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Abstract

Personalization systems (PS) are applied in nearly every corner of the internet through recommendation, content
supply, messaging, and so on. Not only do business owners depend on personalization for recommending the
relevant items to the right users, but also consumers need personalization to find useful information without
being overwhelmed in the info-times. Due to these reasons, enormous efforts have long been devoted in
developing more powerful AI and machine learning techniques to improve the performance of PS.

In recent years, however, people start to realize that PS empowered by these techniques may lead to undesired
effects and undermine the original good purposes of personalization. One of the main issues with PS is their
lack of transparency, which means that users may not fully understand why they are being recommended
certain items or content, which can lead to confusion and mistrust. Another issue is fairness. Due to the vast
amounts of data used to train these systems, PS can inadvertently learn and perpetuate biases that exist in
society. This can have serious consequences, such as perpetuating systemic inequality and discrimination.
Addressing the issues of transparency and fairness in PS is essential for ensuring that they are trusted and
effective tools to continue to benefit users, businesses, and society as a whole.

This dissertation focuses on improving the transparency and fairness of PS, which contributes to the devel-
opment of more responsible PS that benefit all stakeholders. To enhance transparency, I propose to generate
intuitive, textual explanations for personalized results. The explanations are expected to help users make more
informed decisions and build trust in the system. For fairness, I investigate and propose algorithms to address
the issues from different perspectives in PS. In general, the algorithms aim to generate personalized results
without discrimination in serving users and business owners with different social constructs. Comprehensive
and rigorous analysis and experiments demonstrates the approaches’ effectiveness in various contexts and
applications.
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Chapter 1

Introduction and Overview

Personalization systems (PS) are ubiquitous in today’s online ecosystem, providing users with tailored
recommendations, content, and messaging [1–8]. They have become essential tools for e-commerce merchants
seeking to target their products to the right users, as well as for consumers seeking to navigate the vast amounts
of information available on the internet. However, the increasing use and power of PS has led to concerns
about the unintended consequences of their deployment. As PS techniques become more sophisticated, it is
becoming apparent that they can have negative impacts on users, items, producers, platforms, and society at
large, potentially undermining the original intent of personalization [9].

First of all, non-transparency and ambiguity in recommendations can reduce their effectiveness and erode users’
trust in the system. Furthermore, when personalization services are offered globally or in culturally diverse
areas, there is a risk of unfair treatment based on gender, ethnicity, or other factors, which can discourage users
from using the system and raise legal concerns. These issues have also caught the attention of policy makers.
The General Data Protection Regulation (GDPR) implemented in 2018 [10], addresses that users have a “right
to an explanation” for an output of the algorithm. In 2016, the Obama administration urged researchers to
analyze “how technologies can deliberately or inadvertently perpetuate, exacerbate, or mask discrimination."
Therefore, transparency and fairness are two critical properties for PS to expand their applications in different
scenarios and consistently benefit everyone.

It is essential to develop personalization techniques that take into account the above mentioned issues and work
towards more transparent and fair PS. However, due to complexity of these algorithms and the obscurity of
user preferences learned from data, addressing these issues can be challenging. Firstly, many personalization
systems are build on complex models, such as neural networks, which do not allow easy interpretation of the
reasons of the output personalization results [11,12]. Besides, there are different ways to improve transparency
for end users. For instance, one can teach the system users the technique used, which may increase their
understanding of how the system works. Another approach is to provide intuitive explanations along with
the personalization results that help them understand the results [13–15]. The effectiveness of these different
methods may vary depending on the context and user needs. Secondly, PS are usually trained on large amount
of data, from which the model learns the implicit patterns and correlations to generate personalized results. The
fairness issues may occur at different stages of the model development [16–22], such as during data processing,
training, or serving. More importantly, fairness is a subjective concept and has different definitions [23–25],
largely depending on the application and the system designers’ requirements. Thus, we need to develop
techniques that cover and generalize to various fairness needs.

In this dissertation, I aim to improve the transparency and fairness of PS, while maintaining high personal-
ization performance. For transparency, after extensive amount of research effort endeavored to advance the
personalization algorithms [26–29], solutions that explain the machine-made decisions have recently come
under the spotlight [14, 30]. Numerous studies have shown that explanations help users make more accurate
decisions, improve their acceptance of recommendations [14], and build up trust towards the personalization
system [15]. To make sure that the explanations are helpful and users can easily understand and enjoy interact

1
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with them, I propose to generate personalized, intuitive textual explanations that follow the following four
principles: informative, faithful, readable, and comparable. I developed specific methods and algorithms
to target each of the four principles, accordingly. For fairness, there exist various fairness definitions for
different problems and different stakeholders in the two-sided markets [31]. They can be roughly classified
into two categories: (1) universal fairness, meaning the personalized results should be totally independent
from the sensitive attribute of the target users/items, (2) measure-specific fairness, that defines the fairness
requirements according to a specific metric. To promote fairness in personalized results, I firstly propose a
framework for learning unbiased user embeddings, leading to universal fairness in downstream tasks that use
the resulting embeddings for personalization. Secondly, I also propose to realize metric-specific fairness in
the personalized explanation generation, ensuring that certain aspects of the generated explanations does not
discriminate against the users’/items’ protected attributes.

1.1 Challenges and Insights

1.1.1 Generating Intuitive Explanations for Personalized Results
Tremendous amount of effort has been devoted onto improving the effectiveness of personalization algorithms.
Promising results have been reported and many algorithms have been successfully deployed in practical
systems. However, one fundamental question that has not received enough attention in previous studies is
how a system should explain those customized results to its users [32]. Modern personalized information
systems are black boxes to their users: computerized oracles give advice, but cannot be questioned. The
lack of transparency in PS [15] leaves users in a dilemma: a user can only assess the quality of personalized
results by taking the suggested items, e.g., read the recommended articles; however, in order for him/her to
adopt the system’s customized results, he/she needs to first build trust over the system. As a result, the lack
of explanation for the personalized results has prevented acceptance of personalization techniques in many
important but high-risk domains, e.g., healthcare, education and finance industries.

Previous research has shown that explanations help people make more accurate decisions [13], improve user
acceptance of recommendations [14], and increase trust in the information systems [15]. However, explaining
personalized outputs to users is non-trivial. Presumably, the most straightforward explanation is the direct
illustration of a system’s employed personalization algorithm (e.g., how the latent factors are calculated in a
neural network model). However, rich background knowledge about the algorithm is required for users to
understand such explanations. This type of explanations are too abstruse for an average user to understand, nor
to help them in decision making. Instead, we aim to provide personalized textual explanations for users. This
goal imposes a even higher requirement on personalization, e.g., when searching for diabetes medications,
different users might hold distinct decision criteria: e.g., price vs. side-effect. Therefore, they will need
different explanations in assessing the utility of personalized results. To generate useful explanations that
support their decision-making, the first challenge is to to precisely understand users’ preferences. On top of
personalizing the explanation generation, we also require the explanations to be informative, faithful, readable,
and comparable.

Informative: Explainable recommendation via multi-task learning in opinionated text data. Arguably,
the most important value of explanations in an information system is not to convince users to adopt customized
results (i.e., promotion), but to allow them to make more informed and accurate decisions about which results
to utilize (i.e., satisfaction) [13]. Therefore, the explanations need to be informative to assist users’ decision-
making process. One approach to achieve this is to predict the opinionated content that users would provide on
the recommended item. This could include how they would comment on specific features of the item, which
can serve as an informative explanation to illustrate why users should pay attention to those recommended
items. To this end, we develop a joint tensor factorization solution to integrate two complementary tasks
of user preference modeling for recommendation and opinionated content modeling for explanation, i.e., a
multi-task learning approach. With the available user opinionated reviews, rich information can be extracted
with feature-level sentiment analysis techniques [33, 34]. The explanations can be generated by filling the
predicated features and corresponding opinionated descriptions in predefined templates.

Faithful: Explainable recommendation with factorization tree. If users are persuaded to accept personalized
results that are subsequently found to be inferior, their confidence and trust in the system will rapidly
deteriorate [14, 35]. Hence, the fidelity of explanations becomes a prerequisite for explainable PS. The fidelity
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of explanation and the quality of personalization have long been considered as irreconcilable [11]: one has
to trade personalization quality for explainability. Various solutions have been proposed to approximate
the underlying personalization mechanisms for explanation [11, 12]. But to what extent these approximated
explanations comply with the personalization models is unknown, i.e., no guarantee in explanation fidelity.
Prior studies show that rule-based explanations are more easy to perceive and justify by the end-users [36].
Motivated by this, we propose to integrate the rule-based decision making into the learning of latent factors.
More specifically, we treat the latent factors as a function of the rules: based on different outcomes of the
rules, the associated groups of users and items should be routed to the designated latent factors, which are then
optimized for recommendation. As the latent factors are learned subject to the explanation rules, the fidelity of
explanations is ensured; and because latent factors are optimized for improving personalization, the quality of
personalization is also provided.

Readable: sentiment aligned natural language explanation generation. PS serve at the frontier of Human-
centered AI research and works as the bridge between humans and AI. Therefore, the explanations in PS
need to be readable such that users can easily understand them and enjoy interacting with the system. Free-
form natural language based explanations have been identified as a preferred medium for explaining the
recommendations [30, 37–39]. But one need to note that the explanations generated with fairly fluent language
are harder to control, i.e., the alignment between explanations and personalized results is not guaranteed. We
believe the sentiment delivered by the explanation text needs to reveal the details of how items are scored and
ranked differently by the system. We formulate this as sentiment alignment between the explanation text and
system’s corresponding recommendation [38]. In particular, the learning of recommendation is modeled as a
neural collaborative filtering problem, and the learning of explanation is modeled as a neural text generation
problem. We force the recommendation module to directly influence the learning of explanations to enforce
sentiment alignment in both training and inference time for improved explainable recommendation.

Comparable: generating comparative explanations of recommendations. Users make decisions based
on comparisons between different options, and thus explanations should ideally assist users in making such
comparisons. However, existing explainable recommendation solutions are not optimized to help users make
such comparative decisions for two major reasons. In this part of work, we focus on explaining how one item
is compared with another; then by using a commonly shared set of items as references (e.g., items the user has
reviewed before), the comparisons among the recommended items emerge [40]. Our solution is designed to
generically work on top of other existing recommender systems. We do not have any assumptions about how
the recommendation algorithm ranks items, but only require it to provide a ranking score for each item to our
model (i.e., ordinal ranking) which reflects a user’s preference over the recommended item. This makes our
solution readily applicable to explain plenty of effective recommendation algorithms deployed in practice.

1.1.2 Promoting Fairness in Personalization Systems
There are increasing concerns on the issues of biased or unfair personalization results. Existing studies
show that PS can be vulnerable to unfairness in several aspects, which may lead to detrimental effects for
users in certain demographic groups. For example, in e-commerce systems, PS may promote items that
mainly maximize the profit of certain producers. In online job marketplaces, RS may lead to racial or gender
discrimination by disproportionately recommending low-payment jobs to certain user groups. When the users
realize the bias or unfairness, it can also adversarially affect the users’ reliance and trust in the system [41].
From a broader perspective, the bias and unfairness presented in personalization results can reinforce the
stereotype by influencing how users behave online, and jeopardizes fairness in society in the long run [42–44].

In recent years, there have been considerable efforts from both academia and industry to mitigate fairness
issues in PS [45–50]. However, the concept of fairness is subjective and entirely depends on the application
and the fairness requirements established by the system designer. As a result, various fairness types have been
defined from different perspectives in the literature [23–25, 51–56], such as group, individual, casual, and
associative fairness, which usually need specifically designed algorithms to achieve them. Moreover, since
PS operate in two-sided markets [31] where both users and business owners should be subject to fairness
considerations, it is essential to address fairness from both perspectives. In this dissertation, we investigate
two categories of fairness: universal fairness and measure-specific fairness, and propose algorithms for each.
Specifically, for universal fairness, we require that personalized results should not depend on the sensitive
attributes of the users/items subject to the results. In other words, we aim to enforce independence between
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the outputs and the sensitive attributes under consideration. In measure-specific fairness, we instead aim to
improve fairness w.r.t. a specific fairness metric, defined on specific aspects of the results.

Universal fairness by learning unbiased user and item embeddings. User and item embedding learning
in social networks is an indispensable building block in many personalization systems [57–61]. Network
embedding methods map each user to a low-dimensional embedding vector that reflects the users’ structural
information from the observed connections, which are then employed to solve downstream tasks, such as
friend recommendation in social networks or user interest prediction in e-commerce platforms [62, 63]. Since
the formation of a graph is inevitably affected by certain sensitive node attributes, the node embeddings
can inherit such sensitive information and introduce undesirable biases in downstream tasks. To tackle this
problem, we propose a principled new way for unbiased user embedding by learning node embeddings from
an underlying bias-free graph, which is not influenced by sensitive user attributes, such that downstream
personalization tasks using these embeddings will be fair by generating results independent from users’/items’
sensitive attributes.

Optimizing measure-specific fairness in explanation generation. Natural language explanation generation
[40, 64, 65] is essentially a personalized text generation problem [66–69]. The generators are usually trained
on user written text, e.g., reviews collected on e-commerce platforms. However, due to historical, social, or
behavioral reasons, bias may exist that associates certain properties of user-written text, such as sentiment or
detailedness, with users’ or items’ protected attributes like users’ gender, age, or items’ production country.
This bias can be inherited by generators, resulting in discriminative text generation concerning users’ or items’
protected attributes [43, 44, 48]. In this dissertation, we investigate the fairness in personalized text generation
in explainable recommendation, and propose two perspectives in achieving fairness: counterfactual fairness on
individuals [70], and strong demographic parity for group-wise fairness. We then propose frameworks for
achieving measure-specific fairness from these two perspectives.

1.2 Dissertation Structure
The rest of this dissertation is structured as follows: In Chapter 2, we introduce solutions to enhance the trans-
parency of personalization systems by providing intuitive textual explanations. We follow the four principles in
proposing explanation generation methods: informative, faithful, readable, and comparable. In Chapter 3, we
investigate fairness in personalized results from different perspectives and develop solutions accordingly. We
propose an unbiased graph embedding method for learning unbiased user and item representations from online
networks, which are then utilized in downstream tasks for universal fairness. Additionally, we propose methods
for counterfactual fairness and group-wise fairness in personalized explanation generation, respectively. In
Chapter 4, we summarize this dissertation and discuss future research directions.



Chapter 2

Improving Transparency by Providing
Intuitive Textual Explanations

Modern personalization systems are mostly black boxes to their users: computerized oracles give advice, but
cannot be questioned. The lack of transparency in personalization [15] leaves users in a dilemma: a user can
only assess the quality of personalized results by taking the suggested instances, e.g., read the recommended
articles; however, in order for him/her to adopt the system’s customized results, he/she needs to first build trust
over the system. Explaining the automatically generated recommendations would bridge the gap. Arguably,
the most important contribution of explanations is not to convince users to accept the customized results (i.e.,
promotion), but to allow them to make more informed and accurate decisions about which results to utilize
(i.e., satisfaction) [71].

Existing recommendation algorithms emphasize end-to-end optimization of performance metrics, such as
Root-Mean-Square Error and Normalized Discounted Cumulative Gain, which are defined on numerical ratings
or ranking orders reflecting a user’s overall preference over a set of items. Various algorithms [27,72–77] have
been proposed to optimize those metrics. However, it is known that humans are complex autonomous systems:
a click/purchase decision is usually a composition of multiple factors. The end-to-end learning scheme can
hardly realize the underlying reasons behind a user’s decision making process. As a result, although such
algorithms achieve great success in quantitative evaluations, they are still computerized oracles that merely
give advice, but cannot be questioned, especially when a new or wrong recommendation has been made. This
greatly limits the practical value of personalization systems.

In this chapter, we introduce solutions for explaining personalized recommendation results by focusing
on different perspectives of explanations, i.e., informativeness, fidelity, readability, and comparability. In
Section 2.1, we propose a multi-task learning framework called MTER for user preference modeling and
opinionated content model. MTER can generate informative opinionated explanations that explain why each
item feature may match the user’s interest. In Section 2.2, we propose a rule-based explanation generation
method, where we integrate rule-based decision making into the learning of latent factor models for faithful
explanation generation. Both MTER and FacT generate template-based explanations that rely on mining
feature and opinion words to fill in pre-defined explanation templates. While effective, these explanations lack
the expressiveness and diversity of natural language that users employ daily. Moreover, the templates may not
be suitable for all cases of explanation needs, and different applications require a unique set of meticulously
designed templates. Such robotic style explanations are usually considered less appreciated by users. To
enhance the expressiveness and flexibility of explanation generation, we move beyond predicting keywords
in templates and instead focus on natural language explanations. Specifically, we propose a two-pronged
approach: in Section 2.3, we prioritize improving the faithfulness of explanations by aligning the sentiment of
the generated explanations with the predicted rating scores of each item. Then in Section 2.4, we introduce
a comparative explanation generation framework that explains the comparisons between two items being
presented as recommendations.
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Figure 2.1: Composition of star ratings in a typical user review.

We argue that a good recommendation algorithm should consist of companion learning tasks focusing on
different aspects of users’ decisions over the recommended items, such that the observed final decisions
(e.g., clicks or ratings) can be mutually explained by the associated observations. In this work, we focus on
opinionated review text that users provide in addition to their overall assessments of the recommended items,
and aim to exploit such information to enhance and explain the recommendations. Figure 2.1 illustrates how
opinionated content in a user’s review reflects the composition of his/her overall assessment (rating) of the
item. For this given four-star overall rating, three positively commented features contribute to his/her positive
assessment, and one negatively commented feature explains his/her negative judgment. If an algorithm could
learn to predict not only the user’s overall rating, but also the opinionated comment he/she would provide
on this item (e.g., how would he/she endorse the features of this item), the recommendation will become
self-explanatory. And clearly these two predictions are not independent: the predicted overall assessment has
to be supported by the predicted opinionated comments. Therefore, the additional information introduced by
the companion content modeling task would help improve the quality of recommendation task.

Considerable effort has been devoted to utilizing user-generated opinionated content for providing text-based
explanations. One type of solutions leverage phrase-level sentiment analysis [78, 79], which zoom into users’
detailed feature-level opinions to explain the recommendations. But these solutions simply map feature-level
comments into numeric ratings, and thus ignore the detailed reason that the user likes/dislikes the feature of a
particular item. It is impossible for such type of algorithms to explain how exactly the highlighted features of
their recommendations match the user’s specific preference, which inevitably lose detailed opinion information
on each feature.

In this work, We focus on explaining factorization-based recommendation algorithms [72, 80] by taking a
holistic view of item recommendation and sentiment analysis. We develop a joint tensor factorization solution
to integrate two complementary tasks of user preference modeling for recommendation and opinionated
content modeling for explanation, i.e., a multi-task learning approach [81–83]. Extensive experimental
comparisons between our proposed solution and existing explainable recommendation algorithms demonstrate
the effectiveness of our solution in both item recommendation and explanation generation tasks in two different
application scenarios.

2.1.1 Related Work
Latent factor models, such as matrix factorization [72] and tensor factorization [80], have achieved great
success in practical personalization systems. This type of algorithms map users and recommendation candidates
to a lower dimensional latent space, which encodes affinities between different entities. Despite their promising
recommendation quality, the latent and nonlinear characteristics of this family of solutions make it frustratingly
difficult to explain the generated recommendations.

The lack of interpretability in factorization-based algorithms has attracted increasing attention in the research
community. Zhang et al. [78] combined techniques for phrase-level sentiment analysis with matrix factorization.
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Abdollahi and Nasraoui [11] introduced explainability as a constraint in factorization: the learnt latent factors
for a user should be close to those learnt for the items positively rated by him/her. However, such type of
algorithms only explain ratings, either the overall rating or feature-level ratings, while ignore the details in
a user’s comment. They are restricted to some generic explanations, such as “You might be interested in
[feature], on which this product performs well” [78]. Our work introduces a companion learning task of
opinionated content modeling, in parallel with the task of factorization based recommendation. We explicitly
model how a user describes an item’s features with latent factors, so that we can explain why he/she should
pay attention to a particular feature of a recommended item, e.g., “We recommend this phone to you because
of its high-resolution screen.”

There are also solutions considering the latent factor models from a probabilistic view, which provides
the flexibility of modeling associated opinionated text data for explanation. Wang and Blei [84] combine
probabilistic matrix factorization with topic modeling for article recommendation. Explanations are provided by
matching topics in items against the target user. A follow-up work [85] introduces aspect-level topic modeling
to capture users’ finer-grained sentiment on different aspects of an item, so that aspect-level explanations
become possible. Ren et al. [79] introduce social relations into topic modeling based recommendation via a
concept named viewpoint, which enables social explanation. However, the probabilistic modeling of latent
factors is usually limited by the feasibility of posterior inference, which restricts the choices of distributions
for modeling the rating and text content. And the resolution of explanations is often confined at the topic level,
which leads to generic explanation across all users. Our solution directly works with factorization-based latent
factor models to capture a more flexible dependency among user, item and the associated opinionated content.
Via a joint tensor factorization, latent representation of each opinionated phrase in the vocabulary is learnt for
generating personalized context-aware explanations.

2.1.2 Joint Tensor Factorization for Explainable Recommendation
In this section, we elaborate our multi-task learning solution for explainable recommendation. We exploit the
opinionated review text data that users provide in addition to their overall assessments of the recommended
items to enhance and explain the recommendation. Two companion learning tasks, i.e., user preference
modeling for recommendation and opinionated content modeling for explanation, are integrated via a joint
tensor factorization.

In the following discussions, we denote m,n, p, q as the number of users, items, features and opinionated
phrases in a dataset, and a, b, c, d as the corresponding dimensions of latent factors for them in the learnt
model. As a result, after factorization, users, items, features and opinion phrases can be represented by
four non-negative matrices U ∈ Rm×a

+ , I ∈ Rn×b
+ , F ∈ Rp×c

+ and O ∈ Rq×d
+ in the latent factor space,

respectively. Note that these four types of entities are associated with different degrees of complexity in
practice, and therefore we do not restrict them to the same dimension of latent factors. To capture users’
detailed feature-level opinions, we assume the existence of a domain-specific sentiment lexicon L. Each
entry of L takes the form of (feature, opinion, sentiment polarity), abbreviated as (f, o, s), to represent the
sentiment polarity s inferred from an opinionated text phrase o describing feature f . Specifically, we label the
sentiment polarity s as positive (+1) or negative (-1), but the developed solution can be seamlessly extended to
multi-grade or continues rating cases. Based on this notation, our sentiment analysis is to map each user’s
review into a set of (f, o, s) entries. We use RU

i and RI
j to denote the set of reviews associated with user i and

item j, respectively.

User Preference Modeling for Item Recommendation

This task is to predict the relevance of a recommendation candidate to a user, such that relevant candidates
can be ranked higher. Traditional solutions perform the estimation by mapping users and items to a shared
latent space via low-rank factorization over an input user-item affinity matrix [76, 86]. However, because
this input matrix is usually constructed by users’ overall assessment of items, such as clicks or ratings, the
learnt factors cannot differentiate nor explain the detailed reason that a user likes/dislikes an item. To address
this limitation, we focus on feature-level preference modeling for item recommendation. We aim to not only
predict a user’s overall assessment of an item, but also his/her preference on each feature of this item to
enhance the recommendation.
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Since different users would focus on different features of the same item, and even for the same feature of
an item, different users might express distinct opinions on them, we use a three-way tensor X ∈ Rm×n×p

+

to summarize such a high-dimensional relation. The key is to define the element Xijk in this tensor, which
measures to what extent user i appreciates item j’s feature k reflected in his/her opinionated review set RU

i .
In this work, we adopt the method developed in [33] to construct a domain-specific sentiment lexicon L for
analyzing users’ detailed feature-level opinions. As the construction of a sentiment lexicon is not a contribution
of this work and limited by space, we will not discuss the details of this procedure; interested readers can refer
to [33, 78] for more details.

Based on the constructed sentiment lexicon L, a user review can be represented as a list of (f, o, s) tuples.
It is possible that a user mentions a particular feature multiple times in the same review but with phrases of
different sentiment polarities. To denote the overall sentiment, we calculate the summation of all sentiment
polarities that user i has expressed on item j’s feature k. Suppose feature k is mentioned tijk times by user i
about item j with the sentiment polarity labels {s1ijk, s2ijk, . . . , s

tijk
ijk }, we define the resulting feature score as

ŝijk =
∑tijk

n=1 s
n
ijk.

As we discussed in the introduction, a user’s overall assessment of an item is usually a composition of multiple
factors. In order to build the connection between a user’s feature-level and overall assessments of an item,
we introduce the overall assessment as a dummy feature to all items and append the overall rating matrix
A ∈ Rm×n

+ to tensor X . This results in a new tensor X̃ ∈ Rm×n×(p+1)
+ . To normalize the scale between

feature score ŝijk and item overall rating Aij in X̃ , we perform the following nonlinear mapping on its
elements introduced by the feature scores,

X̃ijk =

{
0, if fk is not mentioned by ui about ij
1 + N−1

1+exp(−ŝijk) , otherwise (2.1.1)

where N is the highest overall rating in the target domain.

Tensor X̃ describes the observed affinity among users, items and features in a training data set. To predict
unknown affinity among these three types of entities in testing time, we factorize X̃ in a lower dimensional
space to find the latent representation of these entities, and complete the missing elements in X̃ based on the
learnt representations. As we do not restrict these three types of entities to the same dimension of latent factors,
we require a more flexible factorization scheme. Tucker decomposition [80, 87] best fits for this purpose, i.e.,

min
X̂
||X̂ − X̃||F (2.1.2)

s.t. X̂ =

a∑
r=1

b∑
t=1

c∑
v=1

grtvur ⊗ it ⊗ fv

∀r, t, v ur ≥ 0, it ≥ 0, fv ≥ 0, and grtv ≥ 0

where ur is the r-th column in the resulting user factor matrix U , it is the t-th column in the resulting item
factor matrix I , fv is the v-th column in the resulting feature factor matrix F̃ (with dummy overall assessment
feature expansion), || · ||F denotes the Frobenius norm over a tensor, and ⊗ denotes vector outer product. As
we have mapped the feature scores to the same range of overall ratings in the target domain (i.e., [1, N ]), we
impose non-negative constraint over the learnt latent factors to avoid any negative predictions.

In Tucker decomposition, a core tensor G ∈ Ra×b×c
+ is introduced to describe how and to what extent different

tensor elements interact with each other. This provides us another degree of freedom in performing the joint
factorization in our multi-task learning solution. We will carefully elaborate this important advantage later
when we discuss the detailed learning procedure in Section 2.1.2.
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The resulting factor matrices U , I , and F are often referred to as the principal component in the respective
tensor mode. And the unknown affinity among user i, item j and feature k can therefore be predicted by,

X̂ijk =

a∑
r=1

b∑
t=1

c∑
v=1

grtvuriitjfvk. (2.1.3)

The predicted user’s feature-level assessment can already serve as a form of rating-based explanation [78]. In
the next section, we will enhance our explanation to free text based, by learning from user-provided opinionated
content about the items and features.

We should note recommendation is essentially a ranking problem, in which one needs to differentiate the relative
relevance quality among a set of recommendation candidates. However, the current Tucker decomposition is
performed solely by minimizing element-wise reconstruction error, i.e., in Eq Eq (2.1.2), which cannot directly
optimize any ranking loss. To address this limitation, we introduce the Bayesian Personalized Ranking (BPR)
principle [88] into our factorization of X̃ . Because we only have explicit user assessments at the item-level,
we introduce the BPR principle in the overall rating predictions. In particular, for each user ui we construct a
pairwise order set DS

i based on the observations about him/her in X̃:

DS
i :=

{
(j, l)| x̃ij(p+1) > x̃il(p+1)

}
where x̃ij(p+1) > x̃il(p+1) indicates in the given review set RU

i : 1) the user i gives a higher overall rating
to item j than item l; or 2) item j is reviewed by user i while item l is not. Then the BPR principle can be
realized by:

BPR-OPT := −λB
m∑
i=1

∑
(j,l)∈DS

i

lnσ
(
x̂ij(p+1) − x̂il(p+1)

)
(2.1.4)

in which λB is a trade-off parameter and σ(·) is the logistic function. Intuitively, Eq Eq (2.1.4) is minimized
when all the pairwise ranking orders are maintained and the difference is maximized. By introducing it into the
objective function of Eq Eq (2.1.2), the decomposition is forced to not only reduce element-wise reconstruction
error in X̃ , but also to confine with the pairwise ranking order between items.

Although we only impose ranking loss over the overall rating predictions in Eq Eq (2.1.4), it also implicitly
regularizes the feature-level predictions. To better understand this benefit, we can rewrite Eq Eq (2.1.3) into a
matrix product form,

X̂ijk = G ×a Ui ×b Ij ×c F̃k (2.1.5)

where G ×n M denotes the n-mode product between tensor G and matrix M , i.e., multiply matrix M with
each mode-n fiber in G.

For a given pair of user i and item j, the first two n-mode product results in a matrix, denoted as Tij , which
presents a (p+1)× c dimensional space spanned by the latent factors for user i and item j. The feature scores
and overall ratings are predicted by projecting the feature factors, i.e., matrix F̃ , onto it. To satisfy the BRP
principle in Eq Eq (2.1.4), Tij has to be adjusted for each pair in DS

i . As F̃ is globally shared across users and
items, this introduces the pairwise ranking loss into the gradient for all features’ latent factor learning; this
effect becomes more evident when we introduce the learning procedures for our joint factorization later in the
Section 2.1.2.

Opinionated Content Modeling for Explanation

If an algorithm could predict the opinionated content that the user would provide on the recommended item, it is
an informative explanation to reveal why the user should pay attention to those features of the recommendation.
Based on this principle, we develop a companion learning task of opinionated content modeling to generate
detailed textual explanations for the recommendations.

