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Abstract

Graphene is considered to be a wonder material for its unique physical properties. In graphene,

record-breaking numbers have been shown for the thermal and electrical conductivities, me-

chanical strength, electronic mobility, chemical sensing, filtering and optoelectronic properties.

Therefore, it has potential for various electronic, spintronic and photonic applications. In

this dissertation, we investigate graphene’s potential as a channel material for digital logic

applications using electro-statically built graphene pn junction (GPNJ). Despite graphene’s

high electrical conductivity and other useful properties, the lack of bandgap makes it di�cult

to accomplish logic implementation, which requires a large amount of current modulation

with gate voltage. In graphene pn junction, the linear, photon like energy dispersion combined

with zero bandgap leads to an electron transport much like optical refraction and carrier

trajectories are governed by an equivalent Snell’s law. Determined by the wave-function

dynamics, it also has a unique angle (transverse mode) dependent transmission through a

pn junction. This research aims to manipulate such angle dependent transport with gate

geometry for switching. We show that such scheme is capable of switching without having to

open a structural bandgap, but with what we call a ‘Transmission Gap’. We show multiple

device concepts that manipulate the angle dependent transmission with device geometry and

produce the gap by suppressing transmission of all propagating modes. The tunability of

the gap leads to a new way of beating thermal switching limit. Combined with graphene’s

high current carrying capability, these properties make the switch energy e�cient. The

device designs are complemented with our benchmarking of recent experiments on angle
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dependent transport in GPNJ. We also show an intriguing implication of the pn junction

based conductance control in another novel material: topological insulator (TI) which has

similar bandstructure on its surface as graphene. A TI based pn junction is shown to produce

high spin current with low charge current, following a very similar tunneling physics in GPNJ.

Such gate controlled spin current can have implication in spin based systems, where a spin

polarized current is needed to rotate a ferromagnet with as low charge current as possible

to decrease dissipation. Throughout the dissertation, we show simulation results from a

sophisticated quantum mechanical numerical modeling platform based upon Non-Equilibrium

Green’s Function (NEGF) formalism, developed to augment the analytical formalism. The

numerical platform is optimized so that it can perform calculations that the analytical model

cannot possibly do: model all kinds of transport (e.g. electron, spin) for small to large scale

devices (up to experimental device size) for both ballistic and di↵usive transport regime

including non-idealities such as charge impurity scattering and edge e↵ects.
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Chapter 1

Introduction

1.1 Graphene: fundamentals, potentials and challenges

The thinnest material in the world - graphene is one atomic layer of graphite, made up of

Carbon atoms in honeycomb lattice structure. It is the two-dimensional version of Carbon,

which exists in various forms and dimensions (0-D Fullerene, 1-D Carbon nano-tubes, 3D

graphite and diamond). Ever since its discovery [4], it has been under intense research e↵orts

for its unique physical properties. Some of the novel phenomena are the photon-like linear

E � K dispersion [5], record high mobility at room temperature [6, 7, 8], extremely high

thermal conductivity [9], highest mechanical strength [10] and high optical transparency [11].

The discovery of graphene not only demonstrated the exceptional properties of graphene, but

triggered the discovery of other 2-D materials (such as transitional metal dichalcogenides),

with the possibility of new applications.

Below we discuss the fundamental electronic structure of graphene and its strengths and

weaknesses when it comes to field e↵ect devices.

1



Chapter 1 Introduction 2

Figure 1.1: Graphene’s honeycomb lattice structure. Amplitudes of Bloch functions on the A,
B sites mimic two spin systems. They may be called pseudospins, which dictate the electronic
properties such as suppressed backscattering.

1.1.1 Electronic properties of graphene

Carbon atoms in graphene are arranged in hexagonal lattice structure (Fig. 1.1). The material

is composed of two sub-lattices (A-B), each of them following their individual hexagonal

arrangement of atoms. If we take two neighboring atoms (one each from A and B), we form

the unit cell of graphene (Fig. 1.1). The lattice vectors are

~a
1

= ax̂+ bŷ (1.1)

~a
2

= ax̂� bŷ

where a =
p
3ac/2, b = ac/2 and lattice constant, ac =

p
3a

0

=
p
3 ⇥ 1.42 = 2.46A0.

Reciprocal space lattice vectors are [12],

~A
1

= cx̂+ dŷ (1.2)

~A
2

= cx̂� dŷ

where c = (3/2)bc, d =
p
3/2bc and reciprocal space lattice constant, bc = 4⇡/3a

0

. The three

high symmetry points are �, K and M which are zone center, the corner and the center of

the edge respectively. We will later see that the inflection points in graphene occur at the
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Figure 1.2: Graphene bandstructure

corners of the first Brillouin zone.

Among the valence electrons in graphene, 2s, 2px, 2py are decoupled from 2pz electrons

and form levels that are far from the Fermi energy. The only orbitals that form levels near

the Fermi energy are the 2pz orbitals and therefore a one pz orbital basis Hamiltonian is

accurate to describe graphene’s electronic properties. From the principle of bandstructure,

[h(~k)] =
P

m[Hnm]ei
~k.( ~d

m

� ~d
n

), we can write,

H(~k) =

2

64
0 h

0

h⇤
0

0

3

75

here h
0

= �t(1 + ei
~k. ~a1 + ei

~k. ~a2). So the eigenvalues are (shown in Fig. 1.2)

E = ±t
p

(1 + 4coskybcoskxa+ 4cos2kyb) (1.3)

where the Carbon-Carbon tight binding parameter, t is -2.7V. At low energy (near the Fermi

energy) the E �K is approximated as (vF = 1

~
�E
�K = 1

~
3ta

cc

2

),

E = ±~vFk (1.4)
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Figure 1.3: Dispersion of graphene along di↵erent directions. There is no bandgap and E�K
is linear around the K point.

from the simplified Hamiltonian,

H(~k) =
3tacc
2

2

64
0 kx � iky

kx + ik⇤
y 0

3

75

which can be written as -

H(k) = ~vF~�.~k (1.5)

H(k) = vF~�.~p (1.6)

where �x, �y etc. are the Pauli matrices. The simplification (after Taylor expansion) is valid

around the inflection points.

Eigenvectors of graphene: We can do more simplification

H(~k) = ~vF |k|

2

64
0 e�i✓

ei✓ 0

3

75

From this, the eigenvectors are

 =

2

64
1

ei✓

3

75
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and

 =

2

64
1

�ei✓

3

75

The real space eigenvectors can be written as

 k(~r) = ei
~k.~r

2

64
1

sei✓

3

75

where s = sign(E) and ✓ = tan�1

k
y

k
x

. Thus the wavefunction has two components corresponding

to two sub-lattices (A-B in Fig. 1.1) in graphene crystal. The two component wavefunction

mimics a two spin system and is known as pseudospin degree of freedom for graphene. The

pseudospins play an important role in graphene transport. The backscattering probability

(from Fermi’s golden rule) which is proportional to | i|V | f |2 is suppressed due to the

orthogonality between the forward ([1 1]) and backward ([1 -1]) moving branches resulting in

low scattering rate (1/⌧). The other remarkable feature of graphene bandstructure is the

linear dispersion near the Brillouin zone corners [5]. This leads to very low e↵ective mass

(m⇤). Both these factors (1/⌧ and m⇤) contribute to very high carrier mobility (µ), which

can be near 200,000 cm2/Vs [6, 7] at room temperature for suspended devices compared to

⇠ 1000 cm2/Vs in silicon. But the linear E-K comes with zero bandgap with the Fermi level

lying at the position the conduction and valence bands meet (Fig. 1.2, 1.3). Owing to this

semi-metalic nature (Fig. 1.3), the current modulation with gate voltage is modest (⇠ 5� 20)

compared to 105 � 106 for a semiconductor with a sizable bandgap. We next discuss briefly

how graphene based field-e↵ect transistors behave based on such electronic properties.

1.1.2 Silicon CMOS and graphene based transistors

Fig. 1.4 shows the current-voltage characteristics of CMOS technology relative to graphene

and the desired behavior. One of the greatest problems in the current semiconductor industry
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Figure 1.4: Current voltage characteristics of CMOS and other technologies. Unless the
transition rate (60mV/Dec) of current is changed (desired ID-VG in purple), power dissipation
(0.5CV 2

Df) and operating frequency (f) cannot be improved.

is the trade o↵ between performance and heat generation. A high frequency (f) chip is

desired for high performance but it increases the dynamic power dissipation, P = 1

2

CV 2

DDf ,

where C is the gate capacitance and VDD is the supply voltage typically required to make

the transition from OFF to ON state. A high ON-OFF current ratio is desired for reliability

(typically ⇠ 106) and therefore the slope of current-voltage determines the required VDD.

The reduction of power dissipation requires a low VDD. For CMOS, the slope is set by the

thermionic emission principle for electrons over a barrier and cannot be reduced unless a

di↵erent technology is used. In addition to the above requirements, a high ON current ION

is desired to have high drive capability. Therefore the purple line in the Fig. 1.4 shows

the desired transfer curve with steeper transition, high ON current and low OFF current.

The black line shows the transfer curve for graphene, closely matching the desired ION (⇠

10mA/µm, more than 10 times than Silicon CMOS) but fails to meet the low OFF current

requirement.

There have been e↵orts to open bandgap in graphene to increase the ON-OFF ratio

through various means (e.g. quantizing the sheet into nanoribbons [13, 14, 15], applying
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Figure 1.5: Mobility degradation as bandgap is opened in graphene (figure from Frank Tseng).

strain [16] or electric field in bilayer graphene [17]), but as soon as we open the bandgap,

the linearity of the bandstructure is distorted leading to parabolic dispersion and massive

electrons (Fig. 1.5). Thus intrinsically the mobility degrades and we lose the advantage

of graphene’s high mobility [18, 19]. Also there are practical limitations with graphene

nanoribbons (GNR), such as di�culty in building narrow ribbons (< 10 nm) with smooth

(without roughness) edges.

On the other hand, the transistors for radio frequency (RF) technology does not require

high current ON-OFF ratio [20]. The desired figures of merit are current and voltage gain,

good current saturation (ID vs VD), high ON current, high cut-o↵ frequency and device

scalability. Graphene’s high mobility makes the ON current impressive (in mA/µm regime

for ballistic devices). The high carrier velocity and high mobility yields high cut o↵ frequency

(300-400 GHz, [21, 22]). Also, good small signal gain and current saturation have been

achieved for devices up to hundreds of nanometer long [23, 24]. The challenge now lies in

designing and building devices with good gate control and minimum DIBL (drain induced

barrier lowering) for short channel devices (<100 nm) [25, 26].

1.1.3 How close are we to realizing ballistic transport?

Many of the exceptional properties of graphene and the properties that are manipulated and

predicted in this work require ballistic transport. Graphene device fabrication techniques

have progressed rapidly since its discovery and the quality of graphene devices is increasing



Chapter 1 Introduction 8

to approach the ballistic limit. Extremely long mean free path (up to µm) has already been

achieved in a number of recent experiments [8, 27, 28, 29, 30]. As a result, ballistic quantum

transport phenomena such as quantum interference pattern due to formation of Fabry-Pérot

cavity has been demonstrated [31, 27, 28].

There are three main techniques to grow graphene crystal: mechanical exfoliation, epitaxial

graphene (on similar lattice structure such as SiC) and chemical vapor deposition on a metal

(such as Ni, Cu). The mechanical exfoliation method was used in the seminal work of

Novoselov et. al. [4], where one layer graphene was separated from graphite by repetitive

peeling of graphene layers.

In 2008, Yu et. al. [32] showed a chemical vapor deposition technique, which can produce

large scale high quality graphene crystal on metal substrates (Ni/Cu) followed by cooling

and transfer onto an insulating substrate of choice. The choice of substrate has proved to

be crucial in graphene electron transport properties. Graphene on SiO
2

substrate has been

studied extensively and in most cases the mobility is limited to 2000-4000 cm2/V-s [33, 2]

due to the presence of impurity scattering and phonons. Dean et. al.[30] showed in 2010 that

hexagonal Boron-Nitride (hBN) is an excellent substrate for graphene. hBN is an insulator

with a similar lattice constant as graphene. It is relatively free from trapped charges due

to its inert nature and the surface optical phonons are at higher energies compared to SiO
2

.

Due to the combination of these factors, graphene on hBN has extremely high mobility (more

than 100,000 cm2/V-s at low carrier density and 25,000 cm2/V-s at high carrier density). Due

to its excellent dielectric properties, hBN-graphene-hBN heterostructure are fabricated as

an oxide-channel-substrate combination [8]. Using the combination of CVD grown graphene

and hBN substrate, it is shown that graphene mobility can easily surpass any other material

[29, 8].

Using suspended graphene, it is possible to eliminate substrate induced scattering al-

together and mobility close to graphene’s intrinsic mobility can be achieved. Suspended

graphene devices were used recently to show ballistic quantum interference [28, 27].
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One major obstacle toward graphene based nanoelectronics is the contact resistance

between metal and graphene. In most cases, the metal-graphene contact is weak, which

creates distortion of the graphene bandstructure (graphene under metal for surface contacts)

leading to high contact resistance (⇠ 500-1000 ⌦-µm). It has been shown recently that

side edge contacts as opposed to surface contacts achieve better overlap between orbitals

leading to substantially lower contact resistance [8]. The extracted mobility exceeded 100,000

cm2/V-s.

1.2 Controlling electron flow in graphene pn junction

This research is primarily focused on graphene pn junction (GPNJ), built with gate voltage.

The GPNJ has unique electronic properties, among which the analogy with optics and incident

angle dependent tunneling are the two most intriguing phenomena. It has been theoretically

shown [34, 35] that the gate voltage plays the role of refractive index for carriers in graphene

and the pn junction interface works as a focusing lens. Owing to the lack of bandgap, the

conduction and valence bands cross easily and carriers tunnel from conduction band to

valence band or vice versa. Due to the change in carrier velocity in the two bands, they bend

at the interface to focus at one point for equal but bipolar dopings. This is analogous to

what is known as a Veselago lens in optics with negative refractive index metamaterials [36]

and comes with its own Snell’s law. Such eletron trajectory is accompanied with graphene’s

equivalent Fresnel’s equations, which dictate the transmission probability depending upon the

incident angle of the carrier [37, 2]. Compared to uniformly doped graphene, we have higher

control over the conductance in GPNJ with gate voltage [38]. Another unique attribute of

GPNJ is that for normal incidence (the transverse mode with ky = 0), the transmission

is always unity, regardless of voltage gradient across the junction. From a device point of

view, this particular phenomenon (known as Klein tunneling) [37, 39], further limits current

modulation with gate voltage.
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Figure 1.6: Electron ‘optics’ at a graphene pn junction. Electron trajectories (below) mimic
optical refraction and depend on electrostatic doping levels (above).

Fig. 1.6 shows the electron focusing trajectories on the surface of a GPNJ, doped

symmetrically (VG1

= �VG2

). With asymmetric doping, (|VG1

| > |VG2

|), carrier reflect back

above a critical angle, exhibiting total internal reflection. Such control begs a question

whether we can su�ciently control the carrier flow to the extent of turning OFF the device

and achieve a transistor action. If it is indeed possible to do that, it would come without

the expense of opening a bandgap in graphene. It is the purpose of this dissertation to show

how such switching can be achievable, along with its limitations and possible applications. In

addition to analytical quantum mechanical (QM) treatment of the problem, we simulate such

devices with a sophisticated numerical formalism called Non-Equilibrium Green’s function

(NEGF), which is commonly used to simulate quantum devices. The numerical model is used

to show simulation results of a number of graphene experiments.
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1.3 Overview of the dissertation

The dissertation is primarily divided in four parts.

- Chapter 2 describes the physics of carrier tunneling in graphene pn junction and how the

angle dependent transmission through GPNJ can be tuned with gate parameters. We report

benchmarking with recent experimental results that provide evidence of such control.

- Chapter 3 provides device designs that produce transmission gap. For the first time, we

show how a material without a bandgap can switch and produce high ON-OFF ratio. The

transmission gap relies on chiral tunneling and does not distort graphene’s linear dispersion.

We show that such a gap is determined by the gate voltage gradients across the junction and

can be collapsed by going from heterogeneous to homogeneous doping limit, producing an

intriguing low inverse sub-threshold slope in the device transfer characteristics.

