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ABSTRACT 

The probabilistic format of forecasts has been shown to add economic value to numerical 

weather prediction (NWP) models. To estimate the probability distributions of meteorological 

variates, a forecast center generates an ensemble forecast—a collection of two or more 

deterministic forecasts that verify at the same time. The spread of an ensemble characterizes the 

uncertainty about a meteorological variate due to uncertain initial conditions of the atmosphere. 

 This thesis builds on the analysis of Nah Youn Lee from 2010 by comparing the statistical 

properties of two ensemble forecasting systems for surface temperature—one from the Canadian 

Meteorological Centre (CMC), and one from the National Centers for Environment Prediction 

(NCEP)—and by fusing the two ensemble forecasts via a Bayesian processor. Each of these 

systems generates a 20-member ensemble in 12-hour steps for up to 16 days into the future. 

 A statistical analysis of the CMC ensemble supports these findings: (i) The ensemble mean 

is consistently among the most informative predictors of central tendency. (ii) An optimal 

combination of ensemble members is more informative than the ensemble mean; however, its 

composition varies with lead time and season. (iii) The best predictor of uncertainty varies across 

lead times and seasons with no apparent trend, but the width of the 90% central credible interval 

and an amalgam of ensemble range and coefficient of kurtosis are frequently among the best, 

while the ensemble standard deviation is not. 

 A statistical analysis of a combination of the CMC and NCEP ensembles supports these 

findings: (i) The most informative predictor of central tendency is the affine combination of 

ensemble means. (ii) An optimal combination of ensemble members (among all 40) is more 

informative than the affine combination of means; however, its composition varies with lead time 

and season. (iii) The best predictor of uncertainty is either the arithmetic mean or the geometric 

mean of the same predictors from each ensemble, although all predictors of uncertainty are 

generally poor. 
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1. INTRODUCTION 

1.1 Numerical Weather Prediction 

Numerical weather prediction (NWP) is the use of mathematical models to forecast the 

weather. Modern NWP models incorporate a multitude of meteorological variates, both current 

and historical, to make predictions for a wide range of variates, over large areas and many lead 

times. Consequently, a NWP model has a substantial computational magnitude. At the National 

Centers for Environmental Prediction (NCEP) of the National Weather Service (NWS), for 

instance, current weather conditions around the globe are modeled every six hours, and forecasted 

for up to two weeks ahead, using observations taken at many ground stations and airborn sensors. 

In the northern hemisphere, these observations are used to define a meteorological state on a 1° x 

1° grid, at several altitudes. A meteorological state in the continental United States is defined on a 

finer grid (5 km x 5 km) containing about 300,000 points. Current weather conditions cannot be 

measured exactly at every forecast point, and thus are estimated by applying a model to 

observations taken at relatively few stations.  These estimates of current states (i.e., forecasts with 

zero lead time) are referred to as analysis, and serve as the initial conditions of a NWP model. 

Like any forecast, a weather forecast contains some degree of uncertainty. The need to 

characterize uncertainty probabilistically has been recognized in several domains requiring risk 

analysis and decision-making, including NWP (Krzysztofowicz 1983, Krzysztofowicz 2001). One 

way to forecast future atmospheric states probabilistically is to generate a representative sample of 

trajectories of a stochastic process driven by a probability distribution of the initial state. This 

approach is central to a method employed by many meteorological centers today, known as 

ensemble forecasting.  
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1.2 Ensemble Forecasting 
 

1.2.1 Definition 

An ensemble forecast is a collection of two or more deterministic forecasts that verify at 

the same time (Sivillo et al. 1997). Together, the forecasts in an ensemble approximately represent 

the uncertainty in a modeled system state, as well as provide a means of characterizing the 

uncertainty in future states. The trajectory of a single deterministic forecast, conversely, does not 

take into account potential error in the initial predictand observation, and thus can quickly deviate 

from actual observations over time. Expanding on this logic empirically, Cloke and Pappenberger 

(2009) and Toth et al. (2001) suggest that the economic value of an ensemble forecast system is 

substantially greater than that of a single-forecast system. 

1.2.2 Ensemble Generation 

There are several ways to generate ensemble members. The NCEP uses the breeding 

method, a procedure that simulates the growth of errors in the forecast cycle by carrying forward 

initial condition errors into subsequent forecast cycles. First, a small, random perturbation is added 

to the predictand observation to initialize each of 20 ensemble forecast trajectories, resulting in 20 

different arbitrary perturbations. Next, the NWP model is run to produce the control forecast and 

perturbed forecasts for the next six hours. The vector of differences between the perturbed 

forecasts and control forecast, a “bred vector,” is then rescaled and added to the control to form a 

new perturbed initial condition for the following forecast cycle. After a transient period of forecast 

cycles (3–4 days), the bred vectors become dominated by the fastest-growing instabilities of the 

dynamical process. Both experimentally and operationally, the breeding method has been shown 

to offer superior forecast skill to that of smoothed control and randomly generated (Monte Carlo) 

ensemble forecasts (Toth and Kalnay 1993).  

The Canadian Meteorological Centre (CMC) instead generates each ensemble member 

with a separate perturbed Global Environmental Multiscale (GEM) model. Each GEM model has a 
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different combination of parameters and/or physical parameterizations, and is initialized with a 

perturbed predictand realization generated by an ensemble Kalman filter. Every six hours, an 

ensemble of random perturbation fields is added to the state estimates to maintain sufficient 

ensemble spread (Charron et al. 2010). 

1.2.3 Notation 

Realizations of all variates in this analysis are indexed by !, denoting the day of the year: !!
=!1,!2,! ...! ,!366. (An index for 29 February

 

is included because the data contain a leap year.) The 

predictand (forecasted variate) is !(!), and its realization is !(!). The analysis on day !, not the 

actual predictand observation, is used as a proxy for !(!) to verify forecasts. The predictors 

include high resolution forecast !(!) with realization !(!), low resolution control forecast !!(!) 
with realization !!(!) , and ensemble forecast—a vector !(!) != ! (!!(!), . . . ,!!(!))  with 

realization !(!) !=!(!!(k),!…!,!!!(k)), where ! is the number of ensemble members, equal to 20 in 

this study. An arbitrary predictor is denoted by !, with corresponding realization !. 

1.3 Overview 

Chapter two discusses the benefits and challenges of ensemble forecasts, introduces the 

Bayesian processor of ensemble, and the need for approximately sufficient statistics of an 

ensemble. 

Chapter three discusses pre-processing of CMC ensemble data, standardization of ensemble 

members, normality of ensemble members and predictand, seasonality, and correlation and 

conditional correlation between ensemble members. 

Chapter four discusses the theory behind the Bayesian processor of ensemble and the 

Gaussian-Gamma model. Also, the definition of a sufficient statistic is given along with the 

motivation behind the search for approximately sufficient statistics. 
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Chapter five details the main results of hypothesizing and evaluating predictors of central 

tendency. In addition, methodologies are outlined for single predictors and the combination of 

predictors, evaluated using the Informativeness Score.  

Chapter six summarizes secondary results for hypothesized predictors of central tendency, 

which include the mean of a subset of ensemble members, and predictors constructed from the 

upper/lower mean and majority/minority mean. 

Chapter seven details the methodology for evaluating predictors of uncertainty. Predictors of 

uncertainty are hypothesized and evaluated, and the assumptions of the Gaussian-Gamma model 

are validated. 

Chapter eight makes comparisons between the statistical properties of the NCEP and CMC 

ensembles. The comparisons motivate the combination of the two ensembles in order to produce 

more informative predictors of central tendency and uncertainty. 

Chapter nine is an exploratory analysis of the fusion of NCEP and CMC ensembles. Various 

predictors of central tendency and uncertainty from the joint sample of ensemble forecasts are 

hypothesized and evaluated. More hypothesized predictors are to be evaluated. The hypothesized 

Gaussian-Gamma model has yet to be evaluated. 

Chapter 10 presents conclusions, recommendations for operational forecasting centers, and 

suggestions for future research. 

!

!

!
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2. BACKGROUND 

2.1 Ensemble Forecasting Systems 

As per the methodology of Lee (2010), this research focuses on forecasts of 2-meter 

temperature at the Savannah, GA, weather station. Both the NCEP and CMC generate 20-member 

ensemble forecasts of this variate. Figure 2.1 shows examples of the CMC and NCEP ensemble 

forecasts, respectively, made on a specific date. The CMC ensemble forecasts exhibit much 

greater spread than do the NCEP ensemble forecasts; further, the two sets of ensemble forecasts 

vary in central tendency and uncertainty with increasing lead time. Ensemble forecast systems 

have been shown to exhibit higher skill than systems producing a single deterministic forecast. An 

ensemble forecast system makes extended-range forecasts feasible, as the ensemble members 

collectively provide information about forecast uncertainty. Further, a best estimate of a 

predictand (the primary feature of a single-forecast system) can be obtained from ensemble 

members, for example, as their mean, median, or some other statistic. 

Figure 2.1. Twenty-member ensemble forecasts of surface temperature in Savannah, GA, 
made by CMC (left) and NCEP (right) on 24 July 2008 with lead times of 12, 60, 108, 156, 
204, 252, 300, 348 h.  
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Meteorological centers that employ ensemble forecasting systems face a number of 

challenges. First, an estimate of a probability distribution directly from the ensemble members is 

often poorly calibrated, especially at longer lead times (Gneiting et al. 2004). In addition, an 

ensemble often underestimates total forecast uncertainty, as the ensemble spread directly reflects 

only the uncertainty due to initial atmospheric conditions. The ensemble members also may be 

stochastically dependent or have non-identical distributions, thereby invalidating the interpretation 

of the ensemble as a random sample of predictand trajectories. These challenges motivate the 

operational use of a statistical processor, which can extract more useful information from an 

ensemble. One such processor, the Bayesian processor of ensemble, is outlined in the following 

section. 

2.2 Bayesian Processor of Ensemble 

To address the challenges identified above as they apply to the NCEP ensemble, Lee 

(2010) chooses to process the ensemble statistically using the Bayesian processor of ensemble 

(BPE), which takes the form (Krzysztofowicz 1983): 

 ! ! ! = 
! ! !)!!(!)

!(!) , (2.1) 

 
 ! ! = ! ! ! ! ! ! !", 

 

(2.2) 

where!! is the vector of 20 ensemble members, treated as a realization of random vector !, ! is 

the prior density function of the temperature predictand W, ! is the family of likelihood functions, 

! is the marginal density function of !, and ! is the family of posterior density functions of !. 

While the BPE defined in (2.1) and (2.2) requires the processing of all 20 ensemble 

members, there may exist a summary statistic !!that provides as much information about ensemble 

central tendency as !!provides. In addition, there may exist a predictor T—perhaps a measure of 

ensemble spread, a higher-order moment, or some combination thereof—that contains information 
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about total uncertainty. Replacing vector !!with statistic (!,!!)! in the BPE may allow for more 

efficient processing, in that the likelihood function of (!,!!)!may be more easily estimated than is 

the likelihood function of all 20 ensemble members. Depending on the joint distribution of 

ensemble members, such a statistic will not necessarily be sufficient, and must therefore be 

hypothesized based on theoretical models and empirical analyses. For the NCEP ensemble 

forecast system, Lee (2010) found that the combination of ensemble mean (a predictor of central 

tendency) and ensemble range (a predictor of ensemble spread) exhibited comparable 

informativeness to that of the full ensemble. This study, likewise, hypothesizes and tests several 

predictors of central tendency and uncertainty within the CMC ensemble, with the goal of finding 

a similar replacement statistic for statistical processing. 

2.3 Ensemble Spread 

 Among the common ensemble summary statistics, ensemble spread (i.e. standard 

deviation) has been especially popular for its presumed value as a predictor of uncertainty. While 

ensemble spread is a function of forecast error, it is also a function of season, lead time, and 

geographical location—that is, it not only reflects error due to initial condition, but also error due 

to atmospheric instability. Therefore, ensemble spread more accurately constitutes an upper bound 

on forecast error rather than the expected forecast error. Toth et al. (2001) instead suggest taking a 

probabilistic approach to uncertainty estimation. In this approach, for a single forecast, 

predictability is expected to vary with the number of ensemble members that fall within a 

climatically equiprobably interval centered at the ensemble mean. This measure of predictability is 

normalized by season, lead time, and geographical location. Additionally, the measure takes into 

account the forecast value with respect to the climatological distribution, with wider climatically 

equiprobable intervals corresponding to more extreme forecasts. 

 Ensemble spread is but one hypothesized predictor of uncertainty. The informativeness of 

ensemble spread is evaluated and compared to the informativeness of other hypothesized 

predictors in Chapter 7. 
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3. EMPIRICAL PROPERTIES OF THE CMC ENSEMBLE 

3.1 Pre-Processing Ensemble Data 

3.1.1 The Ensemble Data 

The CMC data contain complete forecasts and predictand realizations for 599 days, made 

on dates from 07/11/2007 to 02/28/2009. The CMC ensemble forecast system employs a control 

forecast, but does not employ a high-resolution forecast. Forecasts are made every 12 hours (00 

UTC and 12 UTC). In this study, focus is limited to forecasts made at 00 UTC with one of the 

following eight lead times: 12 h, 60 h, 108 h, 156 h, 204 h, 252 h, 300 h, 348 h.  

3.1.2 Prior Mean and Variance 

! Prior mean !! and prior variance !!! of the predictand are defined as follows for each day 

! of the year: 

 !! = !(! ! ), (3.1) 

 !!! = !"# ! ! . (3.2) 

Lee (2010) estimates the prior mean and variance using a 40-year (1959-1998) climatic sample. 

For each day !, temperatures from a 15-day sampling window {! − 7,… , !,… , !!+ !7} over 40 

years are incorporated to obtain a substantially larger sample size. (40 years ×!15 days = !600 

observations.) In both the prior and joint samples, a high resolution forecast at 12 UTC with lead 

time 0 h is used as analysis (the best available proxy for a true realization of !). A missing 

analysis datum on 11/12/2008 was filled in by linear interpolation using the analysis from the 

previous day (11/11/2008) and from the following day (11/13/2008). Similarly, the climatic mean 

and standard deviation for 29 February (day 60 of the year) were each filled in by linear 

interpolation using climatic estimates from the previous day (!!", !!"! ) and from the following day 

(!!",!!!"! ). 
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3.1.3 Standardization 

Temperature is non-stationary around the year. Therefore, the predictand ! , control 

forecast !! , and ensemble members !!  ( !! = !1,… , 20 ) will be standardized using climatic 

estimates of mean !! and standard deviation !! of temperature on day ! of the year at 12 UTC , 

which are obtained from 40 years (1959–1998) of observations. This method of standardization 

has been shown to bring temperature to near margin-stationarity (Krzysztofowicz and Evans 

2007), and is performed using the following formulae:  

 !! ! = !! ! − !!!
!!

!,!!!! = 1, 2,… , 366, (3.3.1) 

 !!! ! = !!! ! − !!!
!!

!,!!!! = 1, 2,… , 366,!!!!! = 0, 1,… , 20,! (3.3.2) 

where ! !  and !! !  are, respectively, realizations of !  and !! . When it is unnecessary to 

distinguish between days of the year, the standardized realizations are notated as follows: 

 ! = !!! ! , (3.4.1) 

 !! = !!!!(!), !! = 0, 1,… , 20. (3.4.2) 

See Figure 3.1 for plots of all 20 original and standardized CMC ensemble forecasts with lead 

time 108 h. The standardized forecasts show a seasonal trend: Forecasts for roughly the middle six 

months (April through September) of each year have a greater central tendency and wider spread 

than do forecasts for the remaining months. This seasonality is addressed in the next section. 
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 Figure 3.1. Original (top) and standardized (bottom) CMC forecasts consisting of 20 
ensemble members, with lead time 108 h. Standardization brings the ensemble forecasts to 
near margin stationarity. 
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3.1.4 Seasonality 

! As is the case for the NCEP standardized ensemble data, the standardized CMC ensemble 

data exhibit a pronounced seasonal trend. Specifically, forecasts for days in April through 

September exhibit greater central tendency and larger spread than do forecasts for days in the 

remaining months of the year. Thus, the year is divided into warm season (April – Sept.) and cool 

season (Oct. – March.) as in Lee (2010). The division of available data is as follows: 

Warm Season – 7/11/2007 to 09/30/2007, 04/01/2008 to 09/30/2008 

Cool Season – 10/01/2007 to 03/31/2008, 10/01/2008 to 02/28/2009 

Thus, of a total of 599 days of forecasts, 265 fall in the warm season and 334 days fall in cool 

season. However, a forecast with lead time greater than 12 hours corresponds to a predictand 

realization on a subsequent day. Therefore, a set of forecasts with lead time 12!+ !24! (!! =

!1, 2,… , 15) has a reduced number of days in the joint sample of ensemble forecasts and 

predictand. Table 3.1 shows the number of matching days in the warm (Nwarm) and cool (Ncool) 

seasons for lead times 12 h, 60 h, 108 h, 156 h, 204 h, 252 h, 300 h, and 348 h. 

Table 3.1. Number of matching days between predictand and ensemble forecasts for warm and 
cool seasons, for lead time 12#+#24n,#n#=#0,#2,#4,#...,#14. 

!

3.2 Normality of Ensemble Members 

This section examines the distributions of the predictand and ensemble members. First, for 

each season and lead time, the empirical distribution function of each variate is plotted using the 

meta-Gaussian plotting positions. Each variate appears to follow a Gaussian distribution. The 

least-squares method is used to fit a Gaussian distribution for each variate. A consistently low 

maximum absolute difference (MAD) between the empirical and hypothesized distributions is 

 Lead Time [hours] 
12 60 108 156 204 252 300 348 

Nwarm 265 263 261 259 257 255 253 251 
Ncool 334 334 334 334 334 334 334 334 
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consistent with the hypothesis that the predictand and each CMC ensemble member closely 

follows a Gaussian distribution. In Figure 3.2, the empirical distribution and fitted Gaussian 

distribution is plotted for the predictand and each of two ensemble members, with lead time 108 

hours. 

 The distributions of the ensemble members exhibit various biases when compared to the 

distribution of the predictand. The distribution of the predictand superposed with the distributions 

of two ensemble members is shown in Figure 3.3 and Figure 3.4. In the warm season, the 

distributions have large variation in the lower tails at short lead times, and larger variation in the 

upper tails at long lead times. In the cool season, the distributions diverge in the lower tails, and 

converge at higher forecast values. The variety of distributional differences may be due to the 

unique combination of parameters and parameterizations corresponding to each ensemble 

member’s underlying GEM model. 

 Next, the distributions of the ensemble members are compared for each lead time and 

season. The empirical distribution functions of all 20 ensemble members are superposed in Figure 

3.5 (warm season) and Figure 3.6 (cool season), for lead times 12, 108, 204, and 300 hours. In the 

warm season, the empirical distribution functions of the ensemble members vary substantially, and 

thus the ensemble members are not likely identically distributed. In the cool season, the empirical 

distribution functions appear approximately identical at short lead times, but spread substantially 

as lead time increases. Perhaps none of the ensemble members are truly identically distributed 

because each is output from a unique GEM model. 
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 !Figure 3.2. Empirical distribution and fitted Gaussian distribution of predictand ! and two 
ensemble members, !! and  !!", with lead time 108 h in warm and cool seasons. Each variate 
appears to be normally distributed in each season. 
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Figure 3.3. Empirical distributions of predictand ! and two ensemble members, !! and  !!", 
with lead times 12 h, 108 h, 204 h, and 300 h, in the warm season. For lead time 12 h, the 
distributions appear to deviate at the lower tails and merge toward the upper tails. Conversely, 
for lead times 108 h, 204 h, and 300 h, the distributions appear to deviate at the upper tails and 
merge toward the lower tails. 



! 15!

Figure 3.4. Empirical distributions of predictand ! and two ensemble members, !! and  !!", with 
lead times 12 h, 108 h, 204 h, and 300 h, in the cool season. The distributions appear to deviate 
substantially at the lower tails, and gradually merge with increasing realization !.!
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!

Figure 3.5. Empirical distributions of all 20 ensemble members for lead times 12 h, 108 h, 204 h, 
and 300 h in the warm season. The ensemble members do not appear to be identically distributed. 
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!

Figure 3.6. Empirical distributions of all 20 ensemble members for lead times 12 h, 108 h, 204 h, 
and 300 h in the cool season. The ensemble members appear to be approximately identically 
distributed at lead times 12 h and 108 h, and do not appear to be identically distributed at lead 
times 204 h and 300 h. 
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3.3 Correlation between Ensemble Members 

 This section examines the degree to which the ensemble members are pairwise correlated. 

The correlation between any two predictors !! and !! is given by the following formula: 

 
Cor !! ,!! =! 

!"# !!,!!!
!"#!/!(!!)!"#!/!(!!)

. (3.5) 

Correlation matrices for lead times 12 h, 108 h, 204 h, and 300 h, for warm and cool seasons, are 

shown in Tables 3.3–6. Each table contains the pairwise correlations among all 20 ensemble 

members and the low resolution control forecast. Unsurprisingly, the correlation between each pair 

of variates generally decreases as lead time increases. 

3.4 Conditional Correlation between Ensemble Members 

! The stochastic dependence between a pair of predictors !! , !!! !and the predictand 

!!conforms approximately to the normal-linear model, which is detailed in Chapter 5. Under this 

model,!the conditional correlation between any two predictors !! and !!, given realization ! of 

predictand !, is given by the following formula: 

 
Cor !! ,!!|!! = ! =! 

!"# !!,!!!|!!!!
!"#!/!(!!!|!!!!)!"#!/!(!!|!!!!) 

(3.6.1) 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!=! 
!!"!
!!!!!!

 ; (3.6.2) 

the estimators !!" and !! are defined by 

 !"#(!! !|!! = !) = !!!!,  (3.7.1) 

 !"#(!! ,!!|!! = !) = !!!", (3.7.2) 
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and their values are calculated using the residuals !!(!) from the normal-linear model (Section 

5.2.1) as follows: 

 !!! = ! !! !!! !!
!!! , (3.8.1) 

 !!" = ! !! !!(!)!!(!)!
!!! . (3.8.2) 

 
 The conditional correlation matrices are given for the same lead times and seasons in 

Tables 3.7–10. The correlation between two ensemble members is reduced when conditioned on a 

realization of the predictand. For shorter lead times, the ensemble members seem to be more 

correlated in the cold season, and for longer lead times, the ensemble members seem to be more 

correlated in the warm season. 

The average correlation and average conditional correlation are shown in Table 3.2 for 

each of the lead times 12 h, 108 h, 204 h, and 300 h, in warm and cool seasons.  

 

 

                 

Lead Time: 12 h 108 h 204 h 300 h 
Season: Warm Cool Warm Cool Warm Cool Warm Cool 

Correlation 0.7816 0.9606 0.5046 0.7745 0.3963 0.3632 0.3743 0.1821 
Conditional 
Correlation 0.4079 0.5602 0.3384 0.5143 0.3471 0.2870 0.3457 0.1679 

Table 3.2. Average correlation and average conditional correlation between pairs of 
ensemble members for lead times 12 h, 108 h, 204 h, and 300 h, in warm and cool seasons. 
The average conditional correlations are well above zero. Thus, for any lead time and 
season, the ensemble members cannot be considered a random sample. 



! 20!

