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Abstract

Networks or graphs represent the relationships or interactions among entities and

provide valuable information about the underlying data generating systems. Network

data can be observed alone or accompanied by other forms of data, and in both cases,

network data can be effectively leveraged to learn the underlying structures of the

data. In this thesis, we consider both cases. First, when only the network data

alone are observed, an unanswered question in statistical network analysis is how

researchers should identify the informative component of the network data and filter

out the noises. We address this problem in Chapter 2. Second, we consider the

problem of integrating network data with other data modalities in the context of

topic modeling in Chapter 3.

In statistical network analysis, an important task is using statistical models to

describe the underlying structures. However, in practice, the structure of model-

ing interest is usually hidden in a larger network in which most structures are not

informative. The noise and bias introduced by the non-informative component in

networks can obscure the salient structure and limit many network modeling proce-

dures’ effectiveness. In Chapter 2, we introduce a novel core-periphery model for the

non-informative periphery structure of networks without imposing a specific form for

the informative core structure. Based on the model, we propose spectral algorithms

for core identification as a data preprocessing step for general downstream network
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analysis tasks. The algorithm enjoys a strong theoretical guarantee of accuracy and

is scalable for large networks. We evaluate the proposed method by extensive simula-

tion studies demonstrating various advantages over many traditional core-periphery

methods. The method is applied to extract the informative core structure from a

citation network and give more informative results in the downstream hierarchical

community detection.

Next, in Chapter 3, we consider the problem of incorporating network data into

topic models. We develop a topic model that incorporates document-level features

and citation networks. To the best of our knowledge, compared with existing topic

models that also incorporate the document-level features, our model takes into ac-

count two different types of causal relations between the document-level features and

the topic distributions. In addition, no existing topic models were able to incorporate

both network data and document-level features. We compare our proposed model

to existing topic models on the same data set in terms of several automated topic

model evaluation metrics. We showed that our proposed model could simultaneously

achieve high held-out likelihood, coherence, and stability. Specifically, the inclusion

of network data offers an improvement in topic stability.
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Chapter 1

Introduction

Network data, representing interactions and relationships between units, have be-

come ubiquitous with the rapid development of science and technology. Analyzing

such complex and structurally novel data has resulted in a rich body of new ideas

and tools in physics, mathematics, statistics, computer science, and social sciences

(Strogatz, 2001; Albert and Barabási, 2002; Newman, 2003). In particular, given that

complex network structures are typically noisy and complicated, treating the network

as a random instantiation of a probabilistic model has been widely used to learn the

structural properties while ignoring unnecessary noisy details. This approach can be

traced back as early as the work of Erdös (1959). Later work of Aldous (1981); Hoover

(1979) further set up foundations and frameworks for more flexible random network

modeling. More recently, significant progress has been achieved to make network

analysis more computationally efficient, and scientifically interpretable with theoret-

ical guarantees (Albert and Barabási, 2002; Hoff et al., 2002; Bickel and Chen, 2009;

Zhao et al., 2012; Newman, 2016a; Gao et al., 2017; Athreya et al., 2017; Mukherjee

et al., 2018).

A network consists of nodes, or vertices, that are interconnected by a set of edges.
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The nodes represent entities we want to model, and edges represent these entities’

relations or interactions. A network can be directed or undirected depending on

whether the edges have directions. We can also assign weights to the edges. These

weights can represent the edges’ cost, length, or importance. Examples include the

World Wide Web (Broder et al., 2000), in which nodes are web pages and edges are

hyperlinks that point from one page to another; the social network (Newman, 2016b),

in which the nodes represent individuals, and the edges represent social connections;

the coauthorship or citation network (Ji and Jin, 2016), in which the nodes are authors

or academic papers, and the edges represent the coauthorship or citations.

One important task in network analysis is to accurately characterize the structure

of a given network. As pointed out by Strogatz (2001), the structure of a network

always affects its function. For instance, the topology of social networks affects the

spread of information and disease. The popular notion of “six degrees of separa-

tion” refers to the finding that the mean geodesic distance between node pairs in

a social network is small (Milgram, 1967). Another example is the transportation

network. Nowadays, as a result of economic considerations and political relations

between different regions, most airlines employ a hub-and-spoke philosophy, in which

passengers are routed through a few hub airports (Verma et al., 2016). Perhaps the

most well-studied network structure is the community structure (Fortunato, 2010), in

which nodes in a graph are partitioned into clusters that are densely interconnected.

In contrast, connections between different clusters are relatively sparser. A variety

of models and algorithms have been proposed to address the problem of community

detection in networks (Girvan and Newman, 2002; Karrer and Newman, 2011; Qin

and Rohe, 2013; Jin, 2015).

Furthermore, in many statistical analysis tasks, network data are available, and

incorporating such network data may improve the quality of the analysis. Various ap-
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proaches have been proposed to utilize network data to improve topic modeling (Liu

et al., 2009; Lim and Buntine, 2015; Lim et al., 2016). For example, in prediction

models where network cohesion is present, Li et al. (2019) proposed a network-based

penalty to encourage similarities between linked data points and showed that it leads

to improved performance both theoretically and empirically. Another example is

topic modeling: topic model is a machine learning technique for modeling a collection

of text documents, and in many topic modeling tasks, in addition to the text docu-

ments, metadata is also available. These metadata include the authors, publication

year, publication venue of the documents, and a network linking pairs of documents

together, such as a citation network or a Twitter network.

In this thesis, we first focus on the problem of identifying the informative struc-

tures in a given network. Specifically, we assume that only part of the network has a

non-trivial structure and is therefore of modeling interest. In contrast, the remaining

part consists of pure noises. We use a core-periphery structure to represent this type

of network, where the core component is the informative part, and the periphery

component is the non-informative part. Then, we proposed an algorithm for finding

the core component in a given network. We also conducted a theoretical analysis to

establish performance guarantees for our proposed methods under mild assumptions.

Our proposed method is then validated through extensive simulation studies and an

application to a real-world data set, the Statistics Paper Citation Network (Ji and

Jin, 2016; Wang et al., 2016).

Next, we focus on incorporating network data into standard statistical model-

ing tasks. Specifically, we focus on topic modeling of the same statistics paper data

set. We developed a topic model for this data set that incorporates document-level

features, such as the papers’ publication time and venues and the citation network

among these academic papers. We applied our topic model to analyze the abstracts of
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the papers in the data set. We employed Laplacian approximation and stochastic EM

algorithm for model fitting. Our estimation algorithm converges to meaningful pa-

rameter estimates. We considered several automated topic model evaluation metrics

to evaluate our model and compare it to other existing topic models.

Statistics Papers with Citation Network Data Set

In this thesis, we will primarily focus on analyzing the statistics papers with citation

network data set collected by Ji and Jin (2016). This data set contains all statistics

papers published in four of the top journals in statistics from 2003 to the first half of

2012.

There are in total 3248 papers in this data set. For each paper in the data set, we

have the abstract, several document-level features, such as authors, keywords, DOI,

publication year, and publication journal. The citation network among these papers

is also available. Each node of the network is a paper, and two nodes are connected if

one paper cited the other. We ignored the citation direction, so the citation network

is symmetrized. The average node degree in this network is 3.52. There are also 778

isolated nodes in this network, which are papers that neither cite nor receive citations

from other papers in the data set.

Notations

We use capital boldface letters such as M to denote matrices. Given a matrix M ,

Mi,∗, M∗,j, and Mi,j are the i-th row, j-th column, and (i, j)-th entry, respectively.

Let ‖M‖F , ‖M‖2, ‖M‖2,∞ be the Frobenius norm, the spectral norm, the two-to-

infinity norm (maximum Euclidean norm of rows) of M , respectively. In particular,

we use Id to denote the d × d identity matrix, and 1d to denote the d × 1 vector

whose entries are all 1. Let rank(M) be the rank of M , and M t be the transpose of
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M . Let [l] be the index set {1, 2, ..., l}. Let Op1,p2 be the set of p1× p2 matrices with

orthonormal columns, and let Op be the shorthand for Op,p. For any two positive

sequences {an} and {bn}, we say an � bn if there exists a positive constant C such

that an ≤ Cbn for sufficiently large n; an � bn if −an � bn; an ' bn if an � bn and

an � bn; an � bn if for an arbitrarily large C > 0, an > Cbn for sufficiently large n.



6

Chapter 2

Identifying Informative

Components in Complex Networks

2.1 Introduction

Though many existing network analysis methods have been used to solve significant

problems in different fields, empirically, they sometimes fail to learn structural infor-

mation effectively. This is because most network models assume a particular type

of structure of interest. However, one issue that complicates matters in practice is

the scarcity of interesting or informative structures in large-scale networks. In other

words, the presumed structure of interest may only be valid for a subnetwork, while

the rest of the network may be noninformative. For example, it is observed by Ugan-

der et al. (2013) that the first few moments in 100 Facebook subnetworks are very

similar to the Erdös-Renyi model. Moreover, Gao and Lafferty (2017) tested these

networks, observing that most of them show no evident difference from purely random

connections and admit no interesting structure. For another example, preprocessing

was applied in Wang et al. (2016); Li et al. (2020c,a) to remove a subset of nodes
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before applying community detection algorithms. Such preprocessing is reported as

a crucial step for successful community analysis. In these analyses, the networks un-

der study were assumed to have a core-periphery structure, and the k-core pruning

algorithm (Seidman, 1983) was applied to the networks, which effectively removes

low-degree nodes, to separate the core from the periphery. Subsequent analysis was

then focused only on the core component. The motivation is that only the core compo-

nent contains the structure of modeling interest, while the periphery consists of only

noises. In addition, the presence of the periphery can undermine the performance of

standard statistical analysis tools.

To illustrate the effect of including the periphery in the network, in Figure 2.1,

we consider two examples in which the core components contain non-trivial network

structures, while the periphery is generated from Erdös–Rényi model. In the first

example, we plot the top eigenvalues of the random network. The core network has

rank three. Hence, when the signal-to-noise ratio is manageable, we would observe a

large eigengap between the 3rd and the 4th eigenvalues. As we increase the number

of periphery nodes, however, the eigengap vanishes, and the model looks like rank 1,

obscuring the informative structure. In the second example, the core network has a

community structure, and each community has 500 nodes. We then use adjacency

spectral embedding (Sussman et al., 2012) to classify its nodes into clusters while

increasing the periphery size and compare the clustering results to the ground truth.

The clustering accuracy decreases as the periphery size increases. Changing the

number of clusters from 3 to 4 is still not an effective solution. These observations

necessitate an effective preprocessing method to identify the core correctly.

The core-periphery structure has been studied in network literature for long. For

example, Borgatti and Everett (2000) define the structure as a special case of the

stochastic block model (Holland et al., 1983). This definition of core-periphery is used
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Figure 2.1: Illustrations of the impacts of including the periphery component in the
analysis. (a) Example 1: The impact on the eigengap of the model by including
periphery nodes. The core model has rank 3, but including too many periphery
nodes would overwhelm the signal, so all eigenvalues except the largest one become
negligible. (b) Example 2: The impact on the accuracy of community detection. As
the periphery size increases, the clustering accuracy decreases. Changing the number
of clusters is not an effective solution.
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by Zhang et al. (2015); Priebe et al. (2019) as well as a related problem called “planted

clique problem” (Alon et al., 1998; Dekel et al., 2014). Under this definition, the

network core is a densely connected Erdös-Rényi network, which is too restrictive to

be interesting settings for any downstream analysis. Meanwhile, this definition heavily

relies on the density gap between the core and the periphery (Zhang et al., 2015;

Kojaku and Masuda, 2018) which may not be true in many applications. Naik et al.

(2021) recently propose another core-periphery model. The core structure is more

general than the Erdös-Rényi but still follows a restrictive parametric form. Moreover,

the model can only generate networks with node degrees at least as dense as the square

root of the network size, which is too dense to model most real-world networks.

On the other hand, algorithm-based methods (Lee et al., 2014; Della Rossa et al.,

2013; Barucca et al., 2016; Cucuringu et al., 2016; Rombach et al., 2017) typically

assign a “coreness” score to each node based on certain topological assumptions.

This class of methods is not well-understood in their statistical properties. Another

related research problem is the submatrix localization problem (Butucea et al., 2015;

Deshpande and Montanari, 2015; Hajek et al., 2017; Cai et al., 2017). The objective

is to find K densely connected subgraphs planted in a large Erdös-Rényi graph in

this type of problem, and the K subgraphs are usually assumed to be Erdös-Rényi

graphs, which is again too restrictive in practice.

We aim to bridge the gap between the theoretically predicted effectiveness of

network modeling and the empirical expectation in data analysis by proposing a

principled and computationally efficient preprocessing method of extracting the in-

formative structure from the non-informative background noise. We introduce a core-

periphery model for informative and non-informative structures. The novelty of our

model comes in two folds. Firstly, unlike traditional definitions, our distinction be-

tween the core and periphery components is whether the component has informative
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connection patterns. Secondly, our model does not assume a specific model for the

core component. These two substantive distinctions highlight the advantages of our

method. Since we do not constrain our core structure to a specific network model,

our framework admits the generality needed as a preprocessing step for any down-

stream network analysis. Meanwhile, our core-periphery definition emphasizes what

we care about the most – the informative structure for network modeling. Therefore,

our assumption can be phrased as an “informative-core-noninformative-periphery”

structure.

Under the proposed model, we develop spectral algorithms to identify the core

structure with theoretically provable guarantees. In particular, we will show that

our algorithms can exactly identify the core component even on sparse networks

– the so-called “strong consistency” guarantee. The strong consistency is crucial

in our context (compared with its “weak consistency” cousin). This is because we

design our method to be a general preprocessing step both in practice and theory.

With strong consistency, the theoretical analysis for any downstream modeling of

the core component remains valid by conditioning on the success of our method.

On the contrary, such a seamless transition would not be available when only weak

consistency is achieved.

The rest of this chapter is organized as follows. In Section 2.2, we review existing

research on the core-periphery structure and the methods for finding the core compo-

nent. Next, we propose our core-periphery model in Section 2.3.1 and then introduce

the spectral methods for core identification under the proposed model in Section 2.3.2.

Section 2.4 focuses on the theoretical properties of the algorithms concerning the ac-

curacy of core identification. Extensive evaluations are included in Section 2.5, where

we demonstrate the advantage of our method against several benchmark methods for

this problem. In Section 2.6, we demonstrate our method by extracting informative
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core structure from a citation network to improve downstream hierarchical commu-

nity detection. We give a brief discussion of our results in Section 2.7. All the proofs

of theoretical results and additional simulation examples for this chapter are included

in Section 4.1.

2.2 Review of Core-Periphery Structure and Ex-

isting Methods

In its traditional definition, the core-periphery consists of two components: A network

core, which is a group of central, cohesive, and densely connected nodes within the

network, and a network periphery, which consists of the remaining nodes that form

a sparsely connected halo or periphery surrounding the core. Although the concept

of network core and periphery appeared as early as in the 1970s (Mullins et al.,

1977; Alba and Moore, 1978), its formal definition is first given in Borgatti and

Everett (2000). In their definitions, the core-periphery network can be defined in

terms of a stochastic block model (Holland et al., 1983) consisting of a core block

and a periphery block. Denote by Pcc, Pcp, Ppp the edge probabilities between core-

core, core-periphery, and periphery-periphery. This type of definition requires Pcc >

Pcp ≥ Ppp or Pcc ≥ Pcp > Ppp, so the core part is a group of cohesive and densely

connected nodes and the periphery is relatively sparsely connected. This definition

of core-periphery structure has been widely adopted in many subsequent works and

serves as the basis for their proposed methods (Zhang et al., 2015; Barucca et al.,

2016; Cucuringu et al., 2016; Rombach et al., 2017).

Since the seminal paper of Borgatti and Everett (2000), various other notions

of core-periphery structures have been proposed. The notion of the core-periphery
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structure defined through block models is based on edge densities among different

sets of nodes. Della Rossa et al. (2013) derived a core-periphery profile from a ran-

dom walk. The idea is that a random walker tends to escape from the periphery,

so the periphery is a subnetwork with low persistence probability. Lee et al. (2014)

developed a transport-based core-periphery structure. Their idea is that core network

components are used more frequently than periphery components in a transportation

network, as is quantified by betweenness centrality or other similar metrics. Kojaku

and Masuda (2018) considered the configuration model as the null model, against

which we assess the significance of the discovered structure and showed that we need

at least three blocks for the core-periphery structure to exist relative to the config-

uration model. Jia and Benson (2019) developed a generative core-periphery model

that incorporates spatial information, as well as a nearly linear-time approximate al-

gorithm for efficient inference and data generation. Naik et al. (2021) also developed

a notion of core-periphery structure based on edge densities, not through the block

model, but the scaling properties with the network size.

Our objective is to distinguish the network core from its periphery which can be

a helpful step in many applications. For example, core nodes and periphery nodes

can play different roles in the same network (Guimera and Amaral, 2005). The

periphery may have a different community structure than the core component, and

we are interested only in the structure of the core (Wang et al., 2016; Li et al., 2020a).

Meanwhile, since core nodes are generally considered more “important”, identifying

network cores can tell us which part of the network is more important. Gu et al.

(2020) applied the weighted stochastic block model (Aicher et al., 2015) to functional

magnetic resonance imaging data (fMRI), and used the core score defined in Rombach

et al. (2017) to examine the existence of core-periphery structure in the imaging data,

which are modeled as networks. In this network, each node represents 1 of 333 cortical



13

areas, and each network edge is defined as the Pearson correlation coefficient between

the mean BOLD time series of two nodes, followed by a Fisher’s r-to-z transformation.

Kojaku et al. (2019) applied an extension of the KM algorithm in Kojaku and Masuda

(2017, 2018) to a global liner shipping network, and identified multiple core-periphery

pairs at different resolution scales. Their original network data is bipartite. In this

network, a node is either a port or a shipping route, and port i is adjacent to shipping

route r if and only if port i is a calling port of route r. Then, Kojaku et al. (2019)

projected this bipartite network to a one-mode network consisting of only ports. The

resulting network is weighted and undirected.

For the problem of core-periphery detection, existing methods follow two general

approaches: First is the algorithmic approach (Barucca et al., 2016; Cucuringu et al.,

2016; Rombach et al., 2017). A “coreness” score is assigned to each network node,

measuring how likely the node belongs to the core. The derivation of the coreness

score is application-driven. The other is the model-based approach (Zhang et al.,

2015; Jia and Benson, 2019; Naik et al., 2021), in which a parametric model is fitted

to the observed network. This approach is generally more computationally intensive.

Among the algorithmic approaches, spectral methods are a family of algorithms

that uses the top eigenvectors derived from the affinity, adjacency, or Laplacian matrix

of the network (Ng et al., 2002; Rohe et al., 2011; Sussman et al., 2012; Qin and

Rohe, 2013; Jin, 2015; Li et al., 2020a). These methods are easy to implement, and

only require the top eigenvectors, which reduces the computation burden (Boutsidis

et al., 2015). Spectral methods have been widely applied to graph partition and

community detection problems. For the task of core-periphery detection, several

spectral methods have been proposed. For the two-block core-periphery structure,

Cucuringu et al. (2016) proposed a core score based on the low-rank projection of

the adjacency matrix, as well as a spectral method based on the random-walk graph
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Laplacian. Priebe et al. (2019) compared the performance of adjacency spectral

embedding and Laplacian spectral embedding in the presence of both affinity and

core-periphery structure.

2.2.1 Traditional Definitions of Core-Periphery Structure

For an undirected, unweighted network with N nodes, we define its adjacency matrix

A to be

Ai,j =


1, if there is an edge between node i and node j,

0, otherwise.

In a directed network, Ai,j and Aj,i represent edges pointing in the opposite direction,

and therefore they do not have to be equal. In a weighted network, the elements of

A take continuous values which represent edge weights. For our task, we focus on

undirected, unweighted networks only.

Borgatti and Everett (2000) proposed two models for the core-periphery network,

namely the discrete model and the continuous model. Figure 2.2 shows the adjacency

matrices of the two models. In the discrete model (Figure 2.2a), the entries of the

adjacency matrix are either 0 or 1. In an ideal core-periphery network, core nodes

are fully connected to other core nodes, and periphery nodes are fully connected to

the core nodes, but there are no connections between any two periphery nodes. In

block modeling terms, the core-core region is a 1-block, the core-periphery regions

are (possibly imperfect) 1-blocks, and the periphery-periphery region is a 0-block.

It is claimed in Borgatti and Everett (2000) that this pattern is characteristic of

core-periphery structures.

Formally, let ∆ denote the adjacency matrix of the ideal core-periphery network.
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(a) Discrete model
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(b) Continuous Model

Figure 2.2: Core-periphery network structure. Darker color indicates stronger
strength of the connections.

Let C and P denote the vertex sets of core vertices and periphery vertices, respectively.