- In Chapter 4, we discuss how the GPNJ based switching idea can be useful compared to

CMOS. We also show how the use of pn junction in topological insulators (TI), a material

with very similar bandstructure as graphene on the surface, can produce spin polarized

current by using the same physics as graphene.

- Along with analytical results, both Chapters 2 and 3 contain results using Non-Equilibrium

Green’s function (NEGF) formalism based numerical simulation results. In Chapter 5, we

formally discuss the basics of the formalism. The computational platform is optimized to

simulate graphene- like systems in both ballistic and di↵usive regime to capture a number of

recent experiments.

We then draw conclusions with scope for future research. We include several appendices

(A-C) to describe the detailed derivation of the analytical expressions, required to understand

the transmission, conductance properties of GPNJ and spin filtering in TI.



Chapter 2

Transport physics of graphene pn

junction

2.1 Angle dependent tunneling in GPNJ

2.1.1 Carrier trajectories: Snell’s law for graphene

pn junctions in graphene can be built electrostatically, as shown in Fig. 2.1. Graphene bands

(colored cones) are shifted up or down depending on the gate voltage sign. The red line

shows the Fermi energy. Since there is no bandgap, carriers directly tunnel from conduction

band (CB on left) to valence band (VB on right). An electron at state (kx, ky) in CB (n

side, left) injected at the Fermi level (EF ) tunnels from left to right at the VB (p side, right)

as illustrated in Fig. 2.2a. The Fermi surface from the top at the indicated EF is shown

in Fig. 2.2. Since there is no electric field applied along y, the transverse momentum ky is

conserved. In the p side, both states (kx, ky), (�kx, ky) conserve ky but only the (�kx, ky)

state conserves the direction of the velocity vx along x. This is due to the fact that the carrier

group velocity (defined as v = 1

~
�E
�k ) changes sign from CB to VB. A group of electrons thus

injected from a point source, spatially bend at the pn interface and focus at one point (Fig.

2.2a), as predicted in Ref. [34]. This is analogous to the Veselago lens in optics with negative

12
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Figure 2.1: Schematic of a graphene based pn junction device with a point contact (much
smaller than the width of the device) as an injector and a wide drain to collect the electrons.
Electrostatic doping shifts graphene bands up/down depending on voltage sign. Bands cross
at the Fermi energy, shown in red, enabling band to band tunneling.

refractive index metamaterial [36]. The conservation of ky yields the equivalent Snell’s law

for graphene,

kF1

sin✓
1

= �kF2

sin✓
2

(2.1)

where kF1

and kF1

are total wave-vectors on both sides. For equal dopings, the focusing is

perfect (at zero temperature). For unequal doping such as, n+p, electrons above a critical

angle reflect back (total internal reflection (TIR)), as shown in Fig. 2.2b, because they are

unable to conserve ky. This can be easily understood from the unequal radii of the Fermi

surfaces.

✓C = sin�1

kF2

kF1

(2.2)

By angles, we simply mean the angular representation of various transverse modes (✓ =

tan�1

⇣
k
y

k
x

⌘
) available at a particular doping level, EF (Fig. 2.5).

We perform an NEGF simulation (discussed in detailed in Chapter 5) of the device shown

in Fig. 2.1 to show the electron trajectories inside the GPNJ device. The total current at



Chapter 2 Transport physics of graphene pn junction 14

Figure 2.2: Carrier trajectories in GPNJ, a) symmetric doping and focusing of electron flow,
b) asymmetric doping where the refracted side has lower doping (smaller Fermi surface),
electrons reflect back above a critical angle.

Figure 2.3: Definition of ✓ in k space.

an atomic site is equal to the sum of all current components flowing to nearest neighbor

atoms. For equal dopings on both sides (kF2

= kF1

), the angle of refraction is exactly equal
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(with a negative sign) to the incident angle. As a result, a group of electrons originating

from a point contact focus back to one point on the refracted side [34]. Fig. 2.2b shows the

trajectories when the doping at the refracted side is smaller than that at the incident side

(kF2

< kF1

) making the critical angle smaller than ⇡/2. The geometrical ‘optics’ trajectories

corresponding to electron focusing and total internal reflection and NEGF simulation results

agree quite well. A small source contact (10 nm wide) is placed 50 nm to the left of the

pn junction, and electrons are injected with a small drain bias (VD = 0.08 V) around a

Fermi energy. When the gates are biased symmetrically around the junction, although the

electrons see a voltage bias along the drain that spans the entire device width, the pn junction

Hamiltonian and associated pseudospin conservation causes the electrons to focus to a small

point at the drain. For an n+p junction, the electrons incident above the critical angle are

unable to preserve their transverse quasi-momentum and reflect back, while those within

critical angle tunnel to the other side.

2.1.2 Transmission probability: Fresnel’s equation for graphene

The graphene wavefunction has the form of a spinor

 =

2

64
 
1

 
2

3

75

Matching these two components on both sides of the junction (Fig. 2.4) gives the transmission

probability. The transmission probability thus depends on how well the pseudospins match

on both sides of the junction. We get (details are in Appendix A),

T (✓) =
cos✓

1

cos✓
2

cos2( ✓1+✓2
2

)
(2.3)

where ✓
1

is the incident angle and ✓
2

is the refracted angle connected by Snell’s Law, Eq.

2.1. This is a general equation [40] for arbitrary EF and gate voltage gradient V
0

. The polar
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Figure 2.4: Matching wavefunctions on both sides gives transmission probability

plot in Fig. 2.5 shows the incident angle dependence of transmission at a given EF . One

remarkable fact is that for normal incidence (✓
1

= 0), the transmission is unity, regardless of

V
0

. This is known as Klein tunneling [37, 41] reminiscent of the Klein paradox in relativistic

physics. Such perfect transmission is possible because the wavefunctions on both sides match

exactly for normal incidence [1 1], and mismatch with the backward moving branch [1

-1], leading to complete suppression of backscattering. The higher angles show decreasing

transmission. Such angle dependent transmission is possible because the carriers in graphene

are chiral, meaning the pseudospin components are related to the direction of momentum

(✓). From angle (transverse mode) dependent transmission, we need to calculate the total

conductance, which can be found from,

G(EF ) = G
0

X

✓1

T (✓
1

) = G
0

M(EF )Tav(EF ) (2.4)

where G
0

= 4q2/h. A notable point here is that only the total conductance (Eq. 2.4) is a

measurable quantity whereas the mode resolved transmission (Eq. 2.3) is extremely di�cult

to measure. Thus conductance can be written as the number of transverse modes M(EF ) in

one side of the graphene sheet times an average transmission of modes Tav to the other side.
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Figure 2.5: Angle dependent transmission for various bias conditions.

For instance, a symmetric GPNJ (at EF = 0) has,

G/G
0

=
X

✓

T (✓) ⇡
Z ⇡/2

�⇡/2

T (✓)

�✓
d✓

=

Z ⇡/2

�⇡/2

cos2✓

�ky
kF cos✓d✓ =

WkF
2⇡

Z ⇡/2

�⇡/2

cos3✓d✓

=
2

3
M(E) (2.5)

�✓ = �ky/(kF cos✓) is the angular separation between adjacent modes. From above, we get

Tav = 2/3, meaning a symmetric GPNJ will have 2/3 times less conductance compared to

a uniformly doped graphene sheet. One of the aims of this dissertation is to decrease this

Tav many times so that we have a larger modulation of G. We will discuss how to do that in

the following chapters. Fig. 2.6 shows the total conductance (G) and average transmission

per mode (Tav) as a function of Fermi energy, EF , for a fixed built in potential V
0

for both

abrupt and smooth pn junctions. We discuss the smooth junction in the next section.

An npn junction can be formed by either a combination of global back gate and top gate
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Figure 2.6: a) Average transmission per mode Tav and b) total conductance of GPNJ as a
function of Fermi energy EF . There are two zeros in the conductance plot signifying the two
Dirac points in the system.

[42] or by selective chemical doping. In Fig. 2.7a, we show the energy band diagram for the

device. We consider both junctions as abrupt, i.e. d = 0, while the extent of the p type barrier

region is D. In Fig. 2.7c, we show an NEGF calculation of the npn conductance for various

D values. For larger D, two Dirac points are evident from the pinched o↵ conductance, but

for smaller D’s we see a considerable tunneling near the second Dirac point (EF = 0.5 eV),

where the critical angle for the incident electrons is supposed to be very small. The first dip

happens at the Dirac point of the incident n region where M
1

= 0 as before, while the second

corresponds to the carriers with the Dirac point of the barrier p region and the transmission

T
12

is small. In a single pn junction, the modes with higher angles than the critical angle

reflect back as they do not have propagating states to tunnel into while preserving their

transverse quasi-momentum. But in the npn junction case, the length of the forbidden

region D is finite, and the electrons even while aligned with the Dirac point of the central p

region can still preserve their quasi-momenta by tunneling to the other side. This increased

conductance has been seen experimentally [1] in the past (Fig. 2.7). In the limit when D is

very large, we approach the single pn junction case . This is shown in Fig. 2.10c inset. When

D is very small, we approach the uniform doping (n doped here) case through significant
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Figure 2.7: Physics of npn junction. (a) Band diagram. The black line shows the change
of Dirac point as a result of di↵erent dopings at di↵erent portions of the device. Blue (red)
region in the E-k indicates empty (filled) states. (b) Electron trajectories in such junctions,
multiple focusing takes place, (c) Ballistic conductance of a 50nm wide graphene sheet as
a function of Fermi energy (EF ) for a fixed barrier height (V

0

=1 eV) but di↵erent barrier
width, D=5, 25 and 100nm (violet, red and black). The solid lines are from numerical NEGF
calculation, while the circles are analytical calculation from Eq. 2.6, summed over all available
modes. (d) Experimental data from Ref. [1]. Conductance in the experiment is much lower
due to scattering processes.
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tunneling. Note that we also see oscillations for npn junctions, which originate from the

Fabry-Pérot cavity formed by the electrostatic barrier [1, 41]. Both the tunneling and the

resonant oscillations can be captured analytically by matching eigenvector components across

the npn junction, as worked out in Ref. [37].

r =
2iei�sin(qxD)⇥ (sin�� ss0sin✓)

ss0[e�iq
x

Dcos(�+ ✓) + eiqxDcos(�� ✓)]� 2isin(qxD)
(2.6)

giving a transmission, T (�) = 1 � R = 1 � |r|2. qx is the wave vector inside the barrier,

qx =
q

(EF � V
0

)2/(~2v2F )� k2

y, ✓ = tan�1(ky/qx) and s = sign(EF ) and s0 = sign(EF � V
0

).

We then sum over di↵erent modes, set by the width of the graphene sheet, to get the total

conductance G(EF ) in units of G
0

= 4q2/h (Fig. 2.7c, circles), in excellent agreement with

the NEGF atomistic calculation and qualitatively with experiments (Fig. 2.7d).

2.2 Controlling GPNJ conductance with gate parame-

ters

2.2.1 Conductance of smooth pn junction: low pass filter

A split d1 between the two gates, results in a smooth potential variation U(x) across

the junction (Fig. 2.8a). It has been shown [43] that such potential profile works as a

low pass filter (with respect to angle), suppressing the high angle transmission across the

junction exponentially. Since ky across the junction is conserved, the varying potential makes

kx =
q

[(E � U(x)/~vF ]2 � k2

y evanescent over a certain length and therefore it works as

a tunnel barrier for electrons with nonzero ky. From WKB (Wentzel-Kramers-Brillouin)

formalism, the transmission can be written as,

T (✓) =
cos✓

1

cos✓
2

cos2( ✓1+✓2
2

)
e
�⇡

k

F1kF2
k

F1+k

F2
dsin2

✓
(2.7)

1In the following chapters, we assume gate split 2d to make transmission expressions more compact
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This results a sharper lobe in T (✓) as shown in Fig. 2.8. But normal incidence again shows a

Figure 2.8: Impact of gate split on the angular transmission, electrons are collimated in a
sense that only low angle electrons are transmitted.

perfect transmission demonstrating the di�culty in stopping the Klein tunnel mode (KTM),

✓ = 0, from going through. The prefactor in Eq. 2.7 becomes unimportant for moderate gate

spacing [44, 45, 42] and the total conductance can be calculated in the same procedure as Eq.

2.5,

G ⇡ 4q2

h
M(EF )

✓
1

2

◆Z ✓0

�✓0

d✓e�⇡k
F

d

2 ✓
2

(2.8)

G = G
0

"
1

2
p
kFd/2

#
M (2.9)

where M = kFW/⇡. Therefore the conductance is scaled by ⇠
p
kFd/2 with a gate split

(Fig. 2.9).

Figs. 2.10a,b show the doping-dependent resistance (from atomistic NEGF calculation)

of a GPNJ for a 100 nm-wide graphene sheet, for abrupt and slowly varying potentials,

respectively. In Fig. 2.10, we plot the variables against the shifts of the Dirac points in the

two regions �E
1

and �E
2

from the Fermi Energy, EF . The resistances at the upper left

and lower right corners of the plot are higher than the other two (pn vs uniformly doped),
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Figure 2.9: a) Conductance for various splits. b) How the conductance at the symmetric
doping limit changes with gate split (⇠

p
kFd/2)

resulting an asymmetric resistance vs. doping in Fig. 2.10d (plotted for specific doping values

�E
1

as indicated with horizontal lines in 2.10b).

The WKB term in Eq. 2.7 is only present in the pn junction regime, and that is why

only the pn junction resistance is a↵ected while going from abrupt to smooth junctions

(Fig. 2.10a,b). For a p+p or n+n junction the Fermi energy does not cross the smoothly

varying Dirac point anywhere in the device and the transmission expression only includes the

wavefunction mismatch term. Fig. 2.10c shows the resistance variation for a fixed built-in

potential V
0

= �E
1

� �E
2

(along black and red lines in Fig. 2.10a,b). In the conductance

variation (inset), we see e↵ectively two Dirac points, which has a simple physical explanation.
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Figure 2.10: Numerical calculation (NEGF) of a single pn junction conductance for both
abrupt and smooth GPNJ. (a-b) Variation of total resistance with dopings in the two regions
for abrupt (a) and smooth potential (c) Resistance as a function of Fermi energy (EF ) for a
fixed built in potential V

0

= �E
1

��E
2

= 0.2 eV. The red (abrupt) and black (smooth) lines
are resistance plots along the corresponding black and red lines in (a) and (b). Conductance
(inset) which can be viewed as G = G

0

MTav where Tav, pinches o↵ at two points - one due
to vanishing M and at another one due to vanishing Tav, average transmission per mode. (d)
The resistance asymmetry between pn and nn regime from plots along specific doping (specific
�E

1

lines from (b). (e) Extraction of Tav numerically. The transmission of a symmetric
GPNJ is 2/3 (at �E

1

= 0.1 eV), which results in asymmetric conductance vs doping in
GPNJ. The solid lines are from NEGF and the circles are from analytical calculation, Eq.
2.11. (f) Junction resistance (Eq. 2.14) enhancement due to a tilt in the junction. This time
we vary the doping along the diagonal (orange line in (b)) as done in the experiment [2].

Recall that the normalized conductance can be decoupled into the mode count from one end
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times the average transmission over to the other side

G/G
0

= M
1

T
12

= M
2

T
21

(2.10)

The left conductance minimum at �E
1

= 0 is the point where M
1

becomes zero, while the

right one at �E
1

= 0.2 eV is the point where the average transmission for all modes, T
12

,

becomes zero. To make this clear, we calculate Tav numerically. Fig. 2.10e clearly shows

a vanishing transmission at the second Dirac point. To calculate Tav, we first simulate a

graphene device with uniform doping and extract the overall mode count from the ballistic

conductance (G
1

= MG
0

). We then simulate the device with di↵erent dopings (finite built-

in potential, V
0

, and conductance G
2

= G
0

MTav). The ratio of G
2

(EF ) and G
1

(EF ) at

each energy EF yields Tav(EF ). As we have discussed earlier, a symmetric pn junction has

Tav = 2/3, which is also reproduced by numerical calculation (Fig. 2.10e). In Fig. 2.10e we

show analytical and numerical calculation on the same plot. They agree quite well.

