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Abstract

Understanding how sensory information from the external world results in brain-

initiated action, or lack of action, in humans is the fundamental goal of neuroscience.

Inducing brain stimulation, analogous to those arising from the environment, has

enabled researchers to start comprehending brain functioning. In the medical con-

text, it is generally accepted that only noninvasive stimulation, such as Transcranial

Magnetic Stimulation (TMS), of the brain will have broad applicability when trying

to quantify the brain to muscle interface (corticospinal system) through the use of

stimulus response relationships.

The key indicator of excitability of a muscle is the stimulus intensity versus motor-

evoked potential (MEP) recruitment curve. Conventional analysis of the recruitment

curve assumes a sigmoidal shape with constant additive Gaussian noise. However, two

central problems arise: (1) it is extremely difficult to identify the threshold at which

there will be a muscle response and, (2) there is an intensity dependent variability

within the muscle response due to intrinsic, visceral, and extrinsic factors. Motivated

by these limitations a new mathematical model that allows for intensity dependent

variability about the MEP response and calculates the cortico-motor threshold (a

fundamental neurological concept) within its parameterization has been developed.

In a comparison, my new model performed better than the conventional (“gold stan-

dard”) approach and still maintains the asymptotic properties of maximum likelihood
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estimates.

A third limitation emerges with the use of TMS, (3) the standard technique by

which muscle-evoked potential measurements are made, while simple to calculate has

no strong physiological basis. Additionally, my research has established the initial

framework by which both mathematical and biological meaning of the MEP measure-

ment could progress from. By accurately capturing the MEP response measurement

and the relationship of the recruitment curve, neuroscientists can further understand

states of the corticospinal system and subject specific parameters for TMS can be

tested quickly and without unnecessary exposure to magnetic stimulation.
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Chapter 1

Introduction

1.1 Background

Rudolfo Llinás, a distinguished neurophysiologist at the New York University

School of Medicine, stated that “what we call thinking is the evolutionary internal-

ization of movement” (Llinás, 2002). Along with many others, he argues that all of

brain evolution has been based upon movement. Locomotion is the most primitive

form of behavior for all animals as one needs to scavenge for food but also avoid being

food. By quantifying the brain-muscle interface, through the use of stimulus response

relationships, one can gain major insight about brain functioning in general.

Transcranial Magnetic Stimulation (TMS) is a technology that can quantify the

brain to muscle interface (corticospinal system) through the use of stimulus response

relationships. The key indicator of excitability of a muscle is the stimulus intensity

versus motor-evoked potential (MEP) recruitment curve. Conventional analysis of

recruitment curves, commonly least-squares fitting, assumes a sigmoidal shape with

constant additive Gaussian noise (Carroll et al., 2001; Devanne et al., 1997; Kukke

et al., 2014). However, these curve fitting methods have several limitations; (1) Mo-
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tor responses undergo rapid modifications as extrinsic, visceral, and intrinsic factors

change cortico-motor excitability, thus the simple additive noise model does not ac-

count for the observed intensity dependent variability characteristic of recruitment

curves (Kiers et al., 1993; Rosler et al., 2008). Several studies have suggested that the

intensity dependent variability can be partially rectified by adding a second source

of intrinsic variability (Goetz and Peterchev, 2012) or by logarithmically normalizing

the MEP values (Nielsen, 1996), but very few have incorporated intensity dependent

variability within the recruitment curve itself. (2) Dose response models, such as the

recruitment curve, commonly contain bias in their estimation of the baseline MEP

size and cortico-motor threshold values as all observed MEP response measurements

are positive. With Gaussian noise at low intensities, the model is unnecessarily ac-

counting for the possibility of negative responses within the noise making it difficult

to adjust for bias. (3) Lastly, since the CMT intensity level is a major determining

factor of TMS dosage in clinical studies, post hoc analysis using a nonlinear function

dependent on the model parameters must be applied using current recruitment curve

methods, resulting in undesired highly correlated outputs.

One more issue emerges with the use of TMS related to the standard technique

by which muscle-evoked potential measurements are made. The current technique

calculates the MEP value by taking the difference between the maximum and the

minimum points of the response signal. While this calculation is simple it has no

strong physiological or statistical basis and ignores an enormous amount of informa-

tion, such as the pattern of the signal between these two points. Development of a

similar measurement that captures the amount of excitement required or information

recorded between the maximum and the minimum points might provide physiological

and statistical meaning to the MEP measurement that could beneficially change how

the brain signals and muscle response relationship is analyzed.
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1.1.1 Transcranial Magnetic Stimulation

Noninvasive stimulation methodologies have the potential to be useful in under-

standing the changes in the brain physiology of corticoplasticity and brain disorders

by evaluating various aspects of the corticospinal system. Since its introduction in

1985 by Barker (Barker et al., 1985), transcranial magnetic stimulation (TMS) has

been an increasingly popular technique for neurophysiological investigation of the cen-

tral nervous system of humans. Unlike deep brain stimulation, which requires open

brain surgery where electrodes are implanted in the body, TMS has broad usage as

it is applied externally to one’s scalp and therefore noninvasive. Furthermore, unlike

its earlier noninvasive counterpart transcranial electric stimulation which can cause

local pain of the skin and scalp, TMS is safe and non-painful as the magnetic fields

it produces easily penetrate into the brain with minimal attenuation by the scalp or

skull (Rossini et al., 2015). Additionally, as TMS uses a magnetic field to induce an

electrical response intracranially instead of an electric one, the specific spatiotempo-

ral pattern of electrocortical responses can accurately be determined (Casali et al.,

2013). Consequentially, TMS is considered the leading candidate in understanding

how sensory information results in brain-initiated action, or lack of action.

TMS generates a brief, high current pulse in a coil of wire, called the magnetic

coil, that produces a magnetic field with lines of flux perpendicular to the plane

of the coil. A secondary eddy current, an electric field, is induced perpendicularly

to the magnetic field in the conductive intracranial tissue according to Faraday’s

Law of Electromagnetic Induction. This electric field briefly depolarizes neuronal

membranes in order to excite action potentials in a small area of the brain below

the coil. The action potentials generated by TMS spread transynaptically to their

neurons, thereby propagating further neuronal activation to connected cortical and
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subcortical regions. By applying the stimulus over the primary motor cortex, the

volley of excitation travels along the corticospinal tract and peripheral motor nerve

resulting in a motor-evoked potential (MEP) of the targeted muscle. The MEP is

monitored through the use of surface electromyography (EMG) electrodes placed on

the muscle region. (Hallett, 2000, 2007; Rossini et al., 2015; Groppa et al., 2012)

1.1.2 Recruitment Curve

The simplest and most commonly used method of measuring the MEP response

is the peak-to-peak, even though it has no strong physiological meaning. The peak-

to-peak measurement is the difference in magnitude in the EMG signal between the

highest and lowest MEP peak/trough within a certain time window after the given

TMS pulse is applied. As a general rule, increasing the intensity of the stimulus

induces a stronger descending excitatory volley through the corticospinal tract that

results in a faster temporospatial summation of the cortico-motor-neuronal synapses

and an increase in MEP size (Rossini et al., 2015).

Plotting the stimulus intensity versus the MEP response formulates a monotonic

increasing relationship, referred to as the recruitment curve. At low intensities, the

recruitment curve has a baseline MEP level that deviates at the stimulus intensity

corresponding to the cortical motor threshold (CMT). The CMT is defined as the

minimal stimulation intensity needed to elicit a reliable MEP magnitude within a

targeted muscle. In other words, it represents the integrated excitability of the cortico-

motor projection that produces an EMG response in the target muscle. At this

intensity the curve increases linearly in magnitude until a saturation MEP level is

obtained, establishing a plateau region for high intensities. The plateau region at

high intensities is due in part to the increasing phase cancellation of the motor unit
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action potentials (MUAPs) that make up the MEPs. (Rossini et al., 2015)

Analyzing the recruitment curve, one can detect how the MEP magnitude or the

input-output properties of the corticospinal system are affected by TMS intensity.

Recruitment curves are not static but undergo rapid modifications due to extrin-

sic, visceral, and intrinsic factors changing cortico-motor excitability. For instance,

changing the motor state from rest to tonic contraction (task) in the target muscle

generally causes a leftward shift in CMT intensity, steeper slope, and larger baseline

and maximum MEP size of the recruitment curve.

A new neurological tool for analyzing the relationship between brain signals and

muscle response, whether through internal or external stimulation, might have several

benefits clinically: earlier detection of neurological disorders that may involve or be

caused by an impairment or alteration of cortical excitability between cortical and

subcortical structures; better prediction of the likely course of a disease; identification

of the most suitable treatment strategy; or support for current intervention techniques

(Kobayashi and Pascual-Leone, 2003). Abnormal stimulus response curves have al-

ready been reported in patients with motor stroke and amystrophic lateral sclerosis

(ALS), both of which are disease related loss of corticospinal axons (Rossini et al.,

2015).

1.1.3 Cortico-Motor Threshold Estimation

As defined earlier the CMT intensity is the minimal intensity of the motor cortex

stimulation required to elicit a reliable MEP magnitude in the target muscle, tradi-

tionally a peak-to-peak value of 50µV for the rest condition or 200µV for the task

condition. CMT intensity determination based on visual estimation of a muscle re-

sponse is highly discouraged as Westin et al. (2014) showed it is approximately 10%
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higher than estimation based on the distance between the maximum and minimum

height of the corresponding EMG recordings due to the associated high intra- and

inter-rater variability. (Rossini et al., 2015)

Detecting an individual’s CMT intensity has basic relevance for clinical appli-

cation. The CMT provides insights into the efficacy of the chain of synapses from

presynaptic cortical neurons to a muscle. It has often been seen to be increased in

diseases that affect the corticospinal tract, such as multiple sclerosis (MS), stroke,

and brain or spinal injury (Kobayashi and Pascual-Leone, 2003). It is also related to

the optimal intensity for diagnostic TMS as one wants to apply the maximal MEP

response that can be invoked with minimal discomfort to patients. In other words,

clinicians want to ideally find the transition point that occurs from the rising slope

to the saturation level of the recruitment curve. Clinically, 140% of a patient’s rest-

ing CMT intensity (when the target muscle is at rest) or 170% of a patient’s task

CMT intensity (when the target muscle has slight tonic contraction) is applied in

treatments. (Groppa et al., 2012)

While the CMT estimate can be determined through a recruitment curve fit using

post-hoc analysis in traditional recruitment curve fits, several alternative techniques

that are not based upon the use of recruitment curves are commonly used in practice.

The most recent methodology used in practice is called Adaptive Threshold Hunting,

a maximum likelihood threshold hunting procedure developed by Awiszus (2011).

In this procedure the threshold is estimated continuously throughout the stimulus

sequence, where the stimulus strength of the next stimulus is determined from the

information obtained from all previous stimuli based on a certain algorithm. This

technique was not used in the analyzed data of thesis described below. Instead the

leading protocol before the Adaptive Threshold Hunting procedure was determined

most accurate was additionally applied to the same participants of the Kukke et al.
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(2014) TMS Study. This technique was recommended by the International Federation

of Clinical Neurophysiology (Rossini et al., 1994; Rothwell et al., 1999) in which an

initial TMS pulse is applied at 35% maximum stimulator output. The intensity would

then be increased by 5% increments until three out of three responses occurred. A

response is considered to be a MEP measurement larger than 50µV for the rest

condition or 200µV for the task condition. At the testing intensity were three out of

three responses occurred, ten additional TMS pulses would be applied and if there

were six or more responses, the testing stimulus intensity would be reduced by 2%. On

the other hand, if four or fewer responses occurred, the intensity would be increased

by 1%. Ten stimuli would then be applied at the new testing stimulus intensity based

on the outcome and adjustments would be made according as described by the rules

above. This would continue until five out of ten responses occurred at a given testing

stimulus intensity, at which point the intensity would be considered the cortico-motor

threshold intensity level.

1.2 Kukke et al. (2014) TMS Study

All of the resulting work and publication results from this thesis is joint work with

Dr. Mark Hallett and collaborators at the National Institute of Health (NIH). Dr.

Hallett is the Chief of the Medical Neurology Branch and Chief of its Human Motor

Control Section for the NIH National Institute of Neurological Disorders and Stroke

(NINDS).

Ten right-handed volunteers (28 ± 8 years, 5 females) participated in the study

after giving written informed consent. All subjects underwent general physical and

neurological examination by a neurologist and were found to have no neurological im-

pairments and were not taking medications known to influence neurological function.
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The study was approved by the National Institute of Health Institutional Review

Board and was registered with clinicaltrials.gov (NCT01019343).

Participants were seated comfortably facing a computer screen with their right

shoulder abducted approximately 30◦, right elbow flexed approximately 90◦, and right

forearm prone on a table while their left arm rested in their lap. The right index

fingertip was placed on a force transducer (Strain Measurement Devices, Wallingford,

CT) to measure the flexion force resulting from isometric contraction of the first

dorsal interosseous (FDI) muscle, which abducts the index finger radially towards

the thumb. Configured in a belly-tendon montage along the length of the muscle

fibers a pair of Ag-AgCl electrodes (Natus Medical, Inc., San Carlos, CA) was used

to record the surface EMG of the right FDI muscle. The electrode impedance was

reduced to < 20kΩ and the EMG signals were amplified and filtered (bandpass, 10-

1000 Hz; Nihon-Kohden Corp., Tokyo, Japan) before digitizing (5000 Hz; Cambridge

Electronic Design Ltd., Cambridge, UK).

Single-pulse TMS was applied using a figure-of-eight coil (outer diameter 70 mm)

connected to a Magstim 200 stimulator (Magstim Company Ltd., Dyfed, UK). The

motor ”hotspot” of the right FDI muscle eliciting MEPs of the greatest amplitude in

response to a stimulus of 60% maximum stimulator output (MSO) was identified by

orienting the coil tangentially on the scalp at an angle of 45◦ to the central sulcus

(Brasil-Neto et al., 1992). This induced a current in the brain flowing from the

posterior to the anterior direction. Additionally, the maximum voluntary isometric

contractions (MVIC) of the FDI was used as a reference for all muscle activation (task)

trials. This was obtained by calculating the mean force over a 5-second window of

consistent force production for three 7-second trials, and considering the MVIC force

to be the peak mean force over all three trials for each participant.