Then,

∆i,j =


1, if i ∈ C, or j ∈ C,

0, otherwise.

(2.1)

In Borgatti and Everett (2000), ∆ is called the pattern matrix. Suppose A is the

adjacency matrix of the observed network. Then under the discrete model, a simple

measure of how close the observed network is to the ideal core-periphery structure is

ρ =
∑
i,j

Ai,j∆i,j (2.2)

For any partition of the nodes into core and periphery, Equation (2.2) gives a score

of the partition. On the basis of this score, a simple algorithm for detecting core-

periphery structure can be constructed. That is, using any combinatorial optimization
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technique, such as simulated annealing or genetic algorithm, to find a partition such

that Equation (2.2) is maximized. Borgatti and Everett (2000) applied such algorithm

on a network of co-citations among social work journals (Baker, 1992), and got a

correlation of 0.54, indicating “strong but far from perfect fit with the ideal”.

One limitation of the discrete model is that sometimes the dichotomy between

the core and periphery is overly simplified. To remedy this, Borgatti and Everett

(2000) also proposed a continuous model, in which each node is assigned a measure

of “coreness”. Let c be a vector of nonnegative values, whose entries, ci, indicates

the coreness of node i for i = 1, 2, ..., N . Then, the pattern matrix is defined as

∆i,j = cicj.

Under this definition, the pattern matrix will have large entries for pairs of nodes

that are both in the core, intermediate entries for pairs of nodes in which one is in

the core. The other is in the periphery, and small entries for pairs of nodes that are

both peripheral (Figure 2.2b). We can estimate the coreness c empirically by finding

a set of values ci that maximize Equation (2.2).

We can also view the continuous model as a convex relaxation of the discrete

model. In the discrete model, finding the global optimum of Equation (2.2) requires

enumeration of all possible node membership assignments, which is computationally

prohibitive. In the continuous model, with the appropriate constraint, Maximizing

Equation (2.2) can be formulated as a convex optimization problem, which avoids the

enumeration process and can be solved more computationally efficiently.

The coreness measure c can be considered as a type of centrality measure. There

are many other centrality measures that are similar to the coreness. For example, if

we assume the adjacency matrix is symmetric, which is the case for an undirected
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network, and instead of maximizing Equation (2.2), we minimize the sum of squared

difference
∑

i,j(Ai,j − cicj)2. Then the resulting vector c will be the principal eigen-

vector of A. If we further assume that the diagonal entries of A are not meaningful,

which is the case in networks without self links, the vector c that minimizes the sum

of squared differences
∑

i 6=j(Ai,j − cicj)2 is exactly the MINRES centrality (Comrey,

1962).

We have introduced two existing core-periphery structures: The discrete model

gives a clear cut between core and periphery; The continuous model assigns a contin-

uous score to each network node to indicate how “core-like” this node is. In recent

years, other notions of core-periphery structures have also been developed. We intro-

duce two examples in the following.

Elliott et al. (2020) noted that the definition in Equation (2.1) is for undirected

networks, and extended the definition in Equation (2.1) to directed networks. In their

definition, the core and periphery sets depend on the edge directions. Specifically,

they split each vertex set C and P into two sets. This yields four sets in total, which

are denoted by Cin, Cout, Pin, and Pout. Then, the adjacency matrix of the ideal

core-periphery structure for directed networks is given by the following:

Pout Cin Cout Pin


Pout 0 1 0 0

Cin 0 1 0 0

Cout 0 1 1 1

Pin 0 0 0 0

The interpretation is that the two core sets are internally fully connected, while

the two periphery sets have no internal connection. Pout has outgoing edges to Cin,
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and Cout has outgoing edges to all but Pout. Elliott et al. (2020) also proposed four

methods to detect such core-periphery structure. One of them is based on low-rank

approximation, two of them are based on the HITS algorithm (Kleinberg, 1999), and

the last one is based on likelihood-maximization.

Naik et al. (2021) noted that the block model definition in Equation (2.1) generates

dense graphs, whereas real-world networks are usually sparse, so they defined the

notion of core-periphery structure based on the sparsity properties of the subgraphs

of core and periphery nodes.

Let G = (Gα)α≥0 be a family of undirected graphs, where α is the size parameter.

Let Gα = (Vα, Eα) where Vα and Eα are the set of vertices and edges respectively,

and let Nα = |Vα| and N
(e)
α = |Eα| be the number of vertices and edges respectively.

Assume Nα, N
(e)
α →∞ almost surely as α→∞. Then, (Gα)α≥0 is said to be dense if

N (e)
α = Ω(N2

α)

almost surely as α→∞, and it is said to be sparse if

N (e)
α = o(N2

α)

almost surely as α→∞.

Let (Vα,C)α≥0 be a growing sequence of vertex sets containing only the core vertices.

Let Nα,C = |Vα,C| be the number of core vertices, and N
(e)
α,C be the number of edges

between core vertices. Assume Nα,C, N
(e)
α,C →∞ as α→∞. Then, Naik et al. (2021)

defined that (Gα)α≥0 is sparse with core-periphery structure if

N
(e)
α,C = Ω(N2

α,C)
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and

N (e)
α = o(N2

α,C).

The interpretation of the above definition is that, given a core-periphery network

G, the total number of edges scales sub-quadratically with the number of vertices.

Meanwhile, there exists a subgraph, namely the core subgraph, within which the

number of edges scales quadratically with the number of vertices. Naik et al. (2021)

also proposed a parametric model based on Poisson point process to simulate and

perform posterior inference for this family of graphs.

2.2.2 Network Centralities

Existing General-Purpose Centrality Measures

In the previous section, the coreness measure can be considered as a centrality mea-

sure. There are also many other centrality measures. In this section, we review some

well-known centrality measures, and how they are related to the problem of detecting

core-periphery structures. We first introduce some existing general-purpose centrality

measures.

The degree centrality of each network node is simply the degree of that node,

which is defined as the number of edges incident on the node. Let c denote the vector

of centralities. Then given an undirected adjacency matrix A, the degree centrality

of node i is ci =
∑

jAi,j.

The eigenvector centrality is the eigenvector corresponding to the greatest eigen-

value (Bonacich, 1987). The idea is that the centrality of each node is proportional to

the sum of centralities of all its neighbors, which can be expressed as λc = Ac. We

can see that c is an eigenvector of the adjacency matrix A. With the additional re-

quirement that the entries of c are nonnegative, by the Perron–Frobenius theorem, c
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can only be the eigenvector corresponding to the largest eigenvalue. For a symmetric

adjacency matrix A, another view of the eigenvector centrality is that it minimizes

the sum of squared differences
∑

i,j(Ai,j − cicj)2. In this sense, it is closely related

to the MINRES centrality which minimizes
∑

i 6=j(Ai,j − cicj)2.

The PageRank centrality is a variant of the eigenvector centrality, which Google

uses to rank web pages in their search results (Page et al., 1999). The PageRank

algorithm outputs a probability distribution over network nodes. This probability

distribution can be interpreted as the likelihood of arriving at any particular node

when we travel randomly along network edges.

The closeness centrality measures how “close” a node is to all other nodes in the

network (Sabidussi, 1966). It is defined as ci = 1∑
j d(i,j)

, where d(i, j) is the distance

between node i and node j, which is usually calculated as the length of the shortest

paths between the two nodes.

The betweenness centrality measures how important a node is in controlling infor-

mation flow through a network (Freeman, 1977). It is defined as ci =
∑

j,k 6=i
σjk(i)

σjk
,

where σjk is the total number of shortest paths from node j to k, and σjk(i) is the

number of shortest paths from node j to k that pass through node i.

The above centrality measures are defined for individual nodes, but we can also

generalize the centrality measures to network edges. Girvan and Newman (2002) ex-

tended the betweenness centrality to edges. They defined edge-betweenness as the

number of shortest paths between pairs of nodes that run through it. The motivation

in their paper is community detection. The intuition is that different communities are

only loosely connected by a small number of inter-community edges, so the shortest

paths between different communities must go through one of these few edges. Thus,

the inter-community edges will have a high edge betweenness. By recursively remov-

ing these edges with high betweenness, the resulting disconnected components are
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communities of the network.

Many of these centrality measures existed before the notion of core-periphery net-

work structure appeared. Therefore, having a high centrality and being in a network

core are two different concepts. By its definition, core nodes are necessarily central

nodes. However, the converse is not true, as not every set of central actors forms

a core. Borgatti and Everett (2000) pointed out that the key difference between a

centrality measure and a coreness measure is that coreness carries with it a model of

the pattern of ties in the network as a whole. The coreness measure is only inter-

pretable to the extent that the model fits. In contrast, a centrality measure is always

interpretable no matter the network’s structure.

These existing centrality measures can serve as benchmarks for different core-

periphery detection algorithms. Barucca et al. (2016) compared the ability of different

centrality measures to identify core nodes in core-periphery networks generated by the

stochastic block model with and without degree correction. The methods they inves-

tigated include membership probability marginals obtained with belief propagation,

degree centrality, eigenvector centrality, PageRank, and non-backtracking centrality.

They found that on the stochastic block model without degree correction, the belief

propagation marginals have the best performance, and PageRank and degree cen-

trality perform only slightly worse. When strong degree heterogeneity is present, the

performance of PageRank and degree centrality surpass belief propagation marginals.

Rombach et al. (2017) compared these centrality measures to the method they pro-

posed in the paper and demonstrated that their method has better performance than

these existing centrality measures. The centralities they compared include closeness,

betweenness, MINRES, degree, PageRank, and aggregate core score.
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Centrality measures developed for core-periphery networks

In addition to these existing centrality measures, many centrality measures explicitly

devised for core-periphery detection. In the following, we list some of these centrality

measures.

Aggregate core score: Rombach et al. (2017) proposed a centrality measure of

coreness called aggregate core score. They defined the core quality as

Rγ =
∑
i,j

Ai,jCi,j, (2.3)

where γ is a vector of parameters for the transition function, which we will introduce

in the next paragraph, Ci,j = f(Ci,Cj) for some function f , and Ci ≥ 0 is the local

core value of the ith node. In practice, they employed a product form

Ci,j = CiCj. (2.4)

These core values form a core vector C. We seek a core vector C that maximizes

Equation (2.3), with the requirement that C is normalized (so its entries add up to

1) and is a shuffle of the vector C∗, whose entries C∗i = gγ(i) are determined using a

transition function gγ.

The transition function is chosen by the users. For example, Rombach et al. (2017)

used the sharp function, which has the form

C∗i (α, β) = gα,β(i) =


i(1−α)
2bβNc , i ∈ {1, ..., bβNc},

(i−bβNc)(1−α)
2(N−bβNc) + 1+α

2
, i ∈ {bβNc+ 1, ..., N}.

(2.5)

In Equation (2.5), the parameter vector γ = (α, β), where α ∈ [0, 1] determines the
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sharpness of the core-periphery division, and β ∈ [0, 1] determines the fraction of

nodes in the core. With the transition function (Equation (2.5)) and the product

form (Equation (2.4)), the core quality in Equation (2.3) becomes

R(α, β) =
∑
i,j

Ai,jCi(α, β)Cj(α, β), (2.6)

Then, we find a shuffle C(α, β) of C∗(α, β) that maximizes R(α, β). Beside the

sharp function above, Rombach et al. (2017) also discussed some alternative transition

functions to the one in Equation (2.5).

For any choice of f and transition function gγ, the aggregate core score of each

node i is defined as

CS(i) = Z
∑
γ

Ci(γ)×Rγ, (2.7)

where Z is a normalizing constant to ensure that maxk{CS(k)} = 1.

The aggregate core score CS(i) produces a continuous ranking of nodes in terms

of their coreness. In their simulation study about core-periphery networks generated

by the stochastic block model, Rombach et al. (2017) compared the ranking produced

by the aggregated core score to that of closeness, betweenness, MINRES, Degree, and

PageRank. They found that assuming we know the size of the core, the aggregate

core score outperforms other measures by having a higher classification accuracy on

a range of model parameters on the stochastic block model.

Path-Core: In a transportation system, some locations and routes are much more

important and are used more frequently than others. These locations and routes can

be considered as the core components in a transportation network, while others form

the network periphery. Cucuringu et al. (2016) defined a transport-based coreness

measure called Path-Core, which is a modification of the betweenness centrality.
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Denote by E the edge set for a given network. The Path-Core score is defined as

PS(i) =
∑

(j,k)∈E
j,k 6=i

σjk(i)|G\(j,k)

σjk|G\(j,k)

, (2.8)

where σjk|G\(j,k) counts the number of shortest paths between node j and k in network

G after the edge (j, k) itself is removed, and σjk(i)|G\(j,k) counts, among those paths,

how many of them pass through node i.

From its definition, we can see that Path-Core is closely related to the betweenness

centrality. We can define the Path-Core of a node i as the betweenness of this node

when considering paths only between pairs of adjacent node j and k, but for which

the edge (j, k) is removed. The emphasis here is that we consider “back up” paths

when the direct connection between pairs of nodes is removed to amplify the usage

of connections from arbitrary parts of a network to core parts.

Lee et al. (2014) compared the Path-Core to the aggregate core score and the

betweenness centrality on a variety of empirical networks, including social, financial,

and transportation networks. Specifically, they calculated the correlation between

these scores and their correlations to other properties of the networks, and they

showed that these correlations could be very different in different types of networks.

In addition, they also extended the Path-Core score from nodes to edges, which

allows us to assign a coreness measure to edges. This extension is important for

transportation networks, since there we may want to focus on “routes” instead of

“locations”.
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Global measures of core-periphery structures

Apart from defining centrality measures for individual network nodes, we can also

define quantities for the entire network to measure how pronouncedly a network

exhibits core-periphery structures. These measures are closely related to the centrality

measures introduced above, as these quantities’ calculations usually depend on certain

centrality measures on individual nodes. We introduce two examples in the following.

Core coefficient : Intuitively, we expect the network core to be well connected to

other parts of the network. Da Silva et al. (2008) introduced a parameter called

network capacity as a measure of connectivity of a network. The network capacity is

defined as

K =
m∑
i=1

1

PLi
, (2.9)

where m is the total number of connected pairs in the network, and PLi is the length

of the shortest path between each pair. Networks with more connected pairs will have

higher network capacity, and if the shortest paths between those pairs are shorter,

the network capacity will also be higher.

Then, based on the network capacity and the concept of closeness centrality, they

further defined a parameter called core coefficient (cc) to quantitatively evaluate the

core-periphery structure of a network. The core coefficient is defined as

cc =
n

N
, (2.10)

where N is the total number of nodes in the network, and n satisfies the equation

n∑
i=1

Ki = 0.9
N∑
j=1

Kj,
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where Ki is the capacity of the network after removal of i nodes. The nodes are

removed in order of closeness centrality.

The intuition behind this definition is that the removal of core nodes, which are as-

sumed to be well connected and therefore have high closeness centrality, will decrease

the network capacity more significantly than periphery nodes. In a network with a

core-periphery structure, the first few removals of the nodes with high closeness will

result in a large decrease in K, so the first few Kis will be relatively small. On the

contrary, in a network not presenting core-periphery structure, the first few Kis will

be relatively large, and the sum
∑n

j=1Kj accumulates faster, so in a core-periphery

network, it takes a larger number of n for the sum
∑n

i=1 Ki to get to 0.9
∑N

j=1Kj,

resulting in a larger core coefficient.

Da Silva et al. (2008) calculated the core coefficient for several metabolic networks

and artificial networks, and found that networks with a core-periphery structure have

a generally higher core coefficient than the artificial networks without a core-periphery

structure.

Core-periphery coefficient : Similar to core coefficient, the core-periphery coeffi-

cient proposed by Holme (2005) is another parameter to measure if the network has

a clear-cut core-periphery structure. The core-periphery coefficient extends the no-

tion of closeness centrality from one node to a subgraph. Suppose G is the given

network, and V (G) is the set of its vertices. For a given subgraph U ⊂ V (G), the

closeness centrality of U is defined as

CC(U) =
1

〈d(i, j)j∈V \{i}〉i∈U
, (2.11)

where d(i, j) is the graph distance between node i and j. The angle brackets mean

taking the average over i ∈ U . Then, let Vcore(G) be the core nodes of the graph
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G. In Holme (2005), Vcore(G) is chosen to be the k-core of G (Seidman, 1983). The

definition of core-periphery coefficient is

Cp(G) =
CC [Vcore(G)]

CC [V (G)]
−

〈
CC [Vcore(G

′)]

CC [V (G′)]

〉
G′∈G(G)

. (2.12)

Again, angle brackets mean taking the average over G′ ∈ G(G), and G(G) is the set

of graphs with the same degree distribution as G.

Computation complexities

In this subsection, we briefly discuss the computation complexities of different cen-

trality measures. In the following, let A be the N × N adjacency matrix of the

network, where N is the number of nodes, and let M be the number of edges.

For degree centrality, if the network is stored as an adjacency matrix, the compu-

tation complexity is O(N2). If we use an adjacency table to store the network, the

computation complexity is O(M).

To calculate the first eigenvector, MINRES centrality, or PageRank centrality, we

can employ an iterative algorithm, in which each iteration requires one vector-matrix

multiplication that requires O(N2) time complexity. The number of iterations is

chosen by the user, and this number determines the precision of the final estimates.

Both betweenness centrality and closeness centrality require calculating the short-

est paths between all pairs of nodes in a network, for which we can use the Floyd–Warshall

algorithm (Floyd, 1962), modified to not only find the length of but also the num-

ber of shortest paths between two nodes. The time complexity of this algorithm is

Θ(N3). Brandes (2001) introduced an algorithm for the shortest paths between pairs

of nodes. Given a source node, both the length and the number of shortest paths

to other nodes can be determined in O(M) using breadth-first searches (BFS) on
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unweighted networks or in O(M + N logN) using Dijkstra’s algorithm on weighted

networks. Consequently, we can iterate this algorithm over all nodes to get the lengths

and numbers of shortest paths between all pairs of nodes, which requires O(NM) and

O(NM + N2logN) on unweighted and weighted networks, respectively. When the

network is sparse, this algorithm may be more efficient.

For calculating the Path-Core centrality, Cucuringu et al. (2016) also included

an algorithm that runs BFSs on unweighted networks and Dijkstra’s algorithm on

weighted networks. The difference in betweenness centrality is that the iteration

is over the edges. The total time complexity is, therefore, O(M2) for unweighted

networks, and O(M2 +MN logN) for weighted networks.

Calculating the aggregate core score CS(i) requires averaging over the parameter

γ, and for each value of γ, shuffling the vector C∗ to maximize Rγ, so the aggregate

core score is instead a computationally intensive approach.

Table 2.1 summarizes these results.

Table 2.1: Computation complexities of different centrality measures.

Degree O(N2) with adjacency matrix
and O(M) with adjacency table.

Eigenvector, MINRES, PageRank O(N2) per iteration.
Betweenness, Closeness Θ(N3),

or O(NM) on unweighted networks
and O(NM +N2logN) on weighted networks.

Path-Core O(M2) on unweighted networks
and O(M2 +MN logN) on weighted networks.

2.2.3 The Stochastic Block Model

A stochastic block model (SBM) is a generative model for blocks, groups, or commu-

nities in networks (Holland et al., 1983). The discrete model of the core-periphery
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structure in Figure 2.2a can be formulated as an SBM, in which there are two blocks,

namely the core and the periphery. Each network node belongs to one of the two

groups. The SBM can be used to generate networks with a core-periphery structure.

Meanwhile, we can also fit an SBM to a given network and use the fitted membership

labels to classify network nodes as either core or periphery. In the following, we first

introduce the definition of SBM. Then, we talk about its application to core-periphery

networks.

General form and some variants

The definition of an SBM is the following:

• The network contains N nodes.

• The network containsK groups or blocks. We denote these blocks by C1, C2, ..., CK .

• With probability γk, a node is assigned to Ck, for k = 1, 2, ..., K. This creates

a partition of the N nodes into the K groups.

• For any two node i and j, suppose i ∈ Cµ and j ∈ Cν , then with probability

Bµν there is an edge between i and j. In addition, all edges are independent.

The edge probabilities Bµν are parameters of the model, and they form a probability

matrix. In traditional community structures, we assume assortativity, which means

that the diagonal entries of this probability matrix are larger than the off-diagonal

entries, so the nodes within each block (community) are more densely connected than

nodes in different blocks. Meanwhile, if all entries of the probability matrix are the

same, the SBM degenerates into an Erdös–Rényi model.

Many variants of the SBM have also been proposed. For example, one limitation

of SBM is that within each block, all nodes have the same expected degree. As a
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result, it does not work well in many applications to real-world networks. Especially

in networks with substantial degree heterogeneity, SBM tends to categorize nodes

into different groups largely based on their degrees, and therefore is unable to find

the true group structures. To overcome this problem, Karrer and Newman (2011)

proposed the degree corrected stochastic block model (DC-SBM), which incorporates

heterogeneous degree distribution. Their approach is to add an additional set of

parameters, θi > 0 for each node i, that control the node degrees. Suppose i ∈ Cµ

and j ∈ Cν , the probability of an edge between node i and j now becomes θiBµνθj.

