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Abstract 

 

In order to resolve the turbulent and three-dimensional (3D) structures of combustion 

processes, four-dimensional (4D) diagnostics, meaning time-resolved measurements 

including all three spatial dimensions, are required. These 4D measurements are critical in 

understanding flame behaviors in a multitude of practical applications. Computed 

tomography (CT) is a key tool in obtaining instantaneous 3D flame measurements by using 

multiple two-dimensional (2D) line-of-sight projections collected from cameras to 

generate a 3D reconstruction of a signal emission distribution within a flame, and these 

measurements can be considered 4D when they are time-resolved. However, obtaining 4D 

combustion measurements with sufficient spatial and temporal resolution has many 

challenges. While improvements in camera technology and the use of additional cameras 

may yield higher spatial resolution, typically these factors are limited for a given 

experimental setup. Therefore, new techniques must be developed to maximize the spatial 

resolution of a given setup. Additionally, due to the large amounts of data required for 3D 

CT, which is compounded by the need for time-resolved measurements, improved 

techniques are desired that can reduce the computational costs in both time and memory 

while maintaining reconstruction accuracy. The primary focus of this dissertation is the 

development and analysis of improved algorithms to achieve the goals of reducing 

computational costs without a loss in accuracy, while also implementing them in such a 

way as to improve the spatial resolution of the reconstructions.  

First, this dissertation describes an adaptive spatial discretization (ASD) technique 

that aims to reduce computational costs without a loss in accuracy by identifying regions 

within the reconstructed measurement volume that require either high or low spatial 

resolution and treating these regions respectively with a fine or coarse discretization. This 

way, only regions that require a higher resolution, mainly those regions with large spatial 

gradients, are solved using a fine discretization, so that the total amount of computational 

resources required for CT can be reduced while still maintaining accuracy in important 

regions. This method was validated using a phantom study using six cases that represent a 

range of distributions found in tomography applications. 
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In addition to the ASD method, a pixel masking method is described that has been 

applied to volumetric laser-induced fluorescence (VLIF) measurements. The masking 

method works on the principle that all voxels that contribute to pixels containing signal 

below an estimated signal floor must contain no substantial emission and can be removed 

from the tomographic reconstruction. This reduction of pixels and voxels reduces the 

computational costs of CT without adversely affecting reconstruction accuracy. This 

method was validated by directly comparing the results of the VLIF reconstruction to 2D 

planar LIF (PLIF) measurements. Both the ASD and masking techniques were used to 

reduce the computational costs of CT without reduction in reconstruction accuracy and also 

showed the ability to improve spatial resolution, satisfying two key needs of obtaining 3D 

and 4D combustion measurements.  

In terms of practical demonstration, limited space and harsh conditions are typical 

and present challenges in implementation. Under many practical conditions of interest, it 

is difficult to obtain experimental data with enough views to perform tomography with 

adequate accuracy and resolution. These challenges are worsened under field conditions, 

outside of a laboratory environment. To enable visualization of flames under practical 

conditions, this work describes a proof-of-concept demonstration using fiber-based 

endoscopes (FBE) in conjunction with a single camera. Results showed the design could 

significantly reduce the equipment cost and footprint and allowed visualization of flames 

inside a ground vehicle testbed with limited viewing access. The time-resolved 3D 

measurements were used to resolve the temporal dynamics and spatial structures of the 

target flame under challenging experimental conditions. This experimental setup has 

shown to be capable of delivering 4D tomographic capabilities under challenging 

conditions and may serve as a promising platform for future practical measurements. With 

a combination of progress in both data acquisition and data processing techniques, as 

described earlier, this dissertation contributes to the advancement of combustion 

tomography and diagnostics, as well as providing techniques that may be applicable to a 

wide range of tomography applications. 
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Chapter 1 

 

1. Introduction 

 

1.1. Background and Motivation 

The study of combustion processes continues to be an area of active research across 

many disciplines. This includes studies to improve the efficiency and design of combustion 

engines, propulsion devices, and industrial power generation [1-3], expand our 

fundamental understanding of combustion mechanics [4, 5], and improve safety in fire 

events [6-8]. Towards these goals, combustion diagnostics seek to measure and 

characterize flame properties such as temperature and chemical species distributions [9], 

heat release rate and equivalence ratio [10], and flame structure [11], to better understand 

the underlying flame dynamics. However, such measurements can be difficult to obtain 

using traditional experimental techniques due to a lack of both spatial and temporal 

resolution, as well as being invasive and challenging in the harsh environments near 

combustion processes. For instance, the use of multiple thermocouples to measure the 

flame temperature distribution not only severely lacks spatial resolution, but also risks 

disturbing the flow itself [12]. For this reason, optical techniques are optimal for multi-

dimensional combustion measurements. 

Much work has been devoted to obtaining one-dimensional (1D) and two-

dimensional (2D) measurements of various flame parameters via less invasive means [13-

15]. However, these measurements fail to fully characterize flames in most practical 

combustion processes because these flames are inherently unsteady and three-dimensional 

(3D). In order to completely characterize and understand flame mechanics, 3D 

measurement techniques are required. One method to extend the 2D laser technique to 3D, 

called planar laser-induced fluorescence (PLIF), was to quickly scan the laser sheet across 

the flame, although this technique suffers from poor temporal and spatial resolution and 

also significant equipment considerations that would be infeasible under field conditions 
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[16, 17]. In another study, 3D flame surface density was estimated using 2D measurements 

but relied on averaged parameters, models, and assumptions of flame behavior [18]. These 

examples highlight the need for direct 3D measurements to improve temporal and spatial 

resolution, as well as inform computational models of combustion.  

Computed tomography (CT) is a valuable tool in the study of combustion, as it 

enables multi-dimensional measurements to be acquired through non-invasive means [19-

21]. CT is an optical measurement technique that uses multiple line-of-sight images, called 

projections, from cameras to generate an instantaneous 3D reconstruction of a signal 

distribution [22]. In many applications of tomography, the measurement volume is 

discretized into small cubes called voxels (analogous to 3D pixels) that represent the signal 

intensity at each voxel location, and the voxel intensities are solved for using the measured 

projections. While CT is mainly known for its use in the medical field, it has been used 

across many different disciplines, including material inspection, geophysics, and, most 

important to this dissertation, combustion studies [23-26].  

When applied to combustion processes, CT typically aims to reconstruct a 3D 

emission signal distribution. Depending on what is being measured, the signal could be 

chemiluminescence, incandescence, or fluorescence from soot or radicals in the flame [27]. 

In many cases, the collected signal is generated by the flame, while in others these signals 

can be induced using a laser. As mentioned, PLIF has long been an optical technique for 

the study of flames, but recent advances in laser technology have allowed for volumetric 

LIF (VLIF) measurements to be taken, to which CT has been applied to obtain direct 3D 

laser-induced flame measurements [28, 29]. In these cases, the thin laser sheet has been 

expanded to a thicker laser slab that illuminates the entire measurement volume, and 

multiple cameras can simultaneously image the emitted signal. 

Regardless of the method used to collect a flame signal, the 3D reconstruction 

process has significant computational costs in both time and memory [30]. To reliably 

apply tomography to generate a 3D signal reconstruction, three simultaneous line-of-sight 

projections are needed at a minimum, although more are necessary to improve accuracy 

and resolution [19, 31, 32]. In one case, as many as 40 simultaneous images were collected 

for use [33]. Due to the large amounts of data collected, iteratively solving for the 3D signal 
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distribution using tomography requires significant computational resources. For example, 

one typical setup using five megapixel cameras required approximately 50 GB of memory 

[31]. In addition, many minutes or even hours may be required to obtain a 3D 

reconstruction of a single instantaneous frame [34, 35]. As cameras continue to improve in 

pixel resolution, while further improving the available spatial resolution and scale of 

tomographic reconstructions, the computational costs will continue to increase. 

Additionally, with the use of high-speed cameras, time-resolved flame measurements can 

be acquired that enable 4D flame analysis that is able to resolve the transient nature of 

spatial structures. However, because each frame must be reconstructed individually, the 

computational costs are compounded even further for 4D measurements. For these reasons, 

and with the ultimate goal of real-time diagnostics, significant improvements to the 

computational efficiency of tomography algorithms are sorely desired [36]. The first key 

motivation of this dissertation is the development and analysis of improved algorithms to 

reduce the computational requirements of obtaining 4D tomography measurements, with a 

focus on combustion.  

While the application of CT to flame diagnostics has enabled instantaneous 3D 

measurements, obtaining these measurements is not without challenge. The setups for 

multi-dimensional flame measurements, particularly those that include laser diagnostics, 

can be expensive and have a significant physical footprint. A typical experimental setup 

may include multiple high-speed cameras to capture images of the target flame from 

multiple orientations [37, 38]. On-site and in situ setups may be unable to accommodate 

many cameras due to space or viewing limitations, so alternative solutions are required to 

enable data acquisition [33].  

Endoscopes have proven to be useful tools that allow for image acquisition 

equipment, such as cameras, to be located safely away from hazards, while also being small 

enough to place in confined locations. For example, one group placed an endoscope within 

the combustion chamber of a test engine cylinder to assist in combustion imaging, which 

would otherwise be impossible using a traditional camera setup [39]. Recent advances in 

fiber-optic technology allow for multiple fiber inputs to collect into a single output that can 

be viewed by a single camera. In this way, a single camera can simultaneously view a flame 
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from multiple orientations, reducing a flame visualization setup’s financial cost and 

physical footprint. While multi-input fiber-based endoscopes (FBE) have been used in 

other works, they have been implemented in laboratory environments and have not yet 

been demonstrated for large-scale field measurements prior to this work [34, 40]. 

The second key motivation for this dissertation is therefore the demonstration of a 

proof-of-concept integrated sensor design to visualize large, turbulent flames in situ and 

under field conditions. A large number of injuries and causalities are caused by, or related 

to, fire incidents in ground vehicles [41, 42]. Due to the very fast evolution of fire incidents 

within vehicles and their complicated confined space, understanding the development and 

propagation of the flame front is of critical importance for safety concerns.  In support of 

this, a project funded by the U.S. Army Research Lab aimed to study the evolution of 

quickly evolving flames within ground vehicles by simulating fire events within a ground 

vehicle testbed. Figure 1.1 shows the testbed that contained the large, turbulent flames that 

were visualized in this work. However, to fully characterize the flames in this scenario, 

Figure 1.1: Ground vehicle testbed where flame measurements were taken, located at 

Aberdeen Proving Grounds, MD. Photo courtesy of the U.S. Army Research Lab. 
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time-resolved 3D measurements were required. This work is part of an ongoing campaign 

with the Army Research Lab to better understand the volatile flames encountered in these 

dangerous vehicle fire scenarios, with the goal of informing the design and development 

of automated fire extinguishing systems.  

1.2. Objectives and Contributions 

Based on the challenges described in reducing the large computational cost of CT, 

as well as obtaining multi-dimensional flame measurements under field conditions, the 

motivation of this dissertation is twofold: first is the development and analysis of two 

improved algorithms for tomography to reduce computational cost while maintaining or 

improving accuracy, and second is the demonstration of an integrated sensor design to 

improve data acquisition and reduce the experimental setup footprint for large-scale 

combustion measurements. 

In Chapter 2, an adaptive spatial discretization (ASD) technique was developed as 

a method of reducing the computational resources required to perform CT, while also 

offering the capability to improve spatial resolution. In highly turbulent flames, there may 

be regions where the spatial gradient of the signal intensity (e.g., LIF, chemiluminescence, 

or other forms of signal generation from the flame) does not change greatly. These regions 

in space do not require as fine a spatial discretization when reconstructing as regions with 

larger spatial gradients to achieve a similar level of accuracy. The ASD technique identifies 

regions with high and low spatial gradients by first performing a preliminary reconstruction 

using a coarse discretization throughout the measurement volume. Regions with large 

spatial gradients are deemed as regions of interest and are treated with a finer discretization 

and the reconstruction is completed over the mixed-discretized mesh. This technique is 

validated by a phantom study that uses six different known signal distributions that allow 

for direct comparison of results. 

Chapter 3 describes a 3D reconstruction technique called the pixel masking method, 

which is analyzed and validated against the traditional method of reconstruction without 

the use of masking. The goal of the pixel masking method is to reduce the computational 

requirements of the reconstruction process while maintaining reconstruction accuracy by 

omitting voxels that contribute to pixels with no flame signal. Based on the estimated error 
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in the camera view angle, a buffer region was implemented around regions of the expected 

flame signal to ensure that these regions would not be unintentionally masked. The 

validation of this technique was enabled by the use of simultaneous 2D planar and 3D 

volumetric laser-induced fluorescence (LIF) measurements of a turbulent jet flame. The 

planar LIF (PLIF) measurements were taken to be the ground truth, as PLIF is a well-

established technique in laser diagnostics. The volumetric LIF (VLIF) measurements were 

used to generate a 3D reconstruction of the flame using CT. For comparison, a cross-

section of the reconstruction was compared to the corresponding PLIF measurement taken 

at the same plane. In addition to flame contour length, the thickness of the CH layer was 

measured and compared between the PLIF and VLIF measurements. 

In Chapter 4, an integrated sensor design was developed as a proof-of-concept to 

enable large-scale flame visualization within a ground vehicle testbed under field 

conditions. The sensor collected data using a 9-to-1 FBE with integrated lenses in 

conjunction with a single camera, and was capable of acquiring projections from nine 

different orientations simultaneously. Data was collected for two flame conditions: a 

smaller propane torch flame, and a larger jet fuel pool flame. 4D flame measurements were 

obtained from this data using a CT algorithm to solve for an instantaneous reconstruction 

of the flame signal for each time-resolved frame. Due to the large uncertainty in the view 

angle for each FBE input, an iterative process was used to optimize the view angles during 

reconstruction. The time-resolved 3D measurements were combined to visualize and 

analyze the evolution of 3D flame structures over time, including velocity calculations of 

specific flame features, as well as the temporal evolution of the estimated flame surface 

area. 

Chapter 5 includes a summary of the dissertation and its contributions to the field 

of combustion measurements and emission tomography. Additionally, future research 

possibilities are discussed that may expand on the work described in this dissertation. 

Finally, Appendix A outlines additional related research efforts that have been 

explored and require additional work or are beyond the scope of this dissertation. First, A.1 

describes the implementation of the integrated FBE-based sensor design, which was 

successfully used for flame visualization within the ground vehicle testbed, to visualize a 



7 

 

simulated Mach 5 scramjet flame within UVA’s Hypersonics Research Complex. Next, 

A.2 describes an alternative approach to ASD, where regions of large gradients within the 

measured projections were used to inform which regions in the measurement volume 

would be treated with a finer discretization. Finally, A.3 describes an application of CT 

using proper orthogonal decomposition (POD), where the projections were used to 

iteratively solve for the scalar amplitudes of 3D eigenvector modes (obtained by applying 

POD on a large training set), as opposed to solving for each individual voxel within the 

measurement volume. 

A summary of the main contributions of this dissertation are as follows: 

1) The ASD technique was developed that was able to identify regions of large spatial 

gradients within a reconstruction volume with no a priori information. This 

information was used to generate a mixed discretization where regions of high and low 

spatial gradients were treated with fine and coarse discretization, respectively. In this 

way, the total number of voxels solved could be reduced, and computational time and 

memory requirements were saved without a loss in accuracy, and even a gain in spatial 

resolution in some cases. 

2) A pixel masking method was analyzed and validated using a direct comparison of PLIF 

and VLIF measurements. The flame front contour length and thickness of the CH layer 

were calculated and compared. The method’s accuracy was improved by implementing 

a buffer region based on the estimated error in view orientations. 

3) A proof-of-concept sensor setup based on FBEs and a single camera was designed and 

implemented that enabled multi-dimensional (time-resolved 3D) visualization and 

analysis of large-scale fire events within a ground vehicle testbed under field 

conditions. Computed tomography was used to estimate the emission distribution and 

the time evolution of key flame features and surface area were calculated. 
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Chapter 2 

 

2. Development of an Adaptive Spatial Discretization 

Technique 

 

A subset of this work has been submitted to Helyon under the title “Adaptive Spatial 

Discretization for Volumetric Emission Tomography” at the time of writing. 

 

Abstract 

 

This chapter describes a new tomography technique to significantly reduce computational 

costs while maintaining reconstruction accuracy by applying an adaptive spatial 

discretization (ASD) within a 3D measurement volume. The ASD technique determines 

regions of high interest within the measurement volume with minimal computational 

resources by identifying regions with large spatial gradients in a preliminary coarse 

reconstruction. Then it applies a finer discretization to only the regions of high interest, 

allowing for a reduction in overall computational costs without sacrificing accuracy in 

important regions. A variety of phantom studies were performed to validate the technique 

and quantify the reconstruction accuracy and reduction in computational time. The results 

showed that this application of ASD yielded a reduction in computational time of up to 

50%, while the reconstruction error increased by no more than 0.21% across six phantom 

cases. Through another set of phantom tests, where a high-resolution phantom is 

reconstructed with a limiting number of camera pixels, it was found that the ASD technique 

not only reduced computational time but could also improve the accuracy and spatial 

resolution under this more realistic scenario.  
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2.1. Introduction 

 While CT has become an indispensable tool for non-invasive imagining, the ever-

increasing need for more data and higher-resolution reconstructions has motivated the 

development of improved tomography algorithms. Many methods have been developed in 

the past to reduce the computational cost of tomography while maintaining reconstruction 

accuracy and resolution [27]. As an example, masking methods can reduce the size of the 

measurement volume to be reconstructed by limiting the reconstruction to regions only 

where the signal level is high enough (compared to the noise level) and are discussed 

further in Chapter 3 [43, 44]. The inclusion of a priori information has also been shown to 

improve reconstruction times, although prior information is not always available [45]. In 

some cases, large datasets from a particular setup have been collected and analyzed that 

can better inform future reconstruction through the use of machine learning or other 

techniques like proper orthogonal decomposition (discussed further in Appendix A.3) [46-

48].  

Non-uniform discretization schemes have been used in many cases to improve the 

spatial resolution of tomography or reduce the inversion problem to a manageable size. In 

these schemes, the discretization of the measurement volume may differ throughout, with 

a finer discretization used only in regions that require higher spatial resolution. Adaptive 

meshes have been used in electrical capacitance and electrical impedance tomography, 

although their implementation has primarily been 2D and is limited to soft-field 

tomography and may not apply to other forms of emission tomography [49, 50]. An 

adaptive hybrid mesh has been used in chemical species tomography, although this work 

also focuses on a 2D measurement domain and the mesh was determined prior to 

tomographic reconstruction based on the location of the laser arrangement [51]. Similarly, 

prior information based on previous measurements or estimates of regions that would 

benefit from a finer discretization has been used to inform an adaptive discretization in 

biomedical tomography [52, 53]. Previous work has also mainly focused on using adaptive 

discretization techniques to improve spatial resolution without quantifying the reductions 

in computational cost, if any. 
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 Based on the previous work, this work demonstrated an adaptive spatial 

discretization (ASD) technique for tomography within a 3D measurement volume. 