With the factorization scheme discussed in the last section, a straightforward solution for content modeling
is to create a four-way tensor to summarize the complex relations among users, items, features, and opinion
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phrases. However, this four-way tensor would be extremely sparse in practice, as an ordinary user would
only comment on a handful of items and we cannot expect their comments to be exhaustive. It is known
that in natural language the distribution of words is highly skewed, e.g., Zipf’s law [89]; we hypothesize
that the distribution of opinion phrases that an item often receives for describing its features, and that a user
often uses to describe a type of items’ features are also highly skewed. In other words, the appearance of an
opinion phrase towards a feature should strongly depend on the user or the item. Therefore, we approximate
the four-way tensor by two three-way tensors, one summarizes the relation among user, feature and opinion
phrase, and another for item, feature and opinion phrase.

This approximation is also supported by prior studies in mining opinionated text data. Amarouche [90]
specifies that opinion phrase associated with a feature is apparently dependent on the opinion holder (user) as
well as the target object (item) in product opinion mining. Kim and Hovy [91] focus on the importance of
the opinion holder, explaining that the opinion holder’s identification can be used independently to answer
several opinion questions. Ronen and Moshe [92] compare products on their features/attributes by mining
user-generated opinions, and report the dependence of opinions on different products features/attributes. In
our experiments, we also empirically confirmed our hypothesis for approximation via a permutation test on
two large review data sets.

We denote the first tensor as Y U ∈ Rm×p×q
+ . From the review set RU

i of user i, we extract all positive phrases
this user has used to describe feature k across all items, i.e.,RU

i,k =
{
o| (f, o, s) ∈ RU

i , f = k, s = +1
}

. We
only include positive phrases, as we need to explain why a user should appreciate the feature of a recommended
item, rather than avoid it; otherwise we should not recommend this item or feature at all. But our algorithm
can be easily extended to the scenario where one needs to provide warning messages (e.g., include the negative
phrases in the tensor). To reflect the frequency of user i uses opinion phrase o to describe feature k, and to
facilitate the joint factorization later, we construct Y U as,

Y U
ikw =

{
0, if w is not inRU

i,k

1 + (N − 1)
(

2
1+exp(−Γ) − 1

)
, otherwise (2.1.6)

where Γ is the frequency of phrase w inRU
i,k.

We construct the second tensor Y I ∈ Rn×p×q
+ in a similar way. For item j, we first obtain a collection of

positive phrases about its feature k from RI
j , i.e., RI

j,k =
{
o|(f, o, s) ∈ RI

j , f = k, s = +1
}

, and then
construct Y I as:

Y I
jkw =

{
0, if w is not inRI

j,k

1 + (N − 1)
(

2
1+exp(−Ω) − 1

)
, otherwise (2.1.7)

where Ω is the frequency of phrase w inRI
j,k.

The construction of tensor X̃ , Y U and Y I impose strong dependency between the two learning tasks of
item recommendation and opinionated explanation, as every two tensors share the same two types of entities
(as shown in Figure 2.2). Instead of isolating the factorization of these three tensors, we propose a joint
factorization scheme, which will be discussed in detail in the next section.

Once the latent factors are learnt, we can predict user i’s opinionated comments on feature k by the recon-
structed vector Ŷ U

i,k, which can be calculated in the same way as in Eq Eq (2.1.3) with the corresponding latent
factors. Similarly, the opinionated comments that item j will receive on its feature k can be predicted by the
reconstructed vector Ŷ I

j,k. As a result, to predict the opinionated comments that user i will provide on item j’s
feature k, we take an element-wise product between these two vectors to construct an opinion phrase scoring
vector Ŷ U,I

i,j,k, in which each element is computed as,

Ŷ U,I
i,j,k,w = Ŷ U

i,k,w × Ŷ I
j,k,w (2.1.8)

This estimation reflects our approximation of the original four-way tensor with two three-way tensors. Because
the tensor Y U and Y I record the frequency of an opinion phrase used in describing the features by the user
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Figure 2.2: Joint tensor decomposition scheme. Task relatedness is captured by sharing latent factors across the tensors; in-task variance
is captured by corresponding core tensors.

and about the item, Eq (2.1.8) prefers to choose those that are popularly used to describe this feature of the
item in general, and also by this target user to describe this feature in similar items.

Multi-task Learning via a Joint Tensor Factorization

Both of our proposed learning tasks are modeled as a tensor factorization problem, and they are coupled with
the shared latent factors. Ideally, the predicted users’ assessment about the recommendation candidates from
the first task should be supported by the predicted users’ opinionated comments about the recommendations
from the second task. To leverage the dependency between these two tasks, we develop a joint factorization
scheme.

In Tucker decomposition, a three-way input tensor will be decomposed into a core tensor and three principle
component matrices. The core tensor captures multivariate interactions among the latent factors; and the
principle component matrices can be viewed as basis of the resulting latent space. Based on this property, we
decide to share the principle component matrices across the three tensors of X̃ , Y U and Y I to learn the latent
representations of user, item, feature and opinion phrases across the two learning tasks, and keep independent
core tensors for these tensors to capture the tasks’ intrinsic variance and scaling of the shared latent factors. As
a result, we devise the following joint optimization formulation,

min
X̂,Ŷ U ,Ŷ I

||X̂ − X̃||F + ||Ŷ U − Y U ||F + ||Ŷ I − Y I ||F − λB

m∑
i=1

∑
(j,l)∈DS

i

lnσ
(
x̂ij(p+1) − x̂il(p+1)

)
+ λF

(
||U ||2 + ||I||2 + ||F ||2 + ||O||2

)
+ λG

(
||G1||2 + ||G2||2 + ||G3||2

)
s.t. X̂ = G1 ×a U ×b I ×c F̃ ,

Ŷ U = G2 ×a U ×c F ×d O,

Ŷ I = G3 ×b I ×c F ×d O,

U ≥ 0, I ≥ 0, F ≥ 0, O ≥ 0,G1 ≥ 0,G2 ≥ 0,G3 ≥ 0. (2.1.9)

where we introduce l2 regularization over the learned latent factor matrices and core tensors to avoid over-fitting.
This joint factorization ensembles the two companion learning tasks for recommendation and explanation,
i.e., multi-task learning; and therefore, we name our solution as Multi-Task Explainable Recommendation, or
MTER in short.

The above optimization problem can be effectively solved by stochastic gradient descent (SGD), with projected
gradients for non-negative constraints. However, because the number of observations in each tensor and in
the pairwise ranking constraint set varies significantly, vanilla SGD procedure suffers from local optimum.
To improve the convergence, we randomly select small batches of samples from each tensor and pairwise
constraint set per iteration to calculate a averaged gradient, i.e., a mini-batch SGD. And to avoid manually
specifying a step size, we employ adaptive gradient descent [93], which dynamically incorporates the updating
trace in earlier iterations to perform more informative and faster gradient-based learning. The parameter
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Table 2.1: Basic statistics of evaluation datasets.

Dataset #users #items #features #opinions #reviews
Amazon 6,285 12,626 95 591 55,388

Yelp 10,719 10,410 104 1,019 285,346

estimation procedure of our model is off-line, and large-scale learning tasks could be solved within reasonable
periods.

Interactions between the two learning tasks become more evident in MTER when we look into the detailed
gradients for model update. Denote the objective function in Eq Eq (2.1.9) as L, and we list the gradient of Fk

as an example to illustrate how the elements in three tensors X̃ , Y U and Y I contribute to it:

∂L

∂Fk

=
∂L

∂X̂ijk

G1 ×a Ui ×b Ij +
∂L

∂Ŷ U
ikl

G2 ×a Ui ×d Ow +
∂L

∂Ŷ I
jkl

G3 ×b Ij ×d Ow (2.1.10)

In Eq Eq (2.1.10), as Fk is shared across the decomposition of all three tensors, it bridges the other three
components Ui, Ij and Ow in these two tasks. Similarly, the gradient of Ui, Ij and Ow also involves all the
rest factors. Furthermore, the BPR constraint introduced on overall rating prediction indirectly affects the
learning of Ui, Ij and Ow, via gradient sharing. This also helps MTER conquer data sparsity issue when we
have a large number of users, items, features and opinionated phrases to model.

2.1.3 Experiments
In this section, we quantitatively evaluate our solution MTER in the tasks of item recommendation and
opinionated content modeling, on two popular benchmark datasets collected from Amazon1 [94, 95] and Yelp
Dataset Challenge2. We perform extensive comparisons against several state-of-the-art recommendation and
explainable recommendation algorithms. Improved quality in both recommendation and opinionated content
prediction confirms the comprehensiveness and effectiveness of our solution.

Experiment Setup

Datasets and Preprocessing. To verify our model’s effectiveness in different application domains, we choose
restaurant businesses from Yelp dataset and cellphones and accessories category from Amazon dataset. These
two datasets are very sparse: 73% users and 47% products only have one review in Amazon dataset, and 54%
users only have one review in Yelp dataset. However, in the constructed sentiment lexicons, 401 features
are extracted from Amazon dataset, and 1065 are extracted from Yelp dataset. It is very difficult to estimate
the affinity between users and those hundreds of features from only a handful of reviews. To refine the raw
datasets, we first analyze the coverage of different features in these two datasets. Within the sentiment lexicon,
only a small number of features (around 15%) that are frequently covered in 90% reviews, while most of
features occur rarely in the whole datasets (i.e., Zipf’s law). As a result, we perform recursive filtering to
alleviate the sparsity issue. First, we select features whose support is above a threshold; then, in turn, we filter
out reviews that mentions such features below another threshold, and items and users that are associated with
too few reviews. By fine tuning these different thresholds, we obtain two refined datasets with decent amount
of users and items, whose basic statistics are reported in Table 2.1.

Baselines. To evaluate the effectiveness of our proposed explainable recommendation solution, we include the
following recommendation algorithms as baselines:

• FMF: Functional Matrix Factorization [96]. It constructs a decision tree on the user side for tree-based
matrix factorization. It was originally designed to solicit interview questions on each tree node for
cold-start recommendations.

1http://jmcauley.ucsd.edu/data/amazon/
2https://www.yelp.com/dataset
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Table 2.2: Comparison of recommendation performance.

NDCG @K Amazon
FMF [96] NMF [97] BPRMF [98] JMARS [85] EFM [78] MTER FacT

10 0.1009 0.0649 0.1185 0.1064 0.1109 0.1351 0.1482
20 0.1331 0.0877 0.1490 0.1348 0.1464 0.1653 0.1795
50 0.1976 0.1601 0.2070 0.1992 0.2056 0.2234 0.2367

100 0.2529 0.2144 0.2669 0.2575 0.2772 0.2803 0.2869

NDCG@K Yelp
FMF [96] NMF [97] BPRMF [98] JMARS [85] EFM [78] MTER FacT

10 0.0931 0.0564 0.1266 0.1155 0.1071 0.1380 0.1499
20 0.1243 0.0825 0.1643 0.1553 0.1354 0.1825 0.1991
50 0.1871 0.1345 0.2214 0.2111 0.1903 0.2365 0.2488

100 0.2509 0.2175 0.2668 0.2575 0.2674 0.2783 0.2867
* p-value < 0.05

• NMF: Nonnegative Matrix Factorization [97], which is a widely applied latent factor model for
recommendation.

• BPRMF: Bayesian Personalized Ranking on Matrix Factorization [88], which introduces BPR pairwise
ranking constraint into factorization model learning (as shown in Eq Eq (2.1.4)).

• JMARS: A probabilistic model that jointly models aspects, ratings, and sentiments by collaborative
filtering and topic modeling [85].

• EFM: Explicit Factor Models [78]. A joint matrix factorization model for explainable recommendation,
which considers user-feature attention and item-feature quality.

Evaluation Metric. We use Normalized Discounted Cumulative Gain (NDCG) to evaluate top-k recommenda-
tion performance. 80% of each dataset is used for training, 10% for validation and 10% for testing respectively.
We use grid search to find the optimal hyper parameters in a candidate set for all baseline models.

Experiment Results

Performance of Recommendation. We report the recommendation performance of each model measured by
NDCG@{10,20,50,100} in Table 2.2. Paired t-test is performed between the best and second best performing
algorithms (FacT excluded which will be introduced in the next section) under each metric to confirm the
significance of improvement.

Results in Table 2.2 demonstrate the advantage of MTER over the baselines. Straightforward factorization
algorithm (i.e., NMF) cannot optimize the ranking quality of the recommended items. The pairwise ranking
constraints introduced by BPR greatly improve the recommendation effectiveness of BPRMF, which shares the
same decomposition structure as in NMF. However, as BPRMF only models users’ overall assessment on items,
it cannot exploit information available in the user-provided opinionated content. Second, comparing to JMARS
and EFM, which also utilize review content for recommendation, MTER is the only model that outperforms
BPRMF. JMARS models all entities in a shared topic space, which limits it resolution in modeling complex
dependencies, such as users v.s., items, and users v.s., features. EFM implicitly integrates the interaction among
users, items and features via three loosely coupled matrices, and it is only optimized by the reconstruction
error on those three matrices. This greatly limits its recommendation quality. We can also observe that the best
improvement from MTER is achieved at NDCG@10 (more than 15% against the best baseline on Amazon
and over 11% on Yelp). This result is significant: it indicates a system equipped with MTER can provide
satisfactory results earlier down the ranked list, which is crucial in all practical recommender systems.

Opinionated Textual Explanation. We study the effectiveness of our opinionated content modeling task
by evaluating if our model can predict the actual review content a user would provide on a testing item. In
particular, we focus on whether our model can recognize: 1) the features that the user would pay attention to
in a given item, and 2) the detailed opinion phrases the user would use to describe this particular feature. The
model has to leverage observations across different users, items and features, to infer their dependency. In
our experiment, we use the learnt latent factors to score all possible features associated with a given item in
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Table 2.3: Performance of opinionated content prediction.

Random EFM MTER
Feature Pred. Amazon 0.4843 0.5094 0.5176*
NDCG@20 Yelp 0.3726 0.3929 0.4089*

Opinion Phrase Pred. Amazon 0.0314 - 0.0399*
NDCG@50 Yelp 0.0209 - 0.0370*

*p-value < 0.05

each user, and look into the user’s review to verify if the top ranked features are indeed mentioned. Similarly,
we also evaluate the ranking of all possible opinion phrases associated with a specific feature to test if our
model can put the users’ choice on top. As EFM is the only baseline that predicts feature-level opinions, we
include it as our baseline for comparison. However, because EFM cannot predict detailed opinion phrases,
we also use a simple random strategy based on the feature popularity and opinion phase popularity in target
user and item as our baseline. We report the results in Table 2.3. MTER achieves promising performance
in ranking the features that a user will mention; this proves it identifies users’ true feature-level preference,
which is important for both recommendation and explanation. In the opinion phrase prediction, although it is a
very difficult task, MTER is still able to predict the detailed reasons that a user might endorse the item. This
indirectly confirms MTER’s effectiveness in explaining the recommendation results, which will be directly
evaluated in our user study later.

2.2 Explainable Recommendation with Factorization Trees
MTER incorporates the phrase-level sentiment analysis into latent factor learning, e.g., joint tensor factorization,
for explanations. Basically, MTER maps users’ feature-level opinions into the latent space and finds the
most related features to the users and recommended items as explanations. However, to what extent these
approximated explanations comply with the learned latent factor models is unknown, i.e., no guarantee in
explanation fidelity. If users are persuaded to accept recommended results that are subsequently found to
be inferior, their confidence and trust in the system will rapidly deteriorate [14, 35]. Hence, the fidelity of
explanations becomes a prerequisite for explainable recommendations.

Nevertheless, the fidelity of explanation and the quality of recommendation have long been considered as
irreconcilable [11]: one has to trade recommendation quality for explanation. We believe the tension between
recommendation quality and explanation fidelity is not necessarily inevitable; and our goal is to attain both
by optimizing the recommendation in accordance with the designed explanation mechanism. In this work,
we aim at explaining latent factor based recommendation algorithms with rule-based explanations. Our
choice is based on the facts that 1) latent factor models have proved their effectiveness in numerous practical
deployments [28,99], and 2) prior studies show that rule-based explanations are easy to perceive and justify by
the end-users [36]. We propose to integrate the rule-based decision making into the learning of latent factors.
More specifically, we treat the latent factors as a function of the rules: based on different outcome of the rules,
the associated groups of users and items should be routed to the designated latent factors, which are then
optimized for recommendation. Due to similar characteristics shared by each group of users/items created by
the learnt rules, the descriptive power of the learnt group-level latent factors is enhanced, and the data sparsity
problem in individual users/items could be substantially alleviated by this group-level latent factor learning.

More specifically, we format the explanation rules based on feature-level opinions extracted from user-
generated review content, e.g., whether a user holds positive opinion towards a specific feature. The rules
are extracted by inductive learning on the user side and item side separately, which form a user tree and an
item tree. We alternate the optimization between tree construction and latent factor estimation under a shared
recommendation quality metric. An example of user tree is shown in Figure 2.3. For instance, according to the
figure, if two users both expressed their preference of “burger” in their reviews, they should be assigned to
the same node on the user tree to share the latent user factors; accordingly, if two restaurants receive similar
negative comments about their “cleanliness”, they should appear in the same node on the item tree. In testing
time, the learned user and item factors are used for recommendation as in standard latent factor models, and
the rules that lead to the chosen user and item factors are output as explanations: e.g., “We recommend item X
because it matches your preference on burger and cleanness of a restaurant.” Extensive experiment evaluations
demonstrate improved quality in recommendation and explanation from our algorithm, compared with a set
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Figure 2.3: An example user tree: Top three levels of our FacT model learned for restaurant recommendations.

of state-of-the-art explainable recommendation algorithms. In particular, we perform serious user studies to
investigate the utility of our explainable recommendation in practice, in both warm-start and cold-start settings.
Positive user feedback further validates the value of our proposed solution.

2.2.1 Related Work
The idea of providing rule-based explanations was popularized in the development of expert systems [100,101].
For example, MYCIN [102], a rule-based reasoning system, provides explanations by translating traces of
rules followed from LISP to English. A user could ask both why a conclusion was arrived at and how much
was known about a certain concept. But since modern recommender systems seldom use rule-based reasoning,
there is very little research on explaining latent factor models with rules. We propose to embed latent factor
learning under explanation rule learning, by treating the latent factors as a function of rules, such that the
generated explanations can strictly adhere to the provided recommendations. On a related note, a existing
work [103] uses gradient boosting decision trees (GBDT) to learn rules from the reviews and incorporate rules
into an attention network. But it only uses the rules as the input of embedding models and thus isolates the
learning of tree structure and embeddings. Some systems [96, 104] combine decision tree learning with matrix
factorization to extract a list of interview questions for solving the cold-start problem in recommendation.
But the rules are only built on the user side with their rating responses to items, i.e., the same as matrix
factorization’s input; it thus cannot provide any explanation to the recommended items.

2.2.2 Taming Latent Factor Models with Factorization Tree
We elaborate our solution for joint latent factor learning and explanation rule construction in this section.
Briefly, we model the latent factors for both users and items as a function of the rules: users who provide
the same responses to the same set of rules would share the same latent factors, and so do the items. The
predicates of rules are selected among the text features extracted from user-generated reviews. For example,
whether a specific user expressed his/her preference on a particular feature in reviews. And the rules are
constructed by recursive inductive learning based on previously selected predicate’s partition of users and
items. To reflect the heterogeneity between users and items, we construct rules for users and items separately.
As a result of rule induction, the latent factors for users and items are organized in a decision tree like structure
accordingly, where each node on the tree represents the latent factors for the group of users or items routed to
that node. We alternate the optimization of the explanation rule construction and latent factor learning under a
recommendation quality based metric. Hence, we name our solution as Factorization Tree, or FacT in short.

We start our discussion with factorization based latent factor learning, which is the basic building block of
FacT. Then we provide details in rule induction based on the learned latent factors. Finally, we integrate these
two learning components with an alternative optimization procedure.
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Latent Factor Learning

Latent factor models [28, 99] have been widely deployed in modern recommender systems. The idea behind
this family of solutions is to find vectorized representations of users and items in a lower dimensional space,
which capture the affinity between users and items. Various latent factor models have been developed, such as
matrix/tensor factorization [99] and factorization machines [28]. Our FacT is independent of the choice of
latent factor models, as it treats the latent factor learning as a sub-routine.

Formally, denote U = {u1, u2, ..., um} as a set of m users, V = {v1, v2, ..., vn} as a set of n items, and rij as
an observed rating from user i to item j. The goal of latent factor learning is to associate each user and each
item an d dimensional vector respectively, i.e., ui ∈ Rd and vj ∈ Rd, such that the inner product between user
i’s factor and item j’s factor predicts the rating rij . The latent factors for all the users and items, denote as
U ∈ Rm×d and V ∈ Rn×d, can thus be learned by minimizing their prediction error over a set of observed
ratings O = {(i, j)|rij is observed} as follows,

L(U, V,O) = min
U,V

∑
(i,j)∈O

(rij − u⊤i vj)
2. (2.2.1)

It is well accepted that recommendation is essentially a ranking problem [98, 105]; however, the objective
function introduced in Eq Eq (2.2.1) cannot fully characterize the need of ranking, i.e., differentiate the relative
quality among candidates. To supplement information about relative item ranking into latent factor learning,
Bayesian Personalized Ranking (BPR) loss [98] has been popularly adopted to enforce pairwise ranking
order. To realize the BPR loss, one needs to first construct a pairwise ordered set of items Do

i for each user i:
Do

i := {(j, l)| rij > ril}, where rij > ril means that given the observations in O, either user i gives a higher
rating to item j than item l, or item j is observed in user i’s rating history, while item l is not. Then, the BPR
loss can be measured on each user i as:

B(ui, V,D
o
i ) =

∑
(j,l)∈Do

i

log σ(u⊤i vj − u⊤i vl)

where σ(·) is a logistic function.

Putting together the pointwise rating prediction loss with the pairwise ranking loss, the latent factors for users
and items can be learned by solving the following optimization problem:

(Û , V̂ ) = argmin
U,V

L(U, V,O)− λb

∑
i

B(ui, V,D
o
i ) + λu∥U∥2 + λv∥V ∥2 (2.2.2)

where λb is a trade-off parameter to balance these two types of loss, ∥U∥2 and ∥V ∥2 are l2 regularization to
control model complexity, and λu and λv are the corresponding coefficients. Eq Eq (2.2.2) can be efficiently
addressed by gradient-based optimization [106]. Once the user factors U and item factors V have been learned,
the recommendations for user i can be generated by returning the top ranked items based on the predicted
ratings r̂ij = û⊤i v̂j .

The premise behind the aforementioned learning procedure is that there is only a small number of factors
influencing users’ preferences, and that a user’s preference vector is determined by how each factor applies to
that user and associated items. But the factors are retrieved by solving a complex optimization problem (e.g.,
Eq Eq (2.2.2)), which makes the resulting recommendations hard to explain. In FacT, we embed latent factor
learning under explanation rule construction, so that why a user or an item is associated to a particular latent
factor can be answered by the matched rules, so do the generated recommendations.

Explanation Rule Induction

In FacT, we consider the latent factors as a function of explanation rules: the latent user factor ui for user i
is tied to the outcomes of a set of predicates applied to him/her, so does the latent item factor vj for item j.
Based on different outcomes of the rules, the associated groups of users and items should be routed to the
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designated latent factors. At testing time, the activated predicates on user i and item j naturally become the
explanation of this recommendation.

We select the predicates among the item features extracted from user-generated reviews. User reviews provide
a fine-grained understanding of a user’s evaluation of an item. Feature-level sentiment analysis techniques [33]
can be readily applied to reviews to construct a domain-specific sentiment lexicon. Each lexicon entry takes
the form of (feature, opinion, sentiment polarity), abbreviated as (f, o, s), and represents the sentiment polarity
s inferred from an opinionated text phrase o describing feature f . Specifically, we label the sentiment polarity
s as +1 or -1, to represent positive or negative opinions. As how to construct a sentiment lexicon with
phrase-level sentiment analysis is not the focus of this work, we refer interested readers to [12, 33] for more
details.

The extracted item features become candidate variables for predicate selection. To compose predicates for
explanation rule construction, we first need to define the evaluation of a single variable predicate on users/items
according to their association with the item features. To respect the heterogeneity between users and items, we
construct the predicates for users and items separately; but the construction procedures are very similar and
highly related on these two sides.

Denote F = {f1, f2, ..., fk} as a set of k extracted item features. Suppose feature fl is mentioned by user
i for puil times with a positive sentiment polarity in his/her reviews and nu

il times with a negative sentiment
polarity. We can construct a feature-level profile Fu

i for user i, where each element of Fu
i is defined as,

Fu
il =

{
∅, if puil = nu

il = 0,
puil + nu

il, otherwise. (2.2.3)

Intuitively, Fu
il is the frequency of user i mentioning feature fl in his/her reviews, such that it captures the

relative emphasis that he/she has given to this feature. And similarly, on the item side, denote pvjl as the number
of times that feature fl is mentioned in all user-generated reviews about item j with a positive sentiment
polarity, and nv

jl as that with a negative sentiment polarity, we define the feature-level profile F v
j for item j as,

F v
jl =

{ ∅, if pvjl = nv
jl = 0,

pvjl − nv
jl, otherwise. (2.2.4)

Accordingly, F v
jl reflects the aggregated user sentiment evaluation about feature fl of item j.

Based on the feature-level user and item profiles, the evaluation of a single variable predicate can be easily
performed by comparing the designated feature dimension in the user or item profile against a predefined
threshold. For example, on the user side, if a predicate is instantiated with feature fl and threshold tul , all users
can have three disjoint responses to this predicate based on their Fu

il values, i.e., Fu
il ≥ tul , or Fu

il < tul , or Fu
il

is unknown. This gives us the opportunity to model the latent factors as a function of the explanation rules:
based on the evaluation results of a predicate, we allocate the input users into three separate user groups and
assign one latent vector per group. We should note that other forms of predicates are also applicable for our
purpose, e.g., select a list of thresholds or a nonlinear function for one variable. For simplicity, we adhere to
the form of single threshold predicates, and leave the more complex forms of predicates for future exploration.

Two questions remain to be answered: First, how to select the threshold for user-side and item-side predicate
creation; and second, how to assign latent vectors for each resulting user/item group. We answer the first
question in this section by inductive rule learning, and leave the second to the next section, where we present
an alternative optimization procedure for joint rule learning and latent factor learning. In the following
discussions, we will use user-side predicate construction as an example to illustrate our rule induction method;
and the same procedure directly applies to item-side predicate construction.

Intuitively, an optimal predicate should create a partition of input users where the latent factors assigned to
each resulting user group lead to minimal recommendation loss defined in Eq Eq (2.2.2). This can be achieved
by exhaustively searching through the combination of all item features in F and all possible corresponding
thresholds. This seems infeasible at a first glance, as the combinatorial search space is expected to be large.
But in practice, due the sparsity of nature language (e.g., Zipf’s law [107]), the mentioning of item features



2.2 Explainable Recommendation with Factorization Trees 18

and its frequency in user reviews are highly concentrated at both user-level and item-level [108]. Besides,
feature discretization techniques [109] can also be used to further reduce the search space.

To perform the search for optimal predicate in an input set of users Ua, we first denote the resulting partitions
of Ua by feature fl and threshold tul as,

L(fl, t
u
l |Ua) = {i|Fu

il ≥ tul , i ∈ Ua},
R(fl, t

u
l |Ua) = {i|Fu

il < tul , i ∈ Ua}, (2.2.5)
E(fl, t

u
l |Ua) = {i|Fu

il = ∅, i ∈ Ua},

and the set of possible threshold tul for feature fl as Tu
l . The optimal predicate on Ua can then be obtained by

solving the following optimization problem with respect to a given set of item factors V ,

(f̄l, t̄
u
l ) = argmin

fl∈F,tul ∈T
u
l

min
uL,uR,uE

L(uL, V,OL)−λb

∑
i∈E(fl,tul )

B(uL, V,D
o
i )

+L(uR, V,OR)−λb

∑
i∈R(fl,tul )

B(uR, V,D
o
i )

+L(uE , V,OE)−λb

∑
i∈E(fl,tul )

B(uE , V,D
o
i )

+λu(∥uL∥2 + ∥uR∥2 + ∥uE∥2) (2.2.6)

where OL, OR and OE are the observed ratings in the resulting three partitions of Ua, and uL, uR and uE

are the correspondingly assigned latent factors for the users in each of the three partitions. As users in the
same partition are forced to share the same latent factors, the choice of text feature fl and corresponding
threshold tul directly affect recommendation quality. In practice, considering each user and item might associate
with different number of reviews, the size of user profile Fu

i and item profile F v
j might vary significantly.

Proper normalization of Fu
i and F v

j can be performed, e.g., normalize by the total observation of feature
mentioning in each user and item respectively. In this work, we follow [109] for feature value normalization
and discretization.

Inside the optimization of Eq Eq (2.2.6), a sub-routine of latent factor learning is performed to minimize
recommendation loss induced by matrix factorization (as defined in Eq Eq (2.2.2)) on the resulting partition
of users. As we mentioned before, the choice of latent factor models does not affect the procedure of our
predicate construction for FacT, and many other recommendation loss metrics or latent factor models can be
directly plugged into Eq Eq (2.2.2) for explainablity enhancement. We leave this exploration as our future
work.

Our predicate construction can be recursively applied on the resulting user partitions L(f̄l, t̄ul |Ua), R(f̄l, t̄
u
l |Ua)

and E(f̄l, t̄
u
l |Ua) on the input user set Ua to extend a single variable predicate to a multi-variable one, i.e.,

inductive rule learning. The procedure will be terminated when, 1) the input user set cannot be further
separated, e.g., all users there share the same user profile; or 2) the maximum depth has been reached. Starting
the procedure from the complete set of users U , the resulting set of multi-variable predicates form a decision
tree like structure, which we refer as user tree in FacT (as shown in Figure 2.3). On the user tree, each node
hosts a latent factor assigned to all its associated users, and its path to the root node presents the learned
predicates for this node. The same procedure can be applied on the item side with a given set of user factors U
to construct item-specific predicates, i.e., item tree.

Once the user tree and item have been constructed, explaining the recommendations generated by the latent
factors becomes straightforward. Assume we recommend item j to user i: we first locate user i and item j
at the leaf nodes of user tree and item tree accordingly, extract their paths back to each tree’s root node, and
find the shared features on the paths to create feature-level explanations. As each branch on the selected path
corresponds to a specific outcome of predicate evaluation, e.g., Eq Eq (2.2.5), we can add predefined modifiers
in front of the selected features to further elaborate the associated latent factors. For example,
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• We recommend this item to you because its [good/excellent] [feature 1] matches with your [empha-
size/taste] on [feature 1], and ...

