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Abstract

Let 𝐿 and 𝑆 be two disjoint Legendrian knots in a contact manifold (𝑌, 𝜉). Ozsváth

and Stipsicz [24] showed that the LOSS invariant of 𝐿 is natural under +1 contact

surgery on Legendrian knot 𝑆. This thesis extend their result and prove the naturality

of the LOSS invariant of 𝐿 under any positive integer contact surgery along 𝑆.

In addition, when 𝑆 is rationally null-homologous, we also entirely characterize

the 𝑆𝑝𝑖𝑛𝑐 structure in the surgery cobordism that makes the naturality of contact

invariant or LOSS invariant work (without conjugation ambiguity). In particular

this implies that the contact invariant of the +𝑛 contact surgery along a rationally

null-homologous Legendrian 𝑆 depends only on the classical invariants of 𝑆.

The additional generality provided by those results allows us to prove that if two

Legendrian knots have different LOSS invariants then, after adding the same positive

twists to each in a suitable sense, the two new Legendrian knots will also have different

LOSS invariants. This leads to new infinite families of examples of Legendrian (or

transverse) non-simple knots that are distinguished by their LOSS invariants.
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Chapter 1

Introduction

1.1 Contact 3-manifold, Heegaard Floer, and LOSS

invariant.

A contact 3-manifold (𝑌, 𝜉) is a smooth 3-manifold 𝑌 together with a special 2-

plane field distribution 𝜉. Though the idea of contact topology was born over two

centuries ago, only in recent decades it has been developed and moved to the front

of mathematics. There are surprisingly subtle relationships arose between contact

manifolds and 3- (and 4-) dimensional geometry and topology. For example contact 3-

manifolds have essential and deep connection to a revolutionary package of invariants

of 3- and 4- dimensional manifolds developed by Ozsváth-Szabó [27] called Heegaard

Floer homology.

As one of the most important concept in contact topology, Legendrian knots also

have strong connection to the knot Floer homology introduced by Jacob Rasmussen

[31] and Ozsváth-Szabó [25] independently. Given a Legendrian knot 𝐿 in (𝑌, 𝜉),

Lisca-Ozsváth-Stipsicz-Szabó associated 𝐿 to elements “LOSS invariant” L(𝐿) and

“LOSS-hat invariant” L̂ which lives in the knot Fleor homology 𝐻𝐹𝐾−(−𝑌, 𝐿) and

𝐻𝐹𝐾 respectively [20]. Moreover Ozsváth-Stipsicz prove the naturality of this LOSS

invariant under +1 contact surgery.

Theorem 1.1.1 (Ozsváth-Stipsicz [24]). Let 𝐿, 𝑆 ∈ (𝑌, 𝜉) be two disjoint oriented
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Legendrian knots in the contact 3-manifold (𝑌, 𝜉) with 𝐿 null-homologous. Let (𝑌1(𝑆), 𝜉1(𝑆))

denote the contact 3-manifold we get by performing contact (+1)-surgery along 𝑆,

and we denote 𝐿𝑆 the oriented Legendrian knot corresponding to L in (𝑌1(𝑆), 𝜉
−
1 (𝑆)).

Moreover suppose that 𝐿𝑆 is null-homologous in 𝑌1(𝑆). Let 𝑊 be the 2-handle cobor-

dism from 𝑌 to 𝑌1(𝑆) induced by the surgery, and let

𝐹𝑆,s : 𝐻𝐹𝐾
−(−𝑌, 𝐿) → 𝐻𝐹𝐾−(−𝑌1(𝑆), 𝐿𝑆) (1.1.2)

be the homomorphism in knot Floer homology induced by −𝑊 , the cobordism with

reversed orientation, for s a 𝑆𝑝𝑖𝑛𝑐 structure on −𝑊 . If Y is a rational homology

sphere then there is a unique choice of s for which

𝐹𝑆,s(L(𝑌, 𝜉, 𝐿)) = L(𝑌1(𝑆), 𝜉1(𝑆), 𝐿𝑆) (1.1.3)

holds. A similar identity holds for the Legendrian invariant L̂ in 𝐻𝐹𝐾.

As a consequence of this theorem, they also shows the following.

Theorem 1.1.4 (Ozsváth-Stipsicz [24]). The twist knot which is the mirror of 72 in

Rolfsen’s table is not transversely simple. (For the definition of transversely simple

see section 2.2)

The goal of this thesis is to generalized the Theorem 1.1.1 to contact +𝑛 surgery,

and using the generalization to give more example of non-simple knot.

1.2 Summary of results

In [33], we first extend Theorem 1.1.1 to general contact +𝑛 surgery.

Theorem 1.2.1. Let 𝐿, 𝑆 ∈ (𝑌, 𝜉) be two disjoint oriented Legendrian knots in the

contact 3-manifold (𝑌, 𝜉) with 𝐿 null-homologous. Let (𝑌𝑛(𝑆), 𝜉−𝑛 (𝑆)) denote the con-

tact 3-manifold we get by performing contact (+𝑛)-surgery along 𝑆, and we denote 𝐿𝑆

the oriented Legendrian knot corresponding to L in (𝑌𝑛(𝑆), 𝜉
−
𝑛 (𝑆)). Moreover suppose
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that 𝐿𝑆 is null-homologous in 𝑌𝑛(𝑆). Let 𝑊 be the 2-handle cobordism from 𝑌 to

𝑌𝑛(𝑆) induced by the surgery, and let

𝐹𝑆,s : 𝐻𝐹𝐾
−(−𝑌, 𝐿) → 𝐻𝐹𝐾−(−𝑌𝑛(𝑆), 𝐿𝑆) (1.2.2)

be the homomorphism in knot Floer homology induced by −𝑊 , the cobordism with

reversed orientation, for s a 𝑆𝑝𝑖𝑛𝑐 structure on −𝑊 . If Y is a rational homology

sphere then there is a choice of s for which

𝐹𝑆,s(L(𝑌, 𝜉, 𝐿)) = L(𝑌𝑛(𝑆), 𝜉
−
𝑛 (𝑆), 𝐿𝑆) (1.2.3)

holds. A similar identity holds for the Legendrian invariant L̂ in 𝐻𝐹𝐾.

Remark 1.2.4. doing contact surgery on a Legendrian knot in a contact 3-manifold

(𝑌, 𝜉) gives new contact 3-manifold, but if we are doing contact +𝑛 surgery for 𝑛 >

1 the resulting contact structure is not unique and we need to make a choice of

stabilization [9]. In this thesis we are choosing the contact structure corresponding

to all stabilization being negative, and denote by 𝜉−𝑛 the resulting contact structure

(see section 2.3 for more detail).

Since the LOSS invariant stays unchanged under negative stabilization [20], it

gives rise to an invariant of transverse knots. If we have a transverse knot 𝑇 in

(𝑌, 𝜉) the transverse invariants T and T̂ are defined to be the LOSS invariants of a

Legendrian approximation of 𝑇 [13]. Thus we obtain a parallel naturality statement

for transverse invariants T.

Corollary 1.2.5. Let 𝑇 be a null-homologous transverse knot and 𝑆 an oriented

Legendrian knot in (𝑌, 𝜉) which is disjoint from 𝑇 . Let (𝑌𝑛(𝑆), 𝜉
−
𝑛 (𝑆)) denote the

contact 3-manifold we get by performing contact (+𝑛)-surgery along 𝑆, and we denote

𝑇𝑆 the oriented Legendrian knot corresponding to 𝑇 in (𝑌𝑛(𝑆), 𝜉
−
𝑛 (𝑆)). Moreover

suppose that 𝑇𝑆 is null-homologous in 𝑌𝑛(𝑆). Let 𝑊 be the 2-handle cobordism from
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𝑌 to 𝑌𝑛(𝑆) induced by the surgery, and let

𝐹𝑆,s : 𝐻𝐹𝐾
−(−𝑌, 𝑇 ) → 𝐻𝐹𝐾−(−𝑌𝑛(𝑆), 𝑇𝑆) (1.2.6)

be the homomorphism in knot Floer homology induced by −𝑊 , the cobordism with

reversed orientation, for s a 𝑠𝑝𝑖𝑛𝑐 structure on −𝑊 . If Y is a rational homology

sphere then there is a choice of for which

𝐹𝑆,s(L(𝑌, 𝜉, 𝑇 )) = L(𝑌𝑛(𝑆), 𝜉
−
𝑛 (𝑆), 𝑇𝑆) (1.2.7)

holds. A similar identity holds for the Legendrian invariant T̂ in 𝐻𝐹𝐾.