2.2.2 Conductance of a tilted pn junction: high pass filter

In this section we focus on a tilted GPNJ to show that it works as a high pass filter by

allowing higher angle modes with higher transmission. We show that the junction resistance

(similar to the odd resistance shown in other experiments [45, 42]) is higher than the non-tilted

device (Fig. 2.11). We argue that this enhancement originates from the chiral nature of

graphene electrons which manifests itself through the highly angle dependent transmission

characteristics of GPNJ (Fig. 2.12). The angular transmission lobe, oriented perpendicular

to the interface is rotated with the tilt, where fewer transmitting modes exist. Therefore

the conductance modulation would not occur for non-chiral, non-relativistic electrons with

isotropic transmission. The results follow closely with recent transport measurements of

a tilted GPNJ in a structure that has separately controlled split-gate voltages [46, 2]. We

present an exact analytical solution to the spinor mismatch problem as well as NEGF based
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Figure 2.11: (a) Experimental setup in Ref. [2] for two devices, no tilt (upper), 450 tilt
(lower). The gate oxides are buried (runs vertically in the picture), (b) experimental and
(c) theoretical calculation of junction resistance as a function of gate voltage. Resistance
is higher for the tilted device compared to non tilted device, (d) Comparison of theoretical
(solid lines, Eq. 2.13) and experimental (dots) average transmission per mode Tav.

atomistic calculation for device sizes quite close to the experimental dimensions. We also

find that charged impurity scattering dilutes, but does not eliminate the modulation in

conductance (Figs. 2.11, 2.13). (iii) Notably, we demonstrate that multiple scattering events

at edges can reverse the trend in modulation, giving an interfacial resistance that decreases

with tilt (Fig. 2.14). Such decrease has been seen [47], but its physical origin has not been

identified so far. The absence of such a reversal in experiments surprisingly points to its

elimination, possibly through incoherent scattering processes dominant at the strained edges.

Analytical model. The conductance of a GPNJ can be written as, G = G
0

PM
i T (✓i) where

G
0

= 4q2/h is the conductance quantum including spin and valley degeneracies and T (✓i)

is the incident angle dependent transmission probability with ✓i = tan�1(ky/kx). M is the

number of modes from the incident side for a given Fermi energy EF relative to its Dirac point

and can be approximated as M ⇡ W |EF |/⇡~vF over the linear E-k regime. To recap, the

angle dependent transmission T is obtained by pseudospin conservation across the junction
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Figure 2.12: (a) Angular transmission for various tilt angles. (b) With tilt, the transmission
lobe moves into a low mode density (⇠ cos✓) area giving (c) a gradual decrease in transmission
(Eq. 2.13) for a symmetric pn junction, (d) junction resistance at 0K predicted from Eq. 2.14.
We see resonances which become more pronounced as we go into smaller systems.

[40]

T (EF , ✓1) =

"
cos✓

1

cos✓
2

cos2
✓
✓
1

+ ✓
2

2

◆
#
e�⇡~vFk

2

Fdsin
2✓

1

/V
0 (2.11)

This is a general form of the transmission expression in [38, 43] and works for the entire

voltage range from pn to nn junction. The incident and refracted angles ✓
1,2 are related by

Snell’s law [34], EF sin✓1 = (EF � V
0

)sin✓
2

(Eq. 2.1), V
0

is the voltage barrier across the

junction and total wavevector kF = EF/~vF . For the rest of the dissertation, we use the

average transmission of all modes defined as, Tav = G/M . For a tilted junction, the incoming

mode angles are modified, so that the conductance becomes

G(EF ) = G
0

M(E
F

)X

i

T (EF , ✓i + �) (2.12)
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where � is the tilt angle as shown in Fig. 2.11. In Eq. 2.12 the e↵ective split between the two

gates is d/cos�. As a result of the angle dependence, the transmission lobe at a particular

energy will rotate by the tilt angle (Fig. 2.12a). The transverse wavevector ky = kF sin✓ gives

�✓ = �ky/kF cos✓, so that the mode density decreases as we go to higher angles relative

to the transport axis. A tilt at the junction thus shifts the transmission window onto a

high angle region where the mode density is less, decreasing the overall transmission (Fig.

2.12c). In the limit when the number of modes is very few, the experiment will give the mode

resolved angle dependent transmission properties (Fig. 2.12a). For an abrupt, symmetric pn

junction, the transmission expression reduces to cos2✓ from Eq. 2.11 and it is easy to see the

impact of tilt,

G ⇡ G
0

Z ⇡/2��

�⇡/2

T (✓ + �)

�✓
d✓ = G

0

2

3
cos4(

�

2
)M (2.13)

The factor 2/3 arises from the wavefunction mismatch across the junction and the tilt

introduces an additional scaling factor, which further reduces conductance. The gradual

decrease of Tav with � in Fig. 2.12c constitutes a direct manifestation of chiral tunneling in

graphene.

To connect with experimental measurements [2], we next analyze the variation of the

junction resistance in the presence of an intrinsic background doping (VDP ) in the graphene

sheet (Fig. 2.12d). We vary the gate voltages so that VG1

= �VG2

but a nonzero VDP makes

it an asymmetric GPNJ. The e↵ective gate voltages on the graphene sheet are ↵G(VG1

+VDP )

and ↵G(VG2

+ VDP ), where ↵G is the capacitive gate transfer factor. The junction resistance

can be written as [48]

RJ = (
4q2

h
)�1[

1� Tav

MTav
] (2.14)

Fig. 2.12d plots RJ against EF = ~vF
p
(⇡)↵GCG|VG1

|/q, the amount of shift in the Dirac

point by VG1

, for a 100 nm wide graphene sheet with a split gate separation d = 200 nm. The
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voltage range |VG1

| < VDP is in the n+n regime for positive VDP and p+p for negative. Under

these near homogeneous conditions, the junction resistance predicted by Eqs. 2.11-2.14 is

small, because the pseudospin states match and there is no WKB tunneling term in Eq. 2.11.

|VG1

| > VDP is in the pn junction regime and resistance jumps to a high value, primarily due

to the WKB factor in Eq. 2.11 (similar trend was seen in [45, 42]). The rate of change in RJ

with VG1

is determined by gate split. For the 450 tilted junction, the junction resistance is

higher than the non-tilted resistance. We see oscillation in the resistance (Fig. 2.12d) for

the single np junction. This is di↵erent from the interference oscillation in Ref. [41] for the

resonant cavity formed in an npn strucure. This can be understood from the conductance in

the pn junction regime, simplified as G(kF ) ⇡ G
0

PM
i exp(�⇡kFdsin2✓i/2) for large gate split

d. With increasing gate voltage (higher kF ) there are more modes (M) in the summation with

each mode transmitting with exponentially reduced magnitude. The two opposing e↵ects

generate a sequence of peaks and valleys and dominate when summed over a few modes

(either with quantization or tilt) at low temperature.

Numerical model. An atomistic, numerical calculation of the junction resistance is shown

in Fig. 2.11 at 80 K temperature. NEGF formalism is used for a 100 nm wide graphene

sheet with d = 200 nm, close to experimental dimensions (width ⇠200-300 nm). A single

pz orbital basis for each carbon atom is used to compute the Hamiltonian H, while the

contact self-energies ⌃
1,2 are calculated using a recursive technique. The retarded Green’s

functions are calculated as GR = (EF I �H + V � ⌃
1

� ⌃
2

)�1 using the algorithm in [49]

and V is the electrostatic potential inside the device. In units of 2q2/h, the conductance

is calculated as G = �
1

GR�
2

GA, where the contact broadening functions, � are the anti-

Hermitian components of ⌃. For ballistic transport, G equals M , the number of modes for a

uniformly gated sheet, and MTav for a pn junction. Combining these two, we calculate Tav

and RJ from Eq. 2.14, which shows a jump with tilt in the pn junction regime, very similar

to the experiment.

Charged impurity scattering dilutes tilt dependence. The experimental device is on a SiO
2
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Figure 2.13: Impact of charged impurity scattering, (a) conductance asymmetry is diluted
due to impurity potentials, the ballistic resistance is normalized for comparison. (b) Reduced
asymmetry results in lower junction resistance for both tilted, non-tilted devices, thus retaining
their di↵erence.

substrate and the transport is di↵usive with a mobility varying from 700-3000 cm2/V-s. It

is natural to inquire how the theoretical model, which so far does not include scattering,

corresponds to experiments. To explore this feature, we included the impact of charged

impurity scattering in our model. We use a sequence of screened Gaussian potential profiles

for the impurity scattering centers [50, 51, 52], U(r) =
PN

imp

n=1

Un exp (�|r � rn|2/2⇣2), that

specifies the strength of the impurity potential at atomic site r, with rn being the positions

of the impurity atoms and ⇣ the screening length (⇡ 8 times the C-C bond for long range

scatterers). The amplitudes Un lie in the range [��, �] (⇡ 0.5 times the C-C coupling

parameter) and Nimp is the impurity concentration (⇠ 5 x 1011 cm�2). Note that the purely

di↵usive model discussed in [53, 42, 45] ignores the quantum mechanical spinor mismatch

and WKB scaling and therefore underestimates the junction resistance for cleaner samples.

Our NEGF based numerical model on the other hand captures both the quantum mechanical

and impurity limited resistance contributions simultaneously. The junction resistance is now

calculated by eliminating the contact and device resistance [2]

RJ = [R(VG1

, VG2

) +R(VG2

, VG1

)

�R(VG1

, VG1

)�R(VG2

, VG2

]/2, (2.15)
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where the first two terms contain the junction resistance, while the last two do not.

Fig. 2.13a shows the impact of the impurity scatterings on the total resistance and

Fig. 2.13b on the junction resistance. We take the average resistance over many impurity

configurations. This puts a constraint on the computation size, so we show calculations for a

smaller device (50 nm wide). We find that both tilted and non-tilted junction resistances

are suppressed, thereby retaining the di↵erence between the two. This reduction in junction

resistance with scattering is quite consistent with the experiment (Fig. 2.11c, red line is for a

450 device with mobility 2270 cm2/V-s, while the blue triangle is for 450 with lower mobility,

700 cm2/V-s).

The reduction in the junction resistance from ballistic to di↵usive transport can be

understood from the total resistance, shown in Fig. 2.13a. Now we keep VG1

fixed and

vary VG2

so that we go from n+n to np junction. We see a clear asymmetry in the R-VG

characteristics [38, 42] (purple line normalized to the orange line in Fig. 2.13a for comparison).

The asymmetry confirms the presence of pn junction, which reduces the conductance due

to spinor mismatch. The presence of impurity scattering reduces this asymmetry while

increasing the overall resistance (red line). The impurity potentials create a random potential

variation throughout the graphene sheet on top of the applied gate voltages, thus blurring

the presence of a pn junction. Therefore the resistance due to spinor mismatch becomes

less noticeable (Fig. 2.13b). Indeed, the experimental data of the total resistance indicates

an increase in asymmetry in the tilted junction [2], signifying an increase in the junction

resistance.

Edge scattering can reverse tilt dependence. A striking feature on the experimental results

is their agreement with Eq. 2.13. This match is remarkable, considering that the equation

was derived assuming no edge reflections and the fact that past numerical study [47] showed

in fact an increase in conductance with tilt. We argue that the above reversal of junction

conductance with tilt is entirely due to edge scattering events. Indeed, from an atomistic

NEGF calculation with shorter widths than lengths, we find that the transmission shows a
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Figure 2.14: (a) Increase in conductance in a tilted GPNJ due to Edge Scattering (ES)
in contrast with Fig. 2.12c, (b) corresponding decrease in junction resistance due to tilt
(c) Mechanism of edge enhanced conductance for a tilted junction from atomistic NEGF
calculation: some reflected electrons come back at the junction after edge reflection.

pronounced local maximum (Fig. 2.14a orange line) and increase in junction resistance, in

agreement with [47]. We summarize this in Fig. 2.14b, where an increasing tilt makes the

resistance increase for the short channel 125 nm x 50 nm device (a transition from purple

circle to black diamond), but decrease for the longer 200 nm x 50 nm device (orange square

to red triangle). Bearing in mind that the gate split is 100 nm, the short channel device

significantly reduces edge scattering.

To better understand the origin of such a resistance reversal, we inject electrons with

a small contact at the left edge (bright red spot in Fig. 2.14c) and plot the spatial current

density under a small drain bias. The numerically computed electron trajectories show how a

tilt can enhance forward scattering events at the edge and thus an increase in conductance.

The enhancement arises from simple ‘geometrical optics’ dictated by Snell’s law. We can

identify the incident wide angle modes (✓ > ⇡/4� �), for which the reflected ‘ray’ hits the

upper edge with a positive x directed velocity. Such a mode will reflect back toward the
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junction again. The contribution from the positively directed edge scattering event is given

by

Gedge = G
0

Z ⇡/2��

⇡/2�3�

T (⇡ � 3� � ✓)

�✓
d✓ = 2sin4�cos�M (2.16)

Note that only the incident angles below the critical angle are considered while setting

the limits of the integration. With the added contribution from edge scattering, the net

mode-averaged transmission T = G/M is given by

Ttotal ⇡ T + (1� T )Tedge⌘ (2.17)

where the T s are extracted from the corresponding G/M ratios and ⌘ is a parameter that

describes the e�ciency of edge scattering. In the absence of edge scattering (⌘ = 0), Ttotal = T

and decreases with tilt (Fig. 2.12c). However in the presence of strong edge scattering (⌘ = 1),

the added forward edge scattering term in Eq. 2.17 closely reproduces the NEGF result with

the local transmission maximum (Fig. 2.14a, black dotted line). Comparing these results

with experiment indicates that such edge scattering events are clearly minor. We conjecture

that the coherent forward scattering processes captured by NEGF can be diluted in the

experiments by the presence of incoherent scattering processes arising at the strained and

rough edges of the graphene samples that tend to dephase or perhaps even trap the electrons.

In the following chapter, we discuss how we combine the two filters to form a transmission

gap and a high current modulation in graphene without opening a bandgap.

Related publications:

1. Redwan N. Sajjad, S. Sutar, J. Lee and Avik Ghosh, “Manifestation of Chiral tunneling

at a tilted graphene p-n junction”, Physical Review B vol. 86, pp. 155412(2012).



Chapter 3

Transmission gap: a new way of

switching

In this chapter, we propose device concepts that produce a transmission gap to suppress all

propagating modes. We show two device designs that achieve this goal.

The conductance at zero temperature can be written as,

G(EF ) = G
0

M(E
F

)X

n=1

Tn = G
0

M Tav (3.1)

where G
0

= 4q2/h is the conductance quantum which includes spin and valley degeneracy,

M is the total number of transverse modes and Tn is transmission of individual modes. If all

modes transmit with equal probability (T ), the conductance can simply be written as G
0

MT .

As we discussed earlier, due to the chiral nature of carriers in graphene, transmission in a

graphene pn junction (GPNJ) is highly angle (mode) dependent, making it necessary to work

with an average transmission per mode Tav over all modes. Instead of eliminating the mode

count M as does a structural band-gap, we exploit instead the chiral (anisotropic) tunneling

that makes Tav vanishingly small (Fig. 3.1b) over a range of energies. This results in low

OFF current (Fig. 3.1c,d). All modes are available for conduction in the ON state when the

33



Chapter 3 Transmission gap: a new way of switching 34

split gates are set to the same polarity, thus retaining the high mobility of graphene.

Figure 3.1: (a) Chiral tunneling in graphene pn junction (GPNJ) manipulated with gate
geometry, using two junctions (dual GPNJ) tilted in opposite directions, (b) making their angle
dependent transmission lobes orthogonal (left) and yielding negligible overall transmission
(right) for split gates (solid line). (c) The transmission gap creates a high ON-OFF current
ratio as a function of VG2

at finite bias, VDS = 0.4V and room temperature. The ON current
degrades slightly compared to homogeneous gapless graphene, but the OFF current is reduced
by several orders of magnitude (d) Steeper change (beating KT ln 10/q switching limit) of
current with VG3

. This is done by keeping the collimation e↵ect of the first junction intact
and making the transmission gap dependent upon Snell’s law.

3.1 Opening transmission gap with gate geometry

In this section, we combine a split gated pn junction to collimate the transverse modes with

the [2, 54] action of a tilted pn junction that increases the e↵ective angle of incident electrons.