• We guess you would like this item because of your [preference/choice] on [feature 1], and ...

It is also possible that the number of shared features on the two paths is low, especially when the maximum
tree depth is small. In this situation, one can consider to use the union of features on these two paths, and
give higher priority to the shared features and those at the lower level of the trees, as they are more specific.
Another possible way of explanation generation is to use the selected features to retrieve sentences from the
corresponding item reviews [110].

Alternative Optimization

The aforementioned procedure for explanation rule induction is intrinsically recursive and requires the
availability of user factors for item tree construction and item factors for user tree construction. In this section,
we will unify the learning of latent factors with tree construction to complete our discussion of FacT.

Define the maximum rule length, i.e., tree depth, as h. We alternate rule induction by recursively optimizing Eq
Eq (2.2.6) between user side and item side. At iteration t, we start induction from the complete user set U with
the latest item factors Vt−1. For each pair of feature and threshold in the hypothesis space of Eq Eq (2.2.6),
we use gradient based optimization for learning latent factors according to Eq Eq (2.2.2). Once the induction
finishes, we collect the latent user factors Ut from the leaf nodes of the resulting user tree, and use them to
execute the rule induction on the item side from the complete item set V to estimate Vt. This procedure is
repeated until the relative change defined in Eq Eq (2.2.2) between two consecutive iterations is smaller than
a threshold, or the maximum number of iterations is reached. To break the inter-dependency between item
tree and user tree construction, we first perform plain matrix factorization defined in Eq Eq (2.2.2) to obtain
the initial item factors V0. We should note that one can also start with item tree construction from initial user
factors U0, but this does not change the nature and convergence of this alternative optimization.

The above alternative optimization is by nature greedy, and its computational complexity is potentially high.
When examine the optimization steps in Eq Eq (2.2.6), we can easily recognize that the exhaustive search of
item features and thresholds can be performed in parallel in each input set of users and items. This greatly
improves the efficiency of rule induction. Besides, beam search [111] can be applied in each step of predicate
selection to improve the quality of learned rules and factors, but with a cost of increased computation.

One can realize that during the alternative optimization, only the latent factors learned for the leaf nodes are
kept for next round of tree construction and finally the recommendation, while the factors associated with the
intermediate nodes are discarded. As the procedure of inductive rule learning can be considered as a process
of divisive clustering of users and items, the intermediate nodes actually capture important information about
homogeneity within the identified user clusters and item clusters. To exploit such information, we introduce
the learned latent factors from parent node to child node as follows,

uL,z = ũL,z + uz, uR,z = ũR,z + uz, and uE,z = ũE,z + uz,

where uL,z , uR,z and uE,z are the latent factors to be plugged into Eq Eq (2.2.6) for the three child nodes
under parent node z, and uz is the factor already learned for the parent node z. Intuitively, ũL,z , ũL,z

and ũL,z can be considered as residual corrections added to the shared representation from parent nodes.
Hence, the rule induction process becomes a recursive procedure of latent factor refinement. Without loss of
generality, this recursive refinement can be applied to individual users and items on the leaf nodes of both
user tree and item tree as well. If we refer the latent factors on the leaf node for individual users and items
as personalized representations of users and items, those on the intermediate nodes could be considered as
grouplized representations for the partition of users and items.
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Figure 2.4: NDCG@50 v.s. the number of item features.

2.2.3 Experiments
We performed a set of controlled experiments on two widely used benchmark datasets collected from Amazon3

and Yelp Dataset Challenge4 to quantitatively evaluate our FacT model. We follow the same technique
discussed in Section 2.1.3 to perform pre-processing on the dataset, and the detailed statistic can be found in
Table 2.1. Besides, we compare FacT against the same baselines as that for MTER in both recommendation
and explanation quality.

Top-K Recommendation

We first evaluate FacT’s recommendation quality. In a good recommender system, items ranked higher in a
result list should be more relevant to a user’s preference. NDCG assigns higher importance to the items ranked
on top. In this experiment, we fix the depth of the user tree and item tree in FacT to 6 and the size of latent
dimension to 20. The recommendation performance measured by NDCG@10, 20, 50, 100 of each model is
shown in Table 2.2 for Amazon and Yelp datasets, respectively.

Compared with all the baselines, FacT consistently gives better recommendation in both Amazon and Yelp
datasets. By exploiting the review content for recommendation, JMARS and EFM gave explainable rec-
ommendation to users with comparable ranking quality with BPRMF, and MTER showed its potential in
providing explanations along with decent recommendation quality. However, they are still limited for different
reasons. JMARS maps users, items and features into the same topic space, where the dependency among
them is not preserved. Both EMF and MTER model the users and items as individual vectors by matrix or
tensor factorization, while FacT clusters users and items into groups (e.g., the intermediate nodes in user and
item trees) to take advantage of in-group homogeneity for better latent factor learning. The basic intuition
here is that the representations of users and items that share the same preferences or feature qualities should
be pushed close to each other. And FacT enforced it by item feature based tree construction. Moreover,
the personalized vectors added to the leaf nodes distinguish individual users/items, and provide accurate
personalized recommendations.

Number of item features

As shown in Table 2.1, there are 101 item features extracted from Amazon dataset and 104 features from Yelp
dataset. Though we have filtered out features with low frequency, limited by the depth of our tree structure,
not all of these features will be selected for rule construction. In this analysis, we study the impact of number
of features in the dataset on the performance of different models. We first ordered the features in a descending
order of frequency, and then trained the models with an increasing number of features. The results are reported
in Figure 2.4. From Figure 2.4, it is easy to observe that all the models get significantly improved with an
increasing number of features. As the number of features got larger, the performance became stable, as more
less frequent features were added. This observation suggests that features with high frequency in reviews

3http://jmcauley.ucsd.edu/data/amazon/
4https://www.yelp.com/dataset
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Figure 2.5: Varying the depth of user tree.

contribute more to the feature-based recommendation algorithm learning. In FacT, when the number of item
features is limited, it cannot correctly create tree branches to guide latent factor learning. And more item
features give FacT a higher degree of freedom to recognize the dependency between users and items.

Maximum tree depth

In FacT, we cluster the users and items along with the tree construction. The maximum tree depth controls
the resolution of clusters, e.g., how many intermediate and leaf nodes will be created. We fixed all the other
hyper-parameters and only tuned the maximum depth of each tree to verify the effect of it. The results are
shown in Figure 2.5. We compared the performance of FacT with FMF and MTER. FMF introduces user
tree construction to cluster users for cold-start recommendation. And MTER is the best baseline we had in
Table 2.2, but as it does not have a tree structure, its performance remains constant in this experiment. And
for FacT, we fixed the depth of item tree to 6 and varied the depth of user tree. We can observe both FMF
and FacT got better performance with an increasing tree depth, which increases the granularity of the learned
latent representations for users.

Cold-start Recommendation

Cold-start is an well-known and challenging problem in recommender systems. Without sufficient information
about a new user, it is hard for a recommender system to understand the user’s interest and provide recommen-
dations with high quality. A by-product of FacT is that the rules learned in the user tree naturally serve as a set
of interview questions to solicit user preferences when a new user comes to the system, i.e., cold-start. For
example, based on the user tree in Figure 2.3, the system would get a good understanding of a new user by
asking just a few questions following the paths on the tree. In this experiment, we study how FacT performs
on the new users. First, we separated the users into two disjoint subsets, containing 95% and 5% users, for
training and testing respectively. On the training set, we learned the model and built the user tree and item tree.
During testing, for each testing user, we select their first k reviews to construct his/her item feature based user
profile (i.e., Fu

i as defined in Eq Eq (2.2.3)). By matching against the user tree, we can easily find the leaf
node for each testing user. Then, we use the latent factors reside in the selected leaf node to rank items for this
user. We evaluate the performance in the remaining observations from the same user as ground-truth.

We compared FacT with FMF model as it is the only baseline that can handle cold-start. We varied the number
of observations for each testing user from 0 to 5, and the results are shown in Figure 2.6. First, it is clear to
observe that NDCG got improved with an increasing number of observations used to create the user profile for
both FacT and FMF. This indicates the effectiveness of user clustering on the user tree in these two models.
Second, thanks to the construction of item tree and BPR constraint, FacT got consistently better performance
than FMF. In particular, NDCG@50 for FacT increases faster than FMF with more observations. We attribute
this to the fact that FacT uses the item features and user opinions collected from the reviews to perform tree
construction, while FMF only uses the item ratings to group users. This indicates the effectiveness of review
information in modeling users.
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Figure 2.6: NDCG@50 v.s., the # observations in cold-start.

Table 2.4: Result of warm-start user study.

Average Score Amazon Yelp
EFM MTER FacT EFM MTER FacT

Q1 3.64 3.96 4.45* 3.45 4.06 4.30*
Q2 3.48 3.88 4.03 3.40 3.87 4.13
Q3 3.07 3.02 3.88* 2.98 3.26 3.94*

* p-value < 0.05

2.2.4 User Study
We performed serious user studies to evaluate user satisfaction of both the recommendations and explanations
generated by FacT. We evaluated the performance of FacT on both warm-start users, whose ratings and reviews
are known to the system beforehand, and cold-start users who are totally new to the system. The study is based
on the review data in Amazon and Yelp datasets used in previous experiments. We recruited participants on
Amazon Mechanical Turk to interact with our system and collected their responses. To reduce the variance
and noise of the study, we required the participants to come from an English-speaking country, older than 18
years, and have online shopping experience.

Warm-start Users

In the warm-start setting, we assume user’s purchase history is known to the recommender system. However,
we are not able to trace the participants’ purchase history on Mechanical Turk. Instead, we performed a
simulation-based study, in which we asked the participants to evaluate our system from the perspective of
selected users in our datasets. Specifically, for each participant, we randomly selected a user from our review
dataset and presented this user’s reviews for the participant to read. The participants were expected to infer this
user’s preferences from the review content. Then the participant will be asked several questions to evaluate the
recommendation and explanation generated by our algorithm.

We carefully designed the survey questions to evaluate different aspects of our recommender algorithm as
follows:

Q1: Generally, are you satisfied with our recommendations?
Q2: Do the explanations presented to you really match your preference?
Q3: Do you have any idea about how we make recommendations for you?

We intended to use Q1 to evaluate user satisfaction of recommended items, use Q2 to judge the effectiveness of
explanations, and use Q3 to evaluate the transparency of an explainable recommendation algorithm. For each
question, the participants are required to choose from five rated answers: 1. Strongly negative; 2. Negative; 3.
Neutral; 4. Positive; and 5. Strongly positive. We used EFM and MTER as baselines, since they both can
provide textual explanations, and conducted A/B tests to ensure the evaluation is unbiased. Three hundred
questionnaires were collected in total and the results are reported in Table 2.4.
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Table 2.5: Results of cold-start interleaved test.

number of votes Amazon Yelp
FMF FacT FMF FacT

Q1 44 63* 40 64*
Q2 43 64* 34 70*
Q3 45 62 33 71*

* p-value < 0.05

From the statistics, FacT apparently outperformed both baselines in all aspects of this user study, which is
further confirmed by the paired t-test. Comparing FacT with EFM and MTER on Q1, the improvement in
offline validated recommendation quality directly translated into improved user satisfaction. For Q2, the
advantage of FacT shows the effectiveness of our predicate selection in explanation rule construction, which
captures user’s underlying preferences. Moreover, the results on Q3 verified the user-perceived transparency
of our tree guided recommendation and rule-based explanation mechanism.

Cold-start Users

Unlike warm-start users, cold-start users have no review history. In order to generate recommendation and
explanation for these users, we progressively query user responses through an interview process. Specifically,
each node of the user tree in FacT corresponds to an interview question: "How do you like this [feature]?",
where [feature] was learned to optimize the explanation rule at this node. When the user answers the interview
question designated at the current node, he/she will be directed to one of its three child nodes according to
the answer. As a result, each user follows a possibly different path from the root node to a leaf node during
the interview process. A user’s associated latent factor is adaptively refined at each intermediate node based
on the user’s responses. We make recommendations and explanations according to the resulting path. For
comparison, FMF is set as a baseline, since it is the only algorithm that can address the cold-start problem with
the same interview process as FacT. As FMF uses items instead of features to construct the tree, the interview
question there is changed to "How do you like this [item]?"

To interview each participant in this user study, we developed a platform to let the participant interact with our
system. 5 To increase the sensitivity of comparison between two recommendation algorithms, we conduct
interleaved test [112] in this cold-start study. The participant was asked to interact with two models one
after the other in a random order, to compare which one is better according to our designed questions. The
recommendation is interactive, based on the participants’ responses to the interview questions (i.e., traversing in
the user tree). There are three questions for them to answer to compare the recommendations and explanations
generated by these two algorithms:

Q1: Generally, between system A and B, whose recommendations are you more satisfied with?
Q2: Between system A and B, whose explanations do you think can better help you understand the recom-

mendations?
Q3: Between system A and B, whose explanations can better help you make a more informed decision?

We collected more than 100 valid responses on each dataset and reported the results in Table 2.5. We can find
that FacT is preferred than FMF in all questions on both datasets. It suggests that: First, feature-based rule
construction is more effective than item-based rule construction, which leads to improved ranking quality in
FacT. Second, the feature-based explanations are preferred than the item-based ones, as the former characterizes
user preferences at a finer granularity. Last, feature-based explanation rules also provide improved transparency
than item-based explanations, which verifies the explainability of our solution. All the evidences from this
interleaved user study demonstrate the power of FacT to address the cold-start problem.

5https://aobo-y.github.io/explanation-recommendation/

https://aobo-y.github.io/explanation-recommendation/
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Table 2.6: Case study on two explainable recommendation algorithms’ output. Two restaurants are evaluated by the two algorithms, with
corresponding recommendation scores and explanation output. We manually labeled attribute words in italic and sentiment words in bold.

Item Algorithm 1 (Our proposed model) Algorithm 2 (NRT [37])
Score Explanation Score Explanation

A 4.2 the sushi is good, the rolls are fresh and
the service is excellent.

4.1 their prices are decent, but the portions
are pretty small.

B 2.1 it was a bit loud and the service was
slow.

2.2 great food, clean, and nice atmosphere.

2.3 Sentiment Aligned Natural Language Explanation Generation
Due to the lack of explicit explanation training data, most explainable recommendation solutions appeal to
user reviews as a proxy [12,108,110,113–116]: a good explanation should overlap with user-provided reviews.
This is backed by extensive prior research in sentiment analysis [117] that there is a strong correlation between
opinion ratings and associated review content. But the approximation also inadvertently shifts the objective
of explanation learning to generating or even memorizing reviews, in a verbatim manner. It unfortunately
drives the current practice in explainable recommendation to decoupling the learning of recommendation and
explanation into two loosely linked sub-problems with their own objectives (e.g., rating prediction vs., content
reconstruction) [12, 37, 108]. But we have to emphasize that the content generated with fairly fluent language
is not sufficient to be qualified explanations, as a good explanation must elaborate why the recommendation is
particular to the user. Ideally, based on the provided explanations, a user should reach the same conclusion as
the system does about why an item is recommended, i.e., explanation as a defense of the recommendation.

We believe the sentiment delivered by the explanation text needs to reveal the details of how items are scored
and ranked differently by the system. We formulate this as sentiment alignment between the explanation text
and system’s corresponding recommendation. To demonstrate the importance of sentiment alignment, we
compare example output from two explainable recommendation algorithms (one proposed in this work, and
another from [37]) in Table 2.6. Both algorithms strongly recommended restaurant A over B, as suggested by
the corresponding large margins in their recommendation scores. With Algorithm 1’s explanations, one can
easily recognize restaurant A is recommended because of better quality in its food and service. But on the
contrary, it is much harder to comprehend the recommendations based on the Algorithm 2’s explanations, as the
presented difference become subtle, though their readability is comparable to Algorithm 1’s. Two major reasons
cost misaligned explanations in the second algorithm: 1) at training time, it only uses text reconstruction loss
for explanation learning; 2) at inference time, the explanation is generated largely independently from the
recommendation (as it only uses the predicted rating as an initial input for text generation). The failure to
align sentiment conveyed in the explanation text with the recommendations not only cannot help users make
informed decisions, but also makes them confused or even doubt about recommendations, which is totally
against the purpose of explainable recommendation.

We propose to enforce sentiment alignment in both training and inference time for improved explainable
recommendation. In particular, the learning of recommendation is modeled as a neural collaborative filtering
problem [27], and the learning of explanation is modeled as a neural text generation problem [118]. We
force the recommendation module to directly influence the learning of explanations by two means. First,
we introduce two gated networks to our neural language model to fuse the intermediate output from the
recommendation module to affect the word choice at every position of an explanation. Second, a stand-alone
sentiment regressor is added in between the two modules’ output, such that its predicted sentiment score
on the explanation text should be close to the given recommendation score. When discrepancy occurs, the
explanation module is pushed to minimize the difference. At inference time, all our treatments for sentiment
alignment are kept. But since the explanation module has been learnt, the sentiment score gap is minimized by
solving a constrained decoding problem.

We evaluate the proposed solution on both recommendation and explanation tasks, with particular focuses on
the text quality, attribute personalization, and sentiment alignment of the generated explanations. Empirical
results show that our solution improves the performance on both tasks, with particularly improved explanation
quality via its enhanced sentiment alignment.
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2.3.1 Related Work
User-provided reviews have been popularly used as a proxy of explanations in explainable recommendations
[110, 113, 119]. One typical type of solutions directly extract representative text segments from existing
reviews as explanations. For example, NARRE [110] uses attention to aggregate reviews to represent users and
items for recommendation, in order to choose the most attentive reviews as explanations for each particular
item. Wang et al. [113] extend the idea with reinforcement learning to extract the most relevant review text
segments that match a given recommender system’s rating prediction. However, such explanations are limited
to existing reviews, some of which may not even be qualified as explanations (e.g., describing a personal
experience). Moreover, these models only focus on selecting reviews to identify the items’ characteristics,
instead of addressing the reasons for a particular recommendation provided by the system.

Another family of solutions learn to generate explanations from reviews. Many of them learn to predict
informative elements retrieved from reviews as explanations [108,114,120]. As a typical example, MTER [108]
predicts items’ feature words and corresponding users’ opinion words alone with its recommendations. Its
explanations are generated by placing the predicted words into predefined templates, which however lack
necessary expressiveness and diversity of nature language. To address this deficiency, neural language models
have been applied to synthesize natural language explanations [37, 115, 121, 122]. For example, NRT [37]
models explanation generation and item recommendation with a shared user-item embedding space, where its
predicted recommendation rating is used as part of the initial state for corresponding explanation generation.
Neither the template-based or generation-based solutions paid enough attention to the sentiment alignment issue
between recommendations and explanations. Although they jointly model recommendation and explanation
(e.g., sharing embeddings), the objectives of training each module are still isolated. DualPC [116] realizes
the importance of consistency between the two learning tasks, and introduces a duality regularization based
on the joint probability of explanations and recommendations. However, the correlation imposed by duality
does not have any explicit semantic meaning to the end users. In contrast, we require the output of models to
be consistent in their carried sentiment, which is perceivable by an end user. Our solution treats explanation
as a dependent of recommendation, and solves a constrained decoding problem to infer the most aligned
explanation at testing time accordingly.

Figure 2.7: Model architecture of SAER. Sentiment alignment is enforced through three channels. First, SAER uses a shared sentiment
vector to connect the recommender and explanation generator by the sentiment gate and attribute gate. Second, the sentiment regularizer
samples generated explanations with Gumbel softmax and requires their carried sentiment (calculated by a pre-trained sentiment regressor)
to match with the recommender’s output score. Third, at inference time, constrained decoding is performed to ensure the alignment in the
generated explanation. SAER also uses adversarial training to improve the explanations’ readability in its sentiment regularizer.

2.3.2 Sentiment Aligned Explainable Recommendation
For a given pair of user u and item i, the model outputs a personalized recommendation based on its computed
score ru,i and a word sequence xu,i = {w1, w2, . . . , wn} as its explanation. To learn such a model, we assume
an existing training dataset, which includes a set of users U , items I, ratingsR, attributes A, and explanation
text X , denoted as as {U , I,R,A,X}. The attributes and explanations can be prepared from user-provided
review corpora; and we will introduce the procedure we adopted for this purpose later in the experiment section.
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We also define a vocabulary set V = {w1, w2, ..., w|V|} for explanation generation. We define attributes as
items’ popular properties mentioned in the review text, and thus they are a subset of vocabulary A ⊂ V .

Our model architecture for addressing explainable recommendation is shown in Figure 2.7. It consists of
three major components: 1) recommender, which takes a user and item pair (u, i) as input to predict a
recommendation score r̂u,i, which measures the affinity between u and i; 2) explanation generator, which
takes the (u, i) pair as input and generates a word sequence x̂u,i = {w1, w2, . . . , wn} as the corresponding
explanation; and 3) sentiment regularizer, which measures sentiment alignment between the generated
explanation and recommendation. All three components closely interact with each other at both training and
inference time for improved explanation generation, especially for enhanced sentiment alignment. We name
our solution Sentiment Aligned Explainable Recommendation, or SAER in short. Next, we will zoom into
each component to introduce its design principle and technical details.

Personalized Recommendation

As our focus in this work is not to design yet another recommendation algorithm, we adopted the neural
collaborative filtering solution for the purpose [27]. Arguably any latent factor models that explicitly learn user
and item representations [12, 99, 108] can be adopted. We stack two Multi-Layer Perceptron (MLP) networks
to predict the recommendation score r̂u,i for a given (u, i) pair. The first MLP encodes the (u, i) pair to a latent
sentiment vector su,i ∈ Rdr

s , and the second MLP maps the sentiment vector su,i into the numerical rating r̂u,i.
We refer to the first MLP as sentiment encoder and the second one as rating regressor. Instead of using the
predicted score r̂u,i to influence explanation generation, we choose to inform the explanation generator by the
encoded sentiment vector su,i. We defer the details of this design to the next section. In the recommendation
module, we define the latent embedding matrices for users and items as P r ∈ Rdr×|U| and Qr ∈ Rdr×|I|

respectively, where dr is the dimension of the embedding vectors. The sentiment encoder concatenates the
embedding vector pru and qri as its input and passes it through multiple layers with leaky ReLU activation to
get the sentiment vector su,i encoded. Besides its use in the explanation generator, su,i is then mapped by the
rating regressor through another set of multi-layer leaky ReLUs to get the final recommendation score r̂u,i.

In addition to the popularly used Minimal Squared Error (MSE) [37, 110] to train our recommender, we also
introduce a pairwise hinge loss to improve the trained recommender’s ranking performance. Specifically, for
each user u, we collect a set of personalized item pairs Bu = {(i, j)|ru,i > ru,j}, where i and j are two items
rated by user u and one is preferred than another as observed in the training dataset. We did not use the popular
BPR loss [98], because it tends to push ratings to extreme values, which is inconsistent with our sentiment
regularizer’s requirement to be explained later.

Based on the rating set R and personalized item pair set {Bu}u∈U , the loss for recommender training is
defined as:

Lr =
1

|R|
∑

ru,i∈R

(
r̂u,i − ru,i

)2
+

∑
u∈U

λh

|Bu|
∑

(i,j)∈Bu

max
(
0, β − (r̂u,i − r̂u,j)

)
where β > 0 is a hyper-parameter to control the separation margin, i.e., it penalizes the model when the
predicted difference between r̂u,i and r̂u,j is smaller than β, and λh is the coefficient to control the balance
between MSE loss and pairwise hinge loss.

Explanation Generation

Motivated by the success of neural language generation, we appeal to a Recurrent Neural Network (RNN)
model with Gated Recurrent Units (GRUs) [123] for explanation generation. To make the generation related
to the user and item, we first map the input user u and item i to their embeddings pxu and qxi with the latent
matrices P x ∈ Rdx×|U| and Qx ∈ Rdx×|I| learnt by the explanation generator. We should note this set of
embeddings are different from those used in the recommender (i.e., P r and Qr), as they should characterize
different semantic aspects of users and items (ratings vs., text). We hence use superscript x to indicate variables
and parameters related to explanation generator. To generate explanation text, the embeddings are concatenated
and linearly converted into the initial RNN hidden state; and then the GRU generates hidden state hx

t ∈ Rdx
h at

position t with previous state hx
t−1 and input word wt, and predicts the next word wt+1 recursively.
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Though similar model design has been used for explanation generation [37, 116], this straightforward appli-
cation of RNN can hardly generate satisfactory explanations, where two issues are left open. First, a good
explanation is expected to be personalized and specific about the recommendation; generic content, such as
“this is a nice restaurant” can never be informative. It is important to explain the recommended item by the
user’s most concerned attributes. Second, the sentiment carried in the explanation, especially on the mentioned
attributes, should be explicit and consistent with the recommendation (as shown in our case study in Table
2.6). There is no guarantee that a simple RNN can satisfy both requirements.

We enhance our generator design with two gated sub-networks upon GRU to address the aforementioned
issues. First, we design a sub-network, named attribute gate, to guide attribute word generation with respect to
the input user-item pair and the predicted recommendation sentiment. The attribute gate is built based on a
pointer network (or copy mechanism) [124, 125], which decides whether the current position should mention
an attribute word and the corresponding distribution of attribute words based on the generation context. To
make the choice of attribute word specific to the item, for each item i we build an attribute set with all attribute
words that appear in i’s associated training explanation text: Ai =

{
ak|ak ∈ {xu,i|u ∈ U}

}
. To make

the attribute choice depend on the already generated content, we attend on the concatenation of the current
position’s RNN hidden state hx

t and sentiment vector su,i to compute the distribution of these attribute words,

zt,k = [hx
t , su,i]

⊤W x
z vak

,∀k, ak ∈ Ai; ζt = softmax(zt), (2.3.1)

where W x
z ∈ R(dx

h+dr
s)×d

x
v and vak

is the word embedding of attribute ak. zt,k is computed for every ak in
Ai, i.e., zt = {zt,1, zt,2
...zt,|Ai|}. ζt is the resulting attribute word distribution at position t. For better performance, an extra linear
transformation can be applied to hx

t to compress it into a lower dimension before computing attention, which
helps avoid overfitting attentions to the text generation context but ignoring the sentiment context.

To decide if we need to generate an attribute word using Eq Eq (2.3.1) at position t, we compute the copy
probability with respect to the current context hx

t by cxt = σ(W x
c h

x
t + bxc ), where σ(·) is the sigmoid function,

W x
c ∈ Rdx

h and bxc ∈ R. cxt allows us to mix the vocabulary distribution predicted by GRU and attribute word
choice to get our final word distribution at position t.

Second, we design a sentiment gate to fuse the sentiment vector su,i to align sentiment in the generated
explanation text. Our key insight is that not all words convey sentiment, we need to choose the right word at
the right place to express consistent sentiment as needed by the recommender. Similar to our attribute gate
design, we apply a soft gate to decide how each position is related to the intended sentiment. At position t, the
sentiment gate calculates a ratio gxt with respect to the RNN’s hidden state hx

t . The sentiment vector su,i is
then weighted and merged with hx

t ,

gxt = σ(W x
g h

x
t + bxg), mx

t = tanh
(
hx
t + gxt (W

x
msu,i + bxm)

)
(2.3.2)

where W x
g ∈ Rdx

h and bxg ∈ R produce a scalar gxt . mx
t is the sentiment fused latent vector to predict the

vocabulary distribution for position t. Because not all words are about sentiment, to better differentiate the
positions where the intended sentiment needs to be expressed from the rest, we impose sparsity on the learned
gate value gxt using L1 regularization at training time. In other words, the gate is open only when necessary.

We compute the final word distribution by consolidating the outputs of the two gated sub-networks (Eq
Eq (2.3.1) and Eq (2.3.2)). First, the sentiment fused latent vector mx

t is fed through a linear layer to calculate
the vocabulary distribution ηt = softmax(W x

vm
x
t + bxv), where W x

v ∈ R|V|×dx
h and bxv ∈ R|V|. Second, the

vocabulary distribution ηt and attribute word distribution ζt are merged to obtain the final word distribution
with respect to the copy probability cxt , i.e., yt = (1− cxt )ηt + cxt ζt, where the value of wk in ζt is 0 if wk is
not an attribute word.

The objective for explanation generation is to minimize the negative log-likelihood loss (NLL) on the training
explanation set X ,

Lx = −
∑
x∈X

∑
wt∈x

logyt(wt) + λg

∑
x∈X

∑
wt∈x

|gxt |
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where yt(wt) is the resulting probability of word wt and λg is the coefficient for the L1 regularization of the
sentiment gate values.

Sentiment Alignment

Though our sentiment gate design (Eq Eq (2.3.2)) introduces predicted sentiment from the recommender to
the explanation generator, it is still insufficient to guarantee sentiment alignment, for three major reasons.
First, word-based NLL training cannot maintain the whole sentence’s sentiment. This weakens its prediction
quality on sentiment words. Second, the explanation generator might utilize the sentiment vector differently as
the recommender does, so that the recommendation rating might diverge from the sentiment carried by the
explanation. Third, the generation process at the inference stage works differently from the training stage [126]:
at inference time, the previously decoded word is used as the input for the next word prediction, instead of the
ground-truth word as at the training time. Hence, the learnt text pattern might not be fully exploited at the
inference time.

We introduce the sentiment regularizer to close the loop between the recommender and explanation generator.
It uses a stand-alone sentiment regressor to predict the sentiment rating r̂x on the generated explanation
text x̂u,i for user-item pair (u, i), and requires the explanation generator to match the rating r̂u,i from the
recommender accordingly. We do not have any particular assumption about the sentiment regressor; and any
state-of-the-art regression models can be leveraged [117]. In this work, we employed an MLP on top of a
bidirectional RNN text encoder with inner attention for rating regression, and denote it as fR(x)→ rx. We
pre-train this regressor based on ground-truth {R,X} in the training set; and fix the learnt model thereafter.