The way of proving Theorem 1.2.1 combines the ideas of [24], [4], [22], and [21],

and can be briefly described as follows. We first interpret the contact +𝑛 surgery

cobordism as a capping off cobordism by viewing it upside down. Then we construct a

doubly pointed Heegaard triple describing the capping off cobordism and the induced

map 𝐹𝐵,s in knot Floer homology where 𝐵 is the binding component being capped off,

and finally we show this map carries the LOSS invariant of 𝐿 to the LOSS invariant

of 𝐿𝑆.

In particular, Theorem 1.2.1 follows from a naturality property for the LOSS

invariant under capping off cobordisms. Recall that an (abstract) open book consists

of a pair (𝑆, 𝜑) where 𝑆 is a compact oriented 2-manifold with boundary and 𝜑 is a

diffeomorphism of 𝑆 fixing 𝜕𝑆(For more detailed description of open book see section

2.4). If a boundary component 𝐵 of 𝑆 is chosen, then the capped-off open book

(𝑆 ′, 𝜑′) is obtained by attaching a disk to 𝑆 along 𝐵 and extending 𝜑 by the identity.

Theorem 1.2.8. Let (𝑆𝑔,𝑟, 𝜑) be an abstract open book with genus 𝑔 and 𝑟 > 1 binding

components. Suppose 𝑇 and 𝐵 are distinct binding components; then capping off 𝐵

we get a new open book (𝑆𝑔,𝑟−1, 𝜑
′) which has a binding component 𝑇 ′ correspond to

𝑇 .

Denote by (𝑀, 𝜉), (𝑀 ′, 𝜉′) the contact 3 manifolds corresponding to those two open

books, so that 𝑇 , 𝑇 ′ naturally become transverse knots. The capping off cobordism
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gives rise to a map

𝐹𝐵,s : 𝐻𝐹𝐾
−(−𝑀 ′, 𝑇 ′) → 𝐻𝐹𝐾−(−𝑀,𝑇 ) (1.2.9)

where s is a 𝑠𝑝𝑖𝑛𝑐 structure on the cobordism W from −𝑀 ′ to −𝑀 . If 𝑀 ′ is a rational

homology sphere, and both 𝑇 , 𝑇 ′ are null-homologous, then then there is a choice of

s for which

𝐹𝐵,s(T(𝑀
′, 𝜉′, 𝑇 ′)) = T(𝑀, 𝜉, 𝑇 ) (1.2.10)

holds. A similar identity holds for the transverse invariant T̂ in 𝐻𝐹𝐾.

Combining the proof of Theorem 1.2.1 in this paper and the proof of Theorem

1.1 in [22], it’s easy to see that 𝑆𝑝𝑖𝑛𝑐 structures on the cobordism that makes the

naturality of contact invariant and LOSS invariant work are the same 𝑆𝑝𝑖𝑛𝑐 structure,

and we can say more about this 𝑆𝑝𝑖𝑛𝑐 structure s.

Proposition 1.2.11. Assume in the situation of Theorem 1.2.1 that 𝑆 is null-

homologous and both 𝑌 and 𝑌𝑛(𝑆) are rational homology sphere. Then the s in The-

orem 1.2.1, Corollary 1.2.5, as well as in [22, Theorem 1.1 (for integer surgery)] has

the property that

⟨𝑐1(s), [𝐹 ]⟩ = 𝑟𝑜𝑡(𝐿) + 𝑛− 1

where 𝐹 is a Seifert surface for S and 𝐹 is obtained by attaching the core of the

2-handle to 𝐹 in 𝑊 .

The above proposition is a direct consequence of Theorem 6.1.4 which is an anal-

ogous statement of the above proposition but for contact +𝑛 surgery on a rationally

null-homologous Legendrian 𝑆.

Remark 1.2.12. In [22] Mark-Tosun prove the above proposition (for the contact

invariant) but with a sign ambiguity (such sign ambiguity also shows up in [10]). Here

we resolve this ambiguity. In other words we can characterize this 𝑆𝑝𝑖𝑛𝑐 structure

not just up to conjugation, and the proof is entirely different.
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As a direct consequence of Theorem 6.1.4 we have the following corollary which

extends a result of Golla [16, Proposition 6.10] from (𝑆3, 𝜉𝑠𝑡𝑑) to all contact rational

homology sphere (Golla does not require the smooth coefficient to be non-zero but

we do).

Corollary 1.2.13. Let (𝑌, 𝜉) be a contact rational homology sphere, 𝑆 be a rationally

null-homologous Legendrian knot, and 𝐿 be a null-homologous Legendrian knot. If

𝑌𝑛(𝑆) is again a rational homology sphere, then the contact invariant 𝑐(𝜉−𝑛 (𝑆)) as

well as the LOSS invariant L(𝑌𝑛(𝑆), 𝜉
−
𝑛 (𝑆), 𝐿𝑆) are independent of the Legendrian

isotopy class of 𝑆, when the classical invariants are fixed.

Remark 1.2.14. The LOSS invariants are actually only well defined up to sign, and up

to the action of the mapping class group on (𝑌, 𝐿) [24] (that is, the group of isotopy

classes of diffeomorphisms of 𝑌 fixing 𝐿). We denote by [L] ∈ 𝐻𝐹𝐾−(−𝑌, 𝐿)/ ±

𝑀𝐶𝐺(𝑌, 𝐿) the image of L when we quotient out these actions, and similarly for the

other types of LOSS invariants.

Using the main theorem one can produce infinite families of smooth knots that

have distinct Legendrian (resp. transverse) representatives with same Thurston-

Bennequin and rotation numbers (resp. self linking number). More specifically start-

ing with two Legendrian representatives of knot 𝐾 with different [L] or [L̂], it is

always possible to produce two Legendrian representatives of a new knot 𝐾 ′ that also

have different [L] or [L̂], essentially by adding positive twists to parallel strands in

𝐾. More specifically the procedure can be described as follows.

Let (𝑌, 𝜉) be a contact 3-manifold, and consider a triple (𝐿, 𝜎𝑛, 𝐵) where 𝐿 is

a Legendrian knot in (𝑌, 𝜉), 𝜎𝑛 = {𝑒𝑖|𝑒𝑖 is an oriented Legendrian arc of 𝐿 for 𝑖 =

1, 2, ..., 𝑛}, and 𝐵 is a Darboux ball (a ball with standard contact structure). We say

this is a compatible triple if the following hold:

1. 𝐵 only intersects 𝐿 at 𝜎𝑛.

2. Inside the Darboux ball the front projections of the arcs 𝑒𝑖 are horizontal, par-

allel and have the same orientation for all 𝑖 = 1, 2, ..., 𝑛. In other words 𝜎𝑛 is a

collection of 𝑛 Legendrian push-offs of one oriented horizontal arc.
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Figure 1-1: Example when there are two parallel arcs (the blue and red arcs are 𝑒1
and 𝑒2, and the dotted circle represents a Darboux ball). On the left is part of 𝐿
inside a standard Darboux ball. After doing the twist we get the right diagram which
is still inside the Darboux ball and is part of the new knot 𝐿𝜎

Given a compatible triple (𝐿, 𝜎𝑛, 𝐵) we can construct a new oriented Legendrian

knot 𝐿𝜎 by adding a full non-zigzagged positive twist to the front projection of 𝜎𝑛 in

𝐵 (See figure 1-1 for example when 𝑛 = 2).