Compared to past efforts, the main contributions are twofold. First, the ASD technique 

determines the regions of high interest based on the raw signal distribution and a 

preliminary reconstruction with a coarse mesh. The regions of interest are defined as those 

that contain large spatial gradients in the reconstructed signal and require higher resolution 

to reconstruct accurately. The results have shown that this technique required only minimal 

computational cost and yet effectively determined the regions of interest. A finer 

discretization is then applied to only the regions of interest while the remaining regions 

maintain the coarse discretization. The second main contribution is that this technique 

involves no use of a priori information, demonstrating its strength and flexibility for use 

across many tomography problems. The use of a priori information can be problem-

specific because different problems are governed by different physical laws. The technique 

developed in this work can be applied to many forms of tomography in conjunction with 

various reconstruction algorithms. The limitations in the current implementation of the 

ASD technique, as well as ongoing efforts, are outlined toward the end of this chapter. 

 

2.2. Mathematical Formulation of Tomography 

 This section briefly describes the mathematical formulation of the tomographic 

reconstruction algorithm used in this work. Under the typical formulation, the measurement 

volume is discretized into equal-sized voxels whose signal is captured by camera 

projections. Figure 2.1 shows this formulation as a schematic of the relationship between 

the discretized measurement volume and the measured projections. Based on this 

schematic, the mathematical formulation of the tomography problem is shown in Equation 

2.1 [30]: 

 

𝑃(𝑥𝑃, 𝑦𝑃) =  ∑ ∑ ∑ 𝐹(𝑥𝐹, 𝑦𝐹 , 𝑧𝐹) ⋅ 𝑃𝑆𝐹(𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹;  𝑥𝑃, 𝑦𝑃)

𝑁𝑧

𝑧𝐹

𝑁𝑦

𝑦𝐹

𝑁𝑥

𝑥𝐹

 . (2.1) 

Here, 𝑃(𝑥𝑃, 𝑦𝑃) represents the signal captured on a pixel located at position (𝑥𝑃, 𝑦𝑃) under 

a Cartesian coordinate system on the camera. 𝐹(𝑥𝐹, 𝑦𝐹 , 𝑧𝐹) represents the concentration of 
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the 

emission signal within a voxel at location (𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹) within the measurement volume. 

𝑃𝑆𝐹 is the point spread function, which represents the contribution of a voxel located at 

(𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹) on the pixel (𝑥𝑃, 𝑦𝑃), and is dependent on the imaging system. In summary, 

the signal value on pixel (𝑥𝑃, 𝑦𝑃) is the weighted summation of all voxels that contribute 

to this pixel. The measured projections are used as inputs in Eq. 2.1 and the discretized 

concentrations of 𝐹 are solved.  

As seen in Eq. 2.1, 𝑃𝑆𝐹 has a number of elements equal to the product of the lengths 

of 𝑃 and 𝐹, which can lead to very large computational and memory requirements in 

practice when many views are used. While 𝑃𝑆𝐹 is typically sparse because many voxels 

do not contribute to all pixels (especially when the target is within or near the focal plane), 

the storage requirements of 𝑃𝑆𝐹, as well as the projections and the reconstruction, are still 

quite large, e.g. on the order of gigabytes [31].  

When generating 𝑃𝑆𝐹, there are often many assumptions and simplifications to be 

made about the behavior of photons. In this work, 𝑃𝑆𝐹 is generated using geometrical 

optics, meaning that photons behave as rays, moving only in straight lines, and the wave 

nature of light is neglected [54]. This approximation may be acceptable when the 

wavelength of light is significantly smaller than the spatial structures with which it 

interacts, which ultimately limits the spatial resolution that is achievable with this 

Figure 2.1: Mathematical formulation of tomography, showing the contribution of a coarse 

and fine voxel to a measured projection, with the smaller voxel contributing to fewer pixels 
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approximation [55]. Based on this assumption, this work uses a lens-imaging model based 

on a single-lens approximation to generate 𝑃𝑆𝐹, where the straight paths of rays are traced 

and their location on the camera lenses are calculated based on ideal-lens optics. An 

alternative Monte Carlo method has been used occasionally throughout the production of 

this work, where many individual photons are generated at each voxel and their paths are 

traced, but will not be reported on in this work due to the significant increase in 

computational costs required for this statistical technique [30]. 

Another key assumption under this formulation is that the concentration of a 

particular voxel does not affect the path of photons passing through it. For this reason, this 

is a linear formulation and does not account for any beam-steering effects due to the 

varying gradients in refractivity that are typically measured using background-oriented 

schlieren [56], or multiple scattering effects [57]. Additionally, the generation of 𝑃𝑆𝐹 in 

this work was based on geometrical optics and does not consider the wave nature of light. 

For these reasons, 𝑃𝑆𝐹 depends only on the imaging system (i.e. the lens and camera 

parameters and orientations) and is completely determined prior to reconstruction. Thus, 

Eq. 2.1 can be solved purely as a system of linear equations, as opposed to a system of 

partial differential equations for nonlinear problems [58].  

The linear nature of the tomography problem allows for a variety of solution 

algorithms, however, this work will focus on the algebraic reconstruction technique (ART) 

due to its simplicity, which allows for straightforward illustration of the newly developed 

techniques [22, 32, 59]. In every iteration of ART, each voxel is updated a number of times 

equal to the number of pixels to which it contributes. The formulation of ART in Equation 

2.2 shows the updated voxel value 𝐹 of the 𝑗th voxel (when the pixels and voxels are 

notated in vector format) after iteration 𝑘 + 1 from the 𝑖th pixel: 

 
𝐹𝑗

𝑘+1 = 𝐹𝑗
𝑘 +  𝛽

𝑃𝑖 − ∑ 𝑃𝑆𝐹𝑖,𝑗𝐹𝑗
𝑘

𝑗∈𝑁𝑖

∑ 𝑃𝑆𝐹𝑖,𝑗
2

𝑗∈𝑁𝑖

 . (2.2) 

Here, 𝛽 is a relaxation factor that promotes convergence under conditions with noise or 

measurement uncertainty and is typically a value less than 1 (although ART is stable with 

𝛽 between 0 and 2). The term ∑ 𝑃𝑆𝐹𝑖,𝑗𝐹𝑗
𝑘

𝑗∈𝑁𝑖
 represents the projection of all the 

reconstructed voxels during iteration 𝑘 that contribute to the pixel 𝑖 (called the re-
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projection), 𝑃𝑖 is the measured projection at this same pixel, and 𝑁𝑖 is the total number of 

voxels that contribute to pixel 𝑖. ART adds the difference between the measured projection 

and the current re-projection to the current voxel value of 𝐹, normalized by the 

denominator ∑ 𝑃𝑆𝐹𝑖,𝑗
2

𝑗∈𝑁𝑖
. In this way, the error between the measured projections and re-

projections is decreased over many iterations until a set number of iterations have occurred 

or a defined convergence criteria has been met. 

 

2.3. Adaptive Spatial Discretization 

 While the main characteristics of various measurement targets can differ greatly 

depending on the specific field of application (e.g. medical imaging vs. turbulent flow 

measurements), some common features are typical to many targets. However, across many 

disciplines, some common features may be exploited to increase the efficiency of computed 

tomography. The key observation of relevance to the ASD technique is that most targets 

have regions within the measurement volume that contain relatively low signal or uniform 

features. Based on this observation, the ASD technique was developed to exploit these 

properties in order to reduce both the computational memory requirements and solution 

time for volumetric tomography while maintaining reconstruction accuracy. This is 

accomplished by more intelligently allocating the computational resources to regions of 

interest. In doing so, more and smaller voxels are used within the regions of interest while 

fewer larger voxels are used elsewhere, allowing the most important regions to be 

reconstructed with increased accuracy. 

 Figure 2.2 shows a flow chart outlining the steps of implementing ASD for the tests 

described here, as demonstrated on a 2D cross-section of a simple circular signal 

distribution. Step 1 of the ASD method generates a coarse mesh with a voxel size larger by 

a fraction of two in each dimension than what would typically be used in the tomographic 

reconstruction. The larger and fewer voxels require very little memory to store, and the 

computational time to generate the PSF is largely insignificant (on the order of seconds or 

less). Step 2 performs a preliminary reconstruction using the coarse mesh by iteratively 

solving Eq. 2.1 using the ART method shown in Eq. 2.2. The goal of this step is to broadly 



14 

 

determine which regions within the measurement volume contain large signal gradients, 

and therefore this step does not need to be performed until a convergence criteria is reached. 

Typically only a few iterations are needed, thus this step can be orders of magnitude quicker 

than a complete baseline reconstruction. In this study, it was found that as few as five 

iterations could accurately identify the desired regions of interest. In Step 3, the spatial 

gradients of the coarse reconstruction are calculated in 3D. Depending on the noise level 

and the variance within the coarse reconstruction, a smoothing filter may be used to better 

identify regions of large gradient. In this work, a median filter was used to reduce the 

effects of noise on the preliminary reconstruction. Typically, a gradient threshold would 

be used to determine which regions require finer discretization, and the threshold may be 

application-dependent. For this reason, there was no set threshold used across all cases. 

Figure 2.2: Flow chart of the ASD technique applied on a simple signal distribution, shown 

on a 2D cross-section 
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The determination of a gradient threshold will also depend on the minimum accuracy 

required throughout the reconstruction. Step 4 defines the regions of large gradient as 

regions of interest that will be treated with a fine discretization. Depending on the 

application, it may be desirable to also include regions with large signal (from Step 2) in 

addition to large gradients in the regions of interest. Step 5 replaces the coarse 

discretization within regions of interest with a fine discretization, where each fine voxel is 

half the size of a coarse voxel in each dimension. Therefore, coarse voxels within the 

regions of interest were replaced with eight new fine voxels within the PSF, where each 

fine voxel contributes to fewer pixels as shown in Fig. 2.1. An eight-to-one voxel size ratio 

is not the only option available, but it does make implementation significantly easier. It 

would be possible to use other ratios or even have multiple different tiers of regions of 

interest depending on the scale of the signal gradient, and this possibility is discussed later 

in this Chapter. Finally, Step 6 iteratively solves Eq. 2.1 using ART over the mixed-

discretized volume until a set number of iterations or a convergence criterion is met. 

 This application of ASD results in fewer total voxels to be solved than a 

traditionally uniform discretization with the goal of yielding shorter computational time 

and smaller memory requirements. During Step 4, it is possible to identify the approximate 

ratio of the measurement volume to be treated as regions of interest and redefine the coarse 

mesh in Step 1 to optimize the total number of voxels to be approximately equal to the total 

number of pixels, which is the limitation imposed by the linear algebra limit when no a 

priori information is assumed [30]. This constraint can be broadly interpreted as the 

information that can be reconstructed (the total number of voxels) cannot exceed the 

information obtained by the projections (the number of pixels). While the primary focus of 

this chapter is on implementing ASD as a means of reducing computational costs while 

maintaining reconstruction accuracy, the use of ASD to improve spatial resolution is also 

briefly explored.  

 

2.4. Phantom Study Results and Analysis 

This section reports on the numerical validation of the ASD technique through 

phantom simulations using six different phantoms to emulate a wide range of different 
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signal distributions that may be encountered during tomography research and application. 

In a phantom study, simulated projections of known 3D distributions are obtained through 

the forward projection step of a tomography algorithm. These simulated projections 

typically include artificial noise such that the tomographic inversion process is not identical 

to the forward projection step, while also more closely simulating real-world conditions. 

The noisy simulated projections are then used as inputs of the tomography algorithm to test 

a new computational technique, and the resulting 3D reconstruction can be directly 

compared to a phantom to quantify and validate the technique [20, 32, 60]. 

Figure 2.3 shows central cross-sections of the six phantom cases 1-6 (2.3a-2.3f), all 

of which are three-dimensional and of various sizes, and also whose signal distributions 

have been normalized. Figure 2.3a is of an experimentally obtained cone flame with voxel 

dimensions (56×56×192), 2.3b is of 16 uniformly distributed Gaussian spheres with 

dimensions (100×100×20), 2.3c is a seashell cross-section obtained from reconstructions 

of x-ray images taken by [61] and has dimensions (150×150×20), 2.3d is of a concentric 

Figure 2.3: Central cross-sections of the six phantoms used in this study: a) cone flame, b) 

Gaussian points, c) seashell, d) concentric sinusoid, e) turbulent flame, and f) random 

uniform regions 
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sinusoid and has dimensions (100×100×20), 2.3e is of a turbulent flame reconstructed from 

VLIF images taken by [62] and has dimensions (128×30×128), and finally 2.3f is of a 

random distribution of uniform regions and has dimensions (200×200×20). Each of the 

phantoms (except the sixth, 2.3f) was not uniform in the depth-wise dimension. For 

instance, the seashell has a twist as it increases in depth, and the turbulent flame has 

significant complexity in the depth-wise direction. However, in each case, the phantoms 

were relatively thin in one dimension compared to the others. This is because, due to the 

co-planar arrangement of the 18 views, there was not much coupling between regions that 

were significantly distant in depth. Therefore, no substantial information would be gained 

by examining larger phantoms. 

 Figure 2.4 shows the regions of interest determined from Step 4 of ASD for each 

of the six phantom cases at the same central cross-sections shown in Fig. 2.3. By 

comparison to Fig. 2.3, it is clear that the important regions, that is, those with large spatial 

Figure 2.4: Central cross-sections after the preliminary reconstruction for each of the six 

phantoms, showing the regions of interest highlighted in white that will be treated with 

finer discretization 
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gradients, were accurately detected from the coarse reconstruction. In Fig. 2.4f, for 

example, the regions of uniform signal were not determined to be regions of interest, and 

a coarse discretization in these regions should offer a sufficient spatial resolution. 

However, ASD clearly marks out the interfaces between uniform regions of different 

intensities. 

 Figure 2.5 shows a volumetric view of the cross-sections for the cone flame (left) 

and the turbulent flame (right), shown in the boxed regions of Fig. 2.4a and 2.4e, where 

the regions of interest are highlighted. Here, these regions have been treated with fine 

discretization that is half the size of the coarse discretization in each dimension. As 

demonstrated here, the ASD technique could determine regions of interest at internal 

regions within the measurement objects, something which would not be possible if using 

the projections alone. Additionally, it should be noted that the thicknesses of the regions 

of interest seen in Figs. 2.4 and 2.5 are typically thicker than the regions of signal. This is 

first because the gradient was calculated at the interface between voxels, and all voxels 

surrounding a large-gradient interface will be treated as regions of interest. Also, because 

a coarse reconstruction was used to determine the regions of interest, each marked voxel 

would contain eight finely discretized voxels. However, this was not considered to be a 

problem, as the risk of missing a key feature due to insignificant resolution was greater 

Figure 2.5: Volumetric cross-sections of the cone flame (left) and the turbulent flame 

(right), where regions of interest are highlighted and have been treated with a fine 

discretization 
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than the small increase in computational time to include a slightly too large region of fine 

discretization. 

 To perform the numerical validation, each phantom was projected onto 18 equally-

spaced co-planar views with 3% Gaussian noise artificially added. The number of views 

used in this study was chosen to be a compromise between the typical numbers of 

projections used across many different fields [32, 63, 64]. The 18 noisy projections were 

then used to reconstruct the phantom by iteratively solving the inversion problem in Eq. 

2.1 using ART with and without ASD. In both cases, no regularization, a priori 

information, or other special treatment was applied to either method. The baseline 

reconstruction, without the use of ASD, had a discretization that was the same as the 

phantom, and the ASD method had a discretization such that the fine voxels were the same 

as the phantom and baseline. This allowed for a straightforward comparison between the 

phantom and the reconstructions. Across the six phantoms, the amounts of the 

measurement volume that were determined to be regions of interest, and thus treated with 

fine discretization, ranged from 14.2% (Case 1) to 37.2% (Case 4). With a voxel size ratio 

of 1-to-8 between coarse and fine voxels, the mixed meshes had between 24.9% and 45.1% 

of the total number of voxels as the baseline, respectively.  

 Figure 2.6 shows a comparison of the results between the baseline and ASD 

methods of reconstruction for the six phantom cases, showing the computational time 

required to perform the reconstruction. As a reference for computational time, all 

computations were performed on a single core of a 2.20 GHz Inter Xeon E5-2650 v4 

processor. In each case, the ASD method required only approximately half the 

computational time as the baseline method, indicating that a large portion of the 

measurement volume was treated with a coarse discretization. Reconstructions were 

performed for the same number of iterations for the baseline and ASD methods, and the 

number of iterations was set such that the reconstruction was at or near convergence for 

both methods [65]. However, it was also found that there was no significant difference in 

time to reach a set level of convergence between both methods. Under these conditions, 

the size of the PSF was the primary contributor towards computation time, which depends 

on the number of pixel contributions from each voxel, as well as the total number of voxels. 
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Because a single coarse voxel contributes to nearly as many pixels as eight fine voxels (due 

to its larger size), the maximum reduction in computational time using ASD is only slightly 

greater than 50%. This can be seen in Case 1, where the total number of voxels using ASD 

was 24.9% that of the baseline, but the reduction in computational time was 54.9%. The 

smallest decrease in computation time was 36.1% in Case 4, where just less than half the 

measurement volume was treated with a fine discretization. While in general it is possible 

to use a different voxel size ratio for the coarse and fine discretization, such as 1-to-27 

(when a fine voxel is one-third the size of a coarse voxel in each dimension), it was found 

that in this particular application of ASD the additional savings in computational cost were 

insignificant compared to the further increase in reconstruction error that the larger coarse 

voxels incurred.  

 Figure 2.7 shows the reconstruction error for each case, which was roughly the 

same between the baseline and ASD methods. The reconstruction error in this study was 

defined as the fractional difference between the phantom and the reconstruction and is 

defined as follows: 

Figure 2.6: Comparison of the total computational time for the baseline and ASD methods 

across the six phantom cases 
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𝑒𝑅 =  ∑ ∑ ∑
|𝐹(𝑥𝐹, 𝑦𝐹 , 𝑧𝐹) − 𝑅(𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹)|

𝐹(𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹)

𝑁𝑧

𝑧𝐹

𝑁𝑦

𝑦𝐹

,

𝑁𝑥

𝑥𝐹

 (2.3) 

where 𝐹 is the phantom and 𝑅 is the reconstructed distribution. For direct comparison of 

the mixed-discretized reconstruction with the phantom, each coarse voxel in the 

reconstruction was set to eight fine voxels of equal signal value and no interpolation was 

used. While the ASD method consistently had a slightly greater error (as one would expect 

when using fewer total voxels), the largest increase in error was only 0.21%, found in Case 

3. The extremely low increase in error while requiring only about half the computational 

resources indicates that the ASD method was able to accurately identify the regions of 

importance within the measurement volume and reconstruct them with high accuracy using 

the same discretization as the baseline method. This demonstrates the strength of the ASD 

method, as well as its flexibility, as no information about the distributions nor their 

projections was needed before reconstruction. 