To enforce sentiment alignment by the predicted ratings, we introduce a new loss to the training of our
explanation generator,

La =
∑

u∈U,i∈I
EP (x̂|u,i)

[
(r̂u,i − fR(x̂))2

]
(2.3.3)

where P (x̂|u, i) is the probability of generating x̂ for the given u and i. We should note this loss is not
necessarily restricted to the observed (u, i) pairs in the training set; instead, it could be any pairs of them,
since both the recommender and explanation generator can generate output on any given (u, i) pair. It thus
enables data augmentation for sentiment alignment.

However, because the word distribution is categorical, the generation of x̂ is not differentiable. It makes direct
optimization with respect to Eq Eq (2.3.3) infeasible. As a result, we appeal to Gumbel softmax [127] to obtain
approximated gradient of sampling from a categorical distribution. Briefly, Gumbel softmax reparameterizes
the randomness in sampling by a gumbel distribution and simulates a relaxed one-hot vector with softmax. As
we need a strict one-hot vector to represent each single word, we adopt the Straight-Through (ST) Gumbel
softmax estimator [127]. For each (u, i) pair in Eq Eq (2.3.3), we back-propagate the gradient from La to the
explanation generator to improve the quality of sentiment alignment on the whole sequence.

Unfortunately, this new sentiment alignment loss might also attract the generation process to produce unread-
able sequences, which however match the intended sentiment ratings. For example, the sentiment regressor
may give a very positive rating to an unnatural sentence “good good good good”, when the recommender also
happens to predict a high rating for this item. To improve the readability of our generated explanation, we
introduce a text discriminator fD, which learns to differentiate the authentic explanations from the generated
ones, to guide the explanation generation as well. Our design allows any text classifier. In this work, we used
an MLP binary classifier on top of a bidirectional RNN encoder for the purpose. We train the discriminator
using cross-entropy loss with the ground-truth explanations x as positive and the generated explanations x̂ as
negative,

LD = − 1

|X |
∑
x∈X

log fD(x)−
∑

u∈U,i∈I
EP (x̂|u,i)

[
log(1− fD(x̂))

]
Correspondingly, another objective of explanation generation is to fool the discriminator, i.e., the adversarial
loss,

Lc = −
∑

u∈U,i∈I
EP (x̂|u,i)

[
log fD(x̂)

]
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This loss also requires sampled explanations x̂ as the input, like the alignment loss defined in Eq Eq (2.3.3).
The same Gumbel softmax sampling technique is used for end-to-end training.

As we pointed out before, addressing the sentiment alignment issue in training alone is still insufficient,
we introduce a constraint-driven decoding strategy to enhance the alignment at the inference stage as well.
Similarly as in training, we use MSE to quantify the difference between the rating predicted from the
explanation text and that from the recommender. Because the sentiment regressor can only be applied to a
complete sequence, the search space is too large to enumerate by the generator. Hence, we treat generating
explanation x̂ at inference time as a sequence of decision making, where each action is to generate a word wt

at position t, given its already generated prefix as state. But we do not have feedback on the actions, until we
complete x̂; and the return for taking the series of actions can be measured by Q(x̂; r̂u,i) = [r̂u,i − fR(x̂)]2.
To find a policy that minimizes return, we need to estimate the value function under each state. This can be
effectively addressed by Monte Carlo Tree Search (MCTS) [128]. Basically, we estimate the value function
using our trained explanation generator for roll-out. When at position t for generating x̂u,i, we will sample n
complete sequences for every action w using the current prefix {w1, w2, . . . , wt−1}, following the distribution
specified by the explanation generator: X̂u,i,t(w) =

{
x̂k = MCTSu,i(w1, w2, . . . , wt−1, w)

}n

k=1
. Then the

value of taking action w at position t can be estimated by,

Q(w1, w2, . . . , wt−1, w; r̂u,i) =
1

|X̂u,i,t(w)|
∑

x̂k∈X̂u,i,t(w)

Q(x̂k, r̂u,i)

Based on the estimated values, we can take the action that minimizes the value. We integrate our MCTS with
top-k sampling, i.e., at each decoding position t, we sample k most likely words according to word distribution
yt and then use MCTS to select the one that minimizes the estimated value under given state.

A vanilla implementation of MCTS is expected to be expensive and slow in our problem, as it needs to
complete the sequence at each position from an RNN model for multiple times. Fortunately, our sentiment
gate design provides a short path for efficient sampling: as sentiment is only carried by a small number of
words, there is no need to conduct such expensive sampling procedure at every position. Instead, we only need
to perform MCTS at positions where sentiment is expressed. Hence, we set a threshold on the sentiment gate’s
value to decide when to perform MCTS. When the gate’s value is below the threshold, we will directly sample
from the top-k words of the explanation generator’s prediction.

End-to-End Model Training

Putting together the three components in our proposed explainable recommendation solution SAER, the overall
objective of our model training is formulated as:

J = min
Θ

(
λrL

r + λxL
x + λaL

a + λcL
c + λn||Θ||2

)
where Θ is the complete set of model parameters, and {λr, λx, λa, λc} are the corresponding coefficients to
control the relative importance of each component in model training. We also include an L2 regularization
for the model parameters Θ, weighted by its coefficient λn. The parameters are then effectively estimated
end-to-end with stochastic gradient optimizer of Adam [129].

We split the whole training process into five stages. First, estimate the sentiment regressor on {X ,R}, as
it does not depend on the other parts of our model. Second, pre-train the recommender on {U , I,R} till
convergent. This step is essential to learn a good sentiment encoder whose output will be used to inform the
explanation generator. Third, freeze the recommender and train the generator on {U , I,A,X} with negative
log-likelihood loss only. Fourth, after the separate training converges, start joint training of the recommender
and explanation generator. This step allows the model to align the sentiment representation from both modules.
At last, freeze the recommender, and turn on the sentiment regularizer to further improve the explanation
generator. At this stage, the explanation discriminator and generator are trained in turn.
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Table 2.7: Statistics of the processed datasets.

Dataset # Users # Items # Reviews # Attributes
Yelp 15,642 21,525 1,108,971 498

Ratebeer 3,895 6,993 1,073,762 333
Table 2.8: Evaluation of personalized recommendation in terms of rating prediction (RMSE, MAE) and item ranking (NDCG).

Yelp Ratebeer
Model RMSE MAE NDCG@5 NDCG@10 RMSE MAE NDCG@5 NDCG@10
NMF 1.1034 0.8164 0.5067 0.7344 2.2228 1.6609 0.6334 0.7766
SVD 1.0286 0.7975 0.5246 0.7519 2.2942 1.6474 0.6120 0.7593
NCF 1.0532 0.8251 0.5150 0.7420 2.0857 1.5002 0.6621 0.8004

NARRE 1.0275 0.8035 0.5230 0.7509 2.0714 1.4975 0.6641 0.8030
NRT 1.0254 0.8017 0.5262 0.7540 2.0743 1.4922 0.6620 0.8008

SAER 1.0190 0.7948 0.5278 0.7553 2.0628 1.4842 0.6648 0.8034

2.3.3 Experimental Evaluation
We quantitatively evaluate our model’s performance on personalized recommendation and explanation genera-
tion in two different domains: restaurant recommendation on Yelp reviews 6 and beer recommendation on
Ratebeer reviews [130]. Our model is compared against a set of state-of-the-art baselines on both offline data
and user studies, where encouraging improvements are obtained.

Experiment Setup

Data Pre-Processing. We use the Sentires toolkit [131] to extract attribute words from reviews and manually
filter out inappropriate ones based on domain knowledge. Although reviews are directly treated as explanations
in many previous studies [110, 113], a recent work [122] suggests a large portion of review content is only
about subjective emotion and thus does not qualify as explanations, e.g., “I love the food”. An informative
explanation should depict the details of items, e.g., their attributes, to help users perceive the exact reason
behind recommendations, e.g., “the fish is fresh”. Therefore, we restrict ourselves to sentences containing
attribute words as explanations in our experiments. On top of the crafted explanations, we select 20,000 most
frequent words and map others to unknown to build the vocabulary. Finally, as lots of users and items only
have very few reviews in the datasets, we apply recursive filtering as in [108] to refine the datasets and alleviate
this sparsity issue. The resulting statistics of the datasets are summarized in Table 2.7.

Baselines. To evaluate the personalized recommendation performance, we used the following baselines:

- NMF: Non-negative Matrix Factorization [132]. A widely used latent factor model, which decomposes
the rating matrix into lower dimensional matrices with non-negative factors.

- SVD: Singular Value Decomposition [133]. It utilizes rating matrix as input for learning user and item
representations.

- NCF: Neural Collaborative Filtering [27]. It is a modified matrix factorization solution which adopts
neural networks to model the nonlinear vector operations.

We also include two explainable recommendation baselines that can output natural language sentences as
explanations for comparing both the recommendation and explanation quality:

- NARRE: Neural Attentional Regression model with Review-level Explanations [110]. It learns the
usefulness of the existing reviews through attention, and incorporates the review to enrich user and item
representations for rating prediction. To fit in our evaluation, we select sentences from its most attentive
reviews as explanations.

- NRT: Neural Rating and Tips Generation [37]. A multi-task learning solution for rating regression
and content generation. It uses the predicted recommendation score to create initial states for content
generation.

6https://www.yelp.com/dataset
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Table 2.9: BLEU scores of generated explanations.

Dataset Model BLEU-1 BLEU-2 BLEU-4
NARRE 20.46 5.72 2.12

NRT 26.25 8.84 2.97
Yelp SAER (topk) 27.43 9.53 3.18

SAER (reg + topk) 28.69 10.29 3.37
SAER 28.88 10.44 3.44

NARRE 29.78 9.47 3.27
NRT 42.16 17.54 5.63

Ratebeer SAER (topk) 43.92 19.60 6.56
SAER (reg + topk) 45.69 21.09 7.02

SAER 46.01 21.60 7.32

Table 2.10: Performance of attribute prediction in generated explanations.

Yelp Ratebeer
Model Precision Recall Precision Recall

NARRE 0.1415 0.1906 0.2176 0.2245
NRT 0.1791 0.1997 0.3443 0.1720

SAER (topk) 0.2024 0.2297 0.3523 0.2554
SAER (reg + topk) 0.1992 0.2319 0.3549 0.2614

SAER 0.2115 0.2391 0.3702 0.2677

Quality of Personalized Recommendations

We evaluate the recommendation quality both in terms of rating prediction (by RMSE and MAE) and item
ranking performance (by NDCG@{5,10} [134]). The results are shown in Table 2.8. SAER demonstrates
better performance in all metrics on both datasets. The performance difference among NCF, NRT and SAER
is worth noting. Although their rating prediction modules all use MLP, NRT and SAER additionally leverage
the content information for improved recommendation quality. Improvements from SAER against NARRE
and NRT demonstrate that our sentiment vector and corresponding soft gate design better distill and exploit
review data for joint learning.

Quality of Generated Explanations

We evaluate the quality of our generated explanations from three perspectives: text quality, attribute personal-
ization, and sentiment alignment. We introduce two variants of our model to better analyze the effects of our
sentiment regularizer and constrained decoding strategy. (1) SAER (topk), it removes sentiment regularization
and decodes by top-k sampling, such that sentiment alignment is only introduced by the soft gates, without the
alignment loss, nor the constrained decoding; (2) SAER (reg + topk), it uses sentiment regularization (i.e., the
alignment loss) and decodes by top-k sampling, such that sentiment alignment is only enforced at training
time.

Quality of Generated Text. We measure the quality of generated explanation text with BLEU [135], and report
the results in Table 2.9. The extraction-based NARRE performed clearly worse than other generation-based
models. This is because the synthesized natural language explanations are not limited to the existing review
content and is more flexible to customize for a particular user-item pair. NRT uses the predicted ratings in the
initial state for content generation, in comparison to the sentiment vectors used in SAER. The performance
gap between NRT and SAER (topk) suggests that our sentiment vectors are more expressive and the two soft
gates can better guide explanation generation throughout the process, than only affecting RNN’s initial state.
The additional gain brought by the sentiment regularizer in SAER (reg + topk) and constrained decoding in
SAER highlights the benefits of sentiment alignment in both training and inference time.

Attribute Personalization. An informative explanation should cover the users’ most concerned aspects. We
evaluate such performance in terms of attribute personalization. For each user-item pair, we evaluate precision
and recall of attribute word in the algorithms’ explanations against ground-truth explanations. The results in
Table 2.10 show the improvement brought by our attribute gate, which is proved to be effective in predicting
users’ most concerned attributes.
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Table 2.11: Sentiment alignment evaluation of decoded explanations by RMSE. PD is the RMSE between explanation rating and predicted
rating, and GT is the RMSE between explanation rating and ground-truth rating.

Yelp Ratebeer
PD GT PD GT

NARRE 1.0932 1.4950 2.0996 2.9641
NRT 0.6676 1.2086 2.3302 3.1304

SAER (topk) 0.6908 1.2216 2.1727 3.0026
SAER (reg + topk) 0.6242 1.1849 1.6985 2.6769

SAER 0.5505 1.1503 1.5911 2.6042

Sentiment Alignment Between Ratings and Explanations. Offline evaluation of sentiment alignment is
not easy, since it should be evaluated by the end users who receive the recommendation and explanation. In
addition to depending on user studies to evaluate this aspect (reported in the next section), we also use our
pre-trained sentiment regressor for an approximated offline evaluation. For a generated explanation, we infer
its carried sentiment by our sentiment regressor. We then compute the RMSE between the inferred rating
from explanation and that predicted by the recommendation module (marked as PD). This measures sentiment
difference between the recommendation and corresponding explanation. We also compare the inferred rating
against the ground-truth rating (marked as GT) as a reference. The results are presented in Table 2.11. Without
our sentiment regularizer, SAER (topk) can already significantly outperform the baselines on Yelp, which
demonstrates the utility of our two gated network design for sentiment alignment. And the alignment loss
and constrained decoding further push SAER’s explanations closer to its recommendations. Compared to
the ground-truth rating, sentiment carried by the explanation is closer to the recommender’s prediction. We
hypothesize that this can be caused by the difficulty to predict ground-truth rating: as reported in Table 2.8, the
accuracy of the recommender’s rating prediction is at around the same level.

2.4 Comparative Explanation Generation for Recommendation
When being presented with a list of recommendations, typically sorted in a descending order, a user needs
to make a choice. In other words, the provided explanations should help users compare the recommended
items. Existing explainable recommendation solutions are not optimized to help users make such comparative
decisions for two major reasons. First, the explanation of a recommended item is often independently
generated without considering other items in the recommendation list. Second, the popularly adopted neural
text generation techniques are known to be flawed of its generic content output [136, 137]. Particularly,
techniques like maximum likelihood training and sequence greedy decoding lead to short and repetitive
sentences composed of globally frequent words [138]. Such generic content cannot fulfill the need to
differentiate the recommended items.

In this work, we tackle the problem of comparative explanation generation to help users understand the
comparisons between the recommended items. We focus on explaining how one item is compared with
another; then by using a commonly shared set of items as references (e.g., items the user has reviewed before),
the comparisons among the recommended items emerge. Our solution is designed to generically work on top
of other existing recommender systems. We do not have any assumptions about how the recommendation
algorithm ranks items (e.g., collaborative filtering [139] or content-based [140]), but only require it to provide
a ranking score for each item to our model (i.e., ordinal ranking) which reflects a user’s preference over the
recommended item.

To be specific, we design an extract-and-refine text generation architecture [138, 141] to explain the ranked
items one at a time to the user, conditioned on their recommendation scores and associated reviews. We
refer to the item to be explained in the ranked list as the target item, and user we are explaining to as the
target user. First, the model extracts one sentence from the existing review sentences about the target item
as a prototype, with a goal to maximize the likelihood of fitting the comparisons against the reviews written
by the target user for other reference items. Then we refine the extracted prototype through a generative
model to further polish the content for the target user. In this two stage procedure, the extraction module
exploits the content already provided about the target item to ensure the relevance of generated explanations
(e.g., avoid mentioning features that do not exist in the target item); and the refinement module further
improve the explanation (e.g., informativeness and diversity of content) beyond the limitation of the existing
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content. We design a new explanation quality metric based on BLEU to guide the end-to-end training of the
two modules, with a particular focus to penalize short and generic content in generated explanations. We
compared the proposed solution with a rich set of state-of-the-art baselines for explanation generation on two
large-scale recommendation datasets. Besides, we also conducted extensive user studies to have the generated
explanations evaluated by real users. Positive results obtained on both offline and online experiments suggested
the effectiveness of comparative explanations in assisting users to better understand the recommendations and
make more informed choices.

2.4.1 Related Work
This work is closely related to two studies, DualPC [116] and SAER [38], which focus on strengthening the
relation between recommendations and explanations. Specifically, DualPC introduces duality regularization
based on the joint probability of explanations and recommendations to improve the correlation between
recommendations and generated explanations. SAER introduces the idea of sentiment alignment in explanation
generation. However, both of them operate in a pointwise fashion, i.e., independent explanation generation
across items. Our solution focuses on explaining the comparisons between items. We should also emphasize
our solution is to explain the comparison among a set of recommended items, rather than to find comparable
items [142, 143].

2.4.2 Comparative Explanation Generation
Item recommendation in essence is a ranking problem: estimate a recommendation score for each item
under a given user and rank the items accordingly, such that the utility of the recommendations can be
maximized [144,145]. Instead of explaining how the recommendation scores are obtained, our work emphasizes
on explaining how the comparisons between the ranked items are derived.

To learn the explanation model, we assume an existing corpus of item reviews from the intended application
domain (e.g., hotel reviews). Each review is uniquely associated with a user u and an item c, and a user-
provided rating ruc suggesting his/her opinion towards the item. We group the reviews associated with user
u to construct his/her profile Ωu = {(xu

1 , r
u
1 ), (x

u
2 , r

u
2 ), ..., (x

u
m, rum)}, where xu

i is the i-th review sentence
extracted from user u’s reviews and rui is the corresponding opinion rating. rui can be easily obtained when
the detailed aspect ratings are available; otherwise off-the-shelf sentiment analysis methods can be used for
the purpose (interested users can refer to [12, 108] for more details). As regards cold-start for users without
reviews, generic profiles can be used instead which sample reviews from similar users clustered by other
non-review-related features, such as rating history. We create the item profile as Ψc = {xc

1, x
c
2, ..., x

c
n}, where

xc
j is the j-th review sentence extracted from item c’s existing reviews. Unlike the user profile, the item

profile does not include ratings. This is because the ratings from different users are not directly comparable,
as individuals understand or use the numerical ratings differently. Our solution is agnostic to the number of
entries in user profile Ωu and item profile Ψc in each user and item.

We impose a generative process for a tuple (x, ruc ) from user u about item c conditioned on Ψc and Ωu. We
assume when user u is reviewing item c, he/she will first select an existing sentence from Ψc that is mostly
related to the aspect he/she wants to cover about the item. Intuitively, this can be understood as the user
will first browse existing reviews of the item to understand how the other users evaluated this item. Then
he/she will rewrite this selected sentence to reflect his/her intended opinion and own writing style. This can
be considered as a set to sequence generation problem. For our purpose of explanation generation, we only
concern the generation of opinionated text x. Hence, we take opinion rating ruc as input, which leads us to the
following formulation,

P (x|u, c, ruc ) =
∑

xc
j∈Ψc

Pref (x|xc
j , r

u
c ,Ωu)Pext(x

c
j |ruc ,Ωu) (2.4.1)

where Pext(x
c
j |ruc ,Ωu) specifies the probability that xc

j from item profile Ψc will be selected by user u, and
Pref (x|xc

j , r
u
c ,Ωu) specifies the probability that user u will rewrite xc

j into x. We name the resulting model
Comparative Explainer, or CompExp in short.
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In Eq Eq (2.4.1), Pext(x
c
j |ruc ,Ωu) is essential to capture the comparative textual patterns embedded in user

u’s historical opinionated text content. To understand this, we can simply rewrite its condition part: define
∆rui = ruc − rui , we have (ruc ,Ωu) = {(xu

i ,∆rui )}mi=1; hence, Pext(x
c
j |ruc ,Ωu) characterizes whether the

sentence xc
j about item c is qualified to characterize the desired opinion difference conditioned on user u’s

historical content Ωu and target rating ruc . For example, a negative ∆rui suggests the opinion conveyed in xc
j is

expected to be less positive than that in xu
i . On a similar note, Pref (x|xc

j , r
u
c ,Ωu) quantifies if x is a good

rewriting of xc
j to satisfy the desired opinion rating ruc for item c by user u.

One can parameterize Pext(x
c
j |ruc ,Ωu) and Pref (x|xc

j , r
u
c ,Ωu) and estimate the corresponding parameters

based on the maximum likelihood principle over observations in Ωu. However, data likelihood alone is
insufficient to generate high-quality explanations, as we should also emphasize on fluency, brevity, and
diversity of the generated explanations. To realize this generalized objective, assume a metric π(x|u, c) that
measures the quality of generated explanation x for user u about item c, the training objective of CompExp is
set to maximize the expected quality of its generated explanations under π(x|u, c),

J = Ex∼P (x|u,c,ruc )[π(x|u, c)] (2.4.2)

x̂c
j

In this work, we present a customized BLUE score specifically for the comparative explanation generation
problem to penalize short and generic content.

Next, we dive into the detailed design of CompExp in Section 2.4.2, then present our metric π(x|u, c) for
parameter estimation in Section 2.4.2 and 2.4.2, and finally illustrate how to estimate each component in
CompExp end-to-end in Section 2.4.2.

Extract-and-Refine Architecture

Our proposed model architecture for CompExp is shown in Figure 2.8, which in a nutshell is a fully connected
hierarchical neural network. The explanations for a user item pair (u, c) is generated via an extract-and-refine
process, formally described in Eq Eq (2.4.1). Comparing to existing pure generation-based explanation
methods [37, 38, 116], one added benefit of our solution is to ensure faithfulness of the generated explanations:
it avoids mentioning attributes that are not relevant to the target item. To address the limitations in directly
using existing content, e.g., unaligned content style or sentiment polarity, the refinement step further rewrites
the extracted sentence to make its content better fit for the purpose of comparative explanation, e.g., improve
the quality defined by π(x|u, c).

We refer to Pext(x
c
j |ruc ,Ωu) as the extractor and Pref (x|xc

j , r
u
c ,Ωu) as the refiner. Next, we will zoom into

each component to discuss its design principle and technical details.

Extractor The extractor’s goal is to select a prototype sentence xc
j from item c’s profile Ψc for a given opinion

rating ruc that best satisfies the comparativeness suggested by the user profile Ωu. We refer to xc
j ∈ Ψc as

an extraction candidate and xu
i ∈ Ωu as a reference. The extractor adopts a bidirectional GRU [123] as the

universal text encoder to convert the extraction candidates and references into continuous embedding vectors.
Since the pairwise comparison specified by ∆rui is a scalar, we use a one-hot vector to encode it when the
ratings are discrete, otherwise we use a non-linear multi-layer perceptron (MLP) as the rating encoder.

Intuitively, in the one dimensional rating space, we can easily recover the intended sentence’s rating ruc from
the rating of the reference sentence rui and required rating difference ∆rui . As an analogy, we consider the
rating difference vector as the transform direction that suggests the ideal comparative explanation in the latent
text space from a reference sentence xu

i , denoted as f(xu
i ,∆rui )→ hi. As a result, hi is the text embedding

vector for the ideal comparative explanation. The extractor implements such a transformation using an MLP
taking the concatenation of the text embedding and rating difference embedding vectors as input.

Given the desired comparative explanation hi, the extraction candidates can be evaluated by their similarities
towards hi. This specifies a directional distribution Q(x;hi) centered on hi in the latent text embedding
space. Since cosine is a commonly used similarity metric for text embeddings, we formulate Q(x;hi) as a von
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Figure 2.8: The extract-and-refine model architecture for CompExp. The extractor extracts a candidate sentence from item c’s profile
as a prototype for explanation generation; and the refiner rewrites this sentence to optimize the desired quality metric for comparative
explanation.

Mises-Fisher distribution [141] over all the extraction candidates,

Q(x;hi) ∝ fvMF (x;hi, κ) = Cp(κ)e
κ cos(x,hi)

where fvMF (·) is the probability density function, κ is the concentration parameter, and Cp(κ) is a normaliza-
tion function about k. Because each reference sentence xu

i will suggest a different directional distribution, we
extend the von Mises-Fisher distribution to cover multiple centriods and define Pext(x

c
j |ruc ,Ωu) as follows,

Pext(x
c
j |ruc ,Ωu) ∝

∑
xu
i ∈Ωu

fvMF

(
xc
j ; f(x

u
i ,∆rui ), κ

)
(2.4.3)

Intuitively, in Eq Eq (2.4.3), each ideal embedding hi suggests which extraction candidate better fits the
comparativeness embedded in Ωu. The summation over Ωu aggregates each reference sentence’s evaluation
on candidate sentence xc

j . κ is kept as a hyper-parameter which shapes the extraction probability distribution:
a larger κ value leads to a skewer distribution. We can use it to control the exploration of the extraction
candidates during the policy gradient based model training, which will be introduced in Section 2.4.2.

Refiner. The objective of the refiner is to rewrite the extracted prototype to further improve the quality metric
π(x|u, c). As we argued before, a better explanation should be more supportive to the pairwise comparison
required by the user profile. Therefore, assuming the refiner successfully turns the prototype xc

j into a better
framed sentence x̂c

j about the item c for user u, then when we give x̂c
j back to the extractor together with xc

j ,
the extractor should prefer the revised version over the original one. Otherwise, we should keep refining x̂c

j

until the extractor believes it can no longer be improved. Hence, the refiner needs to find a direction such
that Pext(x

c
j |ruc ,Ωu) < Pext(x̂

c
j |ruc ,Ωu), which is exactly suggested by the gradient of Pext(x

c
j |ruc ,Ωu) with

respect to xc
j , i.e., the fastest direction for xc

j to increase the value of Pext(x
c
j |ruc ,Ωu). As a result, our refiner

simply pushes the text embedding vector of xc
j alone this gradient direction:

zj = ∇xc
j
Pext(x

c
j |ruc ,Ωu)

∝
m∑
i

eκ cos(xc
j ,hi)

[ hi

|xc
j ||hi|

− cos(xc
j , hi)

xc
j

|xc
j |2

]
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Since the refinement step should only polish the extracted prototype instead of dramatically changing it, we
normalize the gradient to a unit vector and restrict the step size to one in all cases, i.e., x̂c

j = xc
j + zj/|zj |. At

last, we include a single-layer GRU with attention [146] as the text decoder to convert the refined text vector
x̂c
j to the final explanation sentence x.

Connecting these two modules together, CompExp generates explanations for a ranked list of recommended
items one at a time. To understand why the generated explanations carry comparativeness, we can consider the
user’s profile Ωu as an anchor. Because all the explanations are generated against this anchor, the comparisons
among the explanations emerge.

Explanation Quality Metric

To train CompExp under Eq Eq (2.4.2), we need to define the explanation quality metric π(x|u, c). There
is no commonly agreed offline metric for explanation quality in the community yet. And obtaining real
user feedback is not feasible for offline model training. Currently, most of explainable recommendation
solutions [37, 38, 116] adopt metrics measuring the overlapping content between the generated explanations
and user reviews, such as BLEU [135].

However, the BLEU metric, which is initially designed for machine translation, is problematic in explanation
evaluation for at least two important reasons. First, it is biased towards shorter sentences. As a precision-based
metric, BLEU overcomes the short-length issue by introducing the brevity penalty, which down-scales the
precision when the generated length is smaller than its “best match length” [135]. The “best match length”
design is reasonable in machine translation, because all reference sentences are valid translations covering
the information contained in the source language, regardless of their length differences. However, when
using review sentences as proxies of explanations, the reference sentences from one review can describe
totally different aspects of the same item and vary significantly in length and information contained. Since
short-length generation benefits precision (less prone to erroneous word choices), BLEU favors explanations
exploiting the short references as the “best match”. As a result, it pushes the models to generate explanations
that are generally much shorter than the average sentence length in a review, and hence fails to explain the
item in details. Second, though precision-based, BLEU is incapable to differentiate the importance of different
words in a reference sentence. Words are valued equally in machine translation, but their impact in explanations
varies significantly to users. BLEU’s indiscrimination to words unavoidably favors the explanations with more
generic content due to their higher chance of appearance. We later demonstrate how the BLEU metric led to
both short and generic explanations in our experiments.

To design a more appropriate metric to evaluate the explanation quality and better guide our model training, we
propose IDF-BLEU, i.e., Inverse Document Frequency (IDF) enhanced BLEU. It introduces three changes on
top of BLEU to balance the important factors in explanations: length, content overlapping, and content rarity.

First, to penalize an overly short generation, we replace the “best match length” in the brevity factor with the
average length of sentences from all reviews,

BPlen = emin(1− lr
lx

,0)

where lr and lx is the average length of references and the length of the explanation respectively. Second, to
differentiate the importance of different words, we introduce IDF to measure the value of n-grams and use it to
reweigh the precision in BLEU. We compute the IDF of word g by the number of sentences where it occurs,

IDF (g) = log
S

sg
+ 1

where S is the total number of review sentences in the training corpus and sg is the number of sentences
containing word g. We approximate the IDF of an n-gram by the largest IDF of its constituent words. Then the
clipped n-gram precision in BLEU is modified as

pn =

∑
gn∈x IDF (gn) · Countclip(g

n)∑
gn∈x IDF (gn) · Count(gn)

(2.4.4)
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where gn represents the n-gram and Countclip(g
n) is the BLEU’s operation to calculate the count of gn

in sentence x while being clipped by the corresponding maximum count in the references. Through the
reweighing, correctly predicting an informative word becomes more rewarding than a generic word. However,
it alone cannot evaluate content rarity, since the precision-based metric cannot punish sentences for not
including rare words. Therefore, at last, inspired by the length brevity factor in original BLEU, we introduce a
similar IDF brevity factor to punish sentences lacking words with high IDF,

BPIDF = emin(1− dr
dx

,0)

where dx is the average IDF per word dx =
∑

g∈x IDF (g)/lx and dr is corresponding average value in
references. Then combining them forms our IDF-BLEU,

IDF −BLEU = BPlen ·BPIDF · E
( N∑

n=1

wn log pn

)
(2.4.5)

where wn is BLEU’s parameter used as the weight of the n-gram precision. We use the proposed IDF-BLEU
as the quality metric π(x|u, c) for CompExp training.

