI +H .O.T = F x,Ic( )−KX x                                                                                        3− 46( ) 

 

Which is sketched in the following graph (Fig. 3-14) 

 

 

Figure 3-14 Nonlinear Force With Large Displacements (0<x<g0/2) 

 

As can be seen, the sector bounds that were found for 

€ 

FI( )  are acceptable even in the 

presence of relatively large displacements. As expected, for small control currents, the 
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higher order terms are more significant compared to 

€ 

FI( ) . In the large displacement 

case, the control strategy dictates a large control current which allows us to neglect the 

portions of the graph that are out of the sector bound. In other words, a combination of a 

small 

€ 

Ic  and a large 

€ 

x  will not happen in the actual closed loop control system. The 

following graph (Fig. 3-15) shows results for displacements smaller than 25% of the 

airgap. Even in the presence of a small control current, the value of 

€ 

FI +H .O.T  is 

predominantly inside the sector bound. 

 

 

Figure 3-15 Nonlinear Force With Large Displacements (0<x<g0/4) 

 

The force graphs for the nonlinear force and the force lineralized with respect to 

displacement are shown in Figs. 3-16 and 3-17. 
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Figure 3-16 The Nonlinear Force 

 

 

Figure 3-17 The Nonlinear Force Linearized W.R.T. Displacement 

 

In both graphs, the control current, displacement, and the force are normalized with 

respect to the maximum control current, the airgap, and the maximum force. Figure 3-18 

shows the error generated by linearizing the force with respect to displacement: 
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Figure 3-18 The Linearization Error 

 

The error is large in the presence of a large displacement and a small current, but as 

was discussed before, the control strategy will prevent this situation from happening. In 

other areas of the graph, the error is relatively small (<10%). 

 

Switching compensation 

In the proposed force model, it is assumed that the relative permeability is a constant 

before reaching the nonlinear portion of the B-H curve. Based on the material property 

graph (Fig (3-3)) the nonlinear part of the B-H curve starts at the knee point of 1.2T. The 

bias current is chosen to produce half of this flux density; therefore, when the control 

current equals the bias current, the flux density reaches the nonlinear region. On the 

other hand, a variation in the displacement alters the flux density that is generated. 

Therefore, due to larger airgap reluctance, the flux density produced in the presence of a 

nonzero displacement and a control current equal to the bias current is less than 1.2T 

(see Fig. 3-19). 
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Figure 3-19 The Flux Density for Ib=Ic With Variable Displacement 

 

The force calculated for the nonlinear portion of the B-H curve is valid for 1.2<B<1.6, 

while the force calculated for the linear region is valid for 

€ 

0 < Ic < Ib  which translates to 

€ 

0 < B< B Ic = Ib( ).  According to Figure 3-19, 

€ 

B Ic = Ib( )  is less than 1.2T for a nonzero z. 

Therefore a small discontinuity can exist when the control current reaches the bias 

current (when the force switches between the linear and nonlinear operating regions) 

(see Fig. 3-20). 

 

 

Figure 3-20 The Nonlinear Force Without Switching Compensation 

 

This occurs because the constant relative permeability in the linear B-H region is 

assumed to be: 
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€ 

µr = aBknee + b  or  µr =1.2a + b                                                                                    3− 47( ) 

 

But for nonzero values of displacement the switching between the linear and nonlinear 

regions occurs before B=1.2. In order to compensate for this, the flux density for different 

displacements with a control current equal to the bias current must be calculated. The 

relative permeability in the linear portion of the B-H curve is calculated as follows, 

 

€ 

µr = aB Ic = I p( )+ b                                                                                                          3− 48( )  

 

By using this relative permeability in the linear force region, the discontinuity disappears 

and the switching will be smooth (see Fig. 3-15). 
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4 Control Synthesis 

In this chapter, the tools necessary for a control design based on the proposed nonlinear 

model are developed. These tools facilitate the control design for a Lur’e system with a 

sector bounded nonlinear feedback, and input and state constraints. This chapter is 

organized into the following sections. In the first section the Linear Matrix Inequalities 

(LMI’s) are introduced. In the second section, the control design objectives are 

explained. The third section defines the constraints. In the fourth and fifth sections some 

optimization problems are proposed to maximize the stability region (domain of 

attraction) and the system’s dynamic performance. Finally, in this chapter the issue of 

disturbance tolerance/rejection is addressed. 

4.1 LMI Introduction 

In this section, LMIs and their basic properties are introduced. A Linear Matrix Inequality 

(LMI) is a convex constraint. Therefore optimization problems with a convex objective 

function and LMI constraints can be solved efficiently by commercial software.  A linear 

matrix Inequality has the form: 

 

€ 

F x( ) = F0 + xiFi > 0,   x ∈ Rm ,   Fi ∈ Rn×n                                                          4 −1( )
i=1

m
∑  

 

Here, 

€ 

Fi ’s are constant symmetric matrices, 

€ 

xi ' s  are the independent variables and x is 

the variable vector. The inequality means that F(x) is a positive definite matrix which 

means that it must satisfy the following condition: 

 

€ 

zTF x( )z > 0,    ∀z = 0,    z ∈ Rn                                                                              4 −2( ) 
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As mentioned before, an important property of the LMI’s is that the set 

€ 

x F x( ) > 0{ }  is a 

convex constraint on x. Therefore a combination of LMI constraints and a convex 

objective function, results in a convex optimization problem that can be solved in a 

straight forward manner. 

Stability is one of the most basic requirements for any closed loop system. The 

Lyapunov method for analyzing stability describes the stability problem in the form of an 

LMI. The basic idea is to find a positive definite function of the state, for which it’s time 

derivative is negative. As an example, a necessary and sufficient condition for the 

system  to be stable is the existence of a Lyapunov function 

€ 

V x( ) = xTP x( )x  

where P(x) is a positive definite Matrix and 

€ 

˙ V x( ) is negative definite. This can be 

formulated as follows:  

 

€ 

V x( ) = xTP x( )x > 0  ⇒  P x( ) > 0                                                                                     4 − 3( )
 

€ 

˙ V x( ) = ˙ x T P x( )x + xT P x( ) ˙ x < 0  ⇒  AT P + PA < 0                                                           4 − 4( ) 

  

 

This is an LMI with a variable matrix (P(x)), instead of a variable vector (x) as in Eq. (4-

1). It can be proven that variable matrix and variable vector LMI’s are interchangeable 

[39]. There is a large variety of constraints that can be described in LMI form by using 

procedures including: Schur complement, s-procedure, max singular value, etc. In this 

thesis, all the constraints are converted to LMIs by using one of the previously 

mentioned methods. The conversion process is not explained in detail in this thesis, but 

can be found in LMI textbooks and the papers listed in the references. 

€ 

˙ x = Ax
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4.2 Problem Statement  

The objective in this chapter is to design a feedback law such that the closed-loop 

system possesses a larger stability region, a better transient response, and an improved 

disturbance tolerance/rejection capability compared to conventional methods. 

Specifically, this work is interested in the control of a system with actuator saturation and 

a sector-bounded feedback nonlinearity. It is important to note that while the research 

referenced in this work only deal with actuator saturation as a nonlinearity, the model 

used in this work considers two different nonlinearities (actuator saturation and material 

magnetization). These two nonlinearities are illustrated schematically in Figure 4-1. 

 

 

Figure 4-1 The Modeling Nonlinearities 

 

This system can be formulated in equation form as follows: 

 

€ 

˙ x = Ax + Bu, 

u =ψ σ( )                ⇒     ˙ x = Ax + Bψ sat Fx( )( )                                                                4 −5( )
σ = sat Fx( )  
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The nonlinearity is bounded by two sectors (see Fig. (4-2)): 

 

€ 

K1σ
2 ≤σψ σ( ) ≤ K2σ

2                                                                                                        4 −6( )  

  

 

Figure 4-2 The Sector Bounds for a Nonlinear Feedback 

 

By defining a Lyapunov function candidate as 

€ 

V x( ) = xTP x( )x , the system is stable if a 

function P(x)>0 can be found that satisfies the following condition: 

 

€ 

˙ V x( ) = 2xT P x( ) Ax + Bψ Fx( )[ ] ≤ 0                                                                                       4 − 7( )   

 

Finding a P(x)>0 that  satisfies the previous condition guarantees the stability of the 

system.  

While analytical characterization of the domain of attraction (stability region) is difficult, 

most literature focuses on enlarging an invariant set inside the domain of attraction by 

appropriately designing a feedback gain. Clearly when an ellipsoid is invariant, it is 

inside the domain of attraction. 

ψ σ( )

σ

u
K2σ

K1σ
!
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Therefore, designing a feedback law such that the closed-loop system has a large 

stability region, requires that an invariant set (usually an invariant ellipsoid) be placed 

inside the stability region and it’s area maximized. It is important to note that an ellipsoid 

is associated with any positive definite matrix P(x) and can be defined as: 

 

€ 

ε P,ρ( ) = ζ ∈ Rn ζ T Pζ ≤ ρ{ }                                                                                                  4 −8( )
 

 

Here, 

€ 

ε P,ρ( ) is an ellipsoid centered at the origin and P(x) is a positive definite matrix. 

The ellipsoid is invariant if for every trajectory x of the system, 

€ 

x t0( )∈ ε P,ρ( ) implies 

€ 

x t( )∈ ε P,ρ( ) for all 

€ 

t ≥ t0 .  

The stability condition of Eq. (4-7) is a sufficient condition, and for single input systems it 

can be proven to be a necessary condition as well. Therefore, the largest invariant 

ellipsoid can be defined exactly [40]. 

If the condition of Eq. (4-7) is satisfied, the system is stable and all trajectories starting 

inside the ellipsoid of Eq. (4-8) will remain inside it. However in some cases 

€ 

ψ  is very 

complicated and therefore it is beneficial to bound it within simpler functions 

€ 

ψ1 and 

€ 

ψ2 . 

Also, there are always uncertainties associated with the nonlinear function and it is 

necessary to study the invariance of the ellipsoid for a class of nonlinear functions that 

are within a certain bound (

€ 

ψ1 and 

€ 

ψ2 ). In other words: 

 

€ 

ψ ∈ co ψ1,ψ2{ }                                                                                                                       4 −9( )  

 

Here, 

€ 

co ψ1,ψ2{ } is the convex hull of 

€ 

ψ1 and 

€ 

ψ2  expressed as: 
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€ 

co x1,x2,!,xN{ } := λi xi : λi =1,λi ≥ 0
i=1

N
∑

i=1

N
∑
% 
& 
' 

( 
) 
* 

                                                                       4 −10( ) 

 

In absolute stability problems, 

€ 

ψ1 and 

€ 

ψ2  are usually two lines: 

 

€ 

ψ1 σ( ) = k1σ ,                   ψ2 σ( ) = k2σ                                                                                    4 −11( ) 

 

It can be proven that the system is stable if and only if Eq. (4-7) is satisfied on both 

sector bounds [41]. Therefore both of the following conditions should be satisfied for the 

system of Eq. (4-5) with sector bounds expressed in Eq. (4-11) to be stable and the 

ellipsoid of Eq. (4-8) to be invariant.  