The TMS protocol was performed twice for two different muscle activation states
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(rest, task) in four separate sessions, in which the first two sessions and last two ses-

sions were performed with different pairs of investigators (1, 2), as shown in Table 1.1.

In each session, two sets of 20 pulses were applied evenly distributed in 5% increments

between 5% and 100% MSO through software (Signal, Cambridge Electronic Design

Ltd, Cambridge, UK). To avoid order effects in reliability measurements, the order

of the four sessions were shuffled and the stimulus intensities were administered in a

different pseudorandom order in each of the sessions.

Subject
Session 1
Rest

Session 2
Task

Session 3
Task

Session 4
Rest

1 1 1 2 2
2 1 1 2 2
3 1 1 2 2
4 1 1 2 2
5 1 1 2 2
6 2 2 1 1
7 1 1 2 2
8 2 2 1 1
9 2 2 1 1
10 2 2 1 1

Table 1.1: Investigator Pair (1, 2) and Activation Condition (Rest, Task) for Each
Session

Each trial in the four sessions began with a beep followed by a TMS pulse 2.5 sec-

onds later and then a rest period for 7.5 seconds. For the rest condition, participants

faced a computer screen and were asked to relax their right index finger muscles. In

the task condition, the beep cued the participants to press their right index finger on

the force transducer to reach a target level of finger flexion, indicated by a horizontal

line equal to 15% MVIC on the computer screen.

To correct for any offset, the mean unrectified EMG signal over each trial was

first subtracted from the EMG signal. The peak-to-peak MEP magnitude of the

EMG signal for each stimulus intensity was computed in the 50-millisecond response

window following 10 milliseconds after the TMS pulse.
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Additionally, for the same ten participants in this study, the CMT protocol recom-

mended by the International Federation of Clinical Neurophysiology (Rossini et al.,

1994; Rothwell et al., 1999) was also tested. Along with the CMT estimate for each

participant, the total number of TMS pulses given in this protocol per participant

were also recorded (although not provided to us currently).

1.3 Outline of Dissertation

While neuroscientists are still learning about how the brain communicates with

other systems, if quantification of the brain to muscle interface provides major insights

about brain functioning and neurological and muscular diseases. Neuroscientists can

stimulate the brain and excite specific neurons, or brain cells that spread their ex-

citement and create a volley of excitation that travels through the nervous system

to a targeted muscle. Depending on how many muscle fibers are activated within

a muscle, a range of responses occurs from no visible response to a full contraction.

By measuring the excitement of the fibers over time a motor-evoked potential, or

MEP signal is captured. This dissertation addresses two practical considerations of

the characterization of Motor-Evoked Potentials (MEPs): modeling of recruitment

curves and providing physiological and mathematical meaning to the technique by

which muscle-evoked potential measurements are made.

Chapter 2 gives an introduction to the conventionally used method, the Boltzmann

Sigmoid function, for recruitment curve analysis and states the motivating limitations.

A new curve fitting model, the Threshold Logistic equation, that accounts for intensity

dependent noise and additional parameters within the model fit is then proposed.

Lastly, an in depth comparison of recruitment curve model fits, using the Kukke

et al. (2014) TMS Study is implemented listing the advantages and disadvantages of
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all methods.

Chapter 3 provides the theoretical properties of the conventional and proposed

recruitment curve methods, including convergence and asymptotic normality. The

theoretical properties provide us confidence in using either of these methods for re-

cruitment curve estimation.

Chapter 4 presents the mathematical framework that is leading to the development

of a new MEP measurement similar to the traditionally used peak-to-peak measure-

ment, or maximum minus minimum peak distance. The setup of using Fourier trans-

formations and spectral densities to capture the sum of action potentials that make

up the MEP response and known theoretical properties of the limiting distribution

of the maximum of stochastic process are given.

Chapter 5 concludes the dissertation with a summary of the characterization of

motor-evoked potentials through a discussion of the implications of the new recruit-

ment curve model fit and progress of a new MEP measurement. Areas of further

research is also discussed.



Chapter 2

Recruitment Curve Fitting

Methods

2.1 Description of Recruitment Curve Models

2.1.1 Boltzmann Sigmoid with Additive Gaussian Noise

The recruitment curve is commonly approximated by fitting a variation of the

logistic equation, which neuroscientists refer to as the Boltzmann Sigmoid function.

The Boltzmann Sigmoid function, Equation 2.1, describes the MEP size of a targeted

muscle, µ(s), as a function of stimulation intensity, s, with four parameters (EMGbase,

MEPsat, s50, k):

µ(s) = EMGbase +
MEPsat

1 + e(s50−s)/k
(2.1)

The baseline MEP size for the rest or task condition is represented by EMGbase.

The saturation MEP magnitude, denoted by MEPsat, is considered the maximum

efficacy or the balance between excitatory and inhibitory components of the muscle

contraction due to phase cancellation of the action potentials caused by desynchro-

12
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nization, not the maximal excitatory response (Magistris et al., 1998). The stim-

ulation intensity that produces a MEP magnitude halfway between EMGbase and

MEPsat, notated s50, represents the curve’s sensitivity. The Boltzmann slope param-

eter, k, is the change in stimulus intensity from s50 that relates to 73% increase in

MEP size. The slope is a general measure of excitability of the pathways, where a

large value of k denotes a smaller increase in MEP magnitude per percent of stimulus

intensity. (Carroll et al., 2001; Kukke et al., 2014)

Prior to curve estimation, the mean MEP response over all trials with stimulus

intensities less than or equal to 20% MSO is prespecified as the EMGbase value.

The remaining parameters in previous studies were computed using the Levenberg-

Marquardt algorithm (Seber and Wild, 2003) in Matlab (nlinfit function; The Math-

Works, Inc.), however this does not return the constant additive Gaussian noise dis-

tribution’s standard deviation value. Instead an adaptive mesh optimization method

in Matlab (patternsearch function; The Math Works, Inc.) is used for this thesis, in

which the negative log-likelihood of the constant additive Gaussian noise distribution

is minimized with specific constraints on the parameters. Certain ranges of the re-

cruitment curve parameters for the FDI muscle can be assumed; the midway point of

the Boltzmann Sigmoid is within 10 ≤ s50 ≤ 70, the saturation MEP size is within

0.001 ≤ MEPsat ≤ 10. The slope is constrained to 0.001 ≤ k ≤ 10 as to not allow

the curve to increase entirely vertically and as it is extremely unlikely to obtain a CV

above 40% the coefficient for the noise distribution’s constant standard deviation is

limited to 0.001 ≤ C0 ≤ 0.4.

As the CMT intensity is not an explicit parameter of the Boltzmann Sigmoid

equation, it has to be estimated after the fact. This threshold value is calculated from

the Boltzmann regression parameters by fitting a tangent line to the steepest part of

the recruitment curve (s50, µ(s50)) with a peak value of MEPsat/4k and determining
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its x-intercept (Devanne et al., 1997). Ergo, the estimated threshold value for the

Boltzmann Sigmoid is quantified as the stimulus intensity after the quadratic increase

from baseline level in the recruitment curve, as seen in Figure 2.1, and not necessarily

the desired CMT value before the increase.

Figure 2.1: Diagram of Boltzmann Sigmoid and Threshold Logistic curve fits ap-
plied to the same stimulus intensity versus MEP magnitude empirical data for visual
comparison of cortico-motor threshold estimates.

Overall, there are three main limitations of the conventional Boltzmann Sigmoid

model fit. First, with the motor responses undergoing rapid modifications due to

changes in the cortico-motor excitability an intensity dependent noise distribution

should be used instead of the constant additive Gaussian noise. Second, a TMS pulse

gives rise to a series of temporally dispersed descending corticospinal volleys which

activate motoneurons at slightly different latencies due to each motoneuron’s unique

threshold level. These latencies produce phase cancellation of motor unit potentials

in the target muscle, but the recorded EMG signal will always result in a non-negative

peak-to-peak response. By fitting models that assume additive Gaussian noise one is

adding bias into the estimation of the recruitment curve fit, especially in the base-
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line MEP magnitude and threshold intensity by accounting for nonexistent negative

responses in the data. Lastly, since the CMT intensity level is a major determining

factor of TMS dosage in clinical studies, post hoc analysis using a nonlinear function

dependent on the model parameters must be applied, resulting in undesired highly

correlated outputs.

2.1.2 Threshold Logistic with Intensity Dependent Gaussian

Noise

Analyzing the TMS study performed by Kukke et al. (2014), I developed a new

mathematical model for the recruitment curve, called the Threshold Logistic model.

This new model allows intensity dependent variability about the MEP response and

calculates the CMT intensity and baseline MEP magnitude within its parameteriza-

tion, two of the limitations of the conventionally used Boltzmann Sigmoid function.

Note that the Boltzmann Sigmoid function traditionally assumes constant additive

Gaussian noise, however other noise models can be fitted if desired. Its main limi-

tation is the necessity for pre- and post-hoc analysis to determine some parameters

estimates.

The Threshold Logistic function is a modified form of the differential logistic

equation

dµ(s)

ds
=


Bµ(s)(C − µ(s)) if s > T0

0 if 0 ≤ s ≤ T0

(2.2)

where µ(s) = D if 0 ≤ s ≤ T0. This model describes the MEP magnitudes of

the target muscle, µ(s), as a function of stimulus intensity, s, with four parameters
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(T0, D,B,C):

µ(s) =
C

1 + e−B[(s−T0)1s>T0−E]
(2.3)

where A = log
(
C−D
D

)
and E = A

B
. Derivation of this model may be found in the

Appendix. The baseline MEP magnitude, D, for the rest and task condition is equiv-

alent to EMGbase; the maximum efficacy (plateau value at high intensities referring

to saturation MEP level), represented by C, is comparable to MEPsat + EMGbase;

and the slope parameter, B, is roughly equal to the inverse of the Boltzmann slope

parameter, k, from the Boltzmann Sigmoid function. An advantage of this model is

that the baseline MEP magnitude, D, and CMT intensity, T0, parameters are built

into the Threshold Logistic model, removing the high correlation the Boltzmann CMT

estimate had with the slope parameter. Any stimulus value equal to or below the

CMT estimate, T0, will also result in a MEP value equal to the baseline level, D, as

shown in Figure 2.1.

Figure 2.1 shows a comparison of the Boltzmann Sigmoid and Threshold Logistic

equations on the same empirical data. In this graph there is no difference between the

baseline MEP magnitude, CMT intensity estimate, slope, or the efficacy/saturation

MEP magnitude of the two models. The difference is in how early the Boltzmann

Sigmoid must start to increase in slope to account for the CMT intensity estimate,

while the Threshold Logistic mains a constant baseline MEP value until the CMT

intensity estimation is reached before it increases.

With this improved recruitment curve mean response model equation, the noise

distribution is next analyzed. Constant additive Gaussian noise does not accurately

handle the increase in MEP trial-to-trial variability caused by intrinsic fluctuations of

individuals. To determine what variability model would be most appropriate, eight

subjects from the Kukke et al. (2014) experiment with equivalent visual attributes
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(e.g. baseline, threshold, and saturation levels) were analyzed. As the MEP response

is very sensitive to intrinsic, visceral, and extrinsic factors, there is greater reliability of

the recruitment curve parameters in the task condition between different curve fitting

types than in the rest condition where the resting muscle contraction is unspecified

and possibly fluctuates (Kukke et al., 2014). Hence, a comparison of data points

between different subjects in the task condition in order to get the overall population

distribution can be consistently used.

Assuming these individuals come from the same population recruitment curve

mean, the approximate marginal distributions for each stimulus intensity were com-

puted. As seen in Figure 2.2, the marginal distributions show non-normal and in-

tensity dependent variability. Low intensities’ MEP values are skewed higher than

expected as sometimes more muscle potentials are activated due to intrinsic moti-

vations, resulting in a response closer to the threshold intensity’s MEP magnitude.

The intensity levels near the CMT result in varying magnitudes as stimulation may

activate different motoneurons, each having its own unique discharge threshold that

will fire an action potential with differing latencies. The MEP values then plateau

symmetrically around an empirical MEP with no further increase in magnitudes de-

spite the increase in stimulus intensity. At these high intensities, larger magnitudes

than the saturation level can occur as TMS can elicit a muscle response that exceeds

the force evoked by supramaximal peripheral nerve stimulation as some motoneurons

may discharge more than once in a volley. (Rossini et al., 2015)
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Figure 2.2: Given the raw MEP data of 8 out of the 10 subjects from Kukke et al. (2014), the marginal distribution at
each intensity level was determined and graphed on the right for the task condition. From the main graph, the data
appears to have a constant coefficient of variation [CV = σ

µ
] from 5% to 25% and again from 65% to 100%. From 30%

to 60% the spread of the data varies significantly, as this is the region the cortical motor threshold is within. Looking
at the marginal distributions for each intensity (the right side of the graph), the distributions appear to change from
a very condensed peak to a positively skewed distribution and then back to a normal distribution. Thus an intensity
dependent variability of the mean response is developed.
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The change in noise throughout the recruitment curve is further detected by ex-

amining the coefficient of variation (CV) across intensities. The CV = σ
µ

is defined

as the ratio of standard deviation, σ, to the mean, µ. It is a standardized measure of

dispersion of marginal distributions that shows the extent of variability in relation to

the mean of the population. Using the same eight subjects as before, the sample CV

at each intensity was found to be similar for intensities less than 25%-30% but differ

significantly before stabilizing again near 60%-70%, as seen in Table 2.1 and Figure

2.3.