   
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.80 0.72 0.70 0.65 0.71 0.69 0.69 0.72 0.78 0.76 0.69 0.64 0.72 0.79 0.69 0.73 0.68 0.78 0.73 0.68 
y1 0.80 1.00 0.69 0.69 0.64 0.66 0.63 0.65 0.72 0.68 0.74 0.67 0.60 0.66 0.76 0.68 0.74 0.65 0.71 0.71 0.64 
y2 0.72 0.69 1.00 0.83 0.85 0.85 0.72 0.85 0.84 0.71 0.88 0.84 0.83 0.88 0.68 0.83 0.81 0.85 0.73 0.88 0.86 
y3 0.70 0.69 0.83 1.00 0.83 0.86 0.71 0.81 0.85 0.72 0.83 0.88 0.83 0.86 0.71 0.82 0.84 0.85 0.69 0.84 0.88 
y4 0.65 0.64 0.85 0.83 1.00 0.88 0.71 0.87 0.83 0.66 0.86 0.83 0.88 0.90 0.65 0.85 0.78 0.90 0.69 0.87 0.86 
y5 0.71 0.66 0.85 0.86 0.88 1.00 0.75 0.87 0.85 0.70 0.89 0.86 0.86 0.90 0.66 0.85 0.81 0.89 0.74 0.91 0.86 
y6 0.69 0.63 0.72 0.71 0.71 0.75 1.00 0.68 0.73 0.70 0.71 0.74 0.66 0.75 0.69 0.63 0.67 0.68 0.72 0.71 0.73 
y7 0.69 0.65 0.85 0.81 0.87 0.87 0.68 1.00 0.83 0.68 0.87 0.81 0.85 0.87 0.64 0.88 0.79 0.87 0.73 0.89 0.84 
y8 0.72 0.72 0.84 0.85 0.83 0.85 0.73 0.83 1.00 0.74 0.86 0.89 0.78 0.84 0.71 0.83 0.86 0.84 0.75 0.85 0.87 
y9 0.78 0.68 0.71 0.72 0.66 0.70 0.70 0.68 0.74 1.00 0.72 0.73 0.66 0.72 0.68 0.70 0.70 0.70 0.77 0.72 0.72 
y10 0.76 0.74 0.88 0.83 0.86 0.89 0.71 0.87 0.86 0.72 1.00 0.83 0.83 0.89 0.68 0.86 0.83 0.87 0.74 0.92 0.82 
y11 0.69 0.67 0.84 0.88 0.83 0.86 0.74 0.81 0.89 0.73 0.83 1.00 0.79 0.86 0.70 0.80 0.84 0.85 0.74 0.85 0.90 
y12 0.64 0.60 0.83 0.83 0.88 0.86 0.66 0.85 0.78 0.66 0.83 0.79 1.00 0.88 0.61 0.83 0.76 0.87 0.67 0.85 0.84 
y13 0.72 0.66 0.88 0.86 0.90 0.90 0.75 0.87 0.84 0.72 0.89 0.86 0.88 1.00 0.67 0.85 0.80 0.89 0.74 0.89 0.88 
y14 0.79 0.76 0.68 0.71 0.65 0.66 0.69 0.64 0.71 0.68 0.68 0.70 0.61 0.67 1.00 0.63 0.71 0.68 0.69 0.66 0.69 
y15 0.69 0.68 0.83 0.82 0.85 0.85 0.63 0.88 0.83 0.70 0.86 0.80 0.83 0.85 0.63 1.00 0.82 0.85 0.70 0.87 0.80 
y16 0.73 0.74 0.81 0.84 0.78 0.81 0.67 0.79 0.86 0.70 0.83 0.84 0.76 0.80 0.71 0.82 1.00 0.78 0.72 0.82 0.83 
y17 0.68 0.65 0.85 0.85 0.90 0.89 0.68 0.87 0.84 0.70 0.87 0.85 0.87 0.89 0.68 0.85 0.78 1.00 0.70 0.89 0.85 
y18 0.78 0.71 0.73 0.69 0.69 0.74 0.72 0.73 0.75 0.77 0.74 0.74 0.67 0.74 0.69 0.70 0.72 0.70 1.00 0.72 0.76 
y19 0.73 0.71 0.88 0.84 0.87 0.91 0.71 0.89 0.85 0.72 0.92 0.85 0.85 0.89 0.66 0.87 0.82 0.89 0.72 1.00 0.84 
y20 0.68 0.64 0.86 0.88 0.86 0.86 0.73 0.84 0.87 0.72 0.82 0.90 0.84 0.88 0.69 0.80 0.83 0.85 0.76 0.84 1.00  
 

 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.98 0.97 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.98 0.96 0.96 0.96 0.96 0.97 0.97 0.96 0.98 0.97 0.96 
y1 0.98 1.00 0.97 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.97 0.95 0.95 0.95 0.95 0.96 0.96 0.95 0.97 0.96 0.95 
y2 0.97 0.97 1.00 0.96 0.96 0.96 0.95 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.95 0.97 0.96 0.96 0.96 0.97 0.96 
y3 0.96 0.95 0.96 1.00 0.97 0.97 0.96 0.95 0.96 0.95 0.95 0.97 0.97 0.97 0.96 0.95 0.95 0.97 0.96 0.95 0.97 
y4 0.96 0.95 0.96 0.97 1.00 0.98 0.97 0.96 0.96 0.95 0.96 0.98 0.97 0.98 0.96 0.96 0.95 0.98 0.95 0.95 0.98 
y5 0.96 0.95 0.96 0.97 0.98 1.00 0.97 0.95 0.96 0.95 0.96 0.98 0.97 0.98 0.97 0.95 0.95 0.97 0.96 0.96 0.97 
y6 0.96 0.95 0.95 0.96 0.97 0.97 1.00 0.95 0.96 0.95 0.95 0.97 0.97 0.97 0.97 0.95 0.94 0.97 0.95 0.94 0.97 
y7 0.98 0.96 0.97 0.95 0.96 0.95 0.95 1.00 0.97 0.96 0.97 0.95 0.96 0.96 0.95 0.97 0.97 0.96 0.96 0.97 0.96 
y8 0.98 0.96 0.97 0.96 0.96 0.96 0.96 0.97 1.00 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.97 0.97 
y9 0.98 0.96 0.96 0.95 0.95 0.95 0.95 0.96 0.96 1.00 0.96 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.97 0.96 0.95 
y10 0.98 0.97 0.97 0.95 0.96 0.96 0.95 0.97 0.97 0.96 1.00 0.96 0.96 0.96 0.95 0.97 0.97 0.96 0.97 0.97 0.96 
y11 0.96 0.95 0.96 0.97 0.98 0.98 0.97 0.95 0.96 0.95 0.96 1.00 0.97 0.97 0.97 0.95 0.95 0.98 0.96 0.95 0.98 
y12 0.96 0.95 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.96 0.97 1.00 0.97 0.96 0.96 0.96 0.98 0.96 0.96 0.97 
y13 0.96 0.95 0.96 0.97 0.98 0.98 0.97 0.96 0.96 0.95 0.96 0.97 0.97 1.00 0.96 0.96 0.95 0.97 0.95 0.95 0.98 
y14 0.96 0.95 0.95 0.96 0.96 0.97 0.97 0.95 0.96 0.96 0.95 0.97 0.96 0.96 1.00 0.95 0.95 0.97 0.95 0.95 0.96 
y15 0.97 0.96 0.97 0.95 0.96 0.95 0.95 0.97 0.97 0.95 0.97 0.95 0.96 0.96 0.95 1.00 0.97 0.96 0.96 0.97 0.96 
y16 0.97 0.96 0.96 0.95 0.95 0.95 0.94 0.97 0.96 0.96 0.97 0.95 0.96 0.95 0.95 0.97 1.00 0.96 0.96 0.96 0.96 
y17 0.96 0.95 0.96 0.97 0.98 0.97 0.97 0.96 0.96 0.95 0.96 0.98 0.98 0.97 0.97 0.96 0.96 1.00 0.96 0.96 0.97 
y18 0.98 0.97 0.96 0.96 0.95 0.96 0.95 0.96 0.96 0.97 0.97 0.96 0.96 0.95 0.95 0.96 0.96 0.96 1.00 0.96 0.96 
y19 0.97 0.96 0.97 0.95 0.95 0.96 0.94 0.97 0.97 0.96 0.97 0.95 0.96 0.95 0.95 0.97 0.96 0.96 0.96 1.00 0.95 
y20 0.96 0.95 0.96 0.97 0.98 0.97 0.97 0.96 0.97 0.95 0.96 0.98 0.97 0.98 0.96 0.96 0.96 0.97 0.96 0.95 1.00  

Correlation Matrix    Lead Time 12 h   Cool Season 

Correlation Matrix    Lead Time 12 h            Warm Season 

Table 3.3. Correlation matrices for lead time 12 h, in warm and cool seasons. 



! 21!

  
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.55 0.40 0.41 0.29 0.41 0.44 0.42 0.42 0.50 0.48 0.40 0.38 0.39 0.43 0.32 0.30 0.31 0.57 0.52 0.28 
y1 0.55 1.00 0.44 0.44 0.30 0.44 0.42 0.39 0.49 0.48 0.44 0.41 0.40 0.46 0.34 0.31 0.37 0.33 0.48 0.48 0.38 
y2 0.40 0.44 1.00 0.56 0.57 0.68 0.55 0.63 0.61 0.54 0.65 0.56 0.60 0.66 0.49 0.59 0.50 0.53 0.54 0.73 0.53 
y3 0.41 0.44 0.56 1.00 0.51 0.64 0.50 0.57 0.58 0.47 0.56 0.61 0.58 0.59 0.48 0.45 0.51 0.53 0.51 0.55 0.59 
y4 0.29 0.30 0.57 0.51 1.00 0.55 0.49 0.47 0.46 0.40 0.37 0.48 0.58 0.50 0.36 0.43 0.38 0.51 0.40 0.47 0.44 
y5 0.41 0.44 0.68 0.64 0.55 1.00 0.58 0.62 0.58 0.47 0.65 0.58 0.62 0.71 0.45 0.53 0.49 0.58 0.49 0.71 0.54 
y6 0.44 0.42 0.55 0.50 0.49 0.58 1.00 0.49 0.45 0.51 0.51 0.49 0.55 0.55 0.45 0.40 0.41 0.48 0.48 0.59 0.43 
y7 0.42 0.39 0.63 0.57 0.47 0.62 0.49 1.00 0.55 0.46 0.61 0.54 0.55 0.62 0.40 0.55 0.54 0.53 0.49 0.62 0.51 
y8 0.42 0.49 0.61 0.58 0.46 0.58 0.45 0.55 1.00 0.52 0.62 0.51 0.51 0.57 0.38 0.50 0.58 0.46 0.43 0.60 0.49 
y9 0.50 0.48 0.54 0.47 0.40 0.47 0.51 0.46 0.52 1.00 0.59 0.50 0.52 0.53 0.46 0.42 0.40 0.43 0.50 0.58 0.38 
y10 0.48 0.44 0.65 0.56 0.37 0.65 0.51 0.61 0.62 0.59 1.00 0.52 0.56 0.60 0.43 0.62 0.44 0.49 0.56 0.69 0.52 
y11 0.40 0.41 0.56 0.61 0.48 0.58 0.49 0.54 0.51 0.50 0.52 1.00 0.59 0.63 0.50 0.42 0.44 0.56 0.44 0.58 0.60 
y12 0.38 0.40 0.60 0.58 0.58 0.62 0.55 0.55 0.51 0.52 0.56 0.59 1.00 0.62 0.40 0.48 0.42 0.59 0.51 0.62 0.51 
y13 0.39 0.46 0.66 0.59 0.50 0.71 0.55 0.62 0.57 0.53 0.60 0.63 0.62 1.00 0.45 0.51 0.53 0.63 0.48 0.64 0.58 
y14 0.43 0.34 0.49 0.48 0.36 0.45 0.45 0.40 0.38 0.46 0.43 0.50 0.40 0.45 1.00 0.35 0.35 0.35 0.43 0.48 0.33 
y15 0.32 0.31 0.59 0.45 0.43 0.53 0.40 0.55 0.50 0.42 0.62 0.42 0.48 0.51 0.35 1.00 0.40 0.47 0.48 0.56 0.39 
y16 0.30 0.37 0.50 0.51 0.38 0.49 0.41 0.54 0.58 0.40 0.44 0.44 0.42 0.53 0.35 0.40 1.00 0.37 0.36 0.51 0.40 
y17 0.31 0.33 0.53 0.53 0.51 0.58 0.48 0.53 0.46 0.43 0.49 0.56 0.59 0.63 0.35 0.47 0.37 1.00 0.42 0.52 0.49 
y18 0.57 0.48 0.54 0.51 0.40 0.49 0.48 0.49 0.43 0.50 0.56 0.44 0.51 0.48 0.43 0.48 0.36 0.42 1.00 0.58 0.37 
y19 0.52 0.48 0.73 0.55 0.47 0.71 0.59 0.62 0.60 0.58 0.69 0.58 0.62 0.64 0.48 0.56 0.51 0.52 0.58 1.00 0.47 

y20 0.28 0.38 0.53 0.59 0.44 0.54 0.43 0.51 0.49 0.38 0.52 0.60 0.51 0.58 0.33 0.39 0.40 0.49 0.37 0.47 1.00      
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.86 0.86 0.80 0.78 0.80 0.83 0.86 0.87 0.84 0.85 0.82 0.81 0.81 0.82 0.85 0.82 0.79 0.86 0.85 0.80 
y1 0.86 1.00 0.78 0.76 0.75 0.76 0.75 0.80 0.79 0.77 0.83 0.76 0.74 0.78 0.76 0.80 0.77 0.76 0.81 0.79 0.75 
y2 0.86 0.78 1.00 0.75 0.73 0.75 0.76 0.79 0.81 0.79 0.78 0.77 0.75 0.78 0.78 0.81 0.78 0.73 0.79 0.81 0.74 
y3 0.80 0.76 0.75 1.00 0.82 0.82 0.80 0.79 0.75 0.75 0.73 0.82 0.82 0.86 0.81 0.74 0.72 0.80 0.75 0.73 0.84 
y4 0.78 0.75 0.73 0.82 1.00 0.81 0.79 0.73 0.74 0.71 0.75 0.80 0.84 0.81 0.79 0.76 0.68 0.81 0.74 0.78 0.84 
y5 0.80 0.76 0.75 0.82 0.81 1.00 0.79 0.76 0.74 0.75 0.76 0.82 0.81 0.82 0.83 0.75 0.72 0.80 0.76 0.74 0.83 
y6 0.83 0.75 0.76 0.80 0.79 0.79 1.00 0.74 0.78 0.77 0.72 0.83 0.79 0.81 0.83 0.74 0.72 0.78 0.76 0.74 0.79 
y7 0.86 0.80 0.79 0.79 0.73 0.76 0.74 1.00 0.81 0.78 0.79 0.76 0.77 0.76 0.77 0.81 0.78 0.76 0.80 0.78 0.76 
y8 0.87 0.79 0.81 0.75 0.74 0.74 0.78 0.81 1.00 0.78 0.80 0.78 0.75 0.77 0.78 0.79 0.81 0.77 0.81 0.79 0.79 
y9 0.84 0.77 0.79 0.75 0.71 0.75 0.77 0.78 0.78 1.00 0.76 0.78 0.75 0.77 0.77 0.81 0.76 0.75 0.78 0.78 0.74 
y10 0.85 0.83 0.78 0.73 0.75 0.76 0.72 0.79 0.80 0.76 1.00 0.71 0.72 0.73 0.73 0.79 0.76 0.74 0.81 0.79 0.75 
y11 0.82 0.76 0.77 0.82 0.80 0.82 0.83 0.76 0.78 0.78 0.71 1.00 0.83 0.83 0.84 0.75 0.71 0.83 0.76 0.75 0.83 
y12 0.81 0.74 0.75 0.82 0.84 0.81 0.79 0.77 0.75 0.75 0.72 0.83 1.00 0.83 0.81 0.76 0.71 0.80 0.74 0.75 0.83 
y13 0.81 0.78 0.78 0.86 0.81 0.82 0.81 0.76 0.77 0.77 0.73 0.83 0.83 1.00 0.81 0.76 0.70 0.80 0.75 0.75 0.84 
y14 0.82 0.76 0.78 0.81 0.79 0.83 0.83 0.77 0.78 0.77 0.73 0.84 0.81 0.81 1.00 0.75 0.73 0.82 0.77 0.75 0.82 
y15 0.85 0.80 0.81 0.74 0.76 0.75 0.74 0.81 0.79 0.81 0.79 0.75 0.76 0.76 0.75 1.00 0.75 0.76 0.78 0.81 0.78 
y16 0.82 0.77 0.78 0.72 0.68 0.72 0.72 0.78 0.81 0.76 0.76 0.71 0.71 0.70 0.73 0.75 1.00 0.70 0.78 0.75 0.72 
y17 0.79 0.76 0.73 0.80 0.81 0.80 0.78 0.76 0.77 0.75 0.74 0.83 0.80 0.80 0.82 0.76 0.70 1.00 0.73 0.75 0.81 
y18 0.86 0.81 0.79 0.75 0.74 0.76 0.76 0.80 0.81 0.78 0.81 0.76 0.74 0.75 0.77 0.78 0.78 0.73 1.00 0.77 0.75 
y19 0.85 0.79 0.81 0.73 0.78 0.74 0.74 0.78 0.79 0.78 0.79 0.75 0.75 0.75 0.75 0.81 0.75 0.75 0.77 1.00 0.76 
y20 0.80 0.75 0.74 0.84 0.84 0.83 0.79 0.76 0.79 0.74 0.75 0.83 0.83 0.84 0.82 0.78 0.72 0.81 0.75 0.76 1.00   

Correlation Matrix    Lead Time 108 h           Warm Season 

Table 3.4. Correlation matrices for lead time 108 h, in warm and cool seasons. 

Correlation Matrix   Lead Time 108 h            Cool Season 



! 22!

    
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.23 0.26 0.20 0.38 0.37 0.21 0.31 0.31 0.26 0.28 0.28 0.29 0.31 0.35 0.29 0.20 0.36 0.24 0.29 0.27 
y1 0.23 1.00 0.37 0.22 0.23 0.34 0.28 0.37 0.31 0.29 0.41 0.25 0.30 0.34 0.25 0.30 0.29 0.29 0.40 0.34 0.23 
y2 0.26 0.37 1.00 0.37 0.42 0.49 0.38 0.44 0.40 0.33 0.55 0.42 0.45 0.49 0.26 0.41 0.38 0.43 0.35 0.44 0.42 
y3 0.20 0.22 0.37 1.00 0.43 0.57 0.40 0.45 0.41 0.31 0.42 0.49 0.51 0.46 0.34 0.39 0.36 0.50 0.33 0.32 0.47 
y4 0.38 0.23 0.42 0.43 1.00 0.50 0.38 0.47 0.39 0.30 0.36 0.57 0.61 0.53 0.38 0.43 0.28 0.60 0.37 0.37 0.57 
y5 0.37 0.34 0.49 0.57 0.50 1.00 0.37 0.48 0.38 0.38 0.47 0.50 0.59 0.63 0.34 0.41 0.41 0.56 0.44 0.35 0.54 
y6 0.21 0.28 0.38 0.40 0.38 0.37 1.00 0.44 0.41 0.31 0.38 0.39 0.40 0.43 0.35 0.33 0.30 0.44 0.33 0.28 0.29 
y7 0.31 0.37 0.44 0.45 0.47 0.48 0.44 1.00 0.45 0.34 0.50 0.51 0.48 0.54 0.35 0.52 0.39 0.56 0.38 0.43 0.46 
y8 0.31 0.31 0.40 0.41 0.39 0.38 0.41 0.45 1.00 0.31 0.42 0.47 0.37 0.40 0.32 0.45 0.40 0.44 0.32 0.40 0.32 
y9 0.26 0.29 0.33 0.31 0.30 0.38 0.31 0.34 0.31 1.00 0.33 0.32 0.29 0.40 0.22 0.40 0.32 0.37 0.39 0.36 0.27 
y10 0.28 0.41 0.55 0.42 0.36 0.47 0.38 0.50 0.42 0.33 1.00 0.39 0.42 0.52 0.23 0.51 0.35 0.46 0.28 0.41 0.39 
y11 0.28 0.25 0.42 0.49 0.57 0.50 0.39 0.51 0.47 0.32 0.39 1.00 0.50 0.46 0.40 0.42 0.34 0.57 0.32 0.31 0.52 
y12 0.29 0.30 0.45 0.51 0.61 0.59 0.40 0.48 0.37 0.29 0.42 0.50 1.00 0.54 0.36 0.44 0.38 0.60 0.39 0.34 0.53 
y13 0.31 0.34 0.49 0.46 0.53 0.63 0.43 0.54 0.40 0.40 0.52 0.46 0.54 1.00 0.33 0.40 0.39 0.60 0.46 0.48 0.50 
y14 0.35 0.25 0.26 0.34 0.38 0.34 0.35 0.35 0.32 0.22 0.23 0.40 0.36 0.33 1.00 0.32 0.25 0.36 0.26 0.20 0.34 
y15 0.29 0.30 0.41 0.39 0.43 0.41 0.33 0.52 0.45 0.40 0.51 0.42 0.44 0.40 0.32 1.00 0.26 0.45 0.34 0.33 0.39 
y16 0.20 0.29 0.38 0.36 0.28 0.41 0.30 0.39 0.40 0.32 0.35 0.34 0.38 0.39 0.25 0.26 1.00 0.38 0.27 0.40 0.33 
y17 0.36 0.29 0.43 0.50 0.60 0.56 0.44 0.56 0.44 0.37 0.46 0.57 0.60 0.60 0.36 0.45 0.38 1.00 0.41 0.33 0.53 
y18 0.24 0.40 0.35 0.33 0.37 0.44 0.33 0.38 0.32 0.39 0.28 0.32 0.39 0.46 0.26 0.34 0.27 0.41 1.00 0.38 0.29 
y19 0.29 0.34 0.44 0.32 0.37 0.35 0.28 0.43 0.40 0.36 0.41 0.31 0.34 0.48 0.20 0.33 0.40 0.33 0.38 1.00 0.28 

y20 0.27 0.23 0.42 0.47 0.57 0.54 0.29 0.46 0.32 0.27 0.39 0.52 0.53 0.50 0.34 0.39 0.33 0.53 0.29 0.28 1.00      
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.47 0.47 0.27 0.40 0.36 0.42 0.44 0.50 0.39 0.44 0.35 0.36 0.35 0.42 0.44 0.50 0.37 0.40 0.40 0.43 
y1 0.47 1.00 0.39 0.38 0.47 0.40 0.39 0.42 0.35 0.38 0.46 0.28 0.31 0.38 0.37 0.39 0.35 0.35 0.38 0.37 0.43 
y2 0.47 0.39 1.00 0.26 0.41 0.32 0.36 0.34 0.35 0.31 0.33 0.24 0.31 0.37 0.35 0.35 0.42 0.38 0.34 0.31 0.33 
y3 0.27 0.38 0.26 1.00 0.40 0.47 0.41 0.33 0.21 0.30 0.27 0.42 0.35 0.36 0.40 0.33 0.27 0.37 0.38 0.30 0.37 
y4 0.40 0.47 0.41 0.40 1.00 0.43 0.43 0.42 0.30 0.34 0.35 0.41 0.49 0.42 0.51 0.38 0.34 0.45 0.40 0.38 0.45 
y5 0.36 0.40 0.32 0.47 0.43 1.00 0.42 0.36 0.27 0.33 0.37 0.35 0.41 0.39 0.42 0.39 0.31 0.40 0.41 0.34 0.43 
y6 0.42 0.39 0.36 0.41 0.43 0.42 1.00 0.34 0.29 0.33 0.42 0.37 0.37 0.34 0.49 0.36 0.33 0.32 0.45 0.33 0.46 
y7 0.44 0.42 0.34 0.33 0.42 0.36 0.34 1.00 0.37 0.38 0.33 0.33 0.38 0.35 0.43 0.47 0.37 0.38 0.42 0.37 0.43 
y8 0.50 0.35 0.35 0.21 0.30 0.27 0.29 0.37 1.00 0.27 0.29 0.25 0.30 0.26 0.31 0.37 0.40 0.29 0.25 0.27 0.32 
y9 0.39 0.38 0.31 0.30 0.34 0.33 0.33 0.38 0.27 1.00 0.30 0.34 0.27 0.27 0.37 0.31 0.34 0.30 0.42 0.33 0.30 
y10 0.44 0.46 0.33 0.27 0.35 0.37 0.42 0.33 0.29 0.30 1.00 0.30 0.30 0.34 0.39 0.32 0.39 0.30 0.40 0.36 0.48 
y11 0.35 0.28 0.24 0.42 0.41 0.35 0.37 0.33 0.25 0.34 0.30 1.00 0.34 0.32 0.42 0.34 0.34 0.30 0.34 0.36 0.49 
y12 0.36 0.31 0.31 0.35 0.49 0.41 0.37 0.38 0.30 0.27 0.30 0.34 1.00 0.38 0.53 0.35 0.32 0.39 0.35 0.26 0.47 
y13 0.35 0.38 0.37 0.36 0.42 0.39 0.34 0.35 0.26 0.27 0.34 0.32 0.38 1.00 0.45 0.28 0.35 0.35 0.28 0.29 0.46 
y14 0.42 0.37 0.35 0.40 0.51 0.42 0.49 0.43 0.31 0.37 0.39 0.42 0.53 0.45 1.00 0.38 0.40 0.34 0.46 0.36 0.54 
y15 0.44 0.39 0.35 0.33 0.38 0.39 0.36 0.47 0.37 0.31 0.32 0.34 0.35 0.28 0.38 1.00 0.36 0.36 0.36 0.37 0.37 
y16 0.50 0.35 0.42 0.27 0.34 0.31 0.33 0.37 0.40 0.34 0.39 0.34 0.32 0.35 0.40 0.36 1.00 0.44 0.36 0.35 0.39 
y17 0.37 0.35 0.38 0.37 0.45 0.40 0.32 0.38 0.29 0.30 0.30 0.30 0.39 0.35 0.34 0.36 0.44 1.00 0.36 0.30 0.39 
y18 0.40 0.38 0.34 0.38 0.40 0.41 0.45 0.42 0.25 0.42 0.40 0.34 0.35 0.28 0.46 0.36 0.36 0.36 1.00 0.36 0.40 
y19 0.40 0.37 0.31 0.30 0.38 0.34 0.33 0.37 0.27 0.33 0.36 0.36 0.26 0.29 0.36 0.37 0.35 0.30 0.36 1.00 0.36 
y20 0.43 0.43 0.33 0.37 0.45 0.43 0.46 0.43 0.32 0.30 0.48 0.49 0.47 0.46 0.54 0.37 0.39 0.39 0.40 0.36 1.00 

Correlation Matrix    Lead Time 204 h            Warm Season 

Table 3.5. Correlation matrices for lead time 204 h, in warm and cool seasons. 

Correlation Matrix    Lead Time 204 h            Cool Season 



! 23!