 While the relative error of the ASD method was not significantly different from 

that of the baseline, the spatial distribution of the error is of importance, as an excess 

Figure 2.7: Comparison of the reconstruction error, as compared to the phantom, for the 

baseline and ASD methods across the six phantom cases 
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concentration of error within the regions of interest would be unfavorable. Figure 2.8 shows 

the spatial distribution of the difference between the reconstructions and the phantoms for 

two cases. Figures 2.8a and 2.8b show the cross-sections of the voxel-by-voxel difference 

between the reconstructions and phantoms for Cases 3 and 6, respectively, while Fig. 2.8c 

and 2.8d are the corresponding differences for the ASD methods, where the regions of 

interest shown in Fig 2.4 are overlaid with transparency. For Case 3, the error distribution 

was nearly identical between both methods, with the ASD method having a slightly larger 

error overall, as discussed previously. Unsurprisingly, neither case had a significant error 

in the low-signal regions. In Case 6, where the interior regions had significant but uniform 

signal, it was expected that error would be present throughout. Figure 2.8b shows that the 

highest errors for the baseline methods were localized near regions of large gradient (the 

Figure 2.8: Voxel-by-voxel difference between reconstruction and phantom for a) Case 3 

baseline, b) Case 6 baseline, c) Case 3 ASD, and d) Case 6 ASD, where the regions of 

interest are overlaid on the ASD methods 
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interfaces between uniform regions), which was a trend that is also seen in Fig. 2.8d. The 

largest difference between the baseline and ASD methods in Case 6 was that the errors in 

the regions not of interest when using ASD were less uniform, likely a consequence of the 

noise within the projections and the larger voxel size in these regions, although this 

difference did not seem to contribute greatly to the overall error within the reconstruction. 

 In this application of ASD, a significant decrease in computational time has been 

shown while maintaining reconstruction accuracy across six phantom cases. This was 

accomplished by reducing the total number of voxels to be computed. However, in these 

tests, the discretization and size of the reconstructions were the same as the phantoms and 

did not represent a realistic scenario. In more realistic scenarios, the reconstruction 

resolution achievable is limited by the amount of pixel information obtained (excluding 

any a priori information). To simulate this more realistic scenario, two phantoms (the 

Gaussian points and the concentric sinusoid, shown in Figs. 2.3b and 2.3d) were recreated 

at a much larger size of 400 × 400 × 20 voxels (a total of 3.2 × 106 voxels) and projected 

onto the same 18 views with pixel resolution of 400 × 80 pixels each (a total of 5.76 × 105 

pixels), thereby severely limiting the maximum achievable reconstruction resolution. 

Additionally, 3% Gaussian noise was added again to the phantom projections, which also 

limited the maximum achievable accuracy of the reconstruction. Based on the noisy 

phantom projections, the two phantoms were reconstructed using a variety of 

discretizations. The reconstructions were directly compared to the phantoms to assess the 

accuracy based on Eq. 2.3, where the reconstructions were up-scaled to the same number 

of voxels as the phantom using a bicubic interpolation, as described in Ref. [66]. This direct 

comparison with the phantom allowed for the accuracy of the reconstructions to be 

determined at a range of discretizations. 

 Figure 2.9 shows the results of the reconstructions for the two phantom cases, where 

the reconstruction error is plotted against the total number of voxels used on a log scale. 

The vertical red line indicates the total number of pixels used, which represents the 

expected maximum number of voxels that could be used to obtain the best accuracy. In 

both cases, the discretization of the reconstructions was the same, with a number of voxels 

in the horizontal direction of 60, 80, 100, 150, 200, 300, and 400. The number of voxels in 
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the depth direction (compared to the 20 voxels for the phantom) was scaled accordingly 

such that the voxels were approximately the same size in each dimension for all cases. As 

expected, as the total number of voxels increased, and the voxel size subsequently 

decreased, the error decreased. However, once the voxel count increased beyond the red 

dotted line, which indicates the number of pixels used as inputs for reconstruction, the error 

plateaued, where an increase in voxels did not yield more accurate results. This plateau 

Figure 2.9: Comparison between the reconstruction errors for two phantom cases as a 

function of the total number of voxels used in the reconstruction for the ASD and baseline 

methods. The reconstructions were up-scaled and directly compared to a high-resolution 

phantom. 
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was expected because, once the total number of voxels has reached the total number of 

pixels, no further information could be extracted from the projections as imposed by the 

linear algebra limit.  

A subtle yet interesting result that can be seen in Fig. 2.9 is that, beyond a plateau 

of reconstruction error as the number of voxels increased, there was a small increase in 

error with increasing voxels. The rise in error beyond the plateau point was likely due to 

artifacts caused by the measurement noise in the simulated projections. For example, a 

relatively large voxel that contributed to many different pixels would effectively take on a 

value equal to the average contribution from the noisy pixels. In this way, the error caused 

by the noise could be reduced (although this may not be the case for all sources of noise). 

However, for smaller voxels that contribute to fewer pixels, a singly noisy pixel may 

contribute greatly to the value of the contributing voxels, thereby increasing the 

reconstruction error. 

Another interesting finding from Fig. 2.9 was that the minimum error achievable 

was smaller when using ASD as opposed to the baseline method, indicating that the ASD 

method could achieve an increase, albeit marginal, in spatial resolution. This is likely due 

to the ASD method making better use of the information available in the projections by 

more intelligently distributing the same number of voxels. Additionally, this shows that the 

ASD method was more resistant to noise due to the presence of larger voxels that may 

reduce the adverse effects of noise. It was also shown that, for both phantom cases, the 

ASD method could achieve the same or better accuracy than the baseline while using 

significantly fewer voxels. These results were also seen in the previous tests as well, 

indicating that the ASD method can offer improvements across different metrics under 

many different testing conditions. With all else held constant, the total number of voxels is 

typically proportional to both computational time and memory, and therefore the 

implementation of ASD was able to reduce overall computational cost without a loss in 

accuracy across different forms of implementation.  

2.5. Summary 

 This work reports on an adaptive spatial discretization technique that exploits 

regions of relatively uniform or low signal within a measurement volume to make better 
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use of computational resources, either by reducing computational cost while maintaining 

accuracy or by increasing spatial resolution without increasing computational cost. The 

ASD technique determines regions of high interest based on the signal distribution through 

a preliminary reconstruction with a coarse discretization. Regions of interest are defined as 

those with large spatial gradients in the partially reconstructed signal, and the results show 

that the ASD technique effectively determined the regions of interest with minimal 

computational cost. Regions of interest are treated with a finer discretization while the 

remaining volume maintains the coarse discretization. This technique does not include any 

a priori information and can be applied to many forms of tomography and used with 

various solution algorithms, although this work has limited the analyses to the ART 

algorithm.  

The advantages of ASD are demonstrated and quantified using a series of phantom 

studies. A total of six cases were selected for this work to represent a variety of spatial 

distributions. In each case, 18 simulated projections were generated with 3% Gaussian 

noise which were used to reconstruct the phantom using the baseline and ASD methods. 

Through direct comparison of the reconstruction and the phantoms, the ASD technique was 

able to drastically reduce computational times by up to 50% while yielding little to no 

increase in reconstruction error. Additionally, there was no significant change to the spatial 

distribution of error within the reconstructions using ASD. To simulate more realistic 

conditions, high-resolution phantoms of two cases were generated and projected onto the 

same 18 views with 3% Gaussian noise. These two cases were reconstructed using the ASD 

and baseline method across a range of discretizations, where it was found that the ASD 

method was more noise-resistant, was able to slightly increase the minimum achievable 

error, and simultaneously reduced the computational cost. 

 There are some limitations to the ASD technique in its current implementation. A 

generic limitation of ASD is that it requires the presence of regions with uniform or low 

signal within the measurement volume to be applicable. While this is often the case in 

many applications of tomography, this technique would be of limited value in cases where 

the entire target region needs the same high resolution. Another limitation in this 

implementation of ASD is that the measurement volume is only discretized in two sizes 
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(coarse and fine), and in a 1-to-8 size ratio due to the use of cubical voxels. In general, the 

discretization size ratios do not need to be 1-to-8, as other voxel shapes may be used. 

However, it was found that a 1-to-8 size ratio was superior to a 1-to-27 ratio (where each 

fine voxel is one-third the size of a coarse voxel in each dimension) because the extra 

decrease in computational cost using the finer voxels was insignificant compared to the 

increase in error. However, a multi-zone approach may be used with regions requiring high, 

medium, and low resolutions to resolve this issue which is being explored in our ongoing 

work. Finally, these tests were limited to phantoms with known distributions. To further 

test the applicability of ASD and the potential capability to increase spatial resolution, 

future work includes testing on real-world targets. 

 

  



28 

 

Chapter 3 

 

3. Analysis of a Pixel Masking Method Using Direct 

Comparison of VLIF and PLIF 

 

Abstract 

 

This work reports the validation of a masking method to significantly reduce computational 

costs while maintaining the reconstruction accuracy of tomography for laser-induced 

fluorescence (LIF) imaging of the methylidyne radical (CH) in a turbulent CH4-air flame. 

The masking method excludes from the tomographic reconstruction all regions of the 

measurement volume that contribute to pixel regions that contain no signal, as those 

regions must contain no fluorescence, thereby reducing computational costs. An additional 

buffer zone was implemented around the remaining voxels within the measurement volume 

based on the expected error in view registration to ensure that no voxels containing 

fluorescence were accidentally masked. This method is validated via direct comparison of 

simultaneous 2D planar LIF (PLIF) and 3D volumetric LIF (VLIF) measurements of highly 

turbulent flames within a measurement volume of 42 mm (width) × 5 mm (depth) × 42 mm 

(height). The flame front perimeter was calculated and directly compared between the PLIF 

measurement and a corresponding cross-section of a 3D reconstruction derived from the 

VLIF measurements. Through this comparison, it was shown that the masking method 

could reduce the overall computational time while simultaneously improving the 

reconstruction accuracy by concentrating computational resources on regions of high 

interest. The masking method was particularly advantageous for CH-LIF measurements as 

the extent of the CH radical distribution is limited to the thin flame surface, leaving a large 

fraction of the probed volume devoid of signal and able to be excluded from the 

reconstruction. 
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3.1. Introduction 

 Due to the large range of experimental conditions encountered when performing 

CT, different computational techniques may be better suited for different environments. 

For example, in the previous chapter, the ASD technique requires regions of low spatial 

gradients within the target signal to be applicable. For this reason, it is important to have a 

multitude of techniques to reduce the computational cost of CT under different 

circumstances by exploiting various features of flames and their measurements. This 

chapter reports on the validation and analysis of an alternative computational technique, 

called the 3D pixel masking technique, which exploits a different property than ASD to 

again significantly reduce the computational cost of CT while maintaining or even 

improving the reconstruction accuracy.  

The masking technique works on the principle that all voxels that contribute to 

pixels containing signal below an estimated signal floor must contain no substantial 

emission and can be removed from the tomographic reconstruction. By reducing the 

number of pixels and voxels from the reconstruction, the computational cost of CT is 

reduced without adversely affecting reconstruction accuracy. Consequently, by removing 

some voxels from the reconstruction, more and smaller voxels can be used in the remaining 

regions of the measurement volume, offering a potential to increase spatial resolution, as 

previous work has shown that spatial resolution is limited by both hardware and voxel size 

[30]. Similar masking techniques have previously been applied in tomography using 

measurements from volumetric laser absorption [44], flame emission [67], background-

oriented schlieren [43], and particle image velocimetry (PIV) [68], and are more broadly 

discussed by Grauer et al. in Ref. [27]. In each case, masking has been shown to improve 

reconstruction accuracy.  

In this work, the pixel masking technique was validated and analyzed through direct 

comparison of flame front contour length calculations derived from simultaneous 2D and 

3D flame measurements. The novel diagnostic setup described here, which was used prior 

to the work of this dissertation and is described in Refs. [62, 69], collected laser-induced 

fluorescence (LIF) measurements of the methylidyne radical (CH) in turbulent CH4-air 

flames. The uniqueness of this setup was that it collected both 2D planar LIF (PLIF) and 
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3D volumetric LIF (VLIF) measurements simultaneously, which subsequently allowed for 

the direct comparison between these measurements and results. The VLIF measurements 

were used in a tomography algorithm to determine the 3D distribution of CH within the 

flame front, and a central cross-section that corresponded to the same location as the PLIF 

measurement was extracted. Thus, the flame front contour length between both 2D and 3D 

measurements could be directly compared and the accuracy of the VLIF reconstructions 

could be determined. 

Based on previous work, the novelty and contribution of this work is two-fold. First, 

this work demonstrates the applicability of the masking technique on VLIF tomography. 

Second, the results in this work demonstrate that the masking technique, with an added 

buffer region to compensate for estimated errors in view registration, is particularly well-

suited for VLIF measurements of the CH radical, as this species exists only within a thin 

layer representing the flame front [70]. Therefore, a larger portion of the measurement 

volume may be masked, saving computational resources while simultaneously allowing 

for an increase in the spatial resolution of the reconstruction. 

 The effectiveness of the masking method was assessed and validated by direct 

comparison of cross-sectional flame-contour lengths obtained from 3D tomographic 

measurements against 2D planar laser-induced fluorescence (PLIF) measurements of the 

methylidyne radical (CH). PLIF is a well-established technique for obtaining 2D flame 

measurements [71, 72]. In past works, PLIF has been extended into volumetric LIF (VLIF), 

and instantaneous 3D flame measurements from multiple cameras were demonstrated [28, 

69, 73]. The VLIF measurements are used in the CT algorithm to calculate the 3D 

distribution of the fluorescence within the flame. The flame-contour length was then 

calculated at the central cross-section of the VLIF reconstruction that corresponds to the 

same regions as the PLIF measurement. Such datasets provide a way to directly assess the 

accuracy of the 3D masking technique. The PLIF measurements, which were an integrated 

signal over the thickness of a thin laser sheet, were accepted to be the “ground truth”, as 

these measurements have well-established accuracy. The accuracy of the VLIF 

measurements was obtained by direct comparison of the flame-contour length to the PLIF 

results. This method of comparison has been previously demonstrated in Ref. [69] and 
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allowed for the validation and analysis of the masking technique in this work. Under this 

comparison, the reconstruction accuracy and computational time could be compared with 

and without the use of masking. While a similar masking technique was used by Ma et al. 

in Ref. [28], this work implemented a buffer region and validated the technique using a 

direct comparison between 2D PLIF and simultaneous 3D VLIF measurements. 

Additionally, the masking technique demonstrated the ability to achieve better accuracy in 

flame-contour length measurements described in this work. While the masking technique 

described here has been implemented in the context of combustion tomography, it can 

easily be adapted to other forms of tomography as well. 

 

3.2. Experimental Arrangement for VLIF and PLIF 

The experimental data used for analysis in this chapter was previously generated 

and the experimental arrangement has been presented in Ref. [62, 69]. Nevertheless, the 

setup and methods are described in this section for informational purposes and to motivate 

the computational improvements described in the remainder of the chapter. The 

experimental setup was designed to enable simultaneous imaging of both PLIF and VLIF 

measurements from a highly turbulent flame. Figure 3.1, adapted from Ref. [69], shows a 

schematic of the experimental setup and can be divided into three systems: the burner, the 

laser system and related optics, and the imaging system. The Hi-Pilot burner, a turbulent 

premixed Bunsen-type burner, was used to generate the experimental data presented in this 

work, which are of CH4-air flames.  

The flames studied in this work are denoted as Case 3B-1.05, 3 being the case 

number, B being the type of slotted plate used to induce turbulence, and 1.05 being the 

fuel-air equivalence ratio, in Ref. [62]. In this case, the equivalence ratio of ϕ = 1.05 

indicated that the combustion is fuel-rich (ϕ > 1) and will yield slightly incomplete 

combustion [74, 75]. Under these flow conditions, the flame was described as having a 

ratio of turbulence intensity to laminar burning velocity of 𝑢′/𝑆𝐿 = 16, and a turbulent 

Reynolds number of 𝑅𝑒𝑇 = 4200. Of most concern to this work, however, are the length 

scales that are present in the turbulent reactive flow. Based on the data and equations found 

in Ref. [62], the integral length scale under these conditions was 9.2 mm, indicating the 
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largest spatial structures in the flow. The Taylor microscale (the turbulence length scale) 

was estimated to be about 1.3 mm and indicates the scale at which eddies begin to dissipate 

as heat. Finally, the Kolmogorov length scale was estimated to be 0.06 mm, indicating the 

smallest-scale eddies in the turbulent flow. Finally, the laminar reaction layer thickness for 

CH was measured to be 0.36 mm and ultimately sets a limit on the smallest scales that can 

be resolved using CH measurements, as in this work. 

The laser system was operated at a frequency of 10 Hz (10 laser pulses per second) 

and was composed of a Nd:YAG pump laser, a dye laser operating with Luxottica (Exciton) 

DCM dye dissolved in methanol, and a frequency control unit (FCU). The goal of the 

multiple laser components was to generate UV pulses with a wavelength of 314.315 nm. 

This particular wavelength of light excites the 𝑄2(2) and 𝑄2(6) transitions of the 𝐶2𝛴+ −

𝑋2𝛱(𝜈′ = 0, 𝜈′′ = 0) band of methylidyne (CH) radicals that are a byproduct of the 

methane-air combustion [76]. This wavelength provided relatively good signal strength for 

CH detection with low laser fluence levels while simultaneously isolating the CH signal 

from those of other chemical species. 

Figure 3.1: Schematic of the experimental arrangement to capture simultaneous PLIF and 

VLIF flame measurements, originally published in Ref. [69] 
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The generated UV beam was split into two components using a simple wedged 

window, creating a strong beam with energy of about 10 mJ/pulse for the VLIF 

measurement and a weak beam with about 0.5 mJ/pulse for the PLIF measurement. The 

collimated VLIF laser slab was created by expanding the strong laser beam with a pair of 

spherical lenses (-50 mm and 750 mm focal lengths); a pair of right-angle “tools” were 

used to “define” the desired slab width of 5 mm. Note that the 5 mm thick slab is thinner 

than the width of the burner output. For the weak beam, a set of mirrors was used to delay 

the laser pulse by about 45 ns relative to the VLIF pulse, as indicated in Fig. 3.1. This time 

delay (45 ns) was short relative to any flow time scales but large enough to separate the 

PLIF and VLIF signals via the intensifier-gate timing. For instance, in Case 3B-1.05, the 

centerline velocity was measured to be 21 m/s, meaning the bulk flow would have moved 

only approximately 0.9 μm, which is about 40 times smaller than the projected width of a 

pixel. Similarly, given that each beam duration was about 8 ns long, and the lifetimes of 

the 𝐶2𝛴+ states of CH are around 4 ns [77], a 45 ns delay is sufficient to ensure no overlap 

in PLIF and VLIF signals. The PLIF laser sheet was then formed with a -100 mm focal 

length plano-concave cylindrical lens and a 1 m focal length spherical lens, to create a 0.17 

mm-thick sheet collimated in the vertical direction. As indicated in Fig. 3.1, the PLIF and 

VLIF beams were separated by a small distance and then overlapped in the probe region 

(having the PLIF sheet centered within the VLIF slab) by having a small angle of about 3 

degrees between their propagation vectors. 

