
Generating Adversarial Examples for Question Answering

Analysis of the Failure of Microsoft’s Twitter Chatbot Tay

A Thesis Prospectus
In STS 4500
Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By
Kevin Ivey

October 27, 2022

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Benjamin Laugelli, Department of Engineering and Society
Yanjun Qi, Department of Computer Science and Affiliated Faculty of Center for Public Health

Genomics



Introduction

Artificial intelligence and machine learning are playing an increasing role in daily life,

from virtual assistants like Alexa to self-driving cars like Tesla. However, such machine learning

models are susceptible to so-called adversarial attacks that modify the input to the model in a

way imperceptible to humans, yet drastically change the output of the model. I will improve on

existing “Question-answering” (QA) adversarial attacks by developing an algorithm to

automatically attack a QA model without human intervention, thus allowing the solution to scale

across domains and models. This will allow researchers to more easily test their models against

adversarial attacks so as to be more robust.

However, there are important social factors that must be considered during the

development and release of such an algorithm. To better understand these factors, I will

investigate the non-technical factors, such as the lack of a release schedule, that contributed to

the failure of Tay, a Twitter chat bot developed by Microsoft. By only considering the technical

factors of developing an adversarial attack for QA models, and ignoring the non-technical

factors, the issue is only partially resolved.

Therefore, given that the development of a QA adversarial attack is sociotechnical,

consideration must be given to both the social and technical aspects. In what follows, I propose a

technical project that seeks to develop an adversarial attack for QA models without human

intervention. Additionally, I will examine the case study of Tay to better understand the factors

that led to the failure of a real-world machine learning model.

Technical Project Proposal

Natural language processing is a field of deep learning which seeks to learn information

directly from human speech. A common problem in natural language processing is QA – a

2



format of problems with a non-trivial question that must be understood to provide the

corresponding answer (Gardner et al., 2019). QA is commonly used in systems that answer

human-posed questions with the expectation of an answer, such as virtual assistants (Gardner et

al., 2019). However, like many deep learning models, QA models have been shown to be brittle

to adversarial attacks, which perturb correctly classified samples causing the model to

misclassify the sample (Alzantot et al., 2018). Such attacks may have no meaningful semantic or

syntactic changes from the unperturbed sample, so that a human would not be fooled by the

changes. Previous work in generating adversarial examples for QA models has been conducted,

but there is no accepted standard on how a successful attack is defined.

Researchers at Stanford have developed adversarial attacks for QA Models by adding

“distracting sentences” to the input paragraph that do not contradict the correct answer nor

confuse humans. These adversarial sentences are generated in two different ways. The first alters

the question to be semantically similar to the original question, creates an answer for the

generated question, combines the two into the declarative form, and then syntactically fixes the

sentences and filters them via human annotators (Jia & Liang, 2019). The second simply

randomly initializes a sentence of common words and then randomly seeks changes to lower the

model's confidence in its answer. In both cases, an attack is deemed successful if the model

generates a new answer when the distracting sentence is added to the context. However, the use

of human annotators in the first approach severely limits the usefulness of such an attack, as it

can not be automatically done by the computer, and the second approach has no guarantees that

the generated sentence does not contradict the answer or that it is semantically or syntactically

correct. Similarly, researchers at Oregon State University developed a method for attacking QA

models that relies directly on human input (Rahurkar et al, 2020). Users with a background in

3



deep learning were given a context paragraph, the corresponding question, and the answer, and

were asked to write a paragraph with the goal of fooling the model. A successful attack was

deemed as any attack where the original answer did not match the newer answer and that the

adversarial paragraph preserved the semantics of the original context, as judged by humans.

While these attacks were successful, the reliance upon humans severely limits the ability for such

an approach to scale.

This technical project aims to design an adversarial attack for QA models without the use

of humans and to integrate the work into the existing TextAttack library. TextAttack is a Python

library for “adversarial attacks, data augmentation, and adversarial training in NLP” (Morris et

al, 2020). The design for generating such adversarial attacks is still to come, but will likely

involve a combination of word-level perturbations, sentence-level additions, and similarity

metrics to ensure that the resulting example is semantically and syntactically similar to the

original example. Note that special consideration must be taken to not alter the question, as then

the original answer is no longer valid, or the answer, as then the original question is no longer

valid.

Training and testing data will be obtained from the SQuAD dataset. The SQuAD dataset

contains over 100,000 questions created from Wikipedia articles “where the answer to each

question is a segment of text from the corresponding reading passage” (Rajpurkar et al., 2016).

SQuAD was chosen as the dataset as it is well-curated, covers a wide range of topics, and is large

in size. This dataset will be incorporated into TextAttack to allow for users to easily generate

adversarial examples. To evaluate the performance of the attack, the percentage of successful

attacks will be calculated over a randomly chosen subset of the dataset.

STS Project Proposal

4



On March 23, 2016, Microsoft released a chatbot, Tay, on Twitter that was supposed to

emulate a teenage girl (Schwartz, 2019). According to Microsoft, Tay was “created for 18- to 24-

year-olds in the U.S. for entertainment purposes” (Lee, 2016). Initially, Tay was given a baseline

behavior by being trained on a dataset containing material written by professional comedians

(Schwartz, 2019). However, the goal was for Tay to learn from its online interactions and

emulate those behaviors in subsequent conversations. Through the duration of its lifespan, Tay’s

interactions with Twitter users caused it to rapidly devolve. A coordinated attack by users on the

websites Reddit and 4Chan caused Tay to tweet “wildly inappropriate and reprehensible words

and images” (Lee, 2016). By the time Microsoft brough Tay offline, a mere 16 hours after its

launch, Tay managed to have over 93,000 tweets containing racist, sexist, and abusive language

(Bridge et al. 2021). While Microsoft apologized for the incident, stating that while they had

prepared for abuse from users, they “had made a critical oversight for this specific attack” (Lee,

2016).