 

€ 

˙ V x( ) = 2xT P Ax + Bk1Fx[ ] ≤ 0                                                                                               4 −12( )
˙ V x( ) = 2xT P Ax + Bk2Fx[ ] ≤ 0                                                                                               4 −13( ) 

 

In order to simplify the mathematical manipulation, the parameter 

€ 

Q = P /ρ( )−1  is 

introduced and the constraints (4-12) and (4-13) are modified to the followings: 

 

€ 

Q A+ k1BF( )T + A+ k1BF( )Q < 0                                                                                         4 −14( )
Q A+ k2BF( )T + A+ k2BF( )Q < 0                                                                                         4 −15( )

 

 

In order to make sure 

€ 

Fx  is no larger than the maximum tolerable current in the coil (

€ 

Imax ), an additional constraint needs to be added to the system. This new constraints is 

explained in detail in Section 4.3 of this Chapter. An improved transient response can 

also be achieved by using LMI’s with the following form in place of Eq. (4-7) [42]. 
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€ 

˙ V x( ) = 2xT P x( ) Ax + Bψ Fx( )[ ] ≤ −βxT P x( )x                                                                      4 −16( ) 

 

Here, 

€ 

β  is a positive number that can be an indicator of the convergence rate of the 

trajectories. For a 

€ 

β >0 the trajectories starting inside the ellipsoid will converge to the 

origin. A larger value of 

€ 

β usually means a faster convergence rate, a faster transient 

response and, a lower overshoot.  

In 2004, Hu et al. [43] introduced a less conservative sector condition for the Lur’e 

problem. In their method, lines with multiple bends were used to bound the nonlinearity. 

This generalized condition allowed the sector bounds to be more flexible and more 

accurately approximate the nonlinear feedback function. The generalized sector 

condition was defined as, 

 

€ 

ψ u,t( )∈ co ψ1 u( ),ψ2 u( ){ }            for all        u,t ∈ R                                                           4 −17( )  

 

In this thesis, 

€ 

ψ1 and 

€ 

ψ2  are piecewise continuous concave or convex functions and in 

Equation (4-17), 

€ 

co ψ1 u( ),ψ2 u( ){ }  is the convex Hull of 

€ 

ψ1 and 

€ 

ψ2  which are defined as 

follows: 

 

  

 

 

 

 

  

€ 

ψ1 σ( ) =

k01σ                      0 < u < b11

k11σ +c11               b11 < u < b21

!
kN11σ +cN11           bN11 < u <∞

% 

& 

' 
' 

( 

' 
' 

                                                                            4 −18( )
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€ 

ψ2 σ( ) =

k02σ                      0 < u < b12

k12σ +c12               b12 < u < b22

!
kN2 2σ +cN2 2           bN2 2 < u <∞

% 

& 

' 
' 

( 

' 
' 

                                                                          4 −19( ) 

 

Here, 

€ 

kim  is defined as the slope of different segments of the sector bound and 

€ 

cim  is the 

y-intercept of these segments. For example 

€ 

k31 is the slope of the fourth segment of the 

first sector bound and 

€ 

c12  is the y-intercept of the second segment of the second sector 

bound. For the first segment, 

€ 

i = 0  and since it passes through the origin, the y-intercept 

is zero. Figure (4-3) illustrates the generalized sector condition. 

 

 

Figure 4-3 The Generalized Sector Condition 

 

For the system of Eq. (4-5), an ellipsoid 

€ 

ε P,ρ( ) is contractively invariant on 

€ 

ψ1 if and only 

if:  

 

€ 

A+ k01BF( )T P+P A+ k01BF( ) < 0                                                                                              4 −20( )
 

and there exists 

€ 

Hi ∈ R1×n , i ∈ I 1,N1[ ]  such that:  
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€ 

A+BHi1( )T P+P A+BHi1( ) < 0,                 i ∈ I 1,N1[ ]                                                           4 −21( ) 
 

  

€ 

ε P,ρ( )⊂ L Hi1 − ki1F
ci1

& 

' 
( 

) 

* 
+ 

i=1

N
∩                                                                                                         4 −22( )

 

 

By defining the following new parameters: 

 

€ 

Q =
P
ρ

# 

$ 
% 

& 

' 
( 

−1

,     Yi1 = Hi1Q  

 

The invariance condition can be transformed into the following LMI: 

 

 

 

€ 

a)  Q A+ k01BF( )T + A+ k01BF( )Q < 0

b)  QAT + AQ+Yi1B
T +BYi1 < 0

                                                                                                                                 4 −23( )

c)  
          1                   Yi1 − ki1FQ

ci1
Yi1
T − ki1QF

T

ci1
                Q

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 

 

Similarly, for invariance on the second sector bound, 

€ 

ψ2( )  
the following LMI should hold: 
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€ 

a)  Q A+ k02BF( )T + A+ k02BF( )Q < 0

b)  QAT + AQ+Yi2B
T +BYi2 < 0

                                                                                                                                             4 −24( )

c)  
           1             Yi2 − ki2FQ

ci1
Yi2
T − ki2QF

T

ci2
            Q

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 

Here 

€ 

Yi2 = Hi2Q . When the generalized sector condition is used instead of the normal 

sector conditions, Eq’s (4-20), (4-21), and (4-22) replace Eq’s (4-12) and (4-13) in the 

optimization problem.  

In this thesis various controllers are designed to address different control objectives. 

These objectives are categorized into the following three control designs: 

 

Design 1 (largest invariant ellipsoid (largest domain of attraction)) 

To find the largest invariant ellipsoid, usually a set of initial points (

€ 

X0 ∈ Rn) is provided 

which determine the shape of the invariant ellipsoid. A feedback matrix F should be 

found such that 

€ 

ε P,ρ( ) is invariant and 

€ 

α  in 

€ 

αX0 ⊂ ε P,ρ( )  is maximized. 

 

Design 2 (transient response performance) 

In order to achieve the best transient response, the stability problem is defined as in Eq. 

(4-16) and a feedback matrix F is found such that 

€ 

ε P,ρ( ) is invariant and 

€ 

β  is 

maximized. 

 

Design 3 (disturbance rejection with a guaranteed domain of attraction) 
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In order to guarantee the desired domain of attraction a set of initial states is given. The 

goal is to design a controller that can start from the set of initial states while also 

maximizing the tolerable disturbance energy 

€ 

αmax = wT t( )w t( )dt0
∞
∫ . 

4.3 Constraints 

In this section, the input saturation and state constraints are addressed. In this work, the 

input to the nonlinear feedback 

€ 

σ( )  is defined as the electric current 

€ 

Ic( ) , which must be 

less than a maximum value 

€ 

Imax( ) . Since the control current 

€ 

Ic( )  can be larger than the 

bias current 

€ 

Ib( ), a saturation function is added to the controller to ensure that the 

current in left and right electromagnets (

€ 

I1 and 

€ 

I2) maintain a positive value (see Fig. (4-

4)). Therefore when control currents larger than the bias current are required, one 

electromagnet turns off and the other is supplied by a combination of bias and control 

currents.  

 

Figure 4-4 Input Electric Current to Each Electromagnet 

 

The displacement is also restricted; if 

€ 

θ  exceeds 

€ 

θmax , the beam will hit the back-up 

bearing. Furthermore, in the Lur’e problem, the nonlinear feedback should be within the 

sector bounds. Since the bounds can be freely chosen, this is not technically a 
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constraint, but it is a condition that must be satisfied. All these constraints and conditions 

are summarized as follows, 

 

€ 

Ic ≤ Imax                                                                                                                              4 −25( )
I1,I2 > 0                                                                                                                                4 −26( )
θ ≤θmax                                                                                                                                4 −27( )
FI Ic( )∈ co ψ1,ψ2{ }                                                                                                               4 −28( )  

 

To enable easier mathematical manipulation, the following notation is used. The input 

constraint (Eq. (4-25)) becomes, 

 
 

€ 

L F / Imax( ) = x ∈ Rn : Fix / Imax ≤1,i =1,2,..., p{ }                                                                   4 −29( )
 

 

Where, 

€ 

Fi  is the 

€ 

i th  row of F. Similarly; the state constraint are formulated as, 

 

€ 

L G( ) = x ∈ Rn : Gix ≤1,i =1,2,..., p{ }                                                                                   4 − 30( )  

 

Since for this work there is only one input and one state constraint in both cases p=1 

and G and F have just one row. G can be defines as: 

 

€ 

G =
1

θmax
, 0

# 

$ 
% 

& 

' 
( ,                                                                                                                       4 − 31( )
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4.4 Design 1: Largest Invariant Ellipsoid 

Here, the goal is to design a controller that maximizes the stability region while also 

satisfying all the system constraints. The stability region can be measured by the size of 

the invariant ellipsoid. The shape of the invariant ellipsoid can be decided by a set of 

reference points 

€ 

X0( )  and its size can be measured by a number 

€ 

α , that satisfies 

€ 

α ∈ ε P,ρ( ). To enlarge the invariant ellipsoid, 

€ 

α  should be maximized. The following 

optimization problem finds a feedback law (F) that maximizes 

€ 

α : 

 

  

€ 

P>0,F
sup α

a( )  αxi ∈ ε P,ρ( ), i =1,2,!,l  and  xi ∈ X0

b( )  Either inequalities 4 −12( ) and 4 −13( )                                                                       4 − 32( )
      or 4 −20( ), 4 −21( )  and 4 −22( )
c( )  ε P,ρ( )⊂ L F / Imax( )
d( )  ε P,ρ( )⊂ L G( )

 

 

Constraint (a) defines the shape of the ellipsoid. Constraints (b) guarantee that the 

ellipsoid is invariant either within the regular or the generalized sector bounds. 

Constraints (c) and (d) consider the state and input constraints. The optimization 

problem is transformed into an LMI problem and solved by interior-point methods. In 

order to change the optimization problem into a convex LMI, the following variables were 

introduced 

€ 

Q = P−1,

€ 

H = FQ ,

€ 

γ =
1
α 2 , and the LMI is then described as, 
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€ 

Q>0,H
sup γ

a( )  γ  xi
T

xi  Q

# 

$ 
% 

& 

' 
( ≥ 0, i =1,2,!,l  and  xi ∈ X0

b( )  Either inequalities 4 −14( ) and 4 −15( )
      or 4 −23( ) and 4 −24( )                                                                                                4 − 33( )

c( )  
      1      h j / Imax

h j
T / Imax     Q

# 

$ 
% 
% 

& 

' 
( 
( 
≥ 0, j =1,2,!,m

d( )  gkQgk
T ≤1, k =1,2,!, p

 

 

Here, 

€ 

h j  is the 

€ 

j th  row of H and 

€ 

gk  is the 

€ 

k th  row of G. For easier manipulation, 

condition (c) is replaced with the following condition in the optimization process: 

 

 

€ 

Imax
2   h j
h j
T     Q

" 

# 
$ 
$ 

% 

& 
' 
' 
≥ 0  

 

4.5 Design 2: Best Transient Response 

The Design 1 controller can result in a slow transient response. For many applications 

the controller design should have better transient response while maintaining an 

acceptable stability region. As was mentioned previously, the ellipsoid invariance 

constraint can be described by (4-13). In this equation, a bigger value for 

€ 

β  indicates a 

better transient response. Therefore, in order to obtain the best transient response, the 

objective is to find the largest 

€ 

β  that satisfies all of the required constraints. In other 

words, to get the best transient response, 

€ 

β  is maximized in the following optimization 

problem: 

 



! 93!