StimVal Rest Task

5 0.42 ± 0.11 0.33 ± 0.08
10 0.38 ± 0.10 0.30 ± 0.08
15 0.46 ± 0.12 0.22 ± 0.06
20 0.39 ± 0.10 0.31 ± 0.8
25 0.64 ± 0.18 0.31 ± 0.08
30 0.6 ± 0.17 0.42 ± 0.11
35 0.74 ± 0.21 0.90 ± 0.27
40 1.66 ± 0.64 1.21 ± 0.40
45 1.68 ± 0.66 0.97 ± 0.30
50 1.36 ± 0.47 0.61 ± 0.17
55 1.23 ± 0.29 0.39 ± 0.10
60 0.94 ± 0.21 0.27 ± 0.07
65 0.75 ± 0.22 0.16 ± 0.04
70 0.75 ± 0.21 0.16 ± 0.04
75 0.64 ± 0.18 0.18 ± 0.05
80 0.59 ± 0.16 0.14 ± 0.03
85 0.64 ± 0.18 0.13 ± 0.03
90 0.59 ± 0.16 0.17 ± 0.04
95 0.59 ± 0.16 0.15± 0.04
100 0.59 ± 0.16 0.17 ± 0.04

Table 2.1: Given the raw MEP data of 8 out of the 10 subjects from Kukke et al.
(2014), the coefficient of variation (CV ± standard deviation) at each intensity level
was calculated to determine if there is a constant or varying CV

To address the intensity dependent noise of the recruitment curve, the noise distri-

bution is set to have a mean MEP value calculated from the Threshold Logistic equa-

tion, µ(s), and standard deviation as a function of two terms, σ(s) = C1µ(s)+C2µ
′(s),
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Figure 2.3: Given the raw MEP data of 8 out of the 10 subjects from Kukke et al.
(2014), the coefficient of variation (CV ± standard deviation) corresponding to Table
2.1 at each intensity level are plotted to show the not constant coefficient of variation
across intensities.

the first dependent on the mean and the second dependent on the derivative of the

mean. The second term allows the variability of the model to change as the slope

increases but has negligible effect on the variability plateau regions. Therefore, the

recruitment curve will have a constant CV at the baseline MEP magnitude, an in-

creasing variable CV as the slope increases from baseline to saturation, and then

again a roughly constant CV at the saturation level.

Similar to the Boltzmann Sigmoid function, curve fitting of the Threshold Logistic

with intensity dependent variability uses an adaptive mesh optimization method in

Matlab (patternsearch function; The Math Works, Inc.) with the specific constrains

on the parameters. Similar ranges for the recruitment curve parameters for the FDI

muscle as the Boltzmann Sigmoid function are assumed; the CMT intensity level is
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within 10 ≤ T0 ≤ 70, the baseline MEP size is 0.001 ≤ D ≤ 1, the saturation MEP

size is 0.001 ≤ C ≤ 10. With the two slope parameters being slightly different in

the Boltzmann and Threshold Logistic models, I limited 0.001 ≤ B ≤ 1.5 for the

Threshold Logistic so as to not get a directly vertical increase. And again as it is

extremely unlikely to obtain a CV above 40%, the coefficients for the noise distribution

were limited such that the coefficient dependent on the mean is 0.001 ≤ C1 ≤ 0.4

while the coefficient dependent upon the derivative of the mean is allowed to vary

more such that 0.001 ≤ C2 ≤ 2.

2.1.3 Threshold Logistic with Intensity Dependent Mixture

Noise

With the consideration of the intensity dependent variability of the mean response,

the bias in the parameter estimates of the baseline MEP size and CMT intensity

estimate due to an enlarged constant additive Gaussian noise is corrected. However,

by assuming a Gaussian noise distribution even with an intensity dependent standard

deviation, bias still exists since negative responses are still unnecessarily taken into

consideration in the noise.

As the lognormal distribution accepts only positive values, it could account for the

positively skewed data in low stimulus levels. Moreover, the lognormal distribution

could capture the positively skewed variations around the CMT intensity that are

caused by intrinsic fluctuations of the excitability of cortical neurons and each affected

motoneuron having its own discharge threshold. However, once the saturation level is

reached the MEP values become symmetrically distributed about the mean response.

Even though there is only a limited amount of muscle fibers within the target muscle

that can be stimulated and TMS can sometimes excite motoneurons to discharge
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more than once, it is still not enough to create a high positive skew of the data at

this region.

It was determined through simulation that although intensity dependent lognor-

mal noise model appeared to do better at lower and middle intensities levels than the

conventional constant additive Gaussian noise, it would fail to capture the symmetric

distribution of error at the saturation level of the recruitment curve as anticipated.

After several different intensity dependent noise distributions were analyzed, a mix-

ture of lognormal and Normal distributions was deemed most biologically appropriate.

Letting s be the fixed stimulated intensities of the data, the developed mixture model

would have weights ω(s) = µ(s)
C

, that are dependent on the mean value (fitted curve,

µ(s)). Therefore, at a low and middle intensities the errors would tend to be lognor-

mally dependent while at high intensities it is more likely to be normally distributed:

f(s|θ) = ω(s)f1(s|µ(si), σ
2(s)) + (1− ω(s))f2(s|µ̃(s), σ̃2(s))

= ω(s)
1

σ(s)
√

2π
e

(s−µ(s))2

2σ2(s) + (1− ω(s))
1

sσ̃(s)
√

2π
e

(log(s)−µ̃(s))2

2σ̃2(s)

At the same time, the magnitude change in variability as intensity changes is

accounted for by the mixture parameters µ(s), σ(s), µ̃(s), and σ̃(s):

µ(s) = m(s) =
C

1 + e−B[(s−T0)1s≥T0−E]
= eµ̃(s)+σ̃

2(s)/2 (2.4)

σ(s) = v(s) = C1µ(s) + C2µ
′(s) (2.5)

σ̃(s) =

√
log

(
v2(s)

m2(s)
+ 1

)
(2.6)

This lets the recruitment curve have a roughly constant CV at the baseline MEP

magnitude, a highly variable CV as the slope increases from baseline to saturation,

and then again a constant CV at the saturation level while being positively skewed
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at low and middle intensity levels and symmetric at high intensities.

2.2 Comparison of Recruitment Curve Models

To illustrate the advantages and disadvantages of the recruitment curve fitting

methods, four models are compared:

1. Boltzmann Sigmoid with constant additive Gaussian noise (conventional method),

2. Threshold Logistic with constant additive Gaussian noise (slightly modified con-

ventional method),

3. Threshold Logistic with intensity dependent Gaussian noise,

4. and the Threshold Logistic with intensity dependent mixture noise (most bio-

logically emphasized method).

In a comparison of brain-muscle modeling, via model fits and parameters relating

to the cortico-motor threshold, maximal MEP size, baseline MEP size, and midway

point, the Threshold Logistic with intensity dependent noise performed better than

the conventional approach. Additionally, no major difference between an intensity

dependent mixture of normal and lognormal distributions for the noise over simply

using an intensity dependent Gaussian noise distribution was found as the added

model complexity, while more biologically based, did not result in a more statistically

significant model fit.

2.2.1 Monte Carlo Simulation

As all the factors that cause a MEP response in a targeted muscle are not known

and the observed data varies greatly, no empirical model for recruitment curves ex-



2.2. Comparison of Recruitment Curve Models 24

ists. In order to determine what model is most accurate one needs to test a variety

of situations that are representative of the data and compare models against one an-

other. Data, that could be accurate representations of the true recruitment curve,

were randomly simulated from 500 different Boltzmann Sigmoid curves with constant

additive Gaussian noise, Threshold Logistic with constant additive Gaussian noise,

Threshold Logistic with intensity dependent Gaussian noise, and Threshold Logistic

with intensity dependent mixture noise. Each simulation scenario was then fitted

with all four of these models for comparison of the overall fit and parameters by ana-

lyzing the relative errors. For instance, the relative error of the area is the difference

between the fitted model’s area and the true curve divided by the true curve’s area.

Assuming the data comes from a constant additive Gaussian noise model, whether

the Boltzmann Sigmoid or the Threshold Logistic, the relative error of area for both

the task and rest Monte Carlo Simulations showed that the Boltzmann Sigmoid and

Threshold Logistic with constant additive Gaussian noise resulted in less than ±5%

difference in relative area. The Threshold Logistic with intensity dependent Gaussian

noise averages about -10%, consistently underestimating the true curve. Looking at

the relative error of the parameters, the saturation MEP size is consistent across all

fitted distributions and the CMT intensity estimated ranges from 10% to 20% differ-

ence between the Boltzmann Sigmoid fits and the Threshold Logistic fits. Overall,

ignoring the noise distribution, the Boltzmann Sigmoid tends to estimate a higher

CMT value than all the Threshold Logistic equations.

Assuming that the data comes from a Threshold Logistic fit with intensity de-

pendent Gaussian noise, the relative error of area for all three distributions look

extremely similar, however when analyzing the parameters’ relative error, the con-

stant additive Gaussian noise models vary greatly in their CMT intensity estimate,

often overestimating the true value. Additionally, the parameter estimates for the
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constant additive Gaussian noise models frequently are skewed higher than expected,

making them unreliable for accurate estimates.

The Threshold Logistic with intensity dependent noise based on a mixture of nor-

mal and lognormal distributions, while considered was deemed to be too similar in to

the Threshold Logistic with intensity dependent Gaussian noise after simulation test-

ing. In summary, although the Threshold Logistic with intensity dependent mixture

noise is more biologically accurate as it accounts for only positive responses at low in-

tensities the added complexity of the model was found to be statistically insignificant

through simulation testing.

Furthermore, as the CMT intensity value is defined as the minimal intensity of the

motor cortex stimulation required to elicit a reliable MEP magnitude in the target

muscle, the CMT estimated value should be the intensity detected before the fitted

curves increases. Thus the Threshold Logistic with constant additive Gaussian noise,

while very similar to the Boltzmann Sigmoid with constant additive noise, estimates

the threshold intensity with greater accuracy. Additionally, if the data contains inten-

sity dependent noise, which is evident by the raw data, the constant additive Gaussian

noise models are inaccurate fits as they contain bias in their parameter estimates due

to the inflated constant standard deviation accounting for negative responses being

possible.

2.2.2 Kukke et al. (2014) Experimental Results

General Results

Figure 2.4 and 2.5 provide pairwise comparisons of the four models from the

Kukke et al. (2014) TMS study for two subjects, split by investigator. Part (A)

illustrates the comparison between the Boltzmann Sigmoid and Threshold Logistic
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when assuming constant additive Gaussian noise for both models. Part (B) shows the

comparison between the Boltzmann Sigmoid with constant additive Gaussian noise

versus the Threshold Logistic with intensity dependent Gaussian noise. Lastly, part

(C) compares the Threshold Logistic with intensity dependent Gaussian noise against

the intensity dependent mixture of lognormal and normal distributions for the noise.

The remaining eight subjects from the study have similar graphs are placed in the

Appendix.

Looking at the task testing condition of Figures 2.4 and 2.5, the recruitment curves

in each subgraph that is steeper in slope and has a higher baseline and saturation MEP

magnitude, no apparent difference between any of the models exist, except in CMT

intensity estimation. This is due to the fact that each participant had to maintain a

certain low tonic contraction force so there was more reliability in the measurements

taken for this testing condition. At rest, however, the resting muscle contraction

is unspecified and possibly fluctuates due to intrinsic, visceral, and extrinsic factors

occurring, causing the different recruitment curve models to result in different fits due

to the unaccounted for variability. The CMT intensity estimation for the Threshold

Logistic models (with any of the noise distributions) visually appears to be more

accurate than the Boltzmann Sigmoid function as the Threshold Logistic equation

assumes the CMT intensity value to be before the quadratic increase in slope rather

than after the increase as the Boltzmann Sigmoid equation does. This can be seen in

part (A) where both the Threshold Logistic and Boltzmann Sigmoid are capturing the

exact same trend with the exception of the CMT intensity estimate and in part (B)

where even though the Threshold Logistic equation accounts for intensity dependent

Gaussian noise, the baseline MEP magnitude extends out until a noticeable increase

in magnitude occurs.

While determined through Monte Carlo simulations, and confirmed later on, that
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there is no statistically significant difference between the Threshold Logistic model

with intensity dependent Gaussian noise and one that assumes an intensity dependent

mixture of lognormal and normal equations, visually the mixture noise distribution is

sometimes more appealing for certain cases, such as the rest conditions of Investigator

2 for both graphs. Besides a few cases in the Kukke et al. (2014) data, no noticeable

difference occurs, leading to the conclusion that the mixture noise distribution may

not be worth the added complexity over the assuming an intensity dependent Gaussian

distribution.
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Figure 2.4: Subject 1 pairwise comparisons of recruitment curve models fitted to the data of one representative subject
(subject 1) split by testing condition and investigator effect.
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Figure 2.5: Subject 5 pairwise comparisons of recruitment curve models fitted to the data of one representative subject
(subject 1) split by testing condition and investigator effect.
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Ignoring investigator effects in all subjects over all sessions, the Boltzmann Sig-

moid function with constant additive noise provided a good fit in the rest condition

(mean ± standard deviation; coefficient of determination, R2 = 0.86 ± 0.09) and

in the task condition (R2 = 0.96 ± 0.04), as found in Kukke et al. (2014). The

Threshold Logistic with additive constant noise had analogous fits to the Boltzmann

Sigmoid (R2 = 0.85 ± 0.09; R2 = 0.96 ± 0.03). On the other hand, the Threshold

Logistic with intensity dependent Gaussian noise differed slightly (R2 = 0.89± 0.08;

R2 = 0.90 ± 0.04) for the rest condition and task condition, respectively, as well as

the Threshold Logistic with intensity dependent mixture noise (R2 = 0.78 ± 0.29;

R2 = 0.81 ± 0.28). The dependent one-way analysis of variance (ANOVA) and

post-hoc Bonferroni corrections of the coefficient of determinations failed to show

any significant difference between these four fits for the rest condition (F3,19 = 1.97,

P = 0.13) but showed a significant difference for the task condition (F3,19 = 4.42,

P = 0.01) in which the Threshold Logistic with intensity dependent mixture noise was

significantly different. This is as expected since by allowing lognormal noise at low

and middle intensities and Gaussian noise otherwise more variability about the mean

response is allowed, which is not accurately captured by analyzing the coefficient of

determination. Therefore, the coefficient of determination for intensity dependent

models should be less than their constant additive Gaussian noise counterparts.
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Figure 2.6: Comparison of Scaled Squared Residuals for different fitted models [(Scaled Residuals)2i =
ε2i (si)

σ2
i (si)

] plotted

against the given stimulus intensity, si, for each observation i at both the rest and task conditions.
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A more accurate comparison can be made using scaled squared residuals plots. In

these plots each residual was squared and then standardized by dividing by the vari-

ance of the noise distribution for that stimulus intensity [(Scaled Residuals)2i =
ε2i (si)

σ2
i (si)

]

and plotted against the given stimulus intensity, si, for each observation i. Figure

2.6 illustrates the scaled squared residual values for all four fitted models in the rest

(left panel) and task (right panel) conditions. As anticipated the scaled squared

residual values for the Boltzmann Sigmoid and Threshold Logistic with constant ad-

ditive Gaussian noise are alike and become larger as the stimulus intensity increases

due to the constant variance of the noise distribution’s failure to capture the in-

creasing variability. The accuracy at low intensities is due to the inflated constant

standard deviation required within the model. The Threshold Logistic with intensity

dependent Gaussian or mixture noise, however, stays fairly consistent across all stim-

ulus intensity levels and is notably smaller in magnitude than the constant additive

Gaussian models. The dependent one-way ANOVA and post hoc Bonferroni correc-

tions showed significant difference between these four fits for rest and task conditions

(F3,799 = 24.58,P < 10−4; F3,799 = 45.39, P = 0, respectively) in which the Threshold

Logistic with intensity dependent Gaussian or mixture noise were identified as dif-

ferent from both constant additive Gaussian noise models. Even though the mixture

noise distribution contains some higher scaled squared residuals for low and middle

intensities, it is not found to be statistically different from the intensity dependent

Gaussian noise model, as concluded in the Monte Carlo simulation testing procedure.