Hierarchical Rewards

CompExp is a fully connected neural network which can be trained end-to-end with the gradient derived
from Eq Eq (2.4.2). However, blind end-to-end training faces the risk that the model violates the purpose of
our designed extract-and-refine procedure, as the model has a great degree of freedom to arbitrarily push the
prototype xc

j in the continuous vector space to optimize Eq Eq (2.4.2). For example, it could disregard the
extracted prototype and generate totally irrelevant content to the target item c in the refiner.

To enforce the extract-and-refine workflow, we introduce additional intrinsic reward [147] for each layer
respectively to regularize their behaviours. Specifically, as IDF-BLEU is used to measure the explanation
quality in Eq Eq (2.4.2), we directly use the extracted sentence’s IDF-BLEU to reward the extractor, i.e.,
introduce πext(x

c
j |u, c) = IDF −BLEU(xc

j). For the refiner, we discourage it in pushing the final generation
too far away from the extracted one. Inspired by the clipped precision in Eq Eq (2.4.4), we propose a clipped
recall to measure how many words from the selected sentence xc

j are still covered in the refined sentence,

an =

∑
gn∈xc

j
IDF (gn) ·min[Countclip(g

n), Countx(g
n)]∑

gn∈xc
j
IDF (gn) · Countclip(gn)

(2.4.6)

where Countclip(g
n) is the clipped count of n-gram gn towards the references like in BLEU, and Countx(g

n)
is the count of gn in the refined explanation x. In other words, the denominator is the prototype’s overlap
with the target references and the numerator is the overlap among the prototype, references, and the final
explanation. We did not use classical recall definition because it would reward the refiner to retain the
entire prototype. We only encourage the refiner to keep the n-grams that are actually presented in the
references. We compute the refiner’s intrinsic reward by aggregating the clipped recall over different n-grams
πref (x, x

c
j) = exp

(∑N
n=1 wn log an

)
. We did not provide this reward to the extractor, because it biases the

extractor to short and generic candidates which are easier for the refiner to cover.

With the hierarchical intrinsic rewards introduced for each component, we can optimize Eq Eq (2.4.2) by
policy gradient as

∇ΘJ ≈[λ1π(x|u, c) + λ2πref (x, x
c
j)]∇Θ logPref (x|xc

j , r
u
c ,Ωu)

+ [λ3π(x|u, c) + λ4πext(x
c
j)]∇Θ logPext(x

c
j |ruc ,Ωu)

where λ1 to λ4 are coefficients to adjust the importance of each reward, and Θ stands for the model parameters
in CompExp.
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Table 2.12: Summary of the processed datasets.

Dataset # Users # Items # Reviews Rating Range
RateBeer 6,566 19,876 2,236,278 0 - 20

TripAdvisor 4,954 4,493 287,879 1 - 5

Model Training

The whole model training process can be organized into two steps: pre-training and fine-tuning. The pre-
training step aims to bootstrap the extractor and refiner independently. To prepare the extractor to recognize
the comparative relationships among sentences, we treat every observed review sentence as the extraction
target and train the extractor to maximize its negative log-likelihood with regard to the corresponding user and
item profiles.

It is important to pre-train the refiner as a generative language model, because it would be very inefficient
to learn all the natural language model parameters only through the end-to-end training. However, we do
not have any paired sentences to pre-train the refiner. We borrowed the method introduced in [138, 141] to
manually craft such pairs. Specifically, for every sentence, we compute its cosine similarity against all other
sentences in the same item profile in the latent embedding space, and select the most similar one to pair with.
Then we use this dataset to pre-train the refiner with negative log-likelihood loss.

In the fine-tuning stage, we concatenate the pre-trained layers and conduct the end-to-end training with policy
gradient. To make the policy gradient training more resilient to variance and converge faster, it is important to
have a baseline to update the model with reward advantages instead of using the rewards directly. We apply
Monte Carlo sampling in both extractor and refiner to have multiple explanations, and use their mean rewards
as the baseline.

2.4.3 Experiments
We demonstrate empirically that CompExp can generate improved explanations compared to state-of-the-art
explainable recommendation algorithms. We conduct experiments on two different recommendation scenarios:
RateBeer reviews with single-ratings [130] and TripAdvisor reviews with multi-aspect ratings.

Experiment Setup. As our solution only focuses on explanation generation, it can be applied to any
recommendation algorithm of choice. In our experiments, we directly use the ground-truth review ratings
as the recommendation score to factor out any deviation or noise introduced by specific recommendation
algorithms. For completeness, we also empirically studied the impact from input ratings if switched to a real
recommendation algorithm’s predictions.

Data Pre-Processing. In the RateBeer dataset, we segment each review into sentences, and label them with
the overall ratings from their original reviews. In the TripAdvisor dataset, there are separate ratings for five
aspects including service, room, location, value and cleanliness. Therefore, each TripAdvisor review is
expected to be a mix of a user’s opinions on these different aspects about the item. We segment sentences in a
TripAdvisor review to different aspects using the boot-strapping method from and assign resulting sentences
the corresponding aspect ratings. These two datasets evaluate CompExp under different scenarios: overall
opinion vs., aspect-specific opinion. We also adopt the recursive filtering [108] to alleviate the data sparsity.
The statistics of the processed datasets are summarized in Table 2.12.

Baselines We compared with three explainable recommendation baselines that generate natural language
explanations, covering both extraction-based and generation-based solutions.

- NARRE: Neural Attentional Regression model with Review-level Explanations [110]. It is an extraction-
based solution. It learns the usefulness of the existing reviews through attention and selects the most attentive
reviews as the explanation.

- NRT: Neural Rating and Tips Generation [37]. It is a generation-based solution. It models rating regression
and content generation as a multi-task learning problem with shared latent space. Content is generated from
its neural language model component.
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Table 2.13: Explanation quality evaluated under IDF-BLEU, BLEU, average sentence length, average IDF per word, rep/l, seq_rep_2,
feature precision and recall on RateBeer and TripAdvisor datasets. Bold numbers are the best of the corresponding metrics with p-value <
0.05.

Model IDF-BLEU BLEU Avg Length IDF/word Feature
1 2 4 1 2 4 precision recall

RateBeer
Human / / / / / / 11.13 2.45 / /
NARRE 17.00 5.18 1.29 30.22 9.90 3.58 11.50 2.43 0.2217 0.0722

NRT 30.38 16.30 5.80 48.22 25.28 10.03 10.43 2.09 0.4563 0.1320
SAER 31.79 16.02 5.71 49.08 26.87 10.59 10.71 1.93 0.4751 0.1347

CompExp 32.36 19.55 6.95 49.14 29.63 11.41 10.52 2.16 0.4796 0.1383
TripAdvisor

Human / / / / / / 12.85 2.45 / /
NARRE 11.97 3.43 1.59 20.45 6.23 3.38 13.17 2.41 0.1733 0.1258

NRT 16.19 7.50 2.48 30.62 13.07 5.11 10.22 1.81 0.2939 0.1866
SAER 16.37 7.65 2.35 31.20 13.51 4.94 10.08 1.71 0.3178 0.1961

CompExp 21.35 8.01 2.16 31.70 12.23 4.16 13.35 2.12 0.3155 0.1930

- SAER: Sentiment Aligned Explainable Recommendation [38]. This is another generation-based solution
using multi-task learning to model rating regression and explanation generation. But it focuses specifically
on the sentiment alignment between the predicted rating and generated explanation.

2.4.4 Quality of Generated Explanations
To comprehensively study the quality of generated explanations, we employ different types of performance
metrics, including IDF-BLEU-{1, 2, 4}, BLEU-{1, 2, 4}, average sentence length, average IDF per word, and
feature precision & recall. Features are items’ representative attributes that users usually care the most [38,108].
The precision and recall measure if features mentioned in the generated explanations also appear in the user’s
ground-truth review. We also include ground-truth review sentences as a reference baseline (labeled as
“Human”) to study the differences between human and algorithm generated content. The results are reported in
Table 2.13.

Advantages of CompExp. There is clear performance gap between the extraction-based solutions (NARRE)
and generation-based ones (NRT, SAER, CompExp). While generation-based solutions largely outperformed
extraction-based ones in content overlapping with ground-truth (IDF-BLEU, BLEU, feature precision and
recall), they were generally very different from human writings in terms of sentence length, use of rare words
(IDF/word). The extraction-based solutions use content provided by human, but they are limited to the existing
content. The generation-based solutions customize content for each recommendation, but suffer from common
flaws of generative models, e.g., short, dull, and repetitive. Among all the models, CompExp achieved the
best balance among all metrics. It significantly exceeded all baselines in terms of IDF-BLEU-{1,2}. Its
feature precision and recall are competitive with SAER while leading the rest, though SAER enjoys additional
advantage from predefined feature pool of each item as input. As a generation-based model, CompExp largely
improved the average length, word rarity, and reduced repetition over NRT and SAER.

Comparativeness. To verify if the generated explanations by CompExp capture the comparative ranking
of items, we study its its output’s sensitivity to the input recommendation ratings. As a starting point, the
ground-truth explanation perfectly aligns with the recommendation ranking, which is derived from the ground-
truth rating. If the generated explanation carries the same ranking of item, the generated content should be
close to the ground-truth content. As a result, if we manipulate the input recommendation scores of items, the
generated explanations should start to deviate. The further we push the rankings apart, the further the generated
explanation should be pushed away from the ground-truth explanation. We use IDF-BLEU and BLEU to
measure the content similarity and perturb the recommendation ratings with Gaussian noise. As shown in
Figure 2.9a, all IDF-BLEU and BLEU metrics keep decreasing with the increasing amount of perturbation.
In other words, even if it is for the same user and same set of items, with different recommendation scores
assigned, CompExp would generate different explanations to explain their relative ranking.
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Figure 2.9: (a) Impact of noise in recommendation ratings on BLEU and IDF-BLEU. (b) Change in BLEU and IDF-BLEU with
algorithm’s predicted ratings.

Predicted Ratings. Motivated by the findings in Figure 2.9a, we further study how CompExp is influenced
by a real recommendation algorithm’s predicted ratings. We employed the neural collaborative filtering [27]
and used its predicted ratings in CompExp’s training and testing. The result is plotted in Figure 2.9b.
Compared with previous randomly perturbed ratings, the predicted ratings bring very limited changes to
the explanations. This confirms our experiment results based on ground-truth ratings can fairly represent
CompExp’s performance in real-world usage scenarios.

2.4.5 User Study
We have three research questions to answer in user study: 1) does users’ judgement toward explanation quality
aligns more with IDF-BLEU than BLEU; 2) do users find our comparative explanations more helpful than the
baselines’; and 3) can users better perceive the comparative ranking from our explanations than the baselines’.
To answer these three research questions, we design two user study tasks based on RateBeer dataset using
Amazon Mechanical Turk.

The first task studies the first two research questions together. Specifically, we shuffle explanations from
different models about the same recommended item and ask the participants to compare them, and then select
the most helpful ones. To help participants evaluate the explanation quality, we include the original user review
as the item description, towards which they can judge if the explanation are accurate or informative. For each
recommended item, we ask participants to answer the following question after reading its description and
candidate explanations:

“Which of the following explanations best describe the characteristics of the given beer and help you the
most to understand why you should pay attention to the recommendation?”

In this experiment, we collected 660 user responses.

The results are presented in Table 2.14 and 2.15. In Table 2.14, we used Cohen’s kappa coefficient to compare
IDF-BLEU and BLEU’s agreement with users’ responses. For each test case, we pair explanations that the
participants chose as helpful with the rest to form a set of explanation pairs. Then we use IDF-BLEU-{1,2,4}
and BLEU-{1,2,4} to identify the helpful one in each pair. The kappa coefficient shows that IDF-BLEU
aligns significantly better with users’ judgment in all three subcategories under paired t-test. Table 2.15 shows
the helpfulness vote on each model and the paired t-test results of CompExp against other baselines. The
helpfulness vote on CompExp is significantly higher than others, which suggests strong user preference over
its generated explanations.

The second task addresses the last research question, i.e., if a user is able to perceive the ranking of recom-
mended items from the explanations. In this task, we randomly paired items of different ratings and asked
participants to identify which item is better by reading the provided explanations. We then evaluated the
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Table 2.14: Cohen’s kappa coefficient of explanation quality between the human judgements and BLEU & IDF-BLEU.

1 2 4

κ
BLEU 0.2936 0.3114 0.2814

IDF-BLEU 0.3452 0.3396 0.3152
Paired t-test 0.0001 0.0094 0.0071

Table 2.15: Up-vote rate of explanations’ helpfulness.

CompExp SAER NRT NARRE
Up-vote Rate 43.79% 37.27% 35.61% 30.61%
Paired t-test / 0.0182 0.009 0

agreement rate between participants’ choices and the actual ranking. In particular, given the explanations of a
model, the participants were required to answer the following question:

“After reading the explanations for recommended items, which item would you like to choose? You are
expected to judge the quality of the items based on the provided explanations.”

We chose SAER and NRT as baselines. Besides, we also include the ground-truth sentences from the actual
user reviews as a reference. We collected 200 responses for each model.

Table 2.16 reports the agreement rates between the actual ranking and the ranking perceived by the participants.
CompExp’s agreement rate is slightly higher than NRT and SAER, but it is far below the Ground-Truth. The
Ground-Truth’s high agreement rate quantitatively confirms that the original user provided review sentences are
highly comparative. This observation supports our choice of training the comparative explanation generation
from paired user review sentences. And it also suggests there is still a performance gap in comparativeness
for learning-based solutions to bridge. And an improved objective for optimization, e.g., include quantified
pairwise comparativeness, might be a promising direction.

2.5 Conclusion
This chapter is dedicated to enhancing the transparency of PS by providing personalized, intuitive textual
explanations that are tailored to users’ preferences. Our objective is to make these explanations informative,
faithful, readable, and comparable. To achieve this, we present several techniques. First, we introduce
MTER, a method that mines the rich opinionated content in user reviews to generate informative, opinionated
explanations. To improve the fidelity of explanations, we propose FacT, which integrates a rule-based decision
tree into latent factor models to learn explainable user and item representations. In addition to template-
based explanation generation, we also explore natural language explanation generation, which offers greater
expressiveness and diversity. To ensure the sentiment of the explanations aligns with the recommendation
results, we develop SAER. Then we also introduce CompExp, a method to make explanations more comparable
to better assist users’ decision-making process. Our extensive experiments demonstrate the effectiveness of our
methods, and serious user studies confirm the practical value of the explanations generated by our approaches.

We primarily focused on the generation of explanations with the goal of helping users make more informed-
decisions and improving their trust in the system. However, there are many other aspects need to be considered
in serving explanations to improve PS’s transparency. Firstly, the explanations are personalized towards
the target users/items, fairness issue make arise if the explanations associate to the sensitive attributes of
users/items being served. Second, the evaluation of explanations is a fundamental problem, since it is hard
to measure how users will react to the explanations unless we can do online experiments or simulated user
study, which can be quite expensive. Third, instead of generating static explanations, dynamic explanations
that interact with user behaviors can also be an interesting avenue to explore. This can provide users with
real-time feedback and help them better understand how the system is making recommendations. It can also
help improve the system’s performance by learning from users’ behaviors and preferences. Overall, there are
many different aspects to consider when it comes to serving explanations to improve transparency in PS. It’s
important to continue exploring different techniques and approaches to ensure that explanations are accurate,
trustworthy, and beneficial to users.
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Table 2.16: Agreement rate between actual ranking and the users perceived ranking of paired items based on the provided explanations.

GT CompExp SAER NRT
Agreement Rate 72.29% 57.27% 56.25% 53.14%



Chapter 3

Promoting Fairness in Personalized
Results

Personalization systems (PS) have traditionally been celebrated for their ability to assist users and increase
business revenue. However, recent concerns from academia and industry have highlighted the potential
for PS to perpetuate bias and unfairness. These issues of unfairness have far-reaching implications, often
leading to negative consequences for underrepresented or disadvantaged groups. For example, an e-commerce
systems may promote items that maximize profits for certain business owners, which can disadvantage
smaller businesses. In online job marketplaces, recommender systems may perpetuate racial or gender-based
discrimination by disproportionately recommending low-paying jobs to certain user groups. Therefore, it is
imperative that we examine fairness in PS and develop systems that are built on trust and promote equality.
By addressing these issues, we can work towards creating a more inclusive and equitable society, while also
improving the satisfaction of all stakeholders involved in PS.

In this chapter, our main focus is on promoting fairness in PS from different perspectives. Various fairness
definitions have been proposed and applied to different parts of PS. We center our attention on two types of
fairness: universal fairness and measure-specific fairness. We develop general frameworks to address these
types of fairness. In terms of universal fairness, our objective is to learn user or item representations that are
independent of sensitive attributes to prevent bias or fairness issues when they are applied in downstream
prediction tasks. By doing so, we can ensure that sensitive attributes do not influence the personalized
results made by the PS. Regarding measure-specific fairness, we examine potential bias and fairness issues
in generated natural language explanations that are used to serve users and recommend items. We propose
specific fairness notions and techniques to tackle these concerns.

3.1 Learning Unbiased Representations from Biased Graph Observa-
tions

Graph embedding is an indispensable building block in modern machine learning approaches [57–61]. Graph
embedding methods map each node to a low-dimensional embedding vector that reflects the nodes’ structural
information from the observed connections in the given graph. These node embeddings are then employed
to solve downstream tasks, such as friend recommendation in social networks or user interest prediction in
e-commerce platforms [62, 63].

However, the observed node connections in a graph are inevitably affected by certain sensitive node attributes
(e.g., gender, age, race, religion, etc., of users) [148], which are intended to be withheld from many high-stake
real-world applications. Without proper intervention, the learned node embeddings can inherit undesired
sensitive information and lead to severe bias and fairness concerns in downstream tasks [17,149]. For example,
in social network recommendation, if the users with the same gender are observed to connect more often, the
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learned embeddings can record such information and lead to gender bias by only recommending friends to
a user with the same gender identity. Biased node embeddings, when applied in applications such as loan
application [150] or criminal justice [151], may unintentionally favor or disregard one demographic group,
causing unfair treatments. These realistic and ethical concerns set a higher bar for the graph embedding
methods to learn both effective and unbiased embeddings.

To date, the most popular recipe for unbiased graph embedding is to add adversarial regularizations to the loss
function, such that the sensitive attributes cannot be predicted from the learned embeddings [149, 152–154].
However, such a regularization is only a necessary condition for debiasing node embeddings, and it usually
hurts the utility of the embeddings (a trivial satisfying solution is to randomize the embeddings). Besides these
regularization-based solutions, Fairwalk [17] modifies the random walk strategy in the node2vec algorithm [59]
into two levels: when choosing the next node on a path, it first randomly selects a group defined by sensitive
attributes, and then randomly samples a reachable node from that group. DeBayes [155] proposes to capture
the sensitive information by a prior function in Conditional Network Embedding [156], such that the learned
embeddings will not carry the sensitive information. Nevertheless, both Fairwalk and DeBayes are based on
specific graph embedding methods; and how to generalize them to other types of graph embedding methods
such as GAT [157] or SGC [158] is not obvious.

Moving beyond the existing unbiased graph embedding paradigm, in this work, we propose a principled new
framework for the purpose with theoretical justifications. Our solution is to learn node embeddings from an
underlying bias-free graph whose edges are generated without influence from sensitive attributes. Specifically,
as suggested by Pfeiffer et al. [148], the generation of a graph can be treated as a two-phase procedure. In the
first phase, the nodes are connected with each other solely based on global graph structural properties, such as
degree distributions, diameter, edge connectivity, clustering coefficients and etc., resulting in an underlying
structural graph, free of influences from node attributes. In the second phase, the connections are re-routed by
the node attributes (including both sensitive and non-sensitive attributes). Hence, our debiasing principle is to
filter out the influence from sensitive attributes on the underlying structural graph to create a bias-free graph
(that only has non-sensitive or no attributes) from the observed graph, and then perform embedding learning
on the bias-free graph.

We propose two alternative ways to uncover the bias-free graph from the given graph for learning node
embeddings. The first is a weighting-based method, which reweighs the graph reconstruction based loss
function with importance sampling on each edge, such that the derived loss is as calculated on the bias-free
graph, in expectation. This forms a sufficient condition for learning unbiased node embeddings: when the
reconstruction loss is indeed defined on the corresponding bias-free graph, the resulting node embeddings
are unbiased, since the bias-free graph is independent from the sensitive attributes. The second way is via
regularization, in which we require that, with and without the sensitive attributes, the probabilities of generating
an edge between two nodes from their embeddings are the same. In contrast, this forms a necessary condition:
when the learning happens on the bias-free graph, the resulting embeddings should not differentiate if any
sensitive attributes participated in the generation of observed graph, i.e., the predicted edge generation should
be independent from the sensitive attributes. These two methods are complementary and can be combined to
control the trade-off between utility and unbiasedness.

Comprehensive experiments on three datasets and several backbone graph embedding models prove the
effectiveness of our proposed framework1. Results also suggest that the embeddings from our methods can
lead to fair predictions in the downstream applications.

3.1.1 Related Work
Graph embedding aims to map graph nodes to low-dimensional vector representations such that the original
graph can be reconstructed from these node embeddings. Traditional approaches include matrix factorization
and spectral clustering techniques [159, 160]. Recent years have witnessed numerous successful advances
in deep neural architectures for learning node embeddings. Deepwalk [57] and node2vec [59] utilize a
skip-gram [161] based objective to recover the node context in random walks on a graph. Graph Convolutional
Networks (GCNs) learn a node’s embedding by aggregating the features from its neighbors supervised

1Our code: https://github.com/MyTHWN/UGE-Unbiased-Graph-Embedding.

https://github.com/MyTHWN/UGE-Unbiased-Graph-Embedding
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by node/edge labels in an end-to-end manner. These techniques are widely applied in friend or content
recommendation [162, 163], protein structure prediction [164], and many more.

Recent efforts on unbiased and fair graph embedding mainly focus on pre-processing, algorithmic and post-
processing steps in the learning pipeline. The pre-processing solutions modify the training data to reduce
the leakage of sensitive attributes [16]. Fairwalk [17] is a typical pre-processing method which modifies the
sampling process of random walk on graphs by giving each group of neighboring nodes an equal chance to
be chosen. However, such pre-processing may well shift the data distribution and leads the trained model
to inferior accuracy and fairness measures. The post-processing methods employ discriminators to correct
the learned embeddings to satisfy specific fairness constraints [24]. However, such ad-hoc post-correction is
detached from model training which can heavily degrade model’s prediction quality.

Our work falls into the category of algorithmic methods, which modify the learning objective to prevent bias
from the node embeddings. The most popular algorithmic solution is adding (adversarial) regularizations
as constraints to filter out sensitive information [149, 153, 165]. Compositional fairness constraints [149]
are realized by a composition of discriminators for a set of sensitive attributes jointly trained with the graph
embedding model. Similarly, FairGNN [165] adopts a fair discriminator but focuses on debiasing with missing
sensitive attribute values. Different from regularization based methods. DeBayes [155] reformulates the
maximum likelihood estimation with a biased prior which absorbs the information about sensitive attributes;
but this solution is heavily coupled with the specific embedding method thus is hard to generalize. Our method
differs from these previous works by learning embeddings from an underlying bias-free graph. We investigate
the generation of the given graph and remove the influence from sensitive attributes in the generative process
to uncover a bias-free graph for graph embedding.

3.1.2 Preliminaries
In this section, we first introduce our notations and general graph embedding concepts. Since the bias/fairness
issues emerge most notably in prediction tasks involving humans, such as loan application or job recom-
mendation, we will use user-related graphs as running examples to discuss our criterion for unbiased graph
embedding. But we have to emphasize that this setting is only to illustrate the concept of unbiased graph
embedding; and our proposed solution can be applied to any graph data and selected sensitive attributes to
avoid biases in the learned embeddings.

Notation

Let G = (V, E ,A) be an undirected, attributed graph with a set of N nodes V , a set of edges E ⊆ V × V , and
a set of N attribute vectors A (one attribute vector for each node). We use (u, v) to denote an edge between
node u and node v. The number of attributes on each node is K, and A = {a1,a2, . . . ,aN}, where au is a
K-dimensional attribute value vector for node u. We assume all attributes are categorical and Si is the set of
all possible values for attribute i. 2 For example, if node u is a user node, and the i-th attribute is gender with
possible values Si = {Female,Male,Unknown}, then au[i] = Female indicates u is a female. Without loss
of generality, we assume the first m attributes are sensitive, and au[: m] and au[m :] stands for the m sensitive
attributes and the rest of the attributes that are non-sensitive, respectively.

In the problem of graph embedding learning, we aim to learn an encoder ENC : V → Rd that maps each node
u to a d-dimensional embedding vector zu = ENC(u). We focus on the unsupervised embedding setting
which does not require node labels and the embeddings are learned via the link prediction task. In this task,
a scoring function sθ(zu, zv) with parameters θ is defined to predict the probability of an edge (u, v) ∈ E
between node u and node v in the given graph. The loss for learning node embeddings and parameters of the
encoder and scoring function is defined by:∑

(u,v)∈E

Ledge(sθ(zu, zv)), (3.1.1)

2We acknowledge that there are cases where attribute values are continuous, where discretization techniques can be applied.
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where Ledge is a per-edge loss function on (u, v) ∈ E . Such loss functions generally aim to maximize the
likelihood of observed edges in the given graph, comparing to the negative samples of node pairs where edges
are not observed [59, 166].

Unbiased Graph Embedding

Given a node u, we consider its embedding zu as unbiased with respect to an attribute i if it is independent
from the attribute. Prior works evaluate such unbiasedness in the learned node embeddings by their ability to
predict the values of the sensitive attributes [149,155,167]. For example, they first train a classifier on a subset
of node embeddings using their associated sensitive attribute values as labels. If the classifier cannot correctly
predict the sensitive attribute values on the rest of node embeddings, one claims that the embeddings have low
bias. If the prediction performance equals to that from random node embeddings, the learned embeddings are
considered bias-free. In fact, such classifiers are often used as discriminators in adversarial methods where the
classifier and the embeddings are learned jointly: the embeddings are pushed in directions where the classifier
has low prediction accuracy [149, 152].

There are also studies that use fairness measures such as demographic parity or equalized opportunity to define
the unbiasedness of learned embeddings [24, 155]. But we need to clarify that such fairness measures can only
evaluate the fairness of the final prediction results for the intended downstream tasks, but cannot assess whether
the embeddings are biased by, or contain any information about, sensitive attributes. In particular, fairness
in a downstream task is only a necessary condition for unbiased embedding learning, not sufficient. The
logic is obvious: unbiased embeddings can lead to fair prediction results as no sensitive attribute information
is involved; but obtaining fairness in one task does not suggest the embeddings themselves are unbiased,
e.g., those embeddings can still lead to unfair results in other tasks or even the fair results are obtained by
other means, such as post-processing of the prediction results [168]. In Section 3.1.5, we will use both the
prediction accuracy on sensitive attributes and fairness measures on final tasks to evaluate the effectiveness of
our unbiased graph embedding methods.

3.1.3 Effect of attributes in graph generation
In this section, we discuss the generation of an observed graph by explicitly modeling the effects of node
attributes in the process. In particular, we assume that there is an underlying structural graph behind an
observed graph, whose edge distribution is governed by the global graph structural properties such as degree
distributions, diameter, and clustering coefficients. The attributes in A will modify the structural edge
distribution based on effects like homophily in social networks, where links are rewired based on the attribute
similarities of the individuals [169, 170]. The modified edge distribution is then used to generate the observed
graph.

Formally, let M be a structural generative graph model and ΘM be the set of parameters that describe
properties of the underlying structural graph. In particular, this set of parameters ΘM is independent from
node attributes in A. We consider the class of models that represent the set of possible edges in the graph
as binary random variables Euv, u ∈ V, v ∈ V: i.e., the event Euv = 1 indicates (u, v) ∈ E . The model
M assigns a probability to Euv based on ΘM , PM (Euv = 1|ΘM ). Therefore, the edges of an underlying
structural graph GM can be considered as samples from Bernoulli(PM (Euv = 1|ΘM )). There are many
such structural modelsM such as the Chung Lu model [171] and Kronecker Product Graph Model [172].
Note thatM does not consider node attributes in the generation of the structural graph.

Now we involve the attributes in the generative process. Let C ∈ {(ai,aj)| i ∈ V, j ∈ V} be a variable
indicating the attribute value combination of a randomly sampled pair of nodes, which is independent from
ΘM . Note that C instantiated by different node pairs can be the same, as different nodes can have the same
attribute values. The conditional probability of an edge between u and v, given the corresponding attribute
values on them and the structural parameters ΘM , is Po(Euv = 1|C = auv,ΘM ), where auv = (au,av)
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Figure 3.1: Illustration of Unbiased Graph Embedding (UGE). The color of the nodes represents the value of their attributes, and different
line styles suggest how the observed edges are influenced by attributes in the generative process.

denotes the attribute value combination on nodes u and v. Based on Bayes’ Theorem, we have

Po(Euv = 1|C = auv,ΘM ) (3.1.2)

=
Po(C = auv|Euv = 1,ΘM )Po(Euv = 1|ΘM )

Po(C = auv|ΘM )

=PM (Euv = 1|ΘM )
Po(C = auv|Euv = 1,ΘM )

Po(C = auv|ΘM )
,∀u ∈ V,∀v ∈ V,

where the prior distribution on Euv is specified by the structural model M: i.e., Po(Euv = 1|ΘM ) =
PM (Euv = 1|ΘM ), and the posterior distribution accounts for the influences from the attribute value
combinations. Therefore, the edge probabilities used to generate the observed graph with node attributes is a
modification of those from a structural graph defined byM and ΘM . It is important to clarify that the node
attributes are given ahead of graph generation. They are the input to the generative process, not the output.
Hence, Po(C = auv|Euv = 1,ΘM ) represents the probability that in all edges, the specific attribute value
combination auv is observed on an edge’s incident nodes. It is thus the same for all edges whose incident
nodes have the same attribute value combination.

To simplify the notation, let us define a function that maps the attribute value combination auv to the probability
ratio that modifies the structural graph into the observed graph by

R(auv) :=
Po(C = auv|Euv = 1,ΘM )

Po(C = auv|ΘM )
,∀u ∈ V,∀v ∈ V.