  

€ 

P>0,F
sup β

a( )  xi ∈ ε P,ρ( ), i =1,2,!,l  and  xi ∈ X0

b( )  Either inequalities 4 −12( ) and 4 −13( ) with β on the R.H.S. instead of 0                 4 − 34( )
      or 4 −20( ), 4 −21( ) with β on the R.H.S. instead of 0 and condition 4 −22( )
c( )  ε P,ρ( )⊂ L F / Imax( )
d( )  ε P,ρ( )⊂ L G( )  

 

The corresponding optimization problem is described by the following LMI, 

 

  

€ 

Q>0,H
sup β

a( )  1 xi
T

xi  Q

# 

$ 
% 

& 

' 
( ≥ 0, i =1,2,!,l  and  xi ∈ X0

b( )  Either inequalities 4 −14( ) and 4 −15( ) with β on the R.H.S. instead of 0               4 − 35( )
      or 4 −23( ) and 4 −24( ) with β on the R.H.S. of parts a and b instead of 0

c( )  
Imax

2    h j
h j
T      Q

# 

$ 
% 
% 

& 

' 
( 
( 
≥ 0, j =1,2,!,m

d( )  gkQgk
T ≤1, k =1,2,!, p  

4.6 Design 3: Disturbance rejection 

As previously mentioned, the proposed nonlinear method enables the system to respond 

with an increased force capability. Both of the previous designs are good uses of this 

extra capability. However the main advantage of the proposed nonlinear model is in 

dealing with external disturbances. This means that the additional force can be used to 

aid the system in tolerating significantly larger disturbances than achievable based on a 

linear model. 

The disturbances that have been studied in the literature can be divided into input-

additive and non-input-additive. In the first case, the disturbance is dependent on the 

bounded input, andt in the second case, the disturbances enter the system 
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independently from the bounded control inputs. The work done by Polyak [43] (Polyak, 

Nazin, Topunov, & Nazin, 2006) is an example of the input additive case. However in 

most physical systems, the disturbance is independent from the input; therefore, this 

thesis studies non-input-additive disturbances. 

In the first case, the disturbance rejection is easier to achieve. In the second case, with 

no boundedness assumption on the magnitude of the disturbances and in presence of a 

nonzero initial condition, the best that can be expected is a certain degree of disturbance 

tolerance for the closed loop system. 

The system’s maximum disturbance tolerance/rejection can be measured based on the 

magnitude or the energy of the disturbance it can withstand. In this work, the maximum 

tolerable disturbance energy is estimated. Using a similar method, the maximum 

tolerable magnitude of the disturbance can also be determined. Hu reported an example 

in which the disturbance is assumed to be bounded by magnitude [44] (Tingshu Hu, Lin, 

& Chen, 2002). This section presents a control design for the balance beam in the 

presence of L2-disturbances and other constraints that were introduced previously. The 

system studied in this thesis has the following form: 

 

€ 

˙ x = Ax + Bψ sat Fx( )( )+ Ew        x ∈ Rn         u ∈ R
m

       w ∈ Rq                                     4 − 36( )
z = Cx

 

 

The energy of the disturbance can be estimated as follows: 

 

€ 

α = wT t( )w t( )dt0
∞
∫                                                                                                               4 − 37( ) 
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A condition is used in this dissertation that guarantees that trajectories starting from an 

ellipsoid remain inside a second outer ellipsoid. The existence of these two ellipsoids 

under a disturbance with a specified energy 

€ 

α( )  means that the system is capable of 

tolerating the disturbance. In other words, the disturbance tolerance can be measured by 

finding the maximum energy 

€ 

αmax( ) under which the two ellipsoids exist. The size and 

difference between these two ellipsoids are the indicators of the disturbance rejection 

capability of the closed loop system under the designed feedback law.  

For disturbances bounded by magnitude, an invariant ellipsoid can be used to bound the 

state trajectory [41] (Tingshu Hu et al., 2002)[Theorem 2]. However, for disturbances 

bounded by the energy, there exists no bounded invariant set. Therefore this thesis uses 

two nested-ellipsoids such that all trajectories starting from the inner ellipsoid remain 

inside the outer ellipsoid for all disturbances with an energy less than 

€ 

α . This is 

explained in the following theorem in [45] (Fang, Lin, & Hu, 2004): 

 

Theorem. Consider the system:  

 

€ 

˙ x = Ax + Bsat u( )+ Ew        x ∈ Rn         u ∈ R
m

       w ∈ Rq                                             4 − 38( )
z = Cx

 

 

Assume that the feedback law 

€ 

u = Fx  and a positive matrix P(x) are given. If there exists 

an 

€ 

H ∈ Rm×n  and a positive number 

€ 

η  such that, 

 

€ 

a)  A+B DiF +Di
−H( )( )

T
P+P A+B DiF +Di

−H( )( )+
1
η
PEETP ≤ 0    i ∈ 1,2m[ ]               4 − 39( )

b)  ε P,1+αη( )⊂ L H( )
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then every trajectory of the closed loop system that starts inside of 

€ 

ε P,1( ) remains inside 

of 

€ 

ε P,1+αη( ). Every trajectory of the closed loop system that starts from the origin 

remains inside 

€ 

ε P,αη( ) as long as condition (a) holds and 

€ 

ε P,1+αη( )⊂ L H( ) .  

Here, D is a set of 

€ 

m ×m  diagonal matrices whose diagonal elements are either 1 or 0. 

There are 

€ 

2m  elements in D. 

€ 

Di  is an element of D and its complement is defined as 

follows: 

 

€ 

Di
− = I −Di           i =1,2m                                                                                                        4 − 40( )

 

The balance beam is a single input system 

€ 

m =1( ) , and therefore 

€ 

i =1,2  and: 

 

€ 

D1 = 1[ ]  D1
− = 0[ ]   D2 = 0[ ]  D2

− = 1[ ]                                                                                4 − 41( ) 

 

For a single input system, Condition (4-39) can be simplified to: 

 

€ 

a1)  A+BF( )T P+P A+BF( )+
1
η
PEETP ≤ 0            i =1                                                   4 − 42( )

a2)  A+BH( )T P+P A+BH( )+
1
η
PEETP ≤ 0           i = 2

b)   ε P,1+αη( )⊂ L H( )  

 

 

In the theorem, it is assumed that the feedback law (F), 

€ 

η  which is related to the size of 

the ellipsoid, and the disturbance energy 

€ 

α  are given. If conditions (a2) and (b) hold, it 

means that a feedback law (h) exists that guarantees the trajectories remain inside the 

outer ellipsoid without saturating. If condition (a1) holds alongside conditions (a2) and 

(b), for the given feedback law (F), the trajectories remain inside the outer ellipsoid.  
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These conditions are defined for the system of Equations (4-38) with a saturation type 

nonlinearity. However, the nonlinearity in the proposed model 

€ 

ψ( ) is not a saturation-

type nonlinearity (see Eq.4-36). And since the optimization problem is solved for control 

synthesis purposes, the feedback is an unknown variable that needs to be optimized. 

The conditions of Eq.(4-42) can be altered for the proposed nonlinear model as follows: 

 

€ 

a)  A+ k1BF( )T P+P A+ k1BF( )+
1
η
PEETP ≤ 0                                                                 4 − 43( )

b)  A+ k2BF( )T P+P A+ k2BF( )+
1
η
PEETP ≤ 0  

 

 

Therefore, an optimization problem that finds the maximum tolerance disturbance 

energy with nonzero initial conditions (initial conditions inside 

€ 

ε S,1( )) is defined as 

follows: 

 

€ 

a)  ε S,1( )⊂ ε P,1( )          

b)  Eq. 4 − 43( )                                                                                                                  4 − 44( )
c)  ε P,1+αη( )⊂ L H( )

 

 

Next, an optimization problem that finds the feedback law that maximizes the tolerable 

disturbance energy is defined. For consistency with previous designs, it is assumed that 

the trajectories start from initial points 

€ 

X0  inside the inner ellipsoid and not from 

€ 

ε S,1( ). 

The system also needs to satisfy the input and state constraints. The resulting 

optimization problem can be expressed as: 
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€ 

P>0,F
sup α

a( )  xi ∈ ε P,1( ),i =1,2,!,l  and  xi ∈ X0

b1)  A+ k1BF( )T P+P A+ k1BF( )+
1
η
PEETP ≤ 0

b2)  A+ k2BF( )T P+P A+ k2BF( )+
1
η
PEETP ≤ 0                                                           4 − 45( )

c( )  ε P,1+αη( )⊂ L F / Imax( )
d( )  ε P,1+αη( )⊂ L G( )

 

 

Conditions (b1) and (b2) are the disturbance tolerance with respect to normal sector 

lines. And this optimization problem can be expressed with the following LMI: 

 

  

€ 

Sup  α  
Q > 0,F , µ 0,1( )

a)   1   xi
T

xi   Q

# 

$ 
% 

& 

' 
( ≥ 0,          i =1,2,!,l        and       xi ∈ X0

b1)  
Q A+ k1BY( )T + A+ k1BY( )Q       α E

α ET                                           µ −1
µ

I

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
≤ 0                                                               4 − 46( )

b1)  
Q A+ k2BY( )T + A+ k2BY( )Q       α E

α ET                                            µ −1
µ

I

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
≤ 0

c)   
Imax

2 µ   Y

   YT   Q

# 

$ 
% 
% 

& 

' 
( 
( 
≥ 0

d( )  gkQgk
T ≤1, k =1,2,!, p

 

 

Here Y=FQ, 

€ 

µ =
1

1+αη
, 

€ 

µ ∈ 1,0( ), 

€ 

α = α . The above optimization problem is designed 

to find the maximum tolerable energy, for each fixed 

€ 

µ ∈ 0,1( ). Therefore, the 

optimization problem should be solved by varying 

€ 

µ  between 0 and 1. The algorithm for 
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finding the maximum tolerable energy is illustrated with the following flowchart (see Fig. 

(4-5)). 

 

 

Figure 4-5 Optimization Flowchart for Disturbance Rejection 

 

In the case of magnetic bearings, the outer ellipsoid should be set such that the closed 

loop trajectories will not exceed 50% of the airgap since this the usual location of the 

backup bearings and backup bearing contact should be avoided. This condition can be 

corporated into the state constraint and the optimization problem can be solved to find 

the maximum tolerable disturbance energy. Clearly the optimization problem can be set 

up to find the smallest outer ellipsoid in a similar fashion.  
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5 Simulation and experiment 

In this chapter simulation and experimental results are presented. Controllers for the 

largest domain of attraction, best transient response, and best disturbance rejection 

were designed in Sections 5-2,5-3, and 5-4. The controllers were designed based on the 

balance beam specifications and the available M-19 silicon iron magnetization curve and 

the system’s response was simulated in each case. Section 5-6 examines each 

component model more closely, using experimental data to make necessary 

adjustments to the system. Section 5-7 describes the procedure of designing a simple 

PID controller for preliminary testing of the system components. Section 5-8 is dedicated 

to the low pass filter design. The electromagnets’ calibration process is reported in 

Section 5-9 and the final 2 sections compare the experimental data and the simulation 

for transient response and disturbance rejection. 