Arranged around the burner were six intensified cameras (all with gate times 

equaling 100 ns), each equipped with a UV lens (100 mm, f/2.8 Cerco lens fitted with a 

Scott-glass UG-5 filter), with resolutions of 1024 × 1024 pixels. In Fig. 3.1, cameras 1 

through 5 were used to capture the VLIF signal, and camera 6 was used to capture the PLIF 

signal. Figure 3.1 also shows the coordinate system used, where X was the direction of 

laser sheet propagation, Y was the direction perpendicular to the laser sheet propagation 

direction, and Z was in the vertical direction, aligned with the direction of the flow. All six 

cameras were aligned in a coplanar arrangement (in the X – Y plane) around the burner, 

and thus their positions were completely specified by their angular position θ relative to 

the Y-axis and their radial distance from the burner origin (kept approximately equal for 

all cameras). Before any measurements, a calibration target was placed at the expected 
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location of the flame to determine the orientation of each camera using a view registration 

program [78]. The positions of cameras 1 through 6 were found to be 37.7°, 146.9°, 183.4°, 

210.5°, 336.4°, and 0.5°, respectively, with an estimated uncertainty of ±0.5°. 

Figure 3.2 shows a sample of instantaneous VLIF and PLIF measurements (a single 

frame) collected from all six cameras. In each frame, an ensemble-averaged background 

image was subtracted from each instantaneous image. Figures 3.2a–e show the measured 

VLIF projections simultaneously captured on cameras 1-5. These images show a clear 3D 

structure of the flames, as one would expect from the volumetric VLIF illumination. Figure 

3.2f shows a PLIF measurement captured on camera 6 at essentially the same time, which 

is clearly planar in nature. Using the five VLIF projections, a tomographic reconstruction 

was performed to generate a 3D reconstruction of the VLIF signal, which is representative 

of the relative CH concentration within the illuminated region of the flame. For this study, 

Figure 3.2: Set of projections measured by cameras 1 through 6. Panels (a)-(e) are the VLIF 

projections measured by cameras 1-5, and panel (f) is the PLIF measurement captured by 

camera 6 
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the CH radical was chosen as the target species because it is produced near the flame’s 

principal heat release region and is thus a good proxy of the flame front [72, 79]. 

Additionally, because CH only exists within the thin flame front layer, the masking method 

covered in this work is especially effective in treating CH-VLIF projections. 

As seen in Fig. 3.2a-e, there is a significant portion of each projection that contains 

little to no fluorescence signal, both inside and outside the flame regions. Traditionally, 

these regions would be iterated over and solved in the tomography algorithm without 

special treatment. However, the masking method described in this work will exclude those 

pixels, as well as all voxels contributing to those pixels, from the reconstruction to 

dramatically reduce computational cost. Figure 3.2f reinforces this insight by showing that, 

in a cross-section of a turbulent flame (𝑢′/𝑆𝐿 = 16), only a very small portion contains CH 

fluorescence signal. It is worth noting that the exact degree of reduction to computational 

cost depends on the specific flame conditions (e.g. what fraction of the measurement 

volume contains signal) and can vary considerably from one exposure to the next, but some 

degree of reduction has been achieved in all the frames studied here.  

 

3.3. Methods and Problem Formulation of Masking 

 This section only briefly reviews the mathematical formulation of the tomographic 

reconstruction algorithm as it was covered in more detail in Chapter 2. This section also 

describes the masking method and its implementation. The mathematical formulation 

shown in Eq. 2.1 can be rewritten in vector form for simplicity as follows: 

 𝑷 = 𝑷𝑺𝑭 ⋅ 𝑭 , (3.1) 

where 𝑷 is the projection vector composed of all the pixels on all the cameras, 𝑭 is the 3D 

distribution of the VLIF signal in vector for that is to be solved, and 𝑷𝑺𝑭 is the point spread 

function matrix. The nature of each variable is the same as that in Eq. 2.1. Figure 3.3 is a 

schematic similar to Fig. 2.1, modified to better illustrate the masking method, showing 

how multiple voxels contribute to a small region of pixels. If the pixel region has no 

significant intensity (like that shown in the circled region), then all the corresponding 

voxels will be masked. 
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Similar to the formulation in Chapter 2, 𝑷𝑺𝑭 in Eq. 3.1 has a number of elements equal to 

the product of the lengths of 𝑷 and 𝑭. In this case, the size of 𝑷 is on the order of 5 × 106 

(from five megapixel cameras) and the size of 𝑭 is of a similar size of around 4 × 106. Thus, 

𝑷𝑺𝑭 in this case has approximately 5 × 4 × 106 × 106 total elements. Once again, 𝑷𝑺𝑭 is 

sparse because many voxels do not contribute to all pixels. This sparsity is exploited by the 

masking technique to considerably reduce to computational storage and time requirements 

to perform tomography by reducing the total number of pixels and voxels needed in the 

solution. 

 The masking method is a straightforward approach that operates on the principle 

that if a pixel on a camera receives a signal below a designated signal threshold (typically 

the noise level), then all voxels that project onto that pixel must emit no fluorescence signal 

and the pixel and all corresponding voxels are removed from 𝑷, 𝑭, and 𝑷𝑺𝑭, thus reducing 

the overall computational cost. In this work, reconstruction using the masking method was 

not sensitive to the value for the chosen signal “floor” for the dataset, and the same chosen 

value was used successfully across the entire dataset. This is illustrated in Fig. 3.3, where 

the highlighted region of pixels contains no signal – i.e., no occurrence of the flame front, 

as represented by CH-VLIF, within the illuminated region of the flame. To further illustrate 

which regions are masked, Figure 3.4 shows a comparison between three raw projections 

(top) and the same projections after masking has been applied (bottom). In the masked 

Figure 3.3: Mathematical formulation of tomography, illustrating the voxels that contribute 

to a region of pixels that contain no signal and will be masked 
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projections, all pixels with signals above the signal floor are shown in white, and all pixels 

below the estimated noise level are shown in black. For some projections, there could still 

be some pixels that are likely related to noise or very low-signal regions in the measurement 

volume that were not masked (particularly evident in the middle projection shown in Fig. 

3.3). While the noise floor could be raised to exclude these regions, it is worth not masking 

too aggressively as to avoid masking regions that may be necessary for a high-accuracy 

reconstruction. All voxels in the measurement volume that contribute to any masked pixel, 

as determined by the PSF, were excluded from 𝑷𝑺𝑭 and thus the tomographic 

reconstruction, saving both computational time and memory.  

 A straightforward implementation of the masking technique may have undesirable 

effects under the presence of measurement error, particularly view registration error, which 

is almost always present. Because masking will remove all voxels from the reconstruction 

that contribute to any pixel with insufficient signal, any unaccounted-for error in the 

Figure 3.4: Comparison between three raw projections (top row) and the corresponding 

binarized images (bottom row), where white regions contain signal, and black regions 

contain signal below the noise level and are to be masked 
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location and orientation of a camera view may remove voxels that should be included. This 

effect will be most present at the edge of the flame surface, where voxels contribute to 

regions at the interface between signal and no signal on the measured projections. For this 

reason, a buffer region has been included at the interface between masked and unmasked 

voxels that reduces the total number of voxels masked.  

Figure 3.5 shows a 2D schematic of how the buffer region is implemented, where 

the red voxels are those that are expected to contain signal and are unmasked, the white 

voxels are those that have been masked due to contributing to pixels that contain signal 

below the designated signal floor, and yellow voxels are those that replace the white 

masked voxels to act as a buffer and will not be masked. The amount of buffer is 

determined by the estimated error in camera orientation based on the view registration 

process. The width of the buffer is given by: 

 𝐵 = 𝐿 sin(𝛥𝜃) , (3.2) 

where 𝐵 is the width of the buffer, 𝐿 is the distance from the camera lens to the far end of 

the measurement volume, and 𝛥𝜃 is the estimated error in camera orientation. Once the 

buffer width has been determined, the width is converted into the nearest number of voxels 

Figure 3.5: Schematic showing a buffer region (yellow) that has replaced some masked 

voxels (white) around a region of unmasked voxels (red). The thickness of the buffer is 

determined by the estimated view registration error. 
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based on the voxel width, and the buffer region is applied at the interface between masked 

and unmasked regions in all three spatial dimensions. In this way, the risk that signal-

containing voxels will be unnecessarily masked due to view registration error is drastically 

reduced. Under the experimental conditions here, with a view registration uncertainty of 

0.5°, the estimated necessary thickness of the buffer region is about 2 mm. 

Besides saving computational resources, the masking technique also provides the 

potential to improve the achievable spatial resolution of the reconstruction. The spatial 

resolution of any tomography measurement is determined by both the hardware (the 

camera and lenses used and their orientations) and also the discretization size. For a given 

set of hardware, the spatial resolution is ultimately limited by the linear algebra limit when 

no a priori information is assumed [30, 80]. Specifically, the information that can be 

reconstructed (the total number of voxels) cannot exceed the information obtained by the 

measured projections (the number of pixels). By implementing masking, only a reduced 

fraction of the measurement volume needs to be reconstructed, and thus more and smaller 

voxels can be used within these regions and the spatial resolution may be improved. As 

shown in the next section, such an advantage is especially relevant for the CH-VLIF 

measurements because CH radicals only exist in a thin layer at the flame front. Thus, a 

simple application of ART would assign a large number of voxels to regions with no CH 

at all, resulting in a waste of computational resources and also the possibility of not 

achieving the maximum spatial resolution allowed by the hardware. Additionally, because 

masking only removes voxels that contain little to no fluorescence, no reduction in 

reconstruction accuracy is anticipated. 

 

3.4. Results and Analysis 

 After image post-processing and preparation of the masking parameters, the 

measured projections were used as inputs to the tomographic reconstruction algorithm. 

Figure 3.6 shows a comparison of results, both with and without the use of the masking 

technique, obtained from the VLIF projections shown in Fig. 3.2. The top row shows 

results without using masking, where all voxels are considered within the reconstruction. 

The bottom row shows results using masking, including the buffer region, where only 
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voxels that contributed to pixels with sufficient signal were considered in the 

reconstruction. The measurement volume for the non-masking method was discretized into 

256 × 256 × 30 voxels (~2 × 106 total voxels) and had a discretization size of ~0.16 mm 

(i.e., about (0.16 mm)3). The volume for the masking method was discretized into 324 × 

324 × 38 voxels (~4 × 106 total voxels) and had a discretization size of ~0.13 mm, although 

the masking method excluded about 40% of the total number of voxels; thus, ~2.5 × 106 

voxels were solved. In both cases, the measurement volume was 42 mm (width) × 42 mm 

(height) × 5 mm (depth). The total number of computed voxels was kept roughly the same 

between both methods; however, the masking method reallocated the voxels more 

strategically in a smaller volume, reducing the voxel size and, consequently, a higher 

spatial resolution may be achieved without violating the linear algebra limit. It should be 

noted that the fraction of the measurement volume that will be masked is dependent on the 

projections and can change significantly from one exposure to the next. For both the 

masking and non-masking methods, the voxel discretizations were between 2-3 times 

Figure 3.6: Results from the non-masking (top) and masking (bottom) methods. Panels (a) 

and (e) show the 3D reconstruction, panels (b) and (f) show a central slice of the 

reconstruction, panels (c) and (g) show the binarized PLIF measurement and are identical, 

and panels (d) and (h) show an overlay of the PLIF and central slice of VLIF for direct 

comparison. 
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smaller than the laminar reaction layer thickness for CH (0.36 mm), indicating that the 

smallest structures that could be measured may be resolved, but not with a very high level 

of accuracy. The largest structures, those near the integral length scale of 9.2 mm, are easily 

resolved with such a voxel resolution, as well as those at the Taylor microscale (1.3 mm). 

However, regardless of the limitations of CH imaging, turbulent structures on the 

Kolmogorov scale (0.06 mm) are well outside the range of being resolved with the spatial 

resolution achievable using this hardware setup. In fact, such a small scale is unable to be 

resolved well using the PLIF measurements in this work, which have a pixel resolution of 

about 0.04 mm. Therefore, due to the limitations of hardware and CH imaging, this work 

focuses on measurements between the scale of the reaction layer thickness and the integral 

length scale. 

 Figures 3.6a and 3.6e show the 3D reconstructions as a smoothed isosurface of the 

flame surface, as represented by CH-VLIF, where the isosurface value was chosen to best 

show the regions of greatest intensity. Figures 3.6b and 3.6f show central slices from the 

3D reconstructions that were taken at the same location and cross-sectional angle as the 

PLIF measurements. The signal value throughout all regions with a significant signal was 

relatively uniform in both the masking and non-masking cases and thus made it easy to 

determine a suitable value for the display of the isosurface. Figures 3.6c and 3.6g show the 

binarized PLIF measurement and are identical. Finally, Figs. 3.6d and 3.6h show an overlay 

of the VLIF central slices and the PLIF measurement for direct comparison. Overall, the 

CH layer obtained by the masking method appeared to be slightly more continuous and 

generally agreed better with PLIF measurement via visual examination (e.g., the small 

features in the top-right corner of Figures 3.6b and 3.6f). However, in the remainder of this 

discussion, quantitative metrics are used to evaluate the agreement between the PLIF and 

VLIF measurements. 

 First, the effect of the buffer region on reconstruction quality is examined to 

demonstrate that an appropriately thick buffer is necessary when implementing the 

masking method. To demonstrate this plainly, Figure 3.7 shows a comparison between a 

measured projection and the re-projections using masking with and without a buffer. 

Without the use of a buffer, given the estimated 0.5° view registration error, there are 
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significant errors within the re-projection, particularly near regions at the interface between 

signal and no signal, and also very small features, as expected. When an appropriately thick 

buffer region was applied (nine voxels thick in the case of Fig. 3.7), these errors were 

drastically reduced and were mostly only present in regions with very little signal and small 

features, an example of which is circled. Additionally, these small errors can easily be 

removed either manually or with the use of a filter.  

 The effect of the buffer layer on reconstruction accuracy can be determined by 

examining the flame front contour length. The flame front contour length was measured by 

calculating the perimeter, including internal structures such as apparent holes within the 

flame, for both VLIF and PLIF measurements. For the PLIF measurement, the data was 

binarized (as seen in Fig. 3.6) and the perimeter was calculated by measuring the distance 

between adjoining pairs of pixels or voxels around the signal border. Both the binarization 

and the perimeter calculations were assisted by a built-in MATLAB function, with the 

binarization using the Otsu threshold method, and the perimeter measurements based on 

Ref. [81]. For the 3D reconstruction of the VLIF measurement, first the central plane that 

corresponded to the PLIF measured had to be identified. To do this, an iterative process 

was carried out over the four test cases where a central slice of the reconstruction was 

extracted and its correlation was calculated with respect to the PLIF measurement. The 

iterative process shifted both the angle at which the cross-section was taken as well as its 

Figure 3.7: Comparison between a measured projection and re-projections using masking 

both with and without a buffer region 
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spatial shift within the measurement volume to find the values that maximized this 

correlation. It was found that, on average across the four cases, the optimal cross-sectional 

angle was 0.42° (compared to the estimated 0.5° in the setup shown in Fig. 3.1), and a 

spatial shift of the intersection between the PLIF laser sheet and the VLIF laser slab of 0.17 

mm. The central cross-section of the VLIF reconstruction was taken under these parameters 

and, because the slice crossed the voxels at an angle, the new voxel values were 

interpolated based on the reconstruction.  

To find the perimeter of the central cross-section, this planar slice was binarized 

and the perimeter was calculated in the same way as the PLIF measurement. Figure 3.8 

shows the error between the reconstructed flame front contour length and the PLIF 

measurement for one instantaneous frame (the same frame as that shown previously) across 

different buffer thicknesses, starting with no buffer. There are two key findings from this: 

there is a drastic decrease in error when implementing even a single voxel of buffer, and 

there is a plateau in error once a sufficient buffer thickness has been reached. The drastic 

increase in error without a buffer was caused by large portions of the flame front not being 

Figure 3.8: Flame front contour length error of the VLIF reconstruction compared to the 

PLIF measurement using the masking method as a function of the thickness of the buffer 

region in voxels 
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reconstructed due to being masked, thus significantly reducing the total flame front length. 

Including a single voxel buffer was sufficient for these regions to be reconstructed, albeit 

not at full accuracy. Second, the error reached a minimum plateau once a sufficient buffer 

thickness had been reached, which was nine voxels in this case. Once this thickness was 

reached, no flame features were masked due to the error in view registration and this buffer 

thickness corresponded to the approximate error in view registration. In this case, nine 

voxels corresponded to about 1.2 mm of buffer in the measurement volume. This was lower 

than the expected 2 mm of buffer, although this could be attributed to the positions of the 

cameras and the thin nature of the flame, where the error in camera orientations did not 

propagate through the entire depth of the measurement volume, in addition to the fact that 

the view registration errors may have been smaller than anticipated. Once the minimum 

necessary buffer thickness was determined, this buffer thickness was used in all subsequent 

masked reconstructions. 

 To provide a more quantitative comparison of the overall results, the flame front 

contour lengths of the reconstructed central slice and the PLIF measurement were 

calculated and compared for four different instantaneous flame measurements, all taken 

under the same testing conditions (Case 3B-1.05). Figure 3.9 shows a measured projection, 

the 3D reconstruction and the corresponding central slice using the masking method, and 

the binarized PLIF measurement for three other instantaneous measurements. Note that 

Frame 3 is that which has previously been shown, and the frames are ordered based on 

their chronology in the dataset. Also note that Frame 2 is that which is described in Ref. 

[69], although this analysis used different reconstruction parameters and methods for 

estimating flame front contour length. Similar to Fig. 3.6, visually there is good agreement 

between the VLIF and PLIF measurements, with some small exceptions. As seen across 

all cases, the VLIF reconstructions do not extend as far down as the PLIF measurement, 

and the contour length measurement for PLIF excluded regions that weren’t present in the 

reconstructions. 