Note that since all arcs 𝑒𝑖 are horizontal, parallel and oriented in the same direc-

tion there is no ambiguity of the new Legendrian knot 𝐿𝜎 once given a compatible

(𝐿, 𝜎𝑛, 𝐵). Now we are able to state the theorem.

Theorem 1.2.15. In the above setting let (𝐿, 𝜎𝑛, 𝐵) and (𝐿′, 𝜎′
𝑛, 𝐵

′) be two compatible

triples in (𝑌, 𝜉). Assume

∙ 𝐿 and 𝐿′ are smoothly ambiently isotopic

∙ The isotopy sends 𝐵 contactmorphically to 𝐵′, and 𝑒𝑖 to 𝑒′𝑖.

Then 𝐿𝜎, 𝐿′
𝜎′ are smoothly isotopic. Moreover if Y is a rational homology sphere and

𝐿 is null-homologous, and if 𝐿 and 𝐿′ have different [L] or [L̂], then so do 𝐿𝜎 and

𝐿′
𝜎′.

As an example (application) of Theorem 1.6 we will see the following corollary.

Corollary 1.2.16. In standard tight 𝑆3, the mirror of the knot 97 in Rolfsen’s table

is neither Legendrian simple nor transversely simple.

In section 5.2 we will see more non-simple knot examples that we can derive from

Theorem 1.2.15 (see Theorem 5.2.1 and 5.2.2, and the discussion about figure 5-10).
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1.3 Outline

The thesis is outlined as follows. In Chapter 2 we will review relevant background

about contact 3-manifold. We will talk about Legendrian and transverse knot, clas-

sical invariants of Legendrian and transverse knot, contact surgery, and open book

decomposition. In Chapter 3 we will recall the basic definition of knot Floer homol-

ogy, how knot Floer behaves under surgery, and the definition of the LOSS invariant.

Then we will prove Theorem 1.2.1 in Chapter 4, and give application of the Naturality

in Chapter 5. Last, in Chapter 6 we will prove the 𝑆𝑝𝑖𝑛𝑐 structure formula, (Theorem

6.1.4) that implies Proposition 1.2.11.
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Chapter 2

Background on contact 3-manifold

2.1 Basic contact structures

Definition 2.1.1. A contact 3-manifold (𝑌, 𝜉) is a smooth 3-manifold 𝑌 together

with a 2-plane field distribution 𝜉 such that for any one form 𝛼 with ker(𝛼) = 𝜉, we

have 𝛼 ∧ 𝑑𝛼 > 0.

Definition 2.1.2. Two contact manifold Two contact manifolds (𝑀1, 𝜉1) and (𝑀2, 𝜉2)

are said to be contactomorphic (or contact isotopy) if there is a diffeomorphism (or

isotopy) 𝑓 : 𝑀1 → 𝑀2 with 𝑑𝑓(𝜉1) = 𝜉2, where 𝑑𝑓 : 𝑇𝑀1 → 𝑇𝑀2 denotes the

differential of 𝑓 .

Example 2.1.3. The standard contact structure 𝜉𝑠𝑡𝑑 on the 3 space R3 is defined as

the 𝑘𝑒𝑟(𝑑𝑧 − 𝑦𝑑𝑥).

Example 2.1.4. The standard contact structure 𝜉𝑠𝑡𝑑 on the 3-sphere 𝑆3 ⊂ R4 (with

cartesian coordinates 𝑥, 𝑦, 𝑧, 𝑡) is defined as the kernel of 𝑘𝑒𝑟(𝑥𝑑𝑦− 𝑦𝑑𝑥+ 𝑧𝑑𝑡− 𝑡𝑑𝑧).
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We remark that if we remove the north pole of the 𝑆3 the induced contact structure

will be contactmorphic to (R3, 𝜉𝑠𝑡𝑑).

There are two basic types of contact structures we are considering. To make it

clear we first give a definition of overtwisted disk.

Definition 2.1.5. An embedded disk 𝐷 ∈ (𝑌, 𝜉) is called an overtwisted disk if on

the boundary of the disk the contact plane coincide with the tangent plane.

The overtwisted and tight contact manifolds are distinguished by the fact if it

contains any overtwisted disk or not.

Definition 2.1.6. The contact 3-manifold (𝑌, 𝜉) is called overtwisted if it contains a

overtwisted disk, and called tight otherwise.

Examples given above are all tight contact structures. Eliashberg had classified

the overtwisted contact structures for any 3-manifold [11]. However the classification

for the tight contact structures are much subtle, and since it’s not the major topics

here we are not going to explore in this thesis.

2.2 Legendrian and transverse knots

As there is always a special contact plane 𝜉 associate to a contact 3-manifold,

there are two important types of knot we can consider relative to this plane.

Definitions 2.2.1. Let (𝑌, 𝜉) be a contact 3-manifold.

· A Legendrian knot 𝐿 in (𝑌, 𝜉) is an embedded 𝑆1 that is always tangent to 𝜉. (We

will assume it always come with a choice of orientation)

· A transverse knot 𝑇 in (𝑌, 𝜉) is an embedded oriented 𝑆1 that is always positively

transverse to 𝜉.

We say two Legendrian (resp transverse) knots are Legendrian (resp transverse) iso-

topic if they are isotopic through Legendrian (resp transverse) knots.
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Given a Legendrian knot 𝐿 in (R3, 𝜉𝑠𝑡𝑑) we can look at the Front Project of 𝐿,

which is defined to be the image of 𝐿 under the map:

Π : R3 → R2 : (𝑥, 𝑦, 𝑧) → (𝑥, 𝑧).

For more detail see [13, Etnyre].

There are two important facts about the front project of 𝐿.

1. Front projections Π(𝐿) have no vertical tangencies.

2. Front projections can be parameterized by maps that are immersions except at

finite many points, at which there is still a well defined tangent line in R3. Such

points are called generalized cusps.

In terms of knot diagram those projections Π(𝐿) have the following properties:

1. There is no vertical tangency in Π(𝐿).

2. The vertical tangencies change to generalized cusps, and the generalized cusps

are the only non-smooth points.

3. At each crossing the slope of the overcrossing is smaller than the undercrossing.

Example 2.2.2. Figure 2-1 is an example of Legendrian trefoil, and when we give

it an orientation the cusps are divided into two categories, either upward cusp or

downward cusps.

By manipulating a general knot diagram it’s not hard to show that every knot has

a Legendrian representative in (R3, 𝜉𝑠𝑡𝑑), we can then use Darboux’s theorem which

says that every contact 3-manifold locally looks like (R3, 𝜉𝑠𝑡𝑑), and obtain result for

general contact 3-manifolds.

There are smooth Reidemeister moves for smooth knot diagram. In the contact

world, there are Legendrian Reidemeister moves for the front projection of a Legen-

drian knot.

11



upward cusp

downward cusp

downward cusp

upward cusp

Figure 2-1: A front projection of right handed trefoil.

Definition 2.2.3. There are 3 types of Legendrian Reidemesiter moves for the front

projection of Legendrian knot showing in Figure 2-2

We also have the Reidemeister’s theorem for front projection of Legendrian knot

in (R3, 𝜉𝑠𝑡𝑑).

Theorem 2.2.4 ([32]). Two front diagrams represents the Legendrian isotopic Leg-

endrian knots if and only if they are related by regular homotopy and sequences of

Legendrian Reidemeister moves.

2.2.1 Invariants of Legendrian and transverse knots

Except the smooth knot type there are two classical invariants associated to an

null-homologous Legendrian knot in a contact 3-manifold (𝑌, 𝜉). To define the invari-

ants we first recall that for a smooth knot 𝐾 in a 3-manifold 𝑌 , a Seifert surface Σ

of 𝐾 is a smooth surface in 𝑌 such that 𝜕Σ, the boundary of Σ, is 𝐾.