5.1 Introduction 

In this chapter, various controllers were designed to examine the significance of the 

modeled nonlinearity. The model based on the proposed nonlinear method with regular 

and generalized sector conditions, is compared with the linear model. A schematic view 

of these different models is shown in Figure 5-1. 
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 Figure 5-1 A Schematic View of The Modeling Methods 

 

As can be seen while the linear model can be operated to the maximum current of 

€ 

Iknee , 

the nonlinear models can be operated with a much higher current of 

€ 

Imax . The values of 

€ 

Iknee  and 

€ 

Imax  can be found in Table 2-5. The following dimensionless variables are used 

in the simulation.  

 

€ 

Θ =
θ
θmax

                                                                                                                             5−1( )

λ =
I
Imax

                                                                                                                             5−2( )
 

 

5.2 Largest Invariant Ellipsoid 

The method discussed in Section 4-4 was used to design a controller, which can achieve 

the largest initial angle in the domain of attraction. In other words, a controller is 

designed which can start from the largest possible initial angle 

€ 

θ0( ) as an initial condition 

and still remain stable. The choice of 

€ 

X0 = g0 /La ,0( ) makes the optimization solely focus 
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on maximizing the initial angle 

€ 

θ0( ) and not the initial angular velocity (because the 

second term in the vector is zero). Results listed in Table 5-1 show that the linear 

controller can stabilize the system from an initial normalized angle of 

€ 

Θ0 = 0.8, while the 

nonlinear controllers are able to stabilize the system from the largest possible initial 

angle 

€ 

Θ0 =1( ). The domain of attraction and the constraints are shown in Figure 5-2. The 

sloped lines represent the constraint imposed by the maximum possible electric current 

(amplifier constraint). Using the nonlinear model makes these constraints less restrictive 

and therefore allows for a larger domain of attraction. 

 

Table 5-1 LARGEST CONTROLEABLE STARTING ANGLE 

 

 
 
The nonlinear models improve both the maximum stabilizable initial angle as well as the 

maximum initial angular velocity that the beam can start from and remain stable. In this 

case the generalized sector condition has little to no improvement over the regular 

sector condition and the corresponding ellipsoids and amplifier constraints are nearly 

identical. The improvement enabled by the use of the generalized sector condition will 

be seen more clearly in the following sections. 

 

Model 

€ 

Θ0 
Linear  0.801 
Nonlinear (reg. sce) 1.000 
Nonlinear (gen. sec.) 1.000 
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 Figure 5-2 Domain of Attraction for Linear and Nonlinear Models 

 

5.3 Best Transient Response 

Section 4-5 of Chapter 4 presented the design method for a controller that can provide 

the best transient response while also maintaining an acceptable domain of attraction. 

The 

€ 

β  values were calculated for various normalized starting angles 

€ 

Θ0( ), and the 

results are reported in Table 5-2 for the different models, where the transient response 

speed index is the value of 

€ 

β  in the stability equation (Eq. 4-16). 
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Table 5-2 BEST TRANSIENT RESPONCE 

€ 

Θ0 

€ 

β  (Transient Response speed Index) 

max Linear Nonlinear 
(Reg.) 

Nonlinear 
(Gen.) 

0 3000 3000 3000 
0.1 1092 1447 1573 
0.2 795.8 1041 1128 
0.3 668.6 864.4 934.3 
0.4 577.4 761.2 820.4 
0.5 448.9 681.5 737.7 
0.6 297.3 577.7 639.9 
0.7 181.8 461.6 526.6 
0.8 94.83 342.2 402.8 
0.9 26.28 216.9 264.1 
1.0 ----- ---- ---- 

 

Table 5-2 shows that using the nonlinear model can significantly improve the transient 

response of the system. It is also necessary to know the importance of using the 

generalized sector condition. In Table 5-2 both nonlinear models have improved the 

transient response, however there can be situations where using the nonlinear model 

with the regular sector condition does not result in an improvement over the linear model 

results. This can be explained more clearly by the results presented in Table 5-3. 

 

Table 5-3 BEST TRANSIENT RESPONSE FOR DIFFERENT AIRGAPS 

€ 

β (Transient Response speed Index) Airga
p 

(mm) 

€ 

Θ0 
ma
x Lin. Regular Sec. Generalized 

Sec. 
0.001 1 87 72 298 
0.002

5 0.8 638 1443 1962 

0.005 0.9
9 17 266 354 

0.01 0.9
7 5 235 1556 

 
 
As a case study, here the airgap in the balance beam is modified and corresponding 

changes to other factors in the model are also made. As can be seen in Table 5-3, for 
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the airgap of 0.001 mm even though the linear model has a smaller maximum current, it 

produces a better transient response. The reason for this result is that the regular sector 

condition in the nonlinear model is very conservative and in some cases can even be 

more restrictive than the linear model. This shortcoming can be eliminated completely by 

using the generalized sector condition. Using the nonlinear model with the generalized 

sector condition guarantees a significantly better transient response compared to 

traditional linear models as well as outperforming the regular sector condition results.  

Figure 5-3 depicts the transient response of system with a nonzero initial position for 

linear and nonlinear models.  As can be seen, controllers that are designed using the 

nonlinear model have a better transient response. The nonlinear controllers’ settling time 

are approximately 30% smaller than the linear controller’s settling time. The PD control 

parameters of the linear, nonlinear with regular sector, and nonlinear with generalized 

sector models are [2274 6.393], [4080 9.655], and [3944 8.897] respectively. The 

transient response speed index 

€ 

β( )  for these three controllers is 552, 846, and 917 

respectively. 

 

 

Figure 5-3 The Transient Response With Nonzero Initial Conditions 
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5.4 Disturbance Rejection 

One of the most appealing advantages of using the nonlinear model is to increase the 

disturbance rejection potential. By using the proposed nonlinear model, the system can 

operate safely even when a significant increased load is applied due to a worst case 

operating condition (such as a storm on a wind turbine, turbulence on an offshore drilling 

rig, etc.). In this section a controller is developed based on the method presented in Sec. 

(4-6). 

 

Table 5-4 DISTURBANCE REJECTION 

€ 

α  (Maximum Energy Index) 

€ 

Θ0 
max Nonlinear  Linear  
0 719 157 
0.1 707 147 
0.2 673 124 
0.3 623 94.6 
0.4 560 64.9 
0.5 489 38.8 
0.6 408 18.2 
0.7 321 4.86 
0.8 223 0.002 
0.9 114 Not Feasible 
1.0 Not Feasible Not Feasible 

 
 
The maximum tolerable disturbance energies for different models are shown in Table 5-

4. It can be seen that by using the nonlinear model, the disturbance rejection capability 

of the test rig is significantly improved. As a more tangible example, assume that the 

balance beam represents a thrust magnetic bearing system with a backup bearing 

located at 50% of the airgap. The system has an initial position of 30% of the airgap. 

While the system is operating, a pulse-like disturbance upsets the system. The 
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corresponding simulation results for this example case are shown in figures 5-4 and 5-5. 

In both figures, the top graph is a comparison of the time response of the system with a 

linear model as well as the proposed nonlinear model. The bottom graph in both figures 

shows the total control torque exerted on the beam in the linear and nonlinear models 

alongside the disturbance force. 

 

 

 

Figure 5-4 Time Response Comparison (Disturbance energy 261) 

 

Figure 5-4 depicts transient response results associated with the maximum tolerable 

disturbance torque achievable by the linear model. The linear control parameters are 

€ 

[F1  F2] = [1262  5.202]  and the nonlinear control parameters are 

€ 

[F1  F2] = [2070  6.920]. 

With a disturbance torque amplitude of 32N.m and a time duration of 0.006(s), the linear 

system nearly makes contact with the backup bearing (exactly how the disturbance is 

applied is explained in sections 5-10). Applying the same disturbance force on the 
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system that benefits from the controller designed by using the nonlinear model results in 

significantly smaller vibration amplitude and almost no overshoot. Here, a disturbance 

with a signal energy index 

€ 

α( )  of 261 almost drives the linear system into contact with 

the backup bearing. However the predicted value for guaranteed tolerable disturbance 

energy is 85. It’s important to note that the controller guarantees the stability of the 

system for all disturbances with a maximum energy index of 

€ 

αmax . Individual signals can 

have a larger energy index and still not destabilize the system. In case of Figure 5-4, a 

signal energy index of 261 does not destabilize the linear system.  

 

 

Figure 5-5 Time Response Comparison (Disturbance Energy 634) 

 

Figure 5-5 depicts results associated with the maximum tolerable disturbance by the 

system with the nonlinear controller. While the nonlinear design tolerates torques as 

large as 50N.m and a time duration of 0.006s, the linear system with this same 
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disturbance results in contact with the backup bearing. The torque graph shows how the 

extra torque capability helps stabilizing the system. The energy index 

€ 

α( )  of this 

individual signal is 634 and the predicted guaranteed tolerable energy index is 450 in 

this case. 

In this example, the disturbance response results demonstrate that for an existing AMB 

system, the system could tolerate a 56% larger disturbance torque and therefore 2.4 

times the disturbance energy by just making adjustments to the controller. 

The controllers designed for rejecting disturbances with energy of 

€ 

αmax  are capable of 

stabilizing the system under any disturbance with energy less than or equal to 

€ 

αmax . 

Disturbances with the same energy but different amplitudes and durations were imposed 

on the simulated system to examine the system’s stability. These disturbance signals 

are depicted in Figure 5-6. In this simulation the controller is designed to stabilize the 

system from an initial normalized angle of 0.5 and therefore the energy of the 

disturbance signals are designed to be 489 (see Table 5-4) 

 

 

Figure 5-6 Various Disturbances With The Same Energy 
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The system with the controller designed based on the nonlinear model remains stable 

for all disturbances depicted in Figure 5-6. Figure 5-7 is a plot of the state trajectories for 

this system. The states starting inside the inner ellipsoid will remain inside the outer 

ellipsoid. The points inside the outer ellipsoid represent the states that satisfy all the 

constraints imposed on the system. The vertical straight lines represent the state 

constraint and the two inclined lines represent the input (amplifier) constraint. The outer 

ellipsoid should be inside these straight lines to satisfy the input and state constraints. All 

trajectories start from 

€ 

Θ0, ˙ Θ 0( ) = 0.5,0( ). As can be seen, all state trajectories stay 

bounded and inside the outer ellipsoid and therefore there is no contact with the beam 

and the electromagnets. Figure 5-8 is the time response of the system subjected 

disturbance pulses depicted in Fig. (5-6). 