In this work, it was assumed that the PLIF signal represented the contour length in 

2D and, based on this assumption, was used as the ground truth for the flame front contour 

length. Figure 3.10a shows a comparison of the contour length between the masking 
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method, the non-masking method, and the PLIF measurement, across the four 

instantaneous flame measurements. In each case, there is relatively good agreement 

between all three measurement techniques. The large variation in contour length between 

each frame is due to the large turbulence of the flame and the significant time difference 

between each of the instantaneous measurements, as witnessed by the drastically different-

looking flame in Fig. 3.9. Figure 3.10b shows the corresponding relative error in the 

contour length from the ground truth, where the error is defined as the magnitude difference 

with flame-contour length derived from CH-PLIF. Here, Frame 3 is that which is shown in 

previous figures in this chapter. In each of the four cases, the masking method had a lower 

absolute relative error in contour length than the non-masking method. Additionally, the 

computational time for the masking method was on average 21% less than that for the non-

Figure 3.9: Results from the other 3 frames, where the reconstruction and central slice of 

the reconstruction are shown using the results from the masking method 
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masking method across the four frames while simultaneously having a smaller voxel size 

(0.13 mm compared to 0.16 mm), which likely contributed to the decrease in contour length 

error. These results indicate that it is possible to apply the masking method in such a way 

as to simultaneously decrease computational cost while increasing spatial resolution. 

Figure 3.10: Comparison of flame front contour length for the masking and non-masking 

methods against the ground truth (PLIF) for four frames where a) shows a comparison of 

the contour lengths, and b) shows the relative error in contour lengths 
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 Figure 3.11 shows the flame-contour length for both the masking and non-masking 

methods at different flame depths (calculated at different Y planes) for Frames 2 and 3. It 

should be noted that the significant difference in overall flame-contour length between the 

two frames is due to the specific flame conditions for each instantaneous measurement, as 

the highly turbulent flame changed significantly from one exposure to the next. A second 

notable result is the variation in contour length as a function of flame depth for a single 

instantaneous snapshot of the flame. In the above analysis, the masking method was 

consistently more accurate than the non-masking method, and thus it can be assumed that 

the calculation of the contour length from the masking method would be more accurate 

than the non-masking method at any flame depth. As seen in Fig. 3.11, the two methods 

generally have very good agreement on contour length, except for a few small regions. For 

instance, for Frame 3, the masking method shows a slightly longer contour length than the 

non-masking method between -1.75 mm and -1.25 mm. Likewise, for Frame 2, the masking 

method is longer from 0 mm to 1 mm. There are two possible explanations for this result. 

First, the masking method will likely have a more defined edge at the flame surface, which 

can be seen in Figure 3.6, where the central slice from the masking method has a more 

Figure 3.11: Flame front contour length at different depths for the masking and non-

masking methods for Frames 2 and 3, with the PLIF as the ground truth shown as a star 
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uniform signal level. This is because the masking method may eliminate some voxels near 

the flame edge that may have contributed to some, but not all, of the projections. Second, 

the smaller voxel size of the masking method can resolve smaller features that may add to 

the overall contour length. 

 With regards to the effect of discretization size and length measurements, it is worth 

mentioning what is colloquially known as the “coastline paradox” [82]. This is the 

phenomenon where the measured length of a complex perimeter (such as a coastline) 

increases as the discretization with which is measured decreases. This is because the 

smaller discretization is able to resolve smaller features that necessarily increase the 

measured length (as the shortest path between two points is a straight line, and any added 

vertex that does not lie on that line will increase the total length). Figure 3.12 shows an 

example of how this phenomenon affects the measured length of a segment of the flame 

shown in Frame 3. As seen, the shorter the lengths used to estimate the perimeter, the longer 

the total length is measured to be. More specifically, using rough measurements and 

arbitrary units to describe the lengths, the coarse measurements yielded a perimeter of 12.1 

units, the medium yielded 14.9 units, and the fine yielded 16.3 units of length. However, 

as previously mentioned, due to the nature of the CH measurements, there is an anticipated 

ceiling on the maximum perimeter measurements that can be reached in practical 

experiments. 

Figure 3.12: Example of the so-called “coastline paradox”, illustrating how finer resolution 

measurements typically yield longer perimeter results 
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To quantify the effect that voxel size has on the contour length and overall accuracy, 

further analyses were performed by examining the effectiveness of the masking method 

across many different parameters using the results from Frame 3. Figure 3.13 shows a 

graph of the number of voxels used in reconstruction versus the inverse of voxel size for 

the masking and non-masking methods. This test was performed by uniformly increasing 

the number of voxels within the measurement volume for both methods and calculating the 

total number of computed voxels, noting that the masking method only computes voxels 

that contribute to pixels above the predetermined noise floor. The range of voxel sizes 

shown for both cases was chosen such that the smallest size using the ASD method had 

approximately the same number of total voxels as the baseline method, and similarly for 

the largest voxel size. As expected, the masking method had a smaller voxel size for a 

given number of total computed voxels, as it attributed the same number of voxels to a 

smaller volume.  

Figure 3.14 shows the absolute error in flame front contour length versus the total 

number of computed voxels between the two methods. Across all voxel sizes, the masking 

Figure 3.13: Total number of voxels in the reconstruction as a function of the inverse of 

voxel size, where the voxel size of the fine voxels is shown for the ASD method. Voxel 

size decreases as the horizontal axis values increase. 
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method achieved a smaller error in contour length given the same number of computed 

voxels. For example, the non-masking method achieved about 1.5% error in contour length 

using 2 × 106 voxels, while the masking method achieved about 0.9% error using 

approximately the same number of voxels. This is again due to the masking method better 

allocating the same number of voxels to regions of high interest. It is worth noting that the 

error plateaus once a certain voxel size is achieved, where a further decrease in voxel size 

does not produce better results.  

Figure 3.15 shows the absolute error in contour length versus the computational 

time, where all computations were performed on a single core of a 2.20 GHz Inter Xeon 

E5-2650 v4 processor. The trend is similar to that of Fig. 3.14, which is expected as 

computational time is proportional to the number of voxels computed, and the masking 

method reduces both the number of voxels and pixels in the reconstruction process. In this 

case, for example, to achieve under 1% error in contour length, the masking method 

reduced the computational time by nearly half, from about 1400 s to 700 s, as shown in 

Fig. 3.15. It is worth noting that, all other factors held constant, the computational time is 

proportional to the memory requirements to store the variables in Eq. 3.1, and thus the 

Figure 3.14: Error in flame front contour length as a function of the total number of voxels 

used in the reconstruction 
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masking method can reduce both the computational time and memory requirements while 

simultaneously increasing accuracy.  

Finally, Fig. 3.16 shows the absolute error in contour length versus the inverse of 

voxel size. Here, there was no significant difference between the masking and non-masking 

methods, unsurprisingly indicating that voxel size was the primary factor in determining 

overall reconstruction accuracy until the plateau was reached, where a decrease in voxel 

size no longer yielded a smaller error. This plateau indicates that the maximum spatial 

resolution has been achieved under the current hardware and setup conditions. It is again 

worth noting that, as shown by the results in Fig. 3.11, the exact degree of improvement 

depends on the specific flame conditions and setup limitations (e.g., laser sheet thickness 

for the PLIF measurement), and varies from one exposure to the next, but improvements 

were observed in all frames tested in this work. 

 The above analyses were repeated for a total of 200 different frames and the above 

trends above were observed in the extended sample. It was found that even under smaller 

voxel size settings, the masking method saved computational time compared to the non-

masking method. Using the same parameters as above for the non-masking method (256 × 

Figure 3.15: Error in flame front contour length as a function of the total computational 

time 
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256 × 30 voxels), the mean computational time to perform the tomography was 928 s/frame 

with a standard deviation of 16 s using the non-masking method. For the masking method, 

using a greater number of voxels (290 × 290 × 34 voxels, or a discretization size of ~0.14 

mm), the mean computational time was 739 s/frame with a standard deviation of 137 s. 

The smaller deviation of the non-masking method was due to the fact that it did not treat 

any frame differently based on the projections, whereas the masking method may include 

more or less total voxels depending on the specific flame conditions. However, even with 

the large deviation, the masking method was able to achieve increased accuracy with 

smaller voxels while reducing computational time on average. 

As a final analysis of the masking method, to confirm that the VLIF measurements 

were able to obtain sufficient spatial resolution to resolve features at the scale of the 

reaction layer thickness, the thickness of the measured CH zone is compared between the 

VLIF and PLIF measurements. Figure 3.17 shows a zoomed-in region of the flame 

displayed in Fig. 3.6 where the width of the reaction layer was calculated based on the 

width in voxels and pixels for the VLIF and PLIF measurements, respectively. To calculate 

Figure 3.16: Error in flame front contour length as a function of the inverse of voxel size, 

where the voxel size of the fine voxels is shown for the ASD method. Voxel size decreases 

as the horizontal axis values increase. 
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the width for each measurement, the average width in pixels or voxels within the 

highlighted box was calculated and multiplied by the physical dimension of the pixel or 

voxel. The highlighted region was chosen due to its relative verticality of signal, making it 

easier to estimate the width, and also that the flame thickness in this region is a good 

representation of the entire flame measurements. For the PLIF measurement, the average 

flame thickness in the highlighted region was calculated to be 0.61 mm, which is noticeably 

larger than the estimated flame thickness based on CH of 0.36 mm. This may be due to the 

turbulence of the flame, or the fact that CH may exist in a small region outside the reaction 

layer. Additionally, the laser sheet used for PLIF is not infinitesimally thin (with a 

thickness of about 0.17 mm) which may also contribute to some thickening of the measured 

CH region. For the VLIF measurement without masking (using a voxel size of 0.16 mm), 

the flame thickness was measured to be 0.70 mm, while the VLIF measurement with 

masking (using a voxel size of 0.13 mm), including a buffer region, had a flame thickness 

of 0.64 mm. Considering the PLIF measurement as the ground truth, the masking method 

had a noticeably greater accuracy, and also visually matched the overall shape from the 

PLIF measurement more closely. Both of these are likely the case due to the finer voxel 

size, and subsequent greater spatial resolution, offered by the masking method. Once again, 

the masking method has been shown to provide greater accuracy with a smaller 

Figure 3.17: Zoomed-in regions of the flame, comparing the thickness of the CH LIF from 

the PLIF measurement and the corresponding cross-section of the VLIF measurements 

with and without the use of masking 
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computational cost than the baseline method of reconstruction, indicating that it is a useful 

tool in combustion diagnostics. 

 

3.5. Summary 

 This work describes the validation of a masking technique to improve the 

tomographic inversion process. The focus of the work was on the direct validation of the 

technique by comparing planar laser-induced fluorescence (PLIF, which represents a 2D 

realization of the target quantity) and simultaneous volumetric LIF (VLIF, which 

represents a 3D realization of the target quantity) measurements. Through this comparison, 

the accuracy of the reconstruction and the computational times were quantified to assess 

the validity of the masking method and the improvements it can offer in reducing 

computational costs while maintaining, or even increasing, accuracy and spatial resolution. 

The target for this work was the methylidyne radical (CH), which was excited using strong 

transitions in its C-X(0,0) band. Since CH exists only in a thin layer near the flame front, 

LIF measurements of this species are a good candidate for reconstruction using the masking 

method. The validation was carried out by employing highly turbulent premixed CH4-air 

flames that possessed abundant flame surface density. In this respect, the demonstration 

described here is a severe test of our implementation of tomographic inversion generally 

and the 3D masking method specifically. 

 The flame-contour lengths derived from the CH-PLIF measurement and a central 

slice of the CH-VLIF reconstruction, taken from the same flame depth as the PLIF 

measurement, were compared for both the masking and non-masking methods. It was 

found that the masking technique was able to significantly reduce the computational time 

while simultaneously improving the reconstruction accuracy. However, due to the error in 

camera orientation, as calculated by the view registration process, it was found that a buffer 

layer of approximately 1.2 mm was required to maximize the benefits of masking while 

minimizing the reconstruction error due to view registration error. Through comparison of 

the flame front contour length, it was found that the voxel size was the most important 

factor in determining reconstruction accuracy with the hardware and setup used in this 

work. The masking technique enabled reconstruction at a higher spatial resolution, 
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indicated by a lower error in flame-contour length, by restricting the reconstructed 

measurement volume to regions where CH radicals existed (i.e. close to the flame front).  

 As an additional metric to compare the validity and accuracy of the masking 

method, the thickness of the CH region was calculated. Based on theoretical expectations, 

the thickness of the CH reaction layer was expected to be 0.36 mm. However, the PLIF 

measurement, which is assumed to be the ground truth due to being a well-established 

technique with high spatial resolution, measured the thickness of the CH layer to be about 

0.61 mm, which is quite a bit larger than expected. This could be due to a variety of factors, 

including the thickness of the PLIF sheet (0.17 mm), the high turbulence of the flame, or 

the existence of CH outside of the reaction layer. In comparison, the thickness of the CH 

layer using the masking method was calculated to be 0.64 mm, while the non-masking 

baseline method calculated a thickness of 0.70 mm, again indicating that the masking 

method was able to improve accuracy and spatial resolution while simultaneously reducing 

the computational cost.  

 While masking techniques have been previously shown to be effective at reducing 

computational time and improving the accuracy of tomographic reconstructions in other 

applications, such as tomographic PIV and chemiluminescence measurements, this work 

demonstrates the applicability of the masking technique to VLIF tomography, specifically 

of the CH radical, for which the masking technique is particularly well suited. However, 

one key limitation of these experiments is that the measurements are collected using 

relatively small flames under laboratory conditions and may not accurately reflect real-

world conditions where combustion diagnostics could be applied. Additionally, due to 

limitations of the camera and laser setup for LIF measurements, the results here are not 

time-resolved and the temporal evolution of the flame cannot be analyzed. Therefore, time-

resolved flame measurements under more practical and realistic settings are highly desired, 

and the following chapter describes an experimental setup to achieve such measurements.  
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Chapter 4 

 

4. In Situ Implementation of FBEs for 4D Flame 

Visualization within a Ground Vehicle Testbed 

 

A subset of this work has been published in Combustion and Flame under the title “In 

Situ Imaging of 4D Fire Events in a Ground Vehicle Testbed Using Customized Fiber-

based Endoscopes.” 

 

Abstract 

 

Understanding the dynamics of fire events in ground vehicles is critical to improving crew 

survivability. To advance our understanding, four-dimensional (4D) measurements are 

sorely needed to resolve both the temporal and spatial dynamics of fire events. However, 

there are several key challenges toward such measurements, including equipment 

requirements and optical access. 4D measurements, especially with sufficient temporal 

resolution, can be equipment intensive. Such equipment requirements are further 

compounded by the relatively hostile environments encountered in vehicle testbeds. 

Moreover, there is often very limited optical access available for obtaining such 

measurements within vehicular environments. This work describes the design and 

implementation of a customized fiber-based endoscope (FBE) proof-of-concept setup in 

order to overcome these challenges and enable 4D flame measurements in a ground vehicle 

testbed located at the Army Research Laboratory, Aberdeen Proving Ground, and is part 

of an ongoing campaign to characterize these flames. Using a customized 9-to-1 FBE 

bundle, 4D imaging of relatively large-scale fire events was demonstrated under field 

conditions at 500 Hz with a single camera located at a safe distance outside the vehicle. 

Measurements were collected of a propane torch flame within a volume of 19.2 cm (width) 
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× 19.2 cm (depth) × 15.0 cm (height) and a larger, more turbulent pool flame within a 

volume of 35 cm (width) × 35 cm (depth) × 29 cm (height). The measurements were then 

processed by volumetric tomography to resolve the temporal dynamics and spatial 

structures of the target flame within the vehicle testbed by calculating the time evolution 

of key features and the estimated flame surface area. This proof-of-concept measurement 

platform has shown that such an FBE-based setup can overcome many of the challenges of 

field measurements while enabling time-resolved tomographic measurements of large and 

turbulent flames. 
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4.1. Introduction 

 While a deeper understanding of the dynamics of turbulent flames within realistic 

applications has long been desired [83-85], it is of particular significance in the context of 

fires within ground vehicles. A large portion of injuries and casualties are due to or related 

to fire incidents in ground vehicles. Due to the very fast evolution of fires within these 

vehicles and their complicated confined space [41], understanding the development and 

propagation of the flame front is of critical importance for safety concerns. In order to fully 

resolve such fire dynamics, four-dimensional (4D) diagnostics are required, i.e., 

diagnostics that are capable of resolving the spatial structures of the fire in all three spatial 

dimensions and also the temporal dynamics [30, 31, 86-88]. Optical and laser diagnostics 

provide some unique advantages for flame imaging due to their noninvasiveness [71, 89, 

90]. Due to the importance of multidimensional measurements, the extension of laser-based 

diagnostics to 3D and 4D has attracted a considerable amount of research investment, as 

demonstrated in the previous chapter. However, laser diagnostics require extensive 

hardware that is relatively costly and delicate, and also requires sufficient optical access 

for illumination and signal collection [91]. Even without the use of laser diagnostics, the 

equipment setups for combustion emission tomography can be large and unwieldy, often 

requiring large mounts and mirrors [92]. 

 These challenges are well illustrated by the 4D imaging of fire events in the ground 

vehicle testbed targeted in this work. Consequently, the primary goal of this work is to 

describe the development of a proof-of-concept 4D imaging setup, to demonstrate its 

implementation on the vehicle testbed, and to analyze how it overcomes the challenges and 

what its limitations are. The 4D imaging technique developed in this work relied on the 

combination of customized fiber-based endoscopes (FBE) and computed tomography. In 

order to perform volumetric tomography, multiple cameras are typically used to collect the 

integrated line-of-sight projections from different orientations. The measurement 

environment targeted in this work posed several significant challenges to this approach, 

including the equipment cost, equipment safety, optical access, and the difficulty of setup 

and alignment. With the development of fiber-optic technology, many of these challenges 

can be mitigated by the use of FBEs in place of multiple cameras, as described in earlier 
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works [78]. This past work demonstrated that the use of FBEs could dramatically reduce 

the equipment cost, simplify the setup and alignment, and minimize the footprint and 

optical access requirements for tomography measurements. 

 The majority of past work in combustion tomography, specifically those 

demonstrating the use of FBEs, has been limited to laboratory applications and 

environments. To advance the capabilities of tomographic measurements towards more 

practical applications, this work describes the customization and development of a new 

FBE setup aimed at field applications, such as the ground vehicle testbed described here. 

To accomplish this goal, a customized 9-to-1 FBE bundle was designed, with nine inputs 

combined into one output, so that the projection from up to nine different orientations could 

be simultaneously captured by a single camera. The lengths of the FBE input arm were 

customized so that they could reach different optical windows flexibly and allow the 

camera to be placed a safe distance away from the fire events. Furthermore, the FBE was 

designed so that lenses could be easily integrated into the FBE inputs to facilitate setup and 

alignment under field conditions. These new designs were tested in a field measurement 

campaign at the Army Research Laboratory at Aberdeen Proving Grounds (ARL APG) as 

part of a larger campaign to better understand and characterize the volatile flames 

encountered in vehicle fire situations. The three-day campaign demonstrated that the new 

designs overcame the anticipated challenges and successfully enabled 4D measurements 

of fire events within the vehicle testbed. Moreover, the design of the diagnostics was also 

shown to be sufficiently robust for the transportation between University of Virginia 

(Charlottesville, VA) and ARL APG, and for the assembly, alignment, measurement, and 

disassembly within three days. Finally, time-resolved 3D tomographic measurements were 

generated, the reconstruction fidelity was explored, and quantitative measurements of 

flame motion and changes in surface area were performed. 