For identifiability, a constraint is imposed:

N∑
i=1

θi1(i ∈ Ck), for k = 1, 2, ..., K.

1(i ∈ Ck) is the indicator function, and it equals 1 if i ∈ Ck and 0 otherwise. This

constraint means that, within each block, the summation of θis is 1. There are

also other forms of constraints that can make the model identifiable. Compared with

traditional SBM, the DC-SBM is not affected by divisions based solely on degree, and

is more sensitive to the true underlying structure. Karrer and Newman (2011) showed

that the DC-SBM can infer group structure better than SBM on both synthetic and

real-world networks.

Newman and Peixoto (2015) proposed another generalization of the SBM. Their

idea is that edge probabilities are arbitrary functions of continuous node parameters.

Instead of assigning each node to a group, we assign each node to a position in a

“latent space”. For example, xi ∈ [0, 1] for node i. Then, Newman and Peixoto

(2015) defined an edge function ω(xi, xj). The edge probability between node i and

j is determined by

pij =
didj
2m

ω(xi, xj),
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where di and dj are the degrees of the node i and j respectively, and m = 1
2

∑N
i=1 di

is the total number of edges in the network. The inclusion of the degrees allows us to

match the expected degree distribution of the model network to the distribution for

the observed network. The edge function ω(xi, xj) can take arbitrary forms. In the

paper, ω(xi, xj) is expressed in terms of a set of Bernstein polynomial basis functions.

Newman and Peixoto (2015) also gave a method for fitting it to empirical data us-

ing Bayesian inference, and found that it successfully uncovers nontrivial structural

information about both artificial and real networks.

Application to Core-Periphery Networks

We go back to the basic SBM. In the context of core-periphery network structure,

there are two blocks, namely core block and periphery block. We denote the edge

probabilities by pcc, pcp, and ppp, where letter c indicates core and p indicates periph-

ery. We typically assume that pcc ≥ pcp > ppp or pcc > pcp ≥ ppp, so the core block is

relatively more densely connected than other parts of the network. The definition of

the ideal core-periphery structure, as shown in Figure 2.2a, can be expressed in terms

of SBM by setting pcc = pcp = 1 and ppp = 0.

The core-periphery networks generated by SBM have been used in many research

as the benchmark networks to compare and evaluate the performance of the proposed

methods (Barucca et al., 2016; Cucuringu et al., 2016; Rombach et al., 2017).

Meanwhile, on average, the best way to detect structures in a data set generated

by a model is to fit the same model to the data set through the maximum likeli-

hood. Zhang et al. (2015) proposed to perform such maximum-likelihood estimation

to fit a stochastic block model to a given observed network. The maximum likeli-

hood is implemented using expectation maximization (EM) and belief propagation.

The resulting parameter estimates are edge probabilities {pcc, pcp, ppp}, membership
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probabilities {γc, γp}, and one-vertex marginal probabilities {qic, qip for i = 1, 2, ..., N},

where qik is the marginal probability that node i belongs to group k. Then after the pa-

rameters converge, we assign each node to either the core or the periphery, whichever

has the higher marginal probability qik.

Detectability

Zhang et al. (2015) also investigated the detectability problem in a core-periphery

structure. The detectability problem originally arose in community detection prob-

lems. In a network with community structures, the within-group connections are

usually denser than between-group connections, and if there is a strong difference

between the density of the two types of connections, the community structure is easy

to detect, and a variety of algorithms can do a good job. However, if the commu-

nity structure is sufficiently weak, the structure can be undetectable. It is provable

that under SBM, there is a threshold for the difference between within-group and

between-group edge probabilities, and under this threshold, no algorithm can assign

nodes to communities better than random coin toss (Mossel et al., 2012, 2018).

Since there is a connection between community detection and core-periphery de-

tection, it is natural to ask if such detectability threshold also exists for core-periphery

detection problem? As is discussed in Zhang et al. (2015), in a core-periphery network

generated by SBM, core nodes have more degrees than periphery nodes on average

(We can validate this by looking at Figure 2.2a), so a division based solely on degree

can perform better than chance on average. So, instead of finding the detectability

threshold, Zhang et al. (2015) tried to answer the question: can we do any better than

simply dividing nodes according to their degrees? As is shown in the paper, there are

circumstances in which division based on degree is optimal. We first reparameterize
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the edge probabilities as

pcc =
ccc
N

, pcp =
ccp
N

, ppp =
ccc
N
,

Then, we assume

ccc = c+ α1δ, ccp = c, cpp = c− α2δ,

where α1, α2, and c are constant, and δ is a small quantity. The case δ → 0 cor-

responds to the weak core-periphery structure. We consider the odds ratio qic/q
i
p.

Substituting these values into the maximum likelihood estimation procedure, assum-

ing γ1 = γ2 = 0.5, and approximating terms in first order of δ, we get

qic
qip

= 1 +
1

2
(α1 + α2)

di − c
c

δ, (2.13)

where di is the degree of node i. We can see that Equation (2.13) depends only on

the degree of node i.

We know that the maximum likelihood estimation of the SBM is optimal, since

it fits the “correct” model to the data. Also, as we have shown above, when the

core-periphery structure is weak, the maximum likelihood estimate degenerates to a

division based only on the degrees. This means, in a weak core-periphery structure,

a division based on degree is optimal. This is analogous to the situation of weak

community structure, in which we cannot do any better than random guessing. In

this case, we cannot do any better than division based solely on the degrees.

In addition to the weak core-periphery structure, in the three dimensional param-

eter space defined by ccc, ccp, and cpp, we can find a plane

ccc = θr, ccp = θ, cpp =
θ

r
, (2.14)
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where θ > 0 and r > 1. With these parameters, the odds ratio of the marginal

probabilities becomes

qic
qip

=
γ1

γ2

ed̄p−d̄crdi , (2.15)

where d̄c and d̄p are average degrees in the core and periphery. Equation (2.15) also

only depends on the degree of node i.

Another situation where degree-based division can perform well is when the core-

periphery structure is extremely strong. In this case, the degree distributions of the

core nodes and periphery nodes will be far away from each other, and we can easily

distinguish between the two groups based on degree.

For the core-periphery structure of intermediate strength, also away from the

plane defined by Equation (2.14), Zhang et al. (2015) showed empirically that their

maximum likelihood approach can do better than simply looking at the degrees.

2.2.4 k-core Structure and k-core Pruning Algorithm

Network centralities and SBM revolve around the continuous model and the discrete

model respectively. In this section, we introduce the concept of k-core, which is not

based on the two models, but is defined for any type of network.

The k-core of a network G is a maximal subgraph of G in which all nodes have

degree at least k (Seidman, 1983). The k-core can be obtained through the following

algorithm: we recursively remove nodes whose degrees are less than k at each iteration,

until all remaining nodes have degrees greater than k or the whole network disappears.

If the former is the case, the remaining component is the k-core of the network.

This is an efficient algorithm with linear complexity on the number of edges and

nodes in the original network. In the following, we use the term k-core to refer to

the maximal subgraph of G, and the term k-core pruning algorithm to refer to the
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recursive algorithm.

It is easy to see that the (k + 1)-core is a subgraph of the k-core of the same

network. By setting k to different values, we can create a hierarchical structure of the

network. Larger values of k correspond to more central and connected components

of the network, which are surrounded by less central and sparsely connected parts

corresponding to smaller values of k. The notion of k-shell of a network is defined as

the set of nodes that belong to the k-core, but do not belong to the (k + 1)-core, of

the network.

The hierarchical structure unveiled by k-core algorithm can be used to visualize

large networks (Alvarez-Hamelin et al., 2006). Also, k-core has been used to model the

dynamics of social networks. For example, in a social network, a person’s behavior

is influenced by his or her connections. The k-core pruning process can be used

to model the iterated withdrawals from the engagement in certain social events or

from the tendency to buy products from certain brands. Bhawalkar et al. (2015)

introduced the anchored k-core problem, in which a subset of nodes are “anchored”.

The “anchored” nodes will remain in the network no matter what their current degrees

are. The “anchored” nodes are chosen so as to maximize the resulting subgraph after

k-core pruning, or in the language of social science, to keep the maximum number of

people engaged.

Despite its wide application, the investigation of the k-core pruning algorithm in

random network setting is very limited. We introduce two examples of analysis on

k-core pruning algorithm in the following.

Emergence of k-core

Dorogovtsev et al. (2006) derived exact equations describing the size and organization

of k-core in a randomly damaged uncorrelated network with arbitrary degree distri-
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bution (the configuration model). In a given network, suppose a fraction Q = 1 − p

of nodes are removed at random. Dorogovtsev et al. (2006) considered the treelike

structure of the infinite sparse configuration model, in which the k-core coincides

with the infinite (k − 1)-ary subtree. (The m-ary tree is a tree, in which all nodes

have branching at least m) Let R be the probability that a given end of an edge of a

network is not the root of an infinite (k−1)-ary subtree. Then, a node belongs to the

k-core if at least k of its neighbors are roots of infinite (k − 1)-ary subtrees. Then,

the probability of a node being in the k-core is

M(k) = p
∑
q≥k

P (q)

q∑
n=k

(
q

n

)
Rq−n(1−R)n. (2.16)

The interpretation of Equation (2.16) is that, in order for a node to be in the k-core,

the node must survive the random removal (times p), have degree at least k (the

summation
∑

q≥k P (q)), and among its q > k edges at least k of them lead to roots

of infinite (k − 1)-ary subtrees. The quantities p, P (q), and k are pre-specified, the

only thing left is the value of R.

Dorogovtsev et al. (2006) also derived an equation for R based on the following

intuition: an end of an edge is not a root of an infinite (k− 1)-ary subtree if at most

(k − 2) of its children are roots of infinite (k − 1)-ary subtrees. This translates to

R = 1− p+ p
k−2∑
n=0

[
∞∑
i=n

(i+ 1)P (i+ 1)

z1

(
i

n

)
Ri−n(1−R)n

]
. (2.17)

The interpretation of Equation (2.17) is the following: The first term 1−p means the

end of the edge is removed, so that end is not a root of infinite (k − 1)-ary subtree.

The second term accounts for the case when the end of the edge is present (times p).

We explain this term from inside out. z1 =
∑

q qP (q) is the mean number of nearest
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neighbors of a node in the network, and (i+1)P (i+1)
z1

is the probability that a randomly

chosen edge leads to a node with branching i.
(
i
n

)
Ri−n(1 − R)n is the probability

that exactly n among those i children are roots of infinite (k − 1)-ary subtrees. So,

the quantity inside the square brackets is the probability of having exactly n children

that are roots of infinite (k−1)-ary subtrees. Then, we sum this quantity from n = 0

to n = k− 2, which means the end of the edge can have at most (k− 2) children that

are roots of infinite (k− 1)-ary subtrees, so that end itself is not a root of (k− 1)-ary

subtree.

Equation (2.17) has the trivial solution R = 1, which means a given end of an

edge is always not the root of an infinite (k − 1)-ary subtree. Since k-core coincides

with infinite (k − 1)-ary subtree, this in turn means the k-core does not exist. The

lowest nontrivial solution R < 1 of Equation (2.17) corresponds to the emergence of

the k-core.

Dorogovtsev et al. (2006) applied their results to two types of networks: First,

the Erdös–Rényi network: they found as the random damage Q becomes larger, the

k-cores disappear consecutively, starting from the highest core; Second, the scale free

network with P (q) ∝ (q + c)−γ: when γ > 3, the existence of k-cores is determined

by the complete form of the degree distribution including its low degree region; when

2 < γ ≤ 3, which is realized in most important real-world networks, there is an infinite

sequence of successively enclosed k-cores. One has to remove at random almost all

nodes in order to destroy any of these cores, which indicates the robustness of the

entire k-core architecture in this type of networks.

Dynamics of k-core Pruning

Baxter et al. (2015) derived exact equations describing the k-core pruning process and

the evolution of the network structure. They considered infinite uncorrelated sparse
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random networks. Being uncorrelated means the formations of edges are independent

from each other. The network is completely defined by its degree distribution P (q).

Let P (q, t) be the proportion of nodes having degree q at time t. It has the initial

condition P (q, 0) = P (q). Let rt be the probability that, we randomly follow an edge

within the network at time t, and arrive at a node with degree less than k. rt satisfies

the equation

rt =
1

〈q〉t

∑
q<k

qP (q, t), (2.18)

Such nodes with less than k degree will be removed at time (t + 1), along with the

edges connecting to them. 〈q〉t is the mean degree of the surviving nodes at time t,

which satisfies the equation

〈q〉t =
∑
q

qP (q, t). (2.19)

For a node having degree q′ ≥ k at time t. The probability of the node having degree

q > 0 at time (t + 1) is
(
q′

q

)
(1 − rt)

qrq
′−q
t . This is the probability that, among its

q′ edges, q′ − q of them lead to nodes with degree less than k, and therefore will be

pruned. Summing over all q′, we get

P (q, t+ 1) =
∑

q′≥max {q,k}

P (q′, t)

(
q′

q

)
(1− rt)qrq

′−q
t , (2.20)

for q > 0. The fraction of pruned nodes is described by the following equation

P (0, t+ 1) =
∑

0≤q′<k

P (q′, t) +
∑
q′≥k

P (q′, t)rq
′

t . (2.21)

Since the network we consider here is uncorrelated, Equations (2.18) to (2.21) com-

pletely describe the evolution of the network at all time. These equations can be

solved numerically. When the probability rt is very small, the pruning can then be
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considered as a branching process. The probability that a vertex loses two neighbors

in a single step is negligible. Under this condition, Baxter et al. (2015) developed an

approximation method that allows analytical analysis.

Baxter et al. (2015) solved Equations (2.18) to (2.21) numerically for Erdös–Rényi

networks (Poisson degree distributions) near the critical regime, and they found that

for any k ≥ 3, the evolution of the pruning process exhibits three different behaviors

depending on whether the mean degree 〈q〉0 of the initial network is above, equal,

or below a certain threshold 〈q〉c, whose value depends on k. 〈q〉c determines the

existence of k-core. When 〈q〉0 > 〈q〉c, the network relaxes exponentially to the k-

core; When 〈q〉0 < 〈q〉c, the network first experiences a transient process (a “plateau”

stage), during which the pruning is slow. After this transient process, the network

collapse in which the entire network disappears; When 〈q〉0 = 〈q〉c, the dynamics

become critical, characterized by a power-law relaxation time (∝ 1/t2).

2.2.5 Planted Clique Problem

In graph theory, a clique is a subgraph of an undirected graph such that every pair

of its vertices are connected. A planted clique can be formed in the following way:

Generated a graph of size n from Erdös–Rényi model with parameter 1
2
; randomly

select k vertices in the generated graph, and place an edge between every pair of

selected vertices, so the selected k vertices form a clique. Denote the generated graph

by G(n, 1
2
, k, 1). This graph can be viewed as a stochastic block model with parameter

B11 = 1, and B12 = B21 = B22 = 0.5. It also has the core-periphery structure, and

the core is a fully connected graph.

The planted clique problem, or hidden clique problem, is to find a clique, whose size

is at least k, in G(n, 1
2
, k, 1). The difficulty of the problem depends on k. Intuitively,
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the larger the value of k, the easier it is to detect the planted clique. Kučera (1995)

showed that, when k ≥ c
√
n log n for a large enough constant c, the vertices in the

planted clique have higher degrees than those outside the clique almost surely. In this

case, the planted clique can be discovered effectively by a degree-based division.

Alon et al. (1998) proposed an algorithm that almost surely finds the planted

clique when k ≥ c
√
n for a large enough constant c. Their algorithm is based on the

spectral property of the adjacency matrix of the graph. Specifically, their algorithm

consists of the following steps:

1. Calculate the second eigenvector of the adjacency matrix.

2. Sort the vertices in decreasing order of the absolute values of their coordinates

in the second eigenvector. Let W be the first k vertices in this order.

3. Return all vertices with at least 3k/4 neighbors in W .

Dekel et al. (2014) extends the planted clique problem to the planted dense graph

problem. Namely, let G(n, p, k, q) be a family of graphs of size n and 0 < p < q ≤ 1.

Let V be the set of its vertices. Let K be a subset of V and |K| = k. For every pair

of vertices i, j ∈ V , if both i and j are in K, we place an edge between i and j with

probability q; otherwise place an edge between i and j with probability p. Notably,

this family of graphs is exactly a stochastic block model with parameter B11 = q, and

B12 = B21 = B22 = p. The problem is to find the dense subgraph induced by K.

Let G = (V,E) be the input graph, 0 < α < 1, and β, η > 0. The algorithm of

Dekel et al. (2014) consists of three phases, which we list in the following:

1. (First phase) Iteratively find a decreasing sequence of subgraphs of G, denoted

the sequence by G = G0 ⊃ G1 ⊃ G2 ⊃ ... ⊃ Gt, with vertex set V = V0 ⊃

V1 ⊃ V2 ⊃ ... ⊃ Vt. To find the sequence of subgraphs, we first pick a random
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subset of vertices Si ⊆ Vi−1 by including each vertex in Si independently with

probability α. Then define

S̃i = {v ∈ Si : dSi(v) ≥ p|Si|+ η
√
p(1− p)|Si|},

where dS(v) = |{u ∈ S : {u, v} ∈ E}|. Vi is defined as

Vi = {v ∈ Vi−1 \ Si : dS̃i(v) ≥ p|S̃i|+ β

√
p(1− p)|S̃i|}.

Gi is then defined as the subgraph of Gi−1 induced by Vi.

2. (Second phase) Let K̃ be the set of vertices in Gt whose degree is at least

p|Vt|+ 1
2
(p+ q)kt.

3. (Third phase) Let K ′ be the set of vertices containing K̃ and the vertices in G

that have least 1
2
(p+ q)|K̃| neighbors in K̃. Let K∗ be the set of vertices in G

that have at least 1
2
(p+ q)k neighbors in K ′.

4. Return K∗ as the candidate for the planted dense graph.

With the correct tuning parameters, the above algorithm finds the planted dense

graph in G(n, p, k, q) with success probability converging to 1, for any 0 < p < q ≤ 1,

and k ≥ c
√
n, where c is a large enough constant. The running time of this algorithm

is O(n2).

The above algorithms were developed under the regime k = Ω(
√
n). For the

regime k = O(
√
n), there exists quasi-polynomial time (nO(logn)) algorithms to find

the planted clique (Hazan and Krauthgamer, 2011; Feldman et al., 2017). First, for

k = O(log n), it is easy to see that the planted clique can be found in quasi-polynomial

time nO(logn) via exhaustive search. Then, for any k ≥ 2 log n, we can enumerate all
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subsets of size 2 log n; for each subset that forms a clique, which we denote by S, find

the set of vertices in G that are adjacent to all vertices in S, denote this set by T ;

return T as the candidate for the planted clique. The running time of this method

is also quasi-polynomial (nO(logn)). Up to today, it is still widely believed that there

is no polynomial-time solution to the planted clique problem for any k. Such belief

is called planted clique conjecture, and has been used as a computational hardness

assumption.

2.3 Proposed Methodology

2.3.1 Core-Periphery Models Based on Informative Compo-

nent

Assume the network size to be n. We will focus on undirected and unweighted net-

works without self-loops. Such a network can be represented by an n× n symmetric

binary adjacency matrix A such that Ai,j is 1 if and only if node i and j are con-

nected. We will embed our discussion in the following probabilistic framework for

A, which can be seen as a conditional version of the Aldous-Hoover representation

when the network nodes are exchangeable (Aldous, 1981; Hoover, 1979). Specifically,

we assume that there exists an underlying n × n probability matrix P such that

Ai,j ∼ Bernoulli(Pi,j), for 1 ≤ i < j ≤ n independently. We denote by E the dif-

ference between A and P , i.e. A = P + E. The elements {Pi,j} are called edge

probabilities or connection probabilities. The matrix P fully specifies the structural

information of the network.

In our context, the periphery component should not admit structures that may be

interesting for modeling. Though whether a particular type of structure is interesting
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may depend on specific applications, we believe the widely regarded uninteresting

pattern is relatively easy to define. The following core-periphery structure is defined

according to one such pattern for the periphery.

Model 1 (The ER-type core-periphery structure). The nodes in the network can be

partitioned into a core set C and a periphery set P, where

P = {i ∈ [n]|Pi,j = Pi,k, for all j, k ∈ [n], j 6= i, k 6= i}.

and C = [n]/P.