The first invariant is called the Thurston-Bennequin number, and is denoted

by 𝑡𝑏(𝐿), roughly speaking it measures the "twisting of 𝜉 around 𝐿". More precisely

let 𝜈 be the normal bundle of 𝐿, then the intersection of 𝜈𝑥 and 𝜉𝑥 gives a line bundle

over 𝐿 which induce a framing (trivialization of normal bundle) on 𝐿 called the

Thurston-Bennequin framing or contact framing, and the difference between

12



Figure 2-2: Three types of Legendrian Reidemeister moves. (To obtain all moves we
also need the corresponding figures rotated 180 degrees about all axes) Picture used
from [13]

the Thurston-Bennequin framing and the smooth framing is the 𝑡𝑏(𝐿) (where the

smooth framing is determined by the Seifert surface of the knot).

Second one is called the rotation number, and is denoted by 𝑟𝑜𝑡(𝐿). We start

with any Seifert surface Σ of 𝐿, then the rotation number is defined to be the relative

Euler class 𝑒(𝜉|Σ) ∈ Z with the trivialization along 𝜕Σ given by the tangents of 𝐿,

and it can be shown it does not depend on the choice of Seifert surface.

Even though the definition of 𝑡𝑏(𝐿) and 𝑟𝑜𝑡(𝐿) seems a bit subtle and hard to

calculate for Legendrian knots in general contact 3-manifold, for a Legendrian knot

𝐿 in (R3, 𝜉𝑠𝑡𝑑) it’s easy to derive 𝑡𝑏(𝐿) and 𝑟𝑜𝑡(𝐿) from the front projection of 𝐿, and

they can be calculated as follow.

𝑡𝑏(𝐿) = 𝑤𝑟𝑖𝑡ℎ𝑒(Π(𝐿))− 1

2
( number of cusps in Π(𝐿)),
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where writhe is the number of positive crossing minus the number of negative crossing.

𝑟𝑜𝑡(𝐿) =
1

2
((number of downward cusps)− (number of upward cusps))

Example 2.2.5. The Legendrian trefoil in Figure 2-1 has 𝑡𝑏 = 1 and 𝑟𝑜𝑡 = 0.

Next we will define a way of stabilizing and destabilizing a Legendrian knot

in (R𝑠, 𝜉𝑠𝑑𝑡) using the front projection, and we can naturally extend the stabilization

and destabilization to other contact 3-manifold Darboux’s theorem.

Definition 2.2.6. If a strand of 𝐿 in the front projection is shown on the left side

of Figure 2-3, then the stabilization of 𝐿 is obtained by removing the original strand

and replacing it with one of the zig-zags on the right side of Figure 2-3. If down

cusps are added then the stabilization is call positive stabilization of 𝐿, and denoted

𝑆+(𝐿). If up cusps are added then the stabilization is called negative stabilization,

and denoted 𝑆−(𝐿). The reverse of the above procedure is called destabilization.

Remark 2.2.7. To shorthand the notation we often use 𝐿+𝑛 and 𝐿−𝑛 to denote 𝑛

positive or negative stabilization of 𝐿, and it will be the most common used notation

for the rest of the thesis. However the notation mentioned in the definition is still

useful and necessary because positive and negative stabilization is not canceling each

other.

Remark 2.2.8. It’s easy to see how classical Legendrian invariants change under the

stabilization. That is: 𝑡𝑏(𝐿−) = 𝑡𝑏(𝐿+) = 𝑡𝑏(𝐿) − 1; 𝑟𝑜𝑡(𝐿−) = 𝑟𝑜𝑡(𝐿) − 1, and

𝑟𝑜𝑡(𝐿+) = 𝑟𝑜𝑡(𝐿) + 1

There is also an invariant for transverse knot 𝑇 called self linking number, and

is denoted by 𝑠𝑙(𝑇 ). The reason why we did not talk the transverse knot as detailed

as Legendrian knot is that we can always obtained transverse knot 𝑇 by taking a

transverse push-off of the corresponding Legendrian knot 𝐿, the self linking number

of the push-off is equal to 𝑡𝑏(𝐿)−𝑟𝑜𝑡(𝐿), moreover if two Legendrian knots differ by a

sequence of negative stabilizations, then they will have the same transverse push-offs.

14



Figure 2-3: Top one is a positive stabilization and the bottom one is a negative
stabilization. Picture used from [13]

.

On the other hand, if we have a transverse knot we can take it’s Legendrian push-off

to obtain Legendrian knot. However the Legendrian push-offs of a transverse knot is

only well defined up to negative stabilizations, that is the two Legendrian push-offs

of a transverse knot might differ by sequences of negative stabilizations.

In general for Legendrian and transverse knots the classical invariants are not so

difficult to compute and it is a very effective way to distinguish Legendrian and trans-

verse non-isotopic knots However it’s very hard, but also interesting, to distinguish

Legendrian and transverse knot if they have the same classical invariants. To make

the statements more clear we introduce an important definition in next subsection.

2.2.2 Non-simple knot

Definitions 2.2.9. Let 𝐾 be a smooth knot in a contact 3-manifold (𝑌, 𝜉). We say

− 𝐾 is Legendrian non-simple if 𝐾 has two Legendrian representatives 𝐿1 and 𝐿2

with the same 𝑡𝑏 and 𝑟𝑜𝑡 but not Legendrian isotopic.

− 𝐾 is transversely non-simple if 𝐾 has two transverse representatives 𝑇1 and 𝑇2

with the same self link number but not transverse isotopic.

Example 2.2.10. The most famous and important example of Legendrian non-simple
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knots are Eliashberg–Chekanov twist knot 𝐸𝑛. The Legendrian representatives of

them are 𝐸(𝑘, 𝑙) (see figure 2-4). Note that 𝐸(𝑘, 𝑙) and 𝐸(𝑘′, 𝑙′) are topologically

isotopic if and only if 𝑘+ 𝑙 = 𝑘′ + 𝑙′, and all of those Legendrian representatives have

𝑡𝑏(𝑘, 𝑙) = 1 and 𝑟𝑜𝑡(𝑘, 𝑙) = 0. In [12] Epstein-Fuchs-Meyer shows that 𝐸(𝑘, 𝑙) and

𝐸(𝑘′, 𝑙′) are Legendrian isotopic if and only if the unordered pair {𝑘, 𝑙} is equal to

{𝑘′, 𝑙′}. Later in [24] Ozsváth-Stipsicz shows that 𝐸𝑛 is transversely non-simple for

𝑛 > 3 and odd.

Figure 2-4: The Eliashberg–Chekanov Legendrian knots 𝐸(𝑘, 𝑙)
.

2.3 Contact surgery and contact surgery diagram

Given a Legendrian knot 𝐿 in contact 3-manifold (𝑌, 𝜉) it always has a canonical

contact framing, defined by a vector field along K that is transverse to 𝜉. A notion

of contact 𝑟-surgery along a Legendrian knot 𝐿 in (𝑌, 𝜉) is described as follows ([7]):

This amounts to a topological surgery, with surgery coefficient 𝑟 ∈ Q ∪∞ measured

relative to the contact framing. We can further assign a contact structure on the

surgered manifold (𝑌 − 𝜈𝐿)∪ (𝑆1×𝐷2), (where 𝜈𝐿 denotes a tubular neighbourhood

of 𝐿) as follows: for 𝑟 ̸= 0 we require this contact structure to coincide with 𝜉 on

𝑌 −𝜈𝐿 and its extension over 𝑆1×𝐷2 to be tight (we only need it’s tight on 𝑆1×𝐷2,

not necessarily on the whole surgered manifold).
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According to [17], such an extension always exists and is unique (up to isotopy)

for 𝑟 = 1/𝑘 with 𝑘 ∈ Z. (For 𝑟 = 0, that extension is always overtwisted and thus

requires a different treatment. For that reason we shall not discuss the case of contact

0-surgery any further).