    
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.29 0.34 0.25 0.30 0.24 0.24 0.32 0.28 0.21 0.18 0.22 0.24 0.31 0.24 0.32 0.26 0.25 0.32 0.21 0.30 
y1 0.29 1.00 0.27 0.21 0.23 0.34 0.24 0.34 0.32 0.22 0.26 0.25 0.42 0.37 0.25 0.35 0.28 0.33 0.34 0.36 0.36 
y2 0.34 0.27 1.00 0.34 0.31 0.39 0.21 0.40 0.30 0.33 0.35 0.27 0.44 0.43 0.25 0.33 0.37 0.35 0.38 0.37 0.43 
y3 0.25 0.21 0.34 1.00 0.49 0.45 0.40 0.48 0.23 0.34 0.25 0.43 0.53 0.41 0.39 0.35 0.32 0.46 0.40 0.22 0.54 
y4 0.30 0.23 0.31 0.49 1.00 0.48 0.41 0.43 0.32 0.40 0.25 0.42 0.56 0.53 0.40 0.35 0.27 0.57 0.43 0.35 0.45 
y5 0.24 0.34 0.39 0.45 0.48 1.00 0.32 0.40 0.38 0.32 0.33 0.48 0.56 0.58 0.44 0.39 0.34 0.51 0.40 0.39 0.49 
y6 0.24 0.24 0.21 0.40 0.41 0.32 1.00 0.33 0.22 0.27 0.31 0.42 0.46 0.42 0.38 0.32 0.27 0.40 0.25 0.23 0.36 
y7 0.32 0.34 0.40 0.48 0.43 0.40 0.33 1.00 0.47 0.37 0.36 0.43 0.56 0.47 0.32 0.44 0.33 0.46 0.47 0.41 0.34 
y8 0.28 0.32 0.30 0.23 0.32 0.38 0.22 0.47 1.00 0.30 0.36 0.41 0.40 0.46 0.25 0.38 0.31 0.38 0.40 0.31 0.30 
y9 0.21 0.22 0.33 0.34 0.40 0.32 0.27 0.37 0.30 1.00 0.27 0.35 0.40 0.45 0.26 0.35 0.29 0.36 0.39 0.30 0.36 
y10 0.18 0.26 0.35 0.25 0.25 0.33 0.31 0.36 0.36 0.27 1.00 0.28 0.36 0.30 0.21 0.39 0.30 0.32 0.25 0.41 0.32 
y11 0.22 0.25 0.27 0.43 0.42 0.48 0.42 0.43 0.41 0.35 0.28 1.00 0.49 0.53 0.32 0.36 0.35 0.47 0.36 0.31 0.46 
y12 0.24 0.42 0.44 0.53 0.56 0.56 0.46 0.56 0.40 0.40 0.36 0.49 1.00 0.57 0.48 0.46 0.37 0.65 0.45 0.42 0.50 
y13 0.31 0.37 0.43 0.41 0.53 0.58 0.42 0.47 0.46 0.45 0.30 0.53 0.57 1.00 0.44 0.39 0.33 0.59 0.52 0.38 0.51 
y14 0.24 0.25 0.25 0.39 0.40 0.44 0.38 0.32 0.25 0.26 0.21 0.32 0.48 0.44 1.00 0.29 0.25 0.37 0.34 0.20 0.46 
y15 0.32 0.35 0.33 0.35 0.35 0.39 0.32 0.44 0.38 0.35 0.39 0.36 0.46 0.39 0.29 1.00 0.33 0.39 0.33 0.47 0.40 
y16 0.26 0.28 0.37 0.32 0.27 0.34 0.27 0.33 0.31 0.29 0.30 0.35 0.37 0.33 0.25 0.33 1.00 0.33 0.36 0.28 0.38 
y17 0.25 0.33 0.35 0.46 0.57 0.51 0.40 0.46 0.38 0.36 0.32 0.47 0.65 0.59 0.37 0.39 0.33 1.00 0.42 0.37 0.45 
y18 0.32 0.34 0.38 0.40 0.43 0.40 0.25 0.47 0.40 0.39 0.25 0.36 0.45 0.52 0.34 0.33 0.36 0.42 1.00 0.36 0.43 
y19 0.21 0.36 0.37 0.22 0.35 0.39 0.23 0.41 0.31 0.30 0.41 0.31 0.42 0.38 0.20 0.47 0.28 0.37 0.36 1.00 0.34 

y20 0.30 0.36 0.43 0.54 0.45 0.49 0.36 0.34 0.30 0.36 0.32 0.46 0.50 0.51 0.46 0.40 0.38 0.45 0.43 0.34 1.00      
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.24 0.12 0.12 0.20 0.14 0.13 0.13 0.29 0.19 0.15 0.09 0.21 0.18 0.22 0.22 0.21 0.15 0.13 0.15 0.20 
y1 0.24 1.00 0.14 0.13 0.18 0.17 0.12 0.02 0.19 0.18 0.08 0.19 0.13 0.14 0.18 0.11 0.15 0.14 0.15 0.16 0.24 
y2 0.12 0.14 1.00 0.15 0.12 0.17 0.21 0.14 0.16 0.23 0.06 0.15 0.15 0.14 0.11 0.15 0.18 0.23 0.12 0.18 0.15 
y3 0.12 0.13 0.15 1.00 0.22 0.23 0.31 0.21 0.17 0.18 0.18 0.27 0.35 0.21 0.26 0.06 0.23 0.31 0.12 0.11 0.29 
y4 0.20 0.18 0.12 0.22 1.00 0.34 0.22 0.09 0.18 0.18 0.17 0.17 0.30 0.26 0.26 0.07 0.18 0.26 0.02 0.15 0.33 
y5 0.14 0.17 0.17 0.23 0.34 1.00 0.29 0.11 0.13 0.20 0.19 0.23 0.28 0.19 0.30 0.13 0.20 0.29 0.08 0.21 0.33 
y6 0.13 0.12 0.21 0.31 0.22 0.29 1.00 0.17 0.16 0.21 0.12 0.22 0.27 0.29 0.34 0.10 0.19 0.30 0.20 0.15 0.23 
y7 0.13 0.02 0.14 0.21 0.09 0.11 0.17 1.00 0.12 0.12 0.13 0.05 0.15 0.15 0.10 0.11 0.17 0.17 0.17 0.08 0.09 
y8 0.29 0.19 0.16 0.17 0.18 0.13 0.16 0.12 1.00 0.15 0.21 0.10 0.16 0.19 0.24 0.09 0.21 0.24 0.13 0.21 0.18 
y9 0.19 0.18 0.23 0.18 0.18 0.20 0.21 0.12 0.15 1.00 0.11 0.22 0.14 0.22 0.25 0.19 0.18 0.20 0.22 0.20 0.18 
y10 0.15 0.08 0.06 0.18 0.17 0.19 0.12 0.13 0.21 0.11 1.00 0.11 0.13 0.21 0.20 0.14 0.12 0.19 0.08 0.11 0.11 
y11 0.09 0.19 0.15 0.27 0.17 0.23 0.22 0.05 0.10 0.22 0.11 1.00 0.24 0.28 0.28 0.21 0.12 0.30 0.10 0.10 0.22 
y12 0.21 0.13 0.15 0.35 0.30 0.28 0.27 0.15 0.16 0.14 0.13 0.24 1.00 0.27 0.37 0.17 0.15 0.36 0.15 0.12 0.36 
y13 0.18 0.14 0.14 0.21 0.26 0.19 0.29 0.15 0.19 0.22 0.21 0.28 0.27 1.00 0.29 0.14 0.11 0.34 0.19 0.17 0.19 
y14 0.22 0.18 0.11 0.26 0.26 0.30 0.34 0.10 0.24 0.25 0.20 0.28 0.37 0.29 1.00 0.14 0.16 0.40 0.13 0.16 0.34 
y15 0.22 0.11 0.15 0.06 0.07 0.13 0.10 0.11 0.09 0.19 0.14 0.21 0.17 0.14 0.14 1.00 0.15 0.08 0.08 0.12 0.03 
y16 0.21 0.15 0.18 0.23 0.18 0.20 0.19 0.17 0.21 0.18 0.12 0.12 0.15 0.11 0.16 0.15 1.00 0.18 0.21 0.16 0.25 
y17 0.15 0.14 0.23 0.31 0.26 0.29 0.30 0.17 0.24 0.20 0.19 0.30 0.36 0.34 0.40 0.08 0.18 1.00 0.13 0.17 0.38 
y18 0.13 0.15 0.12 0.12 0.02 0.08 0.20 0.17 0.13 0.22 0.08 0.10 0.15 0.19 0.13 0.08 0.21 0.13 1.00 0.05 0.12 
y19 0.15 0.16 0.18 0.11 0.15 0.21 0.15 0.08 0.21 0.20 0.11 0.10 0.12 0.17 0.16 0.12 0.16 0.17 0.05 1.00 0.16 
y20 0.20 0.24 0.15 0.29 0.33 0.33 0.23 0.09 0.18 0.18 0.11 0.22 0.36 0.19 0.34 0.03 0.25 0.38 0.12 0.16 1.00 

Correlation Matrix    Lead Time 300 h            Warm Season 
Table 3.6. Correlation matrices for lead time 300 h, in warm and cool seasons. 

Correlation Matrix    Lead Time 300 h            Cool Season 



! 24!

    
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.61 0.33 0.29 0.16 0.26 0.29 0.26 0.33 0.53 0.43 0.23 0.20 0.31 0.58 0.27 0.37 0.23 0.56 0.34 0.22 
y1 0.00 1.00 0.26 0.28 0.16 0.14 0.19 0.21 0.33 0.33 0.40 0.21 0.13 0.16 0.53 0.27 0.41 0.19 0.42 0.30 0.14 
y2 0.00 0.00 1.00 0.47 0.53 0.46 0.17 0.52 0.45 0.27 0.62 0.44 0.51 0.59 0.28 0.46 0.40 0.54 0.34 0.61 0.53 
y3 0.00 0.00 0.00 1.00 0.48 0.52 0.18 0.43 0.52 0.29 0.44 0.60 0.54 0.53 0.36 0.47 0.51 0.55 0.26 0.49 0.63 
y4 0.00 0.00 0.00 0.00 1.00 0.58 0.19 0.62 0.45 0.14 0.57 0.45 0.67 0.65 0.20 0.55 0.33 0.69 0.27 0.59 0.55 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.22 0.57 0.46 0.19 0.60 0.48 0.59 0.61 0.19 0.51 0.37 0.63 0.34 0.66 0.53 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.10 0.20 0.29 0.16 0.23 0.12 0.25 0.34 -0.03 0.08 0.10 0.36 0.16 0.23 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.45 0.21 0.61 0.40 0.59 0.56 0.19 0.64 0.39 0.61 0.36 0.65 0.50 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.32 0.51 0.63 0.38 0.43 0.33 0.46 0.56 0.49 0.40 0.49 0.58 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.27 0.31 0.20 0.27 0.36 0.25 0.25 0.25 0.51 0.27 0.29 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.42 0.53 0.60 0.25 0.58 0.47 0.60 0.38 0.72 0.43 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.41 0.50 0.32 0.36 0.49 0.51 0.35 0.49 0.66 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.67 0.18 0.54 0.34 0.64 0.26 0.57 0.56 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.22 0.50 0.34 0.65 0.35 0.63 0.61 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.18 0.36 0.28 0.39 0.21 0.31 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.46 0.54 0.30 0.59 0.40 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.35 0.35 0.42 0.48 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.30 0.64 0.54 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.31 0.42 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 

y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00      
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.74 0.62 0.49 0.43 0.46 0.54 0.70 0.68 0.74 0.67 0.48 0.52 0.47 0.61 0.62 0.69 0.54 0.69 0.66 0.50 
y1 0.00 1.00 0.57 0.42 0.40 0.44 0.42 0.55 0.56 0.58 0.59 0.42 0.43 0.42 0.49 0.51 0.57 0.49 0.62 0.51 0.44 
y2 0.00 0.00 1.00 0.53 0.56 0.50 0.44 0.65 0.58 0.50 0.61 0.52 0.54 0.55 0.49 0.58 0.57 0.59 0.54 0.58 0.50 
y3 0.00 0.00 0.00 1.00 0.67 0.66 0.62 0.52 0.52 0.42 0.43 0.69 0.70 0.73 0.62 0.44 0.54 0.71 0.55 0.49 0.69 
y4 0.00 0.00 0.00 0.00 1.00 0.72 0.68 0.54 0.57 0.41 0.51 0.73 0.73 0.77 0.60 0.48 0.47 0.74 0.44 0.47 0.76 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.67 0.49 0.51 0.42 0.49 0.74 0.69 0.77 0.65 0.43 0.49 0.69 0.48 0.48 0.70 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.43 0.54 0.44 0.41 0.73 0.68 0.71 0.70 0.39 0.45 0.68 0.49 0.41 0.70 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.64 0.55 0.64 0.48 0.61 0.52 0.48 0.61 0.67 0.58 0.53 0.60 0.53 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.52 0.66 0.59 0.57 0.59 0.55 0.56 0.60 0.56 0.55 0.59 0.62 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.51 0.41 0.47 0.46 0.55 0.41 0.54 0.49 0.59 0.50 0.42 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.50 0.49 0.50 0.55 0.62 0.55 0.55 0.61 0.49 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.74 0.73 0.66 0.42 0.50 0.74 0.51 0.46 0.78 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.72 0.61 0.52 0.57 0.77 0.51 0.53 0.72 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.64 0.48 0.50 0.72 0.45 0.43 0.75 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.42 0.48 0.67 0.50 0.48 0.63 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.61 0.53 0.51 0.57 0.49 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.55 0.56 0.61 0.53 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.53 0.58 0.73 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.56 0.49 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.46 
y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Conditional Correlation Matrix            Lead Time 12 h            Warm Season 

Table 3.7. Conditional correlation matrices for lead time 12 h, in warm and cool seasons. 

Conditional Correlation Matrix            Lead Time 12 h             Cool Season 



! 25!

    
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.40 0.16 0.20 0.12 0.17 0.25 0.23 0.20 0.32 0.26 0.18 0.19 0.12 0.26 0.15 0.12 0.12 0.43 0.31 0.04 
y1 0.00 1.00 0.20 0.24 0.14 0.21 0.21 0.19 0.30 0.29 0.21 0.19 0.21 0.22 0.15 0.14 0.21 0.14 0.31 0.25 0.17 
y2 0.00 0.00 1.00 0.38 0.46 0.51 0.36 0.48 0.44 0.33 0.46 0.35 0.46 0.47 0.32 0.47 0.35 0.37 0.35 0.58 0.35 
y3 0.00 0.00 0.00 1.00 0.40 0.48 0.31 0.43 0.42 0.27 0.37 0.46 0.45 0.41 0.33 0.30 0.38 0.40 0.34 0.35 0.44 
y4 0.00 0.00 0.00 0.00 1.00 0.44 0.37 0.35 0.33 0.26 0.20 0.36 0.49 0.36 0.23 0.32 0.27 0.41 0.26 0.33 0.31 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.41 0.47 0.39 0.24 0.46 0.40 0.49 0.55 0.27 0.40 0.34 0.44 0.28 0.56 0.36 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.31 0.24 0.33 0.30 0.29 0.40 0.34 0.28 0.24 0.25 0.33 0.30 0.41 0.24 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.39 0.26 0.46 0.38 0.41 0.46 0.23 0.43 0.43 0.40 0.32 0.47 0.35 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.33 0.45 0.32 0.35 0.38 0.19 0.37 0.47 0.29 0.22 0.42 0.31 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.39 0.31 0.36 0.31 0.29 0.26 0.23 0.26 0.32 0.38 0.16 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.30 0.39 0.37 0.24 0.51 0.27 0.31 0.38 0.52 0.32 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.45 0.45 0.35 0.26 0.29 0.43 0.24 0.39 0.46 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.24 0.36 0.29 0.48 0.36 0.48 0.36 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.25 0.36 0.38 0.50 0.26 0.43 0.41 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.20 0.21 0.19 0.26 0.30 0.15 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.28 0.35 0.34 0.43 0.23 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.23 0.20 0.37 0.24 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.25 0.35 0.34 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.40 0.16 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.25 

y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00      
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.61 0.61 0.55 0.49 0.57 0.60 0.65 0.67 0.60 0.59 0.59 0.58 0.57 0.58 0.60 0.56 0.54 0.66 0.61 0.57 
y1 0.00 1.00 0.43 0.48 0.44 0.48 0.42 0.51 0.51 0.45 0.58 0.46 0.44 0.50 0.45 0.47 0.45 0.47 0.54 0.48 0.45 
y2 0.00 0.00 1.00 0.46 0.40 0.47 0.46 0.50 0.55 0.51 0.45 0.50 0.45 0.52 0.50 0.51 0.50 0.41 0.50 0.54 0.45 
y3 0.00 0.00 0.00 1.00 0.64 0.64 0.60 0.56 0.48 0.48 0.43 0.64 0.66 0.73 0.61 0.43 0.43 0.61 0.48 0.43 0.68 
y4 0.00 0.00 0.00 0.00 1.00 0.63 0.57 0.42 0.45 0.38 0.46 0.60 0.68 0.61 0.57 0.47 0.32 0.62 0.44 0.52 0.68 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.58 0.52 0.47 0.49 0.51 0.64 0.63 0.65 0.66 0.47 0.45 0.61 0.51 0.45 0.67 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.44 0.54 0.51 0.37 0.66 0.57 0.62 0.64 0.41 0.41 0.56 0.48 0.42 0.57 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.58 0.50 0.52 0.49 0.53 0.50 0.51 0.54 0.53 0.51 0.56 0.50 0.50 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.51 0.53 0.53 0.49 0.51 0.52 0.51 0.57 0.53 0.58 0.52 0.57 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.43 0.52 0.48 0.51 0.50 0.55 0.46 0.48 0.51 0.49 0.46 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.37 0.40 0.41 0.40 0.49 0.45 0.46 0.56 0.49 0.47 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.66 0.66 0.68 0.44 0.39 0.66 0.50 0.44 0.67 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.65 0.62 0.48 0.41 0.62 0.46 0.46 0.67 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.60 0.47 0.39 0.60 0.47 0.45 0.69 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.42 0.44 0.64 0.51 0.46 0.64 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.43 0.48 0.48 0.54 0.52 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.40 0.52 0.44 0.44 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.46 0.48 0.64 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.47 0.49 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.49 
y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Conditional Correlation Matrix            Lead Time 108 h            Warm Season 
Table 3.8. Conditional correlation matrices for lead time 108 h, in warm and cool seasons. 

Conditional Correlation Matrix            Lead Time 108 h             Cool Season 
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 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.18 0.21 0.13 0.32 0.31 0.16 0.24 0.24 0.19 0.20 0.22 0.21 0.24 0.30 0.23 0.15 0.29 0.19 0.24 0.22 
y1 0.00 1.00 0.34 0.18 0.19 0.30 0.26 0.33 0.27 0.25 0.38 0.21 0.25 0.30 0.21 0.26 0.26 0.25 0.38 0.31 0.19 
y2 0.00 0.00 1.00 0.33 0.38 0.45 0.35 0.40 0.35 0.28 0.51 0.38 0.40 0.45 0.20 0.37 0.35 0.38 0.31 0.41 0.38 
y3 0.00 0.00 0.00 1.00 0.38 0.53 0.37 0.40 0.35 0.25 0.36 0.45 0.46 0.41 0.29 0.34 0.32 0.45 0.29 0.27 0.44 
y4 0.00 0.00 0.00 0.00 1.00 0.45 0.34 0.41 0.32 0.23 0.28 0.53 0.56 0.48 0.33 0.38 0.23 0.55 0.33 0.32 0.53 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.34 0.43 0.31 0.32 0.41 0.45 0.54 0.59 0.29 0.35 0.37 0.51 0.40 0.31 0.50 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.40 0.37 0.27 0.34 0.36 0.36 0.39 0.31 0.30 0.27 0.41 0.30 0.25 0.25 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.39 0.27 0.44 0.46 0.41 0.48 0.28 0.47 0.34 0.50 0.34 0.38 0.41 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.24 0.34 0.42 0.28 0.33 0.25 0.39 0.36 0.36 0.27 0.35 0.26 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.25 0.27 0.21 0.33 0.15 0.34 0.27 0.30 0.35 0.32 0.22 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.32 0.33 0.45 0.15 0.46 0.30 0.38 0.22 0.35 0.34 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.44 0.41 0.35 0.37 0.30 0.52 0.28 0.27 0.48 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.47 0.29 0.37 0.33 0.54 0.34 0.28 0.49 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.33 0.34 0.54 0.41 0.44 0.45 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.20 0.30 0.21 0.14 0.29 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.21 0.39 0.29 0.28 0.35 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.34 0.23 0.37 0.30 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.36 0.27 0.49 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.34 0.25 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.24 

y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00      
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.36 0.38 0.17 0.31 0.27 0.31 0.35 0.42 0.32 0.33 0.24 0.28 0.25 0.33 0.33 0.42 0.29 0.29 0.29 0.31 
y1 0.00 1.00 0.30 0.31 0.40 0.33 0.29 0.33 0.26 0.31 0.37 0.17 0.23 0.30 0.29 0.28 0.25 0.27 0.28 0.27 0.33 
y2 0.00 0.00 1.00 0.18 0.34 0.25 0.27 0.25 0.27 0.24 0.23 0.15 0.24 0.30 0.27 0.25 0.34 0.32 0.25 0.22 0.22 
y3 0.00 0.00 0.00 1.00 0.34 0.42 0.35 0.27 0.13 0.24 0.18 0.37 0.30 0.30 0.35 0.25 0.20 0.32 0.31 0.22 0.30 
y4 0.00 0.00 0.00 0.00 1.00 0.38 0.36 0.35 0.21 0.28 0.26 0.34 0.45 0.35 0.46 0.30 0.26 0.40 0.32 0.30 0.38 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.35 0.29 0.19 0.28 0.29 0.29 0.36 0.33 0.37 0.32 0.24 0.34 0.34 0.27 0.36 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.20 0.26 0.33 0.29 0.31 0.25 0.42 0.26 0.24 0.24 0.37 0.23 0.38 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.29 0.32 0.23 0.25 0.33 0.28 0.37 0.40 0.30 0.32 0.35 0.29 0.34 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.20 0.18 0.16 0.24 0.17 0.23 0.28 0.32 0.22 0.15 0.18 0.22 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.22 0.28 0.22 0.20 0.31 0.23 0.27 0.24 0.36 0.26 0.22 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.20 0.22 0.25 0.32 0.20 0.30 0.22 0.30 0.26 0.38 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.29 0.24 0.36 0.25 0.26 0.23 0.26 0.28 0.42 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.32 0.49 0.28 0.26 0.34 0.28 0.18 0.41 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.39 0.18 0.28 0.28 0.19 0.20 0.39 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.30 0.33 0.28 0.39 0.29 0.48 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.27 0.28 0.26 0.27 0.26 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.38 0.27 0.26 0.30 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.29 0.23 0.32 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.30 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 
y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Conditional Correlation Matrix            Lead Time 204 h            Warm Season 

Table 3.9. Conditional correlation matrices for lead time 204 h, in warm and cool seasons. 

Conditional Correlation Matrix            Lead Time 204 h             Cool Season 
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 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.27 0.33 0.23 0.28 0.21 0.22 0.30 0.26 0.18 0.16 0.20 0.21 0.29 0.22 0.30 0.24 0.23 0.29 0.18 0.28 
y1 0.00 1.00 0.23 0.16 0.19 0.29 0.20 0.31 0.28 0.16 0.22 0.21 0.38 0.32 0.21 0.29 0.23 0.29 0.29 0.31 0.32 
y2 0.00 0.00 1.00 0.32 0.29 0.36 0.19 0.38 0.28 0.30 0.34 0.25 0.42 0.40 0.22 0.31 0.35 0.33 0.36 0.35 0.40 
y3 0.00 0.00 0.00 1.00 0.47 0.42 0.38 0.46 0.21 0.30 0.23 0.41 0.50 0.38 0.37 0.32 0.29 0.44 0.37 0.18 0.51 
y4 0.00 0.00 0.00 0.00 1.00 0.46 0.40 0.41 0.29 0.38 0.23 0.40 0.54 0.51 0.38 0.32 0.24 0.56 0.40 0.32 0.43 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.30 0.38 0.35 0.28 0.31 0.46 0.53 0.56 0.41 0.35 0.31 0.48 0.37 0.35 0.46 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.32 0.20 0.24 0.29 0.40 0.44 0.40 0.36 0.29 0.25 0.38 0.23 0.20 0.34 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.45 0.34 0.35 0.41 0.54 0.45 0.30 0.42 0.31 0.44 0.45 0.38 0.31 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.34 0.39 0.37 0.43 0.23 0.35 0.28 0.36 0.37 0.28 0.27 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.24 0.32 0.36 0.41 0.23 0.30 0.25 0.33 0.35 0.25 0.32 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.34 0.28 0.19 0.37 0.28 0.30 0.22 0.39 0.30 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.47 0.51 0.30 0.33 0.33 0.45 0.33 0.28 0.44 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.54 0.45 0.43 0.34 0.63 0.41 0.38 0.47 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.41 0.35 0.29 0.57 0.49 0.34 0.48 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.22 0.35 0.31 0.16 0.44 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.29 0.36 0.29 0.43 0.36 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.30 0.33 0.23 0.34 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.39 0.33 0.42 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.31 0.40 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.30 

y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00       
 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

y0 1.00 0.21 0.08 0.08 0.18 0.12 0.10 0.12 0.28 0.16 0.12 0.07 0.19 0.15 0.19 0.20 0.19 0.13 0.12 0.13 0.18 
y1 0.00 1.00 0.10 0.09 0.16 0.15 0.09 0.00 0.17 0.15 0.05 0.17 0.11 0.11 0.15 0.08 0.13 0.11 0.14 0.14 0.23 
y2 0.00 0.00 1.00 0.12 0.11 0.15 0.19 0.13 0.14 0.21 0.04 0.13 0.13 0.12 0.08 0.12 0.16 0.21 0.11 0.16 0.13 
y3 0.00 0.00 0.00 1.00 0.21 0.22 0.29 0.20 0.15 0.16 0.15 0.25 0.33 0.19 0.24 0.03 0.22 0.29 0.11 0.10 0.27 
y4 0.00 0.00 0.00 0.00 1.00 0.33 0.20 0.08 0.17 0.17 0.16 0.16 0.29 0.25 0.24 0.05 0.17 0.25 0.01 0.14 0.32 
y5 0.00 0.00 0.00 0.00 0.00 1.00 0.28 0.10 0.12 0.18 0.17 0.22 0.27 0.18 0.29 0.12 0.19 0.27 0.07 0.20 0.32 
y6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.17 0.15 0.20 0.10 0.20 0.26 0.27 0.32 0.08 0.18 0.29 0.19 0.14 0.22 
y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.11 0.12 0.12 0.04 0.15 0.14 0.10 0.10 0.16 0.17 0.17 0.07 0.08 
y8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.13 0.19 0.09 0.14 0.17 0.22 0.07 0.20 0.23 0.13 0.20 0.17 
y9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.09 0.20 0.13 0.21 0.24 0.17 0.17 0.18 0.21 0.18 0.17 
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.09 0.11 0.19 0.19 0.12 0.11 0.17 0.07 0.10 0.10 
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.22 0.27 0.26 0.20 0.11 0.28 0.09 0.09 0.21 
y12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.26 0.36 0.16 0.14 0.35 0.14 0.11 0.35 
y13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.27 0.12 0.10 0.32 0.18 0.16 0.18 
y14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.12 0.15 0.38 0.12 0.15 0.33 
y15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.13 0.06 0.07 0.11 0.02 
y16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.17 0.21 0.16 0.24 
y17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.12 0.16 0.37 
y18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.04 0.12 
y19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.15 
y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Conditional Correlation Matrix            Lead Time 300 h            Warm Season 

Table 3.10. Conditional correlation matrices for lead time 300 h, in warm and cool seasons. 