  

4.2. Experimental Arrangement for Field Measurements 

 The experimental arrangement can be broken into two major components: the 

testbed and overall setup, and the customized FBE assembly. The experiments described 

in this work were performed in a ground vehicle testbed located onsite at ARL APG. Figure 
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4.1 shows a schematic of the testbed viewed from the front and right sides, which were the 

two sides used for image collection in this work. The front side had one large viewport in 

the center with dimensions of 117 cm × 36 cm and two smaller ports on either side with 

dimensions of 25 cm × 25 cm. The right side has four 25 cm × 25 cm ports, two of which 

can be seen in Figure 4.1, and two below the overhang. Typically, each viewport is covered 

by a polycarbonate window, however, the windows were removed for testing to reduce 

unwanted signals from glare. 

 Using the schematics provided, an in-house replica of the ground vehicle testbed 

was built to ensure that successful setup and data acquisition could occur during the short 

measurement campaign. Figure 4.2 shows the 1:1 scale replica of the testbed that was used 

to inform the design of the sensor setup, as well as a preliminary design of the setup. Using 

the replica testbed, multiple iterations of the sensor setup were constructed and tested to 

optimize data collection, transportability, and ease of on-site construction. Ultimately, the 

Figure 4.1: Schematic of the ground vehicle testbed located at ARL APG showing the front 

and right sides. Two additional viewports are hidden from view under the overhang on the 

right side. 
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final setup that was easiest to implement relied on seven FBE inputs on the front side and 

the last two inputs on the nearest viewports on the right side. This allowed for the widest 

range of input orientations limited by the constraints of the FBE bundle and environment. 

 Based on the finalized sensor setup design, a single day of setup was required at the 

start of the ARL APG measurement campaign. Figure 4.3 shows the experimental 

arrangement for on-site, in situ measurements within the ground vehicle testbed, as seen 

from the front face of the testbed, where the single camera (Photron SA-4) and the 

customized FBEs are aligned and mounted on the custom 80-20 aluminum frame directly 

adjacent to the testbed. Seven of the nine FBE inputs viewed the target flames through the 

three front viewports, while the other two inputs viewed the flames from the side. As the 

targets for measurement data, two different flames were generated within the interior of 

the testbed: a propane torch flame and a pool flame. Because the polycarbonate windows 

were removed, smoke from the flames was able to exit through the testbed viewports and 

Figure 4.2: Wooden replica of the ground vehicle testbed built at a 1:1 scale used for design 

and rehearsal of the FBE sensor setup 
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deposit on the FBE input lenses, illustrating again the benefits of a setup that can move the 

more expensive camera away from hazards.  

Figure 4.4 shows the overall experimental setup schematically to better illustrate 

the FBE orientations with respect to the target flame, which are specified by the 

azimuthal angle (θ) and inclination angle (φ) as shown. Figure 4.4a shows the schematic 

from the top, where each FBE input, numbered 1 through 9 with increasing θ, was 

located approximately around the perimeter of a rectangle due to the geometry of the 

testbed and its viewports. Not all the inputs were aligned in a co-planar fashion, and 

therefore the inclination angle was defined, as shown in Fig. 4.4b. The FBE output 

integrated and transmitted all the signals captured by the nine inputs into the camera, as 

shown in Fig. 4.4a. The Photron SA-4 high-speed camera was fitted with a Nikkor 105 

mm lens and was focused on the output of the FBE bundle. In this work, the target 

signals collected were primarily due to the emission from soot particles in the visible 

spectral range produced by the flames. Therefore, the 4D diagnostics used here were 

Figure 4.3: Experimental setup of the 4D sensors to visualize flames within the ground 

vehicle testbed located at ARL APG 
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based on emission tomography, and this work therefore essentially uses the soot emission 

intensities to represent flame locations [31]. 

 

 Due to the limitation of having to set up all FBE inputs not equidistant from the 

target flame (ranging between 1.3 and 2.0 meters), the 8th and 9th FBE inputs, those that 

were furthest from the camera (with an arm length of 3.0 m), had difficulty in alignment. 

The lack of optimal orientation for these two inputs resulted in a large portion of the 

projections captured not overlapping with the measurements captured by the other seven 

inputs. Therefore, in the subsequent tomographic reconstruction, either a significantly 

smaller volume (that which all nine FBE views overlapped) would be reconstructed, or the 

measurements captured by the 8th and 9th inputs would be ignored. This work decided on 

the latter approach and did not include the measurements from the 8th and 9th FBE inputs 

in the reconstruction process.  

 The key component of these diagnostics, the customized FBE bundle, is detailed in 

Figure 4.5. Figure 4.5a shows the nine separate input arms that are integrated into a single 

output. The nine input arms were designed to different lengths, with three being 1 meter 

Figure 4.4: Schematic of the overall experimental setup, a) as seen from the top view, where 

θ is the azimuthal angle of the FBE inputs, and b) as seen from the side view, where φ is 

the inclination angle 
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long, three being 2 meters, and three being 3 meters. The purpose of such a design was to 

allow the input arms to accommodate the different distances from each viewport to the 

camera and to reach different viewports flexibly. Each individual FBE input contained a 

470 × 470 array of individual fiber filaments, each with an approximate diameter of 18 μm, 

that are packed in a square arrangement. With nine input arms, there were a total of 

1,988,100 (9 × 470 × 470) image elements in the output end. The number of individual 

fiber filaments and the total number of imaging elements were designed such that the FBE 

would not be the limiting factor in spatial resolution compared to the single camera. More 

specifically, if the number of imaging elements from the FBE output was significantly 

fewer than the number of camera pixels, then a large part of the pixel resolution of the 

camera would essentially be wasted. Conversely, if the number of fiber image elements 

was significantly greater than the number of pixels, then a large portion of the imagining 

fibers would be wasted. The Photron SA-4 camera in this work had a maximum pixel 

resolution of 1024 × 1024 pixels, representing a reasonable match between the imaging 

elements in the FBE and the pixel resolution of the camera. With the camera focused on 

the FBE output end, the approximate resolution of each FBE output was 340 × 340 pixels.  

Figure 4.5b shows a close-up of the input end assembly. Each input was held with 

an aluminum mount as shown on the left side of Fig. 4.5b. The input end was threaded, and 

Figure 4.5: Photo of the customized nine-to-one FBE bundle, where a) shows the full 

bundle with different arm lengths, and b) is a close-up of one input arm and the lens 

integration 
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an adjuster (the part immediately to the right of the input end) with matching thread was 

custom fabricated so that the left end of the adjustor could be assembled to the FBE input 

and finely tuned for focusing purposes. The right end of the adjustor was also threaded so 

it could be assembled to a lens adapter, to which a lens could then be attached. In this work, 

a Nikkor 50 mm lens was used for each input arm. A single locking mechanism was also 

fabricated on the adjustor to lock the alignment once it was finely tuned.  

 In order to determine the precise location of each FBE input (the distance to the 

target, and the azimuthal and inclination angles), a view registration process was 

performed. To begin, a calibration target, a flat plate with a checkerboard pattern with 

precisely known dimensions, was placed at the expected location of the flame. The 

calibration target was mounted on a rotational stage and images of it were captured at 

various angles by each of the FBE inputs. Figure 4.6 shows the calibration target within 

the testbed, which was placed near the center of the container that would later generate the 

pool flame, and a short distance in front of the propane torch, where the center of both 

flames was expected to be. Due to the difficult lighting conditions and unstable platform 

Figure 4.6: The calibration target within the ground vehicle testbed as seen from the 

outside, also showing the pool container, the propane torch, and some FBE input ends 
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to which it was mounted, challenges were present in calibration that do not typically exist 

under laboratory conditions, and some of these challenges are addressed in a later section.  

Figure 4.7 shows two examples of the simultaneous projections from each of the 

nine FBE inputs, as viewed on the output end by the camera, with Fig. 4.7a showing just 

the illuminated calibration target with FBE inputs labeled according to Fig. 4.4a. From this 

particular orientation, the view from the 9th input in Fig. 4.7a is not of high enough quality 

to use in the view registration procedure due to the steep viewing angle of the flat plate. To 

combat this problem, and also to offer more views to constrain the view registration 

algorithm, the calibration target was placed on a rotational stage and multiple sets of 

projections, like those pictured in Fig. 4.7a, were taken at a multitude of known rotational 

angles. Figure 4.7b shows a similar photo, but with an overlay of the propane torch flame 

(purple) to illustrate the challenges of aligning the calibration target with the target flame, 

and also to show the significant positional discrepancy for the 8th and 9th FBE inputs with 

respect to the calibration target, as mentioned earlier. 

Figure 4.7: Projections of the calibration target as viewed from the nine FBE inputs, a) just 

the illuminated target numbered with increasing θ, and b) an overlay of the propane torch 

flame (purple) with the target 
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The view registration algorithm used in this work is an open-source MATLAB 

program that can infer the location and orientation of cameras based on the magnification 

and distortion of the known pattern of the calibration target [93]. In this case, the images 

from each FBE input of the calibration target at the known rotational positions were used 

in the view registration algorithm, which identified the checkerboard pattern on each image 

to infer the orientation for each image and, ultimately, determine the position of the FBE 

input. Figure 4.8a shows an example of the view registration detection for one view. For 

most FBE inputs, eight images of different known rotational positions were of high enough 

quality to use in view registration. Figure 4.8b shows the eight calculated orientations of a 

single FBE input from the perspective of the calibration target (red). Each of the known 

rotational positions were separated by θ = 10°, however, there is obviously a slight 

discrepancy shown in Fig. 4.8b, illustrating the degree of view registration and subsequent 

measurement error. To account for the view registration error, the average position and 

orientation values were used for each FBE input.  

Finally, after performing the calibration and view registration, one final step was 

performed to optimize the view angles and reduce reconstruction error due to 

misalignment. In this step, a quick reconstruction was performed with a limited number of 

Figure 4.8: a) The view registration detection of the checkerboard pattern on the calibration 

target, and b) the calculated orientations of a single FBE input with respect to the 

calibration target (red) across eight known rotational positions 
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views, beginning with three, using the calculated orientations from the view registration. 

Each angle was changed a small amount at increments of 0.5° in an iterative way until the 

minimum projection error was found using a sample instantaneous measurement. Once this 

minimum error was found, the same view angles were used while then including an 

additional view that underwent the same iterative minimization procedure. Additional 

views were added in this manner until all seven views were optimized. A similar yet more 

sophisticated process has been developed, called Reconstruction Integrating View 

Registration (RIVR), where an internal feedback mechanism can optimize the view 

orientations while simultaneously performing the 3D reconstruction [94, 95]. However, 

this technique was not fully developed at the time the work in this chapter was performed. 

The final set of view orientations were then used for all subsequent reconstructions, and 

the final angular positions for each FBE input are shown in Table 4.1. Note that the 

orientations for views 8 and 9 are directly from the view registration and were not 

optimized or used in reconstruction, as mentioned. As seen in Fig. 4.3, and shown 

schematically in Fig. 4.4a, views 1 through 7 were on the front side of the testbed and were 

oriented with a relatively shallow inclination angle, no more than 5° above the horizontal. 

However, due to the geometry and placement of the viewports on the testbed, the 8th and 

9th FBE inputs, located on the side of the testbed, had much steeper inclination angles 

measured from the horizontal of 40.9° and -20°, respectively. These greater inclination 

angles compounded the difficulty of obtaining measurements of sufficient quality and 

accuracy from these views, which is why they were ultimately omitted from the 

tomographic reconstructions. 

 

Table 4.1: The view angles for each FBE input arm as determined by view registration. 

Views were labeled 1 through 9 with increasing θ.  
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4.3. Experimental Procedure 

 After the view registration procedure was complete, experimental data was taken 

under two different flame conditions: using a propane torch and an F24 jet fuel pool flame, 

which is a kerosene-based fuel. While both flames were smaller than those expected under 

realistic conditions, the primary focus of this measurement campaign was to develop a 

proof-of-concept setup that could be implemented under even more realistic conditions. 

The signal emitted from both the propane torch and pool flame was likely a combination 

of two emission mechanisms: incandescence caused by blackbody radiation of unburned 

soot molecules and chemiluminescence from excited radicals in the flame, typically OH* 

and CH* [26, 86, 96]. In both cases, the emission is in the visible range and could be 

collected by a camera without any supporting filters. The first set of data taken was using 

a propane torch that was situated such that the middle of the flame was expected to be near 

the center of the calibration target. Figure 4.9a shows a photo of the lit propane torch within 

the testbed, and Fig. 4.9b shows an image of the nine different projections as seen from the 

output end of the FBE bundle. Once again, it is clear that the flame as viewed from the 8th 

and 9th FBE inputs is significantly out of frame and would not be usable for tomography. 

Figure 4.9: Images of the propane torch flame, a) photo taken from outside the testbed, and 

b) projections from the nine FBE inputs as taken by the single camera 
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Throughout the measurement campaign, a variety of exposure times and aperture sizes on 

the FBE inputs were used with the primary goal of obtaining sufficient signal-to-noise 

ratio, secondly to maintain a high enough temporal resolution to resolve the flame 

dynamics, and lastly to achieve approximately the same signal level across all FBE inputs. 

Such a routine set of objectives was difficult to achieve simultaneously under field 

conditions, particularly keeping the signal level equal across all views, as seen in Fig. 4.9b. 

This is due to the possible variation in aperture size for each FBE input, the various 

distances of the inputs to the flame, and signal attenuation from transmission within the 

fiber optics. However, an acceptable signal-to-noise ratio and temporal resolution could be 

achieved under an operational frame rate of 500 Hz with an exposure time of 2 ms for the 

propane torch and 1 ms for the pool flame, and these parameters were used throughout the 

remainder of this chapter. 

 After data was captured from the propane torch, it was removed from the testbed to 

prepare for the pool flame measurements. F24 jet fuel was used as the fuel source, which 

was poured into the rectangular container that held the calibration target in Fig. 4.6. The 

fuel was ignited and generated much larger and more turbulent flames than the propane 

Figure 4.10: Images of the pool flame, a) photo taken from outside the testbed, and b) 

projections from the nine FBE inputs as taken by the single camera 
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torch. Figure 4.10a is a photo of the pool flame seen from outside the testbed, illustrating 

its size and turbulence compared to the propane torch flame. Figure 4.10b, similar to Fig. 

4.9b, shows the nine different simultaneous views taken by the single camera. Based on 

the location of the calibration target and the magnification of the FBE input views, 

measurements were taken of approximately the top half of the entire pool flame pictured 

in Fig. 4.10a. For this reason, some instantaneous measurements of the pool flame 

contained very little signal, as the flame was relatively short during these moments. As 

another challenge, the signal level discrepancy is apparent once again, as the view from the 

8th FBE input is nearly completely oversaturated. The oversaturation of the signal, which 

is occasionally present across multiple views and instantaneous projections, causes an 

irrevocable loss of data that makes including the measurement in the tomographic 

reconstruction difficult, if not impossible, while maintining high reconstruction fidelity. 

This can also be a reason why some views may be omitted from the reconstruction in 

addition to physical misalignment.  

Before the measured projections of either flame could be used as inputs for 

tomographic reconstruction, some image post-processing was required. The image post-

processing procedure involved cropping, centering, and normalizing the signal level and 

magnification across all views used. The magnification was normalized by scaling the size 

of each view such that the height of the calibration target was equal, modified by the 

calculated inclination angle, and the signal level was normalized in such a way that the sum 

of the signal on each view would be equal. By normalizing the signal level and 

magnification, the reconstruction algorithm treated each view as having been the same 

distance from the flame center. Given the large uncertainty in the position and orientation 

of each FBE input, this method showed the most promise in achieving usable results, as 

opposed to trying to tune the signal level (which differs greatly across all views) to match 

their distance from the flame. The measurements from each FBE input were cropped and 

centered in such a way that the center pixel of each image corresponded to a line of sight 

through the center voxel of the reconstructed measurement volume. While a perfect 

alignment would make this step unnecessary, such a setup was unachievable due to the 

logistical limitations on-site (i.e. the short amount of time to set up and collect data and the 

unstable surfaces for FBEs, camera, calibration target, and flame). After image post-
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processing, the projections were used as inputs in the tomographic reconstruction 

algorithm.  

 

4.4. Results and Analysis 

  For the propane torch data, views 1 through 7 were used in the tomographic 

reconstruction, and each of the seven projections was cropped to a pixel resolution of 260 

× 200 pixels, resulting in a total of 3.64 × 105 pixels (the total number of inputs). The 

dimensions of the reconstruction volume were 19.2 cm (width) × 19.2 cm (depth) × 15.0 

cm (height), which was discretized into 76 × 76 × 58 voxels, resulting in a total number of 

voxels of 3.35 × 105 (the number of unknowns variables to be solved). With this 

Figure 4.11: Comparison between a) a set of 3D reconstructions of the propane torch flame, 

b) the measured projections at the corresponding views, and c) the re-projections at the 

corresponding views, showing the qualitative similarities, as well as the projection error 

between (b) and (c). A feature has been circled to show the level of detail achievable in the 

reconstruction. 
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discretization, the voxel resolution was 0.25 cm in each dimension. For both the propane 

torch and the pool flame reconstructions, the masking technique was used to expedite the 

reconstruction time of the hundreds of frames. A thick buffer region was included to 

eliminate any detrimental effects due to the substantial misalignment and view registration 

error. Figure 4.11 shows the results of the reconstruction of a single instantaneous 

measurement of the propane torch flame as viewed from three of the seven views used. 

Figure 4.11a shows the reconstruction as an isosurface, where the isosurface value was 

chosen that best represented the flame’s surface and was derived in a similar way to the 

binary threshold value described in Chapter 3. Figure 4.11b shows the measured 

projections for the same three views shown in the top row and can be visually compared to 

see that the reconstruction accurately captured the bulk flame features. Figure 4.11c shows 

the re-projections simulated from the 3D reconstruction at the same three views, and a 

visual comparison between these and the measured projections shows them to be similar 

at both large and small scales. As a specific example, the circled region in view 2 of Figure 

4.11 shows a uniquely shaped hole that can be clearly seen in the reconstruction, 

demonstrating the reconstruction fidelity. 