Note that due to symmetry of P , Model 1 indicates that all edges involving

periphery nodes are generated randomly with the same probability resembling the

Erdös-Rényi (ER) model (Erdös, 1959). The subnetwork of the core, in contrast,

can follow any connection pattern as long as it is different from the periphery. Such

generality in the core structure renders the flexibility to use our model as a data

preprocessing step for any downstream analysis. In the special case when the core

subnetwork is also an ER model but with a different density from the periphery part,

the model reduces to the block model core-periphery structure used in Borgatti and

Everett (2000), Zhang et al. (2015), and Priebe et al. (2019). Figure 2.3 shows one

example of the core-periphery structure following Model 1.

The ER-type periphery is arguably the most basic form of non-informative struc-

ture. It also indicates that the periphery nodes should have similar degrees. Even

if the nodes have heterogeneous degrees in many settings, their connection patterns

may not be interesting either. One way to define such variation of the uninteresting

connection only depends on two nodes separably, as defined next.

Model 2 (The configuration-type core-periphery structure). Let di be the expected
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degree of node i. The nodes in the network can be partitioned into a core set C and a

periphery set P, where

P = {i ∈ [n]|Pi,j =
didj∑n
k=1 dk

, for all j ∈ V , j 6= i}. (2.22)

and C = [n]/P.

The periphery connection pattern under Model 2 essentially assumes Pi,j ∝ didj

for any pair involving at least one periphery node. Such a pattern resembles the

configuration model (Bollobás, 1980; Chung and Lu, 2002; Newman, 2018), where

the connection probability between two nodes is based on the degree of the two

nodes. Figure 2.3 illustrates this definition. Compared with the ER-type periphery,

the periphery also exhibits a heterogeneous connection pattern. This model can adopt

arbitrary degree distributions for the periphery nodes.

2.3.2 Spectral Algorithms for Core Identification

We proceed to introduce our algorithms to identify the core (and periphery) compo-

nents under the models of Model 1 and Model 2. The likelihood-based procedures will

not be applicable in the current context because we do not assume any specific model

for the core subnetwork. Instead, we will resort to spectral methods for our purpose.

Spectral methods have been used extensively in fitting various network models (Rohe

et al., 2011; Sussman et al., 2012; Jin, 2015; Lei and Rinaldo, 2015; Qin and Rohe,

2013; Ma et al., 2020; Lei et al., 2020; Li et al., 2020b; Wang et al., 2020), which also

has the advantage of computational efficiency easy implementation. The crucial step

in designing such an algorithm is to find the desired spectral properties to leverage.

Next, we will describe our algorithms for the ER-type model and configuration-type

model separately.
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Core

Periphery

(a) ER-type

Core

Periphery

(b) Configuration-type

Figure 2.3: Illustrations of our core-periphery models (a) The ER-type core-periphery
model, where the expected degrees of the periphery nodes are constant. (b) The
configuration-type core-periphery structure, where the expected degrees of the pe-
riphery nodes are randomly sampled from a uniform distribution.

Under the ER-type model (Model 1), for any periphery node i, Pi,∗ is a vector of

the same value except for the diagonal entry; for any core node i, the entries in Pi,∗

exhibit a large variation. Therefore, the core and periphery may be split according

to the variation of entries in Pi,∗. Define the centering matrix H to be In − 1
n
1n1

t
n.

Then ||Pi,∗H||22 is the squared total variation of the entries in Pi,∗. In particular, the

norm ||Pi,∗H||2 is almost zero for i ∈ P , since Pi,∗ is a constant vector except on

the ith coordinate. The periphery nodes can thus be identified for small ||Pi,∗H||2
values.

In practice, when we only observe A instead of P , the above strategy would not

work due to the large perturbation of A from P . The solution to this difficulty is

denoising A by an estimator P̂ and applying the above procedure to P̂ . Notice that

rank(P ) ≤ rank(P C) + 1 where P C is the model for the core subnetwork. Similar
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Algorithm 1 Spectral algorithm for core identification from the ER-type periphery

Input: The adjacency matrix A, the core size NC and approximating rank r.

1. Find the low-rank approximation ofA through rank r truncated SVD. Denote
the resulting matrix by P̂ .

2. Compute the score Si = ||P̂i,∗H||2, for i ∈ [n].

3. Sort the scores S1, S2, ..., Sn.

4. For each i ∈ [n], classify node i as a core node if Si is among the top-NC
scores; otherwise classify node i as a periphery node.

properties can be obtained for many reasonable definitions of stable rank. On the

other hand, as studied in Chatterjee (2015), almost all interesting network models

give approximately low-rank structure. These motivate us to consider P as approx-

imately low-rank (to be formally defined in our theory) and use some singular value

truncating/thresholding estimator as P̂ . The simplest estimator would be the univer-

sal singular value thresholding method of Chatterjee (2015). However, theoretically

and empirically, using an adaptive way to cut off the singular values of A to a certain

rank turns out to be more effective. Specifically, given a positive integer r, we use the

rank-r truncated SVD ofA as P̂ . Our algorithm for Erdös-Renyi periphery defined in

Model 1 is summarized in Algorithm 1. In the algorithm, we treat the approximating

rank r as given. In practice, The r will be selected according to data-driven meth-

ods. In our analysis, we always use the cross-validation method of Li et al. (2020c)

to select a proper r, which can be seen as a procedure the select the best low-rank

approximation for link predictions.

Under the configuration-type core-periphery model (Model 2), a similar strategy

can be applied with an additional modification. The key ingredient is a degree-

correction step to neutralize the impacts of heterogeneous degrees. According to the
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Algorithm 2 Spectral algorithm for core identification from the configuration-type
periphery

Input: The adjacency matrix A, the core size NC and approximating rank r.

1. Find the low-rank approximation ofA through rank r truncated SVD. Denote
the resulting matrix by P̂ .

2. Compute d̂i =
∑n

j=1Aij, and let D̂ = diag{d̂1, d̂2, ..., d̂n}.

3. Compute S ′i = ||P̂i,∗D̂−1H||2, for i ∈ [n].

4. Sort scores S ′1, S
′
2, ..., S

′
n.

5. For each i ∈ [n], classify node i as a core node if S ′i is among the top-NC
scores; otherwise classify node i as a periphery node.

periphery connection probabilities in (2.22), for any i ∈ P , we have

Pi,j/dj =
di∑
k dk

, for any j 6= i.

Hence, normalizing the columns by the corresponding degrees would result in a the

matrix in which the row for each periphery node is a constant, except for the diagonal

entry. Define D = diag(d1, · · · , dn). The column correction step can be written as

PD−1. After this degree-correction step, the same idea in Algorithm 1 can be applied

here and we will use ||Pi,∗D−1H||2 to separate the core nodes from the periphery

nodes. In practice, P is again substituted by its estimate P̂ , and D is replaced by

its sample version D̂. The details are summarized in Algorithm 2.

As can be seen, the major computational burden of Algorithm 1 and 2 is on the

SVD of A, which is highly efficient. Thus both of the algorithms are scalable to

large networks. Moreover, in the next section, we will show that these algorithms can

accurately identify the core nodes even on sparse networks.
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2.4 Theoretical Properties of Our Proposed Algo-

rithms

This section will introduce a few theoretical results about the accuracy of core iden-

tification by our spectral algorithms. We will start from the ER-type model, and

then the same set of theoretical properties will be extended to the configuration-type

model.

2.4.1 Theory under the ER-type Model

The success of Algorithm 1 depends on the magnitude of ‖Pi,∗H‖2 for core nodes.

To quantify this magnitude, additional notations have to be introduced. First, define

h(n) = min
i∈C
‖Pi,∗H‖2 , and p∗ = max

1≤i,j≤n
Pi,j.

For i ∈ P , it is not difficult to show that ‖Pi,∗H‖2 < p∗, since Pi,∗ is essentially

a constant vector. Therefore, a larger gap between h(n) and p∗ leads to a better

separation between the core and periphery.

Our algorithms also relies on a good estimate of the probability matrix P̂ . As

mentioned in the previous section, we will use the rank-r truncated SVD of the

observed adjacency matrix A as P̂ . Suppose P and A admit the following eigen-

decompositions:

P =

[
U U⊥

]Λ 0

0 Λ⊥


U t

U t
⊥

 = UΛU t +U⊥Λ⊥U
t
⊥, (2.23)
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A =

[
Û Û⊥

]Λ̂ 0

0 Λ̂⊥


Û t

Û t
⊥

 = ÛΛ̂Û t + Û⊥Λ̂⊥Û
t
⊥, (2.24)

where Λ = diag{λ1, λ2, ..., λr} and Λ⊥ = diag{λr+1, λr+2, ..., λn} consist of the eigen-

values of P sorted in decreasing order. U ∈ On,r and U⊥ ∈ On,n−r contain corre-

sponding eigenvectors as columns. The matrices Λ̂, Λ̂⊥, Û⊥ and Û⊥ are similarly

defined forA. Our estimator of P is P̂ = ÛΛ̂Û t. For such a low-rank approximation

to work well, we will impose the following assumptions:

Assumption 1 (Approximate low-rankness). |λr| � np∗√
r

, and |λr+1| �
√
p∗ log n.

Assumption 2 (Incoherence). ‖U‖2,∞ ≤ µ0

√
r
n

, for a scalar µ0 that may depend on

n.

Assumption 1 above is about the gap between the rth and (r + 1)th eigenvalues,

which is needed for low-rank approximation to be reasonable. Notice that the con-

dition implicitly requires that p∗ � r logn
n2 , which eliminates extremely sparse network

models such as bounded-degree networks. However, as can be seen later on, such a

requirement is trivial and will be overwritten by a stronger density requirement for

a valid network concentration. The incoherence condition ensures that the entries of

P spread out evenly across all nodes. Such an assumption is widely used in matrix

completion and random matrix literature (Candès and Recht, 2009; Chen, 2015; Fan

et al., 2018; Cape et al., 2019; Abbe et al., 2020), and is generally considered necessary

for highly accurate entrywise or row/column-wise recovery of random matrices.

Theorem 1. Assume the network A is generated from the ER-type model in Model 1,

under Assumption 1 and Assumption 2. Algorithm 1 is used to identify the core

nodes with the correct NC and r. Furthermore, suppose p∗ � max
{
µ20r logn

n
,
µ20r

2

n

}
,
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and |λ1/λr| are bounded. If

h(n) � µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗, (2.25)

then, for sufficiently large n, Algorithm 1 exactly identifies the core and periphery

nodes with probability at least 1− (B(r) + 2)n−γ for some positive constant γ, where

B(r) = 10 min{r, 1 + log2(|λ1/λr|)}.

We present Theorem 1 under the approximately low-rank condition of Assump-

tion 1 for conciseness. The assumption can be further relaxed. The more general

version of the theorem is included in Section 4.1.1. Notice that we do not assume

that the density of the core subnetwork is denser than the periphery. Nor do we have

to assume that the core size is in the same order as the periphery size, though the

sizes’ impacts are implicitly considered in h(n). Such generality gives our method

significant advantages in practice, as demonstrated later in Section 2.5 and 2.6.

To illustrate condition (2.25), consider the stochastic block model (SBM) as an

example for the core structure, and the periphery is the ER-type model. Specifically,

we consider the following balanced assortative SBM:

B = (a− b)I + b1K1tK ,

where a > b > 0, and K is the number of blocks. The edge probability matrix is

PC = ρZBZt, where Z is the membership matrix, and Zi,k = 1 if and only if node

i belongs to block k. All blocks have the same size. Then, for the core-periphery

structure, suppose the core is such a balanced SBM, and the periphery is an ER

network. For simplicity, we assume core and periphery have the same size. We also

let the edge probability of the periphery be ρb, which is actually the worse case
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scenario for Algorithm 1. In this case, it can be shown that the conditions in (2.25)

becomes

ρ � K2 log n

n
+
K3

n
. (2.26)

If we compare (2.26) to the requirement of a network clustering algorithm, then,

for balanced assortative SBM, the best requirement of a computationally feasible

approach is given by the semidefinite programming (SDP) approach (Fei and Chen,

2018), which requires ρ � K logn
n

+ K2

n
. This is slightly better than Equation (2.26).

However, the SDP approach is a model-based approach, which has a very specific

model assumption, whereas our approach does not need a model assumption for the

core. In addition, for spectral clustering, the best requirement we are aware of is from

Lei (2019), which is ρ � K3 logn
n

, and this is worse than Equation (2.26).

In practice, the number of core nodes, NC, is often unknown. However, under a

slightly stronger condition than Theorem 1, we can calculate a threshold such that the

correct NC can be recovered by cutting off the scores in Algorithm 1. In particular,

define p̂ = 2
n2−n

∑
i<jAi,j and replace the NC in Step 4 of Algorithm 1 by

N̂C = |{i : Si >
√
p̂1−ε log n}| (2.27)

for some small constant ε. In all of our experiments, we use ε = 0.01. The same type

of performance as (2.25) can still be theoretically guaranteed by this thresholding

strategy.

Corollary 1. Under the conditions of Theorem 1, suppose µ0 and r are bounded.

Furthermore, assume

min
1≤i,j≤n

Pij ' max
1≤i,j≤n

Pi,j = p∗,
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and

h(n) �
√
p∗(1−ε) log n

for the constant ε in (2.27). If the N̂C defined by (2.27) is used in Algorithm 1, with

sufficiently large n, the core and periphery can be exactly identified with probability at

least 1− (B(r) + 4)n−γ for some positive constant γ.

We conclude this section by providing an upper bound for the number of misiden-

tified core nodes under weaker assumptions.

Theorem 2. Assume the network A is generated from the ER-type model in Model 1,

and Algorithm 1 is used to identify the core nodes with the correct NC. Suppose

h(n) > p∗. Denote the number of misclassified core nodes by M . For a sufficiently

large n, we have

M � max{r, rank(P )} ·
(
max{

√
np∗,
√

log n}+ |λr+1|
)2

(h(n)− p∗)2 (2.28)

with probability at least 1− n−γ for some positive constant γ.

For illustration, consider the SBM example after Theorem 1 again with p∗ ≥

log n/n. In this case, (2.28) indicates that the misidentified number is upper bounded

by K/p∗ ≤ Kn/ log n = o(n). Such a vanishing proportion of misidentified core nodes

is also called the “weak consistency”. However, compared with the strong consistency

of Theorem 1, the weak consistency is less useful in our scenario. This is because, as

a general data preprocessing step, having strong consistency in our method ensures

that the downstream theoretical analysis can still go through as if the core is already

given. The weak consistency, in contrast, loses this possibility, and the downstream

analysis has to consider the potential errors of the core identification and the potential

dependence introduced by this preprocessing step.
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2.4.2 Theory under the Configuration-type Model

Next, we consider the configuration-type model following Model 2. Recall that for a

periphery node i, Pi,∗D
−1 is a constant vector except for the diagonal entry. There-

fore, the proof can be done by applying the same strategy of last section on the degree

corrected version of P . Define

h′(n) = min
i∈C
||Pi,∗D−1H||2.

Under the configuration-type model, the quantity h′(n) has a similar role to the h(n)

for the ER-type model.

Theorem 3. Assume the network A is generated from the configuration-type model

in Model 2, under Assumption 1 and Assumption 2. Algorithm 2 is used to identify

the core nodes with the correct NC and r. Let dmin = min1≤i≤n
∑n

j=1Pi,j, and suppose

dmin � log n, p∗ � max
{
µ20r logn

n
,
µ20r

2

n

}
, and |λ1/λr| is bounded. If

h′(n) � 1

dmin

(
µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗
)

+
∥∥PD−1

∥∥
2,∞

√
log n

dmin

, (2.29)

then, for sufficiently large n, Algorithm 2 exactly identifies the core and periph-

ery nodes with probability at least 1 − (B(r) + 4)n−γ, where B(r) = 10 min{r, 1 +

log2(|λ1/λr|)}.

Again, a more general version of the theorem is provided in the Section 4.1.1. To

illustrate the condition (2.29), we consider the example when the degree-corrected

stochastic block model (DC-SBM) (Karrer and Newman, 2011) is true core model.

Specifically, assume that the whole network follows the DC-SBM with the first K− 1

clusters being the core while the last cluster being the periphery. Suppose all clusters
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have equal size, and K is fixed. Let zi ∈ {1, · · · , K} be the cluster label of node i. The

model can be parametrized by a sequence of node popularity parameters θi, 1 ≤ i ≤ n

and a K ×K matrix ρB where B is a fixed symmetric matrix with the last row and

column containing only 1’s and ρ depends on n. The connection probability of this

DC-SBM is given by Pi,j = θiθjρBzi,zj . To ensure the identifiability of the model,

we use the constraint of Zhao et al. (2012):
∑

zi=k
θi = n/K. Furthermore, assume

that B satisfies
∑

k′Bk,k′ = K, 1 ≤ k ≤ K − 1, it can be verified that this model

satisfies Model 2. Under this model, in the simplified setting such that µ0 is bounded,

r = K, and θi ' 1 for all i, the condition (2.29) reduces to the degree requirement of

dmin � log n.

Similar to the case of the ER-type model, when NC is unknown, a threshold to

cut off scores can be used to determine the core-periphery separation under slightly

stronger conditions. Recall that p̂ = 2
n2−n

∑
i<jAi,j. We can replace the NC in Step

5 of Algorithm 2 by

N̂ ′C = |{i : S ′i >

√
log n

n
√
p̂1+ε
}| (2.30)

for some small constant ε. In all of our experiments, we use ε = 0.01.

Corollary 2. Under the conditions of Theorem 3, suppose µ0 and r are bounded.

Furthermore, assume

min
1≤i,j≤n

Pi,j ' max
1≤i,j≤n

Pi,j = p∗,

and

h′(n) �
√

log n

n
√
p∗1+ε

for the constant ε in (2.30). If the N̂ ′C defined by (2.30) is used in Algorithm 2,

with a sufficiently large n, the core and periphery nodes can be exactly identified with

probability at least 1− (B(r) + 6)n−γ for some positive constant γ.
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Finally, the following result is still available under weaker conditions.

Theorem 4. Assume the network A is generated from the configuration-type model

in Model 2, and Algorithm 2 is used to identify the core nodes with the correct NC.

Suppose dmin � log n, and h′(n) > dmax

(n−1)dmin
. Denote the number of misclassified core

nodes by M ′. Then,

M ′ � max{r, rank(P )} ·
np∗ + λ2

r+1 + ‖PD−1‖2
2 · dmin · log n

d2
min

[
h′(n)− dmax

(n−1)dmin

]2

with probability at least 1− 3
nγ

for some positive constant γ.

2.5 Simulation Studies

In this section, we evaluate the performance of our proposed algorithm on finite-size

synthetic networks. We will demonstrate the effectiveness and the advantage of our

method under a few different core models and density gaps between the core the

periphery.

In generating our networks, we always set the first NC nodes to core. To demon-

strate the flexibility with respect to the core structure, we set the core component

according to the graphon models (Aldous, 1981). Specifically, the core submatrix P C

is generated in the following way. Given a graphon function g : [0, 1]× [0, 1]→ [0, 1],

we first generate NC i.i.d. random variables ξi ∼ Uniform[0, 1], i = 1, · · · , NC, and

then P C is set as

P Ci,j = g(ξi, ξj), 1 ≤ i, j ≤ NC (2.31)

We use three graphon functions defined in Zhang et al. (2017) as our simulation exam-

ples. The first one gives the simplest SBM for P C with blockwise constant structure;
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Table 2.2: Graphons for simulating network cores.

Graphon function g(µ, ν) Rank
k/7, if µ, ν ∈ ((k − 1)/6, k/6); 0.3/7 otherwise. 6

sin[5π(µ+ ν − 1) + 1]/2 + 0.5 3
1/{1 + exp [15(0.8|µ− ν|)4/5 − 0.1]} Full

The second one still has a low-rank P C, but does not have the nice block structure;

The third model is even more complicated and generates a full-rank P C – this is a set-

ting to verify the validity of our low-rank approximation strategy when the model is

full-rank. The three models are summarized in Table 2.2 and the heatmaps of the P C

in the three models are shown in Figures 2.4 and 2.5. Given P C, we fill in the other

positions of P by periphery probabilities. For the ER-type model, we simply fill in a

constant value. For the configuration-type model, the construction involves multiple

steps. Let θCi =
∑NC

j=1P
C
i,j, and sample θPi , i = 1, 2, ..., NP from a uniform distribution

between 0.5 mini∈C θi and 1.5 maxi∈C θi. Then, let θ = {θC1 , θC2 , ..., θCNC , θ
P
1 , θ

P
2 , ..., θ

P
NP
}.

The edge probability involving periphery node is set as Pi,j =
θiθj∑NC
k=1 θ

C
k

. It is not diffi-

cult to see that from this procedure, di =
∑n

j=1Pi,j =
θi

∑n
j=1 θj∑NC

k=1 θ
C
k

, and Pi,j =
didj∑n
k1
dk

for

i ∈ P , matching Model 2.

We then rescale the generated probability matrix, so the average edge density

is around 0.02. In different configurations, we vary the average degrees of core and

periphery nodes to demonstrate the effects of varying density ratios between the two

components. We focus on the settings where the core has an equal or higher density

than the periphery 1. The core size and periphery size are both 1000 in this section. In

Section 4.1.2, we also include simulation results for imbalanced core-periphery sizes.