Conditional Correlation Matrix            Lead Time 300 h             Cool Season 
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4. BAYESIAN PROCESSOR OF ENSEMBLE 

4.1 Theory 

 In the Bayesian processor of ensemble (BPE) introduced in Section 2.2, the family of 

likelihood functions f of predictand W, conditional on the realization of ensemble !, can be 

factorized as: 

 ! ! ! != !!!" !!" !!",… ,!!,!)!!!" !!" !!",… ,!!,!)⋯ !!(!!|!!,!)!!(!! ! . (4.1) 

Since the ensemble members do not constitute a random sample and are not stochastically 

independent conditional on!! = ! (see Section 3.3), the likelihood function cannot be further 

simplified. The challenge in processing the ensemble empirically is that the conditional density 

functions in (4.1) are unknown. Lee (2010) suggests searching for an ensemble summary 

statistic!(!,!) that is as informative as the vector !!of all 20 ensemble members, where ! is a 

predictor of central tendency of !, and ! is a predictor of uncertainty about !. Using realization 

(!, !) of (!,!) in place of realization ! simplifies the BPE to the following form (Krzysztofowicz 

1983, 2010): 

 
  ! ! !, ! = 

! !,! !)!!(!)
!(!,!) = !! ! !,!)!!(!|!)!!(!)

!!(!|!)!!(!)
, (4.2) 

 

 ! !, ! = !!! ! ! !! ! = ! !, ! ! ! ! !" = !! ! !,! !! ! ! ! ! !". (4.3) 

 

The Gaussian-Gamma model (validated in Chapter 7) has the structural assumption that ! and 

!!are stochastically independent (Section 7.4.1), which implies !! ! !) = !!! ! . Under this 

assumption, the BPE simplifies to (Krzysztofowicz 2010): 
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 ! ! !, ! = 
! !,! !)!!(!)

!(!,!) = !! ! !,!)!(!)
!!(!|!)

, (4.4) 

 

 !! ! ! = !! ! !,! ! ! !". (4.5) 

 

4.2 Gaussian-Gamma Model 

! In this context, ! is an aggregate predictor calculated via the normal-linear prediction 

model (Section 5.2.3). The components of the Gaussian-Gamma BPE (4.4) – (4.5) are modeled as 

follows (Krzysztofowicz 2010). The prior density function ! is normal with mean ! and variance 

!!:!

 ! ! ≈ !(!, !!). (4.6) 

The reciprocal of ! is assumed to follow a gamma distribution with scale parameter ! and shape 

parameter !: 

 !
! ~!!"##"(!, !). (4.7) 

Conditional density function !!!  is normal with mean and variance parameters equal to, 

respectively, the mean and variance of ! conditional on ! = !!and ! = !: 

 !!! ! !,! ≈ ! ! ! !,! ,!"# ! !,! . (4.8) 

Conditional mean !(!|!,!) and conditional variance !"#(!|!,!) are calculated from elements 

of the normal-linear likelihood model (Section 5.2.1) and parameters ! and ! of the gamma 

distribution: 

 
! ! !,! = !!" + !, (4.9) 

!
 

!!"# ! !,! = !!!, (4.10) 

!
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!!! = !!(! − 1)!!. (4.11) 

From the above three equations, conditional density function !! is: 

 !!! ! !,! ≈ ! !" + !, !!! . (4.12) 

Expected density function !! is also normal, and is used to validate the Gaussian-Gamma model in 

Section (7.4): 

 !!! ! ! ≈ ! !" + !, !!!!! + !!! . (4.13) 

Lastly, posterior density function !, an output of the BPE, is specified as follows: 

 
! ! !, ! ≈ ! !(!|!, !), !"#(!|!, !) , (4.14) 

!
 ! 

! ! !, ! = !!!
!!!!!!! ! + !!!

2!−!"!2
!!2+!2!

, 
(4.15) 

!
 !"# ! !, ! = ! !!!!!

!!! + !!!. (4.16) 

From (4.15), the posterior mean of ! is a linear function of ! and a nonlinear function of !. From 

(4.16), the posterior variance of ! is a nonlinear function of !. While the posterior variance does 

not depend on!! directly, it does depend on signal-to-noise ratio |!|/! of !, since !! is a function 

of residual variance !!. Because realizations ! and !!vary with each forecast, the BPE implies that 

the posterior distribution of ! varies with each forecast as well, according to changes in both 

predictors, of central tendency and of uncertainty. 

!
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4.3 Sufficient Statistics 

4.3.1 Definition 

As efficiency is a primary concern in the processing of any global ensemble forecast, it is 

advantageous to find a summary statistic that contains as much information about the predictand 

as a vector of all ensemble members. Such a summary statistic is called a sufficient statistic, and is 

defined formally as follows (DeGroot 1970):  

Let ! be any function of !. Then such a function ! is a sufficient statistic for the family 

{! ∙ ! :!""!!}  of conditional density functions of !  if two posterior density functions are 

identical, ! ∙ !! = !! ∙ !! , for any prior density function ! and any two ensembles !! and !! 

such that !(!!) != !!(!!). 

4.3.2 Approximately Sufficient Statistics 

The NCEP's 20-member ensemble for the temperature variate was found to have an 

approximately sufficient statistic ! ! = (!, !)  (i.e., a statistic with consistently comparable 

informativeness to that of the full ensemble), consisting of two elements: ensemble mean ! (a 

measure of central tendency) and ensemble range ! (a measure of uncertainty) (Lee 2010). It is 

hypothesized that similarly functioning summary statistics exist for the CMC ensemble.  

Some 19 ensemble statistics are considered (see Section 5.1) as predictors of central 

tendency, or as predictors of uncertainty. As is the case of the NCEP ensemble, the CMC 

ensemble members do not constitute a random sample; as such, they need not be equally 

informative, and in combinations some may be extraneous. Therefore, the informativeness of 

various combinations of ensemble members and ensemble statistics must be tested empirically. 

!
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5. PREDICTORS OF CENTRAL TENDENCY: MAIN RESULTS 

5.1 The Ensemble Statistics 

! In order to find approximately sufficient statistics of the ensemble, several summary 

statistics are hypothesized and calculated (Table 5.1). The mean, median, mode, midrange, upper 

mean, lower mean, mean of majority, and mean of minority are potential predictors of central 

tendency. The range, the width of a central credible interval, variance, coefficient of skewness, 

and coefficient of kurtosis are potential predictors of uncertainty about !.  The mode is estimated 

from the mean and median (Bulmer 1979), rather than observed directly. The midrange is the 

midpoint between the minimum ensemble member and the maximum ensemble member. The 

ensemble midrange divides the ensemble members into two groups. The upper mean is the mean 

of ensemble members that lie above the midrange, while the lower mean is the mean of ensemble 

members that lie below the midrange. An ensemble member that is exactly the value of the 

midrange is incorporated into the calculation of both the upper mean and lower mean. The mean 

of majority is the mean of the majority of ensemble members that lie on one side of the midrange. 

The mean of minority, likewise, is the mean of the minority of ensemble members that lie on one 

side of the midrange. The range is the difference between the maximum ensemble member and the 

minimum ensemble member. The width of the p-probability central credible interval is the 

difference between ensemble members having appropriate ranks. The coefficient of skewness is 

the third moment divided by the standard deviation cubed, and measures the degree to which a 

density function is skewed. The coefficient of kurtosis is the fourth moment divided by the 

standard deviation raised to the fourth power, and measures the relative peakedness of a density 

function.  
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Table 5.1. Notation and formula for each ensemble summary statistic, hypothesized to be a 
predictor of either the central tendency of, or uncertainty about, predictand !. 

Name Notation Formula 

Mean ! 
!
!! !!!

!!!   

Median !!.! 
!
! (!(!/!) + !(!/!!!!)) when ! is even;   
!((!!!)/!) when ! is odd 

Mode !! ! + 3(!!.! − !)  
Midrange !! !

! max!{!!}+min! !{!!} ! 
Upper mean !! Mean of {!!:!! ≥ !!} 
Lower mean !! Mean of {!!:!! ≤ !!} 
Mean of majority !! Mean of the majority of  on one side of  

Mean of minority !! Mean of the minority of  on one side of  

Maximum !(!) max!{!!} 
Minimum !(!) min! !{!!} 
Range ! max!{!!}−min! !{!!}! 
Width of central 
credible interval 

!! 
!(!!!!!) − ! ! ,!!!!!!!!!!!!!!!!!!! = 2, 3, 4, 5, 6 
! = (! − 2! + 2)/!, ! = 0.9, 0.8, 0.7, 0.6, 0.5 

Variance !! 
1
! (!! − !)!

!

!!!
 

Coefficient of skewness !" 
1
! (!! − !)!!

!!!

!!  

Coefficient of kurtosis !" ! 1! (!! − !)!!
!!!

!!  

!

! !

jy Ry

jy Ry
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!

5.2 Predictors from the Ensemble 

5.2.1 Methodology for a Single Predictor 

To model the stochastic dependence between the predictand and each predictor, Lee 

chooses a normal-linear likelihood structure: 

 ! = !" + ! + !Θ, 

 

(5.1) 

where ! is any predictor constructed from the ensemble members, ! is a realization of predictand 

!, and Θ is a normal variate with zero mean and constant variance !!. The informativeness of 

each predictor is determined by the parameters ! and ! using the informativeness score (IS), 

derived by Krzysztofowicz (1992): 

 
IS = ! !!

!!!! + 1
!!
.! 

 

(5.2) 

The IS varies from 0 (no information) to 1 (perfect information). The measure is interpretable as 

the squared correlation coefficient between ! and !, or as the relative reduction in variance of 

predictand !, from prior variance !"# ! = !! to posterior variance !"#(!|! = !): 

 IS = [!"#(!,!)]! = !"# ! − !"#(!|! = !)
!"#(!) . (5.3) 

After parameters !, !, and ! are estimated for each predictor, the normal-linear structure 

must be validated. Accordingly, a predictor will be discarded if either 1) it does not exhibit a linear 

dependence on the predictand, or 2) the residual exhibits heteroscedasticity or non-normal 

distribution. Further, a predictor will be discarded if coefficient ! is not significantly different 

from zero, as determined by a pre-specified p-value threshold of 0.07. As with the NCEP 
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ensemble, the above model construction, validation, and evaluation will be performed for every 

hypothesized predictor ! of ! constructed from the CMC ensemble. 

5.2.2 Individual Ensemble Members as Single Predictors 

! For each lead time and season, the IS of each ensemble member is calculated, and the 

ensemble members are sorted from most informative to least informative (from highest IS to 

lowest IS). For a fixed rank and season, the IS decreases as lead time increases. This observation 

is consistent with the expectation that ensemble forecasts become less informative with increasing 

lead time. For lead times 12 h, 60 h, 108 h, 156 h, 204 h, and 252 h, the IS’s are generally greater 

in the cool season than in the warm season. For lead times 300 h and 348 h, the IS’s—while all 

close to zero—are generally greater in the warm season than in the cool season. 

 Table 5.2 shows the highest three IS’s and lowest three IS’s for four lead times, in warm 

and cool seasons. The order of informativeness of the ensemble members appears to be random 

across lead times and seasons. Indeed, this observation is consistent with the profile plots of 

ensemble member ranks in Figure 5.1. The multitude of steep lines between consecutive lead 

times in each plot indicate large relative changes in informativeness. Thus, in the large, the 

ensemble members appear to be indistinguishable in terms of informativeness.  
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Table 5.2. The IS of the three most informative ensemble members and three least informative 
ensemble members, for lead times 12 h, 108 h, 204 h, and 300 h, in warm and cool seasons. 
 

Lead Time: 12 h 108 h 
Season: Warm Cool Warm Cool 
  Predictor IS Predictor IS Predictor IS Predictor IS 

Highest 3 
IS 

y5 0.6293 y15 0.9138 y13 0.2487 y1 0.5747 
y13 0.6122 y10 0.9097 y19 0.2403 y2 0.5668 
y11 0.5964 y18 0.9091 y10 0.2399 y15 0.5623 

Lowest 3 
IS 

y18 0.3752 y12 0.8812 y15 0.1044 y20 0.4363 
y1 0.3576 y6 0.8810 y16 0.1043 y17 0.4354 
y14 0.3411 y14 0.8749 y4 0.0892 y5 0.4319 

!

Lead Time: 204 h 300 h 
Season: Warm Cool Warm Cool 

 Predictor IS Predictor IS Predictor IS Predictor IS 

Highest 3 
IS 

y12 0.0839 y20 0.1349 y1 0.0518 y1 0.0463 
y10 0.0811 y1 0.1277 y19 0.0418 y2 0.0295 
y13 0.0749 y10 0.1270 y15 0.0399 y3 0.0272 

Lowest 3 
IS 

y16 0.0286 y3 0.0644 y2 0.0167 y16 0.0078 
y6 0.0211 y9 0.0606 y6 0.0144 y7 0.0034 
y1 0.0188 y12 0.0556 y10 0.0134 y18 0.0027 
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 Figure 5.1. Profile plots of the rank of ensemble member by informativeness 
for each lead time, in the warm season (top) and cool season (bottom). The 
ranks fluctuate rapidly, indicating that in the large, the ensemble members are 
indistinguishable. 
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! While the ensemble members can be ranked by informativeness score within each lead 

time and season, the IS of the most informative member may not be significantly different from 

the IS of the least informative member. To address this possibility, the difference between the 

maximum IS!and minimum IS was tested for statistically significant difference from zero, within 

each lead time and season, according to the following hypothesis test: 

Let r = Cor(Yi, Yj), where Yi and Yj are the most informative and least informative ensemble 

members respectively, and let max IS!and min IS be their respective informativeness scores. Let 

the null hypothesis be that the difference (max IS−min IS) is zero, and let the alternative 

hypothesis be that this difference is greater than zero. Williams’ test statistic !  is defined 

according to Williams (1959):  

 
! = (max IS−min IS) (! − 1)(1+ !)

2 ! − 1
! − 3 ! + ! IS!(1− !)!

, 

 

 

where |!| is the determinant of the following matrix: 

 
! = !

1 max IS min IS
max IS 1 !
min IS ! 1

, 

 

 

IS = (max IS+min IS)/2, and ! is the number of days (sample size) for a specified lead time 

and season. ! is assumed to follow the ! distribution with !!– !3 degrees of freedom. The p-values 

for the one-sided !-test are shown in Table 5.3 for all lead times in both warm and cool seasons. 

For lead times 12 h, 60 h, 108 h, and 156 h, the null hypothesis is rejected in each season, i.e., the 

difference in IS is statistically significant. However, for lead times 204 h, 252 h, 300 h, and 348 h, 

the p-values are high, and thus it is inconclusive as to whether the differences in informativeness 

among the ensemble members are significantly greater than zero. 
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Table 5.3. Results of the statistical hypothesis test for the significance of the difference between 
the IS of the most informative and least informative ensemble member, within each lead time and 
season. The p-values in the table are obtained from the one-sided t-test using Williams’ test 
statistic (Williams 1959). A p-value less than 0.07 is chosen to infer statistical significance. For 
each of lead times 12 h, 60 h, 108 h, and 156 h, the IS difference is significantly greater than zero. 

Lead Time Warm Cool  Lead Time Warm Cool 
12 h 0.0000 0.0000  60 h 0.0003 0.0000 
108 h 0.0044 0.0000  156 h 0.0422 0.0063 
204 h 0.1908 0.0801  252 h 0.2688 0.1908 
300 h 0.3095 0.2711  348 h 0.2840 0.3829 

!

5.2.3 Methodology for a Combination of Predictors 

In addition to individual ensemble members and summary statistics, Lee (2010) evaluates 

the informativeness of combinations of these predictors. A vector of predictors may be more 

informative than the most informative predictor. To assess the informativeness of a vector of ! 
predictors, Lee uses the following aggregation method, which is valid under the normal-linear 

prediction model: 

 
! = ! !!!! + !! + Ξ

!

!!!
, (5.4) 

where the residual Ξ is a normal variate with zero mean and variance !!. Once again, a model with 

one or more coefficients !! !(! = 1,… , !) not significantly different from zero is discarded. An 

accepted model, then, defines a combined predictor!!, which takes the form 

 
! = ! !!!! + !!,

!

!!!
 

(5.5) 

and its IS is calculated via the normal-linear likelihood model (5.1). This IS, determined again by 

the parameters !, !, and !, indicates the informativeness of the linear combination of predictors 

(!!,… ,!!). Lee notes that the sample of the predictand !  is used twice, first to estimate 

aggregation coefficients !!  (!! = !1,… , !), and again to estimate the parameters (!, !,!) of the 

normal-linear likelihood model for the single predictor !. Once all hypothesized predictors from 
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the CMC ensemble are validated and evaluated, they will be compared to the predictors 

constructed through Lee's analysis of the NCEP ensemble. 

5.2.4 Optimal Combination of Ensemble Members 

! Lee (2010) describes a procedure by which to search for the most informative combination 

of ensemble members within each lead time and season. First, the IS!of each individual ensemble 

member is calculated. Next, the two most informative ensemble members are selected and each is 

combined with every other member. Among pairs whose coefficients in normal-linear prediction 

model (5.4) are all significantly different from zero, the two most informative pairs are selected 

and combined with each remaining ensemble member to form triplets. The procedure continues 

likewise to select the two most informative four-tuplets, five-tuplets, and so on, until a number of 

ensemble members is reached at which the normal-linear prediction model for each combination 

contains at least one coefficient that is not significantly different from zero. When this stopping 

criterion is met, the “optimal” combination is one having the highest IS thus far and all 

coefficients significantly different from zero. Since this procedure does not calculate the IS for all 

possible combinations of ensemble members, it is suboptimal. However, it offers a reasonable 

compromise between proximity to an optimal solution and computational expense. 

Table 5.4 shows the IS of the most informative four combinations of ensemble members 

for four lead times and two seasons, as validated under the normal-linear likelihood model, along 

with the IS of the most informative individual member. For each lead time and season, the optimal 

combination of ensemble members is more informative than either the most informative ensemble 

member or any ensemble statistic (Table 5.5). However, a single ensemble member does not 

consistently enter into the most informative combination of members, as can be inferred from a 

barplot of the frequency with which each ensemble member enters the optimal combination 

(Figure 5.2). !
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Table 5.4. The IS of the most informative four combinations of ensemble members, along with 
the IS!of the most informative ensemble member, for lead times 12 h, 108 h, 204 h, and 300 h and 
for two seasons. There does not appear to be a member that is consistently in the most informative 
combination. 

 
Warm Season Cool Season 

Lead 
Time Predictors (y) IS Predictors (y) IS 

12 h 

   5 6 16 15 2 11 0.7450    15 9 5 18 10 0.9419 

   5 6 16 15 2 8 0.7424    15 9 5 18 2 0.9416 

    5 6 16 15 11 0.7403    15 9 5 10 1 0.9414 

    5 6 16 15 2 0.7393    15 9 5 10 2 0.9414 

        5 0.6293        15 0.9138 

108 h 

   13 10 1 2 11 6 0.3803    1 2 15 10 6 0.6810 

    13 10 1 2 11 0.3743    1 2 15 10 19 0.6801 

    13 10 1 2 9 0.3743    1 2 15 10 9 0.6799 

    13 10 1 2 6 0.3741    1 2 15 6 19 0.6791 

        13 0.2487        1 0.5747 

204 h 

     12 10 9 8 0.1425   20 15 10 2 19 8 0.2582 

     12 10 9 14 0.1410   20 15 10 2 19 1 0.2574 

      12 10 8 0.1330   20 15 10 2 1 8 0.2553 

      12 10 9 0.1322    20 15 10 2 19 0.2500 

        12 0.0839        20 0.1349 

300 h 

      1 9 19 0.0843     1 2 3 15 0.0898 

      1 9 15 0.0825      1 2 3 0.0816 

      1 9 16 0.0812      1 2 10 0.0782 

      1 19 16 0.0792      1 3 15 0.0768 

        1 0.0518        1 0.0463 
!

Of the 16 optimal combinations (eight lead times in two seasons), an ensemble member appears at 

most in eight (members !!! and !!!"). Members!!!, !!!", !!",!!!", and !!!" enter into the optimal 

combination two or fewer times. This marked difference in the frequency of entrances into the 

optimal combination of members motivates the exploration of a possible reduction of the 

ensemble, conducted in Chapter 6.!
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5.2.5 Ensemble Statistics as Single Predictors 

 In addition to combinations of ensemble members, informativeness is evaluated for each 

ensemble statistic that is hypothesized to predict central tendency. Table 5.5 shows the IS!of five 

such summary statistics—mean, median, midrange, upper mean, and lower mean—for four lead 

times. Figure 5.3 shows a profile plot of the IS of these statistics for eight lead times, in warm and 

cool seasons. The mean is the most informative statistic for 11 of the 16 combinations of lead time 

and season. Further, the IS of the ensemble mean is always greater than that of the most 

informative ensemble member. No ensemble statistic among the mode, midrange, majority mean, 

and minority mean is ever the most informative. 

Figure 5.2. Frequency with which each ensemble member enters the optimal 
combination. [A member entering every combination would have a frequency of 16 
(8 lead times × 2 seasons).] 
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Table 5.5. The IS of the mean, median, midrange, upper mean, and lower mean, for lead times   
12 h, 108 h, 204 h, and 300 h, in warm and cool seasons. Overall, the mean is the most 
informative ensemble statistic. 

12 h 108 h 
Warm Cool Warm Cool 

Predictor IS Predictor IS Predictor IS Predictor IS 
mean 0.7149 mean 0.9359 mean 0.3563 mean 0.6445 

median 0.7128 median 0.9328 median 0.3275 median 0.6188 
midrange 0.6099 midrange 0.9375 midrange 0.2947 midrange 0.6361 

upper mean 0.6562 upper mean 0.9217 upper mean 0.2469 upper mean 0.6108 
lower mean 0.4204 lower mean 0.9378 lower mean 0.2843 lower mean 0.5990 
!

204 h 300 h 
Warm Cool Warm Cool 

Predictor IS Predictor IS Predictor IS Predictor IS 
mean 0.1162 mean 0.2410 mean 0.0683 mean 0.0676 

median 0.1225 median 0.2271 median 0.0632 median 0.0751 
midrange 0.0795 midrange 0.2061 midrange 0.0645 midrange 0.0310 

upper mean 0.0735 upper mean 0.2240 upper mean 0.0737 upper mean 0.0204 
lower mean 0.0726 lower mean 0.1800 lower mean 0.0320 lower mean 0.0182 

 
5.2.6 Combination of Ensemble Statistics 

While the upper mean, lower mean, majority mean, and minority mean sometimes exhibit 

substantial informativeness as individual predictors, each statistic only describes a subset of the 

ensemble members. Therefore, it is hypothesized that these statistics may prove informative in 

combination.  In addition, the coefficient of skewness is hypothesized to enhance informativeness 

when combined with another statistic.  