From this statistical analysis it can be determined that the recruitment curve has an

intensity dependent variability about the mean MEP response that constant additive

Gaussian noise models do not accurately account for.
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Recruitment Curve Parameters

The relationship between the four primary outcome measures (baseline MEP size,

CMT intensity level, sensitivity (midway point) intensity, and maximum MEP size)

were assessed using Pearson correlation coefficients; all of which were uncorrelated in

the rest and task conditions for all fitted models. While not a direct parameter of the

Threshold Logistic equation, the ”mid-recruitment curve point” can be determined

after the fact as the middle MEP height of the Threshold Logistic model is C−D
2

.

Solving for s when s > T0, the intensity value needed to get the half the maximum

response is s = T0 +
log

(
(C−D)2

D(C+D)

)
B

. This is a similar estimate to the Boltzmann Sig-

moid function’s s50 value, and makes the Threshold Logistic equation an “all-in-one”

method as all necessary parameter values for clinical testing can easily be obtained.

This is a useful stimulus intensity since it is the ”mid-recruitment curve” value that

allows observations to change in the positive or negative direction.

The baseline MEP size is larger, the CMT intensity level is lower, the sloping part

of the curve is steeper, and the maximum MEP size is larger in the task condition

compared to the rest condition for all fitted models. Table 2.2 shows the mean ±

standard deviation values of the four primary outcome measures of all 10 subjects,

ignoring investigator, for the different curve fits. The dependent one-way ANOVA and

post hoc Bonferroni corrections of saturation MEP sizes failed to show any significant

difference between these four fits for the rest conditions (F3,19 = 0.08, P = 0.97), but

showed a difference between the Boltzmann Sigmoid and all other models in the task

condition(F3,19 = 49.43, P < 10−4). Significant differences for the estimated CMT

intensity level were noticed for both the rest and task conditions (F3,19 = 10.36,

P < 10−4; F3,19 = 31.79, P < 10−4, respectively). The Boltzmann Sigmoid with

constant additive Gaussian noise varied from all the Threshold Logistic models for
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the rest condition and both constant additive Gaussian models were significantly

different from the intensity dependent noise distributions in the task condition as well

as different from each other in the task condition. This is congruent with the Monte

Carlo simulation as the Boltzmann Sigmoid estimates the CMT intensity value to be

after the curve has started to increase from baseline MEP size, which is not the desired

estimate of the CMT stimulus intensity. Additionally, a significant difference was

detected for the baseline MEP size for the task condition (F3,19 = 14.71, P < 10−4),

in which the Threshold Logistic with constant additive Gaussian noise was different

from all the other models, but no significant difference was found for the rest condition

(F3,19 = 1.75, P = 0.17). Lastly, a significant difference was detected for the “mid-

recruitment curve” intensity value for both the rest and task conditions (F3,19 =

6.84, P < 10−4; F3,19 = 36.90, P < 10−4, respectively). For the rest condition,

the constant additive Gaussian noise models were significantly different from the

intensity dependent models, while for the task condition the Threshold Logistic with

intensity dependent mixture noise was the only one different from all other models.

In conclusion, when analyzing the parameters individually of all four models it was

determined that the constant additive Gaussian noise and intensity dependent noise

models consistency were different from one another. No major differences, besides

the CMT intensity estimates between the Boltzmann Sigmoid and Threshold Logistic

when assuming constant additive Gaussian noise, just as no major difference really

appeared between the Gaussian and mixture intensity dependent noise models.

Additional testing was performed on each of the ten subjects in the Kukke et al.

(2014) data, in which the CMT intensity value was determined using the recom-

mended protocol published by the International Federation of Clinical Neurophysiol-

ogy (Rossini et al., 1994; Rothwell et al., 1999). This protocol, as described earlier in

Chapter 1, does not use a recruitment curve to estimate the threshold intensity but



2.2. Comparison of Recruitment Curve Models 35

Parameter Cond.
Boltzmann
(Additive)

Thr. Log.
(Additive)

Thr. Log.
(Int. Dep.)

Thr. Log. Mix.
(Int. Dep.)

Threshold
Rest 48.2 ± 6.94 39.0 ± 12.32 39.0 ± 8.09 40.23 ± 8.85
Task 39.3 ± 6.20 36.4 ± 5.63 31.9 ± 4.93 32.08 ± 5.63

Baseline
Rest 0.02 ± 0.01 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.03
Task 0.40 ± 0.11 0.44 ± 0.13 0.41 ± 0.11 0.40 ± 0.11

Saturation
Rest 3.71 ± 2.18 3.72 ± 2.19 3.72 ± 2.14 3.71 ± 2.20
Task 6.53 ± 1.47 6.93 ± 1.46 6.91 ± 1.43 6.90 ± 1.44

Midway
Point

Rest 55.93 ± 9.00 55.67 ± 9.00 54.64 ± 9.21 54.64 ± 9.21
Task 46.69 ± 8.41 45.80 ± 7.86 45.18 ± 8.20 54.64 ± 9.21

Table 2.2: Comparison of means ± standard deviations of recruitment curve param-
eters in different fitted models for rest and task conditions. The threshold is the
estimated CMT intensity level as a percentage of maximum stimulator output, base-
line is the motor evoked potential (MEP) size before the CMT level, saturation is
the MEP at plateau for high intensities, and midway point is the ”mid-recruitment
curve” value.

Subject Invest. Protocol
Boltzmann
(Additive)

Thr. Log.
(Additive)

Thr. Log.
(Int. Dep.)

Thr. Log. Mix.
(Int. Dep.)

1 1 24 44.6 26.1 34.9 32.4
2 36 36.3 22.6 34.2 31.4

2 1 55 53.1 49.1 49.3 47.4
2 75 57.2 46.2 47.9 46.7

3 1 29 42.2 26.5 30 40
2 28 44.5 34.4 45 44.9

4 1 31 51.3 37.3 30 30
2 44 55.2 37.2 47.9 46.4

5 1 59 41 29.9 40 38.4
2 43 47.8 36.6 35.8 37.7

6 1 31 57.8 60.4 60 60
2 70 50.6 31 48.9 44

7 1 46 45.3 40.3 33 34.4
2 57 44.9 41.9 34.1 33.9

8 1 38 45.2 41.5 32.8 32.4
2 39 43.9 32.6 33.2 34.1

9 1 39 39.6 33.5 35 36.8
2 19 44.2 39.8 33.2 33.1

10 1 41 59.6 68.8 36.1 61.2
2 31 59.7 62.2 37.7 39.5

Table 2.3: Comparison of CMT intensity estimates for the Rest condition
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Subject Invest. Protocol
Boltzmann
(Additive)

Thr. Log.
(Additive)

Thr. Log.
(Int. Dep.)

Thr. Log. Mix.
(Int. Dep.)

1
1 36 31.8 29.3 29.3 29.2
2 30 34 32.4 28.7 28.4

2 1 36 40.4 37.1 33.7 33.4
2 46 47.3 44.7 29.8 42.2

3 1 41 44.4 43.8 35 35
2 36 39.5 38.1 35 34.2

4 1 26 45.1 42.2 30 30
2 43 50.5 46.9 48.6 48.7

5 1 64 37.7 30.4 31.3 30.8
2 39 44.4 38 33.8 35

6 1 57 43.5 36 37.3 37
2 56 41.2 38.6 30 30

7 1 40 23.1 28.2 24.1 23.2
2 64 33.2 34 27.7 27.6

8 1 47 43 42.2 30 30
2 26 40.7 38.3 30 30

9 1 49 35.4 33.9 29.6 29.5
2 25 37.1 34.7 29.8 29.1

10 1 48 37.4 29 33.4 30
2 24 36.9 29.4 30 28.2

Table 2.4: Comparison of CMT intensity estimates for the Task condition

instead does incremental testing on stimulus intensities abiding by certain rules.

Comparisons between this “Traditional” method’s CMT value and the ones deter-

mined by the four recruitment curve fits was done using a dependent one-way ANOVA

and post-hoc Bonferroni corrections for each testing condition, ignoring investigator

effect. The estimated values for the rest and task condition are shown in Table 2.3 and

2.4, respectively. Significant differences between the threshold estimates for the rest

condition and task conditions were discovered (F4,19 = 3.77, P = 0.008; F4,19 = 7.11,

P < 10−4, respectively). For the rest condition, the Boltzmann Sigmoid function

was significantly different from the Threshold Logistic models, as determined ear-

lier, but not significantly different from the TMS Protocol method. Examining the

results slightly further, the Boltzmann Sigmoid tends to overestimate the TMS Pro-

tocol value while the Threshold Logistic models all roughly approximate the same
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value, with a tendency to be slightly under. This could be due to the coil placement

changing between investigators as some measurements in the Protocol are significantly

higher than expected between investigator measurements. For the task condition, all

of the Threshold Logistic models (constant additive Gaussian noise and intensity de-

pendent Gaussian or mixture noise) were found to result in similar CMT estimates,

as anticipated based on earlier findings with the constant additive Gaussian noise

model being slightly higher than the intensity dependent counterparts. The Protocol

method was also found to not be significantly different from either the Threshold Lo-

gistic or Boltzmann Sigmoid with constant additive noise, but significantly different

from the intensity dependent noise models.

Two things need to be considered about this analysis. First, looking at the esti-

mates of the Protocol technique one can see it has some significantly different values

between investigators for given subjects. One would expect that for a given subject

the two values should be similar as it is constantly assumed that there is no investi-

gator effect. Second, the Protocol described above is considered one of the traditional

methods to estimate the CMT intensity but is limited to only finding this intensity

level. Using a recruitment curve method that approximates the threshold intensity

but also provides further detail about brain functioning, such as the Threshold Lo-

gistic with intensity dependent Gaussian or mixture noise, could be extremely useful

in brain functioning analysis.



Chapter 3

Theoretical Properties

3.1 General Setup

Let s = (s1, . . . , sM), where ∆s = 5%, be the vector of fixed stimulus inten-

sities, where si ∈ s, i = 1, . . . ,M . Suppose fsi(xsi |θ), i = 1, . . . ,M denotes the

continuous probability density function, where xsi is a random vector with values

over a region Ri independent of θ = (θ1, . . . , θk), an unknown parameter vector

lying in a k-dimensional interval Θ. Let xsi1, . . . , xsini be ni independent observa-

tion on xsi , i = 1, . . . ,M . For the data analyzed in this thesis, s = (s1, . . . , s20)

(s1 = 5%, s2 = 10%, . . . , s19 = 95%, s20 = 100%) and two observations were col-

lected at each intensity level so ni = 1, 2 for all si since the recruitment curve of one

investigator pair during one testing condition is fitted for each subject at a time.

One assumption can be presumed about the TMS recruitment curve both the

Boltzmann Sigmoid function and Threshold Logistic equation, as defined by Assump-

tion 1.

Assumption 1. Let µ(s) be the mean MEP amplitude for all stimulus intensities on

the continuum [0, 100], then the recruitment curve fit is non-negative and monotonic

38
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increasing, µ(s1) ≤ µ(s2), if for all s1 ≤ s2 where s1, s2 ∈ s.

The asymptotics of both the Boltzmann Sigmoid with constant additive Gaussian

noise, the conventional recruitment curve fit method, and the Threshold Logistic

with intensity dependent Gaussian noise, the new recruitment curve fit method, are

explored. Therefore, we can let Xsi , i = 1, . . . ,M be the components, each Gaussian

distributed with mean and variance dependent on the stimulus intensity, µ(s) =

(µ(s1), . . . , µ(sM)) and Σ(s) = diag(σ2(s1), . . . , σ
2(sM)), respectively. We assume

we take ni independent and identically distributed (IID) observations from this M -

dimensional distribution.

3.2 Boltzmann Sigmoid function Asymptotics

The conventional method of fitting a recruitment curve uses the Boltzmann Sig-

moid function. This model assumes constant additive Gaussian noise, hence the

components Xsi , i = 1, . . . ,M are each Gaussian distributed with mean and variance

dependent on the stimulus intensity, µ(s) = (µ(s1), . . . , µ(sM)) and Σ(s) = diag(σ2),

respectively. Additionally, since the Boltzmann Sigmoid function is continuous and

differentiable at all points all the regularity conditions are satisfied and it can be shown

that the parameters θ = (EMGbase, k, s50,MEPsat, σ
2) are consistent by known mul-

tivariate normal theory of the consistency, asymptotic normality and asymptotic ef-

ficiency of maximum likelihood estimators (Serfling, 2008; Cramér, 1946).