Fig. 3.1a shows two pn junctions tilted (at angle �) in opposite directions. Each junction
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exploits chiral tunneling that conserves the pseudospin index and maximizes transmission

for normal incidence (Klein tunneling). Transmission is suppressed for non-zero incidence

angles, especially when the potential varies smoothly, i.e., the p to n transition occurs over

a finite split gate distance d
1

= d
2

= 2d [43]. A tilted junction rotates the transmission

lobe accordingly [54], which shifts transmissions along opposite directions to make them

orthogonal. The mode-averaged transmissions across the dual junction can be decomposed

as (see Appendix B for derivation)

T
1,2(✓) ⇡

"
cos(✓L ± �)cos✓R

cos2
✓
✓L ± � + ✓R

2

◆
#

⇥ exp


�⇡2d kFLkFR

kFL + kFR
sin(✓L ± �)sin(✓R)

�
(3.2)

1

Teff
⇡ 1

T
1

+
1

T
2

� 1 (3.3)

Tav(EF ) =
1

2

Z
Teff (✓)cos✓d✓

= [A
p
kFde

⇡k
F

dsin2
�]�1 (3.4)

Tav is vanishingly small for moderate doping. Eq. 3.4 is written for symmetric npn doping

with Fermi wave-vector, kF = EF/~vF and A ⇡ 8 is a constant. The angular representation

of a mode is given by, ✓ = tan�1

k
y

k
x

, where ky and kx are the transverse and longitudinal

components of kF . Eq. 3.2 arises from matching the pseudospins across the junction. L and

R denote components to left and right of a junction (1,2) [55] . The tilt � modifies the incident

angle by ✓L ± � and the angle of refraction is related to incident angle through Snell’s law,

kFLsin(✓L± �) = kFRsin✓R. Eq. 3.3 assumes resistive addition of the junction resistances and

ballistic flow in between. The mode count for width W is given by M = Wk
F

⇡ . The resulting

total conductance, G
0

MTav, is negligible in the entire pn junction regime, which indicates

that the transmission gap (EG) exists if the carrier densities have opposite polarities,

EG ⇡ V
0

(3.5)
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Figure 3.2: Mode-averaged transmission Tav vs Fermi energy EF for di↵erent doping profiles
(Fermi energy EF and built in potential V

0

are indicated on the top band diagram). Tav for
the dual tilt GPNJ shows a gap (green line), which is termed as transmission gap (yellow
shading) in this chapter.

where V
0

is the gate induced potential step across the junction. This is due to the fact that

the high resistance is primarily contributed by the WKB exponential factor which is present

in the pn regime, whereas the unipolar regime has only the cosine prefactors representing the

wavefunction mismatch [38, 55]. Significantly, Eq. 3.2 predicts two critical angles for total

internal reflection: a Snell’s law driven ✓C = sin�1(nR/nL) arising from the prefactor and a

second smaller ✓C ⇠ 1/
p
⇡kFd from the WKB term.

Fig. 3.2 shows variation of Tav numerically calculated from Eq. 3.2 as a function of

Fermi energy, EF for four di↵erent devices and doping profiles. The orange line shows unit

transmission of all modes for a ballistic uniformly doped graphene sheet. The angular (mode

dependent) transmission is manifested in a single sharp (d = 0) graphene pn junction and

the Tav is suppressed (blue dash). Further suppression is achieved with a split junction (pink
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circles) (non-zero d) due to high transverse energy (mode) filtering. Tav for the device in

Fig. 3.1a is shown in green, showing a negligible transmission over the bipolar doping regime.

Note that the suppression in transmission only occurs in the bipolar doping regime (Fig. 3.2),

outside which the exponential scaling in Eq. 3.2 is eliminated [55].

The minimum current is achieved in npn regime (OFF state). Over the energy window

[µS, µD] = [EF , EF � qVDS] set by the drain voltage VDS, Tav varies weakly, so that the

OFF state current at zero temperature for the npn configuration can be extracted from

IOFF = G
0

Z µ
S

µ
D

M(E)Tav(E)dE

⇡ G
0

M(EF )Tav(EF )VDS (3.6)

convolved with the thermal broadening function for finite temperature. For uniformly doped

graphene with ballistic transport,

ION = G
0

M(EF )VDS (3.7)

so that the zero temperature ON-OFF ratio simply becomes,

ION/IOFF ⇡ [Tav(EF )]
�1 ⇠ A

p
kFd(2e

⇡kFdsin
2�) (3.8)

if the biasing is changed all the way from npn to nnn. Fig. 3.1c (Pink) shows the change

in dual tilt GPNJ current with gate voltage VG2

at room temperature and finite drain bias

(VDS), compared with a regular zero bandgap graphene based device (Blue). From the nin

to nnn regime, we see little change in GPNJ current on a log scale. But towards the npn

regime, we see at least three orders of magnitude decrease when the Fermi window remains

mostly within the transmission gap. Compared to regular graphene (Blue), the ON current is

reduced only slightly, while the OFF current is reduced by several orders of magnitude. The

reduction in ON current is due to the fact that the doping is not quite uniform at the ON



Chapter 3 Transmission gap: a new way of switching 38

Figure 3.3: Benchmarking Tav with experiment [2] for a single tilted split junction for several
gate voltages. Experiment shows good agreement with the theory confirming the angular
shift of T (✓) and the scaling law with tilt.

state across the n+n collimator which is maintained at unequal doping to avoid a large voltage

swing, whereupon the wavefunction mismatch leads to lower current than uniform graphene.

Fully ballistic transport and assuming high quality contact yields an intrinsic ON current

in the mA/µm regime. In this calculation the gate parameters are |�
1

| = |�
2

| = � = 450,

d
1

= d
2

= 20 nm, VG1

= VG3

= +1 V, VDS = 0.4 V.

Critical to the geometric switching is the prominence of angle-dependent chiral transmission

across a tilted junction. Fig. 3.3 shows the mode averaged transmission Tav extracted

(Appendix B) from the measured junction resistance for a single split junction, for varying tilt

angles [2]. For an abrupt tilted junction Tav =
2

3

cos4(�/2) in the symmetric pn doping limit

and represents an electronic analog of Malus’ law, the quenching of light transmission through

an polarizer-analyzer pair. The reduction in Tav originates from the angular shift of the

transmission lobe (Fig. 3.1b) in the low angular mode density region [54]. The numerically

evaluated Tav generalized for a tilted split junction (solid lines) agrees well with experimental

data (dots) for di↵erent gate voltages. The scaling of Tav in the experiment thus confirms

the angular shift of the transmission lobe and forms the basis of the proposed device. The

data shows an absence of specular edge scattering and persistence in the presence of charge
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puddles. The detailed theoretical model can be found in Ref. [54].

3.2 Biasing scheme and impact on subthreshold slope

For a semiconductor with fixed bandgap, rate of change of current with gate voltage is

KT ln 10/q and limits the energy dissipation in binary switching. The limit arises from the

rate of change in overlap between the band-edge and the Fermi-Dirac distribution, normally

set by the Boltzmann tail. In our device, the transmission gap is sensitive to how gate

voltages are varied, since it is a gate-voltage-dependent transport gap. There can be two ways

to turn ON the device by getting rid of both junctions (Fig. 3.1c, biasing scheme 1: vary VG2

for npn ! nnn) or only one junction (Fig. 3.1d, biasing scheme 2: vary VG3

for npn ! npp).

Earlier we showed the transfer curve ID � VG (Fig. 3.1c) as a function of VG2

. Changing VG2

compromises the collimation action of the first junction and the condition of transmission gap

is decided by the bipolarity (Eq. 3.5). Therefore the e↵ective conduction band moves by the

same amount as the applied gate voltage, yielding ⇠ KT ln 10/q mV/Dec change in current.

In Fig. 3.1d, VG3

is changed and a drastically di↵erent transfer characteristic emerges. For

simplicity, we keep the first junction split gated but without any tilt. The first junction limits

transmission primarily around normal incidence (✓ ⇡ 0), while the second junction, tilted at

�, increases the e↵ective angle of incidence by the gate tilt angle � [54]). All the electrons are

then reflected if the critical angle of the second junction is less than �,

✓C = sin�1|nR

nL
| < � (3.9)

where nR and nL are doping concentrations on the two sides of junction 2. The resulting

transmission vanishes over a range of energies (following from Eq. 3.9), which can be expressed

as [40]

EG = V
0

2sin�

cos2�
(3.10)
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Figure 3.4: Electron flow in the proposed GPNJ device. Schematic of collimator-barrier pair
that sequentially filters all propagating modes is shown on left. Numerical current density
plot from NEGF showing (a) blocking of carrier flow in the bipolar npn OFF state, (b)
unipolar nn�n ON state, current flowing from source to drain. White (black) areas indicate
high (low) local current density.

analogous to Ref. [40] despite being a di↵erent (simpler) geometry, with the tilt angle �

replacing the barrier angle ✓B. Such tunability of the transmission gap for an abrupt junction

bears a direct impact on the sub-threshold slope. Once we enter the unipolar regime for

the second junction (pn to pp), the critical angle from Snell’s law (discussed earlier) comes

into play and the e↵ective band edge shifts by �q.VG3

/(1 � sin�) at the thin oxide limit.

That means the transmission gap overlaps with the Fermi distribution at a higher rate than

usual with change in gate bias, leading to a subthermal slope, SS = ↵ KT ln 10(1-sin�)/q [40]

steeper than the Landauer limit, where ↵ is inversely proportional to the filtering strength

(
p
kFd) of the first junction. However, since the first junction is always present under this

scheme, it will reduce the ON current and the ON-OFF ratio by a factor of
p
kFd [43]

compared to Eq. 3.7-3.8.

To demonstrate carrier trajectories in the proposed device, we numerically simulate the

device (150 nm x 50 nm) using the Non-Equilibrium Green’s function Formalism (NEGF).

Fig. 3.4a,b shows the local current density. The source and drain Fermi levels are at µS = 0

and µD = �qVDS. To visualize the current distribution in the device at the Fermi level,
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we apply a small drain bias VDS so that all electrons are at the same quasi-Fermi level (as

indicated by the red line in Fig. 3.4). The nn�n ON state (Fig. 3.4b) shows current from

source to drain while the npn OFF state (Fig. 3.4a) shows very little current inside the final

wedge connected to the drain. Most of the electrons that do not cross the tilted junction are

redirected toward the source. Some electrons, especially the secondary modes (✓ > 0), are

rejected by the initial collimator after edge reflections and tend to build up in the central

wedge. The build-up of carriers increases the local quasi-Fermi level, µ, until the injection rate

at the left junction, which is set by the transmission rate in Eq. 3.2, equals the leakage rate

at the right tilted junction. The leakage is given by the exponentially reduced transmission

in Eq. 3.4 plus additional edge scattering based pathways (a model was presented in Ref. [54]

including an edge reflection parameter ⌘) and direct tunneling through the central region

depending upon its length.

3.3 NEGF simulation with edge e↵ects: large scale

graphene

Until now, we have presented ID � VG calculation from analytical formalism which ignores

the e↵ect of edge reflection. A detailed discussion was presented in Chapter 2 on this subject.

The experimental observation and theoretical fit summarizes that edge e↵ects may not be a

dominant factor, since a number of physical processes such as edge roughness, incoherent

scattering at the edges can in fact dilute the e↵ect of edge e↵ects. However, it is worth

investigating how much the specular edge reflections would a↵ect device performance. In this

section, we perform NEGF simulation of the device for large width (>500 nm and up to 2

µm). To be able to go to such large width, we used a k.p Hamiltonian representation of the

Hamiltonian instead of atomistic Hamiltonian. We have verified that such representation is

as accurate as the atomistic model up to relevant energy range for most cases (>0.6 eV).



Chapter 3 Transmission gap: a new way of switching 42

Figure 3.5: Simulation of multiple GPNJ FET for large width. ON-OFF ratio improves with
width while the smaller structures show degradation of performance due to edge e↵ects.

A hard wall boundary condition is used at the edges so that we have specular edge

reflections. Fig. 3.5 shows the low bias transfer curve for several widths. As we go to larger

width, the ON conductance (nnn regime) increases linearly, but the OFF conductance (npn

regime) is weakly coupled with width and remains pinned around q2/h. Thus the ON-OFF

ratio increases with width while the smaller structures show significant degradation of the

ON-OFF ratio due to edge e↵ects.

3.4 NEGF simulation without edge e↵ects: smaller struc-

tures with open boundary condition

To verify whether the edge e↵ects are indeed the reason for the degradation of performance,

we next show simulation results for confined structure (graphene nano-ribbons) of width ⇠

30nm, this time with open boundary condition.

We include two extra transverse contacts in the system to apply open boundary condition.

Since this becomes a multi-terminal system and we are only interested in current from source

to drain, we apply the Büttiker formalism to calculate the source-drain current. With the

open boundary condition (no edge e↵ects), the ON-OFF ratio is again quite high (well over
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Figure 3.6: Simulation of multiple GPNJ FET for small width but with open boundary
condition at the edges. ON-OFF ratio is back up to 103.

103) at finite drain bias (VD = 0.3V). Such result is in agreement with the analytical formalism

previously presented.

In experiments, we expect to see an ON-OFF ratio somewhere in between the two extremes

(no edge e↵ects and specular edge reflections).

3.5 Removing Klein tunnel mode with external barrier

In this section, we show an alternate device structure that exploits the same pn junction

physics. We explore a graphene junction where electrons injected by a point source are

spectrally separated by a local gate, and those refracted across the junction are collected

with an extended drain (Fig. 3.7). When electrons are injected from a higher electrostatically

‘doped’ to a lower doped side, the ones with high incident angle, low longitudinal energy are

eliminated by total internal reflection. An additional tunnel barrier removes the normally

incident, hotter electrons as well, resulting in a gate voltage-dependent transmission gap that

allows significant gate modulation of the electron current (Figs. 3.8, 3.9). Furthermore, as we

vary the gate voltage, moving progressively towards a homogenous doping across the junction,
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Figure 3.7: (a) Schematic diagram of the proposed device, showing a point source that
angularly spreads electrons while an extended drain collects those that refract around a tunnel
barrier. The point source could be lithographically patterned, an STM or electrostatically
produced using analogous convex lens. Charge densities in the two segments created by
the split gates are ⇢

1

and ⇢
2

. (b) Energy band diagram for |VG1

|> |VG2

|. (c) With very
small drain bias, atomistic current density plot calculated with Non-Equilibrium Green’s
function (NEGF) formalism illustrates that current flows only within the critical angle,
✓C = sin�1(|VG2

/VG1

|). (d) Schematic Snell’s Law predictions as well as (e) NEGF simulation
illustrate how a barrier (void in this case) eliminates transmission within the critical angle
when ✓C < ✓B, where ✓B is the occlusion half angle created by the barrier. (f) Transmission
is non zero for ✓C > ✓B where electrons can refract around the barrier.

we see an e↵ective up-conversion of the local voltage, leading to a subthreshold swing lower

than the thermal limit of KT ln 10/q per decade increase of current.

Fig. 3.7a shows the schematic of the device we propose. The source injects electrons at all

angles. A barrier placed at the center of the graphene sheet eliminates the normally incident

electrons, so that the transmission probability with barrier can be written as

TB(✓1, E, VG) = ⇥(✓
1

� ✓B)T (✓1, E, VG) (3.11)

where ✓B = tan�1D/2L is the occlusion half angle subtended at the source by the barrier, D

is length of the rectangular barrier and L is its perpendicular distance from the source. The

barrier can be realized by a void or directed assembly of insulating molecules as demonstrated

by Hersam et.al. [56]. The transmission now acts as a band-pass filter along the longitudinal

energy axis EL (Fig. 3.8d), allowing only electrons with angles ✓B < ✓
1

< ✓C , in other words,
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Figure 3.8: GPNJ Transmission vs. Fermi energy (E) for VG1

� VG2

=+0.8V. Unless ⇢
2

is 0,
the normal mode always transmits perfectly, making the average transmission nonzero. (b)
Constant Fermi energy slices of the Dirac cones across the junction, corresponding to points
on the T (E) curve with arrows indicating critical angle. (c) Modification of transmission
from part (a) due to the barrier, transmission within the yellow region is forbidden (d) T vs
EL at specific total energies E, indicating an e↵ective band-pass behavior for states outside
transmission gap.

within a longitudinal energy window Ecos✓C < EL < Ecos✓B to transmit. Since no electrons

can transmit when ✓C < ✓B, there is a range of energies for which we get a transmission gap

(Fig. 3.8c). The creation of transmission gap is reproduced by atomistic NEGF calculation

(Fig. 3.7e) with nearest neighbor pz orbital basis Hamiltonian. A recursive algorithm is

employed to speed up the calculation of device Green’s function [49] in the experimentally

relevant size range -100 nm wide graphene sheet containing ⇠ 100,000 atoms. We see how

modes near normal incidence are reflected by the barrier, while those incident at a large angle

are eliminated by total internal reflection. The gate voltage dependance of ✓C leads thereby

to a voltage-tunable transmission gap.