Each possible pair among nine ensemble statistics—mean, median, mode, midrange, upper 

mean, lower mean, majority mean, minority mean, and coefficient of skewness—was combined 

via the normal-linear prediction model, and the IS of the combined predictor was calculated. A 

pair was discarded if the prediction model or likelihood model contained any coefficient that was 

not significantly different from zero. Table 5.6 shows the IS of the four most informative pairs of 

statistics for four lead times. A pair is ranked and shown only if its model coefficients pass all 

hypothesis tests and its associated IS is higher than the IS of the mean. 
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! Figure 5.3. Profile plots showing the IS of four ensemble statistics—mean, median, upper 
mean, and lower mean—at lead times 12 h, 60 h, 108 h, 156 h, 204 h, 252 h, 300 h, and 348 h, 
in the warm season (top) and cool season (bottom). The ensemble mean is consistently either 
the most informative statistic, or has an IS near that of the most informative statistic. 
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Table 5.6. The four most informative pairs of ensemble statistics for lead times 12 h, 108 h, 204 h, 
and 300 h, in warm and cool seasons. There always exists a pair of ensemble statistics that is more 
informative than the mean. However, the most informative pair varies with lead time and season. 

 Warm Season Cool Season 
Lead 
Time Predictors IS Predictors IS 

12 h 

upper mean mean 0.7316 mode lower mean 0.9423 
median upper mean 0.7202 median lower mean 0.9422 
median lower mean 0.7178 mean lower mean 0.9417 
median mode* 0.7172 lower mean majority mean 0.9415 

 mean 0.7149  mean 0.9359 

108 h 

upper mean mean 0.3801 mean majority mean 0.6565 
lower mean mean 0.3707 median mean 0.6549 
lower mean median 0.3647    

median mean 0.3629    
 mean 0.3563  mean 0.6445 

204 h 

mean upper mean 0.1271 median upper mean 0.2499 
mode lower mean 0.1240 mean upper mean 0.2489 

midrange mode 0.1184 mode upper mean 0.2467 
mode minority mean 0.1175 majority mean upper mean 0.2441 

 mean 0.1162  mean 0.2410 

300 h 

midrange lower mean 0.0855 upper mean mean 0.0896 
   mean minority mean 0.0803 
   midrange minority mean 0.0753 
   cs midrange 0.0739 
 mean 0.0683  mean 0.0676 

* Since the estimate of the mode is obtained from the mean and median, the same IS is obtained for statistic 
pairs (mean, median) and (mean, mode). The three statistics are thus linearly dependent. 

 

For each lead time and season, there exists a pair of ensemble statistics that is more 

informative than the mean. No particular pair of statistics has a consistently higher IS than that of 

the mean. However, the combination of mean and upper mean yields one of the highest IS’s in the 

warm season for lead times 12 h, 60 h, 108 h, 156 h, and 204 h, and in the cool season for lead 

times 204 h and 300 h. 
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The highest IS values in Tables 5.6 and 5.4 are not much different. Consequently, if a 

global user prefered to use ensemble statistics over combinations of ensemble members, then it 

would be reasonable to use the ensemble mean as the primary predictor, enhanced with the upper 

mean whenever such a combination is more informative. 

5.2.7 Enhancing Ensemble Mean with the Maximum or Minimum 

Lee (2010) hypothesized that within the NCEP ensemble, the mean could be enhanced 

with the minimum or maximum ensemble member, or perhaps a combination of them. Likewise, 

the informativeness of every combination from the set {min, max, mean} was evaluated. Table 5.7 

shows the IS of the minimum, maximum, mean, and optimal combination (if it exists) for each 

lead time and season. As before, predictors were discarded if any coefficient in models (5.1) or 

(5.4) was not significantly different from zero. 

The ensemble minimum and maximum—in combination with the mean or with one 

another—is more informative than the mean alone only about 40% of the time.  However, for 

shorter lead times, combining the mean with an extreme ensemble member is both beneficial and 

intuitive: IS is substantially improved by enhancing the mean with (i) the maximum ensemble 

member in the warm season for lead times up to 156 h, and (ii) the minimum ensemble member in 

the cool season for lead times up to 60 h. A global user is advised to employ these enhancements, 

for the specified lead times and seasons, whenever possible. 

5.2.8 Enhancing Ensemble Mean with Ensemble Members 

 In Section 5.2.4, it was concluded that for each lead time and season, the optimal 

combination of ensemble members is more informative than the ensemble mean. It is 

hypothesized that the ensemble mean can be further enhanced by a combination of ensemble 

members. The search for such an enhanced combination proceeds similarly to the procedure 

described in Section 5.2.4. First, the ensemble mean is fixed as the first predictor in the 

combination, and is combined with every ensemble member via (5.4) – (5.5). Each of the two 

most informative mean-member pairs is selected and combined with every remaining ensemble 
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member to form a triplet. This process continues (as in Section 5.2.4) to form four-tuplets, five-

tuplets, and so on, until a combination size is reached at which the normal-linear prediction model 

for each combination contains at least one coefficient that is not significantly different from zero. 

Table 5.8 shows the IS of the optimal combination of mean and ensemble members for each lead 

time and season. 

 

Table 5.7. The IS of the minimum ensemble member, maximum ensemble member, and ensemble 
mean is shown for each lead time and season. The IS of the optimal combination of these three 
predictors is shown if it exists.!

 Warm Season Cool Season 
Lead Time Predictors IS Predictors IS 

12 h 
min   0.3308 min   0.9376 

 max   0.5411 max   0.8944 
  mean   min max 0.7414 

 
mean min  0.9454 

     mean 0.7149     mean 0.9359  

60 h 
min   0.2547 min   0.8084 

 max   0.2868 
 

max   0.7689 
 mean max  0.5244 

 
mean min  0.8492 

     mean 0.4901     mean 0.8451 

108 h 
min   0.1937 

 
min   0.5728 

 max   0.1516 
 

max   0.5480 
 mean max  0.4026 

 
min max  0.6362 

     mean 0.3563     mean 0.6445 

156 h 
min   0.0908 

 
min   0.3266 

 max   0.0931 
 

max   0.3151 
 mean max  0.2477 

 
min max  0.4107 

     mean 0.2126     mean 0.4441 

204 h 
min   0.0383 

 
min   0.1489 

 max   0.0648 
 

max   0.1611 
 min max  0.0797 

 
min max  0.2116 

     mean 0.1162     mean 0.2410 

252 h 
min   0.0235 

 
min   0.0709 

 max   0.0715 
 

max   0.0342 
     min max  0.0812 
     mean 0.0870     mean 0.1400 

300 h 
min   0.0307 

 
min   0.0294 

 max   0.0580 
 

max   0.0114 
 min max  0.0657 

 
mean max  0.0765 

     mean 0.0683     mean 0.0676 

348 h 
min   0.0222 

 
min   0.0096 

 max   0.0454 
 

max   0.0175 
         

    mean 0.0504     mean 0.0292 
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Table 5.8. The optimal combination of mean and ensemble members and its IS!for lead times     
12 h, 60 h, 108 h, 156 h, 204 h, 252 h, 300 h, and 348 h in warm and cool seasons.!

 Warm Season                 
Lead 
Time Predictors (y)               IS 

12 h       mean 6 18 12 14 0.7454 
              mean 0.7149 

60 h    mean 15 12 7 5 17 0.5512 
              mean 0.4901 

108 h     mean 12 15 4 16 0.3885 
              mean 0.3563 

156 h      mean 7 16 4 0.2543 
              mean 0.2126 

204 h           
               mean 0.1162 

252 h      mean 15 12 6 0.1156 
              mean 0.0870 

300 h        mean 1 0.0803 
              mean 0.0683 

348 h        mean 10 0.0599 
              mean 0.0504 

   
 

      
 

Cool Season                Lead 
Time Predictors (y)               IS 

12 h mean 15 17 16 12 14 13 7 0.9449 
              mean 0.9359 

60 h mean 3 12 15 7 8 1 10 0.8783 
              mean 0.8451 

108 h    mean 1 2 15 10 0.6800 
              mean 0.6445 

156 h     mean 1 17 4 0.4743 
              mean 0.4441 

204 h      mean 14 5 0.2559 
              mean 0.2410 

252 h    mean 4 18 13 17 0.1887 
              mean 0.1400 

300 h       mean 1 0.0820 
              mean 0.0676 

348 h       mean 17 0.0411 
              mean 0.0292 
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Table 5.9. Comparison between the IS of the optimal combination of ensemble members and the 
IS of the optimal combination of mean and ensemble members, for all eight lead times in warm 
and cool seasons. The optimal combination of mean and members is the more informative 
predictor in 10 of 16 cases. 

 
 

Warm Season Cool Season 
Lead Time Members Mean + Members Members Mean + Members 

12 h 0.7450 0.7454 0.9419 0.9449 
60 h 0.5442 0.5512 0.8782 0.8783 
108 h 0.3803 0.3885 0.6810 0.6800 
156 h 0.2528 0.2543 0.4739 0.4743 
204 h 0.1425 0.1162 0.2582 0.2559 
252 h 0.1058 0.1156 0.1955 0.1887 
300 h 0.0843 0.0803 0.0898 0.0820 
348 h 0.0574 0.0599 0.0322 0.0411 

 

Table 5.9 compares the IS of the optimal combination of mean and ensemble members 

with the IS of the optimal combination of the ensemble members alone. The combination of mean 

and members is more informative in 10 of 16 cases, but the gain in IS in these cases is usually 

minimal.  This suggests that the ensemble mean cannot, consistently and substantially, be 

enhanced by ensemble members. 

5.2.9 Comparison of Predictors 

 Among the ensemble statistics tested for informativeness, the ensemble mean was 

concluded to be the most informative overall. At each lead time and in each season, the ensemble 

mean is always more informative than the most informative individual member; further, a 

combination of ensemble members can be found with an IS higher than the IS of the ensemble 

mean. Therefore, the following relations exist among these predictors for each lead time: 

 IS(optimal combination of members) > IS(mean)!> IS(most informative member). 

However, the difference in IS is not always significant. Table 5.10 shows the IS of the most 

informative member, the ensemble mean, and the optimal combination of members for each lead 

time, in warm and cool seasons. For a particular lead time and season, an IS of a predictor is 
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underlined if it is at least 5% greater than the IS of the predictor to its left. The IS of the mean is at 

least 5% greater than the IS of the best member in 14 of 16 cases. The IS of the optimal 

combination of members is at least 5% greater than the IS of the mean in 13 of 16 cases. These 

results suggest that the mean is indeed preferable to the most informative member, and, computing 

resources permitting, the optimal combination of members is preferable to the mean. 

 In addition, combining the ensemble mean with an extreme ensemble member is 

recommended at short lead times, specifically: 1) In the warm season, for lead times less than or 

equal to 156 h, the mean should be enhanced with the maximum ensemble member, and 2) in the 

cool season, for lead times 12 h and 60 h, the mean should be enhanced with the minimum 

ensemble member. An asterisk next to an IS of the mean in Table 5.10 indicates that its 

recommended combination with the minimum or maximum member achieves an IS even greater 

than that of the optimal combination of members. 

 

 

 

 Warm Season Cool Season 
Lead 
Time 

Best 
Member 

Mean 
Optimal Combination 

of Members 
Best 

Member 
Mean 

Optimal Combination 
of Members 

12 h 0.6293 0.7149 0.7450 0.9138 0.9359* 0.9419 
60 h 0.3682 0.4901 0.5442 0.8140 0.8451 0.8782 
108 h 0.2487 0.3563* 0.3803 0.5747 0.6445 0.6810 
156 h 0.1580 0.2126 0.2528 0.3374 0.4441 0.4739 
204 h 0.0839 0.1162 0.1425 0.1349 0.2410 0.2582 
252 h 0.0583 0.0870 0.1058 0.0691 0.1400 0.1955 
300 h 0.0518 0.0683 0.0843 0.0463 0.0676 0.0898 
348 h 0.0458 0.0504 0.0574 0.0216 0.0292 0.0322 

  Table 5.10. The IS of the best ensemble member, the ensemble mean, and the optimal 
combination of members, for eight lead times in warm and cool seasons. In all cases, the 
optimal combination of members is more informative than the mean, which is more informative 
than the best member. 
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5.3 Control Forecast 

5.3.1 Combination of Control Forecast and Ensemble Statistics 

The CMC control forecast (CF) is generated using a GEM model as its dynamical core; a 

unique GEM model defined by changes to the physical parameterizations of the control forecast 

generates each ensemble member. The nature of this control member is notably different from that 

of the NCEP control member: The NCEP ensemble forecast system generates ensemble forecasts 

through direct perturbations of the control forecast. Thus, the CMC control forecast may offer 

additional information that is not captured by the 20-member ensemble. In the warm season across 

lead times, the variation in the IS of the control member makes it indistinguishable among the 

ensemble members. However, in the cool season, the control member is more informative than 

any of the ensemble members for the first six lead times. This suggests that the control member 

may add information when combined with ensemble statistics. 

Table 5.11 shows the IS of combinations of the control forecast and each ensemble statistic 

for four lead times. The IS of the ensemble mean and control forecast as individual predictors are 

shown for reference. For four of eight lead times in the warm season, and for seven of eight lead 

times in the cool season, there exists a combination of ensemble statistic and control member that 

is more informative than the ensemble mean and control member individually. The best statistic to 

be paired with the control member varies with lead time and season, and the improvement in IS 

over that of the ensemble mean is sporadic. Because of these shortcomings, the control-statistic 

pair is not an acceptable predictor. 
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 Warm Season Cool Season 
Lead Time Predictors IS Predictors IS 

12 h 

CF mean  CF mean 0.9397 
 CF median  CF median 0.9389 
 CF mode 0.6717 

 
CF mode 0.9362 

 CF midrange  CF midrange 0.9411 
 CF upper mean  CF upper mean 0.9358 
 CF lower mean 0.4562 

 
CF lower mean 0.9414 

 CF majority mean 0.6641 
 

CF majority mean 0.9331 
 CF minority mean 0.4152 

 
CF minority mean 0.9334 

 CF cs 0.4031 
 

CF cs  
 mean 0.7149 

 
 mean 0.9359 

  CF 0.3726 
 

 CF 0.9276 
 

108 h 

CF mean 0.3705 CF mean 0.6585 
 CF median 0.3493 CF median 0.6460 
 CF mode 0.2856 

 
CF mode 0.6292 

 CF midrange 0.3171 
 

CF midrange 0.6617 
 CF upper mean 0.2844 

 
CF upper mean 0.6570 

CF lower mean 0.3121 
 

CF lower mean 0.6508 
CF majority mean 0.2766 

 
CF majority mean 0.6287 

 CF minority mean 0.2263 
 

CF minority mean 0.6502 
 CF cs  CF cs  

 mean 0.3563 
 

 mean 0.6445 
  CF 0.1647 

 
 CF 0.6234 

 

204 h 

CF mean 0.1242 
 

CF mean 0.2541 
 CF median 0.1303 

 
CF median 0.2432 

 CF mode 0.1165 
 

CF mode 0.2127 
 CF midrange 0.0947 

 
CF midrange 0.2422 

 CF upper mean 0.0903 
 

CF upper mean 0.2568 
 CF lower mean 0.0899 

 
CF lower mean 0.2294 

 CF majority mean 0.0972 
 

CF majority mean 0.2074 
 CF minority mean 0.0638 

 
CF minority mean 0.1879 

 CF cs  CF cs  
 mean 0.1162 

 
 mean 0.2410 

  CF 0.0486 
 

 CF 0.1619 
 

300 h 

CF mean  CF mean 0.0792 
 CF median  CF median 0.0869 
 CF mode  CF mode 0.0831 
 CF midrange  CF midrange 0.0535 
 CF upper mean  CF upper mean 0.0471 
 CF lower mean  CF lower mean  

CF majority mean  CF majority mean 0.0783 
 CF minority mean  CF minority mean  

CF cs  CF cs 0.0586 
  mean 0.0683 

 
 mean 0.0676 

  CF 0.0123 
 

 CF 0.0382 
  

Table 5.11. The IS of combinations of the control forecast and each ensemble statistic, 
for lead times 12 h, 108 h, 204 h, and 300 h. A missing IS indicates an insignificant 
result. 
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5.3.2 Combination of Control Forecast and Ensemble Members 

 Since the control forecast as an individual predictor exhibits average informativeness in the 

warm season and exceptional performance in the cool season, it may also enhance a combination 

of ensemble members. The search for the optimal combination of control forecast and ensemble 

members is essentially the same as the search for the optimal combination of ensemble mean and 

ensemble members. The control member, as the first predictor in the combination, is combined 

with every ensemble member to form pairs. Each of the most informative two pairs is then 

combined with every remaining ensemble member to form triplets. The search continues similarly 

until, for a particular combination size, every normal-linear prediction model contains a coefficient 

that is not significantly different from zero. 

 Table 5.12 shows the IS of the optimal combination of the control forecast and ensemble 

members for each lead time and season, alongside the IS of the optimal combination of ensemble 

members. The control member offers improvement in IS for four of eight lead times in the warm 

season, and for six of eight lead times in the cool season.  

Table 5.13 compares the combination of control forecast and ensemble members, and the 

combination of control forecast and ensemble mean. The combination of control forecast and 

ensemble mean yields an unaccepted prediction model in five of 16 cases; in all other cases, the 

optimal combination of control forecast and ensemble members is more informative than the 

combination of control forecast and mean. The sporadic improvement in IS exhibited by the 

addition of the control forecast suggests that, in combination with ensemble members and the 

mean, the control forecast and ensemble members are indistinguishable. 

5.3.3 Combination of Control Forecast, Ensemble Mean, and Ensemble Members 

 The optimal combination of ensemble members is always more informative than the mean. 

Further, the ensemble mean and control forecast individually are enhanced by ensemble members 

at various lead times. Perhaps, then, a combination of control forecast and ensemble members can 

be enhanced by the ensemble mean. The search for such a combination is conducted as in Section 
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5.3.2, except that the control forecast and the ensemble mean are fixed as the first two predictors. 

The combination of control, mean, and members yields an unaccepted prediction model in four of 

16 cases; moreover, the infrequent improvement in IS that this combination offers (over the 

combination of control and members) is insubstantial (Table 5.13). 

 

Table 5.12. The IS of the optimal combination of ensemble members, and the IS of the optimal 
combination of control forecast and ensemble members, for eight lead times in warm and cool 
seasons. The optimal combination of control forecast and members is the more informative 
predictor in 10 of 16 cases. 

 Warm Season Cool Season 
Lead Time Members CF + Members Members CF + Members 

12 h 0.7450 0.7255 0.9419 0.9427 
60 h 0.5442 0.5745 0.8782 0.8790 
108 h 0.3803 0.3867 0.6810 0.6844 
156 h 0.2528 0.2677 0.4739 0.4803 
204 h 0.1425 0.1507 0.2582 0.2589 
252 h 0.1058 0.0944 0.1955 0.1851 
300 h 0.0843 0.0219 0.0898 0.0980 
348 h 0.0574 0.0326 0.0322 0.0070 

 
 
Table 5.13. The IS of the optimal combination of control forecast and members, combination of 
control forecast and mean, and optimal combination of control forecast, mean, and members, for 
eight lead times in warm and cool seasons. The optimal combination of control forecast and 
members is the most informative predictor (or the only predictor with all coefficients significantly 
different from zero) in 11 of 16 cases. The optimal combination of control forecast, mean, and 
members is the most informative predictor in five of 16 cases.!

 
Warm Season Cool Season 

Lead 
Time 

CF + 
Members 

CF + 
Mean 

CF + Mean 
+ Members 

CF + 
Members 

CF + 
Mean 

CF + Mean  
+ Members 

12 h 0.7255 -- 0.7218 0.9427 0.9397 0.9453 
60 h 0.5745 0.5314 0.5728 0.8790 0.8576 0.8791 
108 h 0.3867 0.3705 0.3838 0.6844 0.6585 0.6788 
156 h 0.2677 0.2429 0.2790 0.4803 0.4512 0.4789 
204 h 0.1507 0.1242 0.1242 0.2589 0.2541 0.2608 
252 h 0.0944 -- -- 0.1851 0.1529 0.1896 
300 h 0.0219 -- -- 0.0980 0.0792 0.0911 
348 h 0.0326 -- -- 0.0070 -- -- 

 



! 55!

5.3.4 Summary for Control Forecast 

 Based on the results of this section, the following relations exist among the control 

forecast, ensemble mean, and optimal combination of ensemble members, for each lead time and 

season: 

IS(optimal combination of members) > IS(mean) > IS(control forecast). 

Pairing the control forecast with an ensemble statistic showed infrequent improvement over the 

ensemble mean alone. Likewise, the comparison of the optimal combination of control forecast 

and ensemble members with the optimal combination of ensemble members was inconclusive. 

Therefore, the CMC’s control forecast is not recommended as a predictor of central tendency. 

5.4 Summary and Recommendations 

 This section compares predictors of central tendency hypothesized and tested in this 

chapter for which the prediction model is accepted in every season and lead time: ensemble mean, 

control forecast, individual ensemble members, optimal combination of members, optimal 

combination of mean and members, optimal combination of control and members, ensemble 

statistics, pairs of ensemble statistics, minimum ensemble member, and maximum ensemble 

member.  

Based on all test results, the final choice boils down to the control forecast, ensemble 

mean, combination of mean and extreme ensemble member (for shorter lead times), optimal 

combination of ensemble members, optimal combination of mean and ensemble members, and 

optimal combination of the control forecast and ensemble members. Table 5.14 shows the IS of 

each of these predictors for eight lead times, in warm and cool seasons. Figure 5.4 contains 

profiles of the IS range of ensemble members along with the IS of the mean, control forecast, 

optimal combination of members, and optimal combination of the control forecast and members. 

While the optimal combination of the control forecast and members is most often the most 

informative predictor, its IS drops well below the IS of the optimal combination of members for 

longer lead times in the warm season. 
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Table 5.14. The IS comparison of control forecast, ensemble mean, combination of mean and 
extreme ensemble members, optimal combination of ensemble members, optimal combination of 
mean and ensemble members, and optimal combination of control forecast and ensemble 
members, for all eight lead times in warm and cool seasons. The highest IS for each lead time and 
season is boldfaced. Among the optimal combination of members, optimal combination of mean 
and members, and optimal combination of control forecast and members, an IS is underlined if it 
is not significantly different from the IS of the most informative of the three, according to a one-
sided !-test (Section 5.2.2).  

!
Warm Season 

Lead 
Time CF Mean Mean + 

Max Members Mean + 
Members 

CF + 
Members 

12 h 0.3726 0.7149 0.7323 0.7450 0.7454 0.7255 
60 h 0.3373 0.4901 0.5244 0.5442 0.5512 0.5745 
108 h 0.1647 0.3563 0.4026 0.3803 0.3885 0.3867 
156 h 0.1576 0.2126 0.2477 0.2528 0.2543 0.2677 
204 h 0.0486 0.1162 ""! 0.1425 0.1162 0.1507 
252 h 0.0296 0.0870 ""! 0.1058 0.1156 0.0944 
300 h 0.0123 0.0683 ""! 0.0843 0.0803 0.0219 
348 h 0.0160 0.0504 ""! 0.0574 0.0599 0.0326 

! ! ! ! ! ! !
!

Cool Season 
Lead 
Time CF Mean Mean + 

Min Members Mean + 
Members 

CF + 
Members 

12 h 0.9276 0.9359 0.9454 0.9419 0.9449 0.9427 
60 h 0.8418 0.8451 0.8492 0.8782 0.8783 0.8790 
108 h 0.6234 0.6445 ""! 0.6810 0.6800 0.6844 
156 h 0.3859 0.4441 ""! 0.4739 0.4743 0.4803 
204 h 0.1619 0.2410 ""! 0.2582 0.2559 0.2589 
252 h 0.0800 0.1400 ""! 0.1955 0.1887 0.1851 
300 h 0.0382 0.0676 ""! 0.0898 0.0820 0.0980 
348 h 0.0070 0.0292 ""! 0.0322 0.0411 0.0070 
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 Figure 5.4. Profiles showing the range of the IS of the individual ensemble members, along 
with the IS of the ensemble mean, control forecast, optimal combination of ensemble 
members, and optimal combination of control forecast and ensemble members. 
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From Table 5.14 and Figure 5.4, the following conclusions can be drawn about predictors 

of central tendency from the CMC ensemble: 

1. The most consistently informative ensemble statistic (among nine tested) is the 

ensemble mean. The ensemble mean or control forecast enhanced by ensemble members is always 

more informative than the ensemble mean alone, albeit to varying degrees.  

2. Out of the 16 cases, the most informative predictor is (i) the optimal combination of the 

control forecast and ensemble members in eight cases, (ii) the optimal combination of the mean 

and ensemble members in four cases, (iii) the optimal combination of ensemble members in two 

cases, (iv) and the combination of mean and maximum or minimum member in two cases.  

3. For each lead time and season, the IS of the optimal combination of members is greater 

than the IS of the mean, which is greater than the IS of the control forecast. Also, in most cases, 

the IS of the optimal combination of members, the IS of the optimal combination of the mean and 

members, and the IS of the optimal combination of the control forecast and members are not 

significantly different from IS of the most informative of the three predictors.  

4. The following relations exist among the optimal combination of ensemble members, the 

optimal combination of ensemble mean and ensemble members, and the optimal combination of 

control forecast and ensemble members: 

IS(members) ~ IS(mean + members) ~ IS(CF + members). 

5. For a sophisticated user, any of the above three optimal combinations is the 

recommended predictor of central tendency.  