Several benchmark core-periphery identification methods are included in the eval-

uation. The first two methods are degree thresholding (Degree) and PageRank (Page

1Our methods perform well even if the core is sparser than the periphery. However, such a setting
may be less realistic, so it is not included.
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et al., 1999) thresholding (PageRank). These two centrality measures are shown to

be competitive for identifying the core component in the study of (Barucca et al.,

2016; Rombach et al., 2017). Theoretically, it is shown by Zhang et al. (2015) that

under the SBM core-periphery model, the degree thresholding is optimal in favor-

able configurations. Another commonly used method is thresholding by the local

clustering coefficient (Watts and Strogatz, 1998) (Local CC). The k-core pruning (k-

core) algorithm (Seidman, 1983) is also included in our evaluation. It can be seen as a

more adaptive version than the degree thresholding and is shown to effectively extract

meaningful subnetworks in Wang et al. (2016); Li et al. (2020c,a). The final method is

from Priebe et al. (2019), where the Adjacency Spectral Embedding (ASE) Sussman

et al. (2012) is used to capture the core-periphery structure when both affinity and

core-periphery structures are present.

To fully characterize the core identification performance, we consider the tradeoff

between the true positive rate (TPR) and the false positive rate (FPR), define as

TPR =
#{Correctly identified nodes}

#{Identified nodes}
and TPR =

#{Incorrectly identified nodes}
#{Identified nodes}

.

These two metrics can be shown by the receiver operating characteristic (ROC).

For each thresholding-based method, the full ROC curve is obtained if by varying

the threshold. The k-core pruning is applied with k increasing from 0 to the large

integer, producing a sequence of points in the ROC space. The ASE, however, only

gives a single point in the ROC space. For our method, we also include the single

points based on our recommended threshold selection methods in Corollary 1 and 2,

denoted by “∗”. Empirically, we also found that applying k-means algorithm with

k = 2 to the log-transformed scores works well in our simulation, and we mark the

point obtained this way by “+” on the ROC curves.
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Figure 2.4 shows the results under the ER-type model. As can be seen, the easiest

setting is when the core is much denser than the periphery. In this setting, most of the

methods are reasonably good, and though our method is the most effective one, the

advantage not moderate. As the density between the core and the periphery becomes

more similar, the problem becomes more difficult, and some of the benchmarks become

close to random guesses. However, our method still maintains good performance, and

the advantage over other methods becomes more significant. This is expected since

many of the benchmarks rely on the density gap between the two components while

our method does not. By comparing the results across different core models, one can

see that the benchmark methods may perform well under one model but fails under

another. In contrast, our method remains the best one in all settings, thanks to

our model’s generality. Finally, the thresholds given by our theory (∗) and k-means

clustering (+) render good model selections in the ROC space.

Figure 2.5 shows the results under the configuration-type model. The pattern

is very similar to that of Figure 2.4. Overall, the simulation examples show that

our methods outperform the benchmark methods in the core identification accuracy

across various core models and varying core-periphery degree gaps.

2.6 Core Extraction in the Statistics Papers Cita-

tion Network

We illustrate the impact of our core extraction method in downstream community

analysis for the statistics papers citation network collected by Ji and Jin (2016). We

focus on the largest connected component of the network. This network has 2248

nodes and the average node degree is 4.95. In Figure 2.6, we plot the whole citation
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Figure 2.4: Simulation results under ER-type core-periphery model where NC = NP =
1000. The left figures are the core graphon functions, and the corresponding ROC
curves are shown on the right, under different degree-gaps between core and periphery.
The point “∗” gives the model selection based on Corollary 1, and “+” indicates the
model selection by k-means clustering with k = 2.
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Figure 2.5: Simulation results under configuration-type core-periphery model where
NC = NP = 1000. The left figures are the core graphon functions, and the corre-
sponding ROC curves are shown on the right, under different degree-gaps between
core and periphery. The point “∗” gives the model selection based on Corollary 2,
and “+” indicates the model selection by k-means clustering with k = 2.
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network, and the core component extracted by Algorithm 1 and Algorithm 2, with two

different core sizes. The core sizes are selected to match that of the k-core algorithm,

for easy comparison between the two approaches.

In the analysis of Wang et al. (2016), the 4-core pruning is applied to the network,

resulting in a core of 635 nodes for their downstream analysis. In this example, we

compare several methods in Section 2.5 and evaluate the performance by comparing

the validity of the hierarchical community detection results on the extracted cores. For

fair comparisons, we follow Wang et al. (2016) to use either 3-core and 4-core pruning

algorithms to obtain cores of size 1103 and 635, respectively. We then use other

algorithms to extract cores of the same sizes. In addition to our methods, the other

benchmark methods applicable for this task include degree centrality, eigenvector

centrality, PageRank centrality, and local clustering coefficient.

The hierarchical community detection (HCD) algorithm from Li et al. (2020a) is

then applied to the extracted cores. The HCD simultaneously detects the community

membership and the hierarchical relation between the communities in the form of

a binary tree. According to Li et al. (2020a), this hierarchical relationship can be

transformed into a similarity matrix S where Sk,k′ measures the similarity between

community k and k′ along the hierarchy. The tuning parameter n.min in HCD, which

determines the leaf node size, is set to NC/r, the core size divided by the estimated

rank, so the trees across different core sizes will have similar depths.

We want to evaluate the meaningfulness of the hierarchical relationships in a

quantitative way by comparing the hierarchical similarity S (based on the citation

network) with the content similarity based on text data. In particular, the abstracts

of all papers are available from Wang et al. (2016). We represent each abstract

as a term-frequency vector and apply the standard text mining processing such as
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(a) ER-type, NC = 635 (b) ER-type, NC = 1103

(c) Configuration-type, NC = 635 (d) Configuration-type, NC = 1103

Figure 2.6: Plots of the citation network, and the core components are highlighted in
red.
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Table 2.3: Correlation between S and T .

Methods
Correlation

NC = 635 NC = 1103

Degree 0.099 0.089
k-core 0.167 0.108

PageRank 0.013 0.106
EigenVec 0.143 0.050
Local CC 0.058 0.045
Ours (ER) 0.340 0.164

Ours (Config) 0.350 0.155

stemming and stopwords (including punctuations and numbers) removal2. The term

frequency-inverse document frequency (TF- IDF) weighting (Rajaraman and Ullman,

2011) is then applied to each word. We remove words that appear in less than 1%

of the papers, and 966 words remain after processing. The correlation similarity

between each pair of papers is calculated, and a community level similarity matrix T

is constructed where Tk,k′ is the average correlation similarity between papers from

community k and community k′. We then calculate the Spearman correlation between

S and T as a metric to measure how well the hierarchical structure discovered by

HCD from the network matches the similarity derived from the abstracts. The results

for cores extracted by different methods are summarized in Table 2.3.

It can be seen that the cores extracted by both of our two models render sig-

nificantly more meaningful hierarchies than the other benchmarks. The difference

between the ER-type model and the configuration-type model is negligible. Also,

applying HCD to the two cores from the ER-type model and the configuration-type

model leads to the same hierarchical structure, with some marginal differences.

Figure 2.7 shows the extracted core by the configuration-type model with NC =

635, and the corresponding hierarchical structure given by the HCD algorithm. It

2We use the SMART information retrieval system. The list can be found in the stopwords R
package
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Figure 2.7: Hierarchical community structure of the core. The core has NC = 635,
and the configuration-type model is used.

turns out that the community labels are also very interpretable. Since each cluster is

a group of papers, we list the most frequent keywords of the papers in each cluster in

Table 2.4. The keywords in each group are highly coherent.

2.7 Conclusion and Discussion

We have proposed a core-periphery model for extracting informative structures from

networks and proposed two efficient algorithms for core identification under the model.

Our model does not assume a specific form for the core component, so it can be

used for preprocessing for downstream network modeling in general. The proposed

algorithms have theoretical guarantees of correctly identifying the core component

under mild conditions. The strong consistency property is advantageous for our model
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Table 2.4: The most frequent keywords for each cluster in the hierarchy.

Cluster Most frequent keywords

1
lasso, variable selection, smoothly clipped absolute deviation,

model selection, asymptotic normality, sparsity

2
lasso, variable selection, oracle property, sparsity,

regularization, model selection, smoothly clipped absolute deviation

3
false discovery rate, multiple testing, multiple comparisons,

familywise error rate, p-value, stepdown procedure

4
sparsity, lasso, regularization, covariance matrix,

high dimensional data, model selection, thresholding

5
functional data, smoothing, principal component,

eigenfunction, eigenvalue, functional regression

6
nonparametric regression, generalized estimating equation, functional data,

longitudinal data, partially linear model, semiparametric model

7
mixture model, nonparametric bayes, dirichlet process,

hierarchical model, stick breaking

8
sliced inverse regression, central subspace, sliced average variance estimation,

dimension reduction, nonparametric regression

9
classification, model selection, oracle inequality,

support vector machine, aggregation, sparsity, statistical learning

10
markov chain monte carlo, bayesian inference, gaussian markov random field,

gaussian process, generalized linear mixed model, kriging, spatial statistics
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since conditioning on the core extract success, any downstream network theoretical

analyses will remain valid on the core part. Our algorithms only require the first few

eigenvectors of the adjacency matrix and are therefore computationally efficient.

There are several possible extensions to pursue following the proposed framework.

For example, what are the other generally uninteresting structures in network model

cases, and would they be incorporated into the same framework? Another inter-

esting question is how to generalize the current framework to more complicated data

structures for network modeling settings such as multiplex networks and dynamic net-

works. Such extensions may require delicate definitions of uninteresting structures in

the new scenarios and potentially new model fitting tools.

The implementation of our algorithms and the data example used in this chapter

can be found on https://github.com/tianxili/Core-Periphery.

https://github.com/tianxili/Core-Periphery
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Chapter 3

Incorporating Network into Topic

Model

3.1 Introduction

In the previous chapter, we have seen that through the network data alone, we can

discover meaningful structures of the underlying data generating system. On the

other hand, network data can also play a complementary role for many standard

statistical modeling tools. Examples include, but not limit to, linear regression and

survival analysis (Li et al., 2019; Le and Li, 2020), and topic modeling (Liu et al.,

2009; Zhu et al., 2013; Lim and Buntine, 2015; Lim et al., 2016). In this chapter, we

focus on one specific modeling task: topic modeling, and incorporate network data

into the topic modeling.

Topic models are machine learning techniques for discovering latent “topics” in a

collection of text documents. In topic models, each topic is modeled as a probability

distribution over distinct words, and each document in the collection is modeled as a

probability distribution over the topics. We can think of topic modeling as a matrix



68

factorization task: Suppose we have D documents in our data set, there are W distinct

word tokens, and K topics in the corpus. Then, using the bag-of-words representation,

the entire corpus can be represented as a D ×W word frequency matrix, which we

denote as N . Our objective is to find a factorization of N such that N ≈ θφ, where

θ is the D ×K document-topic matrix, and φ is the K ×W topic-word matrix. We

also require that the entries of θ and φ are nonnegative. The number of topics K is

usually small compared with the number of documents and the number of words W .

Therefore, θ provides an efficient summary of individual documents, and φ captures

the topics present in the entire corpus. It is worth noting that, for many recent topic

models, the central ideas still resemble the matrix factorization.

The nonnegative matrix factorization (NMF) has been widely applied in text

mining tasks (Lee and Seung, 1999; Shahnaz et al., 2006). NMF finds θ and φ

through an optimization task, which minimizes the Frobenius norm of the difference

N − θφ, while subject to the constraint that the entries of θ and φ are nonnegative.

The nonnegative constraint differentiates NMF from traditional dimension reduction

techniques, such as principal component analysis (PCA), and allows a part-based

interpretation, i.e., the entity being modeled (e.g. a document) is an additive com-

bination of different parts (e.g. topics). The probabilistic latent semantic analysis

(pLSA) (Hofmann, 1999) assumes a probability model, in which N follows a multi-

nomial distribution parameterized by θ and φ. In pLSA, the entries of θ and φ have

a probability interpretation. However, pLSA has two main shortcomings: First, it

is unable to generalize to previously unseen documents; Second, the number of pa-

rameters is D ·K + K ·W , which grows linearly as the number of documents. As a

result, it tends to overfit the data. To overcome these shortcomings, Blei et al. (2003)

proposed the Latent Dirichlet Allocation (LDA), which is perhaps the most widely

known topic model to date. The general idea of LDA is still the same: each word in



69

a document is generated by first sampling a topic according to the topic distribution

of the document, and then sampling a word in the selected topic according to the

word distribution of that topic. Compared with pLSA, LDA treats topic distribution

parameter θ as a hidden variable, and assigns a Dirichlet prior to it. This greatly

reduced the number of parameters in the model, and improved its generalization

performance on the previously unseen data.

In many topic modeling tasks, in addition to the written text documents, metadata

is also available. These metadata can include the document-level features, such as

the authors, timestamps, and publication venues, as well as the relations between

the documents, such as hyperlinks or citations. By exploiting the correlation between

these metadata and the topics, we can expect to improve the quality of the discovered

topics. For example, the author information of the document can carry significant

signals about the topics of the document: each author often has a unique topical

interest, which is usually their research interests or domain of expertise. Relational

features, such as networks, are sometimes available in addition to the text data. For

example, online blogs often contain links to other blogs, and academic papers have

a citation network. These network data contain information about the underlying

topic structures. Therefore, it is of interest to incorporate these network data into

the topic model when such data are available.

On the other hand, investigating how these metadata influences the formation

and the evolution of topics can be an interesting subject in itself. For example, if

the timestamps of the documents are available, then by studying the relationship

between time and topic distributions, we can identify those trending topics and know

how people’s interests change over time.

In order to better leverage the available metadata, researchers have developed

various extensions of LDA. They are designed to incorporate specific characteristics
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of the data and the task at hand. In the author topic model (Rosen-Zvi et al.,

2012), a multinomial distribution is associated with each author, instead of each

document. Then, each document is modeled as a mixture of topic distributions of its

authors. The word generating process is the following: for each word in the document,

we first sample an author from the author list of the document, then we sample a

topic from the topic distribution of the selected author, and then we sample a word

from the word distribution of the selected topic. The author topic model allows

direct modeling of each individual author, which enables author-level analysis, such

as discovering the topical interests of each author and calculating similarities between

authors. The dynamic topic models (Blei and Lafferty, 2006; Wang et al., 2008) are

able to incorporate time effect and estimate topic evolutions. They use the state-space

model or Brownian motion to model the evolution of the multinomial parameters

for the topic distributions at different time points. Then, at each time point, an

LDA is fitted. Zhu et al. (2013) proposed a topic model that incorporated network

data. Specifically, they assumed that the probability of two documents being linked

together is a function of the weighted inner product between the topic distributions

of the two documents. Therefore, documents sharing similar topic distributions are

more likely to be connected. They also proposed a scalable algorithm for model

estimation. In the topic-link LDA (Liu et al., 2009), the authors also considered

including network data. They proposed that the link formation between documents

is not only due to the content similarity between documents but also affected by the

community ties between the authors. In their approach, each author is associated with

a community membership µ, which is different from the topic distribution θ associated

with each document, and both µ and θ play a role in network link formation. Roberts

et al. (2016) developed a topic model that can incorporate an arbitrary number of

document-level features, such as news sources and time of release. The proposed
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Figure 3.1: Graphical representations of some existing topic models: (a) Latent
Dirichlet Allocation (Blei et al., 2003), (b) Author-Topic Model (Rosen-Zvi et al.,
2012), (c) Structural Topic Model (Roberts et al., 2016), (d) Topic-link LDA (Liu
et al., 2009).

model is called a structural topic model. In the proposed model, both the document-

topic distribution θ and the topic-word distribution φ are parameterized as functions

of document-level features through generalized linear models.

One implicit assumption made in the structural topic model is that the causal

direction is from document-level features to topic distribution, but not the other way

around, as is shown in Figure 3.1, which means, for an individual document, we

first have those document-level features, and then the topic distribution is formed
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based on the document-level features. However, in many cases, this may lead to

counterintuitive interpretations. For example, for academic paper collections, one

document-level feature we can observe is the journal in which the paper was published.

Using the above causal interpretation, we will conclude that, when composing an

academic paper, we will first determine the journal in which it will be published, and

then we will determine the topics of the paper, which is unlikely.

In practice, some document-level features indeed influence the formation of the

topics, and the topics of the document influence some document-level features. This

idea has appeared in the research for network community detection problems: Zare

et al. (2019) proposed a probabilistic graphical model for network community detec-

tion. In their work, they considered incorporating nodal features into the community

detection algorithm, and they categorize nodal features into two types based on their

causal relationships with the community memberships, namely, assortative features,

which influence the formation of communities, and generative features, which are in-

fluenced by the community structures. Then, an efficient estimation algorithm was

proposed to infer the community memberships of the network nodes. In the context

of topic modeling, a natural adaptation of their approach is simply replacing the

community membership of each node with the topic distribution of each document.

However, to the best of our knowledge, no such model has been proposed for topic

modeling.

In this chapter, we proposed a topic model that jointly models the text, the

document-level features, and the links between documents. For the text data, we

use an LDA-type text generation model. For the document-level features, we employ

the same idea from Zare et al. (2019), which accounts for the distinction between

assortative features and generative features. For the network links, we also assume

an assortative link formation process, which means similar documents are more likely
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to connect to each other. Since the proposed model has a complicated likelihood,

we propose an estimation algorithm that is based on Laplacian approximation and

stochastic expectation-maximization (stochastic EM). We apply our model to the

statistics paper citation network data set. We showed that our estimation algorithm

converges efficiently, and the proposed model is able to find both interpretable and

stable latent topics. The rest of the chapter is organized as follows: In Section 3.2, we

introduce our proposed topic model. In Section 3.3, we describe our model estimation

procedure. In Section 3.4, we introduce several automated topic model evaluation

metrics. In Section 3.5, we show the results of applying our model to the statistics

paper with citation network data set, and compare it to several existing topic models.

We then give a brief discussion in Section 3.6. Additional tables and plots of the model

fitting results with different numbers of topics are included in Section 4.2.

3.2 Our Proposed Model

Suppose we have D documents and W unique words in those documents. Let N

be the document-word matrix, where Nd,w is the number of occurrences of word w

in document d. In addition, each document also has P assortative features and L

generative features. Let X be the D × P assortative feature matrix. Let Y be

the D × L generative feature matrix. There can also be a network linking pairs of

documents together, which we denote as A. Let θ be the D × K document-topic

distribution matrix, where K is the number of topics, and let φ be the K × W

topic-word distribution matrix.

3.2.1 Components of Our Model

Our proposed model consists of four main components:
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Assortative features → Topic distribution:

The assortative features influence the formation of topic distributions. Typically

these are the features that exist before the authors compose a document, such as the

year in which the document is published, the authors of the document, the research

area of the authors, etc. Following Roberts et al. (2016), we use a logistic normal

distribution to model θ, and the mean vector of the distribution is parameterized by

the assortative features X. Let β be a coefficient matrix. We first define the variable

µ, which is a D × K matrix. Its d-th row, µd,∗, is generated from a multivariate

normal distribution:

µd,∗ ∼ N(Xd,∗β,Σ), (3.1)

where the mean vector is a linear function of X, and Σ is the covariance matrix. µ is

defined on the entire real domain. Next, θ can be obtained by applying the softmax

function on µ:

θd,k =
eµd,k∑K
k′=1 e

µd,k′
=

e
∑P
p=1Xd,pβp,k∑K

k′=1 e
∑P
p=1Xd,pβp,k′

. (3.2)

The softmax transformation automatically ensures that elements of θ is within [0,1].

Therefore, no additional constraint is required. The log-likelihood of generating topic

distributions given the assortative features is the following,

la(θ(µ)|X,β,Σ) = −D
2

log |Σ| − 1

2

D∑
d=1

(µd,∗ −Xd,∗β)Σ−1(µd,∗ −Xd,∗β)t. (3.3)

The formulation of the multivariate logit function in Equations (3.1) and (3.2) is

symmetric, meaning that there is no reference class. The advantage of this formulation

is that the coefficient β will be more interpretable. The identifiability issue can be

solved by including a regularization term on the coefficient (Friedman et al., 2010).
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Topic distribution → Generative features:

In contrast to the assortative features, the generative features are dependent on the

topic distributions. Examples of this type of feature include the journal in which

a research paper is published, and the number of clicks/likes/replies an online post

received. We also note that the citation network is also “generative”, since citation

will only happen after a paper has been composed, and it depends on the topic

distributions. However, to account for the bilateral nature of the network, we use a

different component to model it.