Therefore, if 𝑟 = 1/𝑘 with 𝑘 ∈ Z, there is a canonical procedure for this surgery,

in other words the resulting contact manifold is completely determined by the initial

manifold (𝑌, 𝜉), the Legendrian knot 𝐿 in (𝑌, 𝜉), and the surgery coefficient 𝑟 = 1/𝑘.

For general 𝑟 there are non-canonical choices involve in order to give a contact

structure on the surgered manifold. To better describe the choices we first introduce

the following algorithms that change the contact 𝑟 surgery to a sequence of contact

±1 surgery on a sequence of Legendrian knots, and it’s divided into two cases when

𝑟 > 0 and 𝑟 < 0 respectively.

Remark 2.3.1. Since for a Legendrian knot 𝐿, 𝑡𝑏(𝐿) is the difference between contact

framing and smooth framing, the contact 𝑟-surgery is smooth (𝑟 + 𝑡𝑏(𝐿))-surgery.

Theorem 2.3.2 (DGS algorithm for 𝑟 > 0 [9]). Given a Legendrian knot 𝐿 in (𝑌, 𝜉).

Let 0 < 𝑥
𝑦
= 𝑟 ∈ Q be a contact surgery coefficient. Let 𝑐 ∈ Z be the minimal positive

integer such that 𝑥
𝑦−𝑐𝑥 < 0, with the continued fraction

𝑥

𝑦 − 𝑐𝑥
= [𝑎1, 𝑎2, ...𝑎𝑚] = 𝑎1 −

1

𝑎2 −
1

...−
1

𝑎𝑚

(2.3.3)

where each 𝑎𝑖 ≤ −2. Then any contact 𝑥
𝑦

surgery on 𝐿 can be described as contact

surgery along a link (𝐿1
0 ∪ 𝐿2

0 ∪ ... ∪ 𝐿𝑐0) ∪ 𝐿1 ∪ ... ∪ 𝐿𝑚, where

• 𝐿1
0, ..., 𝐿

𝑐
0 are Legendrian push-offs of 𝐿.

• 𝐿1 is obtained from a Legendrian push-off of 𝐿𝑐0 by stabilizing |𝑎1 + 1| times.

• 𝐿𝑖 is obtained from a Legendrian push-off of 𝐿𝑖−1 by stabilizing |𝑎𝑖 + 2| times,

for 𝑖 ≥ 2.
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• The contact surgery coefficients are +1 on each 𝐿𝑗0 and −1 on each 𝐿𝑖.

Theorem 2.3.4 (DGS algorithm for 𝑟 < 0[9]). Given a Legendrian knot 𝐿 in (𝑌, 𝜉).

Let 0 > −𝑥/𝑦 = 𝑟 ∈ Q be a contact surgery coefficient with the continued fraction

−𝑥
𝑦
= [𝑎1 + 1, 𝑎2, ..., 𝑎𝑚] = 𝑎1 + 1−

1

𝑎2 −
1

...−
1

𝑎𝑚

(2.3.5)

where each 𝑎𝑖 ≤ −2. Then any contact (𝑥/𝑦)-surgery on 𝐿 can be described as contact

surgery along a link 𝐿1 ∪ ... ∪ 𝐿𝑚, where

• 𝐿1 is obtained from a Legendrian push-off of 𝐿 by stabilizing |𝑎1 + 2| times.

• 𝐿𝑗 is obtained from a Legendrian push-off of 𝐿𝑗−1 by stabilizing |𝑎𝑗 + 2| times,

for 𝑗 ≥ 2.

• The contact surgery coefficients −1 on each 𝐿𝑗.

The choices we mentioned above correspond to the choices of stabilizations for

each 𝐿𝑖, each of which can be either positive or negative. The case we are interested

in is positive integer contact +𝑛 surgery, and if we follow the algorithm carefully

we can see that +𝑛 contact surgery on a Legendrian knot 𝐿 is the same as doing

contact surgery along the link (𝐿1
0) ∪ 𝐿1 ∪ ... ∪ 𝐿𝑛−1 where 𝐿1

0 is the Legendrian

push-off of 𝐿, 𝐿1 is one stabilization of a Legendrian push-off of 𝐿1
0, and 𝐿𝑖 is a

Legendrian push-off of 𝐿𝑖−1 for 𝑖 ∈ {2, 3, ..., 𝑛 − 1}. In particular there only one

choice of stabilization involve. The contact structure 𝜉−𝑛 (𝐿) we consider corresponds

to choosing the negative stabilization for 𝐿1. Below is one reason why we want to

consider the one with negative stabilizations.

Proposition 2.3.6 ([21] Proposition 2.4). Let 𝐿 be an oriented Legendrian knot

and 𝐿− be negative stabilization of 𝐿, and let 𝑛 > 0 be a positive integer. Then

𝜉−𝑛 (𝐿) = 𝜉−𝑛+1(𝐿
−).
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Just like we can use smooth surgery diagram to describe the smooth surgery, we

can use contact surgery diagram (Legendrian knots with contact framing) to describe

a contact surgery.

Example 2.3.7. The Figure 2-5 describes a contact (−5/3)-surgery on the Leg-

endrian unknot 𝐾 with 𝑡𝑏 = −1 and 𝑟𝑜𝑡 = 0. By the Theorem 2.3.4 we have

𝑎1 = 𝑎2 = −3, and thus it’s equivalent to the contact (−1)-surgery on 𝐾1 and 𝐾2.

Since it’s smoothly (−8/3) surgery on the unknot, this contact surgery diagram de-

scribes a contact structure on the lens space 𝑙(8, 3).

Figure 2-5: Example of contact surgery and DGS algorithm for 𝑟 = −5/3
.

2.4 Open book decomposition

Even though the contact structure on a 3-manifold 𝑌 seems very geometric, Giroux

showed that it can be represent by a topological object called open book decomposi-

tion.

Definition 2.4.1. An abstract open book is a pair (𝑃, 𝜑) where

(1) 𝑃 is an oriented compact surface with boundary.

(2) 𝜑 : 𝑃 → 𝑃 is a diffeomorphism such that 𝜑 is equal to identity near the boundary

of 𝑃 .

𝑃 and 𝜑 are called the "page" and "monodromy" of the open book, respectively, and

the boundary 𝜕𝑃 is called the binding of 𝑃 .
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Given an abstract open book (𝑃, 𝜑) we can form a 3-manifold 𝑀(𝜑) correspond

to (𝑃, 𝜑) as follows:

𝑀(𝜑) = 𝑃𝜑 ∪𝜓 (
⨆︁
|𝜕𝑃 |

𝑆1 ×𝐷2)

where |𝜕𝑃 | denotes the number of boundary components of 𝑃 and

𝑃𝜑 = 𝑃 × [0, 1]/(𝑥, 0) ∼ (𝜑(𝑥), 1)

is the mapping torus of 𝜑, and ∪𝜓 means that the diffeomorphism 𝜓 is used to

identify the boundaries of the two sides. For each boundary component 𝐵 of 𝑃 the

map 𝜓 : 𝜕(𝑆1 ×𝐷2) → 𝐵×𝐷2 is defined to be the unique diffeomorphism that takes

𝑆1 × {𝑥} to 𝐵 where 𝑥 ∈ 𝜕𝐷2 and {𝑦} × 𝜕𝐷2 to ({𝑦′} × [0, 1])/ ∼) = 𝑆1 , where

𝑦 ∈ 𝑆1 and 𝑦′ ∈ 𝜕𝑃 . If 𝑀 = 𝑀(𝜑) for some (𝑃, 𝜑) we say (𝑃, 𝜑) is an open book

decomposition of 𝑀 .

Example 2.4.2. The easiest example would be 𝑃 is a disk and 𝜑 is the identity, then

𝑀(𝜑) = 𝑆3. A slightly harder example would be 𝑃 ′ is an annulus, and 𝜑′ is the right

hand Dehn twist along the homologically essential circle, and in this case 𝑀(𝜑′) = 𝑆3

also.

The open book (𝑃 ′, 𝜑′) above is an example of positive stabilization of (𝑃, 𝜑) which

is an common operation we can do on open book.