 

 

Figure 5-7 State Trajectories Under Disturbance (Nonlinear Model) 
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Figure 5-8 Time Response Under Disturbance (Nonlinear Model) 

 

Figures 5-9 and 5-10 are the state trajectory and time response of the system with the 

controller designed based on the linear model. The system is subjected to the 

disturbances of Figure 5-6. While the external disturbances are exactly the same for 

linear and nonlinear controllers, the system response is extremely different and in case 

of the linear controller, contact is made between the beam and the electromagnets.  
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Figure 5-9 State Trajectories Under Disturbance (Linear Model) 

 

 

 Figure 5-10 Time Response Under Disturbance (Linear Model) 
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5.5 Testing Individual components 

For proper operation of the test rig, all components need to be modeled accurately. The 

test rig consists of the beam, the amplifiers, the sensors, the A/D and D/A cards, and the 

controller. Each individual component’s model can be verified experimentally as follows: 

 

1-The beam 

The natural frequencies of the beam were found by modeling. In order to measure the 

first bending frequency a Rap test should be conducted. The Rap test consists of 

mounting an accelerometer on the beam, hitting the beam with an instrumental hammer 

and monitoring the frequency spectrum. The sensor should be placed such that the 

bending mode is observable and the hammer should hit a place that is controllable to 

excite the bending mode. Therefore the sensor should be placed close to the end of the 

beam and the hammer should impact the beam close to the end as well. Since the pivot 

is in the middle and the beam is not stable by itself, this test is not very easy to conduct 

with out some modifications. In order to stabilize the beam, one can either add two loose 

wires to each end to keep the beam from dropping to one side. Then the beam can 

momentarily be balanced by hand, released and hit by the hammer very quickly. As an 

alternative, two wires can be tightened very close to the pivot in order to prevent its 

movement while also having a low impact on the beam’s first bending mode boundary 

conditions (position and angle in the middle is zero). 
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 Figure 5-11 Beam’s Natural Frequency Test 

 

2-The amplifiers 

The amplifier’s bandwidth can be found by a sine swept test. The sine swept test 

consists of providing the system with a sine wave input and sweeping the frequency of 

the input sine wave over a wide range of frequencies. The output of the system is then 

compared to the input to obtain the frequency spectrum and transfer function of the 

system. In the case of the amplifier, the sine waves should be provided to the control 

input of the amplifier. The amplitude of the sine waves should not be very large in order 

to prevent the amplifier from saturating or exhibiting any other nonlinear behavior. The 

output of the amplifier is the current monitor. This output can be compared to the input to 

obtain the amplifier’s bandwidth and cutoff frequency.  
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 Figure 5-12 Amplifier Bandwidth Test 

 

Figure 5-12 displays the test setup for the sine swept testing of the amplifier with the 

beam shimmed to maintain a fixed nominal airgap. Since the current monitor has a gain 

of 0.2 V/A, the DC output to input ratio is predicted to be -7.9588 dB: 

 

€ 

Output/Input = Amplifier Gain×Current Monitor Gain = 2×0.2 = 0.4

20Log(Output/Input) = 20Log 0.4( ) = −7.9588
 

 

Using the above procedure, the amplifier’s cutoff frequency was determined to be 

approximately 920Hz. Figure 5-14 demonstrates the amplifier’s frequency response for 

frequencies smaller than 500Hz. This figure shows the amplifier’s behavior more 

precisely. The amplitude is normalized and is not logarithmic. The amplifier maintains 

very good precision even for frequencies as high as 500Hz. 
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Figure 5-13 The Amplifier Logarithmic Swept Sine (Shimmed Beam) 

 

 

 Figure 5-14 The Amplifier Swept Sine (Shimmed Beam) 
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3-Sensors 

Dynamic testing of the sensors requires a more sensitive sensor that can measure the 

distance and compare it with the system’s sensors, which was determined to be 

impractical and unnecessary for this work. Therefore the sensors were not dynamically 

tested. The sensor bandwidth stated by the manufacturer is much higher than the 

actuator bandwidths and therefore precise dynamic modeling is not necessary. However 

the sensors were statically tested and calibrated in order to accurately model the 

sensors’ DC gain. In addition to DC gain sensor noise was analyzed. To measure the 

noise level in the sensors, the following test was conducted.  The electromagnets were 

shimmed at the nominal airgap with plastic shims and the sensor signal fed into a signal 

analyzer (Fig 5.15). In order to capture the effect of the electromagnets on the sensors, 

the test should be conducted with the electromagnets energized to the bias current level. 

 

 

Figure 5-15 Sensor Noise Test 

 

The Frequency Analyzer data (Fig. 5-16) depicts the noise in the sensor output. The 

smallest significant noise frequency is about 25 kHz. Two LTC1064-1 anti-aliasing Cauer 

filters are used to filter any noise with frequencies higher than 10kHz, therefore the noise 

in these higher frequencies are of no practical concern. 
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Figure 5-16 Sensor Signal (Electromagnets Are On) 

!
4-Data acquisition cards and the controller software 

In order to test these components a sine sweep test should be conducted. For the first 

test, the derivative portion of the controller (

€ 

Kd ) was set to zero. The input sine wave 

was fed to the A/D card and the output of the D/A card was fed to the frequency 

analyzer. In this way the frequency analyzer can capture the dynamics related to the A/D 

and D/A card as well as the controller software dynamics. 

 

 

Figure 5-17 Data Acquisition and Software Test 
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Since the calculated controller values are closer to 1000, Kp is chosen to be 1000 for the 

Sine swept test.  The expected DC gain can be calculated as: 

 

€ 

Kp

KsKaLse
= 0.5305

 

 

 

Figure 5-18 The Data Acquisition and Controller Swept Sine (No Beam) Frequency 

Response 

 

The test was conducted over a frequency range of 1-5000 Hz and the controller and 

cards exhibit a large cutoff frequency that is more than adequate for our application. To 

examine the dynamics of the low pass filter, a similar test is conducted, but this time with 

€ 

Kp = 0  and 

€ 

Kd =1. The simulated and experimental responses are compared in Figure 

5-19. 
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Figure 5-19 The Data Acquisition and Filter Swept Sine 

 

As can be seen the experimental data follows the simulation quite closely. The lag in 

phase is caused by analog to digital conversion. The sampling frequency of the 

conversion is 10kHz.  
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 Figure 5-20 The Data Acquisition and Filter Swept Sine Frequency Response 

 

Figure 5-20 Shows the Filter frequency response in a higher frequency range (0-10kHz). 

The effect of the digital conversion is clearer in this figure. 

 

5-Open Loop Transfer Function 

This test examines the frequency response of the mechanical and electrical portions of 

the system excluding the controller. The signal analyzer input signal is taken right after 

the controller and the output signal is right before the controller (see Fig. 5-21). The sine-

wave excitation can be injected after the controller but this can result in large vibrations. 

A better place for injecting the sine-wave excitation is just before the controller. By doing 

this the amplitude of the sine-wave excitation can be adjusted to achieve a desirable 

displacement level.  

Originally the experimental data did not match the model very well, but by accounting for 

losses and correcting the number of coil turns, the model was made to agree with the 
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experimental results to a high level of accuracy. To account for the losses, and 

mechanical assembly tolerances, the effective pole face area was reduced to 90% of the 

original design. In addition the actual number of coils were found to be 95, not 110 as 

was originally assumed. 

 

 

 Figure 5-21 Open Loop Test Setup 

 

5-Base 

The base’s dynamics can affect the system response. Therefore the base should be 

rigid enough to avoid this issue. In order to decrease the effect of the base plate even 

more, it was bolted to a concrete block. To measure the effect of the base on system 

measurements, a hammer test was conducted. Since the electromagnetic force is 

exerted on the beam at the actuator location, this was the location chosen for the 

hammer impact. The accelerometer was placed at the sensor location (see Fig. 5-22) 
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 Figure 5-22 Base’s Natural Frequency Test 

 

6-Closed loop transfer function 

Finally a sine sweep test was conducted on the closed loop system. However since the 

balance beam is open loop unstable a controller needs to be running to stabilize the 

system to facilitate the test. For this purpose a PID controller with a low bias current was 

designed. The design process is explained in the next section. 

5.6 PID Controller Design 

In order to verify the system model and obtain the system’s transfer function 

experimentally. The beam needs to be levitated and a sine-sweep test with a signal 

analyzer can be conducted. Initially, a simple controller can be designed to levitate the 

system since the main goal here is to obtain an experimentally validated system model. 

For this purpose, a PID controller was designed. Since the integrator portion of the PID 

controller does not have a significant effect on the system dynamics, a PD controller was 

designed first and the integrator portion was then added on. The balance beam model 

used for this control design process is shown in Figure 5-23.  
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Figure 5-23 The Balance Beam System With a PID Controller 

 

In this system, the D/A and A/D represent the data acquisition cards. Since there is a 

€ 

±10V  voltage limit on the D/A card, if currents greater than 10A are required, the 

amplifier gain needs to be greater than 1.0. For this work, the amplifier gain 

€ 

Ka( )  was 

set to be 2.0. 

€ 

KI  and 

€ 

KX  are the current and displacement force coefficients which are 

defined in Section 3-6. The force coefficients are multiplied with 

€ 

La  (the distance 

between the pivot and the electromagnets) in the block diagram to obtain a torque input 

to the system. T is the torque exerted on the beam. 

€ 

Ks is the sensor gain and 

€ 

Lse  is the 

distance between the sensor and the pivot. For the sensors used in this test rig (MICRO-

EPSILON mictoNCDT 100), 

€ 

Ks is equal to 269 V/in (10.6 V/mm). The sensor output 

should be within 

€ 

±10V  to avoid saturating the A/D card. With a nominal airgap of 30 mils 

for this test rig,this should not be an issue. The PD controller transfer function is: 

 

€ 

PD s( ) = Kd s+Kp                                                                                                             5− 3( ) 

 

The beam’s transfer function can be expressed as: 
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€ 

J ˙ ̇ θ = La Kxx( )+T = La KxLaθ( )+T ⇒
T s( )
θ s( )

=
1

Js2 − La
2Kx

                                                5− 4( )  

 

The closed loop transfer function can be calculated as: 

 

  

€ 

θ s( )
R s( )

=
G s( )

1+ H s( )G s( )
=

Kd s + K p( )LaKi

Js2 − La
2 Kx

1+
Kd s + K p( )LaKi

Js2 − La
2 Kx

=
La Kd s + K p( )Ki

Js2 − La
2 Kx + La Kd s + K p( )Ki

θ s( )
R s( )

=
LaKi Kd s + K p( )

Js2 + LaKiKd s + LaKiK p − La
2 Kx

K 
! " # # $ # # 

                                                                       5−5( )

 

 

As a rule of thumb, 

€ 

Kp  should be chosen such that, 

€ 

La
2Kx < K < 2La

2Kx . These values are 

based on experimental experience. Here, the upper limit 

€ 

2La
2Kx( ) was chosen for the 

balance beam’s closed loop stiffness, such that: 

 

€ 

K = 2La
2 Kx ⇒ LaKiK p − La

2 Kx = 2La
2 Kx ⇒ K p =

3LaKx

Ki

                                             5−6( )  

 

A bias current of 1A was used for this initial PD controller design. A proportional 

controller (

€ 

Kp) value of 612.5 was determined to be suitable for this initial design. With a 

value for 

€ 

Kp is chosen, an appropriate 

€ 

Kd  can be selected to stabilize the system while 

maintaining an appropriate transient response. To estimate the transient response 

characteristics of the system, the characteristic equation 

€ 

Js2 + LaKiKd s + K = 0( ) should 
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be written in the standard form 

€ 

s2 +2ζωn +ωn
2 = 0( ). This estimates the system of Equation 

(5-5) as a standard second order system: 

 

€ 

θ s( )
R s( )

=
ωn

2

s2 + 2ζωn +ωn
2                                                                                                      5− 7( ) 

 

By writing the characteristic equation in standard form, the system’s damping ratio and 

natural frequency can be estimated as: 

 

€ 

ωn =
K 
J

= La
2Kx

J
                                                                                               5−8( )

2ζωn = 2ζLa
2Kx

J
=

LaKiKd

J
⇒ζ =

KiKd

2 2KxJ
                                                        5−9( )

 

 

The important parameters related to transient response are as follows: 

 

€ 

Settling Time Ts( ) ≈ 4
ζwn

                                                                                         5−10( )

Rise Time Tr( ) ≈ 2.5
wn

                                                                                               5−11( )

Peak Time Tp( ) ≈ π
wd

=
π

wn 1−ζ 2
                                                                         5−12( )

Overshoot M p( ) =100e
−

5π

1−ζ 2

                                                                                 5−13( )

 

 

Based on these equations, an appropriate value for 

€ 

ζ  can be selected in order to 

achieve the designed transient response and 

€ 

Kd  can be calculated from Eq. (5-9). 