In the current model, we only consider cases where the generative features are cat-

egorical variables. Given the topic distribution θ, we assume the generative features

Y follow a logistic regression model:

P (Yd,l = Cl,m|θd,∗,α) =
e
∑K
k=1 θd,kαk,l,m∑

m′(e
∑K
k=1 θd,kαk,l,m′ )

, (3.4)

where Cl,m denotes the m-th category for variable Yd,l, and α contains the regression

coefficients. Equation (3.4) is also symmetric. To resolve identifiability issue, we can

also add a regularization on α.

Let Rd,l,m denote P (Yd,l = Cl,m|θd,∗,α). The log-likelihood of this component can

be written as

lg(Y |θ,α) =
D∑
d=1

L∑
l=1

M∑
m=1

1(Yd,l = Cl,m) · logRd,l,m. (3.5)

Topic distribution → Text:

This component describes how words are generated in each document, given the topic

distribution θd,∗ of document d. For each word position in document d, the probability
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of observing word w is given by

P (w|θd,∗,φ) =
K∑
k=1

θd,kφk,w. (3.6)

Recall that N is the document-word co-occurrence matrix, and Nd,w is the number

times word w appears in document d. Then, the log-likelihood of this component is

lt(N |θ,φ) =
D∑
d=1

W∑
w=1

Nd,w · log

(
K∑
k=1

θd,kφk,w

)
. (3.7)

Topic distribution → Network:

When network data are also present, we can also incorporate this information. In

this model, we consider assortative link formations, which means documents sharing

similar topic distributions are more likely to be linked together. Specifically, for two

documents d1 and d2, given their topic distributions θd1,∗ and θd2,∗, we assume the

link Ad1,d2 is distributed as a Poisson variable:

Ad1,d2 ∼ Pois

(
K∑
k=1

θd1,kηkθd2,k

)
. (3.8)

The Poisson parameter is a weighted inner product between the two topic distribu-

tions, and η denotes the weight. We note that in the cases that A is unweighted,

Ad1,d2 can only be 0 or 1, whereas Equation (3.8) allows Ad1,d2 > 1. The idea of

using Poisson distribution to approximate the link probability comes from Zhu et al.

(2013). The motivation is that, in many real-world applications, A will be sparse,

and Poisson distribution with small parameter values is a good enough approxima-

tion for a Bernoulli distribution with small success probabilities. More importantly,

the mathematical form in Equation (3.8) makes the derivatives of the likelihood with
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Figure 3.2: Violin plots of within-cluster and between-cluster edge densities.

respect to θ take a simple form. The log-likelihood of this component has the form

ln(A|θ,η) =
∑
d1<d2

[
Ad1,d2 · log

(
K∑
k=1

θd1,kηkθd2,k

)
−

K∑
k=1

θd1,kηkθd2,k

]
. (3.9)

The key assumption we made when including the network data into the model is

the assortative link assumption. To check the validity of this assumption, we can use

our model-fitting result without the network. We obtain the estimated document-

topic distribution θ̂, and apply K-means clustering to its rows. This procedure will

put documents with similar topic distributions into clusters. Then, we can look at the

actual citation network, and find out the number of citations within and between the

clusters. In Figure 3.2, we plot the within-cluster and between-cluster edge densities.

We tried a few numbers of clusters for the K-means. The within-cluster densities are

much higher than the between-cluster densities for all different numbers of clusters.

Note that we did not include the network data when estimating these θ̂s. Therefore,

this suggests that there is indeed strong assortativity in the link formation process.

In summary, the full log-likelihood of the entire model can be obtained by adding
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Figure 3.3: Graphical representation of our proposed model.
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up Equations (3.3), (3.5), (3.7) and (3.9):

l(θ(µ),Y ,N ,A|X,φ,α,β,Σ,η) = −D
2

log |Σ|−1

2

D∑
d=1

(µd,∗−Xd,∗β)Σ−1(µd,∗−Xd,∗β)t

+
D∑
d=1

L∑
l=1

M∑
m=1

1(Yd,l = Cl,m) · logRd,l,m +
D∑
d=1

W∑
w=1

Nd,w · log

(
K∑
k=1

θd,kφk,w

)

+
∑
d1<d2

[
Ad1,d2 · log

(
K∑
k=1

θd1,kηkθd2,k

)
−

K∑
k=1

θd1,kηkθd2,k

]
. (3.10)

In Figure 3.3, we present a graphical representation of our proposed model.

3.3 Model Estimation

3.3.1 E-step

The general approach to model estimation is the EM algorithm. At the E-step, we

need to calculate the expectation of the full log-likelihood, which is the following:

∫
l(θ,Y ,N ,A|X,φ,α,β,Σ,η) · P (θ) dθ + lprior(α) + lprior(β) + lprior(Σ), (3.11)

where P (θ) is the posterior distribution of θ given the observed data and other model

parameters, and lprior(α), lprior(β), lprior(Σ) are logarithm of the prior distributions

for these parameters. Since the full log-likelihood in Equation (3.10) is complicated,

integrating the log-likelihood analytically with respect to the hidden variable θ is

infeasible. To solve this problem, we employ Laplacian approximation (Wang and

Blei, 2013) and stochastic EM (Nielsen, 2000) to estimate the model parameters.
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Laplacian Approximation

The basic idea of Laplacian approximation is that, we use Taylor expansion to obtain

an approximation for the posterior distribution for µ. Note that µ is equivalent to

θ by Equation (3.2). In addition, µ has the desirable property that its elements are

defined on the entire real axis, while elements of θ must be within [0, 1]. Let P (µ)

denote the posterior distribution of µ (we omitted its dependence on other variables

for simplicity), and let µ̂ denote the maximum a posteriori (MAP) estimate that

maximizes P (µ). Then, we do Taylor expansion of logP (µ) at µ̂:

logP (µ) ≈ logP (µ̂) + (µ− µ̂)t[logP (µ̂)]′ +
1

2
(µ− µ̂)tH(µ̂)(µ− µ̂), (3.12)

where H(µ̂) is the Hessian matrix evaluated at µ̂. We note that the value of H(µ̂)

depends on other parameters in the model as well as the observed data. Since µ̂

maximizes the posterior, [logP (µ̂)]′ = 0, and we have

logP (µ) ≈ logP (µ̂) +
1

2
(µ− µ̂)tH(µ̂)(µ− µ̂), (3.13)

and therefore,

P (µ) ∝ exp

{
1

2
(µ− µ̂)tH(µ̂)(µ− µ̂)

}
. (3.14)

This means we can use a normal distribution with mean µ̂ and covariance matrix

−[H(µ̂)]−1 to approximate P (µ).

In practice, we can find the MAP estimate µ̂ through gradient descent. For the

Hessian matrix H(µ̂), we ignore its off-diagonal entries. The motivation is that, since

H(µ̂) is (D ∗ K) × (D ∗ K), if we include the off-diagonal entries, the number of

parameters to be estimated grows quadratically, and inverting such a large matrix
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is computationally infeasible, so we only keep the diagonal entries, which reduce the

number of parameters to D ∗K, and inverting a diagonal matrix is easy.

Stochastic EM

Given we can approximate the likelihood l(θ,Y ,N ,A|X,φ,α,β,Σ,η) with a nor-

mal distribution, the next step is to replace the integration in Equation (3.11) with

an summation. Specifically, in each iteration of the stochastic EM algorithm, we first

find the MAP µ̂ while fixing all other parameters. This can be done through gradi-

ent descent. Then, we calculate the Hessian H(µ̂), which is evaluated at µ̂. Then,

we sample µ̃(b) from N
(
µ̂,−[H(µ̂)]−1), for b = 1, 2, ..., B. We next maximize the

following sum with respect to the model parameters φ, α, β, Σ, η:

1

B

B∑
b=1

l(θ(µ̃(b)),Y ,N ,A|X,φ,α,β,Σ,η) + lprior(α) + lprior(β) + lprior(Σ) (3.15)

3.3.2 M-step

During each iteration of the stochastic EM algorithm, after obtaining the summation

in Equation (3.15), we update the model parameters. Specifically, α and β can be

obtained through gradient descent.

For the covariance Σ, we assign an inverse-Wishart prior with identity matrix as

the scale matrix and degree of freedom K,W−1(I, K). The inverse-Wishart distribu-

tion is a conjugate prior for the covariance matrix of a multivariate normal distribu-

tion, so the posterior distribution is also inverse-Wishart, and there is a closed-form

solution for Σ that maximizes the posterior. The updating equation is

Σ̂ =

(
I +

1

B

B∑
b=1

(µ̃(b) −Xβ̂)t(µ̃(b) −Xβ̂)

)
/ (D + 2K + 1) . (3.16)
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For φ and η, we use the same EM algorithm as in Zhu et al. (2013) to update the

parameters. For φ, during iteration i, the updating equation is

φ̃
(i+1)
k,w =

B∑
b=1

D∑
d=1

Nd,w

θ̃
(b)
d,wφ̂

(i)
k,w∑K

k′=1 θ̃
(b)
d,k′φ̂

(i)
k′,w

, (3.17)

φ̂
(i+1)
k,w =

φ̃
(i+1)
k,w∑W

w′=1 φ̃
(i+1)
k,w′

. (3.18)

For η, the updating equation is

qd1,d2(k) =
B∑
b=1

θ̃
(b)
d1,k
θ̃

(b)
d2,k
η̂

(i)
k∑K

k′=1 θ̃
(b)
d1,k′

θ̃
(b)
d2,k′

η̂
(i)
k′

, (3.19)

η̂
(i+1)
k =

∑D
d1,d2=1Ad1,d2 · qd1,d2(k)∑B

b=1

(∑D
d=1 θ̃

(b)
d,k

)2 . (3.20)

We fit our proposed model to the statistics paper citation network data set using

the above estimation algorithm. The details can be found in Section 3.5. We monitor

the objective function in Equation (3.15) as the algorithm progresses, and plot it

in Figure 3.4. In the plot, we dropped the first iteration, since the increase in the

objective function is very large during the first iteration, which squeezes the rest of the

points in the plot. We can see from the plot that the objective function is generally

increasing, with minor fluctuations due to the stochastic nature of the algorithm.

The objective function stabilizes after about 25 iterations. In practice, when we fit

the model, we set a maximum number of iterations and a tolerance value, and we

terminate the estimation algorithm if it reaches the maximum number of iterations

or the relative change in the objective function becomes less than the tolerance value.
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Figure 3.4: Plot of the objective function against the number of iterations.

3.4 Model Evaluation

3.4.1 Held-out Likelihood

To assess the generalization performance of the topic models, we evaluate the likeli-

hood of a held-out test data set. We randomly select a subset of the documents, and

for each selected document, we hold out a fraction of its words. We then fit models

to the remaining training data, and evaluate the per-word likelihood of the held-out

test set. The definition of per-word held-out likelihood is defined as

1

|Dtest|
∑

d∈Dtest

logP (wtest
d )

N test
d

. (3.21)

We note that in many topic model literature, a related quantity called perplexity

is used. The perplexity is inversely related to the per-word likelihood, and therefore

captures the same aspect of the model fitting. In topic modeling literature, perplexity

and held-out likelihood are the main metrics for assessing how well the model fits the
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data. However, we also note that neither of these two metrics is directly attached

to the human interpretability of the discovered topics. For example, Chang et al.

(2009) showed that topic models that do better on held-out likelihood might be less

semantically interpretable to humans.

3.4.2 Metrics for Semantic Interpretability

As an alternative evaluation metric to the held-out likelihood, Chang et al. (2009)

proposed two human evaluation tasks, namely, word intrusion and topic intrusion. In

these evaluation tasks, a human annotator is presented with a list of words within

a topic as well as an intruder word that does not belong to the topic, or a list of

topics within a document as well as an intruder topic that does not belong to the

document. Then, the annotator is asked to identify the intruder word (or topic), and

the probability of identifying the correct intruder word (or topic) is used as a quality

metric for topic modeling. A more straightforward human evaluation task is topic

rating, in which an annotator rates the quality of the presented topic on a scale of,

say, 1 to 3.

These tasks require the participation of humans and are therefore expensive to

deploy on a large scale. Newman et al. (2010) tested a group of automated coherence

metrics for topic models, and compared them to real human evaluation scores. They

found that the PMI-based term co-occurrence within Wikipedia achieves a high corre-

lation with human evaluation scores. The automated coherence metric gives a single

score to each topic. For a topic model that returns several topics, we can calculate

the average coherence score of all its topics, which is then used as a quality metric

for the topic model. The automated coherence metric enables fast and large-scale

evaluation of topic models, and is widely used as a proxy for human evaluations.
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However, a recent study also shows that, for recent neural topic models, there could

be a substantial gap between human evaluation and the coherence metrics: coherence

metrics can declare a winner, whereas the corresponding human judgment does not

(Hoyle et al., 2021). In addition, as we will demonstrate later, coherence metrics are

also heavily influenced by word frequencies, and generic words often lead to higher

coherence scores regardless of the actual interpretability of the topics.

In this section, we introduce two automated coherence metrics. For topic k, we

select m representative words, which we denote as v(k) = (v1, v2, ..., vm). Then, the

coherence metrics we use are the following:

Co-occurrence Coherence:

The first coherence metric is based on co-occurrences of the m representative words

(Mimno et al., 2011). Specifically, let D(v) be the number of documents containing

word v, and D(v, v′) be the number of documents containing both v and v′. Then,

the co-occurrence coherence is defined as

coherence(k) =
m−1∑
i=1

m∑
j=i+1

log
D(vi, vj)√
D(vi)D(vj)

. (3.22)

Intuitively, if a topic is meaningful to humans, its representative words will reinforce

each other semantically, and we can expect that its representative words co-occur more

frequently in the same documents, whereas if a topic is random and not meaningful,

the co-occurrence rate will be low.

Cosine Coherence:

Similar to co-occurrence coherence, we can also use cosine similarity to measure co-

occurrence. For the document-word matrix N , let N∗,i be its i-th column. This
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column corresponds to word i. Then, the cosine coherence is defined as

cosine(k) =
2

m(m− 1)

∑
i,j∈v(k),
i 6=j

D∑
d=1

Nd,i

‖N∗,i‖2

∗ Nd,j

‖N∗,j‖2

. (3.23)

The above two metrics require that we have selected m representative words for

each topic. In many applications, the most straightforward selection method is just

picking m words with the highest probabilities in each topic. Besides, we can also try

to filter out the generic words by subtracting the background word distribution from

the topic-word distribution, which essentially “centers” the topic-word distribution.

Therefore, generic words that have high probabilities in every topic are less likely to

be selected as representative words.

In our experiment, for topic k, we define the following transformation:

φ′k,w = arcsin
√
φk,w − arcsin

√
φ·,w, (3.24)

where φ·,w = 1
K

∑K
k=1φk,w is the average probability of word w over all K topics.

After the transformation, we select m words that have the highest φ′k,w for each

topic as its representative words.

3.4.3 Metrics for Stability

Another aspect from which topic models can be evaluated is stability. We use the

procedure proposed in Mantyla et al. (2018), namely, making replicated runs, clus-

tering the resulting topics from all the runs, and measuring the dissimilarity of topics

within each cluster. The idea of clustering the topics from replicated runs also ap-

peared in Chuang et al. (2015), but the latter did not propose a quantitative measure

for stability. Let S be the number of replicated runs. Let φ(s) be the topic-word



87

matrix from the s-th model run. We stack the resulting topic-word matrices φ(s),

and let Φ =
(
φ(1)t,φ(2)t, ...,φ(S)t

)t
. Then we apply the K-means clustering to the

rows of Φ, with K equal to the number of topics in each individual run. Then, the

stability measure is calculated as the sum of the squared Euclidean distance between

each row and its cluster center.

Stability measure:

stability =
1

S

∑
i

∥∥Φi,∗ −Ckm(i)

∥∥2

2
, (3.25)

where Ckm(i) denotes the cluster center for the i-th row. In Chuang et al. (2015), a

clustering algorithm is also applied to the rows of Φ, but with the additional con-

straint that each resulting cluster cannot contain multiple topics from the same run.

Therefore, in addition to the regular K-means clustering, we also applied the con-

strained K-means clustering from Wagstaff et al. (2001), which ensures that different

topics from the same model run will not appear in the same cluster.

3.5 Application to Statistics Papers with Citation

Network Data Set

In this section, we apply our topic model to the statistics papers with citation network

data set collected by Ji and Jin (2016). We use our proposed topic model to model

the abstract of these papers while taking into account the document-level features

and the citation network available in this data set. After removing papers with no

abstract, there are 3214 papers in the data set. Standard text preprocessing is applied
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to the abstracts, including stopwords removal1, punctuation removal, stemming, etc.

We also use tf-idf to filter the words: For each word, we calculate its tf-idf weights,

and accumulate the weights over all documents. We only keep the top 1000 words

with the highest cumulative tf-idf weights. Then, we remove words that only appear

in one document, and 990 distinct words remain for our topic modeling task.

We use the publication year of each document as the assortative feature X, and

assume that topic distribution priors are B-spline functions with 5 degrees of freedom

of the publication year. We use the publication journal as the generative feature Y .

This feature has four categories: Annals of Statistics (AOS), Biometrika (Biomet),

Journal of American Statistical Association (JASA), and Journal of Royal Statistical

Society Series B (RSS). In the preprocessed data set, there are 954, 750, 1103, and

407 papers in each of these four journals, respectively. For our proposed model, we

consider two versions: one with both the document-level features and the citation

network, and one with only document-level features but no network.

We compare our proposed model to Structural Topic Model (STM) and Latent

Dirichlet Allocation (LDA). For STM, the same set of document-level features, pub-

lication year and journal, are used, and both are used as prevalence features. In

addition, no network information is included. For LDA, only text data are used,

and neither document-level features nor the network is included. We set the number

of topics to K = 5, 10, 20, and calculate the evaluation metrics introduced in the

previous section. The results are shown in Tables 3.1 to 3.3. Note that for topic

stability, lower values indicate better performance, while for other metrics, higher

values indicate better performance. The results are based on 50 replicated runs: We

present the mean values over the 50 replicated runs for these metrics, and two times

1We use the SMART information retrieval system. The list can be found in the stopwords R
package



89

standard deviations of the means are shown in the parentheses; for stability metrics,

we draw subsamples of size 20 from the 50 replicated runs, calculate the stability

metrics using the subsamples, and average them over 300 independent draws. The

standard deviations of the stability metrics are negligibly small and are not shown.

As we can see in the table, while STM achieves the best coherence and LDA

achieves the best stability, our proposed model achieves the best or close-to-the-best

performances in held-out likelihood, coherence, and stability. LDA produces stable

results. However, its discovered topics are less semantically coherent, which limits its

usefulness. This observation implies that the document-level features indeed carry

topical information, and are therefore helpful for discovering meaningful topics. STM

is able to find semantically coherent topics, but is relatively unstable. In addition,

since STM does not consider the causal directions between topic distributions and the

document-level features, users must be cautious when interpreting its model param-

eters. For our proposed model, the inclusion of the network into the model mainly

improves the stability metrics.

Next, we focus on our proposed model and interpret the model fitting result.

For this objective, we fix K = 10. First, in Table 3.4, we listed the top-20 most

representative words for each topic. The representativeness of each word in each

topic is defined as in Equation (3.24). We also named each topic based on these 20

words. We also note that because of the instability of topic models, each time we

run our model, we may get a slightly different set of topics and their top-20 words.

From our replicated runs, we found that “High-Dimensional Stat/Variable Selection”,

“Clinical Trials”, “Bayesian”, “Hypothesis Testing”, and “Density Function” are the

highly consistent topics across multiple runs. They almost always show up in each

individual run. On the other hand, there are several interpretable topics that show

up most of the time, such as “Experimental Design” and “Spatial/Temporal”. The
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Table 3.1: Topic Model Evaluation (K = 5)

Methods Held-out Likelihood
Coherence Stability

Co-occurrence Cosine Unconstrained Constrained

Ours −6.002(±0.005) −383.94(±5.63) 0.1394(±0.0014) 0.0052 0.0067
Ours (no network) −6.005(±0.005) −373.20(±4.63) 0.1424(±0.0013) 0.0066 0.0082
Ours (no features) −6.004(±0.005) −378.70(±6.19) 0.1398(±0.0018) 0.0051 0.0061
Ours (permuted) −6.022(±0.005) −372.38(±5.01) 0.1431(±0.0016) 0.0062 0.0073

STM −6.099(±0.005) −347.45(±2.72) 0.1457(±0.0015) 0.0171 0.0202
LDA −6.043(±0.006) −460.02(±10.89) 0.1199(±0.0013) 0.0056 0.0069

Table 3.2: Topic Model Evaluation (K = 10)

Methods Held-out Likelihood
Coherence Stability

Co-occurrence Cosine Unconstrained Constrained

Ours −5.922(±0.006) −435.25(±7.19) 0.1314(±0.0009) 0.023 0.030
Ours (no network) −5.928(±0.006) −431.80(±5.58) 0.1311(±0.0008) 0.029 0.036
Ours (no features) −5.924(±0.006) −445.38(±6.35) 0.1296(±0.0009) 0.024 0.031
Ours (permuted) −5.940(±0.006) −444.09(±7.31) 0.1299(±0.0009) 0.033 0.040

STM −6.029(±0.006) −408.41(±5.18) 0.1309(±0.0010) 0.074 0.088
LDA −6.049(±0.007) −548.20(±12.40) 0.1199(±0.0013) 0.020 0.027

Table 3.3: Topic Model Evaluation (K = 20)

Methods Held-out Likelihood
Coherence Stability

Co-occurrence Cosine Unconstrained Constrained

Ours −5.839(±0.006) −504.22(±6.47) 0.1217(±0.0006) 0.091 0.151
Ours (no network) −5.848(±0.006) −501.65(±5.24) 0.1216(±0.0006) 0.106 0.168
Ours (no features) −5.843(±0.006) −499.52(±5.90) 0.1213(±0.0007) 0.086 0.141
Ours (permuted) −5.854(±0.007) −520.58(±6.96) 0.1198(±0.0007) 0.126 0.185

STM −5.967(±0.005) −494.81(±5.65) 0.1118(±0.0008) 0.337 0.422
LDA −6.244(±0.012) −668.60(±9.91) 0.1082(±0.0007) 0.076 0.107
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Table 3.4: The most representative words for each topic. These words are sorted in
descending order based on Equation (3.24). The numbers in the parentheses are the
word probabilities in the corresponding topic.