We can extract an e↵ective ‘valence band-edge’ EV , given by the condition sin✓B =

sin✓C = �(EV + qVG2

)/(EV + qVG1

). One can get a similar expression for the ‘conduction
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Figure 3.9: (a) Transmission shifts as we vary VG1

� VG2

, but is accompanied with a change
in transmission gap (b) I-VG2

of the device, showing a sharp increase in current modulation
with barrier, and a subthreshold swing that is larger than the thermal limit at the PN end
and smaller at the N+N end. Here, ✓B = 200 and drain bias = 0.2V.

band-edge’ EC , and thus the e↵ective transmission gap EG

EV,C = �qVG2

⌥ q
(VG1

� VG2

)sin✓B
1± sin✓B

EG = EC � EV = q(VG1

� VG2

)
2sin✓B
cos2✓B

(3.12)

Thus EG is proportional to the built-in potential, V
0

= q(VG1

� VG2

). There are two distinct

contributions to the resulting transmission plot (Fig. 3.9a)– (i) an overall shift given by

�qVG2

, and (ii) a voltage modulation of the band-gap EG. The first term will lead to the

electrostatic gating e↵ect seen for regular band-gapped semiconductors (this leads to ⇠ 60

mV/decade at room temperature), while the latter term creates a deviation from this result,

e↵ectively captured through a gate tunable, continuous metal-insulator transition associated

with voltage dependence of EG. The gap vanishes in the homogeneous doping limit (V
0

= 0),

requiring the ‘valence band-edge’ to slow down while the ‘conduction band-edge’ to catch up.

Fig. 3.9b shows the corresponding current extracted using the Landauer formalism for

various gate voltages VG2

while VG1

is kept fixed. While the ON current reduces a little, the

tunnel barrier primarily reduces the OFF current by nearly five orders of magnitude. Overall,

an ON-OFF ratio of ⇠ 104 is achievable with just 0.25 V change in gate voltage on the nn
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regime with ✓B of 200. This will require a 70nm long barrier for 1µm x 1µm graphene sheet,

if the source is placed at 200nm from the pn interface. The unusual transconductance and

subthreshold swing can be attributed to the fact that transmission gap changes every time

the gate voltage VG2

is changed. From Eq. 3.12 the subthreshold swing can be calculated as,

S = (dlog
10

I/dVG2

)�1 = KT ln 10[1⌥ sin✓B]/q (3.13)

which is less than 60 mV/dec (‘-’ sign above) at the nn end, and more than 60mV/dec (‘+’

sign) at the np end. At heart of the unusual behavior is the coupling of angular and energy

filtering in the barrier driven Klein tunnel-switch, which di↵ers from most materials in that

its e↵ective band-gap can be collapsed with a gate voltage.

To summarize this section, we have shown that the physics of regular tunneling coupled

with Klein tunneling opens up the opportunity for high performance low power switching

based on graphene pn junction. The additional barrier creates a transmission gap and

increases the ON-OFF ratio substantially by removing the high longitudinal energy electrons

which are responsible for high OFF current. The gate voltage dependence of the transmission

gap leads to overcoming thermal switching limit of KT ln 10/q per decade. Therefore, despite

being di↵erent architecture, the two devices shown in this chapter in essence produce very

similar result, driven the filtering of pseudospins across pn junctions.

This chapter thus provides two di↵erent device designs that aim to eliminate the problem

of high leakage current in graphene by filtering out both high and low angle modes either by

multiple pn junctions or external barrier. Such devices yield high ON-OFF ratio without the

need of a bandgap but with a gate tunable transmission gap yielding sub-thermal switching.

Next chapter discusses how we can use such devices as building blocks of novel electronic

and spintronic systems.

Related publications:

1. Redwan N. Sajjad, Avik Ghosh, “Manipulating Chiral Transmission by Gate Geometry:
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Switching in Graphene with Transmission Gaps”, ACS Nano, vol. 7, no. 11, pp. 9808

(2013).

2. Redwan N. Sajjad, Avik Ghosh, “High e�ciency switching using graphene based electron

‘optics’”, Applied Physics Letters vol. 99, pp. 123101(2011).



Chapter 4

What we can do with pseudospin(spin)

filtering by pn junction

In previous chapters, we showed how gate modulation of current is possible in graphene pn

junction devices. In this chapter we show how this can be useful as a logic device1. In the

second segment of this chapter, we discuss how we can modulate spin current (instead of

pseudo-spins) in topological insulators (TI)2 based pn junction with implications in spintronic

devices.

4.1 GPNJ as a Boolean logic device

A. Gate-Level Model: In this section, we present the models for GPNJ based inverter

and NAND gates, which we use for evaluating the circuit level performance.

Inverter: A GPNJ inverter is composed by two GPNJ switches that share one contact in the

middle of the inverter as the output, shown in Fig. 4.1. Green and yellow gates are applied

with positive and negative control voltages. The input A is connected to two trapezoid top

gates that can turn on either side of the GPNJ switch depending on the input. If the input

1This work was done in collaboration with Chenyun Pan and Azad Naeemi, ECE, Georgia Tech.
2This part of the work was done in collaboration with K. M. Masum Habib, ECE, UVa

49
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Figure 4.1: Gate-Level GPNJ layout: (a) Inverter (b) NAND gate. Here, D is the gap
distance of the GPNJ junction, and F is the minimum feature size, which is 16 nm in this
work.

is logic ‘1’, the output will be connected with the bottom ‘0’; if the input is logic ‘0’, the

output will be connected with the top logic ‘1’. In Fig. 4.1a, the footprint area model for a

GPNJ inverter is depicted to be compatible with the standard CMOS process, the design

rules such as the minimum spacing between two nearby vias follow from Ref. [57].

NAND Gate: The layout for a NAND gate is shown in Fig. 4.1b, where 20% of the

footprint area reduction can be achieved by using the chemical doping control method. The

resistance and capacitance values for a GPNJ NAND gate can also be obtained based on the

width of the graphene sheet in the pull-up and pull-down network.

TABLE I presents circuit-level metrics for GPNJ- and CMOS-based logic devices and

circuits. The 16 nm CMOS numbers are from the Predictive Technology Model (PTM)

[58]. In terms of delay, a GPNJ inverter provides a faster intrinsic speed due to its smaller

output resistance. The larger gate capacitance of the GPNJ inverter is caused by the large

input trapezoid gates. For a 32-bit adder, the GPNJ circuit can o↵er about 70% delay

and energy-delay-product (EDP) reduction due to its excellent current driving capability

compared to their Si CMOS counterpart. Additionally, the smaller footprint area of the GPNJ

devices can shorten the interconnect length. Therefore, it reduces the parasitic capacitance

and dynamic power dissipation for wires, which contributes to the speed improvement of the

circuit.
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Figure 4.2: The delay and power dissipation components of GPNJ logic circuits for inverter,
NAND and adder.

For the same feature size (F = 16 nm), the GPNJ logic is always faster than CMOS logic,

due to its high ON current. The di↵erence goes up as we go into larger systems: from inverter

to NAND and Adder, where higher number of devices are connected in series. For CMOS,

the series resistance goes up but for GPNJ, it stays the same due to its ballistic nature of

electron transport. The switching are for GPNJ is a bit larger due to its angled gates. This

results in a higher switching energy (1
2

CGV 2

DDf), but the interconnect lengths are determined

by the total area, where GPNJ has advantage over CMOS. Both the interconnect lengths

and lower output resistance play role in lowering delay. In the end, the energy delay product

for GPNJ is much lower (298.94 fJ-ps) compared to the CMOS counterpart (975.36 fJ-ps).

4.2 Spin filtering in topological insulators

In this section, we show that the conservation of momentum of massless, Dirac-Fermionic

surface states of 3D topological insulator pn junction leads to spin filtering e↵ect analogous to

the pseudospin filtering in graphene. Due to spin-momentum locking in topological insulator,
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Figure 4.3: spin (pseudospin) locking in graphene (a) and topological insulator (b).

the spin of electron is flipped when it is reflected back from the pn junction interface which

enhances the spin current at the source contact. As a result, the spin current increases and

the charge current decreases leading to extremely high spin Hall angle (up to 20). Moreover,

both the spin current and the spin Hall angle are gate tunable which makes the Topological

Insulator pn junction a promising device in spintronics.

Topological insulator (TI) has been in the center of attention in condensed matter physics

in the past decade because of its unusual electronic properties classified as a new state of

matter [59]. The spin orbit coupling leads to a bulk bandgap in this class of materials and at

the same time exhibits gapless edge (for 2D) and surface (for 3D) states protected by time

reversal symmetry. TI’s are theoretically predicted and experimentally verified in quantum

wells [60] and bulk crystals [17, 61]. The low energy e↵ective Hamiltonian to describe the

surface states of TI has been shown to be H = vF ẑ.(�⇥p) by fitting the ab initio calculations

in Ref. [17]. The Hamiltonian is much similar to that of graphene Hamiltonian at low energy

given by H = vF�.p with the exception that for TI, the Pauli matrices � operate on the real

spins while for graphene it operate on pseudospins representing the A-B sublattices. In both

systems, the spin (or pseudospin) is locked with the momentum, for TI they are at 900 to each

other and for graphene they are in parallel as shown in Fig. 4.3. The spin-momentum locking

can have important implication in spintronics applications where a highly spin polarized

current is required to switch a magnet with as low charge current as possible to reduce the

Ohmic dissipation. Magnetic tunnel junction (MTJ) has been used for Spin -transfer Torque

devices to perform basic read and write operation with spin degree of freedom [62, 63]. A
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Figure 4.4: Spin Hall e↵ect, where the charge current is accompanied with a transverse spin
current.

free layer (where the data is to be kept) is separated from a fixed reference magnet by a

tunneling barrier. A non-polarized current is passed through the fixed layer of magnet, gets

spin polarized and performs spin torque (write) if the spin current exceeds a critical limit. A

smaller current in the device will not produce spin switching, but we can read the spin state

from the resulting charge current in the device. A parallel spin configuration will produce a

lower resistance, whereas an anti-parallel configuration produces a higher resistance (read).

It has been shown theoretically in the past [64, 65] that a charge current is always

accompanied with a spin current transverse to the direction of charge current in materials

with large spin orbit coupling. Opposite spins accumulate in either side of the sample just

like Hall e↵ect, where opposite charges accumulate on opposite sides. But in this case the

spins accumulate without the assistance of a magnetic field and thus have potential device

applications. Fig. 4.4 shows the spin accumulation and how it can switch the ferromagnetic

layer (on top of the original material) by hitting the magnet with spins. Recently, the

discovery of Giant Spin Hall E↵ect (GSHE) has been shown to generate su�cient spin current

to spin-torque switch a ferromagnet at room temperature[66, 67] and logic schemes based

on GSHE have been proposed [63], but the problem of high charge dissipation persists. The

key parameter to describe the e↵ectiveness of a material for spintronic applications is the

spin Hall angle ✓H = 2I
s

/~
I
q

/q where Is and Iq are the spin and charge currents respectively.

Spin Hall angles for various metals and metal alloys has been found to vary between 0.07-0.3
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Figure 4.5: (a) Cross section and (b) top view of 3D TI pn junction with incident, reflected
and transmitted electron waves. The long arrows indicate the direction of group velocity and
wavevector at a given energy �qVn < E < qVp. The short arrows indicate the direction of
spin. (c) Potential profile of the device. For simplicity, linear potential profile is assumed
between n and p regions.

[68, 69, 66, 70, 71, 72, 67]. Recently, spin hall measurements on Bi
2

Se
3

based TI has been

reported to have ✓H = 2� 3.5 [73].

In recent years, the transport physics of graphene based pn junction has been studied

both theoretically [37, 43, 74, 75, 54, 55] and experimentally [41, 45, 2, 76] because of its

unique tunneling characteristics. As we described earlier, the tunneling across the junction

demonstrates an angle (transverse mode) dependent transmission probability (perfect at

normal incidence called Klein tunneling) [37] originating from the chiral nature of graphene

electrons. With a split pn junctions, the junction acts as a filter for psuedospins and only

allows very low angle electrons to pass through [43]. The similarity of the Hamiltonian of

graphene and the surface of 3D TI suggests that similar filtering of real spins should occur in

TI pn junction.

Momentum filtering in spit gate TI pn junction (Fig. 4.5) only allows electrons with very

small incident angles to pass through and all other electrons are reflected back to the source

[77]. As a result, charge current going through the junction decreases. Due to spin-momentum

locking, the injected electrons have down spin but the reflected electrons have up spin which

enhances the spin current at the source contact. This results in an extraordinarily large
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Figure 4.6: Normalized charge and spin current as functions of gate voltage Vp for a device
with width W = 100 nm, length L = 120 nm and split length 2d = 100 nm, drain bias
VD = 0.1 V and gate voltage Vn = 0.15 V. Thus, built in potential V

0

= 0.3 eV when Vp = 0.15
V.

spin to charge current ratio (can be called longitudinal spin Hall angle). We find that in a

split-gate, symmetrically doped TI pn junction, the spin Hall angle at the source contact is

(see Appendix C for detail derivation),

✓H ⇡ ⇡

r
2dV

0

~vF
� 1 (4.1)

V
0

is the built in potential of the pn junction and 2d is the spit between the gates. For a

device with 2d = 100 nm and V
0

= 0.3 eV, the spin Hall angle is ⇠ 20.

The top view of the model pn junction device is shown in Fig. 4.5a. The source (S) and

the drain (D) contact are placed on the top surface of a 3D TI slab. Electrons are injected

from source and collected at drain by a bias voltage VD. The p and n regions are electrically

doped using two external gates separated by the split distance d. The device has a built-in

potential V
0

= Vp + Vn distributed between the p and n regions such that the electrostatic

potential energy, V (x) = �qVn, q
⇥
V0
d x+ V0

2

� Vn

⇤
and �qVp for x < d, �d < x < d and

x > d respectively as shown in Fig. 4.5c.

Fig. 4.6 shows the charge and spin current vs. gate bias of the p region calculated using
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Figure 4.7: Spin Hall angle ✓H as a function of Vp.

Eq. C.23 for a device with length L = 120 nm, width W = 100 nm, split length 2d = 100

nm, the drain bias VD = 0.1 V and gate voltage Vn = 0.15V. When the gate voltage of p

region Vp = �0.15 V, the channel is a uniform nn material with uniform potential profile.

Thus, all the modes are allowed to transmit from the source to the drain and there is no

reflection. Hence, the charge current is maximum, spin current at the source and drain are

equal and ✓S = ⇡/2 as shown in Fig. 4.7. When the gate voltage Vp is increased, the potential

profile is no longer uniform, the channel becomes a n�n+ junction and some of the electrons

are reflected back from the junction. As a result, the charge current and the spin current

at drain decreases and the spin current at source decreases. Therefore, the spin Hall angle

changes from 1.5 to 20 at source contact and 1.5 to 1 at the drain when the gate voltage Vp

changes from �0.15 V to 0.15V. This is by far the highest spin Hall angle reported in the

literature. This may have application in spin based logic and memory devices, which require

spin polarized current to switch magnetic materials with as low charge current as possible to

reduce power dissipation.

Related publications:

1. K. M. Masum Habib, Redwan N. Sajjad, Avik Ghosh, “Chiral tunneling of topological

states for giant longitudinal spin Hall angle”, arxiv :1402:6222v1 (2014).



Chapter 5

Non-Equilibrium Green’s Function

(NEGF) formalism: a rigorous

transport model

So far, we presented numerical results along with analytical results throughout the dissertation.

In this chapter, we describe the details of the NEGF based numerical model and show its

usefulness to simulate devices for not only quantum e↵ects, but also di↵usive transport as

well. We already presented results for GPNJ devices. We now present electron, spin and

magneto-transport for regular graphene devices (no junction) in this chapter.

5.1 NEGF: an e�cient Schrödinger solver

An electronic system in the quantum regime is described by Schrödinger equation,

E = [H] (5.1)

This is the time independent version where [H] is the Hamiltonian of the system containing the

information of the energy levels.  and E are the eigenfunction and eigenvalue respectively.