6. For a global user, perhaps without the computational resources to search for optimal 

combinations in real time, the ensemble mean—when applicable, enhanced by the maximum or 

minimum ensemble member—is the recommended predictor of central tendency. 
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6. PREDICTORS OF CENTRAL TENDENCY: OTHER RESULTS 

6.1 Informativeness of Ensemble Mean 

6.1.1 Mean of Combinations of Members 

 This section explores the informativeness of the ensemble mean when calculated from 

various combinations of ensemble members. In the analysis so far, the mean of all 20 ensemble 

members has been evaluated for its informativeness. However, since the informativeness of 

individual ensemble members varies with lead time and season, it may be the case that the mean of 

only a few members is required to obtain an IS as high as the IS of the 20-member mean. As in 

Lee (2010), this possibility is tested by calculating the mean of every possible !-tuplet of 

ensemble members, for !! ∈ {1, 2,… , 20}. The IS of each mean when ! = 1 is the IS of each 

individual ensemble member. The maximum number of combinations occurs at ! = 10. As k 

increases, the IS’s converge to a single number, the IS of the 20-member mean. 

Table 6.1 shows the maximum IS among means of combinations, along with the members 

used to calculate the mean, for four lead times in warm and cool seasons. The number of ensemble 

members whose mean yields the maximum IS ranges from 6 to 13. There is little consistency in 

which ensemble members appear in the group whose mean yields the highest IS. While the 

maximum number of combinations of !-tuplets occurs when ! is 10, the number of ensemble 

members whose mean has the maximum IS is less than 10 in six of the eight cases shown.  

Figure 6.1 shows the IS of the mean of every combination of ensemble members for lead 

time 108 h in the warm season. In the first column, the 20 points plotted are the IS of each 

ensemble member as a single predictor. The maximum IS occurs at a combination size of 13 

members, although the maximum IS for a combination of 10–12 members comes very close. 

While the maximum IS, 0.3876, is substantially greater than the IS of the 20-member mean, 

0.3563, the mean of a randomly chosen set of 13 members could have an IS much lower than the 

IS of the 20-member mean. Further, considering that the number of possible 13-member  
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Table 6.1. Maximum IS among the mean of every possible combination of ensemble members, 
for lead times 12 h, 108 h, 204 h, and 300 h, in warm and cool seasons. The number of members 
yielding the maximum IS of their mean ranges from 6 to 13. 

 Warm Season 
Lead 
Time 

# of 
members IS Ensemble Members 

12 h 7 0.7391 2, 5, 6, 11, 13, 15, 16 
108 h 13 0.3876 1, 2, 5, 6, 8, 9, 10, 11, 13, 14, 18, 19, 20 
204 h 6 0.1472 8, 9, 10, 12, 13, 14 
300 h 6 0.0912 1, 9, 14, 15, 16, 19 

    
 Cool Season 

Lead 
Time 

# of 
members IS Ensemble Members 

12 h 9 0.9424 1, 2, 5, 6, 9, 10, 15, 18, 19 
108 h 7 0.6812 1, 2, 6, 10, 15, 16, 19 
204 h 11 0.2725 1, 2, 6, 8, 10, 11, 13, 15, 18, 19, 20 
300 h 6 0.0926 1, 2, 3, 10, 14, 15 

 

Table 6.2. The smallest number of ensemble members whose mean can have a higher IS than that 
of the 20-member mean, for lead times 12 h, 108 h, 204 h, and 300 h, in warm and cool seasons. 
This number ranges from 2 to 5. 

 Warm Season Cool Season 

Lead Time Number of Members Number of Members 
12 h 3 3 
108 h 4 2 
204 h 2 5 
300 h 2 3 

 

Table 6.3. The smallest number of ensemble members whose mean is guaranteed to have a higher 
IS than that of the most informative ensemble member, for lead times 12 h, 108 h, 204 h, and 300 
h, in warm and cool seasons. This number ranges from 7 to 16. 

 Warm Season Cool Season 

Lead Time Number of Members Number of Members 
12 h 8 10 
108 h 8 12 
204 h 12 7 
300 h 15 16 
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Figure 6.1. The IS of the mean of every combination of ensemble members for lead time 
108 h in the warm season. 
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 Figure 6.2. The IS of the mean of every combination of ensemble members for lead times 12 h, 
108 h, 204 h, and 300 h, in each season. 
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combinations of 20 ensemble members is a very large number (77,520), searching for the most 

informative set of 13 ensemble members would be computationally too expensive to justify the 

gain in IS. 

A more practical approach, then, is to identify smaller combinations of ensemble members 

that can improve upon the IS of the ensemble mean. Table 6.2 shows the smallest number of 

ensemble members such that the mean of their combination yields an IS at least as high as the IS 

of the 20-member mean. The mean of as few as 2–5 ensemble members can have an IS greater 

than that of the ensemble mean.  

Also of interest is a mean of fewer than 20 ensemble members that is guaranteed to be 

more informative than the best individual ensemble member. Table 6.3 shows the smallest number 

of ensemble members such that the mean of any combination yields an IS that is higher than the IS 

of the most informative member. This number ranges from 7 to 16. For lead time 108 h in the 

warm season, for example, the mean of any combination of eight members yields an IS greater 

than that of any individual ensemble member. 

In a sense, this analysis of the mean is similar to the bootstrap, except that the resampling 

of ensemble members is exhaustive. The results show the uncertainty about the informativeness 

score of the mean when only a subset of ensemble members can be used. 

For comparison, Figure 6.2 shows the IS of the mean of every combination of members for 

four lead times in two seasons. 

 

6.1.2 Reduction of Ensemble Size 

 It may be the case that the mean of a fixed set of fewer than 20 ensemble members is 

generally more informative than the mean of all 20 members. It is computationally too expensive 

to compare the IS of the mean of every fixed subset of ensemble members to the IS of the 20-

member mean. However, the frequency with which a specific ensemble member enters an optimal 

combination may reflect the member’s relative contribution to the informativeness of the ensemble 

mean. This idea is motivated by Figure 5.2, which shows the frequency with which each ensemble 



! 64!

member enters the optimal combination, over eight lead times in two seasons (16 cases). While an 

ensemble member enters into the optimal combination up to eight times (members!!! and !!!"), 

members!!! , !!!" , !!" ,!!!" , and !!!"  enter into the optimal combination two or fewer times. 

Perhaps the exclusion of these members from the ensemble would generally increase the 

informativeness of the ensemble mean. Moreover, choosing a higher frequency threshold, and thus 

further reducing the ensemble size, would perhaps further improve the IS of the ensemble mean. 

To help explore these possibilities, Table 6.4 compares the IS of the 20-member ensemble 

mean to the IS of the mean of three fixed subsets of members, for each lead time and season. Each 

subset—consisting of 15, 10, or 5 members—is selected by excluding all ensemble members that 

enter into the optimal combination, respectively, (i) two or fewer times, (ii) three or fewer times, 

or (iii) five or fewer times. In 13 of 16 cases, the 15-member mean is more informative than the 

20-member mean; further, any decrease in IS from the 20-member mean to the 15-member mean 

is insubstantial. In 12 of 16 cases, the 10-member mean is more informative than the 20-member 

mean; any decrease in IS due to the reduction of ensemble size is, again, insubstantial. The 5-

member mean is more informative than the 20-member mean in only four of 16 cases, and 

sometimes the decrease in IS from the 20-member mean to the 5-member mean is very large. The 

15-member mean is more informative than the 10-member mean in 12 of 16 cases. 

 These results suggest that in general, the CMC could benefit in terms of both 

informativeness and practicality by using the 15-member mean, or even the 10-member mean, as 

the predictor of central tendency. It is not advisable, however, to use the five-member mean as the 

predictor of central tendency, as this reduction of ensemble size can greatly reduce the 

informativeness of the ensemble mean. 
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Table 6.4. The IS of the mean of all 20 ensemble members, and the IS of the mean of fixed 
subsets of 15, 10, and five ensemble members, for each lead time and season. Each of the three 
subsets was selected by excluding all ensemble members that enter into the optimal combination, 
respectively, (i) two or fewer times, (ii) three or fewer times, and (iii) five or fewer times. The 
greatest IS for each lead time and season is boldfaced. An IS is underlined if it is greater than the 
IS of the 20-member mean. 

 
Warm Season 

Lead Time 20 Members 15 Members 10 Members 5 Members 
12 h 0.7149 0.7155 0.7246 0.6553 
60 h 0.4901 0.4923 0.4945 0.4429 
108 h 0.3563 0.3539 0.3636 0.3293 
156 h 0.2126 0.2179 0.2349 0.2223 
204 h 0.1162 0.1090 0.1010 0.0889 
252 h 0.0870 0.0872 0.0799 0.0585 
300 h 0.0683 0.0704 0.0696 0.0669 
348 h 0.0504 0.0474 0.0398 0.0309 

! ! ! ! !

 
Cool Season 

Lead Time 20 Members 15 Members 10 Members 5 Members 
12 h 0.9359 0.9549 0.9412 0.9385 
60 h 0.8451 0.8821 0.8655 0.8664 
108 h 0.6445 0.7131 0.6655 0.6768 
156 h 0.4441 0.5104 0.4612 0.4304 
204 h 0.2410 0.2951 0.2506 0.2250 
252 h 0.1400 0.1932 0.1568 0.1199 
300 h 0.0676 0.1200 0.0739 0.0815 
348 h 0.0292 0.0773 0.0269 0.0253 

 

 

6.2 Constructed Predictors 

6.2.1 Weighted Combination of Mean of Majority and Mean of Minority 

 This section describes the construction of predictors based on the relationships among the 

coefficient of skewness (!"), coefficient of kurtosis (!"), mean of majority (!!), and mean of 

minority (!!). (See Table 5.1.) The coefficient of skewness is large in absolute value if a density 

functionis highly skewed. The coefficient of kurtosis measures the relative peakedness of a density 

function, and is larger for a more peaked density function. The ck is bounded from below by 1. If 
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the density function of variate ! is highly skewed or highly peaked (i.e., if |!"| or !"!is high), then 

the degree of certainty about X is greater. That is, many realizations in the random sample of X fall 

within a narrow region of the sample space, making the mean of majority a good predictor. Lee 

(2010) suggests constructing predictors that assign weights to !!  and !!  using exponential 

functions of |!"| and !". The first set of predictors gives more weight to !! (and less weight to 

!!) as |!"| increases: 

 
 
 

!! = 1− 12 !
! !" !! , (6.1.1) 

 
 !! =

1
2 !

! !" !!!. 
(6.1.2) 

The second set of predictors shifts !" to the origin and scales it by 0.2, which makes its range 

comparable to that of |!"|: 

 !! = 1− 12 !
!!.!(!"!!) !! , (6.2.1) 

 
 !! =

1
2 !

!!.!(!"!!)!!!. 
 

(6.2.2) 

Each set of constructed predictors is combined and validated via the normal-linear prediction 

model, and the informativeness of the combined predictor is assessed via (5.1) – (5.2). Table 6.5 

shows the IS of Set 1 and Set 2 for all lead times in both seasons, with the IS of the ensemble 

mean for reference. Set 1 has a higher IS than the mean has in 11 of 16 cases, while Set 2 has a 

higher IS than the mean has in four of 16 cases. While Set 1 is usually more informative than the 

mean, the IS gain is not consistently substantial enough to justify the cost of constructing the 

predictors. 

 

 

 

Set 1 

Set 2 
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6.2.2 Weighted Combination of Upper Mean and Lower Mean 

Lee (2010) also considers predictors that assign weights to the upper mean (!!!) and lower 

mean (!!!). When !"! < !0, the ensemble members are clustered toward the right of the sample 

space, and!!! is hypothesized to be a better predictor than !!!. Likewise, when !"! > !0, !!! is 

hypothesized to be the better predictor. The third set of constructed predictors reflects this 

hypothesis: 

 
 
 !! = !!!"!!! , (6.3.1) 

 
 !! = !!"!!! . 

 
(6.3.2) 

The fourth set of constructed predictors uses the exponential functions from Set 1. This set is split 

into cases determined by the sign of !": 

If !" < 0, then 
 
 
 !! = 1− 12 !

!" !! , (6.4.1) 
 

 !! =
1
2 !

!"!!! . 
(6.4.2) 

 

If !" > 0, then 
 
 
 !! =

1
2 !

!!"!!! ,! (6.5.1) 
 

 !! = 1− 12 !
!!" !! 

 

(6.5.2) 

As with Set 1 and Set 2, each of the third and fourth sets of constructed predictors is combined and 

validated via the normal-linear prediction model and its IS is evaluated via (5.1) – (5.2). Table 6.6 

shows the IS of Set 3 and Set 4, again with the IS of the ensemble mean. Set 3 is substantially less 

Set 4  

Set 3 
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informative than the mean, except for long lead times in the warm season. Set 4 is more 

informative than the mean in eight of 16 cases. Each of the two sets offers IS improvement 

sporadically, and yields an invalid prediction model in two of 16 cases. Thus, neither set is 

justifiable as a predictor of central tendency. 

Table 6.5. The IS of the first two sets of constructed predictors—weighted averages of the 
majority mean and minority mean—for eight lead times, in warm and cool seasons. A bold IS 
indicates the highest IS in each lead time and season; an underlined IS indicates an IS that is 
higher than that of the ensemble mean. Neither set is substantially more informative than the 
mean. 

 Warm Season Cool Season 
Lead Time Set 1 Set 2 Mean Set 1 Set 2 Mean 

12 h 0.7188 0.7004 0.7149 0.9353 0.9370 0.9359 
60 h 0.4904 0.4840 0.4901 0.8454 0.8446 0.8451 
108 h 0.3513 0.3501 0.3563 0.6506 0.6470 0.6445 
156 h 0.2090 0.1968 0.2126 0.4451 0.4524 0.4441 
204 h 0.1184 0.1070 0.1162 0.2478 0.2474 0.2410 
252 h 0.0821 0.0830 0.0870 0.1359 0.1319 0.1400 
300 h 0.0686 0.0674 0.0683 0.0703 -- 0.0676 
348 h 0.0539 0.0514 0.0504 0.0314 0.0250 0.0292 

!

Table 6.6. The IS of the third and fourth sets of constructed predictors—weighted averages of the 
upper mean and lower mean—for eight lead times, in warm and cool seasons. A bold IS indicates 
the highest IS in each lead time and season; an underlined IS indicates an IS that is higher than 
that of the ensemble mean.  Neither set is substantially more informative than the mean. 

 Warm Season Cool Season 
Lead Time Set 3 Set 4 Mean Set 3 Set 4 Mean 

12 h 0.5919 0.7206 0.7149 0.8128 0.9353 0.9359 
60 h 0.4347 0.5011 0.4901 0.8027 0.8438 0.8451 
108 h 0.2167 0.3665 0.3563 0.4539 0.6392 0.6445 
156 h 0.1578 0.2118 0.2126 0.3057 0.4450 0.4441 
204 h 0.0674 0.1212 0.1162 0.1977 0.2549 0.2410 
252 h 0.0882 0.0827 0.0870 0.1217 0.1329 0.1400 
300 h 0.0721 0.0712 0.0683 -- -- 0.0676 
348 h 0.0597 0.0539 0.0504 -- -- 0.0292 

!
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7. PREDICTORS OF UNCERTAINTY 

7.1 Methodology 

The premise of ensemble forecasting is that an ensemble ! contains not only information 

about the central tendency, but also information about total uncertainty (i.e., the aggregate of 

uncertainties due to the NWP model, parameters, observation, sampling, and initial condition) 

(Kolczynski et al. 2011). The uncertainty about predictand ! given a reasonable predictor ! is 

quantified by variance !! of the residual variate Θ in the likelihood model. When an ensemble 

provides predictor of uncertainty ! in addition to predictor of central tendency !, recall from 

Section 4.1 that the BPE takes the form (Krzysztofowicz 1983): 

 ! ! !, ! = !! ! !,! !(!)
!(!|!) !, (7.1) 

 ! !|! = ! ! !,! ! ! !". (7.2) 

Each statistic!!—the standard deviation, range, or some other predictor—is tested according to the 

Bayesian Gaussian-Gamma model introduced in Section 4.2 (Krzysztofowicz 1983). Under this 

model, conditional on realization ! of !, residual Θ has variance !!!; parameter !! is calculated 

from unconditional variance !! and the parameters of a gamma distribution. The reciprocal 1/!!is 

assumed to follow a gamma distribution with parameters ! and ! (! > 0, ! > 1), each of which 

is estimated using the method of moments: 

 
! = ! 1

! = 1
!

1
!(!)!

!

!!!
, (7.3) 

 
!! = !"# 1

! = ! 1!
1
!(!)−!

!
,

!

!!!
 

(7.4) 

 ! = ! !
!

! !, 
(7.5) 
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 ! = !!
!

!! . 
(7.6) 

Then, !! is derived theoretically: 

 !! = !!(! − 1)!!. (7.7) 

Since residual Θ has zero mean, the value of !! is the slope of the linear regression of Θ! on!! 

(with zero intercept): 

 ! Θ! ! = !) = !!!. (7.8) 

This fact will be used in Section 7.4.3 to validate the Gaussian-Gamma model empirically. 

7.2 Candidate Predictors 

 Table 7.1 contains a list of candidate predictors of uncertainty. The primary candidates, 

selected in accordance with Lee (2010), are the standard deviation, range, widths of several central 

credible intervals, and the coefficient of kurtosis shifted to the origin. Also included are various 

combinations of the range and shifted coefficient of kurtosis. These combinations are 

hypothesized in order to explore potential correlation structures, in both sign and magnitude, 

between !!  and a combination of !  and !" − 1 . The linear combination of !!and !" − 1  is 

constructed via linear regression: 

 ! Θ! !, !" − 1 = !!! + !!!! + !!(!" − 1), (7.9) 

 ! = !!!! + !!(!" − 1). (7.10) 

Table 7.1. Candidate predictors of uncertainty. 

! notes 
! standard deviation 
! range 
!! width of central credible interval (! = 0.9, 0.8, 0.7, 0.6, 0.5) 

!" − 1 coefficient of kurtosis, shifted to the origin 
!/(!" − 1)   
!(!" − 1)   

!!! + !!(!" − 1)   
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7.3 Evaluation of Predictors 

A good predictor of uncertainty ! is one that is highly correlated with squared residual 

variate Θ!. This analysis uses the ensemble mean as predictor of central tendency ! in the normal-

linear likelihood model, which determines Θ!. The correlation of Θ! with each of the 11 candidate 

predictors (Table 7.1) is calculated, and parameters ! and ! of the gamma model are estimated. 

The best predictor for each lead time and season, shown in Table 7.2, is the candidate most highly 

correlated with Θ!  that is also empirically consistent with the assumptions of the Gaussian-

Gamma model. (Empirical validation of the Gaussian-Gamma model is performed in Section 7.4.)  

The width of the 90% central credible interval (!!.!) is most frequently the best predictor of 

uncertainty (six of 16 cases). In three cases, the width of the 50% central credible interval (!!.!) is 

the best predictor, while the ensemble range (!) is the best predictor in two cases. The ensemble 

standard deviation !, initially thought to be a good predictor of the posterior variance of !, is of 

particular interest. Notably, there is no lead time and season for which ! is the best predictor. A 

more detailed summary of the correlations, with emphasis on !, is given in Table 7.3. This table 

reveals that ! is virtually uninformative at longer lead times. Furthermore, !!.! and !/(!" − 1) are 

each among the top two predictors in five of 16 cases. Overall, then, the most consistent predictors 

of uncertainty are !!.!, !!.!, and !/(!" − 1). 
Table 7.2. The best predictor of uncertainty, along with its correlation with the squared residual 
variate, for each lead time and season. The correlation with the highest absolute value in each 
season is boldfaced. 

 Warm Season Cool Season 
Lead Time ! Cor(!,Θ!) ! Cor(!,Θ!) 

12 h !! 0.2574 !!.! 0.1639 
60 h !!.!! 0.3408 !!! + !!(!" − 1) 0.2417 
108 h !!.!! 0.1969 !!.! 0.2503 
156 h !!.!! 0.0509 !!.! 0.1321 
204 h !!.!! 0.1350 !/(!" − 1) -0.0806 
252 h !!.!! 0.1577 !!.! -0.2195 
300 h !/(!" − 1)! 0.0708 !!.! -0.1051 
348 h !! 0.0437 !!! + !!(!" − 1) 0.1592 
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Table 7.3. Predictors of uncertainty with the two highest correlations for each lead time and 
season. 

  Best Second Best Std. Dev. |Cor(best)|
− |Cor(!)| Season Lead 

Time ! Cor ! Cor d Cor 

Warm 

12 h ! 0.2574 ! 0.2220  0.2220 0.0353 
60 h !!.! 0.3408 !!.! 0.3340  0.3179 0.0228 

108 h !!.! 0.1969 !/(!" − 1) 0.1746  0.1605 0.0364 
156 h !!.! 0.0509 !!.! 0.0482  0.0471 0.0038 
204 h !!.! 0.1350 !!.! 0.1035  0.0862 0.0488 
252 h !!.! 0.1577 !" − 1 -0.1499  0.0352 0.1225 
300 h !/(!" − 1) 0.0708 !!.! 0.0530  0.0201 0.0507 
348 h ! 0.0437 !!.! -0.0407  0.0065 0.0371 

Average Abs. Val.   0.1566   0.1407   0.1120 0.0447 

Cool 

12 h !!.! 0.1639 !!! + !!(!" − 1) 0.1547  0.1320 0.0320 

60 h !!! + !!(!" − 1) 0.2417 ! 0.2374  0.2173 0.0244 
108 h !!.! 0.2503 !!.! 0.2341  0.2300 0.0203 
156 h !!.! 0.1321 !!.! 0.1280  0.0981 0.0340 
204 h !/(!" − 1) -0.0806 !!.! -0.0702  0.0563 0.0244 
252 h !!.! -0.2195 !/(!" − 1) -0.1801  0.1021 0.1174 
300 h !!.! -0.1051 !/(!" − 1) -0.0872  0.0673 0.0378 
348 h !!! + !!(!" − 1) 0.1592 !" − 1 0.1589  0.0378 0.1214 

Average Abs. Val.   0.1691   0.1563   0.1176 0.0514 
 

7.4 Validation of the Gaussian-Gamma Model 

7.4.1 Stochastic Independence 

According to an assumption of the Gaussian-Gamma model, predictor of uncertainty ! 

should be stochastically independent of predictand !. Figure 7.1 shows scatterplots of ! versus ! 

for the best predictor for each of lead times 12 h, 108 h, 204 h, and 300 h, in both seasons. Since 

! is normally distributed while ! is not, the correlation Cor(!,!) is not a measure of stochastic 

dependence between the predictors. Thus, independence is confirmed visually. Still, the 

correlations between ! and ! are near zero.  
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 Figure 7.1. Scatter plot of ! vs. !, for best predictor of uncertainty !, for lead times 12 h,  
108 h, 204 h, and 300 h in each season. Stochastic independence of ! and ! is evident.!
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7.4.2 Gamma Distribution 

 The reciprocal 1/! is assumed to follow a gamma distribution. As described in Section 

7.1, distribution parameters ! and ! are estimated using the method of moments. The values of ! 

and ! for the best predictor for each lead time and season are shown in Table 7.4. The empirical 

and parametric distribution functions of the reciprocal of the best predictor, for four lead times in 

each season, are shown in Figure 7.2. The gamma distribution appears to fit the empirical 

distribution well in each case. 

To numerically check the fit of the gamma distribution, the two-sided Kolmogorov-

Smirnov test (K-S test) is performed on the distribution of the reciprocal of the best predictor. The 

K-S test statistic is the maximum absolute difference between the empirical and parametric 

distributions. The critical value is dependent on the sample size and significance level. The null 

hypothesis and alternative hypothesis for the test are, respectively, as follows: 

 H0:  The empirical data come from the estimated gamma distribution. 

            H1:  The empirical data come from a distribution other than the estimated gamma    

        distribution. 

The results of the K-S test at significance level 0.05, along with the test statistic, critical 

value, and p-value are shown in Table 7.5. At the chosen significance level, result ! = 0 indicates 

that the null hypothesis is not rejected, while result ! = 1 indicates a rejection of the null 

hypothesis. The test passes in only 50% of the cases. However, of the cases in which the 

conclusion is that the empirical and parametric distributions differ, three would have passed at a 

significance level of 0.01. Considering that the method of moments, a simple parameter estimation 

technique, was used to fit the parametric distributions, a better fit to the empirical data would most 

certainly be obtained using a more sophisticated distribution fitting method. Still, the relatively 

consistent fit of the estimated gamma distributions validates the distribution assumption of the 

Gaussian-Gamma model. 
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 Figure 7.2. Empirical and estimated parametric gamma distribution functions of 1/!, for the best 
predictor of uncertainty !, for lead times 12 h, 108 h, 204 h, and 300 h, in each season. 
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Table 7.4. Estimated parameter values of the gamma distribution, using the best predictor of 
uncertainty for each lead time and season. 

  Warm Season Cool Season 
Lead Time !! ! ! ! ! ! 