Thus we can rewrite Eq (3.1.2) by

Po(Euv = 1|C = auv,ΘM ) = PM (Euv = 1|ΘM )R(auv). (3.1.3)

In this way, we explicitly model the effect of node attributes by R(auv), which modifies the structural graph
distribution PM (Euv = 1|ΘM ) for generating the observed graph G.

3.1.4 Unbiased Graph Embedding from a Bias-Free Graph
In this section, we describe our proposed methods for learning unbiased node embeddings based on the
generative modeling of the effects of sensitive attributes in Section 3.1.3. In a nutshell, we aim to get rid of the
sensitive attributes and modify the structural edge probabilities by only conditioning on non-sensitive attributes.
This gives us the edge probabilities of a bias-free graph, from which we can learn unbiased node embeddings.
We illustrate this principle in Figure 3.1. Consider a world without the sensitive attributes, and the attribute
vector of node u becomes ãu = au[m :], which only include non-sensitive attributes in au. We denote
G̃ = (V, Ẽ , Ã) as the corresponding new graph generated with ãu,∀u ∈ V , and ãuv = (ãu, ãv). Therefore,
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G̃ is a bias-free graph without influence from sensitive attributes. If we can learn node embeddings from G̃
instead of G, the embeddings are guaranteed to be unbiased with respect to sensitive attributes. Specifically,
the edge probabilities used for generating G̃ can be written as

Põ(Euv = 1|C̃ = ãuv,ΘM ) = PM (Euv = 1|ΘM )R̃(ãuv), (3.1.4)

where

R̃(ãuv) :=
Põ(C̃ = ãuv|Euv = 1,ΘM )

Põ(C̃ = ãuv|ΘM )
,∀u ∈ V,∀v ∈ V, (3.1.5)

C̃ ∈ {(ãi, ãj)|i ∈ V, j ∈ V} is the random variable for attribute value combinations without sensitive
attributes, and Põ indicates the distributions used in generating G̃. We name the class of methods that learn
embeddings from G̃ as UGE, simply for Unbiased Graph Embedding. Next we introduce two instances of UGE.
The first is UGE-W, which reweighs the per-edge loss such that the total loss is from G̃ in expectation. The
second method is UGE-R, which adds a regularization term to shape the embeddings to satisfy the properties
as those directly learned from G̃.

Weighting-Based UGE

To compose a loss based on G̃, we modify the loss function in Eq (3.1.1) by reweighing the loss term on each
edge as

LUGE−W (G) =
∑

(u,v)∈E

Ledge(sθ(zu, zv))
R̃(ãuv)

R(auv)
. (3.1.6)

The following theorem shows that, in expectation, this new loss is equivalent to the loss for learning node
embeddings from G̃.

Theorem 3.1.1. Given a graph G, and R̃(ãuv)/R(auv),∀(u, v) ∈ E , LUGE−W (G) is an unbiased loss with
respect to G̃.

Proof. We take expectation over the edge observations in G as

E
[
LUGE−W (G)

]
(3.1.7)

=E

[ ∑
(u,v)∈E

Ledge(s(zu, zv))
R̃(ãuv)

R(auv)

]

=E

[ ∑
u∈V,v∈V

Ledge(s(zu, zv))
R̃(ãuv)

R(auv)
· Euv

]

=
∑

u∈V,v∈V
Ledge(s(zu, zv))

R̃(ãuv)

R(auv)
· Po(Euv = 1|C = auv,ΘM )

∗ =
∑

u∈V,v∈V
Ledge(s(zu, zv)) · Põ(Euv = 1|C̃ = ãuv,ΘM )

=E

[ ∑
(u,v)∈Ẽ

Ledge(s(zu, zv))

]
.

The step marked by ∗ uses Eq (3.1.3) and Eq (3.1.4).

UGE-W is closely related to the idea of importance sampling [173], which analyzes the edge distribution of
the bias-free graph G̃ by observations from the given graph G. The only thing needed for deploying UGE-W in
existing graph embedding methods is to calculate the weights R̃(ãuv)/R(auv). To estimate R(auv), we need
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the estimates of Po(C = auv|Euv = 1,ΘM ) and Po(C = auv|ΘM ). With maximum likelihood estimates on
the observed graph, we have

Po(C = auv|Euv = 1,ΘM ) ≈
∑

(i,j)∈E I[aij = auv]

|E| , (3.1.8)

Po(C = auv|ΘM ) ≈
∑

i∈V,j∈V I[aij = auv]

N2
. (3.1.9)

Similarly we can estimate R̃(ãuv) by

Põ(C̃ = ãuv|Euv = 1,ΘM ) ≈
∑

(i,j)∈Ẽ I[ãij = ãuv]

|Ẽ |
, (3.1.10)

Põ(C̃ = ãuv|ΘM ) ≈
∑

i∈V,j∈V I[ãij = ãuv]

N2
. (3.1.11)

Note that the estimation of Põ(C̃ = ãuv|Euv = 1,ΘM ) is based on Ẽ , which is unfortunately from the
implicit bias-free graph G̃ and unobservable. But we can approximate it with E in the following way: after
grouping node pairs by non-sensitive attribute value combinations ãuv, the sensitive attributes only re-route
the edges but do not change the number of edges in each group. Thus,

Põ(C̃ = ãuv|Euv = 1,ΘM ) ≈
∑

(i,j)∈Ẽ I[ãij = ãuv]

|Ẽ |
(3.1.12)

=

∑
i∈V,j∈V,ãij=ãuv

I[(i, j) ∈ Ẽ ]
|Ẽ |

=

∑
i∈V,j∈V,ãij=ãuv

I[(i, j) ∈ E ]
|Ẽ |

=

∑
(i,j)∈E I[ãij = ãuv]

|E| .

For node pairs with the same attribute value combination, Eq (3.1.8)-Eq (3.1.11) only need to be calculated
once instead of for each pair. This can be done by first grouping node pairs by their attribute value combinations
and then perform estimation in each group. However, when there are many attributes or attributes can take
many unique values, the estimates may become inaccurate since there will be many groups and each group
may only have a few nodes. In this case, we can make independence assumptions among the attributes. For
example, by assuming they are independent, the estimate for a specific attribute value combination over all
the K attributes becomes the product of K estimates, one for each attribute. The non-sensitive attributes
can be safely removed under this assumption with R̃(ãuv) = 1, and only R(auv) needs to be estimated as
R(auv) =

∏m
i=1 R(auv[i]). Since UGE-W only assigns pre-computed weights to the loss, the optimization

based on it will not increase the complexity of any graph embedding method.

Regularization-Based UGE

We propose an alternative way for UGE which adds a regularization term to the loss function that pushes the
embeddings to satisfy properties required by the bias-free graph G̃. Specifically, when the node embeddings are
learned from G̃, their produced edge distributions should be the same with and without the sensitive attributes.
To enforce this condition, we need to regularize the discrepancy between Po(Euv = 1|C = auv,ΘM ) and
Põ(Euv = 1|C̃ = ãuv,ΘM ) induced from the node embeddings. We can use the scores in sθ(zu, zv) as
a proxy to represent edge probability produced by the embeddings of nodes u and v, i.e., high sθ(zu, zv)
indicates high probability of an edge between u and v. We can measure Po(Euv = 1|C = auv,ΘM ) by
aggregating node pairs with the same attribute value combination to marginalize out the effect of ΘM and
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Table 3.1: Statistics of evaluation graph datasets.

Statistics Pokec-z Pokec-n MovieLens-1M
# of nodes 67, 796 66, 569 9, 992
# of edges 882, 765 729, 129 1, 000, 209
Density 0.00019 0.00016 0.01002

focus on the influence from attributes as

Qauv =
1

Nauv

∑
i∈V,j∈V,aij=auv

sθ(zi, zj), (3.1.13)

where we use Qauv
to denote the approximated measure of Po(Euv = 1|C = auv,ΘM ), and Nauv

is
the number of node pairs that has the attribute value combination auv. For pairs with the same attribute
value combination, Qauv

only needs to be calculated once. Similarly, Põ(Euv = 1|C̃ = ãuv,ΘM ) can be
represented by Qãuv

, which can be obtained by aggregating the scores over pairs with non-sensitive attribute
value combination ãuv . Finally, we use ℓ2 distance between Qauv and Qãuv

as the regularization

LUGE−R(G) (3.1.14)

=
∑

(u,v)∈E

Ledge(sθ(zu, zv)) + λ
∑

u∈V,v∈V
||Qauv −Qãuv

||2,

where λ controls the trade-off between the per-edge losses and the regularization.

In contrast to adversarial regularizations employed in prior work [149, 152–154], UGE-R takes a different
perspective in regularizing the discrepancy between graphs with and without sensitive attributes induced from
the embeddings. All previous regularization-based methods impose the constraint on individual edges. We
should note that the regularization term is summed over all node pairs, which has a complexity of O(N3) and
can be costly to calculate. But in practice, we can add the regulariztaion by only sampling batches of node
pairs in each iteration during model update, and use λ to compensate the strength of the regularization.

Combined Method

As hinted, UGE-W is a sufficient condition for unbiased graph embedding, since it directly learns node
embeddings from a bias-free graph. UGE-R is a necessary condition, as it requires the learned embeddings to
satisfy the properties of a bias-free graph. We can combine them to trade-off the debiasing effect and utility,

LUGE−C(G) (3.1.15)

=
∑

(u,v)∈E

Ledge(sθ(zu, zv))
R̃(ãuv)

R(auv)
+ λ

∑
u∈V,v∈V

||Qauv
−Qãuv

||2,

where we use LUGE−C(G) to represent the combined method. LUGE−C(G) thus can leverage the advantages
of both UGE-W and UGE-R to achieve better trade-offs between the unbiasedness and the utility of node
embeddings in downstream tasks.

3.1.5 Experiments
In this section, we study the empirical performance of UGE on three benchmark datasets in comparison to
several baselines. In particular, we apply UGE to five popularly adopted backbone graph embedding models to
show its wide applicability. To evaluate the debiasing performance, the node embeddings are firstly evaluated
by their ability to predict the value of sensitive attributes, where lower prediction performance means better
debiasing effect. Then a task-specific metric is used to evaluate the utility of the embeddings. Besides, we also
apply fairness metrics in the link prediction results to demonstrate the potential of using embeddings from
UGE to achieve fairness in downstream tasks.
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Table 3.2: Unbiasedness evaluated by Micro-F1 on Pokec-z and Pokec-n. Bold numbers highlight the best in each row.

Dataset Model Prediction Target No Debiasing Fairwalk CFC UGE-W UGE-R UGE-C Random

Pokec-z GAT
Gender (Micro-F1) 0.6232 0.6135 0.5840 0.6150 0.6094 0.5747 0.4921
Region (Micro-F1) 0.8197 0.8080 0.7217 0.6784 0.7660 0.6356 0.4966

Age (Micro-F1) 0.0526 0.0522 0.0498 0.0431 0.0545 0.0429 0.0007

Pokec-n node2vec
Gender (Micro-F1) 0.5241 0.5291 0.5241 0.5187 0.5095 0.5158 0.5078
Region (Micro-F1) 0.8690 0.8526 0.8423 0.8158 0.6975 0.6347 0.4987

Age (Micro-F1) 0.0626 0.0534 0.0426 0.0305 0.0294 0.0194 0.0002

Setup

Dataset. We use three public user-related graph datasets, Pokec-z, Pokec-n and MovieLens-1M, where
the users are associated with sensitive attributes to be debiased. The statistics of these three datasets are
summarized in Table 3.1. Pokec3 is an online social network in Slovakia, which contains anonymized data of
millions of users [174]. Based on the provinces where users belong to, we used two sampled datasets named
as Pokec-z and Pokec-n adopted from [165], which consist of users belonging to two major regions of the
corresponding provinces, respectively. In both datasets, each user has a rich set of features, such as education,
working field, interest, etc.; and we include gender, region and age as (sensitive) attributes whose effect will be
studied in our evaluation. MovieLens-1M4 is a popular movie recommendation benchmark, which contains
around one million user ratings on movies [175]. In our experiment, we construct a bipartite graph which
consists of user and movie nodes and rating relations as edges. The dataset includes gender, occupation and
age information about users, which we treat as sensitive attributes to be studied. We do not consider movie
attributes, and thus when applying UGE, only user attributes are counted for our debiasing purpose.

Graph embedding models. UGE is a general recipe for learning unbiased node embeddings, and can be
applied to different graph embedding models. We evaluate its effectiveness on five representative embedding
models in the supervised setting with the link prediction task. GCN [176], GAT [177], SGC [158] and
node2vec [59] are deep learning models, and we use dot product between two node embeddings to predict
edge probability between them and apply cross-entropy loss for training. MF [178] applies matrix factorization
to the adjacency matrix. Each node is represented by an embedding vector learned with pairwise logistic
loss [144].

Baselines. We consider three baselines for generating unbiased node embeddings. (1) Fairwalk [17] is based
on node2vec, which modifies the pre-processing of random-walk generation by grouping neighboring nodes
with their values of the sensitive attributes. Instead of randomly jumping to a neighbor node, Fairwalk firstly
jumps to a group and then sample a node from that group for generating random walks. We extend it to GCN,
GAT and SGC by sampling random walks of size 1 to construct the corresponding per-edge losses for these
embedding models. (2) Compositional Fairness Constraints (CFC) [149] is an algorithmic method, which
adds an adversarial regularizer to the loss by jointly training a composition of sensitive attribute discriminators.
We apply CFC to all graph embedding models and tune the weight on the regularizer, where larger weights are
expected to result in embeddings with less bias but lower utility. (3) Random embeddings are considered as
a bias-free baseline. We generate random embeddings by uniformly sampling the value of each embedding
dimension from [0, 1].

Configurations. For the Pokec-z and Pokec-n datasets, we apply GCN, GAT, SGC and node2vec as embedding
models and apply debiasing methods on top of them. For each dataset, we construct positive examples for
each node by collecting Npos neighboring nodes with Npos equal to its node degree, and randomly sample
Nneg = 20×Npos unconnected nodes as negative examples. For each node, we use 90% positive and negative
examples for training and reserve the rest 10% for testing. For Movielens-1M, we follow common practices
and use MF as the embedding model [17, 149]. We do not evalaute Fairwalk on this dataset since there is no
user-user connections and fair random walk cannot be directly applied. The rating matrix is binarized to create
a bipartite user-movie graph for MF. We use 80% ratings for training and 20% for testing. For all datasets
and embedding models, we set the node embedding size to d = 16. We include more details about model
implementations and hyper-parameter tuning in Appendix A.

3https://snap.stanford.edu/data/soc-pokec.html
4https://grouplens.org/datasets/movielens/1m/
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(a) Pokec-z with GAT as embedding model
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(c) MovieLens-1M with MF as embedding model

Figure 3.2: Trade-off between the utility (by NDCG@10) and unbiasedness (by Micro-F1) of different methods. Random embeddings
give the lowest Micro-F1 (green line), and no debiasing gives the best NDCG@10 (blue line). An ideal debiasing method should locate
itself at the upper left corner.

In Section 3.1.5, we compare the unbiasedness and utility of embeddings from different baselines. We
evaluate fairness resulted from the embeddings in Section 3.1.5. Since there is a large number of experimental
settings composed of different datasets, embedding models, and baselines, we report results from different
combinations in each section to maximize the coverage in each component, and include the other results in
Appendix B.

Unbiasedness and Utility Trade-off

We firstly compare the unbiasedness of node embeddings from different debiasing methods. For each sensitive
attribute, we train a logistic classifier with 80% of the nodes using their embeddings as features and attribute
values as labels. We then use the classifier to predict the attribute values on the rest of 20% nodes and evaluate
the performance with Micro-F1. The Micro-F1 score can be used to measure the severity of bias in the
embeddings, i.e., a lower score means lower bias in the embeddings. Random embeddings are expected to
have the lowest Micro-F1 and embeddings without debiasing should have the highest Micro-F1. We show the
results on Pokec-z with GAT as base embedding model and Pokec-n with node2vec as the base embedding
model in Table 3.2. From the results, we see that embeddings from UGE methods always have the least bias
against all baselines with respect to all sensitive attributes and datasets. This confirms the validity of learning
unbiased embeddings from a bias-free graph. Besides, by combining UGE-W and UGE-R, UGE-C usually
produces the best debiasing effect, which demonstrates the complementary effect of the two methods.

Besides the unbiasedness, the learned embeddings need to be effective when applied to downstream tasks. In
particular, we use NDCG@10 evaluated on the link prediction task to measure the utility of the embeddings.
Specifically, for each target node, we create a candidate list of 100 nodes that includes all its observed neighbor
nodes in the test set and randomly sampled negative nodes. Then NDCG@10 is evaluated on this list with
predicted edge probabilities from the node embeddings. Figures 3.2a and 3.2b show the unbiasedness as well
as the utility of embeddings from different methods in correspondence to the two datasets and embedding
models in Table 3.2. Figure 3.2c shows the results on MovieLens-1M with MF as the embedding model.
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Figure 3.3: Fairness metrics evaluated on link prediction task on Pokec-n with node2vec as the embedding model.

In these plots, different embedding methods are represented by different shapes in the figures, and we use
different colors to differentiate UGE-W, UGE-R and UGE-C. Random embeddings do not have any bias
and provide the lowest Micro-F1 (green line), while embeddings without any debiasing gives the highest
NDCG@10 (blue line). To achieve the best utility-unbiasedness trade-off, an ideal debiasing method should
locate itself at the upper left corner. As shown in the figures, UGE based methods achieve the most encouraging
trade-offs on these two contradicting objectives in most cases. UGE-C can usually achieve better debiasing
effect, without sacrificing too much utility. UGE-W and UGE-R maintain high utility but are less effective
than the combined version. CFC can achieve descent unbiasedness in embeddings, but the utility is seriously
compromised (such as in Pokec-z and MovieLens-1M). Fairwalk unfortunately does not present an obvious
debiasing effect.

High-Level Fairness from Embeddings

We study whether the debiased embeddings can lead to fairness in downstream tasks. We adopt two popular
metrics—demographic parity (DP) and equalized opportunity (EO) to evaluate the fairness of link prediction
results from the embeddings. DP requires that the predictions are independent from sensitive attributes,
measured by the maximum difference of prediction rates between different combinations of sensitive attribute
values. EO measures the independence between true positive rate (TPR) of predicted edges and sensitive
attributes. It is defined by the maximum difference of TPRs between different sensitive attribute value
combinations. For both DP and EO, lower values suggest better fairness. We use the exact formulation of DP
and EO in [155] and use the sigmoid function to convert the edge score for a pair of nodes to a probability.

We show the results on fairness vs., utility in Figure 3.3, which are evaluated on each of the three sensitive
attributes in Pokec-n with node2vec as the embedding model. In each plot, x-axis is the DP or EO and y-axis
is the NDCG@10 on link prediction. Similar to Figure 3.2, the ideal debiasing methods should locate at the
upper left corner. Except for EO on the age attribute where all methods performs similarly, UGE methods
can achieve significantly better fairness than the baselines on both DP and EO, while maintaining competitive
performance on link prediction. UGE-C can achieve the most fair predictions. This study shows UGE’s ability
to achieve fairness in downstream tasks by effectively eliminating bias in the learned node embeddings.
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Figure 3.4: Left: average length of ground-truth explanations written by male and female users in the train set of Amazon Games. Right:
average length of explanations generated on the test set by PETER.

3.2 Counterfactual Fairness in Personalized Explanation Generation
Enforcing independence between personalized results and sensitive attributes of users/items can be a strong
constraint, which, although effective in enforcing fairness, may adversely affect the performance of personal-
ization. Additionally, fairness needs may vary depending on specific aspects of the results, and certain kinds of
dependence between the results and the sensitive attributes can be important for personalization. In this case,
appropriate fairness measures should be thoughtfully designed to reflect these specific needs without affecting
the other aspects of the results. Such measures then serve as objectives for promoting fairness. In this section,
we focus on fairness in natural language explanation generation and explores fairness considerations from
both individual and group perspectives.

Personalized explanation generation in PS is essentially a personalized text generation (PTG) task [38, 39,
65, 108], which aims to provide a user with a paragraph of text to describe a recommended item according
to her preferences. As discussed in Chapter 2, the generators are language models usually trained on user
written reviews in online e-commerce platforms [38, 67, 122], where sentences related to item descriptions are
retained to construct the ground-truth explanations. However, due to historical, social, or behavioral reasons,
there may exist bias that associates certain linguistic characteristics of the review text with the users’ protected
attributes, e.g., gender, race, education, etc. [43,179,180]. Some of the characteristics that feature the diversity
of language use [179, 181] are proper to be captured by personalization. While others that are about the
linguistic quality of the reviews [182], such as informativeness, fluency, structure, etc., should not be kept in
explanation generation, which otherwise will lead to unfair treatments when serving users.

As an example, we study the explanation generation on Amazon Games5 with the personalized transformer
(PETER) model [39]. In this case study, we use length as a proxy of the text quality, since length has been shown
to strongly correlate with different linguistic quality traits as well as human-judged text quality [182–185]. As
shown in Figure 3.4 (left), we find that male users generally write longer and more detailed reviews about
games than female users. If directly trained on such data, a language model can inherit the bias and generate
explanations discriminately towards users’ gender—when a new game is recommended, the model generates
short explanations for female users, but long and detailed explanations for male users, as indicated in Figure 3.4
(right).

We take a causal perspective to analyze the bias and enforce counterfactual fairness (CF) [51] in personalized
explanation generation: the quality of the generated explanations should not differentiate a user in the real
world vs. in the counterfactual world where the user’s protected attribute is changed (e.g., male→ female).
Although CF has been studied in other NLP tasks [186,187], they mainly study how the model’s outputs depend
on the attribute-specific words directly encapsulated in the input text [48–50]. So counterfactual inference
(CI) can be easily performed on the text itself, e.g., changing male pronouns to female pronouns [186, 187].
How the quality of generated text can be unfair towards the protected attributes of users being served has
not been studied before. In particular, user and item IDs are usually input to the model for personalized
explanation generation, which are represented by embedding vectors [37, 39, 108]. The user’s protected
attribute is implicitly encoded in the learned representations [188], and cannot be directly manipulated for CI.

5The details about experiment setup is in Section 3.2.5.
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To achieve the goal, we develop a general framework, COFFEE, for COunterFactual FairnEss in Explanation
generation. In COFFEE, we treat a user’s protected attribute value as a separate token input to the model,
and disentangle its representation from the user’s representation [189–191]. By switching between real and
counterfactual attribute values for CI, we impose a measure-specific CF constraint [54] on the quality of
generated explanations. We then develop a novel fair policy learning scheme to optimize CF. We use user-side
fairness by default in discussions, but as we will show, COFFEE is general to ensure fairness on either user
or item side in the two-sided market [31], and be adapted to different models. Extensive experiments show
COFFEE’s superiority in comparison to baselines.

3.2.1 Related Work
Uniqueness and Importance: Fairness in machine learning (ML) is originally studied in automatic decision-
making systems which directly impose a "significant" or "legal" effect on individuals [45]. The fairness
considerations are mostly on resource allocation by ML models, such as loan assessment [46], job application
[47], where the model predictions can unfavorably affect a protected group [192, 193].

Instead of studying fairness of resource allocation, NLP researchers focus on the representational fairness
[48–50] of how language models shape social biases and stereotypes through natural language understanding
(NLU) or generation (NLG). For example, bias in natural language understanding tasks, In NLU, as an
example, Kiritchenko et al. [194] find that sentiment analysis systems yield different sentiment scores for
sentences containing names associated with African Americans vs. European Americans. The fairness in
NLG cares how generated text may contain biased information about a specific demographic group. Huang et
al. [186] analyze the sentence completion by a GPT-2 model, and find different sentiment distributions of the
completed sentences when the occupation word is changed in the prompts. Bordia et al. [44] show that doctor
co-occurs more frequently with male pronouns while nurse co-occurs more often with female pronouns in
generated text. However, these biases are easier to analyze, since both the demographic and the bias signals
are encapsulated within the text. To the best of our knowledge, we are the first to study how personalization
links the bias in NLG to protected attributes of users being served.

Fairness Notions: There exist different fairness notions in the literature, among which group-wise fairness
notions are the firstly studied ones [23–25]. However, group-wise fairness has different quantitative definitions
and different criteria such as demographic parity or equal opportunity are incompatible in general [195, 196].
Depending on the relationship between the protected attribute and the data, some definitions can even increase
discrimination [51]. Individual fairness [52, 53] requires similar users to receive similar predictions. But
it depends on the specific distance metric for similarity, which must be carefully chosen, and requires an
understanding of the domain at hand [197]. In contrast, counterfactual fairness (CF) [51] considers fairness
from a causal perspective and has been widely adopted recently as a more robust fairness notion [54–56],
which also improves group-wise fairness in certain scenarios [198, 199].

3.2.2 Problem Formulation
In the following discussions, we consider a single protected attribute on the user side. But the proposed
framework can be easily generalized to multiple attributes on either the user or the item side. The value of
a user’s protected attribute is denoted by a variable A ∈ A, where A is the set of possible attribute values,
e.g., A = {male, female} for gender. Each entry of the dataset is a tuple of (u, i, a, s, e), corresponding to
user ID, item ID, observed protected attribute value, rating, and ground-truth explanation. The explanation
generator Gθ is a language model parameterized by θ. Given a user u, an item i, and the observed attribute
value a, an explanation can be sampled from the generator as Y ∼ Gθ(u, i|A = a). The linguistic quality of
any sampled explanation y is measured by a function Q(y). In particular, we assume Q is a black box oracle
and can only be queried, which is specified according to the fairness needs. This design is essential for practical
uses, since the linguistic quality can be specified differently by the designer in different applications and be
evaluated in different ways, such as via an explicit function, human-evaluation, or a government provided tool.
Without loss of generality, we assume higher Q means higher quality. Counterfactual fairness (CF) on the
linguistic quality of generated explanations requires that, given a user u and an item i,

P (Q(YA←a)|u, i, a) = P (Q(YA←a′)|u, i, a) (3.2.1)
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where YA←a′ ∼ Gθ(u, i|A = a′) is the explanation generated when we counterfactually assign the value of
the user’s protected attribute by A← a′, a′ ̸= a. The right side of eq. (3.2.1) evaluates the quality distribution
of explanations generated had the user’s protected attribute value been a′, given that the observed attribute
value is a [51, 200].

Denote the loss of the generator for a given user u and item i by Lgen(Gθ(u, i|A = a), e), which is usually
the negative log-likelihood (NLL) loss or a combination of several losses [37–39]. We consider training the
generator for fair explanation generation as a constrained optimization problem:

minLgen(Gθ(u, i|A = a), e)

s.t. EYA←a [Q(YA←a)|u, i, a] =
EYA←a′ [Q(YA←a′)|u, i, a]

(3.2.2)

For ease of presentation, we consider a single user-item pair, and the total loss on a dataset is simply summed
over all user-item pairs with the constraint applied to every pair. In this work, we apply the first-order
moment of the quality of generated explanations to construct the constraint, and leave the extension to
other moment-matching constraints for future work. We further simplify the expression of the constraint as
E[Q(YA←a)] = E[Q(YA←a′)].

3.2.3 COFFEE
Disentangled Attribute Representation

As discussed, the protected attribute and the user’s preferences are entangled in a user’s history, and the
attribute information is implicitly encoded in the user’s representation, making it impossible to perform CI. To
overcome this, we consider a user’s protected attribute value as a separate token input to the model along with
the user and item IDs, and propose to learn disentangled attribute representations [188–191]. This is similar
to works in controllable text generation [201–203], where disentangled attribute tokens are used as input to
control the topic, sentiment, or style of the generated text.

For a given tuple (u, i, a), we denote the representation for the attribute value a as ra, the user’s preference
representation (independent from the protected attribute) as ru and item representation as ri. The complete
user representation is rau = [ra, ru]. Correspondingly, when performing A ← a′ on user u, we change the
input attribute token from a to a′, and the new user representation becomes rA←a′

u = [r′a, ru]. Note that each
attribute value has its own representation, and is shared across all users having that same attribute value. For
instance, all male users’ attribute representation is the same vector rmale. We can do the same for item-side
attributes as rai = [ra, ri].6

Simply separating the user’s protected attribute and preference representations can not guarantee that ru will
not contain any information about the protected attribute, inhibiting the accuracy of CI. To further enforce the
disentanglement, we introduce a discriminator D(ru), and add an adversarial loss on ru in eq. (3.2.2) as

min Lgen(Gθ(u, i|A = a), e) + λD log(D(ru, a))

s.t. E[Q(YA←a)] = E[Q(YA←a′)]
(3.2.3)

where D(ru, a) is the probability of predicting the correct attribute value a by the discriminator. In this way,
we adversarially remove the protected attribute information from ru, and enforce ra to capture all the attribute
information. During mini-batch optimization, we alternate between the parameter updates of the model and
the discriminator as follows: (1) X batches of updates minimizing the loss eq. (3.2.3) with D fixed, and (2) Z
batches of updates maximizing the the loss eq. (3.2.3) with the generator Gθ fixed.

Policy Learning for Fairness

Once the user, item, and attribute representations are learned and fixed, we can perform and optimize the
generator w.r.t. the CF constraint. Due to the non-convexity of the constrained fairness optimization problem,

6To generalize to K protected attributes, we can simply add K attribute tokens in the input, each of which is mapped to its separately
learned representations.
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closed-form solutions are impossible. We add the constraint with Lagrangian relaxation as a regularization in
the loss [54]

minLall + λ
∣∣E[Q(YA←a)]− E[Q(YA←a′)]

∣∣ (3.2.4)

with Lall = Lgen(Gθ(u, i|A = a), e) + λD log(D(ru, a)) in eq. (3.2.3) denotes all other losses except for the
CF constraint, and λ is a hyper-parameter for fairness-utility trade-off.