3.3 Threshold Logistic function Asymptotics

The new method of fitting a recruitment curve using the Threshold Logistic equa-

tion with intensity dependent Gaussian noise however is not differentiable at the
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threshold intensity level T0. Nonetheless, this function is smooth and even though a

change in slope occurs, there is no mathematical discontinuity in the function. Hence

two cases arise and must be considered.

Case 1 The threshold parameter, T0, is not equal to a collected stimulus intensity, si,

i = 1, . . . ,M . In other words, θT 6= si for all i = 1, . . . ,M in which θT ∈ θ refers

to the threshold parameter T0. For this case, the non-differentiable point of the

Threshold Logistic has no effect on the asymptotic properties of the maximum

likelihood estimator.

Case 2 The threshold parameter, T0, is equal to a collected stimulus intensity, si,

i = 1, . . . ,M . In other words, θT = si for some i = 1, . . . ,M in which θT ∈ θ

refers to the threshold parameter T0. For this case, the non-differentiable point

needs to be taken into account. Hence, one needs to account both θ̂T < θT and

θ̂T > θT when determining the asymptotic properties of the maximum likelihood

estimator.

In other words, the asymptotics work unless one of the sampled intensities is the

same as the unknown threshold intensity level. Thus, just as they applied to the

Boltzmann Sigmoid, the same well-known multivariate normal asymptotics of maxi-

mum likelihood estimators can still be applied to Case 1 where the sampled intensity

levels are not equal to the threshold intensity value. As the Threshold Logistic is

only not differentiable at the threshold intensity level and a continuous function, the

equation is both left and right differentiable. Hence for Case 2, a modification of the

multivariate asymptotics of maximum likelihood estimators can be applied instead to

show consistency. We are still trying to determine the analogue of the information

matrix for asymptotic normality, but this is only a minor issue.
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The likelihood equations for estimating θ are then given by

∂ logL

∂θr
=

∂l

∂θr
= 0 r = 1, . . . , k

where

L =
M∏
i=1

ni∏
j=1

fsi(xsij|θ)

For brevity’s sake we shall henceforth write fi for fsi(xsi |θ), fij for fsi(xsij|θ), and

xi for xsi .

The following Regularity Conditions and Theorem were constructed by modifying

the asympototics of maximum likelihood estimates from Cramér (1946) and Serfling

(2008) as well as Ralph A. Bradley (1962) who accounted for independent but not

identically distributed distributions within the asymptotics of maximum likelihood

estimates.

Let us assume that:

(A1)

Case 1 For all fi that are densities, for almost all xi ∈ Ri and for every θ ∈ Θ

(in which θT 6= si for all i = 1, . . . ,M)

∂ log fi
∂θr

,
∂2 log fi
∂θr∂θs

,
∂3 log fi
∂θr∂θs∂θt

exist for r, s, t = 1, . . . , k, i = 1, . . . ,M .

Case 2 For all fi that are densities, for almost all xi ∈ Ri and for every θ ∈ Θ
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(in which θT = si for any i = 1, . . . ,M)

∂− log fi
∂θ−r

1θ<θ0 ,
∂2− log fi
∂θ−r ∂θ

−
s

1θ<θ0 ,
∂3− log fi
∂θ−r ∂θ

−
s ∂θ

−
t

1θ<θ0

and

∂+ log fi
∂θ+r

1θ>θ0 ,
∂2+ log fi
∂θ+r ∂θ

+
s

1θ>θ0 ,
∂3+ log fi
∂θ+r ∂θ

+
s ∂θ

+
t

1θ>θ0

exist for r, s, t = 1, . . . , k, i = 1, . . . ,M .

(A2)

Case 1 For all fi that are densities, for almost all xi ∈ Ri and for every θ ∈ Θ,

(in which θT 6= si for all i = 1, . . . ,M)

∣∣∣∣∂fi∂θr

∣∣∣∣ < Fir(xi),

∣∣∣∣ ∂2fi∂θr∂θs

∣∣∣∣ < Firs(xi), and

∣∣∣∣ ∂3 log fi
∂θr∂θs∂θt

∣∣∣∣ ≤ Hirst(xi)

where Fir(xi) and Firs(xi) are integrable over Ri and

Eθ[Hirst(xi)] =

∫
Ri

Hirst(xi)fidxi < Mi

for θ ∈ N(θ0) where i = 1, . . . ,M , r, s, t = 1, . . . , k and Mi are finite

positive constants (independent of θ).

Case 2 For all fi that are densities, for almost all xi ∈ Ri and for every θ ∈ Θ,

(in which θT = si for any i = 1, . . . ,M)

∣∣∣∣∂−fi∂θ−r
1θ<θ0

∣∣∣∣ < F−ir (xi),

∣∣∣∣ ∂2−fi∂θ−r ∂θ
−
s

1θ<θ0

∣∣∣∣ < F−irs(xi),
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and ∣∣∣∣ ∂3− log fi
∂θ−r ∂θ

−
s ∂θ

−
t

1θ<θ0

∣∣∣∣ ≤ H−irst(xi)

and ∣∣∣∣∂+fi∂θ+r
1θ>θ0

∣∣∣∣ < F+
ir (xi),

∣∣∣∣ ∂2+fi∂θ+r ∂θ
+
s

1θ>θ0

∣∣∣∣ < F+
irs(xi),

and ∣∣∣∣ ∂3+ log fi
∂θ+r ∂θ

+
s ∂θ

+
t

1θ>θ0

∣∣∣∣ ≤ H+
irst(xi)

where F−ir (xi), F
−
irs(xi), F

+
ir (xi) and F+

irs(xi) are integrable over Ri and

Eθ[H−irst(xi)1θ<θ0 ] =

∫
Ri

H−irst(xi)1θ<θ0fidxi < M−
i ,

Eθ[H+
irst(xi)1θ>θ0 ] =

∫
Ri

H+
irst(xi)1θ>θ0fidxi < M+

i

where i = 1, . . . ,M , r, s, t = 1, . . . , k and M−
i and M+

i are finite positive

constants (independent of θ).

(A3)

Case 1 (in which θT 6= si for all i = 1, . . . ,M) For all θ ∈ Θ the information

matrix I is a positive definite k × k matrix with elements Irs(θ), r, s =

1, . . . , k, defined by

Irs(θ) =
M∑
i=1

µiCov

[
∂ log fi
∂θr

,
∂ log fi
∂θs

]

=
M∑
i=1

µi

∫
Ri

∂ log fi
∂θr

∂ log fi
∂θs

fidxi

with finite determinant |I|. We define µi = ni
N

where N =
∑M

i=1 ni.
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Case 2 (in which θT = si for any i = 1, . . . ,M) For all θ ∈ Θ the information

matrix I is a positive definite k × k matrix with elements, r, s = 1, . . . , k,

defined by

I−rs(θ) =
M∑
i=1

µiCov

[
∂− log fi
∂θ−r

1θ<θ0 ,
∂− log fi
∂θ−s

1θ<θ0

]

=
M∑
i=1

µi

∫
R−
i

∂− log fi
∂θ−r

∂− log fi
∂θ−s

1θ<θ0fidxi

or

I+rs(θ) =
M∑
i=1

µiCov

[
∂+ log fi
∂θ+r

1θ>θ0 ,
∂+ log fi
∂θ+s

1θ>θ0

]

=
M∑
i=1

µi

∫
R+
i

∂+ log fi
∂θ+r

∂+ log fi
∂θ+s

1θ>θ0fidxi

with finite determinant |I−| or |I+| for θT < θ0T and θT > θ0T , respectively.

We define µi = ni
N

where N =
∑M

i=1 ni.

Note that for this data, as ni = 2 for all si then N = Mni and thus µi = 1
M

.

Theorem 3.3.1. Let xIj be independent but not necessarily identically distributed,

each with density fIj(xIj |θ) which satisfy assumptions (A1)-(A3). Then, with prob-

ability tending to 1 as N → ∞, there exists solutions, θ̂, of the likelihood equations

where µi = ni
N

constant, N =
∑M

i=1 ni, θ̂ is a consistent estimator of θ0.

Proof.

Case 1

Let θ0 be the unknown true value of the parameter vector θ, where θ ∈ N(θ0) or

θ belongs to interior ball with center θ0 and with radius (θ − θ0). Consider the
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following Taylor expansion:

∂ log f

∂θr
=

(
∂ log f

∂θr

)
θ=θ0

+
k∑
s=1

(θs − θ0s)
(
∂2 log f

∂θr∂θs

)
θ=θ0

+
1

2

k∑
s,t=1

(θs − θ0s)(θt − θ0t )ξirstHirst(xi),

(3.1)

where |ξirst| < 1. Multiplying both sides by 1/N and summing the corresponding

expressions for xIi ’s over i = 1, . . . ,M we may rewrite 3.6 as

1

N

∂ logL(θ)

∂θr
= An +

k∑
s=1

(θs − θ0s)Bn +
1

2

k∑
s,t=1

(θs − θ0s)(θt − θ0t )ξirstCn r = 1, . . . , k

(3.2)

where r = 1, . . . , k, fIi(xIij|θ) = fij, |ξirst| < 1 and

An =
1

N

M∑
i=1

ni∑
j=1

(
∂ log fij
∂θr

)
θ̂=θ

=
M∑
i=1

µi

ni∑
j=1

1

ni

(
∂ log fij
∂θr

)
θ̂=θ

,

Bn =
1

N

M∑
i=1

ni∑
j=1

(
∂2 log fij
∂θr∂θs

)
θ̂=θ

=
M∑
i=1

µi

ni∑
j=1

1

ni

(
∂2 log fij
∂θr∂θs

)
θ̂=θ

,

Cn =
1

N

M∑
i=1

Hirst(xi) =
M∑
i=1

µi

ni∑
j=1

1

ni
Hirst(xi).

We note that from our assumptions (A1) and (A2) we know that

∫
Ri

∂fi
∂θr

dxi =
∂

∂θr

∫
Ri

fidxi =
∂

∂θr
(1) = 0

and thus ∫
Ri

∂2fi
∂θr∂θs

dxi = 0.
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It follows then that

Eθ

(
∂ log fij
∂θr

)
=

∫
∂ log fij
∂θr

fijdxi =

∫
1

fij

∂fij
∂θr

fijdxi = 0

and

Eθ

(
∂2 log fij
∂θr∂θs

)
=

∫
∂

∂θr

[
∂fij
∂θs

1

fij

]
fijdxi

=

∫ [
1

fij

∂2fij
∂θr∂θs

−
(

1

fij

∂fij
∂θr

)(
1

fij

∂fij
∂θs

)]
fijdxi

= −Eθ

[(
1

fij

∂fij
∂θr

)(
1

fij

∂fij
∂θs

)]
= −Eθ

[(
∂ log fij
∂θr

)(
∂ log fij
∂θs

)]
.

By (A3), the quantity

Irs =
M∑
i=1

µiEθ

[(
∂ log fi
∂θr

)(
∂ log fi
∂θs

)]
=

M∑
i=1

µiEθ

[(
∂2 log fi
∂θr∂θs

)]

satisfies 0 < Irs(θ) <∞.

So by Khintchine’s Theorem and Slutsky’s Theorem

(i) By Khintchine’s Theorem since Eθ

(
∂ log fij
∂θr

)
= 0 then

∑ni
j=1

1
ni

∂ log fij
∂θr

p→ 0 and by

Slutsky’s Theorem An
p→ 0.

(ii) By Khintchine’s Theorem since Eθ

(
∂2 log fij
∂θr∂θs

)
= −Eθ

[(
∂ log fij
∂θr

)(
∂ log fij
∂θs

)]
then∑ni

j=1
1
ni

∂2 log fij
∂θr∂θs

p→ −Eθ

[(
∂ log fi
∂θr

)(
∂ log fi
∂θs

)]
and by Slutsky’s Theorem Bn

p→

−Irs(θ)

(iii) Cn
p→ Eθ[Hirst(xi)] < Mi

Now let η and ε being two arbitrarily small positive quantities and let P (S) denote

the joint density function of the random variables xi = (xIi1, . . . , xIini). We can choose
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an n0 = n0(η, ε), such that for all n > n0(η, ε) then

P1 = P (|An| ≥ η2) <
1

3
ε (3.3)

P2 = P (Bn ≥ Irs(θ
0)) <

1

3
ε (3.4)

P3 = P (|Cn| ≥ 2
M∑
i=1

µiMi) <
1

3
ε. (3.5)

Now let S denote the set of points where all three inequalities

|An| < η2, Bn < Irs(θ
0), |Cn| < 2

M∑
i=1

µiMi

are satisfied.

The complement to S, denoted by S∗ consists of all points xi such that at least

one of the three inequalities is not satisfied. Thus we have P (S∗) ≤ P1 + P2 + P3 < ε

and P (S) > 1− ε. Thus the probability that xi belongs to the set S is greater than

1− ε as soon as n > n0(η, ε).

Now let 1
n
∂ logL(θ)

∂θr
= 0, r = 1, . . . , k in Equation 3.2 and θ = θ0±η, η > 0 so that

An ±
k∑
s=1

ηsBn +
1

2

k∑
s,t=1

ηsηtCn, r = 1, . . . , k

Now consider that for points in S, |An| < η2 and |ξirstCn| < Mi because |ξirst| < 1.

This implies that |ξirstCnη2| < Miη
2, so that every point xi that is in the set S, the

sum of the first and the third terms is smaller in absolute value than η2 + Miη
2 =

(Mi1)η2. Specifically, ∣∣An + ξirstCnη
2
∣∣ < (Mi + 1)η2

Furthermore for points in S, Bnη < Irs(θ
0)η. So if (Mi + 1)η2 is smaller than the
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absolute value of Irs(θ
0)η, or equivalently

η <

∣∣∣∣Irs(θ0)

Mi + 1

∣∣∣∣
then the sign of the whole expression will be determined by the second term, so that

we have

∂ logL

∂θ
< 0, θ = θ0 + η

∂ logL

∂θ
> 0, θ = θ0 − η

because Bn tends to a negative number −Irs(θ0). Now remember the function is

continuous at almost all xi by regularity condition (A1). Thus for arbitrarily small

η and ε the likelihood equation will (with probability exceeding 1 − ε) have a root

between the limits θ0 ± η as soon as n > n0(η, ε). It follows immediately, therefore,

that there exists at least one solution of the likelihood equations, which is consistent

estimate of the true parameter vector θ0.