57
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Figure 5.1: Device Hamiltonian [H], contact information (self-energy [⌃] and electro-chemical
potentials µ

1,2), device potential U and scattering self-energy [⌃S] go as inputs to NEGF
formalism and it provides the transport properties such as carrier density and terminal
current.)

We argue that the system described by Eq. 5.1 is that of an isolated system, without any

contact with the outside world. The solution of the time dependent Schrödinger equation

describes how the electron evolves in time and space,

i~@ 

@t
= H (5.2)

 (r, t) =  (r)e�iEt/~ (5.3)

thus @(  †
)

@t = 0, meaning the electron will always stay in the eigenstate without any decay,

since the system is isolated (infinite lifetime ⌧ -> 1). Practical electronic devices are almost

always connected to two contacts (may be called source and drain). As shown in Fig. 5.1,

the channel is connected to two contacts and the Fermi energies are at µ
1

and µ
2

defined by

the intrinsic Fermi energy and the applied drain bias. The e↵ects of the contacts are to be

incorporated through a correction to the Hamiltonian, called self energy, [⌃] matrices.

5.1.1 Modified Schrödinger equation

The Schrödinger equation can be modified for the above system can be written as,

E { } = [H + ⌃
1

+ ⌃
2

] { }+ {S} (5.4)
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The e↵ect of the contacts are incorporated in two ways, one is the outflow of electrons into

the contact ([⌃] { } term) and the other is the inflow {S} term which injects electrons into

the channel from contact. The aim is to solve the modified Schrödinger equation Eq. 5.4

to get the relevant device quantities such as electron density Gn = { } { }† and terminal

current I
1,2. Non-zero channel potential U can be added to [H] and any form of scattering

(either elastic or inelastic) are to be incorporated with either U or additional self energies

[⌃S]. Let us now limit our discussion in the absence of U and scatterings.

From Eq. 5.4, { } can be written as,

{ } = [EI�H � ⌃]�1 {S} (5.5)

where ⌃ = ⌃
1

+ ⌃
2

. Let us define the retarded Green’s function,

GR = [EI�H � ⌃]�1 (5.6)

where I is the identity matrix with dimension equal to that of [H]. From Eq. 5.5, the GR is

the solution of the system under impulse input.

To get the carrier density, we can write

{ } { }† = GR {S} {S}† GA (5.7)

We next show how to the strength of the source {S} {S}† depends on the self energy matrix.

5.1.2 Broadened density of states and electron escape rate

We started the section by showing how an electron lifetime is infinite for an isolated system.

For the system with contacts, it is no longer isolated and the electron density with time

should change.
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Let us assume that ⌃ = i�
2

. We will later see that the quantity � (the anti-Hermitian

component of � from the definition) is the escape rate (~/⌧ ) of electrons and therefore decides

the broadening of energy levels. We have

@(  †)

@t
= ei(E�i �2 )t/~�i(E�i �2 )t/~ = e��t/~ (5.8)

thus the self-energy correction to the Hamiltonian makes electrons have a decay rate deter-

mined by �. This makes sense since electron in the channel connected to an open system will

leak into the contact and decay gradually until  is 0. For a single level channel (eigenvalue

at ✏) and using  = GRs, we can write for density of states (D),

D =   † =
ss⇤

(E � ✏)2 + (�/2)2

D =
�/2⇡

(E � ✏)2 + (�/2)2
(5.9)

which has a broadening proportional to �. Since the energy level broadening is related to

the escape rate (inverse lifetime) through uncertainty relation, it makes sense to define the

broadening as � = ~
⌧ where ⌧ is the lifetime. It can be shown [78] that the strength of the

source ss⇤ is related to the energy broadening,

2⇡ss⇤ = �f (5.10)

Using this in Eq. 5.7 we get for Carrier density,

Gn = GR⌃inGA (5.11)

where [⌃in] = [�]f , where f is the Fermi function. Some variable above are used in lowercase

(such as �) when working with a one level system. The capital letter variables signify the

matrix version of the same quantities for a multi-level system.
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5.1.3 Current and transmission: Landauer formula

Current at one terminal is given by dN
dt . To find this, we go back to time dependent Schrödinger

equation,

i~d { }
dt

= [H + ⌃] { }+ {S}

�i~d { }†

dt
= { }† [H + ⌃†] + {S}† (5.12)

By using N = { } { }† and { } = GR {S}, it can be shown [78] current at terminal m,

Im(E) =
q

h
Trace[⌃in

mA� �mG
n] (5.13)

Using Gn = GR⌃inGA and A = i(GR �GA), Eq. 5.13 can be reduced to,

Ĩm(E) =
q

h
Trace[�

1

GR�
2

GA](f
1

(E)� f
2

(E)) (5.14)

The term within square bracket is Conductance (G) or total Transmission (T )

G =
q2

h
Trace[�

1

GR�
2

GA] (5.15)

at zero temperature. Eq. 5.14 shows energy resolved current. Total terminal current,

Im =
q

h

Z
T (E)[f

1

(E)� f
2

(E)]dE (5.16)

The finite temperature conductance can be deduced from Eq. 5.16. For small bias f
1

(E)�

f
2

(E) can be Taylor expanded and with just the leading term, we get

Im =
q

h

Z
G(E)(� @f

@E
)(µ

1

� µ
2

)dE (5.17)

Im =
q

h
(µ

1

� µ
2

)

Z
(� @f

@E
)G(E)dE (5.18)
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Giving us the conductance G(Ef ) = Im/VD,

G(Ef ) =
q2

h

Z
(� @f

@E
)G(E)dE (5.19)

using µ
1

� µ
2

= q.VD. At zero temperature this can be written as,

G(Ef ) =
q2

h

X

n

Tn (5.20)

The total conductance is the sum of transmissions from all transverse modes. Eq. 5.20 is

known as the Landauer formula, named after Ralf Landauer who first explained current

in terms of transmission probability of electrons [79].

This concludes our discussion on NEGF and how to calculate relevant device quantities

given [H] and [⌃]. We next show simulation results of graphene using this approach for

various aspects of transport.

5.2 Ballistic electron transport in graphene

5.2.1 Electronic conductance

We perform the NEGF simulation to calculate the density of states (DOS) and conductance

of graphene sheets of various widths (W ). Fig. 5.2a shows the DOS (and conductance in

inset) for W = 10 and 100 nm. Narrower nanoribbons show a gap as well as Van Hove

singularities due to quantization for select chiralities while wider sheets show a quasi-linear

bulk graphene density of states. In practice, nanoribbons also need attention to edge state

dynamics, particularly the presence of strain and roughness [80].

We next focus on how the total conductance varies with channel doping (Fig. 5.3) with

emphasis on the lowest mode in single-layer graphene (SLG) and Bilayer graphene (BLG). The

expected quantum interference oscillations at low temperature and conductance asymmetry
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Figure 5.2: (a) Density of states (DOS) and conductance (inset) calculation from atomistic
tight binding RGFA for two di↵erent widths, (b) Similar calculations over a wider energy
range done with KSF, an integration of the E�k dispersion and from analytical expression in
Ref. [3]. Conductance from KSF (red line, inset) matches with simple linear approximation
of no. of modes (black circles) at low energy.

are seen due to formation of Fabry-Pérot cavity from non-uniform dopings. The lowest mode

show almost no oscillation for SLG while the BLG shows oscillations just like the higher

order modes. The Fabry-Pérot oscillations originate primarily from non perfect transmission

and the subsequent reflection and transmission within the cavity. The lowest mode in single

layer graphene has linear E-K with near perfect transmission through the heterojunction due

to Klein tunneling, making the oscillations negligible. For the bilayer graphene, the parabolic

nature of the lowest mode leads to non-unity transmission giving rise to the oscillation. Such
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Figure 5.3: Ballistic NEGF calculation of total conductance G of single layer graphene and
bilayer graphene reveals electron hole asymmetry and Fabry-Pérot oscillation. The lowest
mode in single layer does not show such oscillation but the bilayer does manifesting Klein
tunnel (or reflection).

transport behavior near the Dirac point is another incarnation of Klein transmission and

reflection in graphene heterojunctions [37].

5.2.2 Conductance of a double gated structure

Fig. 5.4 shows transport properties of a double gated graphene device. The middle part of

the channel is controlled by both top and bottom gates while the remaining part is controlled

by the back gate alone. Fig. 5.4a shows the behavior for non-zero top gate voltage VTG

values. A second peak at ⇠ -8 V indicates the shifted Dirac point for the middle part

of the channel, which is under top gate. Fig. 5.4c shows the transfer characteristic from

experimental measurement [9]. Fig. 5.4c shows the variation of conductance for di↵erent

lengths for VTG = 0. For short channels, the boundary potential VB dopes most part of

the channel thereby decreasing the peak resistance and shifting its position (experiment in

[8], Fig. 5.4d). For di↵usive samples, the electron hole asymmetry (EHA) is washed out at

larger length due to resistance contribution from the charged impurity scattering, while at
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Figure 5.4: Device schematic of a double gate structure (W=1µm, L=3µm, Ltop=1µm). We
show detailed transport behavior, a-b-c) Resistance variation as a function of gate voltages
at various temperatures, d) Short channel e↵ects in the device, the boundary potential works
as an e↵ective doping and shifts the Dirac point. Decreasing gate oxide thickness increases
gate control with peak resistance remaining the same.

shorter lengths the asymmetry along with the shift in peak resistance is recovered. Increasing

the gate capacitance on the other hand has the e↵ect of shifting the position of the peak

resistance without changing the peak value (Green line in Fig. 5.4c).

5.2.3 Modeling metal-graphene contact with NEGF

We briefly revisit the main equations used in our numerical calculations for NEGF. The

central quantity calculated in the formalism is the Green’s function,

G(E) = [EI�H � U � ⌃
1

� ⌃
2

]�1 (5.21)

[H] is the tight-binding Hamiltonian matrix of graphene, with a minimal one pz orbital

basis per carbon atom. U is the electrostatic potential in the device. [⌃
1,2] are the self

energy matrices for the semi-infinite source and drain leads calculated from surface Green’s
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function gs. We calculate gs assuming a doped graphene, with the doping corresponding to

the particular metal induced doping (MID, e↵ective doping �EF , Fig. 5.5) and thus energy

independent,

gs = [�EF I�H � ⌧ †gs⌧ ]
�1 (5.22)

solved iteratively using a decimation technique [81]. Then [⌃] = [⌧ †][gs][⌧ ], where [⌧ ] is unit

cell to unit cell coupling matrix. The total conductance is calculated from, G = Tr[�
1

G�
2

G†]

in units of G
0

= 2q2/h, a factor 2 is for spin degeneracy, [�
1,2] are the anti-Hermitian parts

of self energy representing the energy level broadening associated with charge injection and

removal in and out of the contact. We adopt a fast partial inversion technique, Recursive

Green’s Function Algorithm (RGFA) [82, 49] version of [G] to simulate device structures

from nano meter up to micron regime. The transmission probability from metal to graphene

TMG is assumed to be unity, which is justified for ballistic transport [83]. Therefore, the

total conductance at zero temperature from NEGF is equivalent to G = G
0

MTav, where

MTav accounts for the product of available number of modes M and an average transmission

per mode Tav across the heterojunctions [84]. We adopt the MID and boundary potential

VB values from Ref. [85], which outlines the nature of the screening potential inside the

channel for various metals/metal stacks. The device schematic is shown in Fig. 5.5 along

with the potential profile. The channel is controlled by the back gate with oxide thickness

(tox) 100 nm. The channel width (W ) is set at 1µm and the length (L) 50 nm. For certain

metals (e.g. Pd/Au), one sharp pn junction is always formed at the interface of free standing

graphene and the graphene under metal, depending on the relative sign of �EF and VB.

Due to the asymptotic nature of the decay of boundary potential, another smooth junction

is formed inside the channel if the sign of the back gate voltage is di↵erent from VB. The

smooth junction formed within the device contributes to the EHA. The sharp junction on the

other hand plays no role in EHA except to increase the contact resistance since it is present
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Figure 5.5: Left: device schematic to study metal-graphene interaction. Graphene under metal
is doped with �EF and the potential at the boundary (middle) between metal and graphene
is VB, which decays as ⇠ 1/

p
x/ls, ls being the scaling length. Right: zero temperature

transfer characteristics for common metals from NEGF calculation of 50 nm x 1µ m graphene,
tox = 100 nm. The boundary potential VB plays the important role of deciding electron
hole asymmetry, position and value of the peak resistance while �EF determines the lowest
achievable resistance. Inset shows the variation of minimum conductivity �min, realistic
metals show deviation from the ideal picture at short lengths.

regardless of gate voltage. The device potential including both contacts becomes [85]

U(x) = sign[�(x)]~vf

s
�(x)

q

q.�(x)

✏
0


=

4

⇡x
(VB2

+ VB1

⇡x/tox
e⇡x/tox � 1

)� q.VG

tox
+

4

⇡(L� x)
(VB2

+ VB1

⇡(L� x)/tox
e⇡(L�x)/t

ox � 1
) (5.23)

where VB1

and VB1

are constants based on the work functions. The first and last terms in

the definition of carrier density � come from the contacts and the second term is the gate

induced carriers.  ⇡ 2.5 is the e↵ective dielectric constant for graphene on SiO
2

substrate.

Fig. 5.5 shows the transfer characteristics for various metals. We choose five metals, Ni, Cu,

Pt, Pd/Au, Al each of which are fairly distinct from one another. The minimum contact

resistance achievable is a function of the MID. For example, Cu shows the highest resistance

[86] (⇠300 ⌦-µm) due its low MID, �EF = 0.08 eV. Even though Ni has the highest �EF ,
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Pt has the lowest resistance (⇠80 ⌦-µm) among all, mainly because of the unipolarity of the

sharp junction (pp0) as well as lower potential step at the interface. For non-zero boundary

potential VB, the shift of the Dirac point, the degree of EHA and the maximum resistance

are all determined by VB, with �EF playing no role. Pt has the highest VB = 0.51 eV, thus

showing a shift of ⇠ 8V of the Dirac point, with Ni showing the lowest shift (VB = 0.04

eV). At the same time, Pt and Ni shows the highest and lowest EHA respectively. The peak

resistance is lowest for Pt, because of its high VB, with Ni showing the highest peak. The

transport is ballistic in the simulation, therefore the total resistance shown in this paper

is e↵ectively the ‘contact’ resistance and should roughly approach the contact resistance

extracted from experimental data, commonly by Transfer Length Method (TLM) [83, 87]. The

lowest contact resistance is achieved when the channel doping reaches �EF , the simulation

shows good agreement with experiments in this regard, e.g. for Pd/Au stack, it is ⇠110

⌦-µm, vs. 110±20 ⌦-µm in experiment [83], with roughly 1.5 times increase in resistance in

the electron side. All metals considered here except Al show higher resistance for positive

VG because of positive VB (holes) [85], showing increased resistance and higher oscillation in

the bipolar regime (VG > 0). Inset in Fig. 5.5 shows the variation of the �min for a realistic

metal, in comparison with the ideal picture as shown in Fig. 5.3. �min deviates from 4q2

⇡h

especially at short length, where the asymptotic potential e↵ectively dopes the graphene

sheet and increases �min.

5.2.4 Ballistic graphene FET output characteristics

In this section, we simulate the output characteristics of graphene based field e↵ect transistors.

The graphene channel is controlled with a single global back gate. After the self-consistency

is achieved between carrier density from NEGF and channel potential from Poisson solver,

current is calculated by applying Landauer formalism at room temperature. Fig. 5.6a shows

the current calculation for a graphene sheet without the e↵ect of contact induced doping.

Since the intrinsic electron hole symmetry, the I � V is symmetric. Lack of bandgap in
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Figure 5.6: Output characteristics of graphene, a) without contact e↵ects showing no
saturation due to lack of bandgap, b) with contacts e↵ects (doped contacts) showing negative
di↵erential resistance (NDR)

Figure 5.7: Output characteristics of a single graphene pn junction, a) Abrupt junction
showing strong NDR, b) Smooth junction with suppressed NDR.

graphene bandstructure leads to no saturation and band to band tunneling. Fig. 5.6b shows

the impact of contact induced doping on the I �V , which is highly asymmetric with negative

MID. For positive VG, a bipolar pnp (contact-channel-contact) doping profile is formed (higher

resistance) along the channel, compared to unipolar ppp (lower resistance) for negative VG.