Id Name Most representative words

1 Clinical Trials
effect(0.035), treatment(0.024), outcom(0.014), studi(0.026),

random(0.019), trial(0.01), miss(0.01),
diseas(0.009), respons(0.013), cancer(0.008)

2 High-dimensional Stat
select(0.042), variabl(0.022), dimens(0.013), dimension(0.015),

regress(0.023), lasso(0.009), high(0.014),
penalti(0.009), classif(0.008), penal(0.008)

3 Bayesian
prior(0.027), bayesian(0.027), distribut(0.039), model(0.061),

carlo(0.017), mont(0.017), posterior(0.016),
mixtur(0.016), markov(0.015), algorithm(0.021)

4 Mixed/unclear
sampl(0.058), estim(0.073), error(0.029), varianc(0.019),

bootstrap(0.014), interv(0.014), confid(0.012),
robust(0.014), popul(0.012), small(0.011)

5 Mixed/unclear
estim(0.088), likelihood(0.041), model(0.065), semiparametr(0.015),

paramet(0.027), regress(0.025), parametr(0.014),
effici(0.016), propos(0.03), maximum(0.013)

6 Spatial/Temporal
time(0.026), spatial(0.015), model(0.055), process(0.019),

data(0.032), forecast(0.006), articl(0.011),
seri(0.009), dynam(0.006), onlin(0.005)

7 Hypothesis Testing
test(0.111), procedur(0.039), statist(0.037), power(0.018),

null(0.017), hypothesi(0.016), control(0.018),
fals(0.012), hypothes(0.011), rank(0.012)

8 Experimental Design
design(0.049), optim(0.026), class(0.027), span(0.015),

graphic(0.012), graph(0.008), space(0.012),
inlin(0.008), formula(0.007), shape(0.007)

9 Functional Data
function(0.057), cluster(0.026), compon(0.028), data(0.046),

smooth(0.019), correl(0.018), curv(0.014),
gene(0.013), analysi(0.021), spline(0.011)

10 Density Function
densiti(0.021), function(0.036), converg(0.017), rate(0.019),

estim(0.052), bound(0.012), gaussian(0.011),
process(0.017), kernel(0.009), minimax(0.007)
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topics “Functional Data”, “Time Series”, and “Survival Analysis” occasionally show

up.

Then, we look at the effect of the publication year on the topic distributions.

Specifically, let x contain the B-spline bases at certain publication years, and then

we plot xβ̂ against the corresponding publication year in Figure 3.5. In our model

assumption, the topic distribution depends on the assortative features. In this plot,

for a given year, the heights of the lines indicate the prior distributions for the topics,

and can be interpreted as the general popularity of the topics. For example, Topic 2,

which seems to be about high dimensional statistics and variable selection, became

more prevalent as the years went by. In Figure 3.6, we plot the estimated coefficients

α̂ for the generative features. In this data example, papers focusing on Topic 10

(Density Function) are more likely to appear in AOS, while papers focusing on Topic 6

(Spatial/Temporal) are more likely to appear in JASA. Interestingly, Topic 1 (Clinical

Trials) seems to have a negative effect on the likelihood of being published on AOS.

The parameter η̂ is the weight of the inner-product in Equation (3.8), and it describes

to which extent each topic affects the formation of citations. We plot its values in

Figure 3.7, from which we can see that Topic 2 (High-dimensional Stat), Topic 7

(Hypothesis Testing), and Topic 9 (Functional Data) has the highest weight, while

Topic 4 (Mixed/unclear) and Topic 6 (Spatial/Temporal) have the lowest weights.

This suggests that if a pair of papers both focus on Topics 2, 7, or 9, it is more likely

for them to form a citation compared with pairs of papers focusing on other topics.

Next, we look at the topic distributions of the papers with high degrees in the

citation network. We select the papers with ≥ 35 degrees, which gives us 12 papers.

In Figure 3.8, we plot their topic distributions. We note that at the time of writing

this thesis, these papers all have received hundreds or even thousands of citations

as indicated by Google Scholar. Therefore, the topic distributions of these papers
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Figure 3.5: Effects of the assortative features (publication year) on the Topic distri-
butions.

might be interesting to the general audience. In Figure 3.8, we can see that 9 out

of 12 papers are all focused on Topic 2 (High-dimensional Stat). There are also 2

papers focusing on hypothesis testing, and 1 paper focusing on functional data. This

observation suggests that high-dimensional statistics has generated some of the most-

cited research papers in statistics during the time between 2003 and 2012. We note

that the titles of these papers are also indicative of the topics of the papers. We also

did the same analysis with STM: we plotted the topic distributions of the same 9

papers with θ estimated by STM. Although STM does not return the exact same set

of topics, the topics with the highest probabilities are also about high-dimensional

statistics/variable selection and hypothesis testing.

What if we include a false network?

We also considered the problem of including a false network, in which case there is no

true association between the network structure and the documents. To simulate this
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Figure 3.7: Estimated topic assortative weight η̂.

scenario with our current data set, we randomly permute the order of the network

nodes and assign the permuted network nodes to the document, thus breaking the

association between the network structure and the documents. Then, we fit the topic

model with the permuted network, and evaluate the same metrics as in the previous

section. The results are also shown in Tables 3.1 to 3.3. The topic models with the

permuted networks consistently lead to a lower held-out likelihood than models with

the true network or without a network. For K = 10 and 20, using the permuted

networks also result in worse coherence and stability. In practice, to test whether

there is a true association between the network and the documents, we can fit two

models with and without the network, and see if the one with the network has a worse

held-out likelihood.

When there is no true association between the network structure and the docu-

ments, the estimated η̂ is no longer meaningful. We tried to find the null distribution

of η̂ in this case, and it turns out the null distribution still depends on the network

structure: When we use a simulated non-informative Erdös-Renyi network, all entries
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in η̂ have similar values; When we use the permuted networks, where there is degree

heterogeneity, one of the entries of η̂ will have large values, while other entries are

close to zero.

Limitation of Coherence

Coherence is one of the most widely used automated evaluation metrics for topic

models. However, coherence can be heavily influenced by word frequencies. For

example, in the statistics papers with citation network data set, if we select the

top-20 words with the highest word frequency and treat them as a topic, the cosine

coherence will be 0.287 and the co-occurrence coherence will be −179.66, both of

which are much higher than the coherence scores in Tables 3.1 to 3.3, despite not

being an actual topic.

More generally, to show the dependence of coherence on word frequency, we ran-

domly sample 20 words without replacement, with the sampling probability of each

word proportional to its overall frequency. Then, for each sample of 20 words, we

calculate its coherence, and we plot the coherence against the average word frequency

of the 20 words. The results are shown in Figure 3.9. As can be seen in the figures,

coherence scores generally increase as the average word frequency increases.

Next, we plot the coherence against average word frequency for the actual topics

found by our model, STM, and LDA. We also compare them to the coherence of

randomly sampled words. The results are shown in Figure 3.10. For these actual

topics, the coherence scores also seem to increase as the average word frequency

increases. In addition, for most of the actual topics, their coherence scores are above

that of the randomly sampled words at any fixed word frequency level, which indicates

that these models do find signals that are not purely random.

In practice, coherence metrics should be used with caution for model selection.
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Figure 3.9: Coherence scores of 20 randomly sampled words vs. Average overall word
frequency.
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Figure 3.10: Coherence scores of actual topics and random words vs. Average overall
word frequency.
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If a topic model only returns topics with high-frequency generic words, this model

might receive a deceivingly high coherence score.

3.6 Conclusion and Discussion

In this chapter, we developed a topic model that jointly models the text, assortative

features, generative features, and network data. We borrowed the idea of assortative

features and generative features from network community detection research and

adapted it for topic modeling. This adaption allows a more natural interpretation

of the model-fitting result. Meanwhile, we compared our model to both STM and

LDA in terms of several automated evaluation metrics, and showed that our model

is able to simultaneously achieve high held-out likelihood, coherence, and stability.

By comparing our models with and without the citation network, we found that the

main advantage of including the network is the improved stability of the discovered

topics.

Our proposed model is highly modular and flexible: Even if some of the compo-

nents are missing, our model can still be applied. For example, we have seen in the

model evaluation that our model can be applied without the network data or the

document-level features. Another interesting situation is when there is no text data.

In this case, our model becomes a network community detection model similar to the

model in Zare et al. (2019), and the only distinction is that we treat the community

membership θ as a hidden unobserved variable, whereas in their model, θ is a model

parameter. Investigating whether this distinction will have an impact on performance

in the context of community detection can be an interesting future direction.

The current main limitation of our proposed model is its relatively slow model

fitting process. While STM and LDA require a few minutes to fit to the current data
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set, our proposed model currently requires about 40 minutes on a personal laptop.

Since our model currently relies on a generic estimation procedure, a potential future

work is developing a more efficient estimation algorithm to speed up the model fitting

process.

Another potentially interesting future direction is the model evaluation. We have

seen that the coherence metrics are heavily influenced by the overall word frequency.

Devising a more principled model evaluation metric that is immune to the influence

of word frequency can be beneficial to the topic modeling community. A potential

modification to the coherence metrics is treating the word frequency as a confound-

ing variable, and controlling for it when comparing coherence scores across different

models.

The current implementation of our proposed model and the data example in this

chapter can be found in https://github.com/RuizhongMiao/Topic-Model-with-Metadata.

https://github.com/RuizhongMiao/Topic-Model-with-Metadata
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Chapter 4

Appendix

4.1 Proofs and Additional Simulation Results

4.1.1 Proofs of the Main Theorems

Proofs under the ER-type model

Let U , Λ, Û , Λ̂ be defined as in (2.23) and (2.24). We introduce the following

additional notations to be used:

• p∗ = max1≤i,j≤nPi,j.

• ∆ = |λr| − |λr+1|.

• κ = min{|λ1/λr|, 2r}.

• R = (γ + 1) log n+ r, where γ > 0.

• g =
√
dmax + R

α logR
, where α ∈ (0, 1).

• B(r) = 10 min{r, 1 + log2(|λ1/λr|)}.
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• dmin = min1≤i≤n
∑n

j=1Pi,j.

• dmax = max1≤i≤n
∑n

j=1Pi,j.

As preparation, the following lemmas will be used in our proofs.

Lemma 1 (Lei (2019)). If ∆ � κg and |λr| � np∗√
n‖U‖2,∞

, we have

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
�
√
n

(
κg

∆
‖U‖2,∞ +

√
Rp∗

|λr|

)
‖U‖2,∞ |λ1|

+
√
n ‖U‖2

2,∞ ‖E‖2 +
√
n

(
κg

∆
‖U‖2,∞ +

√
Rp∗

|λr|

)2

(|λ1|+ ‖E‖2) , (4.1)

with probability 1− (B(r) + 1)n−γ.

Proof. This lemma can be proved by combining the Corollary 3.6 and the result in

Section 7.4 from Lei (2019).

Lemma 2 (Theorem 5.2 of Lei and Rinaldo (2015)). For c0 > 0 and γ > 0 there

exists a constant C = C(γ, c0) such that

‖E‖2 ≤ C max{
√
np∗,

√
c0 log n} (4.2)

with probability at least 1− n−γ.

Combining Lemma 1 and Lemma 2 would leads to a concentration bound of low-

rank approximation with respect to the ‖·‖2,∞.

Lemma 3. Suppose np∗ � log n, ∆ � κg, and |λr| � np∗√
n‖U‖2,∞

. Then, with probability
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at least 1− (B(r) + 2)n−γ, we have

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
�
√
n

(
κg

∆
‖U‖2

2,∞ |λ1|+
√
Rp∗

|λr|
‖U‖2,∞ |λ1|

+ ‖U‖2
2,∞
√
np∗ +

(κg
∆

)2

‖U‖2
2,∞ (|λ1|+

√
np∗) +

Rp∗

λ2
r

(|λ1|+
√
np∗)

)
. (4.3)

Furthermore, if Assumption 2 holds, (4.3) becomes

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
� µ2

0rκg√
n∆
|λ1|+ µ0|λ1|

√
rRp∗

|λr|
+ µ2

0r
√
p∗

+
(κg

∆

)2

µ2
0

r√
n

(|λ1|+
√
np∗) +

Rp∗

λ2
r

(
√
n|λ1|+ n

√
p∗). (4.4)

Proof. Plugging (4.2) into (4.1), and applying union bound, we get (4.3). Plugging

‖U‖2,∞ ≤ µ0

√
r
n

into (4.3), we get (4.4).

We now introduce the following theorem that includes Theorem 1 as a special

case.

Theorem 5. Assume the network A is generated from the ER-type model in Model 1

under Assumption 2. Suppose ∆ � κg, |λr| � np∗√
n‖U‖2,∞

, and np∗ � log n. Further-

more, if we have

h(n) ≥ C

[
µ2

0r√
n
|λ1|

(
κg

∆
+

R

|λr|

)
+ µ0|λ1|

√
rp∗R

|λr|
+ µ2

0r
√
p∗

+

(
κg

∆
+

R

|λr|

)2
µ2

0r√
n

(|λ1|+
√
np∗) +

p∗R
√
n

λ2
r

(|λ1|+
√
np∗)

]
+ 2|λr+1|+ p∗, (4.5)

then, for sufficiently large n, Algorithm 1 exactly identifies the core and periphery set

with probability 1− (B(r) + 2)n−γ.
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Proof of Theorem 5 and Theorem 1. To achieve an exact separation between the core

and periphery, we need

min
i∈C

∥∥∥P̂i,∗H∥∥∥
2
> max

i∈P

∥∥∥P̂i,∗H∥∥∥
2
. (4.6)

By triangular inequality, we have the following:

For i ∈ C:
∥∥∥P̂i,∗H∥∥∥

2
≥ ‖Pi,∗H‖2 −

∥∥∥Pi,∗H − P̂i,∗H∥∥∥
2
≥ h(n)−

∥∥∥PH − P̂H∥∥∥
2,∞

.

For i ∈ P :
∥∥∥P̂i,∗H∥∥∥

2
≤ ‖Pi,∗H‖2 +

∥∥∥Pi,∗H − P̂i,∗H∥∥∥
2
≤ p∗ +

∥∥∥PH − P̂H∥∥∥
2,∞

.

Therefore, to satisfy (4.6), it is thus sufficient to ensure that

∥∥∥PH − P̂H∥∥∥
2,∞
≤ 1

2
(h(n)− p∗). (4.7)

By the basic properties of ‖·‖2,∞, we have

∥∥∥PH − P̂H∥∥∥
2,∞
≤
∥∥∥P − P̂∥∥∥

2,∞
‖H‖2 =

∥∥∥P − P̂∥∥∥
2,∞

=
∥∥∥UΛU t +U⊥Λ⊥U

t
⊥ − ÛΛ̂Û t

∥∥∥
2,∞
≤
∥∥∥UΛU t − ÛΛ̂Û t

∥∥∥
2,∞

+
∥∥U⊥Λ⊥U

t
⊥
∥∥

2,∞

≤
∥∥∥UΛU t − ÛΛ̂Û t

∥∥∥
2,∞

+
∥∥U⊥Λ⊥U

t
⊥
∥∥

2
=
∥∥∥UΛU t − ÛΛ̂Û t

∥∥∥
2,∞

+ |λr+1|. (4.8)

By (4.8) and (4.3) of Lemma 3, (4.7) holds with probability at least 1− (B(r)+2)n−γ

as long as
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h(n) ≥ C

[
µ2

0rκg√
n∆
|λ1|+ µ0|λ1|

√
rRp∗

|λr|
+ µ2

0r
√
p∗

+
(κg

∆

)2

µ2
0

r√
n

(|λ1|+
√
np∗) +

Rp∗

λ2
r

(
√
n|λ1|+ n

√
p∗)

]
+ 2|λr+1|+ p∗.

as assumed by Theorem 5.

Now we proceed to prove Theorem 1, under the additional conditions of p∗ �

max
{
µ20r logn

n
,
µ20r

2

n

}
, boundedness of |λ1/λr| and Assumption 1. Combined with the

fact that

g �
√
np∗ + log n+ r,

these conditions lead to

|λr| � |λr+1|

and

∆ ' |λr| �
np∗

µ0

√
r
� g.

Therefore the conditions of Equation (4.3) hold. Inserting the result of Lemma 4 into

the third step of (4.8) leads to

∥∥∥PH − P̂H∥∥∥
2,∞
� µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗

Therefore, (4.7) is satisfied if

h(n) � µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗.

as assumed in Theorem 1.

Lemma 4. Under the same conditions in Lemma 3, suppose Assumption 1 and As-
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sumption 2 hold. If p∗ � max
{
µ20r logn

n
,
µ20r

2

n

}
, and |λ1/λr| is bounded, we have

∥∥∥P̂ − P∥∥∥
2,∞
� µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗, (4.9)

with probability at least 1− (B(r) + 2)n−γ.

Proof of Lemma 4. Since p∗ � µ20r logn

n
� r logn

n2 , Assumption 1 indicates that |λr| �

|λr+1|. Together with the boundedness assumption of |λ1/λr|, we know that |λ1/∆|

is also bounded. In addition, κ also becomes bounded. (4.4) becomes

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
� µ2

0rg√
n

+ µ0

√
rRp∗ + µ2

0r
√
p∗

+
( g

∆

)2µ2
0r√
n

(|λ1|+
√
np∗) +

Rp∗

λ2
r

(
√
n|λ1|+ n

√
p∗). (4.10)

Note that ‖U‖2,∞ ≥
√

r
n
, so we have µ0 ≥ 1. Therefore, |λ1| ≥ |λr| ≥ np∗

µ0
√
r
. When

p∗ � µ20r

n
, we have |λ1| �

√
np∗, and (4.10) becomes

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
� µ2

0rg√
n

+ µ0

√
rRp∗ + µ2

0r
√
p∗ +

g2

∆

µ2
0r√
n

+
Rp∗

|λr|
√
n. (4.11)

Furthermore, due to the assumption r ≤
√
np∗, we have g � ∆ and g2

∆

µ20r√
n
� µ2

0r
√
p∗.

So (4.11) becomes

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
� µ2

0rg√
n

+ µ0

√
rRp∗ + µ2

0r
√
p∗ +

Rp∗

|λr|
√
n. (4.12)
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Plugging in |λr| � np∗√
r

, we get

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
� µ2

0rg√
n

+ µ0

√
rRp∗ + µ2

0r
√
p∗ +

√
rR√
n

� µ2
0r(
√
np∗ + log n+ r)√

n
+ µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗. (4.13)

Taking into account the condition p∗ � max
{
µ20r logn

n
,
µ20r

2

n

}
, (4.13) becomes

∥∥∥UΛU t − ÛΛ̂Û t
∥∥∥

2,∞
� µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗. (4.14)

Finally, we have

∥∥∥P − P̂∥∥∥
2,∞
≤
∥∥∥UΛU t − ÛΛ̂Û t

∥∥∥
2,∞

+
∥∥U⊥Λ⊥U

t
⊥
∥∥

2,∞

≤
∥∥∥UΛU t − ÛΛ̂Û t

∥∥∥
2,∞

+
∥∥U⊥Λ⊥U

t
⊥
∥∥

2

≤
∥∥∥UΛU t − ÛΛ̂Û t

∥∥∥
2,∞

+ |λr+1|

� µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗,

with probability at least 1− (B(r) + 2)n−γ.

Corollary 1 can be proved by specifying a data-driven estimate of the separation

order between the scores of the core and periphery components.