Case 2

Let θ0 be the unknown true value of the parameter vector θ, where θ ∈ N(θ0) or

θ belongs to interior ball with center θ0 and with radius (θ − θ0). Consider the
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following Taylor expansion:

∂ log f

∂θr
=

(
∂− log f

∂θ−r

)
θ=θ0

1θ<θ0 +

(
∂+ log f

∂θ+r

)
θ=θ0

1θ>θ0

+
k∑
s=1

(θs − θ0s)
(
∂− log f

∂θ−r

)
θ=θ0

1θ<θ0

+
k∑
s=1

(θs − θ0s)
(
∂+ log f

∂θ+r

)
θ=θ0

1θ>θ0

+
1

2

k∑
s,t=1

(θs − θ0s)(θt − θ0t )ξirstH−irst(xi)1θ<θ0

+
1

2

k∑
s,t=1

(θs − θ0s)(θt − θ0t )ξirstH+
irst(xi)1θ>θ0 ,

(3.6)

where |ξirst| < 1. Multiplying both sides by 1/N and summing the corresponding

expressions for xIi ’s over i = 1, . . . ,M we may rewrite above equation as

1

N

∂ logL(θ)

∂θr
= A−n +

k∑
s=1

(θs − θ0s)B−n +
1

2

k∑
s,t=1

(θs − θ0s)(θt − θ0t )ξirstC−n r = 1, . . . , k

(3.7)

if 1θ<θ0 where r = 1, . . . , k, fIi(xIij|θ) = fij, |ξirst| < 1 and

A−n =
1

N

M∑
i=1

ni∑
j=1

(
∂− log fij
∂θ−r

)
θ̂=θ

1θ<θ0 =
M∑
i=1

µi

ni∑
j=1

1

ni

(
∂− log fij
∂θ−r

)
θ̂=θ

1θ<θ0 ,

B−n =
1

N

M∑
i=1

ni∑
j=1

(
∂2− log fij
∂θ−r ∂θ

−
s

)
θ̂1θ<θ0=θ

=
M∑
i=1

µi

ni∑
j=1

1

ni

(
∂2− log fij
∂θ−r ∂θ

−
s

)
θ̂=θ

1θ<θ0 ,

C−n =
1

N

M∑
i=1

H−irst(xi)1θ<θ0 =
M∑
i=1

µi

ni∑
j=1

1

ni
H−irst(xi)1θ<θ0

or

1

N

∂ logL(θ)

∂θr
= A+

n +
k∑
s=1

(θs − θ0s)B+
n +

1

2

k∑
s,t=1

(θs − θ0s)(θt − θ0t )ξirstC+
n (3.8)



3.3. Threshold Logistic function Asymptotics 50

r = 1, . . . , k if 1θ>θ0 where r = 1, . . . , k, fIi(xIij|θ) = fij, |ξirst| < 1 and

A+
n =

1

N

M∑
i=1

ni∑
j=1

(
∂+ log fij
∂θ+r

)
θ̂=θ

1θ>θ0 =
M∑
i=1

µi

ni∑
j=1

1

ni

(
∂+ log fij
∂θ+r

)
θ̂=θ

1θ>θ0 ,

B+
n =

1

N

M∑
i=1

ni∑
j=1

(
∂2+ log fij
∂θ+r ∂θ

+
s

)
θ̂=θ

1θ>θ0 =
M∑
i=1

µi

ni∑
j=1

1

ni

(
∂2+ log fij
∂θ+r ∂θ

+
s

)
θ̂=θ

1θ>θ0 ,

C+
n =

1

N

M∑
i=1

H+
irst(xi)1θ>θ0 =

M∑
i=1

µi

ni∑
j=1

1

ni
H+
irst(xi)1θ>θ0 .

We note that from our assumptions (A1) and (A2) we know that

∫
θ<θ0

∂−fi
∂θ−r

dxi =
∂−

∂θ−r

∫
θ<θ0

fidxi =
∂−
∂θr−

(1) = 0,

∫
θ>θ0

∂+fi
∂θ+r

dxi =
∂+

∂θ+r

∫
θ>θ0

fidxi =
∂+

∂θ+r
(1) = 0

and thus ∫
θ<θ0

∂2−fi
∂θ−r ∂θ

−
s

dxi = 0,

∫
θ>θ0

∂2+fi
∂θ+r ∂θ

+
s

dxi = 0.

It follows then that

Eθ

(
∂− log fij
∂θ−r

1θ<θ0

)
=

∫
θ<θ0

∂− log fij
∂θ−r

fijdxi =

∫
θ<θ0

1

fij

∂−fij
∂θ−r

fijdxi = 0,

Eθ

(
∂+ log fij
∂θ+r

1θ>θ0

)
=

∫
θ>θ0

∂+ log fij
∂θ+r

fijdxi =

∫
θ>θ0

1

fij

∂+fij
∂θ+r

fijdxi = 0

and

Eθ

(
∂2− log fij
∂θ−r ∂θ

−
s

1θ<θ0

)
=

∫
θ<θ0

∂−

∂θ−r

[
∂−fij
∂θ−s

1

fij

]
fijdxi
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=

∫
θ<θ0

[
1

fij

∂2−fij
∂θ−r ∂θ

−
s

−
(

1

fij

∂−fij
∂θ−r

)(
1

fij

∂−fij
∂θ−s

)]
fijdxi

= −Eθ

[(
1

fij

∂−fij
∂θ−r

)(
1

fij

∂−fij
∂θ−s

)]
= −Eθ

[(
∂− log fij
∂θ−r

1θ<θ0

)(
∂− log fij
∂θ−s

1θ<θ0

)]
,

Eθ

(
∂2+ log fij
∂θ+r ∂θ

+
s

1θ>θ0

)
=

∫
θ>θ0

∂+

∂θ+r

[
∂+fij
∂θ+s

1

fij

]
fijdxi

=

∫
θ>θ0

[
1

fij

∂2+fij
∂θ+r ∂θ

+
s

−
(

1

fij

∂+fij
∂θ+r

)(
1

fij

∂+fij
∂θ+s

)]
fijdxi

= −Eθ

[(
1

fij

∂+fij
∂θ+r

)(
1

fij

∂+fij
∂θ+s

)]
= −Eθ

[(
∂+ log fij
∂θ+r

1θ>θ0

)(
∂+ log fij
∂θ+s

1θ>θ0

)]
.

By (A3), the quantity

I−rs =
M∑
i=1

µiEθ

[(
∂− log fi
∂θ−r

1θ>=<θ0

)(
∂− log fi
∂θ−s

1θ<θ0

)]

=
M∑
i=1

µiEθ

[(
∂2− log fi
∂θ−r ∂θ

−
s

)
1θ<θ0

]

satisfies 0 < I−rs(θ) <∞ and

I+rs =
M∑
i=1

µiEθ

[(
∂+ log fi
∂θ+r

1θ>θ0

)(
∂+ log fi
∂θ+s

1θ>θ0

)]

=
M∑
i=1

µiEθ

[(
∂2+ log fi
∂θ+r ∂θ

+
s

)
1θ>θ0

]

satisfies 0 < I+rs(θ) <∞.

So by Khintchine’s Theorem and Slutsky’s Theorem

(i) By Khintchine’s Theorem since Eθ

(
∂− log fij

∂θ−r
1θ<θ0

)
= 0 then
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∑ni
j=1

1
ni

∂− log fij

∂θ−r
1θ<θ0

p→ 0 and by Slutsky’s Theorem A−n
p→ 0.

Similarly A+
n

p→ 0.

(ii) By Khintchine’s Theorem since

Eθ

(
∂2− log fij

∂θ−r ∂θ
−
s

1θ<θ0

)
= −Eθ

[(
∂− log fij

∂θ−r
1θ<θ0

)(
∂− log fij

∂θ−s
1θ<θ0

)]
then∑ni

j=1
1
ni

∂2− log fij

∂θ−r ∂θ
−
s

1θ<θ0
p→ −Eθ

[(
∂− log fi
∂θ−r

1θ<θ0

)(
∂− log fi
∂θ−s

1θ<θ0

)]
and by Slutsky’s

Theorem B−n
p→ −I−rs(θ). Similarly B+

n

p→ −I+rs(θ)

(iii) C−n
p→ Eθ[H−irst(xi)1θ<θ0 ] < M−

i and C+
n

p→ Eθ[H+
irst(xi)1θ>θ0 ] < M+

i

Now let η and ε being two arbitrarily small positive quantities and let P (S) denote

the joint density function of the random variables xi = (xIi1, . . . , xIini). We can choose

an n0 = n0(η, ε), such that for all n > n0(η, ε) then

P1 = P
(
|A−

n 1θ<θ0 +A+
n 1θ>θ0 | ≥ η2

)
<

1

3
ε (3.9)

P2 = P
(
B−

n 1θ<θ0 +B+
n 1θ>θ0 ≥ I−rs(θ

0)1θ<θ0 + I+rs(θ
0)1θ>θ0

)
<

1

3
ε (3.10)

P3 = P

(
|C−

n 1θ<θ0 + C+
n 1θ>θ0 | ≥ 2

M∑
i=1

µiM
−
i 1θ<θ0 + 2

M∑
i=1

µiM
+
i 1θ>θ0

)
<

1

3
ε. (3.11)

Now let S denote the set of points where all three inequalities

∣∣A−n 1θ<θ0 + A+
n 1θ>θ0

∣∣ < η2,

B−n 1θ<θ0 +B+
n 1θ>θ0 < I−rs(θ

0)1θ<θ0 + I+rs(θ
0)1θ>θ0 ,∣∣C−n 1θ<θ0 + C+

n 1θ>θ0

∣∣ < 2
M∑
i=1

µiM
−
i 1θ<θ0 + 2

M∑
i=1

µiM
+
i 1θ>θ0

are satisfied.

The complement to S, denoted by S∗ consists of all points xi such that at least

one of the three inequalities is not satisfied. Thus we have P (S∗) ≤ P1 + P2 + P3 < ε

and P (S) > 1− ε. Thus the probability that xi belongs to the set S is greater than

1− ε as soon as n > n0(η, ε).
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Now let 1
n
∂ logL(θ)

∂θr
= 0, r = 1, . . . , k in Equation 3.2 and θ = θ0 ± η so that

A−n 1θ<θ0 −
k∑
s=1

ηsB
−
n 1θ<θ0 +

1

2

k∑
s,t=1

ηsηtC
−
n 1θ<θ0

A+
n 1θ>θ0 +

k∑
s=1

ηsB
+
n 1θ>θ0 +

1

2

k∑
s,t=1

ηsηtC
+
n 1θ>θ0

Now consider that for points in S, |A−n 1θ<θ0 | < η2 or |A+
n 1θ>θ0| < η2 and |C−n 1θ<θ0| <

M−
i or |C+

n 1θ>θ0| < M−
i . This implies that |C−n 1θ<θ0η2| < M−

i η
2 or |C+

n 1θ>θ0η2| <

M+
i η

2, so that every point xi that is in the set S, the sum of the first and the third

terms is smaller in absolute value than η2 + M−
i η

2 = (M−
i + 1)η2 or η2 + M+

i η
2 =

(M+
i + 1)η2, respectively. Specifically,

∣∣A−n 1θ<θ0 + C−n 1θ<θ0η2
∣∣ < (M−

i 1θ<θ0 + 1)η2∣∣A+
n 1θ>θ0 + C+

n 1θ>θ0η2
∣∣ < (M+

i 1θ>θ0 + 1)η2

Furthermore for points in S, B−n 1θ<θ0η < I−rs(θ
0)η or B+

n 1θ>θ0η < I+rs(θ
0)η. So if

(M−
i 1θ<θ0 + 1)η2 is smaller than the absolute value of I−rs(θ

0)η or (M+
i 1θ>θ0 + 1)η2 is

smaller than the absolute value of I+rs(θ
0)η, or equivalently

η <

∣∣∣∣ I−rs(θ
0)

M−
i 1θ<θ0 + 1

∣∣∣∣
η <

∣∣∣∣ I+rs(θ0)

M+
i + 1

1θ>θ0

∣∣∣∣
then the sign of the whole expression will be determined by the second term, so that

we have

∂ logL

∂θ
< 0, θ > θ0
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∂ logL

∂θ
> 0, θ < θ0

because B−n tends to a negative number −I−rs(θ0) and B+
n tends to a negative number

−I+rs(θ0). Now remember the function is continuous at almost all xi by regularity

condition (A1). Thus for arbitrarily small η and ε the likelihood equation will (with

probability exceeding 1 − ε) have a root between the limits θ0 ± η as soon as n >

n0(η, ε). It follows immediately, therefore, that there exists at least one solution of

the likelihood equations, which is consistent estimate of the true parameter vector θ0.