Unlike a standard second order system (Eq. (5-7)), the system’s transfer function (Eq. 
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(5-5)) has a zero. This ignored zero affects the calculated transient response 

characteristics. As an alternative, the system response can be simulated for different 

values of 

€ 

Kd  to find an optimized 

€ 

Kd  that provides the system with the best transient 

response. In order to facilitate this the rise, settling, and peak times were plotted as a 

function of 

€ 

Kd  in Figure 5-24.  

 

 

 Figure 5-24 The Transient Response Parameters of The Balance Beam 

 

Overshoot as a function of 

€ 

Kd  shown in Figure 5-25 and The step response of the 

system for different 

€ 

Kd  values is shown in Figure 5-26. By examining these 3 figures, a 

suitable value for 

€ 

Kd  was chosen to be 7.0.  
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 Figure 5-25 The Damping and Overshoot of The Balance Beam 

 

 

 Figure 5-26 The Step Response Plot of The Balance Beam 

 

5.7 Low Pass Filter Design 

The controller in this work is a full state controller. Therefore all the states (

€ 

x  and 

€ 

˙ x ) are 

needed for the controller to function. The eddy current sensors provide the position 

information, however there is no direct sensor information related to velocity. An 

observer could be used to estimate the velocity. However to simplify things, the 
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derivative of the position was used instead. The derivative’s transfer function (s) has a 

numerator order of 1, which is larger than the order of the denominator (0). This is not 

physically realizable. In order to obtain realizable derivative, a low pass filter needs to be 

added. In other words, a low pass filter is needed in conjunction with the derivative in 

order to make the order of the denominator greater than or equal to the order of the 

numerator. 

 

€ 

˙ x ≈ s
s

fcut−  off

+1
x                                                                                                          5−14( )  

 

The cutoff frequency of the low pass filter should be designed based on the following 

criteria:  

1-Noise level: noise should be minimized as much as possible; therefore the cutoff 

frequency should be lower than the dominant noise frequencies. 

2-Sampling frequency: The cut-off frequency should be lower than half the sampling 

frequency (Shannon’s sampling theorem). As a rule of thumb the cut-off frequency 

should be at least two times and preferably five times lower than the sampling 

frequency.  

3-Controller bandwidth: The cutoff frequency should be higher than the desired controller 

bandwidth in order to avoid interfering with the controller. The controller’s bandwidth is 

defined by the frequency of the unstable pole of the open loop system. The controller’s 

bandwidth can be estimated as follows: 

 

€ 

Controller's Bandwidth ≈ Kθ

J
                                                                                     5−15( ) 
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Here 

€ 

Kθ  and J are the rotational stiffness and mass moment of inertia of the beam. As a 

rule of thumb the cut-off frequency should be at least two times larger than the 

controller’s bandwidth.  

For this experiment the sampling frequency is 10 kHz, therefore a cut-off frequency less 

than or equal to 2 kHz is desirable. The unstable pole frequency is 45 Hz, therefore the 

cut-off frequency should be larger than 90 Hz. All things considered, a cut-off frequency 

of 1 kHz was deemed appropriate. The overall resulting control structure is depicted in 

Figure 5-27. 

 

 

 Figure 5-27 The Derivative and The L.P.F Blocks 

 

5.8 Electromagnet Calibration 

In order to verify the electromagnet’s behavior, a force test was conducted. Different 

weights were hung from one side of the beam, while the electromagnet on the other side 

used a PID controller to balance the beam in a horizontal position. When the beam 

reached the horizontal position (

€ 

θ=0) the electromagnet’s electric current was recorded. 

This experiment was done for both of the control electromagnets with weights ranging 

from 1 to 40lb’s (see Fig 5-28) 
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Figure 5-28 Experimental Force vs The Expected Force Based on M19 Magnetization 

Data 

 

As can be seen in the figure, the electromagnet forces are significantly different from the 

theoretically predicted force. Therefore, even though the electromagnet cores were 

made out of M-19 silicon iron, the available M-19 magnetization curve was not accurate 

enough and could not be used for this work. Therefore, a more suitable B-H curve 

needed to be generated based on the experimental data. Using Equations 3-4, 3-14, and 

3-22, the following equations were used to calculate B and H from the experimental 

force curves. 

 

€ 

B=
µ0W( )
A

                                                                                                   5−16( )

H =

2g0B
µ0

−NI
# 

$ 
% 

& 

' 
( 

Ls
                                                                                           5−17( )
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Where, W is the weight hung from the beam, A is the electromagnet’s pole face area, N 

is the number of turns in the electromagnet coils, I is the current needed to keep the 

beam in the horizontal position, 

€ 

Ls is the length of the silicon iron in the magnetic circuit, 

and 

€ 

g0  is the airgap. The average of the left and right electromagnet forces were used to 

determine the experimental B-H curve. The resulting curve can be seen in Fig. 5-29.  

 

 

 Figure 5-29 Experimental B-H Curve  

 

The method explained in Chapter 3 was used to formulate the nonlinear force. The 

variable relative permeability for higher flux densities was estimated by curve fitting the 

data (see Fig 5-31). 
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 Figure 5-30 Relative Permeability Curve Fit 

 

In order to find the upper and lower bounds for the Lure system used in control 

synthesis, the experimental force was described by the following equation (see Fig 5-

31). 

 

 

 Figure 5-31 Experimental Average Actuator Force Curve Fit 
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The experimental force equation was used to simulate the total effective force on the 

electromagnet, while the controller actuates both electromagnets. The sector bounds are 

shown in Fig. 5-32. 

 

 

 Figure 5-32 Upper and Lower Bounds For The Effective Electromagnet Force 

 

The corresponding sector bound slopes and other constants are as follows: 
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Based on the new experimental force data and the method introduced in Chapter 4, 

various control designs were synthesized. The controller values to achieve the best 

transient response based on linear, nonlinear, and nonlinear with generalized sector 

conditions system models are listed in Table 5-5: 

 

 Table 5-5 CONTROL PARAMETERS FOR THE BEST TRANSIENT RESPONSE 

 Linear Nonlinear Generalized 
Kp 976.4 2752 2651 
Kd 5.260 11.90 10.38 

 

The controller values designed for disturbance rejection for both linear and nonlinear 

models is listed in Table 5-6. Combination of the generalized sector and disturbance 

tolerance conditions might not be convex to the author’s knowledge. Therefore, In the 

design for disturbance rejection just the regular sector condition is used.  

 

Table 5-6 CONTROL PARAMETERS FOR DISTURBANCE REJECTION 

 Linear Nonlinear 
Kp 1108 2712 
Kd 7.76 15.26 

 

The Ki value was deliberately chosen to be small (Ki=100) and an anti-windup saturation 

function with upper and lower values of 10 was used to prevent potential windup. The 

small Ki guarantees a minimal effect on the dynamics of the system and therefore less 

variation from the intended control design.  

5.9 Transient response Simulation vs Experiment 

Using the test rig setup, the 3 different controllers were used to balance the beam. After 

the beam settled to its new equilibrium position, a reverse step (back to a reference of 
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zero) was conducted. These step response tests were conducted for 5 different step 

amplitudes (2, 4, 6, 8, and 10mils). And the full set of the step tests were conducted with 

each of the three controllers (linear, nonlinear, and generalized). The step values 

correspond to displacements in the sensor location. For instance, the first reference step 

amplitude of 2 commanded the beam to move +2 mils at the sensor location. After the 

beam settled to the new position, the reference demand was returned to zero and the 

beam returned to horizontal position. 

In order to improve the simulations accuracy, the difference in the left and right 

electromagnet forces should have been taken into account. The experimental force data 

shows that Actuator 1’s force is 108% and Actuator 2’s force is 93% of the average force 

that was used for control synthesis.  

 

 

 Figure 5-33 Left and Right Electromagnets’ Force Deviation From The Average Force 

 

After making this adjustment the experiment, and simulation are in very good 

agreement. As an example, the simulation and experimental data comparison for a 
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reference step amplitude of 4mils is shown in Figures 5-34 to 5-42. The graphs are 

shown in different time spans to emphasize both the fast transient behavior and longer-

term response. The simulation and experimental comparison for all other step functions 

can be found in the appendix. 

 

 

 Figure 5-34 Linear Controller Transient Response (Time-span 0.05s) 

 

 Figure 5-35 Linear Controller Transient Response (Time-span 0.2s) 
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 Figure 5-36 Linear Controller Transient Response (Time-span 10s) 

 

 

 Figure 5-37 Nonlinear Controller Transient Response (Time-span 0.05s) 
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 Figure 5-38 Nonlinear Controller Transient Response (Time-span 0.2s) 

 

 

 Figure 5-39 Nonlinear Controller Transient Response (Time-span 10s) 

 



! 140!

 

 Figure 5-40 Generalized Sector Controller Transient Response (Time-span 0.05s) 

 

 

 Figure 5-41 Generalized Sector Controller Transient Response (Time-span 0.2s) 
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 Figure 5-42 Generalized Sector Controller Transient Response (Time-span 10s) 

 

As can be seen from the figures, the controllers designed based on nonlinear and 

generalized sector models show a significant transient response improvement over the 

controller designed based on the conventional linear model. Figures 5-44 and 5-45 

compare the transient response of the linear, nonlinear, and generalized sector 

controllers. The nonlinear and generalized sector controllers exhibit  identical rise times, 

which is 17% faster than the linear controller. 

 

 Figure 5-43 Transient Response Comparison (4 mils step) 
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The linear, nonlinear, and generalized sector controllers’ overshoot are 130%, 39%, and 

38%, respectively. Using the nonlinear controller dramatically reduces the system’s 

overshoot.  

 

 

 Figure 5-44 Transient Response Comparison (4 mils step) 

5.10 Disturbance Rejection Simulation vs. Experiment 

Perhaps the most practically important advantage of using the proposed nonlinear 

controller is in dealing with unexpected external disturbances. A controlled external 

disturbance was imposed on the beam by using a third electromagnet (disturbance 

electromagnet). This electromagnet was located closer to the end of the beam than the 

two control electromagnets.  

In order to use the disturbance electromagnet to exert a desired disturbance force, it was 

first necessary to calibrate this actuator. The calibration procedure was conducted in the 

following manner. Different weights were hung on the opposite side of the beam and the 

disturbance electromagnet with a PID controller was used to stabilize the beam at 

various gaps. At each position the corresponding current was recorded (see Fig 5-45). 

And from the resulting dataset a lookup table between force and position inputs and 
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current output was developed. The lookup table was then used to deliver a desired 

disturbance force by looking up the current level required to meet this desired force for 

the given instantaneous gap measure via the position sensors. 