 In previous chapters, a quantitative assessment of accuracy was possible by directly 

comparing the reconstruction to either the known phantom distribution or a ground truth 

acquired by more accurate means. However, in this study, there is no known distribution 

to which the results can be compared. Here, the quantitative comparison can instead be 

performed by examining the error and correlation between the measured projections and 

re-projections. Ideally, the re-projections would be identical to the measured projections 

for each view, indicating a perfect reconstruction. This work calculated the projection error 

(𝑒𝑝) between the measured projections (𝑝) and the re-projections (𝑝𝑟) as defined below: 

 
𝑒𝑝 =  

∑ ∑ |𝑝𝑖,𝑗 − 𝑝𝑖,𝑗
𝑟 |𝑗𝑖

∑ ∑ |𝑝𝑖,𝑗|𝑗𝑖

 , 
(4.1) 

where 𝑖 and 𝑗 represent the pixel indices of the projections. 

 Figure 4.11b shows the projection error between the corresponding measured 

projections and re-projections for the three views shown, and the errors ranged from 13.7% 
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to 16.3% with an average of 14.7% across all seven views. The projection error is higher 

than what would normally be deemed acceptable based on earlier characterization of 

measurements performed in more controlled environments, indicating a significant error in 

view registration and signal normalization [31, 88]. However, the projection error alone 

does not provide a full characterization of the reconstruction fidelity. For example, an 

otherwise perfect 3D reconstruction with only a spatial shift from the true distribution 

would result in a large projection error. Therefore, to complement the characterization of 

reconstruction accuracy, the projection correlation (𝜌) was used and is defined as: 

 
𝜌 =  

𝑐𝑜𝑣(𝑝, 𝑝𝑟)

𝜎𝑝𝜎𝑝𝑟
 , 

(4.2) 

where 𝑐𝑜𝑣 is the covariance between the two projections, and 𝜎 is the standard deviation 

of the pixel intensities for each projection. In the example of a perfect reconstruction with 

only a spatial shift, the correlation would be 𝜌 = 100%. Across the seven views used for 

reconstruction, the average correlation between the measured projections and re-

projections was 98.9%, indicating a satisfactory level of reconstruction accuracy in terms 

of capturing the 3D spatial structures based on the earlier characterization. While the 

relatively large error illustrates the challenges in alignment during field tests, the large 

correlation shows that the overall structure and dimensions of the flame can still be 

accurately reproduced. 

 A similar procedure was performed on the pool flame data. Again, only views 1 

through 7 were used during reconstruction for the same reason as the propane torch, and 

each projection was cropped to 320 × 260 pixels, resulting in a total of 5.82 × 105 pixels. 

The reconstruction volume had dimensions of 35 cm (width) × 35 cm (depth) × 29 cm 

(height) and was discretized into 88 × 88 × 72 voxels, for a total of 5.58 × 105 voxels. Due 

to the much larger measurement volume and only a relatively small increase in total pixels, 

the voxel resolution for the pool flame was 0.40 cm in all three dimensions. Similar to Fig. 

4.11, Fig. 4.12 shows the reconstruction results for three views of the pool flame, with Fig. 

4.12a being the 3D reconstruction as an isosurface, 4.12b being the measured projections, 

and 4.12c being the corresponding re-projections. Once again, upon visual inspection, the 

reconstruction captured the large-scale 3D features of the flame correctly. Also, the re-
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projections and measured projections matched closely, both at an overall and detailed level. 

As a specific example, the circled region in view 6 shows three uniquely shaped holes in 

the flame structure that can be compared between Figs. 4.12a, b, and c, again illustrating 

the fidelity of the tomographic reconstruction. The projection errors for the three views are 

also shown in Fig. 4.12b, and they range from 8.7% to 10.3% with an average of 9.3% 

across all seven views. This error is quite a bit smaller than that of the propane torch, 

indicating that the alignment was less of an issue for this dataset. This may be the case due 

to the much larger size of the flame, where more of the measurement volume is occupied 

with signal. For example, if the signal distribution were a single point source, any 

misalignment would show no agreement between the views, and the projection error would 

be very large. Similar to the propane torch, the average correlation across the seven views 

Figure 4.12: Comparison between a) a set of 3D reconstructions of the pool flame, b) the 

measured projections at the corresponding views, and c) the re-projections at the 

corresponding views, showing the qualitative similarities, as well as the projection error 

between (b) and (c). The circled features show that detailed regions of the flame could be 

accurately reconstructed. 
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used was 98.9%, again indicating that the overall flame structures were accurately 

reconstructed.  

  As previously mentioned, data for both experimental conditions was captured at 

500 Hz, which was sufficiently fast to resolve the temporal dynamics of the flame while 

simultaneously allowing for an adequate signal level. To demonstrate the 4D capabilities 

of the experimental setup and tomographic reconstruction, a temporal analysis of various 

flame parameters was carried out. For both the propane torch and pool flame, the motion 

of some key flame features was calculated, as well as the rate of change of the flame surface 

area, both based on the 3D isosurface of the reconstruction. Figure 4.13 provides an 

example of the temporal evolution of the propane torch flame, illustrating the 3D 

capabilities of high-speed tomography. The top row of Fig. 4.13 shows the 3D 

reconstructions evolving with time at 2 ms increments, while the bottom row shows the 

corresponding measured projections for visual comparison. The t = 0 ms frame is the same 

as that shown in Fig. 4.11. The 4D data shown in Fig. 4.13 provides both temporal and 

spatial information about the flame, such as the location of the extent of the flame in 3D, 

and also the temporal propagation of the flame. As a specific example, the 4D 

measurements revealed that the flame feature highlighted in the blue box was moving 

radially outward with a velocity of 12.9 m/s. This was calculated based on the rate of 

Figure 4.13: Comparison between the 3D reconstruction (top) and the corresponding 

measured projections (bottom) at consecutive time frames of the propane torch flame. A 

key feature is outlined as it moved from the t = -6 ms to t = 0 ms frame and its rate of 

growth calculated. 
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change of the distance of this feature from the center of the measurement volume based on 

the isosurface value displayed. The velocity was measured by dividing the distance traveled 

by the feature between t = -6 ms and t = 0 ms. Considering the laminar burning velocity of 

a propane-air mixture is approximately an order of magnitude slower than this 

measurement, it can be determined that the predominant factor in the rate of growth of this 

flame is the direction and speed of the flow [97]. This observation is strengthened by the 

fact that the direction of flow was approximately in line with the velocity vector of this key 

feature. The measurement of this velocity was enabled by the 4D nature of the 

reconstruction, as such radial and depth motion are difficult or infeasible to obtain from 

2D measurements due to their line-of-sight limitation.  

 A similar temporal analysis was performed on the pool flame. Figure 4.14 shows 

the temporal evolution of a segment of the flame over 12 ms, with the top row being the 

3D reconstruction and the bottom row being the corresponding measured projections. The 

t = 0 ms frame is the same as that shown in Fig. 4.12. Again, some key flame features are 

highlighted in Fig. 4.14: a pillar-shaped feature (highlighted in the green rectangle) and a 

Figure 4.14: Comparison between the 3D reconstructions (top) and the corresponding 

measured projections (bottom) at consecutive time frames for the pool flame. Two key 

features are outlined as they moved from t = -6 ms to t = +6 ms and their rates of growth 

calculated. 
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hole (highlighted in the blue circle). First, the pillar-shaped feature was difficult to discern 

as a distinct feature from the 2D measurements in the bottom row, again due to their line-

of-sight nature, while the 4D measurements in the top row clearly resolved it. Second, the 

motion of both features can be seen to be predominantly vertically upwards from both the 

2D and 4D measurements, and the vertical speeds of the features were calculated to be 5.0 

m/s for the pillar and 5.9 m/s for the hole. Due to the mostly vertical motion of the key 

flame features, it is estimated that the vertical evolution of this flame is primarily driven 

by upward convective flow. These measurements are in line with expectations of 

convective heat rise in a container, with an estimated vertical velocity between 5 – 10 m/s. 

These 4D measurements also revealed small depth-wise motion for these features, and 

other regions of the flame, that cannot be resolved from the 2D projections.  

 In addition to inspection of the time evolution of specific flame features, the time 

evolution of flame surface area was also calculated. While both the feature velocity 

measurements and surface area measurements relied on the isosurface, it should be noted 

that the surface area measurements are much more sensitive to the isosurface value, and 

these measurements shown are more useful to inspect the relative temporal change of 

surface area as opposed to the true flame surface area. In addition to their sensitivity to 

isosurface value, the surface area measurements are also sensitive to the spatial 

discretization of the reconstruction with respect to the smallest spatial structures within the 

flame for similar reasons as the flame perimeter measurements in Chapter 3. In Chapter 3, 

the smallest spatial structures visible were limited by the thickness of the thin reaction 

layer, and more specifically the presence of CH near the reaction layer. However, in the 

case of the diffusion flames in this work, where hot soot is expected to be the primary 

source of signal, there is not such a well-defined region where signal is expected, especially 

as soot has been shown to diffuse throughout the flame quickly as a function of distance 

from the ignition source [98]. For this reason, it is very difficult to estimate the smallest 

measurable scale and therefore the maximum spatial resolution that could be desired. 

However, due to the use of a single camera and the large measurement volumes for both 

flames, it is likely that the spatial resolution achieved in this work is not sufficient to resolve 

the smallest turbulent structures within the flow, and thus the surface area measurements 
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here are likely to be considerably smaller than that measured with higher accuracy and 

resolution. 

To calculate the surface area of the reconstruction based on the displayed 

isosurface, the sum of the area of each triangular face that makes up the isosurface patch 

was taken. This step was performed for each instantaneous measurement’s reconstruction 

and the time-evolution could then be examined. Figure 4.15 shows the time evolution of 

the surface area measurements (in cm2) for the propane torch flame over the course of 140 

ms (70 consecutive frames) using three different isosurface values that varied by 10% of 

each other. Note that the middle value of 9.0E-6 was the value used to display the flame 

earlier in Figs. 4.11 and 4.13. As mentioned, the surface area measurements were 

dependent on the isosurface value chosen, but Fig. 4.15 demonstrated that the relative 

change of surface area was consistent across different isosurface values and thus the overall 

trend could be analyzed based on these measurements. During this short period of time 

(140 ms), there was substantial variation of the flame surface area, indicating that a 

temporal resolution of at least 2 ms was required to accurately resolve the flame evolution. 

Figure 4.15: Time-evolution of the surface area of the propane torch flame based on 

different isosurface values, taken over 70 consecutive frames at 2 ms intervals 
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In particular, the fastest change in flame surface area was from 431.9 to 162.0 cm2 between 

20 and 28 ms at an average rate of 33.7 cm2/s. In this particular subset of data for the 

propane torch, the flame was almost always entirely within the reconstruction measurement 

volume, and thus the changes in the measured surface area could be explained by variation 

within the flame signal. 

 In a similar way to the propane torch, surface area measurements of the pool flame 

were taken and are shown in Fig. 4.16, again using three different isosurface values that 

varied by 10% of each other. Once again, the absolute surface area measurements were 

sensitive to the chosen isosurface value, but the temporal trend remained the same. While 

the overall variation in surface area for the pool flame was greater than that of the propane 

torch, with the fastest rate of change being 118.7 cm2/s (between 60 and 64 ms), the relative 

rate of change of surface area was slightly lower, again illustrating that the temporal 

resolution of 2 ms was sufficient to capture the flame evolution. Unlike the propane torch, 

the variation in flame surface area came from two major sources: the natural variation in 

flame signal, and the presence of flame signal within the measurement volume. While the 

propane torch existed almost entirely within the reconstructed measurement volume, the 

Figure 4.16: Time-evolution of the surface area of the pool flame based on different 

isosurface values, taken over 94 consecutive frames at 2 ms intervals 
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measurement volume for the pool flame only resided around the top of the entire volume 

that the pool flame occupied. For this reason, during times when the pool flame was 

relatively short, there could be little to no signal captured by the FBE inputs, and thus very 

little surface area. This was especially the case near the beginning and end of the data 

shown in Fig. 4.16, which is why the surface area is so small.  

 Due to the vast amount of data taken at such a high frame rate and the limitations 

of data storage and transfer, only up to one second of data was taken at a time (500 frames 

at 500 Hz), which limited the ability to obtain time-averaged measurements that would 

better characterize the flames as a whole. However, the primary goal of this measurement 

campaign was to show that such 4D tomographic setups are possible under field conditions, 

which was achieved. 

 

4.5. Summary 

 This chapter demonstrated the in situ imaging of 4D fire events within a ground 

vehicle testbed under field conditions as part of an ongoing campaign to characterize the 

volatile flames encountered in vehicle fire situations. Using a customized 9-to-1 FBE 

bundle, time-resolved measurements taken at 500 Hz were taken with a single camera 

located a safe distance away from the testbed. Measurements of both a propane torch and 

a pool flame were taken, with measurements volumes of 19.2 cm (width) × 19.2 cm (depth) 

× 15.0 cm (height) and 35 cm × 35 cm × 29 cm, respectively. The FBE-based diagnostics 

overcame several key challenges of obtaining time-resolved measurements of large flames 

under field conditions, including equipment cost, equipment safety, optical access, and the 

relatively large measurement volume and hostile measurement environment. During this 

measurement campaign, the design of the diagnostic setup has also been shown to be 

sufficiently robust for the transportation between University of Virginia (Charlottesville, 

VA) and ARL APG (Aberdeen, MD), and for the transportation, assembly, alignment, and 

disassembly within three days. To the author’s knowledge, this is the first time that in situ 

4D measurements under such field conditions have been reported. 
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 The 4D measurements were obtained by using a tomography algorithm to 

determine the temporally-resolved 3D signal distribution of the flame based on the 

simultaneous measurements taken by the single camera with nine distinct views from the 

FBE inputs. During the tomographic reconstructions, the pixel masking method was 

employed with a sufficiently large buffer region to reduce the vast computational time of 

reconstructing the many instantaneous sets of measurements without sacrificing accuracy. 

A large buffer region was required due to the inaccuracy of the view registration procedure 

in determining the view orientations of each of the nine FBE inputs, which was a 

consequence of the challenging setup under field conditions. As another method to alleviate 

the issues of misalignment, a view angle optimization routine was performed to slightly 

alter the view angles used in reconstruction in such a way that minimized the reconstructed 

projection error, and these optimized view angles were used for all subsequent 

reconstructions from this data set.  

 Based on the 4D tomographic measurements, the temporal evolution of the flame’s 

3D signal distribution was observed. Measurements of the rate of flame growth and 

propagation are particularly useful in studying fire events within enclosed containers like 

ground vehicles, where human lives are at stake. Understanding the rate at which these 

rapidly evolving flames can grow can inform the design of safety systems, such as 

automatic fire extinguishing systems, to protect the lives of the occupants. Towards this 

goal, the temporal evolution of the flame’s extent and surface area were calculated. For 

both the propane torch and the pool flame, key features were identified in 3D that would 

otherwise be difficult or impossible to identify from purely the 2D line-of-sight projections 

alone, and the motion of these features was calculated. Additionally, based on an isosurface 

of the 3D reconstruction, the surface area of the flames was estimated and their temporal 

evolution was observed. These measurements showed that even under such short time 

scales there was significant evolution of the flame surface, and the frame rate of 500 Hz 

was near the minimum required frame rate to fully capture this evolution, further 

demonstrating the need for high-speed flame measurements.  

 There were many limitations and challenges encountered during these experiments 

that needed to be overcome. First, it turned out to be quite difficult to achieve a routine set 
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of alignment objectives under field conditions, namely, maintaining a sufficient signal-to-

noise ratio, sufficient temporal resolution, approximately the same signal level across all 

FBE inputs, and accurate alignment of view orientations. While additional time and care 

could improve the quality of the alignment and projections, these factors will always 

remain a challenge under field conditions. Second, the lengths and placements of the FBE 

input arms could be designed to better suit the specific field conditions. In particular, the 

lengths of the two furthest FBE arms were too short to make the alignment stable and easy. 

As a result of this, the views from these two input arms were not used in the reconstruction. 

One obvious solution would be an FBE bundle with longer arms, but the additional arm 

length would likely lead to greater signal attenuation. Another solution could be to perform 

a more systematic analysis of the possible positions for the FBE inputs and camera to 

optimize placement with the given hardware. Finally, and perhaps most importantly, the 

use of a single camera placed a limit on the maximum spatial resolution achievable in the 

reconstruction. The 1024 × 1024 pixels available on the camera used represented the 

maximum number of voxels that could be solved, and thus the maximum achievable spatial 

resolution, assuming every pixel was used optimally (which is never the case, especially 

under field conditions). If a finer resolution is required, for instance to resolve smaller 

structures within the turbulent flame, either a camera with greater pixel resolution or 

additional cameras would be necessary. Additionally, further studies to determine the 

chemical composition and relevant length scales that may be of interest should be 

performed. This work has demonstrated that even with the many challenges faced under 

field conditions and with limited hardware, 4D measurements of highly turbulent flames 

were achieved, and even relatively small-scale features could be resolved.  
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Chapter 5 

 

5. Conclusions 

 

5.1. Summary of Contributions 

 This dissertation outlines three projects that aim to advance the field of combustion 

tomography and diagnostics through progress in both data acquisition and data processing 

techniques.  More specifically, two computational techniques were developed, validated, 

and analyzed which both exploit flame features to more intelligently use the information 

collected in the measured projections. Both techniques aimed to reduce the computational 

cost of tomography without a loss of accuracy, and in some cases even improving spatial 

resolution. In addition, towards improving data acquisition, a proof-of-concept 

demonstration using fiber-based endoscopes with a single camera enabled the visualization 

of flames under practical conditions, including limited space and harsh conditions. Time-

resolved 3D flame measurements were collected that were able to resolve both the temporal 

dynamics and spatial structures of the flame.  

 Chapter 2 first describes an adaptive spatial discretization (ASD) technique that 

was developed to reduce the computational cost of computed tomography while 

simultaneously offering the capability to improve spatial resolution. The ASD technique 

exploits regions within the measured flame that have relatively low spatial gradients in 

signal intensity. As these regions do not require as great of spatial resolution, they may be 

reconstructed with larger and fewer voxels. The ASD technique can quickly identify these 

low-gradient regions and adapt the discretization of the measurement volume such that 

more and smaller voxels are only used in regions that require high spatial resolution, and 

larger voxels are used everywhere else. The primary contribution of this work is to reduce 

the computational cost by using fewer total voxels while maintaining reconstruction 

accuracy. As a secondary benefit, employing ASD allowed for a slight increase in spatial 

resolution and has shown to be more noise-resistant than the baseline method. The ASD 
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technique was validated and analyzed on six phantom cases that were designed to emulate 

a variety of distributions encountered in tomography applications, and the reconstructions 

were directly compared to the phantoms to assess the accuracy. Using 18 equally distanced, 

co-planar projections with an artificially added 3% Gaussian noise, the phantoms were 

reconstructed using the ASD and baseline methods, where it was found that the ASD 

method yielded a reduction in computational time of up to 50% while the reconstruction 

error increased by no more than 0.21% across all six cases. In a similar test to emulate real-

world measurements more closely, a high-resolution phantom was projected onto the same 

views with significantly fewer pixels than voxels (thus limiting the information and 

maximum spatial resolution achievable). Under these tests, it was found that the ASD 

method not only reduced the computational time to achieve the same accuracy, but was 

also able to slightly reduce the error, and thus spatial resolution, in some cases. 