Proof of Corollary 1. For any i ∈ P , we have ‖Pi,∗H‖ < p∗. Under the event of
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Lemma 4, by the boundedness of µ0 and r, we have

Si =
∥∥∥P̂i,∗H∥∥∥

2

≤ ‖Pi,∗H‖2 +
∥∥∥P̂i,∗H − Pi,∗H∥∥∥

2

< p∗ +
∥∥∥P̂i,∗ − Pi,∗∥∥∥

2

�
√
p∗ log n;

Similarly for any i ∈ C, since ‖Pi,∗H‖ ≥ h(n), we have

Si =
∥∥∥P̂i,∗H∥∥∥

2

≥ h(n)−
∥∥∥P̂i,∗H − Pi,∗H∥∥∥

2

� h(n)−
√
p∗ log n.

Recall that p̂ = 2
n2−n

∑
i<jAi,j and min1≤i,j≤nPi,j ' max1≤i,j≤nPi,j = p∗. By

Hoeffding’s inequality, we know that p̂ ' p∗ with probability greater than 1 − 2n−γ.

Therefore, if h(n) �
√
p∗(1−ε) log n, for some small constant ε, Si �

√
p̂1−ε log n for

i ∈ C, and Si �
√
p̂ log n for i ∈ P , for sufficiently large n with probability greater

than 1− (B(r) + 4)n−γ.

Finally, the weak consistency can be proved by concentration results with respect

to Frobenius norm.
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Proof of Theorem 2. First, we want to bound
∥∥∥PH − P̂H∥∥∥2

F
.

∥∥∥PH − P̂H∥∥∥2

F
� rank(PH − P̂H) ·

∥∥∥PH − P̂H∥∥∥2

2

� max{rank(PH), rank(P̂H)} ·
∥∥∥P − P̂∥∥∥2

2

≤ max{rank(P ), rank(P̂ )} ·
∥∥∥P − P̂∥∥∥2

2

= max{rank(P ), r} ·
∥∥∥P − P̂∥∥∥2

2

= max{rank(P ), r} ·
∥∥∥P −A+A− P̂

∥∥∥2

2

� max{rank(P ), r} ·
(
‖P −A‖2 +

∥∥∥A− P̂∥∥∥
2

)2

� max{rank(P ), r} ·
(
‖P −A‖2 + |λ̂r+1|

)2

� max{rank(P ), r} · (‖P −A‖2 + ‖P −A‖2 + |λr+1|)2

� max{rank(P ), r} · (‖P −A‖2 + |λr+1|)2.

Each misclassification necessarily involves a squared deviation of order at least

(h(n)− p∗)2. Given the total squared deviation bounded by the above inequality, we

can show that the number of misclassified nodes is at most

M �

∥∥∥PH − P̂H∥∥∥2

F

(h(n)− p∗)2 = C ·max{r, rank(P )} · (‖P −A‖2 + |λr+1|)2

(h(n)− p∗)2 ,

where C is some constant. Applying Lemma 2, we can get

M � max{r, rank(P )} ·
(
max{

√
np∗,
√

log n}+ |λr+1|
)2

(h(n)− p∗)2 ,

with probability at least 1− n−γ.
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Proofs under the configuration-type model

We first introduce the ancillary lemmas:

Lemma 5 (Qin and Rohe (2013)). Suppose dmin > 3(γ + 1) log n. Then,

∥∥∥D̂D−1 − I
∥∥∥

2
<

√
3(γ + 1) log n

dmin

with probability greater than 1− 2
nγ

.

Proof. This lemma is indirectly proved in the proof of Theorem 4.1 in Qin and Rohe

(2013). By setting τ = 0, ε = 4n−γ, and a =
√

3(γ+1) logn
dmin

in their proof, for each i,

we can have

P

∣∣∣∣∣D̂i,i

Di,i

− 1

∣∣∣∣∣ ≥
√

3(γ + 1) log n

dmin

 ≤ 2n−γ−1.

Then,

P

∥∥∥D̂D−1 − I
∥∥∥

2
≥

√
3(γ + 1) log n

dmin

 = P

max
i

∣∣∣∣∣D̂i,i

Di,i

− 1

∣∣∣∣∣ ≥
√

3(γ + 1) log n

dmin


= P

∪i

∣∣∣∣∣D̂i,i

Di,i

− 1

∣∣∣∣∣ ≥
√

3(γ + 1) log n

dmin




≤
n∑
i=1

P

∣∣∣∣∣D̂i,i

Di,i

− 1

∣∣∣∣∣ ≥
√

3(γ + 1) log n

dmin


≤ 2n−γ.

Lemma 6. Under Model 2, we have

max
i∈P

∥∥Pi,∗D−1H
∥∥

2
≤ dmax

(n− 1)dmin

.
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Proof. We assume the diagonal entries of P are 0. By definition, for i ∈ P and i 6= j,

[PD−1]i,j =
di∑
k 6=i dk

.

So,

[PD−1H ]i,j =
di∑
k 6=i dk

− n− 1

n

di∑
k 6=i dk

=
di

n
∑

k 6=i dk

for i 6= j, and

[PD−1H ]i,i = −n− 1

n

di∑
k 6=i dk

.

Therefore, we have

∥∥Pi,∗D−1H
∥∥

2
=

√
(n− 1)

(
1

n

)2

+

(
n− 1

n

)2
di∑
k 6=i dk

=

√
n− 1

n

di∑
k 6=i dk

<
dmax

(n− 1)dmin

.

We give a more general theorem that includes Theorem 3 as a special case.

Theorem 6. Assume the network A is generated from the configuration-type model

in Model 2 under Assumption 2. Suppose ∆ � κg, |λr| � np∗√
n‖U‖2,∞

, dmin � log n. If

we have

h′(n) � µ2
0r|λ1|

dmin

√
n

(
κg

∆
+

R

|λr|

)
+
µ0|λ1|

√
rp∗R

dmin|λr|
+
µ2

0r
√
p∗

dmin

+

(
κg

∆
+

R

|λr|

)2
µ2

0r

dmin

√
n

(|λ1|+
√
np∗) +

p∗R
√
n

λ2
rdmin

(|λ1|+
√
np∗) +

|λr+1|
dmin

+
∥∥PD−1

∥∥
2,∞

√
3(γ + 1) log n

dmin

+
dmax

ndmin

, (4.15)

then, Algorithm 2 exactly identifies the core and periphery set with probability greater

than 1− (B(r) + 4)n−γ, for some positive constant γ.
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Proof of Theorem 6 and Theorem 3. First, we have ‖Pi,∗D−1H‖2 ≥ h′(n) for i ∈ C.

Also, by Lemma 6, we have that ‖Pi,∗D−1H‖2 ≤
dmax

(n−1)dmin
for i ∈ P . To achieve

strong consistency, we need to have

h′(n) > 2
∥∥∥PD−1H − P̂ D̂−1H

∥∥∥
2,∞

+
dmax

(n− 1)dmin

. (4.16)

In the following, we give a bound for
∥∥∥PD−1H − P̂ D̂−1H

∥∥∥
2,∞

. Notice that

∥∥∥PD−1H − P̂ D̂−1H
∥∥∥

2,∞
≤
∥∥∥PD−1 − P̂ D̂−1

∥∥∥
2,∞
‖H‖2 ≤

∥∥∥PD−1 − P̂ D̂−1
∥∥∥

2,∞
.

(4.17)

Meanwhile, we have

∥∥∥PD−1 − P̂ D̂−1
∥∥∥

2,∞
=
∥∥∥PD−1 − P̂D−1 + P̂D−1 − P̂ D̂−1

∥∥∥
2,∞

=
∥∥∥(P − P̂ )D−1 + P̂ D̂−1(D̂D−1 − I)

∥∥∥
2,∞

=
∥∥∥(P − P̂ )D−1 + (P̂ D̂−1 − PD−1 + PD−1)(D̂D−1 − I)

∥∥∥
2,∞

≤
∥∥∥P − P̂∥∥∥

2,∞

∥∥D−1
∥∥

2
+
∥∥PD−1

∥∥
2,∞

∥∥∥D̂D−1 − I
∥∥∥

2
+
∥∥∥PD−1 − P̂ D̂−1

∥∥∥
2,∞

∥∥∥D̂D−1 − I
∥∥∥

2
.

Moving the term
∥∥∥PD−1 − P̂ D̂−1

∥∥∥
2,∞

∥∥∥D̂D−1 − I
∥∥∥

2
from the right to the left, we

get

(
1−

∥∥∥D̂D−1 − I
∥∥∥

2

)∥∥∥PD−1 − P̂ D̂−1
∥∥∥

2,∞
≤
∥∥∥P − P̂∥∥∥

2,∞

∥∥D−1
∥∥

2
+
∥∥PD−1

∥∥
2,∞

∥∥∥D̂D−1 − I
∥∥∥

2
.

(4.18)

By Lemma 5, if dmin � log n,
∥∥∥D̂D−1 − I

∥∥∥
2

is vanishing for sufficiently large n
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with high probability. Therefore, we have

∥∥∥PD−1 − P̂ D̂−1
∥∥∥

2,∞
�
∥∥∥P − P̂∥∥∥

2,∞

∥∥D−1
∥∥

2
+
∥∥PD−1

∥∥
2,∞

∥∥∥D̂D−1 − I
∥∥∥

2

�
∥∥∥P − P̂∥∥∥

2,∞

1

dmin

+
∥∥PD−1

∥∥
2,∞

√
3(γ + 1) log n

dmin

(4.19)

with probability greater than 1− 2
nγ

.

Under Assumption 2, applying Lemma 3 and (4.17), we can see that (4.16) are

satisfied with probability greater than 1− (B(r) + 4)n−γ, if

h′(n) � µ2
0rκg|λ1|

∆dmin

√
n

+
µ0|λ1|

√
rRp∗

|λr|dmin

+
µ2

0r
√
p∗

dmin

+
µ2

0rκ
2g2

∆2dmin

√
n

(|λ1|+
√
np∗) +

Rp∗

λ2
rdmin

(
√
n|λ1|+ n

√
p∗) +

|λr+1|
dmin

+
∥∥PD−1

∥∥
2,∞

√
3(γ + 1) log n

dmin

+
dmax

ndmin

as stated in the theorem.

Furthermore, to see how this leads to Theorem 3, suppose Assumption 1 holds,

and assume p∗ � max
{
µ20r logn

n
,
µ20r

2

n

}
, and |λ1/λr| is bounded. Applying Lemma 4 to

(4.15) gives

h′(n) � 1

dmin

(
µ0

√
r(log n+ r)p∗ + µ2

0r
√
p∗
)

+
∥∥PD−1

∥∥
2,∞

√
log n

dmin

as stated in Theorem 3.

Proof of Corollary 2. For any i ∈ P , by Lemma 6 and Lemma 4, and the boundedness
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of µ0 and r, (4.17) and (4.19) lead to

Si =
∥∥∥P̂i,∗D̂−1H

∥∥∥
2

≤
∥∥Pi,∗D−1H

∥∥
2

+
∥∥∥P̂i,∗D̂−1H − Pi,∗D−1H

∥∥∥
2

≤ dmax

(n− 1)dmin

+
∥∥∥P̂i,∗D̂−1H − Pi,∗D−1H

∥∥∥
2

�
√
p∗ log n

dmin

+
∥∥PD−1

∥∥
2,∞

√
log n

dmin

;

Similarly for any i ∈ C, using the fact that ‖Pi,∗D−1H‖ ≥ h′(n) and Lemma 4,

Si =
∥∥∥P̂i,∗D̂−1H

∥∥∥
2

≥ h′(n)−
∥∥∥P̂i,∗D̂−1H − Pi,∗D−1H

∥∥∥
2

� h′(n)−
√
p∗ log n

dmin

−
∥∥PD−1

∥∥
2,∞

√
log n

dmin

,

for sufficiently large n with probability 1− (B(r) + 4)n−γ.

When min1≤i,j≤nPi,j ' max1≤i,j≤nPi,j = p∗, we have

√
p∗ log n

dmin

+
∥∥PD−1

∥∥
2,∞

√
log n

dmin

'
√
p∗ log n

np∗
+
∥∥PD−1

∥∥
2,∞

√
log n

np∗

�
√

log n

n
√
p∗

+ ‖P ‖2,∞

∥∥D−1
∥∥

2

√
log n

np∗

'
√

log n

n
√
p∗

+

√
np∗

np∗

√
log n

np∗

'
√

log n

n
√
p∗
.

Furthermore, in the proof of Corollary 1, we have shown that p̂ ' p∗ with prob-

ability greater than 1 − 2n−γ. In this case, if h′(n) �
√

logn

n
√
p∗1+ε

, we have Si �
√

logn

n
√
p̂1+ε
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for i ∈ C, and Si �
√

logn
n
√
p̂

for i ∈ P .

Proof of Theorem 4. The key idea remains the same as in the proof of Theorem 2.

We want to bound
∥∥∥PD−1H − P̂ D̂−1H

∥∥∥2

F
.

∥∥∥PD−1H − P̂ D̂−1H
∥∥∥2

F
� max{rank(PD−1H), rank(P̂ D̂−1H)} ·

∥∥∥PD−1H − P̂ D̂−1H
∥∥∥2

2

≤ max{rank(P ), r} ·
∥∥∥PD−1 − P̂ D̂−1

∥∥∥2

2

Using an argument similar to (4.18), and (4.19), with probability greater than 1− 2
nγ

we have ∥∥∥PD−1 − P̂ D̂−1
∥∥∥

2
�
∥∥∥P − P̂∥∥∥

2

1

dmin

+
∥∥PD−1

∥∥
2

√
log n

dmin

.

Meanwhile, by Lemma 2, we also have

∥∥∥P − P̂∥∥∥
2

=
∥∥∥P −A+A− P̂

∥∥∥
2

≤ ‖P −A‖2 +
∥∥∥A− P̂∥∥∥

2

≤ ‖P −A‖2 + |λ̂r+1|

≤ 2 ‖P −A‖2 + |λr+1|

�
√
np∗ + |λr+1|,

with probability at least 1− 1
nγ

. Therefore, combining the above equations, we get

∥∥∥PD−1H − P̂ D̂−1H
∥∥∥2

F
� max{rank(P ), r} ·

[
np∗ + λ2

r+1

d2
min

+
∥∥PD−1

∥∥2

2

log n

dmin

]
,
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with probability at least 1− 3
nγ

, and the number of misclassified nodes satisfies

M ′ � max{rank(P ), r} ·

[
np∗ + λ2

r+1 + ‖PD−1‖2
2 · dmin · log n

]
d2

min

[
h′(n)− dmax

(n−1)dmin

]2 .

4.1.2 Additional Simulation Results

In this section, we include the additional simulation results, where the core size and

the periphery size are different. We can see that our method achieves the best per-

formance across different settings, which is consistent with the balanced cases.

4.2 Additional Topic Modeling Results
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Figure 4.1: Erdös-Renyi periphery. NC = 700, NP = 1300.



118

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 43 / dperiphery = 28

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 42 / dperiphery = 34

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 40 / dperiphery = 40

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

(a) Graphon 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 43 / dperiphery = 28

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 42 / dperiphery = 34

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 40 / dperiphery = 40

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

(b) Graphon 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 43 / dperiphery = 28

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 42 / dperiphery = 34

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dcore = 40 / dperiphery = 40

False Positive

Tr
ue

 P
os

iti
ve

Degree
PageRank
EigenVec
Local CC
ASE
k−core
Ours

(c) Graphon 3

Figure 4.2: Configuration periphery. NC = 700, NP = 1300.
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Figure 4.3: Erdös-Renyi periphery. NC = 1300, NP = 700.
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Figure 4.4: Configuration periphery. NC = 1300, NP = 700.
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4.2.1 K = 5

Table 4.1: The most representative words for each topic (K = 5). These words are
sorted in descending order based on Equation (3.24). The numbers in the parentheses
are the word probabilities in the corresponding topic.

Id Most representative words

1

model(0.058), process(0.023), time(0.021), distribut(0.028),

prior(0.012), posterior(0.008), bayesian(0.01),

seri(0.008), mont(0.007), carlo(0.007)

2

estim(0.076), regress(0.029), select(0.018), covari(0.017),

linear(0.014), propos(0.023), predictor(0.008),

coeffici(0.008), method(0.027), effici(0.01)

3

effect(0.02), data(0.031), treatment(0.011), cluster(0.008),

outcom(0.006), gene(0.005), studi(0.017),

analysi(0.011), subject(0.005), random(0.011)

4

design(0.019), optim(0.016), adapt(0.009), converg(0.009),

bound(0.008), densiti(0.009), function(0.021),

space(0.008), problem(0.015), nois(0.005)

5

test(0.059), procedur(0.024), statist(0.026), bootstrap(0.01),

power(0.01), confid(0.01), null(0.009),

hypothesi(0.008), control(0.01), interv(0.009)
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Figure 4.5: Effects of the assortative features (publication year) on the Topic distri-
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4.2.2 K = 20

Table 4.2: The most representative words for each topic (K = 20). These words are
sorted in descending order based on Equation (3.24). The numbers in the parentheses
are the word probabilities in the corresponding topic.

Id Most representative words

1
prior(0.053), model(0.11), bayesian(0.049), mixtur(0.032), posterior(0.032),

distribut(0.035), bay(0.014), dirichlet(0.011), paramet(0.025), frequentist(0.008)

2
test(0.177), procedur(0.055), power(0.029), null(0.028), hypothesi(0.026),

control(0.027), fals(0.02), hypothes(0.018), statist(0.033), discoveri(0.014)

3
effect(0.075), treatment(0.048), random(0.035), outcom(0.024), trial(0.017),

causal(0.014), patient(0.014), exposur(0.012), adjust(0.013), assign(0.011)

4
design(0.116), optim(0.056), project(0.014), construct(0.018), factor(0.015),

balanc(0.01), orthogon(0.011), experi(0.013), minimum(0.01), run(0.009)

5
covari(0.053), estim(0.078), miss(0.021), data(0.049), quantil(0.016),

effici(0.024), weight(0.018), imput(0.012), robust(0.016), correl(0.013)

6
estim(0.148), error(0.052), varianc(0.038), bootstrap(0.027), confid(0.025),

interv(0.024), bias(0.017), measur(0.02), small(0.013), squar(0.014)

7
predict(0.039), model(0.083), forecast(0.014), survey(0.011), health(0.009),

inform(0.016), system(0.009), year(0.007), calibr(0.007), uncertainti(0.007)

8
sampl(0.093), size(0.037), problem(0.039), larg(0.023), classif(0.013),

classifi(0.01), theori(0.013), number(0.017), theoret(0.012), small(0.011)

9
spatial(0.035), point(0.025), field(0.016), data(0.042), process(0.027),

extrem(0.011), region(0.012), space(0.014), intens(0.009), structur(0.014)

10
class(0.115), span(0.048), graphic(0.039), residu(0.031), amp(0.029),

inlin(0.025), formula(0.025), alt(0.017), fit(0.021), model(0.063)

11
function(0.072), dimens(0.032), predictor(0.033), curv(0.021), dimension(0.026),

compon(0.025), reduct(0.017), princip(0.015), regress(0.026), analysi(0.022)

12
distribut(0.096), condit(0.057), multivari(0.024), famili(0.018), independ(0.02),

rank(0.016), variabl(0.026), tail(0.011), general(0.024), case(0.02)

13
select(0.071), variabl(0.04), lasso(0.019), spars(0.017), penalti(0.015),

penal(0.014), regular(0.012), oracl(0.009), dimension(0.015), sparsiti(0.008)

14
cluster(0.036), data(0.052), gene(0.02), express(0.015), articl(0.019),

onlin(0.011), materi(0.011), correl(0.015), genet(0.009), studi(0.027)

15
time(0.043), surviv(0.022), censor(0.022), hazard(0.02), event(0.021),

failur(0.013), studi(0.031), data(0.037), proport(0.011), cancer(0.01)

16
time(0.087), process(0.069), seri(0.047), frequenc(0.016), spectral(0.015),

autoregress(0.015), dynam(0.015), stationari(0.014), stochast(0.015), volatil(0.012)

17
likelihood(0.125), paramet(0.093), asymptot(0.068), maximum(0.045), normal(0.043),

estim(0.095), ratio(0.022), empir(0.021), consist(0.022), nuisanc(0.009)

18
algorithm(0.079), mont(0.039), carlo(0.039), markov(0.034), chain(0.024),

comput(0.034), approxim(0.027), method(0.042), state(0.012), filter(0.009)

19
model(0.098), linear(0.043), regress(0.047), smooth(0.028), nonparametr(0.028),

parametr(0.021), local(0.019), spline(0.014), coeffici(0.017), addit(0.018)

20
densiti(0.035), rate(0.037), function(0.053), bound(0.025), converg(0.028),

minimax(0.013), risk(0.015), adapt(0.016), estim(0.058), download(0.008)
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