12 h ! 0.3605 1.9203 !!.! 0.3366 6.6221 
60 h !!.! 0.2859 2.3923 !!! + !!(!" − 1) 3.0865 4.3999 
108 h !!.! 0.1925 2.8946 !!.! 0.1444 6.5376 
156 h !!.! 0.0839 5.5383 !!.! 0.2301 4.6467 
204 h !!.! 0.2390 4.7086 !/(!" − 1) 0.2356 2.9348 
252 h !!.! 0.2277 4.6402 !!.! 0.2908 4.0066 
300 h !/(!" − 1) 0.1484 3.7581 !!.! 0.0267 16.7653 
348 h ! 0.0220 12.3064 !!! + !!(!" − 1) 1.9225 7.1662 

  Table 7.5. K-S test results at significance level 0.05, with test statistic, critical value, and p-
value, using the best predictor of uncertainty for each lead time and season. The sample size 
ranges from 251 to 265 for the warm season, and is 334 for the cool season. 

 Warm Season Cool Season 
LT H = Test Stat. Critical Value p-value H = Test Stat. Critical Value p-value 

12 1 0.1092 0.0828 0.0033 0 0.0400 0.0738 0.6433 
60 1 0.1001 0.0831 0.0095 1 0.0751 0.0738 0.0440 
108 1 0.1014 0.0834 0.0087 0 0.0617 0.0738 0.1508 
156 1 0.0896 0.0837 0.0293 0 0.0729 0.0738 0.0549 
204 0 0.0780 0.0840 0.0832 1 0.0780 0.0738 0.0327 
252 0 0.0832 0.0843 0.0555 1 0.1144 0.0738 0.0003 
300 1 0.1074 0.0846 0.0054 0 0.0703 0.0738 0.0704 
348 0 0.0249 0.0849 0.9967 0 0.0402 0.0738 0.6371 

 

7.4.3 Linearity 

Under the Gaussian-Gamma model, Θ! and ! are assumed to be linearly dependent—i.e., 

! Θ! ! = !) = !!!, where !! is derived theoretically as in (7.7). To check this relationship, the 

line !! = !!!! is compared graphically to a zero-intercept regression line fit to the points (!,!!). 
The assumption is empirically validated if the slopes of the two lines are approximately equal. In 

Figure 7.3, using the best predictor for each of four lead times in both seasons, the line !! = !!!! 
(solid)  and  regression  line  (dashed)  are  shown  along with  a scatter plot of points  (!,!!).  The 
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 Figure 7.3. Scatter plot of points (!,!!) with line !! = !!!! (solid) and fitted regression line 
(dashed), for best predictor of central tendency in lead times 12 h, 108 h, 204 h, and 300 h in 
both seasons. 
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 Figure 7.4. Scatter plot of points (!,!) with line !(!|!) (dashed) and curves indicating ±1, ±2 
standard deviations (solid), for the best predictor of uncertainty for lead times 12 h, 108 h, 204 h, 
and 300 h in each season. Predictor of central tendency ! is the ensemble mean. 
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theoretically derived line lies very close to the regression line in all cases. Therefore, the 

theoretical relationship (7.7) under the Gaussian-Gamma model is validated. (This does not 

validate the linearity of the dependence structure itself. The scatterplots in Figure 7.3 do not 

suggest an alternative model, however. What they do suggest is that the predictor uncertainty is 

weak.) 

 

7.4.4 Heteroscedasticity 

 As stated in Section 4.2, the distribution of predictor of central tendency ! given ! is 

normal with mean !"!+ !! and variance !!!!! + !!!. Thus, while !(!|!) is independent of t, 

!"#(!|!)!grows with !. Using best predictor ! for each of four lead times in each season, Figure 

7.4 shows a scatter plot of points (!, !), along with !(!|!) (dashed line) and curves indicating ±1 

and ±2 standard deviations (solid lines). (As stated earlier, ! denotes the ensemble mean.) The 

normal distribution of ! implies that approximately 96% of the points in each plot should lie 

within two standard deviations of the expected value. The empirical data confirm this implication 

in each scatter plot. 

 

7.5 Summary and Recommendations 

Predictors of uncertainty from the CMC ensemble are hypothesized and evaluated 

according to the correlation of each with squared residual variate Θ!, with the CMC ensemble 

mean as the predictor of central tendency. The hypothesized predictors include 11 ensemble 

statistics: standard deviation, range, widths of central credible intervals (five), shifted coefficient 

of kurtosis, and three combinations of range and shifted coefficient of kurtosis. Based on the 

analysis in this chapter, the following six conclusions and recommendations are made: 

1. The best predictor of uncertainty varies with lead time and season, with no apparent 

trend. 
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2. Consistently among the best predictors are the width of the 90% and 80% central 

credible intervals and the quotient of the range and shifted coefficient of kurtosis. Other best 

predictors include the ensemble range, widths of 50% and 70% central credible intervals, and the 

linear combination of range and shifted coefficient of kurtosis. However, none of the predictors of 

uncertainty are very informative. 

3. The ensemble standard deviation is never the best predictor of uncertainty, and is 

uninformative for lead times greater than 204 h in the warm season, and at lead time 348 h in the 

cool season.  

4.  The four assumptions of the Gaussian-Gamma model are empirically validated. 

5.  It is recommended for a global user to use the 90% central credible interval as the 

predictor of uncertainty in the BPE. 

6.  It is recommended for a sophisticated user to use the best predictor of uncertainty for 

each lead time and season (Table 7.2) in the BPE.!
!

!

!

!
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8. COMPARISON OF ENSEMBLES 
 

8.1 Sample Size and Standardization 

 In this chapter, various properties of the predictors of central tendency and uncertainty 

from the NCEP and CMC ensembles are compared. Specifically, select results from the analysis 

of the CMC ensemble in Chapters 3-7 are compared to the results from the analysis of the NCEP 

ensemble from Lee (2010). It is important to note the difference in sample sizes: The NCEP 

ensemble has 704 days of complete forecasts (03/28/2007 – 02/28/2009) while the CMC ensemble 

has 599 days of complete forecasts (07/11/2007 – 02/28/2009). The NCEP and CMC ensemble 

forecasts thus overlap on 599 days. All numerical results in the following comparisons are based 

on the entire samples. 

The NCEP and CMC ensembles are both standardized using the prior mean and standard 

deviation, and divided into warm and cool seasons as described in Section 3.1. Standardization is 

found to bring both sets of ensemble forecasts to near margin stationarity. Further, each member 

from the NCEP and CMC ensembles appears to follow a Gaussian distribution (Lee 2010). 

8.2 Comparison of Correlation between Ensemble Members 

 The average correlation between pairs of ensemble members in each ensemble is shown in 

Table 8.1 for lead times 12 h, 108 h, 204 h, and 300 h in both seasons. The average correlation 

between pairs of ensemble members decreases with lead time in each ensemble. In each case, pairs 

of NCEP ensemble members are more highly correlated on average than are pairs of CMC 

ensemble members. 

 

 

 
 
 
 
 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 0.7816 0.9859 0.9606 0.9957 
108 h 0.5046 0.8836 0.7745 0.8666 
204 h 0.3963 0.6089 0.3632 0.5421 
300 h 0.3743 0.3814 0.1821 0.2348 

Table 8.1. In each ensemble, the average correlation between pairs of ensemble members, for 
each of four lead times, in warm and cool seasons. 
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8.3 Comparison of Conditional Correlation between Ensemble Members 

 In each ensemble, conditional correlations between pairs of ensemble members, given 

realization!! of predictand !, were calculated using the formulae given in Section 3.4. Table 8.2 

shows the average conditional correlation between pairs of members in each ensemble, for lead 

times 12 h, 108 h, 204 h, and 300 h in warm and cool seasons. Pairs of members in each ensemble 

have nonzero conditional correlations, and thus each ensemble is not a random sample.  

The conditional correlations of the two ensembles exhibit four primary properties: (i) In all 

eight cases, the average conditional correlation is less than the average correlation; this is a 

positive property, since it is the conditional correlation that should be zero if the ensemble is to 

constitute a random sample. (ii) The average conditional correlations decrease with lead time in 

each season, in each ensemble. (iii) In 7 of 8 cases, the average conditional correlation between 

pairs of CMC ensemble members is lower than the average conditional correlation between pairs 

of NCEP ensemble members. Thus, the CMC ensemble more so exhibits the conditional 

correlation structure of a random sample than does the NCEP ensemble. (However, the NCEP 

ensemble members are much closer to having identical distributions than are the CMC ensemble 

members.) (iv) Considering a conditional correlation less than 0.35 to be rather weak, the CMC 

ensemble members approximately exhibit conditional independence for lead times 108 h, 204 h, 

and 300 h in the warm season, and for lead times 204 h and 300 h in the cool seasons; the NCEP 

ensemble members approximately exhibit conditional independence for only lead time 300 h in 

each season. 

 
Table 8.2. In each ensemble, the average conditional correlation between pairs of ensemble 
members, for each of four lead times, in warm and cool seasons. 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 0.4079 0.9086 0.5602 0.9098 
108 h 0.3384 0.7723 0.5143 0.6266 
204 h 0.3471 0.5191 0.2870 0.4528 
300 h 0.3457 0.3295 0.1679 0.2095 
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8.4 Comparison of Predictors of Central Tendency 

8.4.1 Comparison of Individual Ensemble Members 

 The informativeness of each predictor of central tendency from the NCEP ensemble and 

the CMC ensemble is evaluated via the normal-linear model detailed in Section 5.2 (Lee 2010). 

Table 8.3 shows the IS of the most informative member in each ensemble, for each lead time and 

season. The IS of the best NCEP ensemble member is consistently greater than the IS of the best 

CMC ensemble member.  

The ensembles can also be compared in terms of average informativeness of individual 

members. Table 8.4 shows the mean and standard deviation of the IS’s of 20 individual members 

in each ensemble, for each lead time and season. In each case, the average IS from the NCEP 

ensemble is greater than the average IS from the CMC ensemble. (However, the relation between 

the IS standard deviations varies with lead time and season.) Further, for a fixed average IS 

achieved by the CMC ensemble, the NCEP ensemble on average can achieve the same IS at a 

longer lead time. For instance, at lead time 156 h in the warm season, the NCEP ensemble 

achieves an average IS of 0.2403, which is close to the average IS of 0.2848 achieved by the CMC 

ensemble at lead time 60 h; therefore, the use of the NCEP forecasts instead of the CMC forecasts 

provides, on average, a “gain” of about four days in the warm season. 

Table 8.3. The IS of the most informative member in each ensemble, for each lead time and 
season. 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 0.6293 0.7834  0.9138 0.9477  
60 h 0.3682 0.5388  0.8140 0.8516  
108 h 0.2487 0.4111  0.5747 0.6474  
156 h 0.1580 0.2846  0.3374 0.4135  
204 h 0.0839 0.1522  0.1349 0.1816  
252 h 0.0583 0.1174  0.0691 0.0910  
300 h 0.0518 0.0753  0.0463 0.0755  
348 h 0.0458 0.0579  0.0216 0.0534  
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8.4.2 Comparison of Ensemble Means 

For both the NCEP and CMC ensembles, the mean is consistently the most informative 

single predictor of central tendency. Table 8.5 compares the IS of the NCEP ensemble mean and 

CMC ensemble mean for each lead time and season. The NCEP ensemble mean is more 

informative than the CMC ensemble mean in all cases, although the difference in IS is not always 

substantial. At lead time 204 h in the warm season, the NCEP ensemble mean has an IS of 0.2040, 

which is close to the IS of the CMC ensemble mean, 0.2126, at lead time 156 h. Likewise, at lead 

time 300 h in the warm season, the NCEP ensemble mean has an IS of 0.1277, which is close to 

the IS of the CMC ensemble mean, 0.1162, at lead time 204 h. Thus, the use of the NCEP 

ensemble mean over the CMC ensemble mean provides a gain of about two to four days. 

 
Table 8.4. Average IS of 20 members in each ensemble, for each lead time and season. The 
standard deviation of IS’s in each case is in parentheses. 

Lead Time Warm Season Cool Season 
CMC NCEP CMC NCEP 

12 h 0.5187 0.7700 0.8944 0.9442 
(0.0860) (0.0064) (0.0112) (0.0020) 

60 h 0.2848 0.5089 0.7534 0.8425 
(0.0512) (0.0161) (0.0434) (0.0064) 

108 h 0.1708 0.3677 0.4914 0.6022 
(0.0482) (0.0228) (0.0466) (0.0308) 

156 h 0.1003 0.2403 0.2534 0.3490 
(0.0284) (0.0211) (0.0306) (0.0315) 

204 h 
0.0492 0.1230 0.0930 0.1417 

(0.0198) (0.0203) (0.0237) (0.0243) 

252 h 
0.0345 0.0791 0.0381 0.0649 

(0.0136) (0.0196) (0.0181) (0.0174) 

300 h 0.0276 0.0516 0.0161 0.0301 
(0.0105) (0.0158) (0.0100) (0.0181) 

348 h 0.0224 0.0348 0.0068 0.0199 
(0.0096) (0.0107) (0.0055) (0.0133) 
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Table 8.5. The IS of the ensemble mean of each ensemble, for each lead time and season. In all 
cases, the NCEP ensemble mean is more informative than the CMC ensemble mean.  

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 0.7149 0.7857 0.9359 0.9487 
60 h 0.4901 0.5354 0.8451 0.8716 
108 h 0.3563 0.4257 0.6445 0.7012 
156 h 0.2126 0.3137 0.4441 0.4829 
204 h 0.1162 0.2040 0.2410 0.2541 
252 h 0.0870 0.1589 0.1400 0.1615 
300 h 0.0683 0.1277 0.0676 0.1031 
348 h 0.0504 0.0970 0.0292 0.0792 

 

Table 8.6. IS of the optimal combination of ensemble members from each ensemble, for each lead 
time and season. In all but two cases, the combination of members from the NCEP ensemble has 
the higher IS. 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 0.7450 0.7897 0.9419 0.9502 
60 h 0.5442 0.5506 0.8782 0.8750 
108 h 0.3803 0.4465 0.6810 0.7193 
156 h 0.2528 0.3318 0.4739 0.5011 
204 h 0.1425 0.2187 0.2582 0.2834 
252 h 0.1058 0.1805 0.1955 0.1704 
300 h 0.0843 0.1382 0.0898 0.1438 
348 h 0.0574 0.1021 0.0322 0.0942 

 
8.4.3 Comparison of Optimal Combinations of Ensemble Members 

! The most informative combination of ensemble members is searched for in each ensemble 

using the procedure described in Section 5.2.4 (Lee 2010). The IS of the optimal combination of 

members for each ensemble, lead time, and season is shown in Table 8.6. In 14 of 16 cases, the 

combination of members from the NCEP ensemble has the higher IS. In the warm season, the 

difference in IS is consistent and grows with lead time. For lead times 108 h, 156 h, and 204 h in 

the warm season, the optimal combination of NCEP ensemble members provides a gain of about 

one day over the optimal combination of CMC ensemble members; for lead times 252 h, 300 h, 
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and 348 h in the warm season, the optimal combination of NCEP ensemble members provides a 

gain of about two days over the optimal combination of CMC ensemble members. 

Also of interest are the sizes of optimal combinations of members. Table 8.7 shows the 

number of members constituting the optimal combination from each ensemble, for each lead time 

and season. In nine of 16 cases, the optimal combination from the CMC ensemble consists of 

more members than does the optimal combination from the NCEP ensemble. In three cases, the 

sizes of the optimal combinations are equal. The fact that the optimal combination of CMC 

members is frequently larger is consistent with the lower conditional correlations observed 

between pairs of CMC ensemble members. 

Table 8.7. Number of members in optimal combination from each ensemble, for each lead time 
and season. In 12 of 16 cases, the optimal combination from the CMC ensemble consists of at 
least as many members as does the optimal combination from the NCEP ensemble. 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 6 2 5 2 
60 h 8 2 8 4 
108 h 6 3 5 5 
156 h 5 4 6 5 
204 h 4 5 6 5 
252 h 4 4 8 5 
300 h 3 4 4 4 
348 h 2 4 2 4 

 

8.4.4 Comparison of Control Forecasts 

 As noted in Section 5.3.1, the CMC control forecast (CF) is generated using a GEM model 

as its dynamical core, the parameters of which are altered to define the dynamical core of each 

ensemble member. On the other hand, the NCEP forecast system generates ensemble members 

through direct perturbations of the control forecast. The difference in the nature of the control 

forecasts may contribute to differences in their informativeness. Table 8.8 shows the IS of each 

ensemble’s control forecast, for each lead time and season. In all cases, the NCEP’s control 

forecast has the higher IS. The IS differences are notably large in the warm season. 
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8.4.5 Comparison of Combinations of HR/CF and Ensemble Members 

 Unlike the CMC, the NCEP produces a high-resolution forecast (HR). Lee (2010) 

recommends that sophisticated users combine the high-resolution forecast with the ensemble 

members whenever possible. In the analysis of the CMC ensemble, the control forecast was used 

as a substitute for HR in combination with ensemble members (Section 5.3.2). Table 8.9 compares 

the IS of the optimal combination of ensemble members and control forecast from the CMC to the 

IS of the optimal combination of ensemble members and high-resolution forecast from the NCEP, 

for each lead time and season. In 15 of 16 cases, the combination of members and high-resolution 

forecast from the NCEP is the more informative predictor. Again, the IS differences between the 

two ensembles are pronounced in the warm season: for lead times 60 h, 108 h, 156 h, 204 h, and 

252 h, the use of the optimal combination of the NCEP’s high-resolution forecast and ensemble 

members provides a gain of about 1.5–2 days over the use of the optimal combination of the 

CMC’s control forecast and ensemble members. 

!
Table 8.8. The IS of the control forecast from each ensemble, for each lead time and season. The 
control forecast from the NCEP ensemble has the higher IS in each case. 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 0.3726 0.7820 0.9276 0.9491 
60 h 0.3373 0.5240 0.8418 0.8702 
108 h 0.1647 0.4197 0.6234 0.6787 
156 h 0.1576 0.2944 0.3859 0.3933 
204 h 0.0486 0.1789 0.1619 0.1709 
252 h 0.0296 0.0717 0.0800 0.0835 
300 h 0.0123 0.0427 0.0382 0.0547 
348 h 0.0160 0.0435 0.0070 0.0150 

!
!
!
!
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Table 8.9. Comparison of IS of the optimal combination of ensemble members and control 
forecast from the CMC to the IS of the optimal combination of ensemble members and high 
resolution forecast from the NCEP. In all but one case, the combination from the NCEP ensemble 
has the higher IS. 

!
Warm Season Cool Season 

Lead 
Time 

CMC 
(CF + Members) 

NCEP 
(HR + Members ) 

CMC 
(CF + Members) 

NCEP 
(HR + Members) 

12 h 0.7255 0.9087 0.9427 0.9708 
60 h 0.5745 0.7330 0.8790 0.9015 
108 h 0.3867 0.5344 0.6844 0.7348 
156 h 0.2677 0.3614 0.4803 0.5248 
204 h 0.1507 0.2321 0.2589 0.3091 
252 h 0.0944 0.2047 0.1851 0.1776 
300 h 0.0219 0.0765 0.0980 0.1401 
348 h 0.0326 0.0643 0.0070 0.0191 

 
 

8.5 Comparison of Predictors of Uncertainty 

! In this section, comparisons are made between the best predictors of uncertainty from the 

NCEP and CMC ensembles. A good predictor of uncertainty is one that is highly correlated with 

squared residual variate Θ!  from the normal-linear likelihood model. Table 8.10 shows the 

summary statistic that is most highly correlated with Θ!, in each ensemble and for each lead time 

and season. Among all 32 cases (2 ensembles × 8 lead times × 2 seasons), the ensemble range and 

width of the 90% central credible interval are most frequently the best predictors of uncertainty. 

Only for lead time 12 h in the warm season and for lead time 108 h in the cool season do the two 

ensembles have the same best predictor of uncertainty.  

Table 8.11 gives the correlation between the best predictor of uncertainty and Θ! for each 

lead time and season. In 11 of 16 cases, the best predictor of uncertainty from the NCEP ensemble 

is more highly correlated with Θ!. 

 

 



! 89!

Table 8.10. The most informative predictor of uncertainty from each ensemble, for each lead time 
and season. Between the two ensembles, the ensemble range is most frequently the best predictor 
of uncertainty. 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h ! ! !!.! !(!"!– !1) 
60 h !!.! ! !!! + !!(!"!– !1) !!.! 
108 h !!.! ! !!.! !!.! 
156 h !!.! ! !!.! ! 
204 h !!.! ! !/(!" − 1) !"!– !1 
252 h !!.! ! !!.! !(!"!– !1) 
300 h !/(!" − 1) !!.! !!.! !"!– !1 
348 h r !!.! !!! + !!(!"!– !1) !"!– !1 

 
Table 8.11. The correlation of the squared residual variate with the best predictor of uncertainty 
from each ensemble, for each lead time and season. In 11 of 16 cases, the best predictor of 
uncertainty from the NCEP ensemble is more highly correlated. 

!
Warm Season Cool Season 

Lead Time CMC NCEP CMC NCEP 
12 h 0.2574 0.1919 0.1639 0.2274 
60 h 0.3408 0.2931 0.2417 0.1085 
108 h 0.1969 0.2545 0.2503 0.1888 
156 h 0.0509 0.0707 0.1321 0.1691 
204 h 0.1350 0.2628 -0.0806 0.0746 
252 h 0.1577 0.1969 -0.2195 0.3226 
300 h 0.0708 0.1051 -0.1059 0.1532 
348 h 0.0437 0.1559 0.1592 0.2034 

 
 

8.6 Summary of Comparisons 

 Predictors of central tendency and uncertainty from the NCEP and CMC ensembles are 

compared. In general, the NCEP ensemble yields more informative predictors of central tendency. 

In the warm season especially, the use of predictors of central tendency from the NCEP ensemble, 

instead of from the CMC ensemble, offers potential for substantial gain in lead time. The 

ensemble that yields the most informative predictor of uncertainty varies with lead time and 

season. Between the two ensembles, the most informative predictors of uncertainty are the 
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ensemble range and width of the 90% central credible interval. The ensemble differences 

summarized in this section motivate the hypothesis that combining members or summary statistics 

from both ensembles will yield predictors that are more informative than the predictors from either 

ensemble separately. 
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9. ENSEMBLE FUSION 

9.1 Approach 

 When a 20-member ensemble forecast is available from the CMC as well as the NCEP, it 

may be the case that informative predictors of central tendency and uncertainty can be constructed 

by combining the two forecasts. Possibilities for such a predictor include (i) a summary statistic 

from all 40 ensemble members, and (ii) a combination of summary statistics from each ensemble. 

This section explores hypothesized predictors of central tendency and uncertainty that are 

constructed from the joint sample of ensemble forecasts. (The joint sample contains 599 days of 

ensemble forecasts, from 07/11/2007 through 02/28/2009, stratified into the warm season (265 

days) and the cool season (334 days).) In this chapter, for sake of comparison, a predictor of 

central tendency from either ensemble individually is evaluated using a matching sample for each 

season. This change will only affect the evaluation of the NCEP predictors of central tendency in 

the warm season, since while the full sample from the NCEP contains 370 days of forecasts in the 

warm season, only 265 days of forecasts will be used in order to match the size of the joint sample 

in the warm season. 

9.2 Predictors of Central Tendency from Two Ensembles 

9.2.1 Combination of Ensemble Means 
 
 Perhaps a combination of the two ensemble means is more informative than either 

ensemble mean separately. The CMC ensemble mean !!  and the NCEP ensemble mean !! are 

combined via the normal-linear prediction model: 

 ! = !!!! + !!!!! + !!! + !Ξ, (9.1.1) 

 ! = !!!!! + !!!!! + !!!. (9.1.2) 

Such a combined predictor is discarded if either !! or !! is not significantly different from zero. 
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Table 9.1 shows the coefficients and IS of the affine combination of means for each lead 

time and season. The IS of the combination of means is greater than the IS of either !!  or !! when 

both coefficients are significantly different from zero—at lead times 12 h, 60 h, and 108 h in the 

warm season, and at all lead times except 348 h in the cool season. 

 

 
Table 9.1. Coefficients and IS of affine combination of ensemble means, for each lead time and 
season. An omitted IS indicates a model containing at least one coefficient that is not significantly 
different from zero. An IS is underlined if it is greater than the IS of either ensemble mean. 

 Warm Season 
Lead 
Time 

Coef. 
CMC 

Coef. 
NCEP IS 

12 h 0.3665 0.7559 0.7940 
60 h 0.5565 0.5509 0.5406 
108 h 0.4536 0.6531 0.4143 
156 h 0.2024 0.7534 -- 
204 h 0.0602 0.7630 -- 
252 h 0.0495 0.7923 -- 
300 h -0.1327 1.0746 -- 
348 h -0.1706 1.1664 -- 

! ! ! !
 Cool Season 

Lead 
Time 

Coef. 
CMC 

Coef. 
NCEP IS 

12 h 0.4351 0.6736 0.9554 
60 h 0.4096 0.6385 0.8831 
108 h 0.3654 0.6748 0.7165 
156 h 0.4673 0.5589 0.5108 
204 h 0.5628 0.4714 0.2956 
252 h 0.5358 0.4802 0.1933 
300 h 0.4059 0.5316 0.1208 
348 h 0.2044 0.5734 -- 

 
9.2.2 The Grand Mean 

The grand mean—the mean of all 40 ensemble members—has the potential to be more 

informative than either ensemble mean separately. Table 9.2 shows the IS of the grand mean for 

each lead time and season. In the warm season, the grand mean is more informative than either 
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ensemble mean at lead times 12 h, 60 h, and 108 h; in the cool season, the grand mean is more 

informative than either ensemble mean at all lead times except 348 h. 