 Chapter 3 describes a pixel masking technique to similarly reduce the 

computational cost of tomography while maintaining, or even improving, reconstruction 

accuracy by exploiting a different feature common in flame measurements. In emission 

tomography, there are usually regions on the measured projections that do not receive any 

signal, and it can be inferred that all voxels corresponding to these pixels contain no 

emission. The pixel masking method identifies pixels that are below a determined noise 

threshold and removes these pixels and all corresponding voxels from the reconstruction. 

In doing so, fewer voxels are used in the reconstruction, thus reducing the computational 

cost to perform tomography while maintaining accuracy. Alternatively, more and smaller 

voxels may be used in regions of importance, allowing for the improvement of 

reconstruction accuracy and resolution. To alleviate the issue of error in the calculated 

camera orientations, as calculated by a view registration algorithm, a buffer region was 

added at the interface of masked regions within the measurement volume to prevent these 

voxels from being unintentionally removed. The thickness of the buffer region needed to 

maintain accuracy using masking was found to be 1.2 mm, based on the approximate 0.5° 

error in view registration. Validation and analysis of the masking method were performed 

using a direct comparison of flame front contour length between 2D PLIF measurements 

and a corresponding simultaneous cross-section of a 3D VLIF reconstruction of the flame. 

The target species in the LIF measurements was the CH radical produced by the CH4-air 
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flame, for which the masking method is particularly well-suited due to CH only existing 

within a small region in the flame. Based on the contour length measurements, it was found 

that the masking method could achieve a 21% decrease in computation time while 

simultaneously decreasing the error by reducing the voxel size from 0.16 mm to 0.13 mm 

per dimension. An additional reduction in computation time could be achievable while 

simply maintaining accuracy if needed. Similar to the ASD method, the pixel masking 

technique proved to be another tool that can exploit flame features to reduce the 

computational cost of tomography without a loss, and in some cases a gain, in accuracy. 

 Finally, in Chapter 4 a proof-of-concept experimental design is demonstrated using 

FBEs in conjunction with a single camera to take time-resolved 3D measurements of 

turbulent flames within the confines of a ground vehicle testbed. Under practical 

conditions, there is typically limited space and view access to the target flames which 

makes obtaining multidimensional measurements difficult. Additionally, the conditions 

can be challenging to obtain accurate calibration and can also be hazardous to the 

equipment. For these reasons, there is a dire need for improved diagnostic setups for field 

measurements that can reduce the equipment cost and footprint and be flexible enough to 

utilize what limited view access exists. The use of FBEs greatly alleviated these issues to 

enable time-resolved flame measurements of two large, turbulent flames within the vehicle 

testbed, one being from a propane torch and the other a larger pool flame. These 4D 

measurements were used to resolve both the spatial structures and the temporal dynamics 

of the flames. For both flames, velocity measurements were calculated of key flame 

features and the temporal evolution of the estimated flame surface area. The pixel masking 

method was employed to reduce the computational requirements for such large-scale 

computations (a consequence of high-speed tomography at a frame rate of 500 Hz). To 

alleviate the significant error in the FBE input orientations, a large buffer region was added, 

and an iterative view angle operation was performed to minimize reconstruction error. 

From these experiments, it has been demonstrated that such an FBE-based setup could 

obtain 4D flame measurements under difficult field conditions and shows promise for other 

similarly challenging environments. 
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5.2. Future Work 

 Based on the work outlined in this dissertation, some additional avenues of potential 

research in the field of combustion tomography are discussed here. Broadly, the 

implementation of combustion tomography in more practical scenarios, particularly on a 

larger scale and under field conditions, is still relatively young. Also, the ultimate goal of 

obtaining real-time tomographic measurements of flames is still some distance in the 

future, with many more computational advancements (likely in both hardware and 

software) necessary. This section describes some potential advancements in both 

categories to make combustion tomography more widely applicable and more 

computationally efficient.  

First, the ASD technique employed in this dissertation was limited to two zones: 

coarsely and finely discretized regions. However, depending on the application and the 

range of spatial gradients, as well as the need for very high spatial resolution in some 

regions, multiple regions of varying discretization could be used. This work found that, 

when using cubic voxels, there was not much benefit to three zones of discretization in the 

cases tested. This was due to the limitation of voxel size under this geometry, where the 

ratio of different voxel sizes is limited to the dimension cubed (a voxel that is 1/3 the width 

of another has 1/27th the volume). The use of non-cubic voxels is one avenue to maximize 

the benefit of a multi-zone ASD method, although it is worth noting that there are other 

limitations to the maximum spatial resolution than simply the linear algebra limit, and thus 

the range of voxel sizes (and therefore the minimum voxel size needed) may be limited. 

An extension of this work would be to examine the potential benefits of combining the 

masking method and ASD, as they both exploit different characteristics in combustion 

measurements and tomography. However, when using ASD, regions that contain no signal 

and would therefore be masked are already treated with a coarse discretization, and these 

regions already occupy a small fraction of the overall computational resources.  

 The validation and analysis of the ASD method in this dissertation employed 

known phantom distributions and ASD has not yet been tested thoroughly on more realistic 

data. Applying ASD to a practical dataset is an obvious next step towards the validation of 

this technique. For instance, the data described in Chapter 3 would be a good candidate for 
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such tests, as the simultaneous PLIF and VLIF measurements offer the capacity for direct 

comparison using a well-established ground truth (the PLIF measurements). In fact, the 

simultaneous PLIF/VLIF setup is such a powerful diagnostic tool for validating new 

techniques that it would be worth investing resources to replicate the experiment using a 

high-speed setup to enable time-resolved measurements. Additionally, the data collected 

and described in Chapter 4 would be another good candidate for testing the ASD technique 

if not for the significant measurement and alignment errors in this dataset. In the future, 

similar time-resolved measurements would be useful in the validation of techniques while 

also offering the capability to test techniques similar to ASD, except applying an adaptive 

discretization to the temporal realm rather than (or in conjunction with) the spatial 

dimension. A final practical example where ASD would be a strong candidate is for flow 

particle image velocimetry (PIV) measurements. While tomographic PIV is relatively new 

and still developing, ASD would still be applicable to reduce the computational resources 

by focusing on areas where there are large velocity gradients (as opposed to signal 

gradients described in this dissertation). 

 The masking method used in this work exploited features found in the measured 

projections to improve the efficiency of performing tomography. In a similar way, one 

application of the ASD technique was to identify regions of large signal gradient based on 

the projections. However, while this particular application of ASD had some flaws (as 

discussed in Appendix A.2), more research efforts are warranted to identify features from 

the measured projections that can influence and inform the tomographic reconstructions.  

 Finally, the proof-of-concept FBE-based diagnostic setup described in this 

dissertation has shown to be a useful tool in overcoming many challenges of field 

measurements. As shown in Appendix section A.1, the same setup was modified to 

visualize simulated Mach 5 scramjet flames at the University of Virginia Hypersonics 

Research Complex. While there were additional challenges in obtaining these 

measurements, the flexibility of the setup was demonstrated again with a single camera. 

Given that spatial resolution is limited by the hardware used, the next step towards FBE-

based field diagnostics would be to include multiple FBE bundles and cameras to improve 

the spatial resolution of the measurements and to expand the range of possible view angles. 
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Also, as mentioned, one of the key challenges in field measurements is obtaining accurate 

view registration for each FBE input. While this dissertation utilized an iterative approach 

to mitigate the error in orientations, other works have developed a more advanced 

technique called RIVR, but only in the application of tomographic PIV measurements so 

far. It would greatly benefit practical combustion diagnostics if RIVR were used in 

conjunction with an FBE setup for field measurements, potentially reducing one of the 

more challenging aspects of practical measurements. In addition, a more comprehensive 

3D analysis could be performed before such large-scale setups to optimize the placements 

of each FBE input to maximize the obtainable information. Finally, in characterizing the 

flames that are present under these vehicle fire situations, smaller-scale laboratory tests 

should be performed on more laminar flames using the same fuel type to both identify the 

key chemical species of interest and their concentrations, which may better inform flame 

properties such as heat release, and to better understand the length scales necessary to 

resolve in order to better characterize the flames. 
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Appendix A 

 

A. Other Projects and Contributions  

 

 In addition to the research efforts described in this dissertation, other avenues have 

been explored that require additional work or lie outside the scope of this dissertation. 

However, in each case, a new method or technique was developed that warrants discussion. 

In this section, three avenues of research are discussed, including their potential value to 

the engineering community, as well as how such work could be continued in the future. 

 

A.1. FBE Setup for Scramjet Visualization 

 In Chapter 4, an FBE-based setup using a single camera was used to visualize very 

large, turbulent flames within a ground vehicle testbed. While there were significant 

challenges in these field measurements, many of which were overcome due to the 

flexibility of the setup, time-resolved 3D tomographic measurements were ultimately 

obtained that allowed for analysis of the time evolution of the target flames. This same 

FBE-based visualization setup was modified to view much smaller flames within the 

University of Virginia Hypersonics Research Complex. The FBE setup was oriented on 

either side of a supersonic combustor, which had two small observation windows at the 

flame holder location. Using this setup, data was collected of a simulated Mach 5 scramjet 

flame from nine different view orientations using a single camera. Figure A.1 shows the 

experimental arrangement and the test rig, where the single camera was mounted to an 

optical table and the nine fiber inputs were distributed on either side of the scramjet. Each 

FBE input was wrapped with foil tape in an attempt to reduce thermal radiation from the 

scramjet. In this particular instance, given that the FBE bundle was significantly less 

expensive than a single high-speed camera, being able to move the camera a considerable 

distance from the scramjet greatly reduced the risk of thermal damage to the camera. 
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 While the initial goal was to obtain time-resolved measurements of the scramjet 

flame, two major hurdles were encountered. The first was that the flame intensity signal 

was too weak at frame rates high enough to temporally resolve the flame. Second, there 

was significant reflection and other signal sources that obscured the flame signal, making 

even time-averaged measurements difficult. Figure A.2 shows an example of an 

instantaneous measurement from the nine FBE inputs. The top five views are taken from 

the front, and the bottom four are from the back. In this case, data was taken at 1000 frames 

per second, which is not nearly fast enough to temporally resolve the flame dynamics, 

while still suffering from a very low signal level. As an example, given the approximate 

velocity of the Mach 5 flow, a frame rate of 1,000,000 Hz would be necessary to reach a 

spatial resolution of 1 mm (assuming hardware was not a limiting factor). Therefore, the 

flow visualized in Fig. A.2 is time-averaged. In addition to this challenge, the other signal 

sources, which are expected to be reflections on the polycarbonate windows and blackbody 

radiation from the heated flame holder, are much stronger than the flame signal. To enable 

data of sufficient quality to perform a tomographic analysis, these challenges must be 

overcome. However, to the author’s knowledge, this was the first time that such multi-view 

measurements of scramjet flames have been attempted with the goal of obtaining 

Figure A.1: Photo of the scramjet sensor setup from a) the front, and b) the back 
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measurements of scramjet flames have been attempted with the goal of obtaining 

tomographic scramjet flame measurements. 

 

A.2. Adaptive Spatial Discretization Based on Projections 

One proposed method to implement the adaptive spatial discretization (ASD) 

technique was to use information based on the measured projections, as opposed to 

determining the regions of interest based on a preliminary reconstruction (as described in 

Chapter 2), similar to the implementation of the masking technique. In this method, the 

signal gradients were calculated from the measured projections, and those regions deemed 

as having high signal gradients were highlighted. Then, for each view, all the voxels that 

Figure A.2: An instantaneous measurement of the scramjet flame from the nine different 

FBE inputs, illustrating the challenges encountered 
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contributed to highlighted pixels were flagged while using a coarse voxel discretization 

throughout. The flagged voxels were converted into finely discretized voxels if enough 

views agreed that the voxel should be flagged for fine discretization. Figure A.3a shows an 

instantaneous measurement from the Hi-Pilot burner (described in Chapter 3) under low 

flow and turbulent conditions, making the flame nearly laminar. Figure A.3b shows the 

regions of large spatial gradients from the projections as highlighted pixels. Besides the 

high gradient regions detected due to noise, particularly on the far-left measurement, these 

regions of large gradient are mostly concentrated near the edge of the flame, which 

corresponds to where we expect the thin CH signal to be, as discussed in Chapter 3. 

Figure A.3: a) Measured projections of the VLIF signal from five cameras, and b) the high 

gradient regions extracted from the projections 
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Using the gradient images derived from the measured projections, a binary 

tomographic reconstruction was performed to determine the regions requiring higher 

spatial resolution, similar to the methods described in Ref. [99]. Figure A.4 shows a central 

cross-section of the measurement volume with voxels that would be treated with a fine 

discretization based on how many views agree that they contribute to high-gradient regions 

on the projections. As seen, when four or five views are required to agree that a voxel 

contributes to high-gradient regions on the projection, the distribution of finely-discretized 

voxels matches well with what one would expect the flame distribution (based on CH, as 

in Chapter 3) to be. This indicates that this method of implementing ASD was successful 

for this relatively simple flame.  

For more complicated signal distributions, however, this implementation has a 

critical flaw, as it is possible for there to be significant spatial gradients in the 3D signal 

distribution yet little gradient in the projection pixel intensity. To illustrate this, consider 

the example of a Sudoku puzzle, where the sum of each index across the horizontal and 

vertical all equal the same constant value. Under these conditions, some of the projections 

of such a distribution will have little to no gradient in signal. Figure A.5 shows an example 

Figure A.4: Cross-section of the measurement volume showing voxels that would be 

treated with fine discretization (in white) based on how many views agree 
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of a “Sudoku” distribution with five projections. The projections measured from the 

horizontal and vertical show no spatial gradient as expected, and the other projections have 

relatively smooth signal gradients that belie the significant spatial gradients within the 

measurement volume. For this reason, the implementation of ASD described in Chapter 2 

is more widely applicable and resilient. However, the implementation described here shows 

promise under some conditions and opens an avenue for additional research into what 

flame properties can be extracted from the measured projections that may improve 

reconstruction efficiency or accuracy. 

 

A.3. Tomography using Proper Orthogonal Decomposition 

 While the masking method and the implementation of the ASD described in A.2 

sought to improve the efficiency of computed tomography by leveraging information 

obtained from the measured projections, attempts have been made to use information 

already gained about the nature of the flame to improve tomographic reconstruction 

efficiency and accuracy that are described in this section. For instance, it is possible to 

collect a significant number of measurements from a particular type of flame (like a specific 

Figure A.5: Example projections taken of a “Sudoku” distribution, where the significant 

spatial gradients are not apparent in the measured projections 
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burner under specific flow conditions) and perform normal tomographic reconstructions 

for each of those measurements. This yields a large dataset of known 3D distributions of 

the flame. The information gained from this dataset can then inform the reconstruction of 

future measurements under the same flow conditions. One application of this is to use 

machine learning to help predict 3D distributions from their projections based on the 

previously reconstructed training dataset [46, 47]. One downside to this method is that the 

information learned from the training set is essentially unknown and perhaps 

uninterpretable by the users.  

As a similar alternative method, the 3D reconstructions in the training dataset may 

be analyzed through what is called proper orthogonal decomposition (POD). The use of 

POD is to reduce (decompose) the information in a dataset, in this case, the 3D signal 

distribution, into orthogonal modes (eigenvectors), with eigenvectors representing their 

contribution to the entire dataset. For example, the eigenvector with the largest eigenvalue 

is the 3D distribution that most encapsulates all the distributions in the training dataset. 

Therefore, POD can also be used as an analysis technique and the results can be interpreted 

intuitively. Using the modes calculated from POD, any 3D distribution within the dataset 

can be completely described by a linear combination of modes and their respective 

amplitudes (eigenvalues), as shown in Eq. A.1: 

 

𝐹(𝑥, 𝑦, 𝑧) =  ∑ 𝑎𝑘 ϕ𝑘(𝑥, 𝑦, 𝑧)

𝑁𝑘

𝑘=1

 , (A.1) 

where 𝐹 is the 3D distribution, ϕ𝑘 is the 𝑘th mode, and 𝑎𝑘 is the amplitude of the 𝑘th mode. 

As long as all of the 3D distributions in the training dataset are not orthogonal (which is 

almost always the case in practical scenarios), the total number of modes will be 

significantly less than the total number of voxels in the distribution. Using this description 

for 𝐹, Eq. 2.1 can be rewritten as: 

 

𝑃(𝑥𝑃, 𝑦𝑃) =  ∑ 𝑎𝑘 ϕ𝑘(𝑥, 𝑦, 𝑧) ⋅ 𝑃𝑆𝐹(𝑥, 𝑦, 𝑧;  𝑥𝑃, 𝑦𝑃)

𝑁𝑘

𝑘=1

 . (A.2) 

Similar to solving the typical tomography problem, this reduced problem can be solved 

using ART with Eq. 2.2, where instead of solving for the value of every voxel for an 
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unknown distribution, one can instead solve for every scalar amplitude for each of the 

modes by iteratively looping over all of the measured projections’ pixels. In Eq. A.2, every 

mode ϕ𝑘 is known from POD, and 𝑃𝑆𝐹 is calculated in the usual way. The only unknowns 

in the problem are the 𝑁𝑘 scalar values of 𝑎𝑘.  

To test the effectiveness of this method, a large dataset of various fluid flow fields 

was used, where the 3D distribution of interest was the absolute magnitude of the fluid 

velocity, which was discretized essentially into voxels of uniform size. POD was applied 

to this dataset to identify the modes within the flow field. The goal of applying POD to the 

tomography problem was to reduce the overall scale of the problem and therefore reduce 

the computational cost of performing the reconstruction, with the hopes of drastically 

reducing computation time. However, one major challenge encountered in this 

implementation was that nearly every mode contributed to nearly every pixel, whereas in 

the typical formulation, each voxel only contributes to a handful of pixels. Due to this, 

while the total number of unknowns is significantly reduced (from the total number of 

voxels to the number of amplitudes), the iterative process actually takes more computation 

time. Another challenge of this implementation is the key assumption that an unknown 

distribution is capable of being accurately reproduced through a linear combination of the 

modes and their amplitudes.  

The POD method is undoubtedly a powerful tool for the analysis of datasets, but it 

has shown to have challenges in implementation for tomography. If these challenges can 

be overcome, the use of POD to improve the efficiency of tomography could be significant 

and this avenue warrants additional research. Additionally, because the POD method (and 

the use of machine learning) requires a large database of measurement results for training, 

even better if those measurements are time-resolved, there is further motivation to collect 

high-quality data from novel experimental setups such as the simultaneous PLIF/VLIF 

measurements described in Chapter 3. 
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