 

 

 Figure 5-45 The Disturbance Electromagnet’s Experimental Force Data 

 

In Fig. 5-45 each curve represents the force versus control current at one position, and 

the beam positions were measured from the disturbance electromagnet.  

By solving the optimization problem described in Section 4-5, the guaranteed maximum 

disturbance energy that the linear and nonlinear systems could tolerate, were found to 

be 10, and 43 consecutively. Therefore, a range of disturbances with the energy of 10 

and 43 were imposed on the beam in order to validate each control synthesis method. 

Six different impulse disturbances with different durations and amplitudes were imposed 

on the beam by the disturbance electromagnet and the experiments were compared with 

simulation (see Table 5-7). 
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Table 5-7 DISTURBANCE ENERGIES, AMPLITUDES, AND DURATIONS 

 Duration1 
(Sec) 

Amplitude1 
(N) 

Duration2 
(Sec) 

Amplitude2 
(N) 

Duration3 
(Sec) 

Amplitude3 
(N) 

10 
(Energy) 

0.01 31.6 0.05 14.1 0.1 10 

43 
(Energy) 

0.01 65.6 0.05 29.3 0.1 20.7 

 

Both linear and nonlinear controllers were tested with all six impulse disturbances listed 

in Table 5-7, and the experimental data was compared with simulation results. As an 

example, the linear and nonlinear system’s response to an impulse with an energy of 43 

and duration of 0.1s is depicted in Figures 3-47 and 3-48. The experimental data and 

simulation results for other disturbance impulses can be seen in the Appendix B.  

 

 

 Figure 5-46 The Linear Controller’s Response to Disturbance 

€ 

E = 43, Δt = 0.1s( )  

 



! 145!

 

 Figure 5-47 The Nonlinear Controller’s Response to Disturbance 

€ 

E = 43, Δt = 0.1s( )  

 

As can be seen from these figures, the simulation and experimental data are in very 

good agreement. The use of the nonlinear controller significantly improves the system’s 

response to an external disturbance. Figure 5-48 shows the beam’s response to all three 

impulses with the energy of 43 and compares the responses of the linear and nonlinear 

controllers. The displacements were recorded at the sensor location. The gap between 

the sensor stand and the beam was 15 mils, and as can be seen from the figure, an 

impulse with the energy of 43 

€ 

Δt = 0.01s( )  caused the beam to hit the sensor stand. The 

same disturbance impulse resulted in the system with the nonlinear controller to move 

just under 6 mils. 
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 Figure 5-48 System Response to An External Disturbance Energy of 43 

 

The linear and nonlinear controllers were also compared for a disturbance energy of 10 

(see Fig. 5-49).  

 

 

Figure 5-49 System Response to An External Disturbance Energy of 10 
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As can be seen from this figure, using the controller synthesized based on the nonlinear 

model, reduced the vibration amplitude by about 3 times compared with the controller 

designed based on the linear model. 

5.11 Set-point weighting 

As can be seen, for a number of the test cases the transient response has a very large 

overshoot.  This overshoot is caused by the PID’s derivative response to the step 

change in the reference demand.  This large overshoot issue can be resolved by 

implementing set-point weighting.  The conventional form of the PID controller used here 

for simulation is: 

 

€ 

u t( ) = Kpe t( )+Ki e τ( )dτ0
t
∫ +Kd

de t( )
dt

     e t( ) = r t( )− y t( )                                      5−18( ) 

 

As a solution for the overshoot problem, a widely accepted control structure that includes 

set-point weighting and derivative weighting can be used [Åström and Hägglund (1995)]: 

 

€ 

u t( ) = Kp br t( )− y t( )( )+Ki r t( )− y t( )( )dτ0
t
∫ +Kd

d cr t( )− y t( )( )
dt

                           5−19( ) 

 

 Here b and c are additional parameters that provide the controller with two extra 

degrees of freedom. The integral term must be directly based on error feedback without 

weighting to ensure the desired steady state. Since the weighting is implemented on the 

reference value, the controllers obtained with different values of b and c respond to 

disturbances and measurement noise in the same way as a conventional PID controller. 

While b and c can have any value between 0 and 1 commonly b is chosen to be 0.5 and 

c is chosen to be zero. Decreasing the value of b reduces the system’s overshoot. 

As an example a step reference of 4 mills (see Figures 8-10 to 8-12 and 8-35 to 8-37) is 

chosen to practice the set-point weighting. Figures 1 and 2 compare the linear model 

controller with and with out set point weighting. Here c is chosen to be 0 and b is chosen 

to be 0.5 using the set-pint weighting decreases the overshoot from about 137% to just 

17%. 
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Figure 5-50 Set-point weighting effect on the linear model’s transient response 

 

Figure!5I51!Comparing linear systems with and without set-point weighting 
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Figures 3 and 4 study the effect of set-point weighting on the controller based on the 

nonlinear model.  Here the goal is a combination of fast rise time and small overshoot. 

Choosing a value of 0.5 for the b parameter results in a significant undershoot. 

Therefore, while c is chosen to be 0 again, a larger value for b (0.85) was chosen this 

time. Again set-point weighting reduces the overshoot significantly (from 60% to about 

5%. 

 
Figure 5-52 Set-point weighting effect on the nonlinear model’s transient response 
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Figure 5-53 Comparing nonlinear systems with and without set-point weighting 

 

0 0.02 0.04 0.06 0.08 0.1
0
2
4
6
8

10
12

Time (s)

Am
pl

itu
de

 (m
ils

)  
I1

&I
2 

(A
) Transient Response (Nonlinear 0−4)

 

 
Amplitude
Current 1
Current 2

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

Time (s)

Am
pl

itu
de

 (m
ils

)  
I1

&I
2 

(A
) Transient Response with sepoint weighting (Nonlinear 0−4)

 

 
Amplitude
Current 1
Current 2



! 151!

6 Conclusion and future work 

 

6.1 Conclusions 

Based on the results obtained from the balance beam test rig, a few general conclusions 

can be drawn: 

 

• Very good correlation was obtained between the experimental data and theoretical 

predictions. Initial discrepancies were corrected by following a rigorous experimental 

model and parameter identification procedure.  

 

• In comparison to classical control design, a significantly improved transient response 

was achieved through the use of the proposed modeling and control design. This 

was demonstrated by a 17% faster rise time and a more than 90% decrease in 

overshoot. 

 

• In comparison to classical control design, significant performance improvement in the 

form of a higher dynamic load capacity was achieved through the use of the 

proposed nonlinear modeling and LMI method for control synthesis. This was 

exemplified by the ability of the system to maintain stability and dissipate impulse 

disturbances with 4 times the energy compared with that achievable by traditional 

linear control design. 

 

• The proposed method significantly reduces the system’s unwanted vibration 

amplitude compared to classical designs. This can be seen in the system’s reaction 
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to a step disturbance. In all cases, the vibration amplitude is reduced by a factor of at 

least 2. 

 

• The control synthesis based on the nonlinear model with a generalized sector 

condition offered little or no performance improvement over the control synthesis 

based on the nonlinear model with a regular sector condition for the problem 

considered. Despite this fact, using the generalized sector condition was proven to 

be necessary to guarantee a less conservative design compared to classical control 

design. This was demonstrated by the analysis of control designs for the balance 

beam system with different airgaps. 

 

• The uncertainty descriptions developed in this work were appropriate and because of 

the use of the generalized sector condition, not overly conservative. This was 

demonstrated by good experimental and theoretical performance correlations and 

the performance improvements.  

 

• The main contribution of this work can be summarized as:  A combined approach for 

modeling and control of magnetic bearing that optimally uses the extra load 

capability within the nonlinear magnetization region was proposed in this work for the 

first time. Various optimized controllers with different objectives were designed using 

the extra load capability and the designed controllers were experimentally tested and 

showed almost perfect coloration with the simulation. 

 

 

6-2 Future work 
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6-2-1-Modeling and simulation 

The individual component models were carefully developed which resulted in a good 

correlation between simulation and experimental data. Nevertheless, addressing a few 

uncertainty and simulation issues can ensure higher performance control designs and 

even better correlation between simulation and experiment. 

 

• The airgap was by far the most influential factor in control synthesis, the measured 

airgap value varied by 2 mils in the test rig. This variation was due to measurement 

errors, uneven surface of the target lamination, and slight movement of the target 

lamination due to a few impacts with the electromagnets during the experiment. 

Modeling this uncertainty guarantees high performance and better correlation 

between simulation and test data. 

 

• The base’s dynamic was not modeled in the simulation and slightly affected the 

experimental data. Using a more rigid base or modeling the base’s dynamics, would 

yield a slightly better correlation between the experimental and simulation data. 

 

• The disturbance force was generated by using a lookup table. While the lookup table 

was created based on experimental data and had an acceptable accuracy, using a 

closed loop controller with flux feedback could possibly yield a more accurate 

disturbance force and a better correlation between simulation and experimental data. 

 

6-2-2-Performance improvement 

In most cases the experiment exhibits similar or better rise time, and peak vibration 

amplitude compared to the simulation, but almost always it demonstrates a longer 

settling time. This is caused by the low amplitude vibrations in the system with 20 Hz 
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and 55Hz frequencies. We suspect these vibrations to be caused by the base’s 

dynamics and the noise in the system.  

 

• The substructure modes are due to the balance beam’s base design. By stiffening 

the base, the substructural modes can be pushed up in frequency. This in turn can 

reduce their effect on the settling time. 

 

• Noise can be a significant deterrent to increased system performance and all 

possible means of reducing noise should be perused. Using shielded cables and a 

carefully implemented grounding system were measures taken to perform noise 

reduction. But further improvements were still possible. A significant source of noise 

in the system was the amplifier’s switching frequency (in this case 25kHz). Using an 

amplifier with higher switching frequency could yield to a minor improvement in 

noise. Also the amplifier’s electric ground was not isolated from the sensors’ 

grounds, a better isolation could improve the noise. A high order low pass Cauer 

filter could be considered as another option to reduce the system’s noise level, but 

this decision should be made carefully. Increasing the order of the filter can introduce 

an unwanted phase lag, which has a negative impact on the control system.  

 

6-2-3-Considering other factors 

Integrating other design factors into the current control synthesis can possibly improve 

the system’s performance. 

 

• Due to the nature of the LMI method, just the values for 

€ 

Kp and 

€ 

Kd  were optimized 

in the control synthesis and the 

€ 

KI  value was chosen experimentally. Optimizing 

€ 

KI  
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makes the system more complex, but it is possible and may improve the overall 

performance of the system.  

 

• In this work the nonlinearity in the electromagnets’ magnetization and the 

nonlinearity in the electromagnet force due to electric current is addressed 

comprehensively. While the nonlinearity in force due to the airgap is only addressed 

via the sector bound, and was not modeled comprehensively. Modeling this 

nonlinearity would yield to a more accurate system model and in turn a potentially 

higher performance capability. 

 

• The proposed experiment mimics the behavior of a thrust magnetic bearing. Similar 

experiments could be done in the future to improve performance of a radial bearing 

and prove the effectiveness of the proposed method. 

 

• The balance beam core and target magnetic material was laminated, and therefore 

the eddy current effect was negligible. However because of lack of laminations in 

thrust magnetic bearings this effect should be considered in modeling and control 

synthesis. 