The asymmetry is accompanied with negative di↵erential resistance (NDR) for positive gate

voltage, while the negative gate voltage does not produce NDR. The NDR occurs as a result

of lower density of states with drain bias in graphene under contact (drain end).

Fig. 5.7 shows the I � V for a single graphene pn junction. Because of the same physics

(as contact e↵ects), abrupt GPNJ I � V shows strong NDR. For a smooth GPNJ however,
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Figure 5.8: Modeling di↵usive transport in graphene, a-b) potential landscape for various
impurity concentration, c) evolution of minimum conductivity at the Dirac point, d) total
conductivity as a function of channel carrier density from ballistic to di↵usive. Channel
length, L is 1 µm and width, W = 0.5 µm

the NDR is suppressed. Such suppression is related to the low conductance of a smooth

GPNJ that slows down the increase in current from the beginning.

5.3 Di↵usive transport in graphene

In this section, we describe how we model di↵usive transport of graphene with NEGF.

We use a sequence of Gaussian potential profiles for the impurity scattering centers [50],

U(r) =
PN

imp

n=1

Un exp (�|r � rn|2/2⇣2) specifying the strength of the impurity potential at

atomic site r, with rn being the positions of the impurity atoms and ⇣ the screening length

(⇡ 3 nm for long range scatterers). The amplitudes Un are random numbers following a
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Gaussian profile [88], Nimp is the impurity concentration. With U added to [H] (potential

landscape shown in Fig. 5.8a-b), we study the evolution of graphene transport from ballistic

to di↵usive; both near the Dirac point and away from it. Minimum conductivity �min as a

function Nimp is shown in Fig. 5.8c, calculated from an average conductance over hundreds

of random impurity configurations. In the ballistic limit, �min varies linearly with L/W, but

as the sample gets dirtier, the �min becomes less dependent of L/W. At high impurity limit,

�min becomes weekly dependent on Nimp and saturates around 3-5q2/h. In most experiments,

the device length L is larger than width W and therefore see a decreasing trend for �min vs.

Nimp such as Ref. [89]. The evolution of �min from 4q2

⇡h to ⇠ 4q2/h and therefore the missing

⇡ e↵ect can only be seen for devices with W >> L. Fig. 5.8d shows graphene conductivity

at various channel carrier density for several impurity concentrations. At ballistic limit,

electron-hole asymmetry is due to the formation of pn junction between metal-graphene.

At high impurity concentration, metal-graphene contact becomes less dominant and the

electron-hole asymmetry vanishes similar to experiments. At the di↵usive limit, � / n for a

sample dominated by long range scatterers and for ballistic limit � /
p
n, in consistent with

experiments [89].

5.4 Magnetotransport

A striking property of graphene is its anomalous integer quantum Hall e↵ect. When the Fermi

energy lies between two Landau levels (LL) in presence of a magnetic field, conventional two-

dimensional electron gases show a vanishing longitudinal resistance ⇢xx = 0 and a quantized

Hall conductance GH = 2q2N/h where N is a non-negative integer representing the number of

filled Landau levels. In contrast, chiral quasiparticles in graphene exhibiting Berry phase show

[90, 91] a Hall conductance GH = 4q2

h (N + 1/2), with LL defined as En = ~v
F

r
C

sign(n)
p

2|n|,

where rC =
q

~
qB is the cyclotron radius. This non-conventional sequence can be explained

with the presence of a LL at E = 0 resulting in a four fold degeneracy at zero carrier density
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Figure 5.9: (a) In presence of a magnetic field, the current is carried by the edge states
that separate into +k states at the upper edge in equilibrium with the left contact and
�k states at the lower edge in equilibrium with the right contact. (b) The Hall voltage

goes through plateaus at 4q2

h (N + 1/2) for single layer and 4q2

h (N + 1) for bilayer graphene
with N a non-negative integer. Note the presence of a jump at zero energy, which is not
seen in a two-dimensional free electron gas (and arises from a half-filled Landau level at
the Dirac point), and the additional factor of 2 in the plateau heights, arising from valley
degeneracy. (c) For a placement of the Fermi energy between two Landau levels, electron
distribution function f(E) at the top and bottom edges resemble Fermi-Dirac distributions of
the corresponding contacts. Since each current carrying state sees a constant electrochemical
potential (along transport direction x), the longitudinal resistance vanishes.

(from spin and valley degeneracy). On the contrary, Bilayer graphene LLs are defined as,

En = ~!C

p
n(n� 1), where !C is the cyclotron frequency. Now both E

0

and E
1

are at zero

energy producing thereby an overall eightfold degeneracy at zero carrier density and QHE

plateaus of GH = 4q2

h (N + 1) [92].

Numerical modeling of magnetotransport in graphene requires a minor modification

to the transport scheme outlined earlier. We replace the kinematic momentum with the



5.4 Magnetotransport 73

quasi-momentum ~k ! ~k � q ~A/h, so that the plane wave terms in the Bloch representation

pick up an additional phase of e�iq/h
R

~A·~dl where A is the magnetic vector potential such that

~r⇥ ~A = ~B. Thus the hopping parameters between atoms ‘m’ and ‘n’ are now given by

tmn = t
0

exp

"
i
q

h

Z n

m

~A · ~dl
#

(5.24)

For z directed magnetic field, our guage is, A = (�By, 0, 0). We can now turn on a magnetic

field perpendicular to the sheet, modify the hopping terms as above, and extract the transverse

Hall conductance as a function of varying Fermi energy location. The Hall conductance

GH = I/VH , where I = (2q/h)N(µL � µR) is the current, N is the number of filled Landau

levels and the Hall voltage VH = q⇥ [the di↵erence between the electrochemical potentials of

the +k and �k edge states]. These states represent skipping orbits along the edges created

by the cyclotron orbits in the bulk, and are separately in equilibrium with the left and right

contact Fermi energies Fig. 5.9a.

Fig. 5.9b shows the calculated Hall conductance yielding a series of plateaus for both

single layer and bilayer graphene. Fig. 5.9c shows the local carrier distribution functions

f(±~k) obtained from the ratio of the local carrier density and the local density of states, in

other words, the ratio

f(E) = Gn
L,L(l, l)/i(GL,L(l, l)� GL,L(l, l)

†) (5.25)

where l is the index for an atom belonging to either top or bottom edge. The Hall voltage

turns out to be VH = q(µL � µR) (Fig. 5.9c) giving conductance plateaus for GH . The

electrochemical potentials (µL, µR) don’t change along transport direction x so that the

longitudinal resistance (given by the drop in electrochemical potential along the channel) is

zero.
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5.5 Spin transport

Given the density matrix, Gn = 2⇡ { } { }†, we can calculate the expected value of an

observable Ô,

hÔi = 1

2⇡
Tr[ÔGn] (5.26)

According to the above equation, the total spin angular momentum and the rate of change of

it can be written as,

h~Si = ~
4⇡

Tr {�̃Gn} (5.27)

@h~Si
@t

=
1

2⇡
Tr {�̃I

op

} (5.28)

where ~S = ~
2

~�. Iop is the charge current operator. From the basic NEGF equation, it can be

shown that,

Iop =
i

2⇡~ [G
nH �HGn +Gn⌃† � ⌃Gn +G⌃in � ⌃inG†] (5.29)

And the terminal spin current,

Im~s =
i

4⇡
Tr

�
~�[Gn⌃†

m � ⌃mG
n +G⌃in

m � ⌃in
mG†]

 
(5.30)

This allows us to calculate spin current using NEGF.

Related publications:

1. Redwan N. Sajjad, Carlos Polanco, Avik Ghosh, “Atomistic deconstruction of current

flow in graphene based heterojunctions”, Journal of Computational Electronics, invited

vol. 12, no. 2, pp. 232 (2013).
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Conclusion

The aim of the research is to design and quantify a novel switching mechanism with graphene,

based on the physics of angle dependent tunneling in pn junction. We have demonstrated

the concept of transmission gap instead of bandgap in order to get high ON-OFF ratio in

graphene. The transmission gap is achieved by filtering out all propagating modes by multiple

junctions oriented in such a way so to selectively suppress di↵erent modes based on their

angles. Such approach retains the intrinsic mobility of graphene intact and decreases the

OFF state current without compromising the ON state current. We have shown that the

transmission gap results from geometry dependent transport in graphene pn junction. We

have worked out a detailed theoretical model of gate geometry dependent transport in GPNJ,

that forms the basis of the device designs. Our understanding of the GPNJ transport is

complemented by our modeling of recent experiments on similar devices. We have also shown

that the transmission gap is gate voltage dependent, it exists only in bipolar pn regime and

collapses in the uniform nn (or pp) limit. Such voltage dependent transmission gap yields

steep subthreshold slope in the transfer characteristic of the devices, since the gap changes

with the applied gate voltage. This constitutes a new method of beating thermal switching

limit (KT ln(10)/q). We have shown that combining the high mobility of graphene with

the steep subthreshold slope, GPNJ based logic circuits can be energy e�cient compared to

75
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Silicon CMOS based logic. Future work in this area can focus on the challenges of GPNJ

based logic implementation in presence of non-idealities such as charged impurity scattering,

phonon scattering and poor contact resistance. It is also worth investigating the scope

of Binary Decision Diagram (BDD) and reconfigurable logic using GPNJ, especially using

multiple contacts and using GPNJ’s ability to deflect electrons at particular angles. We

identified that edge reflection is the main challenge to overcome for the device idea, therefore

device deigns that are immune to edge reflections will be quite attractive.

We have also presented quantum transport calculation of graphene devices using NEGF

simulation. We have benchmarked a number of experiments in both ballistic and di↵usive

regime. Future work in this regard may include a comprehensive phonon scattering model

in graphene using NEGF. Also, studies on the e↵ect of self-heating at high bias and the

role of various substrates are lacking in the literature. In addition, the competition between

phonon scattering, impurity scattering and self-heating on the current saturation is not well

understood from a bottom up quantum transport model and can be the topic of future work.

Topological Insulator (TI) is considered to be attractive for spintronic devices because of

its intrinsic spin polarized current on its surface. We have shown how the chiral properties

of TI can be used with a single pn junction to increase spin current and reduce charge

current at the same time, in much the same way as graphene. A pn junction in graphene

like systems where the electronic structure is described by a Dirac type Hamiltonian with

chiral properties, only allows low angle electrons (up pseudospin) to go through. We have

demonstrated that such filtering takes place in TI, originating from the similar bandstructure

on its surface, but this time the filtering occurs on real spins, instead of pseudospins. Using a

smooth junction with practical transition length and width, we have shown that the spin to

charge current ratio can be as high as 20, almost two orders of magnitude higher than giant

spin Hall systems. Spin polarized current accompanied by low charge current has important

application in spin based logic and memory devices. Although the magnitude of spin current

on the surface of TI is smaller compared to a 3D system, TI can still be appealing because
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we have demonstrated a gate controllable spin current. Future research may pursue possible

logic and memory schemes based on the device we proposed.



Appendix A

GPNJ transmission equations

In this appendix, we derive the transmission probability equations in GPNJ.

A.1 Abrupt step potential (abrupt GPNJ)

Graphene’s wave-functions are composed of a two-component spinor ( 
1

 
2

) signifying the

contribution from A and B sub-lattices. We can write

 
1

=

8
><

>:

(eikxx + re�ik
x

x)eikyy x < 0

teiqxx+ik
y

y x > 0
(A.1)

 
2

=

8
><

>:

s
1

(eikxx+i✓1 � re�ik
x

x�i✓1)eikyy x < 0

s
2

teiqxx+ik
y

y+i✓2 x > 0
(A.2)

The transverse momentum ky is conserved across the junction,

kFisin✓i = kFisin✓r = kFtsin✓t (A.3)

In case of GPNJ, the transmitted wavevector’s x component must change sign to keep the
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velocity in the same direction. qx = �kx and ✓t = �✓i for symmetric GPNJ. Therefore,

sin✓i/sin✓t = �kFt/kFi = �n. This is Snell’s law for Graphene with negative refractive index

ratio. For asymmetric junction, |qx| = |kx|
p
sin2✓C � tan2✓icos2✓C . Now let us calculate the

transmission and reflection co-e�cients by matching the boundary conditions

 =  i +  r; x < 0

 =  t; x > 0 (A.4)

for x = y = 0, from the first and second row (Eq. A.1-A.2)

1 + r = t (A.5)

ei✓i � re�i✓
i = tei✓t (A.6)

solving the two equations for r and t gives

t =
2cos✓i

e�i✓
i + ei✓t

) |t|2 = cos2✓i
cos2( ✓i+✓

t

2

)
(A.7)

r =
ei✓i � ei✓t

e�i✓
i + ei✓t

) |r|2 = 1� cos(✓i � ✓t)

1 + cos(✓i + ✓t)
(A.8)

And the reflection and transmission probabilities

R = |r|2 = 1� cos(✓i � ✓t)

1 + cos(✓i + ✓t)

T =
vxt
vxi

|t|2 = vF cos✓t
vF cos✓i

|t|2 = cos✓icos✓t
cos2( ✓i+✓

t

2

)
(A.9)

for ✓i < ✓C and 0 otherwise. It can be shown that 1 = R + T , as expected. The transmission

probability can be written as

T (✓i, E, VG) = ⇥(✓c � ✓i)
cos✓icos✓t
cos2( ✓i+✓

t

2

)
; (A.10)
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where ⇥ is the unit step function. The energy dependence of T comes through ✓t and ✓C .

From Snell’s law -

✓t = sin�1(
kFi

kFt
⇥ sin✓i) = sin�1(

�E
1

�E
2

⇥ sin✓i)

✓C = sin�1(
kFt

kFi
) = sin�1

✓
�E

1

�E
2

◆
(A.11)

Here, �E
1,2 are doping levels on both sides set by the gate voltages VG1

and VG1

.

Now let us analyze the transmission equation for some specific cases

Case 1: Same material ✓i = ✓t, T(✓) =1

Case 2: Focus ✓i = �✓t, T(✓) = cos2✓i

Case 3: Total internal reflection ✓i = ✓C , ✓t = 900, T(✓) = 0. Equations A.9 come from

continuity equation for the Dirac Hamiltonian.