Definition 2.4.3. A positive (negative) stabilization of an abstract open book (𝑃, 𝜑)

is the open book

(1) with page 𝑃 ′ = 𝑃 ∪ 1-handle, and

(2) monodromy 𝜑′ = 𝜏𝑘 ∘ 𝜑 where 𝜏𝑘 is a right- (left-) handed Dehn twist along a

curve 𝑘 in 𝑃 ′ that intersects the co-core of the 1-handle exactly once.

It’s natural to ask the question that if every 3-manifold admit an open book

decomposition, and it turn out to be true.
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Theorem 2.4.4 ([1]). Every closed oriented 3-manifold has an open book decompo-

sition.

Next we are going to state one of the most important theorems in contact topology.

Theorem 2.4.5 (Giroux correspondence [15]). Let 𝑌 be a closed oriented 3-manifold.

Then there is a one-to-one correspondence between

{Oriented contact structures on 𝑌 up to contact isotopy}

and

{Open book decompositions of 𝑌 up to positive stabilization}.

We say (𝑃, 𝜑) and (𝑌, 𝜉) are compatible if the above correspondence send one to an-

other.

We will frequently use both the open book and surgery diagram as ways of describ-

ing a contact manifold, and we will see how they are related in the next subsection.

2.4.1 Contact surgery and Capping off cobordism

If (𝑆𝑔,𝑟, 𝜑) is an abstract open book with genus 𝑔 and 𝑟 > 1 binding components.

We can cap off one of the binding components 𝐵 of 𝑆𝑔,𝑟 with a disk, we obtain a

new open book (𝑆𝑔,𝑟−1, 𝜑
′) where 𝜑′ is the extension of 𝜑 to 𝑆𝑔,𝑟−1 by the identity on

the disk. If we denote 𝑀(𝜑) and 𝑀(𝜑′) be the corresponding 3-manifold with open

book decomposition (𝑆𝑔,𝑟, 𝜑) and (𝑆𝑔,𝑟−1, 𝜑
′) respectively. Then there is a natural

cobordism 𝑊 from 𝑀(𝜑) to 𝑀(𝜑′) obtained by attaching a page 0-framed 2-handle

along the binding component 𝐵 in 𝑀(𝜑) corresponding. Alternatively, we can also

think 𝑋 as a cobordism from −𝑀(𝜑′) to −𝑀(𝜑). This cobordism 𝑋 is called the

capping off cobordism of (𝑃, 𝜑) long 𝐵.

Next we will see how to represent the contact surgery on the open book, and how

surgery cobordism related to the capping off cobordism.
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Figure 2-6: The left diagram describes the open book with Legendrian 𝐿 lie on it and
parallel to some binding, and the right one is the stabilization of the left one (we do
right hand twist along 𝑘), where 𝐿− now is parallel to some binding 𝐵. Then after
we do 𝑛 − 1 right hand twists along 𝐿− and 1 left hand twist along 𝐿 we obtain an
open book (𝑃 ′, 𝜑′) for (𝑌𝑛(𝐿), 𝜉

−
𝑛 (𝐿)).

Let 𝐿 be a Legendrian knot in (𝑌, 𝜉), then we can always find an open book (𝑃, 𝜑)

that is compatible with (𝑌, 𝜉) and contains 𝐿 as a homologically nontrivial curve on

the page with page framing equal to contact framing [20, Proposition 2.4]. We can

first get an open book that is compatible with (𝑌𝑛(𝐿), 𝜉
−
𝑛 (𝐿)) in the following way.

First observe that by replacing 𝐿 and (𝑃, 𝜑) by a stabilization if necessary (as in [3,

Lemma 6.5] or in [22, Section 3]), we can assume that 𝐿 is parallel to a boundary

component of 𝑃 (by Proposition 2.3.6 this does not lose generality).

We then stabilize the open book again such that 𝐿− also lies on the page, and

again by the observation in [3, Lemma 6.5] we may further assume 𝐿− is parallel to

a binding component 𝐵 (though 𝐿 is no longer boundary parallel; see figure 2-6 for

the description of the stabilization).

We denote the stabilized open book (𝑃 ′, 𝑘 ∘ 𝜑), where here and below we will use

the same symbol for a simple closed curve on the page and the right-handed Dehn

twist along that curve. By Theorem 2.3.2 and the correspondence between surgery

and Dehn twists, we conclude that (𝑃 ′, 𝜑′) = (𝑃 ′, (𝐿−)𝑛−1 ∘ (𝐿)−1 ∘ 𝑘 ∘ 𝜑) is an open

book compatible with (𝑌𝑛(𝐿), 𝜉
−
𝑛 (𝐿)).

Now we are able to describe the important theorem that relates contact +𝑛 surgery

cobordism and capping off cobordism.

Theorem 2.4.6 ([21] Proposition 4.1). In the above setting let 𝐵𝐿 be the binding of

(𝑃 ′, 𝜑′) that corresponds to 𝐵 in (𝑃 ′, 𝑘 ∘ 𝜑). Then
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• Capping off 𝐵𝐿 gives us back (𝑃, 𝜑)

• Let 𝑋 : 𝑌𝑛(𝐿) → 𝑌 be the cobordism corresponding to capping off 𝐵𝐿, and

let 𝑊𝐿,𝑛 : 𝑌 → 𝑌𝑛(𝐿) be the topological cobordism obtained by attaching a 4-

dimensional 2−ℎ𝑎𝑛𝑑𝑙𝑒 along 𝐿 with framing 𝑡𝑏(𝐿)+𝑛. Then, 𝑋 = −𝑊𝐿,𝑛, i.e.

𝑋 is obtained from 𝑊𝐿,𝑛 by viewing it upside–down and reversing its orientation.
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Chapter 3

Background on knot Floer homology

and the LOSS invariant

We will first review some necessary background on knot Floer homology (see [25]

[27] [28] for detail)

3.1 Knot Floer Homology

We use the same notation and construction as in [25]. A doubly pointed Heegaard

diagram (Σ, 𝛼, 𝛽, 𝑤, 𝑧) consists of the following information. Σ is an oriented genus

𝑔 surface, 𝛼 = {𝛼1, ..., 𝛼𝑔} is a 𝑔-tuple of disjoint homologically linearly independent

circles on Σ, 𝛽 = {𝛽1, ...𝛽𝑔} is another 𝑔-tuple of circles on Σ similar to 𝛼, and 𝑧, 𝑤

are two points on the complement of the 𝛼 and 𝛽 curves. Such a diagram gives rise to

a 3-manifold 𝑌 in a standard way, by thinking of the 𝛼 and 𝛽 circles as determining

(the compressing disks in) handlebodies 𝐻𝛼 and 𝐻𝛽 with 𝜕𝐻𝛼 = −𝜕𝐻𝛽 = Σ, and

setting 𝑌 = 𝐻𝛼 ∪Σ 𝐻𝛽. We call (Σ, 𝛼, 𝛽) the Heegaard diagram representing 𝑌 , and

it can be shown any closed oriented 3-manifold admits a Heegaard diagram.

Given an oriented null-homologous knot 𝐾 in some three manifold 𝑌 , one can

construct a doubly pointed Heegaard diagram (Σ, 𝛼, 𝛽, 𝑤, 𝑧) describing (𝑌,𝐾) in the

following sense. (Σ, 𝛼, 𝛽) is a Heegaard diagram representing 𝑌 . Moreover if we

connect 𝑧 to 𝑤 by an embedded arc missing the 𝛼 circles and pushed a little bit into
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the 𝛼 handlebody, and connect 𝑤 to 𝑧 by another embedded arc missing the 𝛽 circles

and pushed into the 𝛽 handlebody, then the oriented closed curve given by the union

of those two arcs is exactly the knot 𝐾 in Y. We say such a doubly pointed Heegaard

diagram (Σ, 𝛼, 𝛽, 𝑤, 𝑧) is compatible with (𝑌,𝐾), and it can be shown that every pair

(𝑌,𝐾) admits a compatible doubly pointed Heegaard diagram [25].