Lemma 3.3.2 (Asymptotic Normality for Case 1 - Cramér (1946) ). Under Assump-

tions (A1) when θ̂ is the vector of ML estimators and θ0 the vector of true parameter

values,
√
N(θ̂ − θ0) has asymptotically as N →∞ the multivariate normal distribu-

tion with zero means and variance-covariance matrix I−10 , where

I0 =
M∑
i=1

µiE

(
∂ log fi
∂θr

∂ log fi
∂θs

)
θ=θ0

= −
M∑
i=1

µiE

(
∂2 log fi
∂θr∂θs

)
θ=θ0

Proof. Letting θ̂ be the solution to the likelihood equation 3.2, then

k∑
s=1

(θ̂s − θ0s)

[
Bn +

1

2

k∑
t=1

(θ̂t − θ0t )Cn

]
= An

k∑
s=1

(θ̂s − θ0s)

[
Bn +

1

2

k∑
t=1

(θ̂t − θ0t )Cn

]
=

1

N

M∑
i=1

ni∑
j=1

(
∂ log fi
∂θr

)
θ=θ0

√
N

k∑
s=1

(θ̂s − θ0s)

[
Bn +

1

2

k∑
t=1

(θ̂t − θ0t )Cn

]
=

1√
N

M∑
i=1

ni∑
j=1

(
∂ log fi
∂θr

)
θ=θ0

√
N

k∑
s=1

(θ̂s − θ0s) =

1√
N

∑M
i=1

∑ni
j=1

(
∂ log fi
∂θr

)
θ=θ0[

Bn + 1
2

∑k
t=1(θ̂t − θ0t )Cn

]
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Note that Bn
p→ −Irs(θ0) and |Cn|

p→ αMi < Mi. Also (θ̂s−θ0s)
p→ 0 thus 1

2

∑k
t=1(θ̂t−

θ0t )Cn
p→ 0. So the whole denominator of the fraction converges to −Irs(θ0) as

N → ∞. Furthermore,
(
∂ log fi
∂θr

)
θ=θ0

has a mean zero and a variance I0. Applying

the Lindburg-Levy central limit theorem, it is clear that
∑M

i=1

∑ni
j=1

(
∂ log fi
∂θr

)
θ=θ0

is

asymptotically normal with mean zero and variance NI(θ0). In virtue of the gener-

alization of Liapounoff’s central limit theorem, it follows that L1(θ
0), . . . , Ln(θ0) are

asymptotically jointly distributed as a k-variate normal distribution, with zero means

and variance-covariance matrix NI0. It follows, therefore, in virtue of Khintchine’s

theorem, that θ̂ have asymptotically a joint k-variate normal distribution with zero

means and the variance-covariance matrix given by 1
NI(θ0)

.



Chapter 4

Development of New MEP

Measurement

4.1 Motivation

The stimulus induced descending excitatory volley that travels through the ner-

vous system to a targeted muscle is known to sum up temporally and spatially. If

the volley is strong enough to exceed the firing threshold of a motoneuron than an

action potential arises (Groppa et al., 2012). And if there are enough action po-

tentials occurring together then a motor response is produced. As a general rule,

increasing the intensity of a stimulus generates a stronger descending excitatory vol-

ley through the nervous system and thereby a stronger MEP response as discharge

thresholds of motonuerons are easily reached (Rossini et al., 2015). In other words,

as the stimulus intensity increases the stationary stochastic process visualized by an

EMG signal becomes amplified and develops into a stronger visual shape of a sum of

action potentials occurring almost simultaneously over low frequencies.
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Figure 4.1: The measured EMG signal of two subjects from the Kukke et al. (2014) TMS Study are overlaid and split
by rest (left column) and task (right column) testing conditions and by measured stimulus intensity (A) 35% (B) 40%
(C) 60% (D) 80% and (E) 100%.
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A visualization of how the EMG changes dependent on stimulus intensity can

be seen in Figure 4.1. The measured EMG signal of two subjects from the Kukke

et al. (2014) TMS Study are overlaid and split by rest (left column) and task (right

column) testing conditions and by measured stimulus intensity (A) 35% (B) 40% (C)

60% (D) 80% and (E) 100%. While the signal is dependent on the subject, overall

the signal isn’t distinct from random noise until 40% for the rest condition and 35%

for the task conditions. At low intensities the applied stimulus is insufficient to bring

the motoneurons to their discharge threshold during the rest testing condition, but in

the task condition the motoneurons are already near their discharge threshold due to

the mild voluntary contraction (Rossini et al., 2015). Hence a response can be seen

at lower intensities in the task conditions than for the rest conditions. Additionally,

looking at the high intensities, such as 80% and 100%, there doesn’t appear to be a

noticeable difference between the EMG signals as a muscle has a limited number of

muscle fibers causing a saturation level to be obtained. One major question arises:

How does one measure muscle response to external sensory information or to a self-

initiated muscle response? If one could accurately measure muscle response, then

neuroscientists could identify loss of proper response as commonly seen in muscle

diseases such as dystonia, Parkinson’s, and ALS.

The most commonly used method of analyzing MEPs is to calculate the difference

between the maximum and minimum magnitude in the EMG signal within a certain

time window. This measurement, known as the peak-to-peak value, was initially used

due to its simplicity, even though it has no strong physiological basis. In intensities

below the threshold value, such as the rest condition of Figure 4.1 (A), where the

signal is similar to IID Gaussian noise, the maximum and minimum magnitudes

are unrelated and therefore the peak-to-peak measurement has no obvious biological

meaning. Furthermore, it doesn’t account for all the peaks of the MEP signal if there
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are other high peaks within the time frame analyzed.

I believe that the maximum and the minimum magnitudes of the EMG signal

are basically the sum of low frequency amplitudes where the phases have shifted

slightly. Rather than using the conventional peak-to-peak measurement of the time

domain, I propose that by integrating the spectrum density over a low frequency range

the summation of action potentials creating the response would be captured. This

would create a more precise and physiological emphasized method of EMG signal

analysis that could determine the MEP response magnitude. This new technique

would provide obvious meaning in strong signals, but also provide some meaning at

low intensities where the signal might be hard to distinguish from IID Gaussian noise.

4.2 Spectral Analysis of EMG Signal

A signal, such as an EMG, can be represented either in terms of its time domain

where the series is evenly spaced over time or in terms of its frequency domain in

which the signal is broken down into sines and cosines with amplitudes and phases

oscillating at various frequencies. The following is a general background of Spectral

Analysis on time series data from Shumway (2011).

In the time domain, a signal is a series of values at certain moments in time

plus random Gaussian noise, such as shown in an EMG signal. Using a well-known

mathematical result, the Discrete Fourier Transform, any time series, xn, can be

broken down into a sum of circular paths representing the same signal in the frequency

domain, X(ωn), for discrete frequencies, ωn, using Equation 4.1 or vice versa using

Equation 4.2:

X(ωn) =
1

N

N−1∑
n=0

xne
−2πiωnn/N (4.1)
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xn =
N−1∑
n=0

X(ωn)ei2πωnn/N (4.2)

where ωn is a Fourier frequency (0Hz to (N − 1)Hz), n/N is the percent of time as

N refers to the number of time samples and n is the current sample being considered,

and X(ωn) is the amount of frequency, ωn, that makes up in the signal. Additionally,

analyzing the components of Equation 4.1 one may think of it as saying that in order

to find the energy (X(ω)) at a particular frequency (ωn), one must spin backwards

(e−i) the signal (xn) around a circle (2π) at that frequency (ωn) and average ( 1
N

∑N−1
n=0 )

the points (n/N) along the path (Azad, 2015).

While a sinusoid (sine or cosine wave) usually refers to a one dimensional space

where there is a back and forth pattern, a circular path is two dimensional in which

one must describe the distance and angle moved. Hence X(ωn) is a complex number

of the amplitude and phase, or the position on a circle in polar coordinates, based

on Euler’s formula, eiφ = cos(φ) + i sin(φ). In this formula φ is the phase angle

hence cos(φ) provides the x-coordinate (horizontal distance) and sin(φ) provides the

y-coordinate (vertical distance) needed to move around a circle in a Cartesian grid

due to the orthogonality of sine and cosine curves, as seen in Figure 4.2.

Using Euler’s formula, Equation 4.1 can be written as

X(ωn) =
1

N

N−1∑
n=0

xn cos(2πωnn/N)− i

N

N−1∑
n=0

xn sin(2πωnn/N)

= Xcos(ωn)− iXsin(ωn)

where Xcos(ωn) is the cosine transformation of the real part and Xsin(ωn) is the sine

transformation of the imaginary part. The Discrete Fourier transform can also be

thought of as a combination of waves/sinusoids, each with a certain amplitude and
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Figure 4.2: Illustration of Euler’s Formula eiφ = cos(φ) + i sin(φ) where φ is the angle
so cos(φ) provides the x-coordinate (horizontal distance) and sin(φ) provides the y-
coordinate (vertical distance) needed to move around a circle in a Cartesian grid due
to the orthogonality of sine and cosine curves.

phase shift, that tries to understand how different oscillations contribute to each

observation. In other words, if one looks at a specific time and add all the Fourier

components’ amplitudes at that time then the original signal can be approximately

recreated for that point. The Discrete Fourier transform is commonly computed using

the fast Fourier transform.

The amount of variation at a certain frequency can be determined by 2 times its

periodogram

I(ωn) = |X(ωn)|2 = (Xcos(ωn))2 + (−Xsin(ωn))2 = X2
cos(ωn) +X2

sin(ωn), (4.3)

i.e. the squared modulus of the Discrete Fourier Transform at that frequency, as

the total sum of squares is equal to 2 times the sum of the periodograms over all

discrete frequencies, ωn. The periodogram is the sample version of the spectral density

or power spectrum, which is a population quantity. The power spectrum gives a

plot of the portion of a signal’s power (energy per unit time) within a particular
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interval of frequencies and similarly viewed as the amount of variance explained by

those frequencies. While only a discrete range of frequencies are estimated using the

Discrete Fourier Transform, if one was able to calculate all possible frequencies then

the integrated power spectrum equals the variance of the time series signal.

As the periodogram is not a consistent estimator of the true power spectrum,

a multitaper method is used. A multitaper method, such as Thomson multitaper

spectrum (Thomson, 1982), averages modified periodograms obtained using a family

of mutually orthogonal tapers (or windows) that have optimal time-frequency con-

centration properties. In general terms, a multitaper method averages K modified

periodograms to produce a multitaper power spectrum density estimate that is con-

sistent. (MathWorks Inc.)

In general, low frequency (or equivalently long period) sinusoids are smooth in

appearance whereas high frequency (or short period) sinusoids are very jagged. By

breaking down a time series into its Fourier components, one can determine what fre-

quencies compose most of the signal. If the signal is very smooth, then the amplitudes

and power of low frequency sinusoids should be large relative to the high frequency

sinusoids. Similarly, if the signal is very jagged, then the amplitudes and power of

high frequency sinusoids should be large relative to the low frequency sinusoids. For

a IID Gaussian noise time series, one would expect all the sinusoids to be of equal

importance. An example of the signal break down can be seen by looking at Figure

4.3.
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Figure 4.3: (A) shows the EMG recording of three applied stimulus intensities (40%, 60%, and 80%) taken by one pair
of investigators on one subject from the Kukke et al. (2014) TMS Study. (B) illustrates the first 50 cosine functions
with their phase shifts and amplitudes. (C) plots the frequency and phase modified time modulo 2π. (D) shows the
amplitudes of the Fourier components at each estimated frequency. (E) provides the estimated spectrum density by
Thomson’s multi-tapering method over the frequency range [0, π/2].
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Figure 4.3 analyzes the EMG recording of three applied stimulus intensities (40%,

60%, and 80%) taken by one pair of investigators on one subject from the Kukke

et al. (2014) TMS Study. As the peak-to-peak value from the study was computed

from the unrectified EMG signal in the 50-millisecond response window beginning

10 milliseconds after the TMS pulse (2.51 seconds to 2.56 seconds), I will apply my

analysis on the same range. Part (A) shows the recorded unrectified EMG signal over

this time range. As seen earlier, as the intensity increases the EMG signal becomes

more visible and more amplified. Part (B) illustrates the first 50 cosine functions

with their phase shifts and amplitudes superimposed for the corresponding signal in

(A). Part (C) plots the frequency and phase modified time modulo 2π, which shows

when frequencies hit zero simultaneously. In other words, this illustrates when the

sinusoids’ phases align and corresponds to when the EMG signal is at its maximum

peak as all of the sinusoids are increasing and the amplitudes are positive. Part (D)

shows the amplitudes of the Fourier components at each estimated frequency so that

one can determine what frequencies have the most effect on the signal. This is another

depiction of part (B) but ignores the phase component. Lastly, part (E) provides the

estimated spectrum density by Thomson’s multi-tapering method over the frequency

range [0, π/2], illustrating the amount of variance captured by each frequency.

As expected, at low stimulus intensities such as 40% or lower for the subject shown

in Figure 4.3 no noticeable signal occurs as the EMG signal appears to be IID Gaussian

noise. When taking the Fourier transformation there is no overall component with

a large influence on the data, resulting in all the sinusoids to be equally important

and small in amplitude. As the stimulus intensity increases the EMG signal becomes

more pronounced and corresponding Fourier components have higher amplitudes.

Additionally, with a stronger stimulus intensity more Fourier components occur at

low frequencies and the waves begin to align with one another at the time of the EMG
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signal’s maximum peak. This simultaneous alignment can be further seen in Part (C)

where the amplitudes of the Fourier components are ignored and one looks merely at

the frequency and phase shift of each component. For low stimulus intensities there is

not a noticeable agreement of the Fourier components, but as the intensity increases

one starts to see that the components phases begin to align with one another thereby

creating the maximum peak of the EMG signal shown in Part (A). This supports

my hypothesis that the motoneurons are becoming synchronized with one another to

produce a stronger MEP response as the stimulus intensity increases. Furthermore,

the amplitudes, Part (D), of low frequency waves are larger relative to high frequency

waves as the intensity increases and the power spectrum, Part (E), becomes more

concentrated at lower frequencies. And even though there is not a perfect alignment,

I believe a measurement equivalent to the traditional peak-to-peak measurement, the

maximum minus the minimum magnitude of the EMG signal, can be developed by

analyzing the amplitudes and phases of the Fourier components.

4.3 Theoretical Properties of the Maximum of a

Stochastic Process

Several theoretical properties of the maximum of a stochastic process exist, which

may help provide meaning to a MEP measurement of the maximum minus the min-

imum magnitudes. Imagine that we are looking at the EMG signal of an intensity

before the CMT intensity, which could be considered IID Gaussian noise. From well

established theory and extreme value theory, established by Gnedenko (Cramér, 1946)

and shown in Lemma 4.3.1, a limiting function of the maximum value does exists for

IID cases. Due to the symmetry of the maximum minus the minimum magnitude
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of an EMG signal, one could argue then the peak-to-peak measurement is basically

twice the maximum magnitude.