However, standard gradient methods can not be directly applied to optimize this constraint—the explanations
are discretely sampled from the generator, and the quality function Q is an oracle. Instead, we consider
policy learning for fairness optimization, where the explanation distribution imposed by the generator is
considered as the policy for explanation generation, and the sampled explanations are actions. We then
derive the policy gradients on the generator’s parameters based on carefully designed rewards of sampled
explanations. Concretely, for estimating the expectations in the regularization, we sample N explanations and
calculate the average quality for explanations sampled in both the real-world and the counterfactual world.
Denote the regularization term as Lfair, the expectations in the regularization can be estimated as:

Lfair =
∣∣E[Q(YA←a)]− E[Q(YA←a′)]

∣∣
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∆ = 1
N

∑N
k=1 Q

(
ykA←a

)
− 1

N

∑N
k=1 Q

(
ykA←a′

)
. For an explanation ykA←a sampled in the real-world, its

contribution to the unfairness in regularization term is thus 1
N sign(∆)Q

(
ykA←a

)
. Since we are minimizing the

regularization to improve fairness, the reward for ykA←a is considered as r
(
ykA←a

)
= − 1

N sign(∆)Q
(
ykA←a

)
.

Similarly, the reward for the a sampled explanation ykA←a′ in the counterfactual world is r
(
ykA←a′

)
=

1
N sign(∆)Q

(
ykA←a′

)
. In this way, we convert the CF optimization into maximizing the rewards of generated

explanations.

Although the rewards are designed to minimize the difference in the qualities of explanations generated in
the real vs. counterfactual world, we have no control over how the difference should be minimized during
optimization. The model may arbitrarily improve or decrease the quality of explanations to achieve fairness,
e.g., always generating low quality explanations, which greatly hurt their utility in practice. To address this
issue, we further design a weighting mechanism to calibrate the rewards such that the optimization can focus
more on improving (or decreasing) the quality measure for achieving fairness, which will empower the designer
to better control the fairness optimization and the utility-fairness trade-off. Specifically, we introduce a quality
promotion weight η ∈ [0, 1] to re-weigh the rewards of explanations in the world with lower expected quality,
and use 1− η to reweigh the rewards of explanations in the other world. The resulting calibrated rewards are:
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η. We can leverage this weight to guide the fairness

optimization—if η > 0.5, the algorithm will focus more on improving the quality of low-quality explanations
for fairness. Finally, for stability and faster convergence of training, we apply the advantage trick [204] to
regularize the rewards, and each reward becomes its difference from the average reward in its corresponding
world:
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The policy gradient [38, 205] on θ can then be estimated as:
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Figure 3.5: Modified PETER with disentangled user representations for applying COFFEEE.

Intuitively, during optimization, the probability of sampled explanations that lead to the unfairness will be
demoted, while the probability of those that contribute to fairness will be promoted relatively.

To train a COFFEE model, we first pre-train the model without the fairness constraint. Then we fix the latent
representations of users, items and attributes, and add the fairness constraint in the objective function for
fine-tuning the model.

3.2.4 Applying COFFEE to Existing Models
Existing models for personalized explanation generation mostly use either Transformer [39] or RNN [37,38,65]
as the generator. In this section, we demonstrate the application of COFFEE to PETER [39], which is based
on Transformer and is the state-of-the-art explanation generation model. In Appendix C, we also illustrate the
application of COFFEE to NRT [37], which is based on RNN.

In PETER [39], the user and item IDs are treated as two special tokens appended at the beginning of the
explanation word sequence before inputting to transformer layers. The user and the item tokens can attend to
each other, while the word tokens can only attend to past tokens. Either the user or the item embedding can
capture the information of this user-item pair. For better personalization, a context prediction loss is introduced
in addition to the NLL loss, which aims to predict the words in the explanation without caring about their
order. Besides, rating prediction is made possible by feeding the output user or item embedding to an MLP.
We denote the overall loss as Lpeter, which is the summation of the NLL loss, context prediction loss, and
MSE for rating prediction (Section 4 in [39]).

To apply COFFEE to PETER, we first add an attribute token at the beginning of each sequence for disentangled
attribute embedding, as shown in Figure 3.5. The discriminator for better disentanglement is applied on user
or item embedding at the input embedding layer. The user, item and attribute tokens can attend to each other,
while the explanation words can only attend to past tokens. The loss of applying COFFEE to PETER is
constructed by replacing Lgen in eq. (3.2.3) by Lpeter.

3.2.5 Experiments
We conduct comprehensive experiments on three public review datasets: Amazon Video Games, Amazon
Movies & TV, and Yelp Restaurant, and compare COFFEE with multiple baselines. Due to space limit, we
present the results based on PETER, and put examples of generated explanations and the results based on NRT
in Appendix D.6.
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Table 3.3: Statistics of the datasets and the protected attributes used in experiments. The candidate values of the attributes are indicated in
parentheses.

#Users #Items #Reviews Attribute Values

Video Games 9,511 5,173 59,374 male, female
Movies & TV 28,001 12,888 265,646 male, female

Yelp 35,714 24,900 1,499,291 $, $$, $$$

Experiment Setup

Datasets. In Amazon Video Games and the Movies & TV review datasets7, we study use users’ binray gender
(male, female) as the protected attribute. We also study the fairness on the item side on the Yelp dataset8,
where a restaurant’s price range ($, $$, $$$) is used as the protected attribute, as the designer may require the
system not to discriminate a restaurant simply because the restaurant sets lower prices for equally good food
and service than its counterparts. The statistics of the datasets are summarized in Table 3.3. The details of
data processing are described in Appendix D. We split each dataset into training (80%), validation (10%), and
testing (10%) sets, and ensure that there is at least one record in each subset for every user and item.

Baselines. As we are the first to study the quality fairness of personalized text generation, there is no existing
work that directly addresses this problem. For comparison, we adapt popular methods in the fairness literature
for the purpose, including pre/ in/post-processing methods. Below we briefly introduce them and describe
their detailed implementations in Appendix D.

• RAW: Original PETER or NRT model.
• ADV (in-processing): Adversarially removing the sensitive information in user or item representations

by adding a discriminator [200].
• NORM (pre-processing): Normalizing the training data to remove the bias on group-level.
• BT (pre-processing): Back-translation has been shown to help normalize text and reduce bias [206, 207].

We pre-process the training data by translating the explanations to Chinese and then back to English.
• ATTR: To evaluate the effectiveness of the disentanglement for and optimizing the fairness constraint in

COFFEE, we use the model trained without the constraint (λ = 0) but with disentangled representations
as a baseline.

• NATTR (post-processing): We disable the protected attribute token in ATTR for generating explanations
during inference.

We train each model on the training set, tune the hyper-parameters on the validation set, and report the results
on the testing set. Each result point is averaged over 3 runs. We put the detailed model specifications and
parameter tuning in Appendix D.4.

Metrics. Our evaluation consists of two parts: fairness evaluation and utility evaluation.
• Fairness metrics. Fairness requirements are subjective and totally depend on the application and the needs
from the system designer [199, 208]. COFFEE is general enough to handle different specifications of fairness.
For proof-of-concept and demonstrating the effectiveness of COFFEE, we first use length of the text to specify
the quality function as Qlen. Besides, one of the main purposes of explanation is to provide informative
descriptions on item features for the user to make more informed decisions. We also use the number of item
features mentioned in the explanations as a quality measure Qfeat. Different quality measures may correlate
to each other, and we are interested in seeing how optimizing fairness on one will affect fairness on the other,
as well as the compositional effect of optimizing fairness on both [149]. The methods applied to optimize
fairness on Qlen, Qfeat, and Qlen + Qfeat are denoted as [model]-L/F/LF, respectively. One can simply
specify Q to any other quality measures under concern in practice.

We evaluate both individual and group-level fairness, with and without counterfactual perspectives. The
detailed formulas of the metrics are in Appendix D. The first metric is Ind-CF, which evaluates the originally
defined CF on individuals [51], which is the same as the regularization term in eq. (3.2.4) averaged over all

7https://nijianmo.github.io/amazon/index.html
8https://www.yelp.com/dataset

https://nijianmo.github.io/amazon/index.html
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Figure 3.6: The average length (left) and average number of features (right) in generated explanations by PETER on the three datasets.

user-item pairs on the test set. We also evaluate the counterfactual effect on group-level [209]. For each
attribute value a and the corresponding demographic group, we counterfactually change the attribute value
of all users in this group by a′ ̸= a, and calculate the change on the average quality of this group. We call
this metric Grp-CF. Besides counterfactual metrics, we also evaluate COFFEE’s generalization to improve
group-wise fairness by the popular notion of demographic disparity (DDP) [23]. The CF based metrics can
only be evaluated on baselines with disentangled attribute representations for , i.e., ATTR and COFFEE. All
fairness metrics are lower the better.

• Utility metrics. We adopt several metrics to comprehensively evaluate the utility of generated explanations.
Besides the n-gram based BLEU-{1,4} [135] and ROUGE-L [210] scores, we also include the recently
prevalent BERTScore [211], which is shown to better capture the semantic meanings between the target and
generated text and better correlate to human judgements. We calculate the BERTScore using RoBERTa-large
with re-scaled scores. We report F-1 score for ROUGE and BERTScore. Although we focus on explanations,
we also evaluate the rating prediction performance by RMSE to examine if different methods will influence
the recommendation performance. RMSE is lower the better and the other metrics are higher the better.

Unfairness in Explanation Generation

We first analyze, without any fairness consideration, how Qlen and Qfeat in model generated explanations
can be unfair towards certain protected attributes on users or items, which provides insights into the need
of fairness improvement. The statistics of explanations generated on the test sets by PETER is shown in
Figure 3.6. On both Amazon Games and Movies & TVs, the model tends to generate longer explanations
with more features for male users than female users. On Yelp, the model generates longer and more detailed
feature descriptions for more expensive restaurants than cheaper restaurants, potentially users care more about
experiences in expensive restaurants as they are paying more. These are consistent with the bias observations
in the corresponding training datasets. We also conduct a case study to understand the unfairness from a
counterfactual perspective in Appendix D.5. The study proves the effectiveness of our disentangled attribute
representation learning, which can also be indicated in the results of ATTR evaluated by Ind-CF and Group-CF
in Table 3.4.

Comparison to Baselines

An ideal method should improve fairness without hurting the utility of explanations. We show the complete
results on the Amazon Games in Table 3.4 and plot sampled results on the other two datasets in Figure 3.7.
The complete results on Amazon Movies & TV and Yelp are in Appendix D.6.

As is shown in Table 3.4, COFFEE achieves superior fairness improvements on all fairness metrics and
outperforms baselines with a large margin, which demonstrates its strong ability in promoting fairness.
Besides, the comparison between COFFEE and ATTR on Ind-CF and Grp-CF proves the efficacy of optimizing
the CF constraint via our fair policy learning scheme. Moreover, optimizing fairness on Qlen helps the fairness
on Qfeat, while the reverse is not as significant. This also indicates that length is a general indicator for
text quality. When optimizing on Qlen +Qfeat together, COFFEE can further improve the fairness on both
Qlen and Qfeat, showing that the correlations between different quality measures can assist the fairness
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Table 3.4: Comparison between COFFEE and baselines. BL stand for BLEU and RG denotes ROUGE. BLEU, ROUGE and BERTScore
are in percentage values and others are in absolute values. The best results are boldfaced, and the second best are underlined. * indicates
p < 0.05 for significance test over the second best baseline.

PETER Fairness on Qlen Fairness on Qfeat Utility
Ind-CF↓ Grp-CF↓ DDP↓ Ind-CF↓ Grp-CF↓ DDP↓ BL1↑ BL4↑ RG1↑ RG2↑ RGL↑ BERT↑ RMSE↓

Amazon Games (User’s Gender as Protected Attribute)
RAW - - 5.84 - - 1.18 8.82 1.49 19.95* 5.37* 15.54* 14.14 1.21
ADV - - 3.04 - - 0.62 8.78 1.50 16.13 3.96 13.06 12.84 1.21

NORM-L - - 5.37 - - 1.02 8.79 1.54 18.28 4.80 14.60 14.08 1.21
NORM-F - - 5.67 - - 1.13 8.83 1.51 18.20 4.66 14.42 13.91 1.21

BT - - 4.00 - - 0.65 10.43* 1.55 13.42 2.08 10.44 9.55 1.26
NATTR - - 3.24 - - 0.63 8.76 1.52 16.55 3.86 13.02 12.72 1.21
ATTR 12.42 3.63 6.81 2.68 0.75 1.40 8.91 1.57 17.73 4.45 14.13 14.08 1.19

COFFEE-L 3.87 0.47 1.09 1.18 0.03 0.11 10.14 1.24 18.48 4.75 14.69 14.09 1.19
COFFEE-F 6.98 2.11 3.99 1.56 0.32 0.68 9.77 1.58 16.73 3.98 13.43 14.12 1.20

COFFEE-LF 3.72* 0.37* 0.86* 1.15 0.01 0.08* 10.23 1.24 17.38 3.70 13.62 14.02 1.19
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Figure 3.7: Trade-off between fairness and utility on Amazon Movies & TV (left) and Yelp (right) datasets. A method should give low
DDP and high BERTScore (top-left corner of each plot) for better trade-offs.

Figure 3.8: Relative Ind-CF and BERTScore ratio w.r.t. to λ = 0 in COFFEE-L. The Ind-CF and BERTScore of ATTR-PETER are 12.42
and 14.08, respectively.

optimization, similar to the findings in [149]. More importantly, COFFEE achieves strong fairness results
while still maintaining high utility on explanation generation.

To better visualize the fairness-utility trade-off, we plot the results on the Amazon Movies & TV and Yelp in
Figure 3.7, where we use DDP on Qlen for fairness and BERTScore for utility evaluation. COFFEE achieves
the best trade-off by drastically reducing DDP with almost no drop on BERTScore. ADV and NORM can also
improve fairness at a decent level, but the improvement is less significant than COFFEE, with a similar or even
greater decrease on utility. Finally, BT can also improve fairness by simply back-translating the training text
from another language, which shows its interesting normalization effect. But BT causes a dramatic sacrifice
on utility, as it may eliminate lots of information about personal preference during translation.



3.3 Group-wise Fairness in Personalized Explanation Generation 62

Figure 3.9: The sentiment distributions of PETER generated explanations for Chinese restaurants and Italian restaurants on Yelp. The
average sentiment for Chinese restaurant is 0.67, and 0.74 for Italian ones.

Effect of Tuning λ in COFFEE

We further study the fairness-utility trade-off in COFFEE by tuning the weight λ on fairness constraint in
eq. (3.2.4). We use Ind-CF on length for fairness evaluation since it corresponds to the constraint that COFFEE
directly optimizes, and use BERTScore for utility evaluation. We plot the results on Amazon Games in fig. 3.8,
where the y-axis is the metric values ratio to the base results when λ = 0 (equivalent to ATTR). As λ increases
from 0 to 0.5, COFFEE significantly improves the fairness with a drop of about 77% on Ind-CF while barely
hurt the BERTScore with a drop on of about 2%. This study shows COFFEE’s outstanding efficiency and
effectiveness in fairness optimization.

3.3 Group-wise Fairness in Personalized Explanation Generation
COFFEE tries to ensure fairness on each individual from a counterfactual perspective. However, sometimes
system designers may care about fairness on a group level, i.e., a certain group should not be disadvantaged
by the system. In this section, we further investigate the group-wise fairness in personalized explanation
generation.

In this work, we consider the group-wise fairness notion of strong demographic parity, which tries to align
the distributions of a specific measure(s) on generated textual explanations for groups defined by certain
attributes of users or items. For example, consider the sentiments of generated explanations for Yelp restaurant
recommendations by a transformer model PETER [39] in Figure 3.9. After collecting all explanations and
evaluate their sentiments, we found that the model tends to generate more positive explanations for certain
categories of restaurants (e.g., Italian restaurants), while more negative explanations for others (e.g., Chinese
restaurants). Such bias can disadvantage the Chinese restaurants and their business owners, and thus lead to
fairness issues.

To quantify such bias, we propose to use the fairness notion of Strong Demographic Parity to investigate
fairness, which converts to the fairness metric equivalent to average Wasserstein distance (W-dist) between
measure distributions of different groups. Smaller W-dist indicates less bias, and thus better fairness when
being used. In particular, the explanation measure does not limit to sentiment, but can also be quality measures,
e.g., the diversity of explanations. To achieve such Wasserstein fairness, we propose a general framework
that directly minimize W-dist among groups for any specific measure and any sensitive attribute of users or
items under interest. Experiments show that our method can significantly improve fairness without hurting the
performance of explanation generation.

The closest work to ours is [186], where the authors proposed two methods for achieving Wasserstein fairness.
The first method involves adding regularizations on the latent embeddings extracted from the last hidden
layers of the language model, which apparently requires access to the model structure and hidden layers. The
second method involves adding regularizations of the embeddings from the output layers of a self-trained
sentiment classifier, which needs full-control of the classifier used to decide fairness. In comparison, our
method improves on several fronts. First, we study fairness with respect to the users or items directly being
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served by the system-generated text, rather than the bias encapsulated in the text, without analyzing how such
bias may affect the end-users of the system. Second, our method generalizes to any measures on generated
text, not only sentiments, and we only need the output of any given classifier (e.g., provided by regulators) that
evaluates the measure. Third, our method does not require knowledge of the structure or access to parameters
of the language model, and only requires fine-tuning based on our fairness objective. Fourth, we directly
optimize Wasserstein fairness on generated text.

3.3.1 Framework
Here we use sentiment as the explanation measure to illustrate the proposed framework, but it generalize to
any other measures as we will show in experiments. The proposed framework is called WFPTG, meaning
Wasserstein-Fair Personalized text Generation. Given a training set of D = {(xi, ai, yi)}{i = 1}N , where
xi is a user-item pair as the input for explanation generation, ai is the sensitive attribute value associated
with either the user or the item, and yi is the observed ratings and reviews. Let the set of possible sensitive
attribute values be A, the subset of Na instances with attribute value a is Da. The expected sentiment of an
instance (x, a) under current policy is s(x, a). The sentiment of a sampled explanation in group Da is denoted
by a variable Sa and the distribution of sentiment scores of sampled explanations in group Da is PSa . Strong
Demographic Parity (SDP) requires that

PSa
= PS′a

,∀a, a′ ∈ A,

which is equivalent to

Eτ∼U [0,1] |P (Sa > τ)− P (S′a > τ)| = 0,∀a, a′ ∈ A.

Therefore, we can define the measure of violation to SDP by∑
a,a′∈A

Eτ∼U [0,1] |P (Sa > τ)− P (S′a > τ)| ,

which is equivalent to the sum of pairwise Wasserstein-1 distances between any two distributions correspond-
ing to different attribute values. We call this metric Strong Demographic Disparity (SDD) for generated
explanations.

Gradient based method for minimizing Wasserstein-1 distance

We propose to achieve SDP by pushing all sentiment distributions to their group-size weighted Wasserstein-1
barycenter distribution PS̄ , so that to minimize the changes needed for achieving SDP. Note that the sentiment
of sampled explanations is a function of language model parameters θ, which is constantly changing during
the optimization, and thus the induced barycenter of sentiment distributions are also changing. Therefore, we
propose a gradient-based method for optimizing model parameters θ to achieve SDP.

Given a current model parameter θ, we can obtain the empirical sentiment distributions of all groups {p̂Sa
}a ∈

A based on the sampled explanations in each group, as well as the empirical barycenter P̂S̄ . To push each P̂Sa

to P̂S̄ , we need to minimize the Wasserstein-1 distance between them, which is calculated as:

W1 (p̂Sa
, p̂S̄) = min

TSa,S̄∈Ω(Sa,s̄)

〈
TSa,S̄ , C

〉
,

where

Ω (sa, s̄) =

{
T ∈ RNsa ,Ns̄ | T1s̄ =

1

Nsa

1sa , T
⊤1sa =

1

Ns̄
1s̄

}
.

1sa denotes a vector of ones of size Nsa , and ⟨·, ·⟩ is the trace dot product. C is the cost matrix defined by the
Wasserstein-1 cost function, with each element Ci,j =

∣∣sia − s̄j
∣∣. Then the loss to achieve SDP by minimizing

the Wasserstein-1 distance between each group and the barycenter is called Strong Demographic Distances
(SDD):

SDD(θ) =
∑
a∈A
W1 (p̂Sa

, p̂S̄) .
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We can prove that this SDD loss provides a tight bound on the SDD measure defined at the beginning [Jiang et
al., UAI’20]. The gradient for the above loss can be derived as

∇θSDD(θ) =
∑
a∈A

∑
i∈[Nsa ],j∈[Ns̄]

T ∗sa,s̄∇θ

∣∣sia − s̄j
∣∣ .

T ∗sa,s̄ = argminTsa,s̄∈Ω(sa,s̄) ⟨Tsa,s̄, C⟩ is the optimal coupling resulting from the Wasserstein-1 distance
calculation.

As indicated in the derived gradients, our goal is to move the sentiment of generated explanations closer to
the barycenter distribution. However, since the explanation sample procedure is discrete and the sentiment
classifier is considered a black-box, it is intractable to directly obtain the gradient ∇θ

∣∣sia − s̄j
∣∣. We instead

consider policy gradients to achieve the goal. In particular, we can consider the reward of the sentiment for the
i-th instance in group with attribute value a as:

r
(
sia
)
= −

∑
j∈[Ns̄]

T ∗sa,s̄
∣∣sia − s̄j

∣∣ .
Thus the policy gradient estimate for maximizing the reward (minimizing the W-1 distance to the barycenter)
is derived as∇θ log πθ (xi, a) · r

(
sia
)
.

Based on the derived policy gradient, we can perform gradient updates for optimizing the SDP. To improve
efficiency, we calculate the barycenter every K batches of update. We also maintain a sentiment map, which is
updated after each training step only for the instances in the current batch. The full algorithm is in Algorithm 1.

Algorithm 1 Wasserstein-Fair Personalized Text Generation.
Input: policy πθ, training set D{(xi, ai, yi)}Ni=1, attribute values A,

a sentiment map s(ex,a) initialized by sampling explanations
for every instances in the training set (e.g., s(ex,a) is estimated
from sampled explanations ex,a ∼ πθ(x, a)), intervals for
barycenter calculation K, sample size from barycenter N̄

1: for j-th batch B in D do
2: if j%K == 0 do
3: Calculate the barycenter P̂s̄ and sample {s̄i}Ni=1

4: Compute the optimal coupling matrices
{
T ∗sa,s̄

}
a∈A

5: Compute the policy gradient for every instance in B
6: Update model parameters based on policy gradients
7: Update sentiment map for every instance in B
8: Output πθ

3.3.2 Experiments
We conduct experiments on two public review datasets: Amazon Movies & TV, and Yelp Restaurant, which
are the same as used in Section 3.2.5. But for Yelp restaurants, we use the restaurant categories as sensitive
attributes, and there are 10 categories in total: Korean, Indian, Mediterranean, Vietnamese, Thai, Chinese,
Italian, Japanese, American (New), American (Traditional).

Baselines. As we are the first to study the quality fairness of personalized text generation, there is no existing
work that directly addresses this problem. For comparison, we adapt popular methods in the fairness literature
for the purpose, including pre/ in/post-processing methods. Below we briefly introduce them and describe
their detailed implementations in Appendix D.

• RAW: Original PETER or NRT model.
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Figure 3.10: The sentiment distributions of generated explanations for Chinese restaurants and Italian restaurants on Yelp. Left is raw
PETER generated, and right is generated by WFPTG fine-tuned PETER.

Table 3.5: Results of sentiment fairness on Yelp Restaurants.

Yelp DP SDP BL1 BL4 RG1 RG2 RGL BERT Avg-Stm

RAW 0.0739 0.0521 0.1176 0.0256 0.2095 0.0452 0.1829 0.2696 0.6896
ADV 0.0322 0.0410 0.1067 0.0182 0.1971 0.0389 0.1720 0.2337 0.7514

NORM 0.0553 0.0523 0.1256 0.0208 0.1959 0.0392 0.1702 0.2570 0.6778
BT 0.0631 0.0514 0.1307 0.0186 0.1799 0.0328 0.1589 0.2629 0.7813

WFPTG 0.0342 0.0355 0.1150 0.0195 0.1996 0.0395 0.1751 0.2455 0.7235

Table 3.6: Results of length fairness on Amazon Movies & TV.

Movies DP SDP BL1 BL4 RG1 RG2 RGL BERT Avg-Len

RAW 0.3919 0.7529 0.1182 0.0222 0.1673 0.0431 0.1474 0.1930 10.98
ADV 0.1835 0.3699 0.1132 0.0194 0.1796 0.0443 0.1535 0.1890 13.22

NORM 0.1809 0.3903 0.1202 0.0224 0.1826 0.0507 0.1571 0.1872 13.09
BT 0.1886 0.4334 0.1225 0.0206 0.1534 0.0238 0.1294 0.1609 13.47

WFPTG 0.0587 0.1940 0.1172 0.0221 0.1753 0.0441 0.1512 0.1927 12.29

• ADV (in-processing): Adversarially removing the sensitive information in user or item representations
by adding a discriminator [200].

• NORM (pre-processing): Normalizing the training data to remove the bias on group-level.
• BT (pre-processing): Back-translation has been shown to help normalize text and reduce bias [206, 207].

We pre-process the training data by translating the explanations to Chinese and then back to English.
• WFPTG: out proposed method for achieving Wasserstein fairness.

We train each model on the training set, tune the hyper-parameters on the validation set, and report the results
on the testing set. Each result point is averaged over 3 runs.

Metrics. Our evaluation consists of two parts: fairness evaluation and utility evaluation. For fairness metrics,
we use both the traditional Demographic Parity (DP) which calculates the difference of average measures across
groups, and the Strong Dempgraphic Parity (SDP) calcuated by Wasserstein distance between group-wise
measure distributions. The utility metrics are the same as used in Section 3.2.5. For Yelp, we consider the
fairness of sentiment of generated explanations w.r.t. the restaurant categories. For Amazon Movies & TV, we
use the length of explanations to specify the fairness w.r.t. the users’ genders.

Results and Analysis

We first visualize the sentiment distributions of explanations generated for Yelp restaurants. We compare
the results from WFPTG fine-tuned PETER with the original PETER model in Figure 3.10. As we can see,
after fine-tuning with WFPTG, the gap of sentiment distributions for Chinese and Italian restaurants is shrunk.
More importantly, the averge sentiments are not changed too much, which still aligns with the original average
sentiments. This demonstrates WFPTG’s effectiveness in achieving fairness with minimum change on the
outputs.



3.4 Conclusion 66

We present the detailed results on fairness and utility in Table 3.5 and Table 3.6 for the sentiment fairness
on Yelp data set and length fairness on Amazon Movies & TV data set. As shown in the tables, besides the
sentiment fairness evaluated by DP on Yelp, WFPTG achieves superior fairness results on both data sets.
On sentiment fairness on Yelp, ADV only outperforms WFPTG on DP with a small edge by pushing the
sentiments to be very positive. This shows the generality and effectiveness of WFPTG in achieving fairness in
personalized text generation. Moreover, the sentiments or length after WFPTG tuning is close to the original
model, meaning that WFPTG can achieve fairness with minimum change on the corresponding measures.
Although the utility may drop after fine-tuning by WFPTG, the utility remains largely comparable to the
original model. Therefore, WFPTG is promoting fairness efficiently without hurting utility too much.

3.4 Conclusion
In this chapter, we investigate fairness in PS from different perspectives: universal, counterfactual (individual),
group-wise fairness. Specifically, we propose a principled new way for learning unbiased node embeddings
from graphs biased by sensitive attributes. The idea is to infer a bias-free graph where the influence from
sensitive attributes is removed, and then learn the node embeddings from it. This new perspective motivates our
design of UGE-W, UGE-R and their combined methods UGE-C. Extensive experiment results demonstrated
strong debiasing effect from UGE as well as better unbiasedness-utility trade-offs in downstream applications.
For measure-specific fairness, we first study it on individuals from a counterfactual perspective. We propose a
general framework called COFFEE for achieving counterfactual quality fairness in explanation generation.
Finally, we also consider group-wise fairness in explanation generation with strong demographic parity (SDP).
We propose a detailed algorithm WFPTG for achieving SDP by minimizing the Wasserstein distance between
measure distributions across groups. Comprehensive results and analysis show the efficacy of our approaches
in achieving fairness without hurting the utility of personalized results.

Instead of studying how the generated text may contain representative bias, we firstly study the fairness of
personalized text generation in the setting of explanation generation in recommendation. Our work opens the
new direction of fairness in personalized text generation, where the target users and items are directly the
subjects to the fairness consideration. This problem is general and has more direct and serious implications in
real-world applications, since the personalized text will directly affect the user behaviours and decision-making.
We expect our work to encourage researchers to investigate novel fairness notions in this problem based on
different quality measures, and conduct in-depth analysis on their social impacts. We also plan to generalize
the our developed frameworks to other personalized text generation settings, such as conversational systems.



Chapter 4

Conclusion and Future Work

The significance of transparency and fairness in personalization systems (PS) can never be overstated, par-
ticularly when the decisions made by these systems can have a direct impact on people’s social lives. This
dissertation aims to provide a comprehensive understanding of these issues, examining them from multiple
perspectives. By incorporating the suggested techniques, a contemporary PS can produce more dependable
results when assisting both the consumers and providers in decision-making. Through rigorous analysis and
extensive empirical evaluation, we demonstrate the applicability of the proposed methods in diverse contexts
and applications.

In Chapter 2, we focus on improving the transparency of PS by providing personalized, intuitive textual
explanations that cater to users’ preferences. Our goal is to create explanations that are informative, faithful,
readable, and comparable. To achieve this objective, we propose several techniques. First, we introduce MTER,
which mines the opinionated content in user reviews to generate informative and personalized explanations. To
improve the fidelity of explanations, we propose FacT, which combines rule-based decision trees with latent
factor models to learn explainable user and item representations. In addition to template-based explanation
generation, we explore natural language explanations to increase expressiveness and diversity. To ensure that
the sentiment of the explanations aligns with the recommendation results, we develop SAER. Finally, we
introduce CompExp, which makes explanations more comparable to assist users in their decision-making
process. Extensive experiments demonstrate the effectiveness of our methods, and user studies confirm the
practical value of the explanations generated by our approaches.