We can further associate a chain complex 𝐶𝐹𝐾− to a doubly pointed Heegaard

diagram (Σ, 𝛼, 𝛽, 𝑤, 𝑧) as follows. Assuming the 𝛼 and 𝛽 curves intersect transversely

we consider the two tori

T𝛼 = 𝛼1 × 𝛼2 × ...× 𝛼𝑔, T𝛽 = 𝛽1 × 𝛽2 × ...× 𝛽𝑔

in the 𝑔𝑡ℎ symmetric power 𝑆𝑦𝑚𝑔(Σ). The chain complex 𝐶𝐹𝐾− is the free F[𝑈 ]-

module generated by the intersection points of T𝛼∩T𝛽. The differential 𝜕− is defined

as following:

𝜕−x =
∑︁

{y∈T𝛼∩T𝛽}

∑︁
{𝜑∈𝜋2(x,y),𝜇(𝜑)=1,𝑛𝑧(𝜑)=0}

#̂︁M(𝜑) · 𝑈𝑛𝑤(𝜑) · y

where 𝜋2(x,y) is the set of homotopy class of disk connecting x to y; 𝜇(𝜑) is the

expected dimension of the moduli space M(𝜑) of holomorphic disks in the homotopy

class 𝜑, and M̂(𝜑) is the expected dimension of the moduli space M(𝜑) modulo out

the R action; 𝑛𝑧(𝜑) and 𝑛𝑤(𝜑) are the algebraic intersection numbers between 𝜑 and

{𝑧} × 𝑆𝑦𝑚𝑔−1(Σ) and {𝑤} × 𝑆𝑦𝑚𝑔−1(Σ), respectively. The knot Floer homology

groups 𝐻𝐹𝐾− and 𝐻𝐹𝐾 are the homology of the complexes 𝐶𝐹𝐾− and 𝐶𝐹𝐾

respectively, where 𝐶𝐹𝐾 is the same as 𝐶𝐹𝐾− except by specializing 𝑈 = 0. Under

suitable admissible conditions for the doubly pointed Heegaard diagram [27] [25],

these homology groups are invariants of the smooth knot type 𝐾 in 𝑌 .

When the knot is null-homologous these groups are bi-graded and can be decom-

posed as follows:

𝐻𝐹𝐾−(𝑌,𝐾) =
⨁︁

𝑑∈Q,s∈𝑆𝑝𝑖𝑛𝑐(𝑌,𝐾)

𝐻𝐹𝐾−
𝑑 (𝑌,𝐾, s),
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where 𝑑 is the Maslov grading and s, which run through relative 𝑆𝑝𝑖𝑛𝑐 structures, is

called the Alexander grading, and the Euler characteristic class of the 𝐻𝐹𝐾 is the

Alexander polynomial of 𝐾.

3.2 Maps induced by surgery

Let 𝑌 be a 3-manifold and 𝐾 be a framed knot in 𝑌 with framing 𝑓 (i.e. a

trivialization of normal bundle), and denote 𝑌𝑓 (𝐾) to be the 3 manifold obtained

from 𝑌 by surgery along 𝐾 with framing 𝑓 . Then there exists a Heegaard triple

(Σ, 𝛼, 𝛽, 𝛾, 𝑧) that is “compatible” with (or “subordinate” to) the cobordism induced

by surgery, in particular (Σ, 𝛼, 𝛽) describes 𝑌 , (Σ, 𝛼, 𝛾) describes 𝑌𝑓 , and (Σ, 𝛽, 𝛾) is

a Heegaard diagram for a connected sum of copies of 𝑆1 × 𝑆2, and furthermore we

can explicitly relate the framed knot (𝐾, 𝑓) to such Heegaard triple (see [28] Section

4 for details). This Heegaard triple induces a well defined map from 𝐻𝐹−(𝑌 ) to

𝐻𝐹−(𝑌𝑓 (𝑘)), and a similar construction works for knot Floer homology [25], as we

now outline. Assume 𝐿 is a homologically trivial knot and assume the induced knot 𝐿′

in 𝑌𝑓 (𝐾) is also homologically trivial. Then there exists a doubly pointed Heegaard

triple (Σ, 𝛼, 𝛽, 𝛾, 𝑤, 𝑧) describing the surgery cobordism and giving rise to a map

𝐹𝐾(𝑓),s : 𝐻𝐹𝐾
−(𝑌, 𝐿) → 𝐻𝐹𝐾−(𝑌𝑓 (𝐾), 𝐿′) (3.2.1)

which is induced by a chain map

𝑓𝐾(𝑓),s : 𝐶𝐹𝐾
−(𝑌, 𝐿) → 𝐶𝐹𝐾−(𝑌𝑓 (𝐾), 𝐿′). (3.2.2)

The latter is defined for a compatible doubly pointed Heegaard triple (Σ, 𝛼, 𝛽, 𝛾, 𝑤, 𝑧)

by the formula

𝑓𝐾(𝑓),s(x) =
∑︁

{y∈T𝛼∩T𝛾}

∑︁
𝜓

#M(𝜓) · 𝑈𝑛𝑤(𝜑) · y

where s is a 𝑠𝑝𝑖𝑛𝑐 structure on the cobordism. The inner sum is over homotopy

classes 𝜓 ∈ 𝜋2(x,Θ𝛽,𝛾,y) of Whitney triangles connecting x, y, and a representative
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Θ𝛽,𝛾 of the top dimensional class in 𝐻𝐹𝐾−(Σ, 𝛽, 𝛾, 𝑤, 𝑧), and satisfying 𝑠𝑤(𝜓) = s,

𝑛𝑧(𝜓) = 0, and 𝜇(𝜓) = 0, where the latter is the expected dimension of the moduli

space M(𝜓) of holomorphic triangles in homotopy class 𝜓.

We recall that a Whitney triangle connecting x ∈ T𝛼 ∩ T𝛽, r ∈ T𝛽 ∩ T𝛾, and

y ∈ T𝛼 ∩ T𝛾 is a map

𝑢 : ∆ → 𝑆𝑦𝑚𝑛(Σ)

where ∆ is an oriented 2-simplex with vertices 𝑣𝛼, 𝑣𝛽, and 𝑣𝛾 labeled clockwise, and

𝑒𝛼, 𝑒𝛽, and 𝑒𝛾 are the edges opposite to 𝑣𝛼, 𝑣𝛽, and 𝑣𝛾 respectively. Moreover we

want the boundary conditions satisfy that 𝑢(𝑣𝛼) = r, 𝑢(𝑣𝛽) = y and 𝑢(𝑣𝛾) = x, and

𝑢(𝑒𝛼) ⊂ T𝛼, 𝑢(𝑒𝛽) ⊂ T𝛽 and 𝑢(𝑒𝛾) ⊂ T𝛾. In particular if we start at any vertex of ∆

and go clockwise we should travel along the 𝛼, 𝛽, and 𝛾 curves in cyclic order. See

Figure 3-1 for a schematic picture.

Figure 3-1: Schematic Whitney triangle for (Σ, 𝛼, 𝛽, 𝛾)

3.3 LOSS invariant for Legendrian knots

In this section we review the construction for LOSS invariant [20]. As we describe

below, given an oriented null-homologous Legendrian knot 𝐿 in some contact three

manifold (𝑌, 𝜉), one can find a doubly pointed Heegaard diagram (Σ, 𝛽, 𝛼, 𝑤, 𝑧) that

is compatible with (−𝑌, 𝐿) and associate a cycle in 𝐶𝐹𝐾−, giving rise to an element

in 𝐻𝐹𝐾−(−𝑌, 𝐿).

To begin, we first find an open book (𝑃, 𝜑) that is compatible with (𝑌, 𝜉) and

contains 𝐿 as a homologically nontrivial curve on the page [20, Proposition 2.4] such
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that the page framing is equal to the contact framing.