 
 
 
Table 9.2 The IS of the grand mean for each lead time and season. An IS is underlined if it is 
greater than the IS of either ensemble mean. 

Lead Time Warm Season Cool Season 
12 h 0.7884 0.9549 
60 h 0.5406 0.8821 
108 h 0.4130 0.7131 
156 h 0.2656 0.5104 
204 h 0.1513 0.2951 
252 h 0.1262 0.1932 
300 h 0.1094 0.1200 
348 h 0.0794 0.0773 

 

9.2.3 Optimal Combination of Ensemble Members 

A third option for a predictor of central tendency from the joint sample is to search for the 

most informative combination among all 40 ensemble members (all 20 members from each 

ensemble). The search procedure is exactly as described in Section 5.2.4, except that at each 

iteration !, the two most informative !-tuplets are combined with every remaining member of 

both ensembles. Table 9.3 shows the optimal combination among all 40 ensemble members, along 

with its size and IS. In every case, the optimal combination is more informative than either 

ensemble mean. Notably, in every case except lead time 12 h in the warm season, the size of the 

optimal combination among 40 members is at least as great as the size of the optimal combination 

of members in each ensemble processed separately (see Table 8.7). A possible explanation for the 

larger combination sizes in the joint sample is that at each iteration ! of the search procedure, 

there is a larger pool of members (40− !  members vs. 20− !  members) from which to 

potentially add information to the current two best combinations. 
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Table 9.3 Optimal combination among all 40 ensemble members for the joint sample of NCEP 
and CMC ensembles, for each lead time and season. An IS is underlined if it is greater than the IS 
of either ensemble mean. 

!
Warm Season 

Lead 
Time Combination size CMC members NCEP members IS 

12 h 2 + 2 = 4   6, 8 1, 15 0.8149 
60 h   7 + 4 = 11 5, 9, 12, 14, 18, 19, 20 2, 4, 11, 14 0.6209 
108 h 3 + 3 = 6 1, 9, 10 8, 14, 15 0.4655 
156 h 6 + 3 = 9 1, 7, 9, 10, 16, 18 2, 7, 11 0.3533 
204 h 1 + 3 = 4 10 9, 17, 18 0.1838 
252 h 2 + 5 = 7 11, 15 3, 6, 8, 12, 18 0.1911 
300 h 2 + 4 = 6 1, 10 2, 6, 11, 19 0.1730 
348 h 2 + 5 = 7 10, 14 2, 6, 10, 17, 20 0.1583 

! ! ! ! !
!

Cool Season 
Lead 
Time Combination size CMC members NCEP members IS 

12 h 2 + 4 = 6 10, 15 1, 4, 9, 14 0.9613 
60 h 5 + 3 = 8 1, 3, 5, 10, 15 2, 9, 19 0.8967 
108 h 2 + 4 = 6 1, 9 9, 10, 12, 17 0.7424 
156 h 3 + 5 = 8 1, 2, 9 1, 3, 8, 10, 16 0.5446 
204 h 2 + 4 = 6 2, 10 5, 11, 13, 16 0.3277 
252 h 5 + 3 = 8 8, 9, 11, 15, 16 14, 15, 18 0.2301 
300 h 2 + 4 = 6 1, 3 2, 6, 8, 11 0.1679 
348 h 1 + 4 = 5 7 7, 9, 10, 16 0.1051 

 
 
9.2.4 Comparison of Predictors 

Table 9.4 compares the IS of the CMC and NCEP ensemble means, the affine combination 

of ensemble means, the grand mean, and the optimal combination among 40 members for each 

lead time and season. The optimal combination of members is consistently the most informative 

predictor of central tendency. However, it is important to note that the membership in the optimal 

combination varies across the lead times and seasons; it may also be sensitive to sample size. Such 

instability of the membership would complicate operational implementation. Among four 
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remaining predictors, the choice that ensures the highest IS is the affine combination of means 

when it produces a valid linear model (lead times less than or equal to 108 h in the warm season 

and less than or equal to 300 h in the cool season), and the NCEP mean otherwise; this choice is 

also easiest to implement operationally. 

 
Table 9.4. The IS of individual NCEP and CMC ensemble means, affine combination of ensemble 
means, grand mean, and optimal combination among 40 members. An IS is underlined if it is the 
highest among the IS’s in the first four columns of predictors. 

!
Warm Season 

Lead Time CMC 
Mean 

NCEP 
Mean 

Combination of 
Means 

Grand 
Mean Members 

12 h 0.7149 0.7748 0.7940 0.7884 0.8149 
60 h 0.4901 0.4945 0.5406 0.5406 0.6209 
108 h 0.3563 0.3919 0.4143 0.4130 0.4655 
156 h 0.2126 0.2702 -- 0.2656 0.3533 
204 h 0.1162 0.1618 -- 0.1513 0.1838 
252 h 0.0870 0.1408 -- 0.1262 0.1911 
300 h 0.0683 0.1413 -- 0.1094 0.1730 
348 h 0.0504 0.1103 -- 0.0794 0.1583 

! ! ! ! ! !
!

Cool Season 

Lead Time CMC 
Mean 

NCEP 
Mean 

Combination of 
Means 

Grand 
Mean Members 

12 h 0.9359 0.9487 0.9554 0.9549 0.9613 
60 h 0.8451 0.8716 0.8831 0.8821 0.8967 
108 h 0.6445 0.7012 0.7165 0.7131 0.7424 
156 h 0.4441 0.4829 0.5108 0.5104 0.5446 
204 h 0.2410 0.2541 0.2956 0.2951 0.3277 
252 h 0.1400 0.1615 0.1933 0.1932 0.2301 
300 h 0.0676 0.1031 0.1208 0.1200 0.1679 
348 h 0.0292 0.0792 -- 0.0773 0.1051 

 
 

9.3 Predictors of Uncertainty from Two Ensembles 

9.3.1 Grand Predictors of Uncertainty 

Various summary statistics of the vector of 40 ensemble members are tested as predictors 

of uncertainty. The grand mean is used as the predictor of central tendency to generate a sample of  
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Table 9.5. Best two predictors of uncertainty from vector of 40 ensemble members, when the 
predictor of central tendency is the grand mean, and correlation with Θ!, for each lead time and 
season. A correlation is underlined if its absolute value exceeds the absolute value of the 
correlation of the best predictor of uncertainty from each ensemble, NCEP and CMC (with the 
ensemble mean of each, respectively, as the predictor of central tendency), processed separately. 

  Best Second Best 

Season Lead 
Time T Cor T Cor 

Warm 

12 h !!! + !!(!"!– !1) 0.2429 ! 0.2410 
60 h !!.! 0.3020 !!.! 0.2961 
108 h !/(!" − 1) 0.3155 !!.! 0.2553 
156 h !/(!" − 1) 0.1624 !!.! 0.1508 
204 h !!.! 0.2772 !!.! 0.2237 
252 h !/(!" − 1) 0.2762 !!.! 0.2454 
300 h !/(!" − 1) 0.1598 !!.! 0.1503 
348 h !!.! 0.2060 ! 0.1978 

Average of 
Absolute Value  0.2428  0.2200 

Cool 

12 h !/(!" − 1) -0.1270 !!! + !!(!"!– !1) 0.0943 
60 h !!! + !!(!"!– !1) 0.2872 ! 0.2822 
108 h !!.! 0.2104 !!.! 0.2100 
156 h !!.! 0.1613 !!.! 0.1520 
204 h !" − 1 0.1305 !(!" − 1) 0.1056 
252 h !!! + !!(!"!– !1) 0.1226 ! 0.1105 
300 h !" − 1 0.1233 !/(!" − 1) -0.1136 
348 h !!! + !!(!"!– !1) 0.1682 !" − 1 0.1680 

Average of 
Absolute Value   0.1663   0.1545 

 
residuals {!! !  : ! = 1,… , 40 , ! = 1,… ,!}  from the normal-linear likelihood model, with 

! = 265 for the warm season and ! = 334 for the cool season. Table 9.5 shows the two 

predictors of uncertainty ! (among the 11 candidate predictors from Table 7.1) that are most 

highly correlated with squared residual variate Θ!. While the best predictor varies with lead time 

and season, the quotient of ensemble range and shifted coefficient of kurtosis is most frequently 

among the top two predictors of uncertainty. Among the single predictors of uncertainty, the width 

of the 60% and 80% central credible intervals are the most informative. However, the predictor 

!/(!" − 1), composed of two predictors of uncertainty, is most frequently the best predictor of 
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uncertainty. The correlation with Θ! of the best predictor only exceeds the correlation with Θ! of 

the best NCEP and CMC predictors of uncertainty in eight of 16 cases. 

9.3.2 Combined Predictors of Uncertainty 

The best predictors of uncertainty may change when a different predictor of central 

tendency is used to generate the residuals from the likelihood model. From an operational 

perspective, it is attractive to combine summary statistics of each ensemble, as opposed to 

combining all 40 ensemble members. Along these lines, a second predictor of central tendency 

used to generate Θ! is the affine combination of ensemble means described in Section 9.2.1. For a 

lead time and season for which a combination of ensemble means yields an invalid likelihood 

model (see Table 9.4), the NCEP ensemble mean alone is used as the predictor of central 

tendency. For each single candidate predictor of uncertainty (among the ensemble standard 

deviation, ensemble range, width of a central credible interval, and shifted coefficient of kurtosis), 

an affine combination of predictors of uncertainty is constructed by performing a bivariate 

regression of Θ!  on the same predictor of uncertainty from each ensemble—e.g., the CMC 

ensemble range and the NCEP ensemble range—and combining them into a single vector via the 

normal-linear model. However, every regression on this type of hypothesized predictor of 

uncertainty contains a coefficient that is not significantly different from zero. Thus, an affine 

combination of the same predictor of uncertainty from each ensemble is an invalid predictor.  

There may still exist other “combined” predictors of uncertainty from each ensemble—

with an affine combination of means as the predictor of central tendency—that are more 

informative than the “grand” summary statistics from Table 9.5. To specify such combined 

predictors, let a single predictor of uncertainty (the ensemble standard deviation, ensemble range, 

width of a central credible interval, or shifted coefficient of kurtosis) from the CMC ensemble be 

denoted by !! , and let the same single predictor of uncertainty from the NCEP ensemble be 

denoted by !!. The following six groups of candidate combined predictors of uncertainty from the 

two ensembles are tested: 

1. The CMC predictor alone: !!  
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2. The NCEP predictor alone: !! 

3. The arithmetic mean of the two predictors: !! (!! + !!!) 

4. The geometric mean of the two predictors: !! ∙ !! 

5. The minimum of the two predictors: min!{!! , !!} 
6. The maximum of the two predictors: max!{!! , !!} 

The additional candidate predictors !/(!" − 1) , !(!" − 1) , and !!! + !!!(!" − 1)  are then 

constructed from the combined single predictors in each of the six groups. 

 The correlations between each predictor of uncertainty and squared residual variate Θ! 

suggest that no group of predictors, among the six hypothesized, is consistently the most 

informative. Still, in order to narrow the selection, the six groups are ranked based on the average 

performance of the best predictor of uncertainty across eight lead times.  

Table 9.6 shows the mean absolute value, across eight lead times, of the correlation 

between the best predictor of uncertainty and Θ! in each group and season. In the warm season, 

the best group of predictors of uncertainty, on average, is the group of NCEP predictors; in the 

cool season, the best group of predictors of uncertainty, on average, is the group consisting of the 

geometric mean of each pair of individual predictors !! and !! . However, the differences between 

the best group and the second best are very small, and so the arithmetic mean and the geometric 

mean can be considered nearly equally good for each season, with the geometric mean being 

slightly dominant. Because using the same group of predictors in each season simplifies the 

operational implementation, the geometric mean might be preferable. 

Table 9.6. The mean absolute value of the correlation between the best predictor of uncertainty 
and Θ!, across eight lead times, for each group of candidate “combined” predictors from the two 
ensembles. The standard deviation of the maximum absolute value of correlation is in parentheses.  

!
CMC NCEP 

Arithmetic 
Mean 

Geometric 
Mean Minimum Maximum 

Warm Season 0.1494 0.2183 0.2123 0.2137 0.2016 0.1973 
(0.0675) (0.0899) (0.0636) (0.0727) (0.0892) (0.0548) 

Cool Season 0.1683 0.1745 0.1878 0.1881 0.1694 0.1820 
(0.0962) (0.0630) (0.0780) (0.0771) (0.0671) (0.0720) 
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Table 9.7 shows the top two combined predictors of uncertainty and the correlation of each 

with Θ! for each lead time and season, with the affine combination of means as the predictor of 

central tendency. The predictors in the warm season come from the NCEP ensemble alone, while 

the predictors in the cool season are the geometric mean of predictors from the CMC and NCEP 

ensembles. These predictors are more informative than the best predictor of uncertainty from each 

ensemble (with the ensemble mean as the predictor of central tendency) in nine of 16 cases.     The  

Table 9.7. Top two new predictors of uncertainty for each lead time and season and the correlation 
of each with Θ!, with an affine combination of ensemble means as the predictor of central 
tendency. In the warm season, each predictor comes from the NCEP ensemble alone; in the cool 
season, each predictor is the geometric mean of the same predictor from each ensemble. A 
correlation is underlined if its absolute value exceeds the absolute value of the correlation between 
the best predictor of uncertainty from each of the two ensembles. 

! ! Best Second Best 
Season Lead Time T Cor T Cor 

Warm 

12 h !!.! 0.1114 ! 0.1056 
60 h ! 0.3355 ! 0.3082 
108 h !!! + !!(!" − 1) 0.2617 ! 0.2616 
156 h !!.! 0.1061 ! 0.1038 
204 h !!.! 0.3273 !!! + !!(!" − 1) 0.3269 
252 h !!.! 0.2354 ! 0.2305 
300 h !/(!" − 1) 0.2199 !!.! 0.1636 
348 h !!! + !!(!" − 1) 0.1490 ! 0.1490 

Average of 
 0.2183  0.2062 

Absolute Value 

Cool 

12 h !!! + !!(!" − 1) 0.2462 ! 0.2392 
60 h !!! + !!(!" − 1) 0.2372 ! 0.2354 
108 h !!.! 0.2812 !!.! 0.2720 
156 h !!.! 0.1934 ! 0.1576 
204 h ! -0.0515 !!.! -0.0472 
252 h !!! + !!(!" − 1) 0.2323 !(!" − 1) 0.2121 
300 h !" − 1 0.1411 !!.! -0.1336 
348 h !!! + !!(!" − 1) 0.1221 !" − 1 0.1210 

Average of 
  0.1881   0.1773 

Absolute Value 
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linear combination of combined range and combined coefficient of kurtosis (shifted to the origin) 

is most frequently the best predictor of uncertainty (six of 16 cases). Other predictors that are most 

frequently in the top two include the combined ensemble range and the combined 90% central 

credible interval; however, these combined predictors are not consistently more informative than 

predictors of uncertainty from either ensemble processed separately. Still, for sake of operational 

simplicity, a global user may prefer to limit the predictors of uncertainty used in the BPE to only 

the combined ensemble range and combined 90% central credible interval. 

9.3.3 Comparison of Predictors 

 To compare predictors of uncertainty from the two ensembles, using predictor of central 

tendency ! in the  BPE,  Table 9.8  shows the correlation  with Θ! of the  best  grand  predictor  of  

Table 9.8. The correlation with Θ! of the best grand predictor of uncertainty, the best combined 
predictor of uncertainty, and the best predictor of uncertainty from each ensemble processed 
separately, for each lead time and season. The correlation with the highest absolute value is 
boldfaced for each lead time and season. Between the grand predictor of uncertainty and combined 
predictor of uncertainty, the more highly correlated is underlined. 
 

 
Warm Season 

Lead Time Grand Combined CMC NCEP 
12 h 0.2429 0.1114 0.2574 0.1919 
60 h 0.3020 0.3355 0.3408 0.2931 
108 h 0.3155 0.2617 0.1969 0.2545 
156 h 0.1624 0.1061 0.0509 0.0707 
204 h 0.2772 0.3273 0.1350 0.2628 
252 h 0.2762 0.2354 0.1577 0.1969 
300 h 0.1598 0.2199 0.0708 0.1051 
348 h 0.2060 0.1490 0.0437 0.1559 

     
 

Cool Season 
Lead Time Grand Combined CMC NCEP 

12 h -0.1270 0.2462 0.1639 0.2274 
60 h 0.2872 0.2372 0.2417 0.1085 
108 h 0.2104 0.2812 0.2503 0.1888 
156 h 0.1613 0.1934 0.1321 0.1691 
204 h 0.1305 -0.0515 -0.0806 0.0746 
252 h 0.1226 0.2323 -0.2195 0.3226 
300 h 0.1233 0.1411 -0.1059 0.1532 
348 h 0.1682 0.1221 0.1592 0.2034 
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uncertainty (with ! equal to the grand mean), the best combined predictor of uncertainty (with ! 

equal to the affine combination of ensemble means), and the best predictor of uncertainty from 

each ensemble processed separately (with ! equal to the ensemble mean.) In 11 of 16 cases, a 

predictor of uncertainty from the two ensembles (either a grand statistic or combined statistic) is 

more informative than the predictor of uncertainty from each ensemble processed separately. This 

suggests that more often than not, the CMC ensemble and NCEP ensemble together provide more 

information about uncertainty than does either ensemble separately. However, the grand predictor 

of uncertainty is more informative than the combined predictor of uncertainty in only eight of 16 

cases. Therefore, there is no clear choice for the best predictor of uncertainty; not only does the 

best predictor of uncertainty among the four columns vary with lead time and season, but the best 

predictor of uncertainty within each column also varies with lead time and season. Still, it is 

recommended to use the combined ensembles (as opposed to either ensemble separately) to 

construct predictors for the BPE; the gain in informativeness using a predictor of central tendency 

from the combined ensembles appears to generally outweigh any loss in informativeness using a 

combined predictor of uncertainty. 

 

9.4 Summary and Recommendations 

 This chapter evaluates several hypothesized predictors of central tendency and uncertainty 

from the fusion of the CMC ensemble and NCEP ensemble. Since the informativeness of the 

predictor of uncertainty depends implicitly on the predictor of central tendency, it is important that 

the two predictors be considered together for operational use. Analyses are performed of the 

predictors constructed from the two ensembles combined, as well as the predictors obtained by 

combining the predictors from each ensemble processed separately. Based on these analyses, the 

following conclusions and recommendations are made: 

1. The optimal combination of members from the two ensembles is the most informative 

predictor of central tendency; however, the membership of this combination varies with lead time 

and season.  
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! 2. An affine combination of ensemble means, when valid, is always more informative than 

the grand mean, CMC ensemble mean, and NCEP ensemble mean. When such a combination is 

invalid, the NCEP ensemble mean is the most informative single predictor of central tendency. 

 3. Most frequently, with the grand mean as the predictor of central tendency, the best 

predictor of uncertainty is the quotient of ensemble range and shifted coefficient of kurtosis.  

 4. Most frequently, with the affine combination of means as the predictor of central 

tendency, the best predictor of uncertainty is the linear combination of range and shifted 

coefficient of kurtosis. 

 5. When the affine combination of means is the predictor of central tendency, the best 

predictor of uncertainty, on average, is (i) a predictor from the NCEP ensemble alone for the warm 

season, and (ii) the geometric mean of equivalent predictors of uncertainty, one from the NCEP 

ensemble and one from the CMC ensemble. However, for sake of operational simplicity, the 

geometric mean may be the preferred aggregation method in both seasons. 

 6.  A predictor of uncertainty from the two ensembles (either a grand statistic or combined 

statistic) is more informative than the predictor of uncertainty from each ensemble processed 

separately about 70% of the time. 

 7. In terms of correlation with the squared residual variate Θ!, there is no clear choice 

between a grand predictor of uncertainty (with the grand mean as the predictor of central 

tendency), and a combined predictor of uncertainty (with an affine combination of means as the 

predictor of central tendency). 

 8. The best predictor of uncertainty from the fused ensembles varies with lead time and 

season, with no apparent trend. 

  9. In the BPE, a global user is advised to use an affine combination of ensemble means as 

the predictor of central tendency when valid (and the NCEP ensemble mean otherwise), and to 

limit the predictor of uncertainty to either the geometric mean of ensemble ranges or the geometric 

mean of 90% central credible intervals. 



! 103!

 10. In the BPE, a sophisticated user is advised to use the optimal combination of members 

from the two ensembles as the predictor of central tendency, and to use the best combined 

predictor of uncertainty—using the geometric mean for aggregation—for each lead time and 

season. 
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10. CONCLUSIONS 

 This research applies and expands upon the methodology of Lee (2010) in order to 

compare the statistical properties of two ensemble forecasting systems for meteorological variates, 

and to fuse the two ensembles via a Bayesian processor. This methodology includes the following 

steps: hypothesizing candidate predictors of central tendency and uncertainty, selecting a 

likelihood model that captures the stochastic dependence between the predictand and each 

candidate predictor of central tendency, estimating likelihood parameters, evaluating each 

predictor of central tendency using the informativeness score, evaluating each predictor of 

uncertainty according to its correlation with the squared residuals from the likelihood model, and 

applying the Gaussian-Gamma model for the Bayesian processor of ensemble (BPE) to obtain a 

posterior distribution function. Applying this methodology to an ensemble yields (i) an 

approximately sufficient statistic (!, !) to replace vector ! of ensemble members in the BPE, and 

(ii) recommendations for the efficient processing of ensemble forecasts into well-calibrated 

probability density functions. The methodology is expanded upon by comparing the analyses of 

two ensemble forecasting systems, and then utilizing the key statistical differences between the 

ensembles to explore ways of fusing their predictors of central tendency and uncertainty. 

 As in Lee (2010), this research applies to ensemble forecasts of 2-meter surface 

temperature at the Savannah, Georgia, ground station, made at 00 UTC for eight lead times: 12 h, 

60 h, 108 h, 156 h, 204 h, 252 h, 300 h, and 348 h. While Lee conducts an analysis of a 20-

member ensemble from the National Centers for Environmental Prediction (NCEP), this thesis 

analyzes the 20-member ensemble from the Canadian Meteorological Centre (CMC). Results from 

the analysis of each ensemble are then compared. Finally, the possibility of fusing the two 

ensembles is explored. 

 The sample from the CMC contains 599 complete days of ensemble forecasts made at 00 

UTC. Ensemble forecasts made at 12 UTC with lead time 0 h served as realizations of predictand 

!, the true surface temperature at the time of forecast verification. Various summary statistics are 

hypothesized as predictors of the central tendency of !, and of uncertainty about !. An empirical 
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analysis of the CMC ensemble supports the following three findings: (i) The ensemble mean is 

consistently among the most informative predictors of central tendency, and can be enhanced by 

the ensemble minimum or maximum at short lead times. (ii) An optimal combination of ensemble 

members is more informative than the ensemble mean; however, its composition varies with lead 

time and season. (iii) The best predictor of uncertainty varies across lead times and seasons, but 

the width of the 90% central credible interval and an amalgam of ensemble range and coefficient 

of kurtosis are frequently among the best, while the ensemble standard deviation is not. 

 A comparison of the CMC and NCEP analyses supports the following two findings: (i) 

The NCEP ensemble yields generally more informative predictors of central tendency than does 

the CMC ensemble. (ii) The ensemble that yields a better predictor of uncertainty varies with lead 

time and season, with no apparent trend. 

 An empirical analysis of a combination of the CMC and NCEP ensembles supports the 

following four findings: (i) The most informative single predictor of central tendency is the affine 

combination of ensemble means, when valid, and the NCEP ensemble mean otherwise. (ii) An 

optimal combination of ensemble members is always more informative than the affine 

combination of means; however, its composition varies with lead time and season. (iii) The best 

predictor of uncertainty varies across lead times and seasons with no apparent trend, and is more 

informative than the predictor of uncertainty from each ensemble processed separately about 70% 

of the time. (iv) The best predictor of uncertainty is either the arithmetic mean or the geometric 

mean of the same predictors from each ensemble, although all predictors of uncertainty are 

generally poor. 

 Recommendations for operational forecasting centers include the following: (i) A global 

user of the CMC ensemble is advised to use the ensemble mean as the predictor of central 

tendency, and the 90% central credible interval as the predictor of uncertainty. (ii) A sophisticated 

user of the CMC ensemble is advised to use an optimal combination of ensemble members as the 

predictor of central tendency, and to use the best predictor of uncertainty for each lead time and 

season. (iii) A global user of the CMC and NCEP ensembles is advised to use as the predictor of 
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central tendency either the affine combination of means or the NCEP ensemble mean (as 

appropriate), and to limit the predictor of uncertainty to either the geometric mean of ensemble 

ranges or the geometric mean of 90% central credible intervals. (iv) A sophisticated user of the 

two ensembles is advised to use an optimal combination of ensemble members as the predictor of 

central tendency, and to use the best combined predictor of uncertainty for each lead time and 

season. 

 Recommendations for future research on the NCEP and CMC ensemble forecasts include 

the following: (i) The Gaussian-Gamma model should be validated for processing the sufficient 

statistics of the fused ensemble forecasts. (ii) New summary statistics of each ensemble, and 

methods of combining them, could be invented and tested as predictors of central tendency and 

uncertainty. (iii) Tradeoffs between the informativeness of predictors of central tendency and 

predictors of uncertainty should be explored, theoretically and empirically, to establish a basis for 

the joint selection of the two kinds of predictors from a combination of two ensemble forecasts. 
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