Transmission from continuity equation of Graphene

i~@ 
@t

= H (A.12)

Hamiltonian for graphene

H = vF~�.~p (A.13)

i~ @
@t

0

B@
 
1

 
2

1

CA = ~vF

0

B@
0 kx � iky

kx + iky 0

1

CA

0

B@
 
1

 
2

1

CA (A.14)
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Now using kx = �i @
@x and ky = �i @

@y we get

@ 
1

@t
= �vF (

@

@x
� i

@

@y
) 

2

@ 
2

@t
= �vF (

@

@x
+ i

@

@y
) 

1

(A.15)

And carrier density

⇢ =  ⇤ = ( ⇤
1

 ⇤
2

)

0

B@
 
1

 
2

1

CA (A.16)

⇢ =  ⇤
1

 
1

+  ⇤
2

 
2

@⇢

@t
=  ⇤

1

@ 
1

@t
+
@ ⇤

1

@t
 
1

+  ⇤
2

@ 
2

@t
+
@ ⇤

2

@t
 
2

@⇢

@t
= �vF [

@

@x
( ⇤

1

 
2

+  
1

 ⇤
2

) + i
@

@y
( 

1

 ⇤
2

�  ⇤
1

 
2

)] [Using Eq. A.15]

@⇢

@t
= = �(

@Jx
@x

+
@Jy
@y

) = �~r. ~J (A.17)

where current density J can be defined as

Jx = vF ( 
⇤
1

 
2

+  
1

 ⇤
2

) = vF 
⇤�x 

Jy = ivF ( 1

 ⇤
2

�  ⇤
1

 
2

) = vF 
⇤�y (A.18)

enabling us to write,

J = vF 
⇤� (A.19)



Chapter A GPNJ transmission equations 82

We consider the two component wavevector of graphene,

 i =

0

B@
1

ei✓i

1

CA ei
~k
i

.~r

 r = r

0

B@
1

�e�i✓
i

1

CA ei
~k
r

.~r

 t = t

0

B@
1

ei✓t

1

CA ei
~k
t

.~r

Taking only the x components of the current density

Ji = vF ( 
⇤
1i 2i +  

1i 
⇤
2i) = vF (e

i✓
i + e�i✓

i)

Jr = vF ( 
⇤
1r 2r +  

1r 
⇤
2r) = �vF |r|2(ei✓i + e�i✓

i)

Jt = vF ( 
⇤
1t 2t +  

1t 
⇤
2t) = vF |t|2(ei✓t + e�i✓

t)

And transmission and reflection co-e�cients,

R =
|Jr|
|Ji|

= |r|2

T =
|Jt|
|Ji|

= |t|2 e
i✓

t + e�i✓
t

ei✓i + e�i✓
i

T =
vF cos✓t
vF cos✓i

|t|2 = vxt
vxi

|t|2

General expression

We can derive a general expression that will work even if the incidence angle is more than
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the critical angle.

r =
ei✓i � ei✓2

e�i✓
i + ei✓2

(A.20)

r⇤ =
e�i✓

i � e�i✓⇤2

ei✓i + e�i✓⇤2
(A.21)

R = |r|2 = r.r⇤ =
(ei✓i � ei✓2)

(e�i✓
i + ei✓2)

(e�i✓
i � e�i✓⇤2 )

(ei✓i + e�i✓⇤2 )
(A.22)

Thus,

R =
1� ei(✓2�✓1) � e�i(�✓⇤1+✓⇤2) + ei(✓2�✓⇤2)

1 + ei(✓2+✓1) + e�i(✓⇤1+✓⇤2) + ei(✓2�✓⇤2)
(A.23)

R =
1� e�2✓2I [2cos(✓

2R � ✓
1

)� e�✓2I ]

1 + e�2✓2I [2cos(✓
2R + ✓

1

) + e�✓2I ]
(A.24)

And

T =
4e�2✓2Icos✓

2Rcos✓1
1 + e�2✓2I [2cos(✓

2R + ✓
1

) + e�✓2I ]
(A.25)

When the incident angle ✓i > ✓C , then the expression of the refracted angle becomes

✓t = ↵ + i� = ⇡/2 + icosh�1(A) (A.26)

Putting this back to Eq. A.23

R =
1 + e�2✓2I � 2e�✓2I sin✓

1

1 + e�2✓2I � 2e�✓2I sin✓
1

= 1 (A.27)

For cases ✓
1

< ✓C , ✓2I = 0 and we have

R =
1� cos(✓

2

� ✓
1

)

1 + cos(✓
2

+ ✓
1

)
(A.28)

and T reduces to what we derived earlier.
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Figure A.1: Transverse modes indicated by red horizontal lines

Conductance calculation

Conductance at Fermi Energy EF for a graphene sheet according to Landauer formula,

G =
2q2

h
M(EF )Tav (A.29)

where M(EF ) is the number of modes and ✓ = tan�1(kyk
x

) is determined by individual modes.

For uniformly gated graphene, Tav is unity for ballistic transport. The number of modes is

given by

M(EF ) =
2W |E|
⇡~vF

(A.30)

G =
4q2

⇡h
kFW (A.31)

following EF = ~vFkF . For a symmetric pn junction

T (✓) = cos2(✓) (A.32)

The conductance becomes,
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G(EF ) = G
0

X
T (✓) = G

0

Z
T (✓)

�✓
d✓

= G
0

kF
�ky

Z
T (✓)cos✓d✓ [Using�ky = kF cos✓�✓ from Fig. A.1]

= G
0

M(EF )
1

2

Z
cos2✓cos✓d✓

=
2

3
G

0

M(EF ) (A.33)

2/3 rd of uniformly doped graphene.

A.2 Split gated structure: smooth variation of poten-

tial and collimation

For a smoothly varying potential, the transverse momentum ky is still conserved across the

junction. Therefore the longitudinal wavevector kx becomes evanscent due to the reduction

of doping over a region a < x < b defined by

E � U(a) = ~vFky

E � U(b) = �~vFky

And the transmission is calculated from WKB approximation [43]

T (E, ✓) = e�2S

S =

Z b

a

(x)dx

=

Z b

a

s

k2

y � (
E � U

0

x/(2d)

~vF
)2dx

(A.34)
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Figure A.2: Energy band diagram of a smooth pn junction with the forbidden region

After performing the integration, we get

T (E, ✓) = e�⇡
d

eff

2 k
F1|sin✓| (A.35)

where the e↵ective barrier width is defined as,

deff = b� a =
2~vF |ky|

U
0

(2d) (A.36)

Conductance calculation:

For a smooth pn junction

T (✓) = e�⇡k
F

dsin2
(✓) (A.37)

This gives

G =
4q2

h

Z
1

�✓
e�k

F

dsin2
✓d✓

G =
4q2

h

kFW

2⇡

Z
e�k

F

dsin2
✓d✓

(A.38)
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It selectively transmits modes only within ✓
0

 (⇡kFd)�1/2 [43]. The conductance becomes

G ⇡ 4q2

h

kFW

⇡

1

2

p
⇡p

⇡kFd
(A.39)

G =
4q2

⇡h

1

2

r
kF
d
W (A.40)

assuming kFd>>1 and angles ✓ not too close to ⇡/2. The conductance is lower than uniformly

doped graphene by a factor of factor of 2
p
kFd (compare with Eq. A.31).

General expression of Tav vs. E for a smooth junction We know, kF1

= E/~vF ,

kF2

= (U
0

� E)/~vF so, U
0

= ~vF (kF1

+ kF2

), putting this back to Eq. A.35 gives,

T (E, ✓) = e
�
p
⇡k

2
F12dsin

2
✓

p
n1+

p
n2 (A.41)

The critical angle condition comes into play through the e↵ective barrier width, which becomes

infinitely wide if,

b < d
2

(A.42)

E + ~vFky
U
0

d <
U
2

U
0

d (A.43)

sin✓
1

<
E � U

2

E � U
1

(A.44)

which defined critical angle. U
1,2 are the Dirac points on both sides and d

1,2 are the positions

of the Dirac points. Combining the two formulae, and taking the average over all modes, we

get Fig. A.3 which matches closely with the numerical calculation presented in Chapter 2.

Average transmission per mode as a function of energy,

Tav(E) =
1

2

Z ⇡/2

�⇡/2

d✓f(✓)e�⇡d(
E�U1
U0

)k
F1sin

2
✓ (A.45)

(A.46)
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Figure A.3: Exact analytical vs. approximate closed form expression, Eq. A.47

where f(✓) is the wavefunction mismatch we derived earlier. Within the barrier, where

transmission is dominated by tunneling, we can write

Tav(E) ⇡ 1

2

✓
1

E � U
1

◆r
U
0

~vF
2d

(A.47)

for energy not too close to the Dirac points. Outside the barrier, the transmission depends

on the wavefunction mismatch only.



Appendix B

Transmission gap in multiple pn

junction device

The average transmission per mode

Total transmission through a graphene heterojunction can be written as,

G(EF ) = G
0

X
T (✓) = G

0

Z
T (✓)

�✓
d✓

= G
0

kF
�ky

Z
T (✓)cos✓d✓

= G
0

M(EF )
1

2

Z
T (✓)cos✓d✓ (B.1)

Here we have used, mode spacing �ky = 2⇡/W , angular spacing, �✓ = �ky/(kF cos✓) and

number of modes, M(EF ) = WkF/⇡. Comparing Eq. B with Eq. 3.1, we can write,

Tav(EF ) =
1

2

Z
T (✓)cos✓d✓ (B.2)

To recap, transmission through a single pn junction, where the potential changes smoothly

from p to n over a distance 2d is given by,

T (✓) = e�⇡k
F

dsin2
✓ (B.3)
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ignoring the wave-function prefactor, this is valid for moderate gate split distance 2d. Let us

consider the Tav for a single split junction and a tilted junction separately.

G ⇡ G
0

M(EF )
1

2

Z ✓0

�✓0

d✓e�⇡k
F

d✓2

= G
0

[
1

2
p
kFd

]M (B.4)

Tav ⇡ 1

2

p
k
F

d
with gate split. For an abrupt tilted junction,

G ⇡ G
0

Z ⇡/2��

�⇡/2

T (✓ + �)

�✓
d✓

= G
0

[
2

3
cos4(

�

2
)]M (B.5)

due to reduced density of modes at the higher angular region, Tav =
2

3

cos4( �
2

) is scaled with �.

Therefore, a resistance measurement (RTotal = 1/G) will show an increase for a tilted device.

Transmission through dual tilt GPNJ device In Fig. 3.1, we have two such junctions,

each of them are tilted. Individual transmissions through the junctions becomes,

T
1

(✓) = e�⇡k
F

dsin2
(✓+�1)

T
2

(✓) = e�⇡k
F

dsin2
(✓��2) (B.6)

Since the tilt angle � only modifies the angles of the incoming modes.

To get the total transmission, we combine the above two equations ignoring phase

coherence [48],

1� Teff

Teff
=

1

T
1

+
1

T
2

� 2

= e⇡kF dsin2
(✓+�1) + e⇡kF dsin2

(✓��2) � 2 (B.7)
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Overall transmission becomes,

Teff (✓) =
1

e⇡kF dsin2
(✓+�1) + e⇡kF dsin2

(✓��2) � 1
(B.8)

And

Tav(EF ) =
1

2

Z ⇡/2

�⇡/2

d✓cos✓

e⇡kF dsin2
(✓+�1) + e⇡kF dsin2

(✓��2) � 1

Tav(EF ) ⇡
1

8

1
p
kFd(e⇡kF dsin2

�)
(B.9)

For �
1

= �
2

.

Extracting Tav from transport measurement: In the experiment [2], the junction

resistance was extracted from

Rjexpt = [R(VG1

, VG2

) +R(VG2

, VG1

)

�R(VG1

, VG1

)�R(VG2

, VG2

]/2, (B.10)

The above equation eliminates contact and device resistance due to scatterings and leaves

out the resistance contribution from the pn junction only. Theoretically the total resistance

RTotal = 1/G can be divided into two parts (contact and device resistance). From Eq. 3.1,

RTotal = [G
0

]�1

1

MTav
(B.11)

= [G
0

]�1[
1

M
+

1� Tav

MTav
] (B.12)

In presence of a pn junction with non-unity Tav, the second term can be considered as the

junction resistance,

Rj = [G
0

]�1[
1� Tav

MTav
] (B.13)
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The theoretical Tav is already known (Eq. B.2). The experimental Tav can be found by

plugging the value of Rjexpt from measurement in Eq. B.13 . The only unknown value

remains is the number of modes, M = W
⇡
�E(V

G

)

~v
F

, where �E = ~vF
p
⇡CGVG/q is the shift of

Dirac point with gate voltage VG. The gate capacitance is calculated from a simple parallel

plate capacitor model CG = ✏
t
ox

where gate oxide thickness tox is 100nm.



Appendix C

Spin filtering in TI pn junction

Let us consider a surface (top or bottom) of a TI, where an electron injected from the source

at angle ✓i and energy E is transmitted from n to p and collected at drain.

C.1 Charge current density in TI

Following the same procedure as graphene (Eq. A.18), we get

Jx = �qvF 
⇤�y (C.1)

Jy = qvF 
⇤�x (C.2)

From the TI Hamiltonian, H = vF~� ⇥ ~p, wavefunction have the form

 =

0

B@
1

�iei✓

1

CA (C.3)
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To keep things simple, we ignore the normalizing factors. We are interested in x directed

charge current density. We use  t = t

0

B@
1

�iei✓t

1

CA and the transmitted current becomes

Jqt = qvF |t|2cos✓t (C.4)

where ✓t is the transmission angle for a given incident angle ✓i. The transmission co-e�cient

t can be calculated in the same way as graphene, taking into account both the wavefunction

mismatch and tunneling contribution from evanescent modes. For a symmetric pn junction,

cos✓i = cos✓t, so T = |t|2 and for smooth variation of potential, cos✓tT (✓) ⇡ T (✓) where

T (✓) = e�⇡k
F

dsin2
✓. Thus Eq. C.4 can be simplified

Jqt(✓) ⇡ qvF (1�R(✓)) (C.5)

C.2 Spin current density in TI

Let us derive the spin current operators for TI.

i~@ 
@t

= H (C.6)

Surface states of 3D topological insulators have the following Hamiltonian (in the basis of

| "z> and | #z>),

H = ~vF (�xky � �ykx) (C.7)

�s are Pauli matrices. From Eq. C.6, we can write,

i~ @
@t

0

B@
 
1

 
2

1

CA = ~vF

0

B@
0 ikx + ky

�ikx + ky 0

1

CA

0

B@
 
1

 
2

1

CA (C.8)
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Now using kx = �i @
@x and ky = �i @

@y we get

i~@ 1

@t
= ~vF (

@

@x
� i

@

@y
) 

2

i~@ 2

@t
= �~vF (

@

@x
+ i

@

@y
) 

1

(C.9)

C.2.1 Spin current carried by | "
x

>

Spin density,

Sx =  ⇤�x = ( ⇤
1

 ⇤
2

)

0

B@
0 1

1 0

1

CA

0

B@
 
1

 
2

1

CA

Sx =  ⇤
1

 
2

+  ⇤
2

 
1

(C.10)

Now we take the time derivative to calculate spin current density,

@Sx

@t
=  ⇤

1

@ 
2

@t
+
@ ⇤

1

@t
 
2

+  ⇤
2

@ 
1

@t
+
@ ⇤

2

@t
 
1

(C.11)

Using the relations in Eq. C.9,

@Sx

@t
= �ivF [� ⇤�zrx +rx 

⇤�z ]� vF [
@

@y
( ⇤

1

 
1

+  ⇤
2

 
2

)] (C.12)

Continuity equation for spin,

@Sx

@t
= �(

@Jx
@x

+
@Jy
@y

) + ~J! = �~r.~Js + ~J! (C.13)
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~J! represents the non-conservative part of spin density, usually arising from external magnetic

field and spin orbit coupling. We can write,

Jx
sx = 0 (C.14)

Jx
sy = vF [( 

⇤
1

 
1

+  ⇤
2

 
2

)] = vF [ 
⇤ ]

Jx
! = 2vF Im[ ⇤�zrx ] = 0

C.2.2 Spin current carried by | "
y

>

Similar procedure for | "y> current gives us,

@Sy

@t
= �(

@Jx
@x

+
@Jy
@y

) + ~J! = �~r.~Js + ~J! (C.15)

where current density ~J can be defined as,

Jy
sx = vF ( 

⇤
1

 
1

+  ⇤
2

 
2

) = vF 
⇤ (C.16)

Jy
sy = 0

Jy
! = 2vF Im[ ⇤�z(ry) ] = 0

C.2.3 Spin current carried by | "
z

>

Similar procedure for | "z> current gives us,

@Sz

@t
= �(

@Jx
@x

+
@Jy
@y

) + ~J! = �~r.~Js + ~J! (C.17)
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So we can write,

Jz
sx = 0 (C.18)

Jz
sy = 0

Jz
! = �2vF Im[ ⇤�x(rx) ] + 2vF Im[ ⇤�y(ry) ]

Again, we are only interested in x component of spin currents and only Jy
sx is non-zero, carried

by | "y>. Using Eq. C.16, the transmitted side (drain , D) and incident side (source, S) spin

current densities can be written as,

JsD = �~
2
vF 

⇤
t t = �~

2
vF |t|2 = �~

2
vF (1�R(✓)) (C.19)

JsS = Jsi + Jsr = �~
2
vF ( 

⇤
i  i +  ⇤

r r) = �~
2
vF (1 + |r|2) = �~

2
vF (1 +R(✓))(C.20)

C.3 Spin to charge current ratio

We use T (✓) +R(✓) = 1 and integrate over all angles to get the spin Hall angle (✓H) at low

drain bias,

Js(✓)

Jq(✓)
=

2� T (✓)

T (✓)

✓H =
2
R
d✓ �

R
T (✓)d✓R

T (✓)d✓
(C.21)

When the Fermi energy is at the middle of the barrier, ~vFkF = V
0

/2, we can use A.47 to

simplify the integration and find

✓H ⇡ ⇡

r
2dV

0

~vF
� 1 (C.22)

From the expression of charge current and spin current at Drain side, the spin Hall angle for

the drain side is unity.
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Total current at large drain bias is calculated from,

I =

Z
dED(E)[fS(E)� fD(E)]

Z
d✓J(E, ✓) (C.23)

where D is the density of states, fS,D are the Fermi-Dirac distribution of source, drain.
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