The failure of Tay is commonly attributed to its naive “repeat-after-me” learning

algorithm that did not filter out potentially sensitive subjects as well as the targeted attack by

users to force Tay to learn unwanted behavior (Vorsino, 2021). While these factors did play a

role in Tay’s failure, this view overlooks how the complete lack of an adequate release plan led

to the failure of Tay. For example, Tay immediately underwent a full public release, allowing

anyone with a Twitter account to interact with the software, rather than following a small initial

release that gradually grew in scope. If we continue to only see the failure of Tay as a failure in

the software algorithm used and a failure of human online behavior, we will not be able to

understand how the release schedule of a software can influence the success of real-world

5



machine learning projects. This will potentially lead to similar failures in the future that are

independent of the quality of software engineering and the user base.

I argue that the poor implementation of Tay from an algorithmic perspective and the

morally questionable interactions with Twitter users coupled with an underdeveloped release

plan led to its failure. In order to analyze these factors, I will use Actor-Network theory, which

seeks to identify a network builder as the primary actor and then follows the actors, both

technical and non-technical, that contribute to the network builder’s ultimate goal (Cressman,

2009). Two additional concepts are needed for the application of Actor-Network theory:

translation and punctualization. Translation specifies how these actors are related in the

sociotechnical network and punctualization refers to the process of putting an actor-network into

a black box and considering it as a single actor in another actor-network. Applying this idea, I

will analyze how Microsoft, as the network-builder, formed a network with the goal of a

successful Twitter chatbot, and how it rapidly dissolved. Given that the actual algorithm of Tay is

private, it must be punctalized within this network. By analyzing the network, I will gain a better

understanding of the technical and non-technical actors that must be considered when designing

machine learning models that learn directly from their end users. For this analysis, I will use

evidence from Microsoft’s press releases on Tay, discussion boards on websites such as 4Chan

that discuss the attacks on Tay, and the actual Tweets from Tay itself.

Conclusion

The result of the technical problem discussed will be a design and implementation in

TextAttack of an adversarial attack for QA models that generates adversarial examples without

the use of humans. The STS research paper will determine why the Microsoft artificial

intelligence Twitter chatbot, Tay, failed within 16 hours of its launch. I will use Actor-Network

6



theory to characterize how human factors, such as the Twitter users, and non-human factors, such

as the workings of the model, led to the rapid decay of Tay and forced Microsoft to bring Tay

offline. Together, the technical report will address the issue of generating adversarial examples in

QA models, and the STS report will analyze the specifics of how Tay, a real-world machine

learning model, failed due to the presence of adversarial examples. The combined results will

serve to provide the natural language processing community with a new adversarial attack and a

sociotechnical analysis of why such attacks are relevant.

7



References

Alzantot, M., Sharma, Y., Elgohary, A., Ho, B., Srivastava, M., & Chang, K. (2018). Generating

natural language adversarial examples. Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, 2890-2896.

https://dx.doi.org/10.18653/v1/D18-1316

Bridge, O., Raper, R., Strong, N., & Nugent, S. (2021). Modelling a socialised chatbot using trust

development in children: Lessons learnt from Tay. Cognitive Computation and Systems,

3(2), 100-108. https://doi.org/10.1049/ccs2.12019

Cressman, D. (2009, April). A brief overview of actor-network theory: Punctualization,

heterogeneous engineering & translation. https://summit.sfu.ca/item/13593

Gardner, M., Berant, J., Hajishirzi, H., Talmor, A., & Min, S. (2019). Question answering is a

format; when is it useful?. arXiv. https://arxiv.org/abs/1909.11291

Jia, R., & Liang, P. (2017). Adversarial examples for evaluating reading comprehension systems.

Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing, 2021-2031. https://dx.doi.org/10.18653/v1/D17-1215

Lee, P. (2016, March 25). Learning from Tay’s introduction.Microsoft.

https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/

Morris, J., Lifland, E., Yoo, J., Grigsby, J., Jin, D., & Qi, Y. (2020). TextAttack: A framework for

adversarial attacks, data augmentation, and adversarial training in NLP. Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, 119-126. https://dx.doi.org/10.18653/v1/2020.emnlp-demos.16

8



Rahurkar, P., Olson, M., & Tadepalli, P. (2020). Human adversarial QA: Did the model

understand the paragraph?. NeurIPS 2020 Workshop on Human And Model in the Loop

Evaluation and Training Strategies, https://openreview.net/forum?id=57NC-S7o4Aw

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ questions for

machine comprehension of text. Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, 2383-2392.

https://dx.doi.org/10.18653/v1/D16-1264

Schwartz, O. (2019, November 25). In 2016, Microsoft’s racist chatbot revealed the dangers of

online conversation. IEEE Spectrum.

https://spectrum.ieee.org/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-onlin

e-conversation

Vorsino, Z. (2021). Chatbots, gender, and race on web 2.0 platforms: Tay.AI as monstrous

femininity and abject whiteness. Signs: Journal of Women in Culture and Society, 47(1),

105-127. https://doi.org/10.1086/715227

9