Lemma 4.3.1 (Limiting Distribution of IID Gaussian noise - Gnedenko). If a random

variable u is defined as

max
0≤n≤T

ξn =
√

2 log T − log log T + log 4π

2
√

2 log T
+

u√
2 log T

,

then we have for any real z

lim
T→∞

P{u ≤ z} = e−e
−z
.

Watson (1954) extended this result by deriving that the same limiting distribution

could be applied to a finite moving average, Lemma 4.3.2. Intuitively this makes since

as when one looks at moving averages very far apart, they are essentially independent.

Since there is a great deal of freedom as to where the maximum peak of the EMG

signal occurs, the same limiting distribution as the IID Gaussian noise case can be

applied.

Lemma 4.3.2. Let {xi} be a sequence of random variables, unbounded above and

generated by an m-dependent strictly stationary stochastic process with the property

that

lim
c→∞

1

P (xi > c)
max
|i−j|≤m

P [(xi > c), (xj > c)] = 0

Then, if ξ = nP [xi > cn(ξ)], for ξ fixed,

lim
n→∞

P [xi ≤ cn(ξ); i = 1, . . . , n] = e−ξ
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Cramér (1965), expanded this result further by showing that as long as an infinite

filtering is applied to a stationary stochastic process that has a spectral density, then

the covariance function is absolutely integrable (or summable) and the same limiting

distribution for the order statistics of n successive observations in a sequence of IID

random variables still holds, Lemma 4.3.3 and 4.3.4.

Lemma 4.3.3. Let {ξi} be IID standard normal random variables. Also let x(t) with

0 ≤ t < ∞ and {xi} be random variables of a standard normal and stationary pro-

cesses with continuous or discrete time, respectively. We assume that the stationary

process satisfies the strong mixing condition (Volkonskii and Rozanov, 1961). For the

continuous time process, x(t), we also assume there is a spectral density, f(λ), such

that

E{x(t)x(0)} =

∫ ∞
0

cos tλf(λ)dλ, (4.4)

λn =

∫ ∞
0

λnf(λ)dλ <∞ for 0 ≤ n ≤ 4. (4.5)

The sample function x(t) will then be continuous and have continuous derivatives,

with a probability of 1.

If a random variable u is defined as

max
0≤n≤T

ξn =
√

2 log T − log log T + log 4π

2
√

2 log T
+

u√
2 log T

,

then we have for any real z

lim
T→∞

P{u ≤ z} = e−e
−z
.

Lemma 4.3.4. Let v (discrete) and w (continuous) be random variables by means of
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the relations

max
0≤n≤T

xn =
√

2 log T − log log T + log 4π

2
√

2 log T
+

v√
2 log T

(discrete case) (4.6)

max
0≤t≤T

x(t) =
√

2 log T − log(2π/
√
λ2)√

2 log T
+

w√
2 log T

(continuous case). (4.7)

Under the conditions above, the variables v and w will have the same limiting distri-

bution as u:

lim
T→∞

P{v ≤ z} = lim
T→∞

P{w ≤ z} = e−e
−z
.

Building upon these theoretical properties, I plan to show that by integrating over

all frequencies the spectrum density becomes more concentrated towards low frequen-

cies as the intensities increase and therefore the maximum minus the minimum may

have a limiting distribution. Essentially, the realizations in the EMG signal are taking

on a shape that is more periodic looking, as shown in Figure 4.1, and will also have

a similar limiting distribution to the described lemmas above. If this is established,

I would have a new, physiologically based technique of capturing the structure of the

MEP response from the EMG signal, which could significantly improve the analysis

of brain function and motor control with or without external stimulation.



Chapter 5

Conclusion and Future Research

5.1 Conclusions

5.1.1 Recruitment Curve Analysis

In summary, I have shown that better recruitment curve estimates can be obtained

by using an intensity dependent noise distribution rather than the traditional constant

additive Gaussian noise model as the data varies by intensity, as seen in Figure 2.2.

The CMT intensity value and the baseline MEP size can also be determined within

the model parameterization, avoiding additional analysis and high correlation with

other parameters. Analogous to the Boltzmann Sigmoid function used in Kukke

et al. (2014), this new fitting method, the Threshold Logistic with intensity dependent

Gaussian (or mixture) noise, can still be beneficial to individuals that have a hard time

maintaining stillness, such as children and people diagnosed with motor disorders, as

only 40 TMS pulses distributed over the full range of the stimulator output at 5%

increments are need to obtain a reliable representation of the recruitment curve and

all necessary clinical parameters.

69
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There are several limitations and future testing of all the curve fitting methods

presented in this thesis that would be worthwhile. It is well-known that the input-

output properties of the corticospinal system vary for different muscles and may vary

in the number of stimulus pulses at each intensity necessary needed to determine the

recruitment curve parameters. While not explored, it is highly likely that none of

these curve fitting methods are appropriate for muscles with saturation MEP sizes

that are not measurable within the range of the stimulator output available. Ad-

ditionally, all three curve fitting models using Gaussian noise still appear to have

bias in their estimation of the baseline MEP size at low intensities, as the Gaussian

noise distribution allows negative responses. The intensity dependent mixture of nor-

mal and lognormal distributions for the noise allows low and middle intensities to be

lognormally distributed while high intensities to be symmetrically distributed about

the mean, thus eliminating negative MEP responses from being accounted for in the

model but and doesn’t fully account for the variability as seen in the plot of the

scaled squared residuals, Figure 2.6. Furthermore, from the Monte Carlo simulations

and TMS study the mixture model resulted in similar fits as the intensity dependent

Gaussian noise distribution so it might not be worth the added model complexity

even though it is more biologically based.

While the CMT intensity, an important neurophysiologic feature, can be seen vi-

sually on the recruitment curve, all conventional models do not contain a particular

parameter within the model equation. My new model, the Threshold Logistic, ac-

counts for this value in its parameterization. Benefits of this new model include not

having to use post-hoc analysis to determine an estimate value while still providing

researchers with the ability to estimate the CMT without additional TMS pulses. It

is also based on the entire curve and not an arbitrary voltage level as most other

CMT estimations methods require. This highlights another benefit of obtaining a full
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recruitment curve rather than sampling at only some stimulus intensities, although

further testing should be conducted with other CMT estimation methods.

5.1.2 MEP measurement

Further exploration into the theoretical properties described in Chapter 4 needs to

be done before one can apply the process to an EMG signal of a motor-evoked poten-

tial response. However, the basic framework for such application has been provided,

illustrating that a physiological and mathematical explanation could be applied to

the MEP measurement, which would be similar to the time domains maximum minus

minimum magnitude. Additionally, this new MEP measurement technique captures

more information than the conventional peak-to-peak method as the power spectrum

density accounts for the variability within the signal.

5.2 Further Research

There are relatively few statistical methods for recruitment curve analysis and

extremely few relating to the motor-evoked potential measurement. While variability

of the MEP measurement has started to get explored within the last decade, no

growth of the variability of the recruitment curve has been previously been explored.

Furthermore, parameterization of the cortico-motor threshold intensity level within

the recruitment curve model, allowing the method to be considered ”all-in-one” has

not been previously established. As for the motor-evoked potential measurement

taken from an EMG signal, no strong physiological or statistical basis exists, making

the development of both within the measurement extremely important to further

advancements within brain to muscle analysis. Thus this dissertation is a starting

point for the advancement of motor-evoked potential measurements. There are still
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however lots of areas for future research within both major sections.

First, with regards to the recruitment curve analysis, one of the noted limitations

of the conventional method fit, bias within the parameter estimation of the baseline

MEP size and CMT estimate, still exists within the new intensity dependent methods.

Assuming a mixture of lognormal and normal distributions as the noise distribution

that is intensity dependent provides a biological and statistical foundation that should

account for this, however, no statistical improvement from the intensity dependent

Gaussian was determined. Thus further testing of the bias in such parameters should

be tested, possibly using resampling techniques.

Second, it is of great importance to establish accurate estimation of the CMT in-

tensity value. Detailed testing of the recruitment curve estimate versus traditionally

used methods, such as the adaptive threshold hunting created by Awiszus (2011),

has not been analyzed yet. From the brief analysis of the recruitment curve models

against the protocol recommended by the International Federation of Clinical Neu-

rophysiology (Rossini et al., 1994; Rothwell et al., 1999), it was determined that the

CMT estimate values from these models are not bad approximations but possibly

lacking some information. Therefore, further analysis through simulations and stud-

ies could lead to the improvement of the recruitment curve model fit. Possibly with

the improvement of using external CMT estimation techniques as prior knowledge in

the development of the recruitment curve fit.

Expanding on the original purpose of the Kukke et al. (2014) TMS Study, explo-

ration of the number of stimuli and number of measurements taken at each stimuli

should be explored using the new recruitment curve method, the Threshold Logistic

with intensity dependent Gaussian noise, instead of the conventionally used method,

the Boltzmann Sigmoid with constant additive Gaussian noise. Additionally, incorpo-

rating experimental design methods, Design and Analysis of Computer Experiments
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(Santner, 2003) or Response Surface Methodology (G. E. P. Box, 1951), within the

experiment could improve the methodology of how to test stimuli. Such analysis may

determine that only one point at each stimuli intensity at 5% increments or even less

tested stimulus intensities could lead to a reliable estimate. Exploration of whether

there exists an investigator effect, which is usually not assumed within testing, or even

if there is a subject effect could also be important to the improvement of recruitment

curve and brain to muscle response analysis.

Lastly, switching away from the recruitment curve analysis and looking more in

detail at the MEP measurement technique, a mathematical and physiological basis

may soon be applied to the maximum minus the minimum measurement. The theo-

retical properties of the limiting distribution of the maximum of a stochastic process

as well as determination of what range of frequencies should be considered low and

be integrated over also needs to be explored. Once shown, major developments in

the analysis of the brain to muscle interface could be gained, as this new measure-

ment captures more information within its value than the traditional peak to peak

technique. All of this might involve the use of simulations to test, if an empirical

model for the EMG signal can be determined, or applying it to the Kukke et al.

(2014) TMS Study data. Then the results can be compared with the current peak-

to-peak measurement. If shown to be similar, but with the addition of mathematical

and physiological meaning this would be a great improvement. Additionally, it could

be found to be a better measurement and then could be used as the points that

make up a recruitment curve or even in CMT exploration protocols described in the

introduction. All of this could lead to numerous developments in neuroscience.
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Appendix

A.1 Calculating CMT intensity for Boltzmann Sig-

moid Curve

As the threshold is not an explicit parameter of the Boltzmann equation it is

estimated after the fact by fitting a tangent line to the steepest part of the recruitment

curve located at (s50, µ(s50)) with a peak slope value of MEPsat
4k

.

Proof.

µ(s) = EMGbase +
MEPsat

1 + e(s50−s)/k

dµ(s)

ds
= µ′(s) =

MEPsat
k

e(s50−s)/k

[1 + e(s50−s)/k]2

µ′(s50) =
MEPsat

k
e0

[1 + e0]
=
MEPsat

4k

74



A.2. Derivation of Threshold Logistic Equation 75

A.2 Derivation of Threshold Logistic Equation

Let x = s be the stimulus intensity and y = µ(s) be the mean response at that

stimulus intensity, then the differential equation of the Threshold Logistic is

dy

dx
=


By(C − y) x > T0

0 0 ≤ x ≤ T0

where y(x) = D if 0 ≤ x ≤ T0. This is a growth rate equation, where B is the max

per capita growth rate for a population, the number of muscle fibers inhibited and

excited during the stimulus, and C is the carrying capacity, which one can think of

as the maximum amount of muscle fibers in a target muscle. Hence C − y = 1 − y
C

is constrained so it is always less than C.

Proof.

dy

dx
= By(C − y)∫

dy

y(C − y)
=

∫
Bdx

Trick of partial fractions∫
dy

Cy
+

∫
dy

C(C − y)
=

∫
Bdx

log(y)− log(C − y) = Bx+ z

log

(
y

C − y

)
= Bx+ z

y

C − y
= eBx+z

y = ezeBx(C − y)

= AeBx
(

1− y

C

)
= AeBx − Ay

C
eBx
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y +
Ay

C
eBx = AeBx

y

(
1 +

A

C
eBx
)

= AeBx

y =
AeBx

1 + A
C
eBx

Ce−Bx

Ce−Bx

=
AC

Ce−Bx + A

Since y(x) = D for x ≤ T0 or rather y(T0) = D for x > T0 then

D =
AC

Ce−B(0) + A

=
AC

C + A

DC +DA = D(C + A) = AC

DC = AC − AD

= A(C −D)

A =
DC

C −D

therefore let x = (s− T0)1s>T0 where

y =
AC

Ce−Bx + A

=
DC
C−DC

Ce−Bx + DC
C−D

C−D
C

C−D
C

=
DC

(C −D)e−Bx +D
=

DC

Ce−Bx −De−Bx +D

=
DC

D
(
1 + C

D
e−Bx − e−Bx

)
=

C

1 + e−Bx
(
C
D
− 1
)

=
C

1 + e−Bx
(
C−D
C

)
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=
C

1 + e−BxeA
let A = log

(
C −D
D

)
=

C

1 + e−Bx+A

=
C

1 + e−Bx+EB
let E =

A

B

=
C

1 + e−B(x−E)
=

C

1 + e−B[(s−T0)1s>T0−E]

Trick of Partial Fractions; should be true when y = 0 and y = C

1

y(C − y)
=

A

y
+

B

C − y
1 = A(C − y) +By

when y = 0 =⇒ 1 = A(C − 0)

1 = AC

A =
1

C

when y = C =⇒ 1 = = A(C − C) +BC

1 = BC

B =
1

C

∴
1

y(C − y)
=

1

Cy
+

1

C(C − y)

A.3 Kukke et al. (2014) Model Fit Comparison

Graphs
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Figure A.1: Subject 2 Curve Fitting Comparison
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Figure A.2: Subject 3 Curve Fitting Comparison
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Figure A.4: Subject 6 Curve Fitting Comparison
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Figure A.5: Subject 7 Curve Fitting Comparison
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Figure A.6: Subject 8 Curve Fitting Comparison
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Figure A.7: Subject 9 Curve Fitting Comparison
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Figure A.8: Subject 10 Curve Fitting Comparison
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