 

• Finally, while the balance beam test rig was ideal for the proof of concept. Future 

experiments on thrust and radial bearings should be done for practical 

implementation of the proposed method. Later a small prototype of the energy 

storage flywheel should be built for proof of concept. 
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8 Appendix 

Appendix A 
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Figure 8-1 Amplifiers Produced by Apex 

 
Appendix B 



! 163!

  
 Figure 8-2 Electromagnet Related Dimensions 
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 Figure 8-3 Target Lamination and Target Lamination Holder Dimensions 
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Figure 8-4 Pivot, Pivot Plate and Sensor Stand Dimensions 
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 Figure 8-5 Beam Dimensions 
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 Figure 8-6 Distance Between The Parts 
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In this section first the balance beam’s transient response to different step functions is 
compared with simulation. Later the balance beam’s response to various impulse 
disturbances is compared with simulation as well. 
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Figure 8-7 Linear Controller Transient Response to Step 0-2 (Time-span 10s) 

 
Figure 8-8 Linear Controller Transient Response to Step 0-2 (Time-span 0.2s) 

 
Figure 8-9 Linear Controller Transient Response to Step 0-2 (Time-span 0.05s) 
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Figure 8-10 Linear Controller Transient Response to Step 0-4 (Time-span 10s) 

 
Figure 8-11 Linear Controller Transient Response to Step 0-4 (Time-span 0.2s) 

 
Figure 8-12 Linear Controller Transient Response to Step 0-4 (Time-span 0.05s) 
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Figure 8-13 Linear Controller Transient Response to Step 0-6 (Time-span 10s) 

 
Figure 8-14 Linear Controller Transient Response to Step 0-6 (Time-span 0.2s) 

 
Figure 8-15 Linear Controller Transient Response to Step 0-6 (Time-span 0.05s) 
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Figure 8-16 Linear Controller Transient Response to Step 0-8 (Time-span 10s) 

 
Figure 8-17 Linear Controller Transient Response to Step 0-8 (Time-span 0.2s) 

 
Figure 8-18 Linear Controller Transient Response to Step 0-8 (Time-span 0.05s) 
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Figure 8-19 Linear Controller Transient Response to Step 0-10 (Time-span 10s) 

 
Figure 8-20 Linear Controller Transient Response to Step 0-10 (Time-span 0.2s) 

 
Figure 8-21 Linear Controller Transient Response to Step 0-10 (Time-span 0.05s) 
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Figure 8-22 Linear Controller Transient Response to Step 2-0 (Time-span 10s) 
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Figure 8-23 Linear Controller Transient Response to Step 4-0 (Time-span 10s) 

 
Figure 8-24 Linear Controller Transient Response to Step 4-0 (Time-span 0.2s) 

 
Figure 8-25 Linear Controller Transient Response to Step 4-0 (Time-span 0.05s) 
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Figure 8-26 Linear Controller Transient Response to Step 6-0 (Time-span 10s) 

 
Figure 8-27 Linear Controller Transient Response to Step 6-0 (Time-span 0.2s) 

 
Figure 8-28 Linear Controller Transient Response to Step 6-0 (Time-span 0.05s) 
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Figure 8-29 Linear Controller Transient Response to Step 8-0 (Time-span 10s) 

 
Figure 8-30 Linear Controller Transient Response to Step 8-0 (Time-span 0.2s) 

 
Figure 8-31 Linear Controller Transient Response to Step 8-0 (Time-span 0.05s) 
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Figure 8-32 Nonlinear Controller Transient Response to Step 0-2 (Time-span 10s) 

 
Figure 8-33 Nonlinear Controller Transient Response to Step 0-2 (Time-span 0.2s) 

 
Figure 8-34 Nonlinear Controller Transient Response to Step 0-2 (Time-span 0.05s) 
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Figure 8-35 Nonlinear Controller Transient Response to Step 0-4 (Time-span 10s) 

 
Figure 8-36 Nonlinear Controller Transient Response to Step 0-4 (Time-span 0.2s) 

 
Figure 8-37 Nonlinear Controller Transient Response to Step 0-4 (Time-span 0.05s) 
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Figure 8-38 Nonlinear Controller Transient Response to Step 0-6 (Time-span 10s) 

 
Figure 8-39 Nonlinear Controller Transient Response to Step 0-6 (Time-span 0.2s) 

 
Figure 8-40 Nonlinear Controller Transient Response to Step 0-6 (Time-span 0.05s) 
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Figure 8-41 Nonlinear Controller Transient Response to Step 0-8 (Time-span 10s) 

 
Figure 8-42 Nonlinear Controller Transient Response to Step 0-8 (Time-span 0.2s) 

 
Figure 8-43 Nonlinear Controller Transient Response to Step 0-8 (Time-span 0.05s) 



! 182!

 
Figure 8-44 Nonlinear Controller Transient Response to Step 0-10 (Time-span 10s) 

 
Figure 8-45 Nonlinear Controller Transient Response to Step 0-10 (Time-span 0.2s) 

 
Figure 8-46 Nonlinear Controller Transient Response to Step 0-10 (Time-span 0.05s) 



! 183!

 
Figure 8-47 Nonlinear Controller Transient Response to Step 2-0 (Time-span 10s) 

 
Figure 8-48 Nonlinear Controller Transient Response to Step 2-0 (Time-span 0.2s) 

 
Figure 8-49 Nonlinear Controller Transient Response to Step 2-0 (Time-span 0.05s) 
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Figure 8-50 Nonlinear Controller Transient Response to Step 4-0 (Time-span 10s) 

 
Figure 8-51 Nonlinear Controller Transient Response to Step 4-0 (Time-span 0.2s) 

 
Figure 8-52 Nonlinear Controller Transient Response to Step 4-0 (Time-span 0.05s) 
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Figure 8-53 Nonlinear Controller Transient Response to Step 6-0 (Time-span 10s) 

 
Figure 8-54 Nonlinear Controller Transient Response to Step 6-0 (Time-span 0.2s) 

 
Figure 8-55 Nonlinear Controller Transient Response to Step 6-0 (Time-span 0.05s) 
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Figure 8-56 Nonlinear Controller Transient Response to Step 8-0 (Time-span 10s) 

 
Figure 8-57 Nonlinear Controller Transient Response to Step 8-0 (Time-span 0.2s) 
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Figure 8-58 Nonlinear Controller Transient Response to Step 8-0 (Time-span 0.05s) 

 
Figure 8-59 Nonlinear Controller Transient Response to Step 10-0 (Time-span 10s) 

 
Figure 8-60 Nonlinear Controller Transient Response to Step 10-0 (Time-span 0.2s) 
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Figure 8-61 Nonlinear Controller Transient Response to Step 10-0 (Time-span 0.05s) 

 
Figure 8-62 Generalized Sector Nonlinear Controller Transient Response to Step 0-2 

(Time-span 10s) 
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Figure 8-63 Generalized Sector Nonlinear Controller Transient Response to Step 0-2 

(Time-span 0.2s) 
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Figure 8-64 Generalized Sector Nonlinear Controller Transient Response to Step 0-2 

(Time-span 0.05s) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



! 191!

 
Figure 8-65 Generalized Sector Nonlinear Controller Transient Res.. to Step 0-4 (Time-

span 10s) 

 
Figure 8-66 Generalized Sector Nonlinear Controller Transient Res. to Step 0-4 (Time-

span 0.2s) 
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 Figure 8-67 Generalized Sector Nonlinear Controller Trans. Res. to Step 0-4 (Time-

span 0.05s) 

 
Figure 8-68 Generalized Sector Nonlinear Controller Transient Res. to Step 0-6 (Time-

span 10s) 
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Figure 8-69 Generalized Sector Nonlinear Controller Transient Res. to Step 0-6 (Time-

span 0.2s) 

 
Figure 8-70 Generalized Sector Nonlinear Controller Trans. Res. to Step 0-6 (Time-span 

0.05s) 
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Figure 8-71 Generalized Sector Nonlinear Controller Transient Resp. to Step 0-8 (Time-

span 10s) 

 
Figure 8-72 Generalized Sector Nonlinear Controller Transient Res. to Step 0-8 (Time-

span 0.2s) 
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Figure 8-73 Generalized Sector Nonlinear Controller Trans. Res. to Step 0-8 (Time-span 

0.05s) 

 
Figure 8-74 Generalized Sector Nonlinear Controller Transient Res. to Step 0-10 (Time-

span 10s) 
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Figure 8-75 Generalized Sector Nonlinear Controller Trans. Res. to Step 0-10 (Time-

span 0.2s) 

 
Figure 8-76 Generalized Sector Nonlinear Controller Trans. Res. to Step 0-10 (Time-

span 0.05s) 
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Figure 8-77 Generalized Sector Nonlinear Controller Transient Res. to Step 2-0 (Time-

span 10s) 

 
Figure 8-78 Generalized Sector Nonlinear Controller Transient Res. to Step 2-0 (Time-

span 0.2s) 
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Figure 8-79 Generalized Sector Nonlinear Controller Trans. Res. to Step 2-0 (Time-span 

0.05s) 

 
Figure 8-80 Generalized Sector Nonlinear Controller Transient Res. to Step 4-0 (Time-

span 10s) 
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Figure 8-81 Generalized Sector Nonlinear Controller Transient Res. to Step 4-0 (Time-

span 0.2s) 

 
Figure 8-82 Generalized Sector Nonlinear Controller Trans. Res. to Step 4-0 (Time-span 

0.05s) 
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Figure 8-83 Generalized Sector Nonlinear Controller Transient Res. to Step 6-0 (Time-

span 10s) 

 
Figure 8-84 Generalized Sector Nonlinear Controller Transient Res. to Step 6-0 (Time-

span 0.2s) 
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Figure 8-85 Generalized Sector Nonlinear Controller Trans. Res. to Step 6-0 (Time-span 

0.05s) 

 
Figure 8-86 Generalized Sector Nonlinear Controller Transient Res. to Step 8-0 (Time-

span 10s) 
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Figure 8-87 Generalized Sector Nonlinear Controller Transient Res. to Step 8-0 (Time-

span 0.2s) 

 
Figure 8-88 Generalized Sector Nonlinear Controller Transi. Res. to Step 8-0 (Time-

span 0.05s) 
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Figure 8-89 Generalized Sector Nonlinear Controller Transient Res. to Step 10-0 (Time-

span 10s) 

 
Figure 8-90 Generalized Sector Nonlinear Controller Trans. Res. to Step 10-0 (Time-

span 0.2s) 
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Figure 8-91 Generalized Sector Nonlinear Controller Trans. Res. to Step 10-0 (Time-

span 0.05s) 

 
Figure 8-92 The Linear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-93 The Linear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-94 The Linear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-95 The Linear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-96 The Linear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-97 The Linear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-98 The Linear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-99 The Linear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-100 The Linear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-101 The Linear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-102 The Linear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-103 The Linear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-104 The Nonlinear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-105 The Nonlinear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-106 The Nonlinear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-107 The Nonlinear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-108 The Nonlinear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-109 The Nonlinear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-110 The Nonlinear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-111 The Nonlinear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-112 The Nonlinear Controller’s Disturbance Response (Time Span 0.5s)
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Figure 8-113 The Nonlinear Controller’s Disturbance Response (Time Span 10s)
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Figure 8-114 The Nonlinear Controller’s Disturbance Response (Time Span 0.5s)
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