Chapter 3 examines fairness in PS from various angles, including universal, counterfactual (individual), and
group-wise fairness. Our focus is on developing a principled approach to learn unbiased node embeddings
from graphs biased by sensitive attributes. The key idea is to infer a bias-free graph by removing the
influence of sensitive attributes and learn node embeddings from it. This perspective informs the design
of our methods, including UGE-W, UGE-R, and their combined approach UGE-C. Extensive experiments
demonstrate that our methods achieve strong debiasing effects and better unbiasedness-utility trade-offs in
downstream applications. For measure-specific fairness, we propose the COFFEE framework, which achieves
counterfactual quality fairness in explanation generation. We also explore group-wise fairness in explanation
generation by incorporating strong demographic parity (SDP). To achieve SDP, we propose a detailed algorithm
WFPTG that minimizes the Wasserstein distance between measure distributions across groups. Our results
show that our approaches effectively achieve fairness without sacrificing the utility of personalized results.

4.1 Future Work
This dissertation seeks to improve PS by prioritizing transparency and fairness, two critical components for
the continued benefit of PS to society. We explore these aspects from different perspectives and propose
corresponding solutions. While we present promising methods to address these issues, there are still many
challenges that need to be overcome to achieve full transparency and fairness in PS.

67
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4.1.1 Understanding the Dynamics in Providing Explanations in PS
To fully understand the utility of system provided explanations, we need to analyze their effect on the dynamics
of user-system interactions. In particular, we can take perspectives stemmed from econometrics studies in
revealed preference theory [212] to infer user valuation from their repeated interactions with a personalized
system. In this case, repeated observations of user actions provide information regarding the choices that
were available to those users and which choices were actually taken. We can then recover the utility of
explanations by fitting a function of features about the available choices (e.g., price, color, brand of an item)
that rationalizes the choices made by the users in the data (expressing their values from different choices).
This thus measures the value of explanation, i.e., the difference between the utilities of a user’s decisions with
and without explanation. On top of this, as the explanations would change the dynamics between users and
system, the requirement and utility of explanations evolve during the course of interaction. The generated
explanations thus should also evolve to provide the most needed information. We can appeal to multi-armed
bandit algorithms [213–219] for adaptive explanation generation, where the inferred user valuation of the
explained results will be used as feedback for both personalization and explanation.

4.1.2 Analyzing Effects on Users’ Decision Making and the Fairness Implications at
Large

Understanding how users interact with personalized text and how it influences their decisions is critical to
developing fair and unbiased personalized systems. One direction for future work is to investigate the impact
of personalized generated text on user behavior and decision-making. Future research could conduct user
studies to explore these questions and develop guidelines for designing personalized text that minimizes bias
and promotes fairness.

Another area is the development of novel fairness notions for personalized text generation based on different
quality measures. We focus on counterfactual and group-wise fairness, but there may be other fairness notions
that are more suitable relevant in the context of PS. Developing new fairness notions and evaluating them in
real-world applications is a critical step towards building more fair and equitable recommendation systems.
From a broader perspective, future research could analyze the social impact of personalized text generation on
different communities and demographics. Understanding how different groups are affected by personalized
text and how it may exacerbate existing social inequalities is crucial for designing personalized systems
that are fair and inclusive. Researchers could conduct large-scale studies to investigate the social impact of
personalized text generation and develop guidelines for mitigating any negative effects.
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Appendix

A Experimental Settings of UGE
Here we introduce more details about the experiment setup and model configurations for reproducibility.

For GCN-type models (GCN, GAT, SGC), we use two convolutional layers with dimension d1 = 64
and d2 = 16. For node2vec, we set walk length to 1 which turns a general skip-gram loss to objec-
tive of the link prediction task. All the deep learning models are trained via Adam optimizer with step
size 0.01 for 800 epochs, and we use a normalized weight decay 0.0005 to prevent overfitting. Our pro-
posed UGE methods and the baseline CFC require a regularization weight to balance the task-specific
objective and the debiasing effect. For CFC, we report the result with the regularization weight chosen
from the set {1.0, 5.0, 10.0, 15.0, 25.0, 35.0, 45.0, 55.0, 65.0}, which finally is λ = 55.0. For UGE, we test
{0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9}, and report the performance when λ = 0.5. The regularization
term in Eq (3.1.14) is summed over all node pairs and can be costly to calculate. But empirically, M group
pairs sampled uniformly in each round of model update, where M is around 10% of the number of node
groups, can already yield promising results. For evaluating the unbiasedness of the node embeddings, we use
implementations from scikit-learn [220] for classifier training and evaluating Micro-F1.

B Additional Results of UGE
In Appendix B.1, we include additional experiment results to report the trade-off between unbiasedness
and utility on the complete set of embedding models on Pokec-z. In Appendix B.2, we show a complete
comparison among our proposed instances of unbiased graph embedding UGE-W, UGE-R and UGE-C. In
Appendix B.3, we investigate the influence of the regularization weight on the complete set of embedding
models.

B.1 Additional Analysis on Undebiasedness
Table 1 summarizes the debiasing and utility performance of the proposed method and baselines when using
four graph neural networks on Pokec-z. Each line of attribute prediction result is followed by the corresponding
performance on link prediction. Generally, UGE-W achieves the best link prediction performance and UGE-R
has better debiasing effect. Combining UGE-W with UGE-R produces UGE-C with better trade-off.

B.2 Ablation Study
Figure 2 presents the performance of three proposed model (UGE-W, UGE-R and UGE-C) applied to four
graph neural networks (GAT, SGC, GCN and node2vec). We can clearly observe that in most cases UGE-R has
better debiasing effect compared with UGE-W, while UGE-W can better maintain the utility for downstream
link prediction task. UGE-C as the combination of them indeed makes the best of the both designs.
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Table 1: The prediction performance of node embeddings learned on Pokec-z using four graph neural networks as embedding models. In
each row, we use bold to mark the best debiasedness on attribute prediction or utility on link prediction.

Debiasing Method
Dataset Model Target No Debiasing Fairwalk CFC UGE-W UGE-R UGE-C Random

Gender (Micro-F1) 0.6232 0.6135 0.5840 0.6150 0.6094 0.5747 0.4921
Link (NDCG@10) 0.3618 0.3280 0.2757 0.3554 0.3422 0.3376 0.0570

Region (Micro-F1) 0.8197 0.8080 0.7217 0.6784 0.7660 0.6356 0.4966
Link (NDCG@10) 0.3618 0.3287 0.2757 0.3451 0.3547 0.3098 0.0570

Age (Micro-F1) 0.0526 0.0522 0.0498 0.0431 0.0545 0.0429 0.0007

GAT

Link (NDCG@10) 0.3618 0.3122 0.2757 0.3471 0.3205 0.3718 0.0570

Gender (Micro-F1) 0.6766 0.6631 0.6520 0.6822 0.6531 0.6596 0.4921
Link (NDCG@10) 0.4975 0.4461 0.4011 0.4938 0.4850 0.4765 0.0570

Region (Micro-F1) 0.7806 0.7820 0.7150 0.7402 0.7680 0.7323 0.4966
Link (NDCG@10) 0.4975 0.4460 0.4011 0.4832 0.4799 0.4644 0.0570

Age (Micro-F1) 0.0621 0.0662 0.0654 0.0606 0.0529 0.0510 0.0007

SGC

Link (NDCG@10) 0.4975 0.4461 0.4011 0.4889 0.4694 0.4630 0.0570

Gender (Micro-F1) 0.5532 0.5589 0.5493 0.5306 0.5301 0.5162 0.4921
Link (NDCG@10) 0.3865 0.2807 0.3836 0.3851 0.3727 0.3488 0.0570

Region (Micro-F1) 0.7445 0.7616 0.7693 0.5800 0.6105 0.4951 0.4966
Link (NDCG@10) 0.3865 0.2807 0.3836 0.3801 0.3360 0.3386 0.0570

Age (Micro-F1) 0.0425 0.0416 0.0391 0.0439 0.0409 0.0324 0.0007

GCN

Link (NDCG@10) 0.3865 0.2807 0.3836 0.3987 0.3550 0.3391 0.0570

Gender (Micro-F1) 0.5248 0.5347 0.5137 0.5171 0.4949 0.4982 0.4921
Link (NDCG@10) 0.5491 0.5120 0.5496 0.5430 0.5463 0.5206 0.0570

Region (Micro-F1) 0.8423 0.8462 0.8423 0.8012 0.6490 0.6372 0.4966
Link (NDCG@10) 0.5491 0.5120 0.5496 0.4816 0.5354 0.4506 0.0570

Age (Micro-F1) 0.0365 0.0404 0.0365 0.0200 0.0122 0.0068 0.0007

Pokec-z

node2vec

Link (NDCG@10) 0.5491 0.5120 0.5496 0.5173 0.5439 0.5002 0.0570
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Figure 1: Unbiasedness and utility trade-off using different regularization weights on UGE-C (x-axis). The left columns shows
unbiasedness (attribute prediction), and the right columns shows utility (link prediction).



C Applying COFFEE to NRT 86

GAT SGC GCNnode2vec
0.5

0.6

0.7

Ge
nd

er
 P

re
di

ct
io

n 
 (M

icr
o-

F1
)

GAT SGC GCNnode2vec

0.3

0.4

0.5

Lin
k 

Pr
ed

ict
io

n 
 (N

DC
G@

10
)

Base UGE-R UGE-W UGE-C

GAT SGC GCNnode2vec
0.5

0.6

0.7

0.8

Re
gi

on
 P

re
di

ct
io

n 
 (M

icr
o-

F1
)

GAT SGC GCNnode2vec

0.3

0.4

0.5

Lin
k 

Pr
ed

ict
io

n 
 (N

DC
G@

10
)

Base UGE-R UGE-W UGE-C

GAT SGC GCNnode2vec0.00

0.02

0.04

0.06

Ag
e 

Pr
ed

ict
io

n 
 (M

icr
o-

F1
)

GAT SGC GCNnode2vec

0.3

0.4

0.5

Lin
k 

Pr
ed

ict
io

n 
 (N

DC
G@

10
)

Base UGE-R UGE-W UGE-C

Figure 2: Comparison among our proposed models on different embedding models. The left columns shows the unbiasedness (attribute
prediction) and the right columns shows the utility (link prediction).

B.3 Unbiasedness-Utility Tradeoff in UGE
We now include a complete analysis on unbiasedness and utility trade-off across embedding models in Figure 1.
It clearly shows a trade-off: as the weight increases, we obtain a stronger debiasing effect with a cost of the
utility on link prediction.

C Applying COFFEE to NRT
There are mainly two modules in NRT [37]—a MLP for rating prediction, and an RNN for explanation
generation. Both modules share the same user and item embeddings mapped from input user and item IDs
for personalization. In particular, the user and item embeddings are used in the initial hidden state of the
RNN for explanation generation (see Figure 2 in [37]). To apply COFFEE to NRT, we simply need to use the
concatenation of disentangled user preference embedding and the attribute embedding instead of the holistic
user embedding, exactly as introduced in Section 3.2.3. Similar to PETER, there are also three loss terms in
the original NRT, corresponding to the explanation, context, and rating prediction (see Section 3 in [37]). We
denote the total loss of NRT by Lnrt, which is used to replace Lgen in eq. (3.2.3) for applying COFFEE.

D Details of Experiment Setup and Additional Results

D.1 Dataset Processing
The first two datasets are the Video Games and the Movies & TV categories from Amazon reviews. These
two datasets only provide the names of users. We use a gender classification tool1 to predict the gender of
users from their names. To guarantee the accuracy of the attribute values, we only reserve the users whose
names can be confidently classified as male or female and remove those classified as unknown. In the Yelp
dataset, we use a restaurant’s price range as the protected attribute. There are originally four price ranges ($,
$$, $$$, $$$$) provided. However, we found that there are much less four-dollar restaurants than in the other
price ranges, and thus we merge the four-dollar restaurants into the group of three-dollar ones for experiments.
Using restaurant price as a sensitive attribute is based on the counterfactual argument: if a restaurant chose
to raise/lower the price of its dishes without other changes, the quality of generated explanations shouldn’t

1https://pypi.org/project/gender-guesser/
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change. The rationale is that users may care more about experiences in expensive restaurants since they
are paying more, and thus writing more detailed reviews. This would make the explanations generated for
expensive restaurants longer and more detailed, which helps recommendations on them be accepted more
often, and thus leaves the lower-priced restaurants at a disadvantage.

To construct ground-truth explanations from reviews, we follow the standard processing steps [38, 39, 65]
by first extracting item feature words from the all reviews. Then we extract from each review sentences that
contain at least one of the feature words as the ground-truth explanation about the user’s preferences on the
item. We also evaluated RMSE on rating prediction, and the ground-truth ratings range from 1 − 5 for all
three datasets.

D.2 Details of Baselines
• ADV (in-processing): Adversarially removing the sensitive information in user or item representations by
adding a discriminator [200]. We add discriminators on the user’s (or item’s) embedding in PETER and NRT
to remove the information about protected attributes.
• NORM (pre-processing): We normalize the training data to remove the bias on group-level. With two
demographic groups, we remove the explanations with the higher (lower) quality in the group with more
reviews, until the difference of average quality between the two groups is below 10% of the original difference.
With more than two groups, we recursively apply the procedure to the two groups with the maximum difference
until the maximum difference is below the threshold. NORM removes less than 2% of training data on Amazon
datasets, and less than 18% on Yelp.
•We pre-process the training data by translating the explanations to Chinese and then back to English. We use
the multilingual model mBART [221] from EasyNMT2 to perform the translation.
• ATTR: In order to evaluate the effectiveness of optimizing the fairness constraint in COFFEE, we use the
model trained without the constraint (λ = 0 in eq. (3.2.4)) as a baseline. We call the model ATTR, which
means the attribute is disentangled from the user’s or item’s representations as introduced in Section 3.2.4 but
without adding the fairness constraint.
• NATTR (post-processing): We disable the protected attribute token in ATTR for generating explanations
during inference. Specifically, for NATTR-NRT, we replace the learned attribute embeddings with random
embeddings with values uniformly sampled in [−1, 1] for explanation generation. For NATTR-PETER, we
disable the other tokens’ attention on the attribute token during inference.

D.3 Evaluation Metrics
We evaluate both individual-level and group-level fairness, with and without counterfactual perspectives. The
first metric denoted as Ind-CF evaluates the originally defined CF on individuals [51], which is the same as the
regularization term in eq. (3.2.4) averaged over all user-item pairs on the test set D:

Ind-CF (D.1)

=
1

|D|
∑

u,i∈D

∣∣E[Q(yA←a)|u, i]− E[Q(yA←a′)|u, i]
∣∣.

We also evaluate the counterfactual effect on group-level [209]. For each attribute value a and the corresponding
demographic group, we counterfactually change the attribute value of all users in this group by a′ ̸= a, and
calculate the change on the average quality of this group. We call this metric Group-CF:

Group-CF (D.2)

=
1

|A|(|A| − 1)

∑
a∈A

∑
a′ ̸=a

1

|Da|∣∣∣∣∣ ∑
u,i∈Da

E[Q(yA←a)|u, i]−
∑

u,i∈Da

E[Q(yA←a′)|u, i]
∣∣∣∣∣,

2https://github.com/UKPLab/EasyNMT
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COFFEE PETER NRT
Games Movies Yelp Games Movies Yelp

λ 0.2 0.2 0.2 0.3 0.1 0.1
η 0.6 0.6 0.5 0.5 0.5 0.5

Table 2: Weight λ for the fairness constraint and the promotion weight η in reward calibration of COFFEE when applied to PETER and
NRT on the three datasets.

where Da denotes the demographic group with attribute value a.

Finally, besides counterfactual metrics, we also evaluate COFFEE’s generalization to improve group-wise
fairness by the popular notion of demographic disparity (DDP) [23]:

DDP =
2

|A|(|A| − 1)

∑
a,a′∈A

∣∣∣∣∣ 1

|Da|
∑

u,i∈Da

E[Q(y)|u, i]− 1

|Da′ |
∑

u,i∈Da′

E[Q(y)|u, i]
∣∣∣∣∣. (D.3)

All fairness metrics are lower the better, and the quality expectation on each user-item pair is calculated over
N = 3 sampled explanations.

D.4 Experiment Settings
Here we elaborate the experiemntal protocols, model specifications, and hyper-parameters. For all models,
we set the size of vocabulary to 20,000 by keeping the most frequent words. By default, we use top-5
sampling [222] as the decoding strategy, and the maximum decoding sequence length is 128.

For the raw PETER model [39], we mostly follow the original paper’s hyper-parameters. The token embedding
dimension is 512 and the dimension of feed-forward network is 2, 048. The number of transformer layers and
attention heads are both two. The dropout rate during training is 0.2. For NRT [37], we follow the original
paper and set the embedding dimension to 300 for all users, items and words. The dimension of hidden layers
is 400. The dropout rate during training is 0.1. COFFEE consists of pre-training the ATTR models with
disentangled attribute representations and then fine-tune them with the counterfactual fairness constraints.
For ATTR-PETER, we just add an additional attribute token to PETER, with the same embedding dimension
for the attribute. For ATTR-NRT, we disentangle the attribute representation by concatenating to the user or
item embedding an attribute embedding of dimension 100. The other model specifications for ATTR-PETER
and ATTR-NRT are the same as raw PETER and NRT. When applying the discriminator for removing the
information about the protected attribute from user or item embeddings, we use a 2-layer MLP with hidden size
of 512 as the attribute discriminator. For both ATTR-PETER and ATTR-NRT, the weight λD of the adversarial
loss is set to 0.5 on Amazon Games and Yelp datasets, and 0 on Amazon Movies. We iterate between one
epoch of model training and one epoch of discriminator training until convergence. After the pre-training
of ATTR models, we fix the user, item and attribute embeddings, remove the loss on rating prediction but
keep the loss on explanation generation, and tune the model with the fairness constraint. The weight λ for
the fairness constraint and the promotion weight η in reward calibration are tuned for different models and
datasets, and are listed in Table 2.

For model training, we use Adam as optimizer and the initial learning rate for training raw models and ATTR
models is 1e-4. The initial learning rate is 1e-5 for COFFEE during fine tuning by the fairness constraint. By
default, the batch size is 16. But we use batch size of 8 during the tuning phase of COFFEE when applying to
PETER models, mainly due to memory issues. For training raw models and ATTR models, we evaluate the
total loss on the validation set after each epoch, and use the epoch checkpoint when the total loss is higher in
the next 5 consecutive epochs. When COFFEE fine-tunes the pre-trained ATTR models, we always use the
checkpoint after a single epoch, which already yields promising results from COFFEE.

D.5 Unfairness in Explanation Generation
We conduct a case study to understand the fairness issue from a counterfactual perspective. In particular, We
study how changing the user’s or item’s protected attribute counterfactually will affect the length of generated
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Figure 3: Length distributions of explanations generated by ATTR-PETER. The left figure plots the distributions for real male users vs.
their counterpart female users in the counterfactual world. The right figure is similarly plotted for female users vs. their counterfactual
male users. The smoothed distribution curves are produced by kernel density estimation.

Table 3: Comparison between COFFEE and baselines based on the PETER model. BL stand for BLEU and RG denotes ROUGE. BLEU,
ROUGE and BERTScore are in percentage values and others are in absolute values. The best results are boldfaced, and the second best
are underlined. * indicates p < 0.05 for significance test over the second best baseline.

PETER Fairness on Qlen Fairness on Qfeat Utility
Ind-CF↓ Grp-CF↓ DDP↓ Ind-CF↓ Grp-CF↓ DDP↓ BL1↑ BL4↑ RG1↑ RG2↑ RGL↑ BERT↑ RMSE↓

Amazon Movies & TV (User’s Gender as Protected Attribute)
RAW - - 3.02 - - 0.57 11.25 2.20 18.04 4.53 15.48 19.93 1.11
ADV - - 1.43 - - 0.26 11.08 2.16 17.20 4.32 14.37 18.94 1.14

NORM-L - - 1.48 - - 0.28 10.98 2.11 17.11 4.28 14.78 19.53 1.10
NORM-F - - 1.51 - - 0.27 11.23 2.17 17.46 4.42 15.00 19.67 1.14

BT - - 0.94 - - 0.16 11.25 2.18 12.91 1.66 11.02 15.01 1.13
NATTR - - 1.56 - - 0.27 11.24 2.19 17.35 4.40 14.92 19.34 1.17
ATTR 6.46 0.31 1.87 1.47 0.10 0.37 11.19 2.16 17.43 4.63 15.98 19.72 1.13

COFFEE-L 3.47 0.07 0.19 1.16 0.01 0.02 10.37 1.52 19.16 4.46 15.88 19.77 1.08
COFFEE-F 4.91 0.06 0.84 1.13 0.01 0.07 11.28 2.12 17.77 4.60 15.35 20.13* 1.08

COFFEE-LF 3.31* 0.16 0.10* 1.16 0.01 0.00* 10.05 1.39 19.34* 4.56 15.86 19.52 1.08
Yelp (Restaurant’s Price as Protected Attribute)

RAW - - 3.34 - - 0.51 10.24 1.57 18.71 3.11 14.64 19.82 1.12
ADV - - 1.89 - - 0.28 9.87 1.60 17.25 2.64 13.99 18.34 1.18

NORM-L - - 2.09 - - 0.21 8.57 1.00 19.38* 3.27* 14.76 19.14 1.18
NORM-F - - 0.53 - - 0.09 9.96 1.54 17.56 2.81 14.10 19.67 1.16

BT - - 2.02 - - 0.27 10.69 1.61 16.42 2.36 13.29 18.89 1.20
NATTR - - 1.97 - - 0.32 10.08 1.55 18.53 3.06 14.57 19.75 1.17
ATTR 9.64 2.65 3.92 1.50 0.44 0.64 10.00 1.53 18.83 3.16 14.75 19.81 1.12

COFFEE-L 2.42 0.22* 0.17* 0.61 0.03 0.04 11.19 1.64 17.73 2.96 14.49 20.75* 1.11
COFFEE-F 5.78 0.58 0.71 0.84 0.08 0.13 11.17 1.77 17.97 3.00 14.39 20.58 1.10

COFFEE-LF 2.27* 0.31 0.26 0.54* 0.03 0.03* 11.61* 1.72 17.41 2.93 14.31 20.21 1.11

explanations, which advocates the needs for CF. We analyze the generated explanations on Amazon Games by
ATTR-PETER and the observations are similar on the other two datasets. The analysis is displayed in Figure 3,
where we plot the length distributions of generated explanations before and after counterfactually changing
users’ gender. The left figure corresponds to ground-truth male users and their counterfactual female users. As
is shown, when we change male user’s gender to female, the length of generated explanations are becoming
shorter, with more short explanations and less long explanations. Similarly, in the right figure, the length will
become longer if we change ground-truth female users gender to male. These results show that the model
generates explanations of different lengths depending on the users’ gender, leading to unfair treatment when
serving users. Furthermore, this study also proves the effectiveness of disentangling the protected attribute’s
representations. The separate attribute value input indeed correlates to the quality of generated explanations,
laying the foundation for subsequent counterfactual inference for fairness optimization.

D.6 Additional Results
We show the complete results on the Amazon Movies and Yelp datasets based on the PETER model in Table 3.
Importantly, COFFEE achieves strong fairness results while maintaining high utility on explanation generation.
Although COFFEE may slightly drop the utility compared to the baselines, it can sometimes even outperform
the baselines, as shown in the results on Amazon Movies & TV and Yelp datasets. This is because the
disentanglement mechanism enables better representation learning [189, 191] and increases the flexibility and
accuracy of interactions between the user and item for better explanation generation.

We also present some examples of generated explanations on Amazon Games in Table 4. In particular, we



D Details of Experiment Setup and Additional Results 90

Table 4: Generated explanations by different models on Amazon Games. We select one male user Chadwick and one female user Noemi,
and present the explanations for them on the same item "Wii Nunchuk Controller".

PETER user: Chadwick, item: Wii Nunchuk Controlle user: Noemi, item: Wii Nunchuk Controller

Ground-truth

this review is for the white wii nunchuk controller. it is a
necessary component in most wii games, and attaches to
the bottom port of every wii remote. it is well-designed,
sturdy, and comfortable to hold. the price is relatively low
for such a controller.

arrived as expected.

RAW
i bought it to play wii u and this is a great addition to the wii
remote. the gamepad is a nice addition to the wii u gamepad.
the wii u is a must have for any wii u console owner.

worked very well.

COFFEE-L
i bought this controller to use the nunchuck. this is a great
controller for wii - u owners especially the wii u. the
controller is very responsive and the triggers are awesome.

i bought this controller for my wii u. it was exactly
what it would be expected. i love the feel of the box
and it works great.

select a male user Chadwick who wrote long reviews and a female user Noemi who wrote short reviews for the
same item "Wii Nunchuk Controller". The raw PETER model follows the ground-truth reviews and generate
detailed long explanation for Chadwick but short explanation for Noemi. In contrast, after applying COFFEE to
improve fairness on length of explanations, the model tend to generate longer and more descriptive explanation
for Noemi. These examples demonstrate the effect of COFFEE in generating fair and high-quality explanations
for users with different protected attribute values.

D.7 Results based on NRT
We present the complete results based on the NRT model in Table 5. Similar to the results on PETER, COFFEE
when applied to NRT can significantly outperform the baselines in terms of fairness improvement. Again, when
optimizing both Qlen and Qfeat together, COFFEE achieves the best fairness improvements, verifying the
effect of correlations between different quality measures. In general, PETER can generate better explanations
than NRT, e.g., on BERTScore, with or without fairness optimizations, showing the capability of transformers
over RNNs. However, COFFEE still maintains high generation utility based on NRT when compared to
baselines, showing its advantage in generalizing the results to different models.

The observations and conclusions are similar to the PETER based results. These results show COFFEE’s
ability to generalize the fairness improvement to different types of models, and indicate its flexibility and
practicality in real-world uses.
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Table 5: Comparison between COFFEE and baselines based on the NRT model. BL stand for BLEU and RG denotes ROUGE. BLEU,
ROUGE and BERTScore are in percentage values and others are in absolute values. The best results are boldfaced, and the second best
are underlined. * indicates p < 0.05 for significance test over the second best baseline.

NRT Fairness on Qlen Fairness on Qfeat Utility
Ind-CF↓ Grp-CF↓ DDP↓ Ind-CF↓ Grp-CF↓ DDP↓ BL1↑ BL4↑ RG1↑ RG2↑ RGL↑ BERT↑ RMSE↓

Amazon Games (User’s Gender as Protected Attribute)
RAW - - 7.00 - - 1.42 8.33 1.30 19.21 3.97 14.35* 13.79 1.31
ADV - - 5.16 - - 1.25 8.13 1.29 17.67 3.37 13.27 12.85 1.28

NORM-L - - 7.50 - - 1.47 8.37 1.32 19.21 3.92 14.27 13.66 1.30
NORM-F - - 8.83 - - 1.79 8.17 1.26 19.89* 4.27 13.65 13.49 1.30

BT - - 8.46 - - 1.47 8.34 1.17 16.44 2.71 12.23 10.73 1.29
NATTR - - 0.78 - - 0.12 8.39 1.39 13.07 2.71 10.83 11.11 1.30
ATTR 15.54 7.81 8.93 6.70 1.46 1.65 8.98 1.29 18.94 3.89 14.29 13.84 1.30

COFFEE-L 3.74 0.72 0.54 0.90 0.03 0.03 8.99 1.25 17.65 3.07 12.77 13.82 1.30
COFFEE-F 8.97 3.37 3.47 1.81 0.52 0.51 8.91 1.30 17.94 3.50 13.63 13.83 1.30

COFFEE-LF 3.23* 0.56* 0.49* 0.77* 0.02 0.04 8.67 1.26 17.11 3.11 12.46 13.69 1.30
Amazon Movies & TV (User’s Gender as Protected Attribute)

RAW - - 2.74 - - 0.46 10.55 1.86 18.37 3.98 15.16 19.20 1.06
ADV - - 1.56 - - 0.24 10.48 1.83 18.44 3.95 15.10 19.09 1.06

NORM-L - - 2.74 - - 0.47 10.27 1.95 17.99 3.81 14.91 19.06 1.06
NORM-F - - 2.56 - - 0.46 10.53 1.91 18.09 3.89 14.96 19.03 1.06

BT - - 2.69 - - 0.43 10.63 1.62 14.84 1.87 11.95 14.36 1.06
NATTR - - 1.87 - - 0.33 9.84 2.07 15.90 3.37 13.77 16.57 1.07
ATTR 7.75 0.66 2.88 1.74 0.14 0.48 10.53 1.84 18.68* 4.10 15.34* 19.21 1.07

COFFEE-L 4.66 0.15 1.38 1.22 0.04 0.23 11.06 2.07 17.42 3.91 14.90 19.29 1.07
COFFEE-F 5.75 0.12 1.67 1.23 0.04 0.24 11.05 2.08 17.90 4.02 15.11 19.27 1.07

COFFEE-LF 4.30* 0.12 1.19* 1.10* 0.04 0.19* 10.52 2.02 17.04 3.92 14.77 19.35* 1.07
Yelp (Restaurant’s Price as Protected Attribute)

RAW - - 3.76 - - 0.56 10.09 1.49 19.14 3.17 14.83 19.50 1.01
ADV - - 0.93 - - 0.21 10.35 1.97 16.78 2.49 13.14 17.88 1.24

NORM-L - - 3.21 - - 0.40 8.76 1.06 18.73 2.87 14.64 18.58 1.07
NORM-F - - 1.25 - - 0.15 9.88 1.42 19.20 3.14 14.85 19.48 1.06

BT - - 2.06 - - 0.30 10.56* 1.52 16.44 2.31 13.24 18.95 1.01
NATTR - - 0.54 - - 0.19 10.38 2.23* 15.89 2.26 12.58 17.26 1.44
ATTR 10.64 3.19 3.41 1.58 0.42 0.50 10.08 1.85 18.92 3.09 14.72 19.74 1.10

COFFEE-L 4.17 0.29 0.19 0.75 0.12 0.00 10.29 2.02 17.97 2.87 14.12 19.53 1.10
COFFEE-F 6.88 0.68 0.43 0.93 0.17 0.10 10.25 1.75 18.34 2.92 14.33 19.49 1.10

COFFEE-LF 3.97* 0.16* 0.21 0.69* 0.09* 0.02 10.45 2.07 18.65 2.86 14.25 19.67 1.10
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