Then we choose a family of properly embedded arcs {ai} as basis for 𝑃 , meaning

that if we cut 𝑃 along {ai} we get a disk. Moreover we can choose the basis {ai} such

that 𝐿, considered as lying on 𝑃 = 𝑃+1, only intersects 𝑎1 transversely at one point

and does not intersect with other 𝑎𝑖 for 𝑖 ̸= 1. We now construct a doubly pointed

Heegaard diagram (Σ, 𝛽, 𝛼, 𝑤, 𝑧) that is compatible with (−𝑌, 𝐿) using (𝑃, 𝜑, {ai}).

We first form the Heegaard surface Σ as the union of two pages, 𝑃+1 ∪−𝑃−1. For

the 𝛼 and 𝛽 curves we start with the basis {ai} lying on 𝑃+1, and let 𝑏𝑖 be a push off

of 𝑎𝑖 for all 𝑖 on 𝑃+1, such that 𝑎𝑖 and 𝑏𝑖 intersect transversely at one point on 𝑃+1 for

each 𝑖. In particular the boundary points of 𝑏𝑖 are obtained from those of 𝑎𝑖 by pushing

along 𝜕𝑃+1 in the direction determined by the orientation. Now we let 𝛼𝑖 = 𝑎𝑖 ∪ 𝑎𝑖
and 𝛽𝑖 = 𝑏𝑖 ∪ 𝜑(𝑏𝑖) for all 𝑖, where 𝑎𝑖 is the image of 𝑎𝑖 under the identity map on

the opposite page −𝑃−1 and 𝜑(𝑏𝑖) is the image of 𝑏𝑖 under the monodromy map 𝜑

on −𝑃−1. Finally we place the base points 𝑤, 𝑧 on 𝑃+1 such that 𝑧 is “outside” the

thin strips between 𝑎𝑖 and 𝑏𝑖 for all 𝑖, and 𝑤 is in between 𝑎1 and 𝑏1. Note that there

are two possibilities for the placement of 𝑤; we choose the one compatible with the

orientation of 𝐿. Let x = (𝑥1, 𝑥2, ..., 𝑥𝑔) ∈ T𝛼∩T𝛽 where 𝑥𝑖 = 𝑎𝑖∩ 𝑏𝑖. Now we change

the orientation of 𝑌 and consider the diagram (Σ, 𝛽, 𝛼, 𝑤, 𝑧), which is compatible with

(−𝑌, 𝐿). We view x as an element in 𝐶𝐹𝐾−(−𝑌, 𝐿). It was shown in [20] that x is

a cycle, and the homology class of x, written L(𝐿) ∈ 𝐻𝐹𝐾−(−𝑌, 𝐿), is an invariant

of the oriented Legendrian knot 𝐿 with values in the graded module 𝐻𝐹𝐾−(−𝑌, 𝐿),

modulo its graded automorphisms. The construction for L̂(𝐿) ∈ 𝐻𝐹𝐾(−𝑌, 𝐿) is the

same, simply considering x as a cycle in 𝐶𝐹𝐾(−𝑌, 𝐿).

Here is an important property of the LOSS invariant that we will use.

Theorem 3.3.1 ([20]). Suppose that 𝐿 is an oriented Legendrian knot and denote

the negative and positive stabilizations of 𝐿 as 𝐿− and 𝐿+. Then, L(𝐿−) = L(𝐿) and

L(𝐿+) = 𝑈 · L(𝐿). Similarly L̂(𝐿−) = L̂(𝐿) and L̂(𝐿+) = 𝑈 · L̂(𝐿) = 0.

In particular, since both L and L̂ are unchanged under negative stabilization they

are also invariants for transverse knots. Thus for a transverse knot 𝑇 we define the
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LOSS invariant T, T̂ of 𝑇 to be the LOSS invariant L, L̂ of a Legendrian approximation

of 𝑇 .
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Chapter 4

Naturality of LOSS invariant

In this chapter we will prove Theorem 1.2.1 and Theorem 1.2.8.

4.1 Naturality of LOSS invariant under capping off

As we have seen in Section 2.4.1, the contact +𝑛 surgery is actually a special case

of capping off, so instead of directly proving the +𝑛 situation we will first prove the

naturality result for the LOSS invariant under capping off cobordisms. In order to

precisely state the proposition we need to first introduce a new definition.

Definition 4.1.1. Let (𝑀, 𝜉) be a contact 3-manifold, and (𝑃, 𝜑) an open book

decomposition with at least 2 binding components supporting (𝑀, 𝜉). Consider 𝐿

a null-homologous oriented Legendrian knot, 𝐵 a binding component of (𝑃, 𝜑), and

{ai} a basis for 𝑃 . We say a triple (𝐿,𝐵, {ai}) is adapted to (𝑃, 𝜑) if the following

hold.

1. 𝐿 is sitting on the page 𝑃 and is parallel to some binding component 𝑇 other

than 𝐵

2. Up to reordering {ai}, 𝐿 intersects 𝑎1 transversely at one point and does not

intersect other 𝑎𝑖 for 𝑖 ̸= 1

3. Up to reordering {ai}, 𝐵 intersects 𝑎2 at exactly one point and does not intersect

other 𝑎𝑖 for 𝑖 ̸= 2.
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We say (𝐿,𝐵) is adapted to (𝑃, 𝜑) if condition 1 holds. See Figure 4-1 for an

example of an adapted triple. It’s easy to see that if (𝐿,𝐵) is adapted to (𝑃, 𝜑) then

(maybe after further stabilization of the open book) we can always find basis {ai}

such that (𝐿,𝐵, {ai}) is adapted to (𝑃, 𝜑)

Figure 4-1: The left diagram is an adapted triple (𝐿,𝐵, {ai}) and the right one is
not; one can transform the {𝑎𝑖} from one to the other by arcslides.

Similar to what we saw in section 3.3, given an adapted (𝐿,𝐵, {ai}) we can asso-

ciate a doubly pointed Heegaard triple (Σ, 𝛼, 𝛾, 𝛽, 𝑧, 𝑤) as follows.

Let Σ be the Heegaard surface that is the union of two pages 𝑃+1 ∪ −𝑃−1, and

consider the basis {ai} as lying on 𝑃+1. Let 𝑐𝑖 be a push off of 𝑎𝑖 for all 𝑖, and for

all 𝑖 ̸= 2 let 𝑏𝑖 be a further push off of 𝑐𝑖. When 𝑖 = 2 we let 𝑏2 be a parallel push of

the binding component 𝐵 on the page 𝑃+1. We require that the push offs satisfy that

each 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 intersect transversely at one point for all 𝑖 (as before, we arrange

that the endpoints of the pushoff slide in the direction of the induced orientation of

the boundary of 𝑃+1). In particular, for all 𝑖, there is a “small triangle” formed by

the arcs 𝑎𝑖, 𝑐𝑖, 𝑏𝑖, see Figure 4-2.

For the 𝛼 and 𝛾 curves in the Heegaard diagram we let 𝛼𝑖 = 𝑎𝑖 ∪ 𝑎𝑖 and 𝛾𝑖 =

𝑐𝑖 ∪ 𝜑(𝑐𝑖) for all 𝑖. For the 𝛽 curves let 𝛽𝑖 = 𝑏𝑖 ∪ 𝜑(𝑏𝑖) for 𝑖 ̸= 2, and 𝛽2 = 𝑏2. Finally

we place the base points 𝑤, 𝑧 such that they specify the Legendrian knot 𝐿 the same

way as we define for LOSS invariant.
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Thus (Σ, 𝛼, 𝛾, 𝑧, 𝑤) is a diagram for (𝑀,𝐿), while (Σ, 𝛼, 𝛽, 𝑧, 𝑤) describes the in-

duced knot 𝐿′ lying in the contact manifold (𝑀 ′, 𝜉′) obtained by capping off the bind-

ing component 𝐵 (this is clear after destabilizing the diagram using the single inter-

section between 𝛼2 and 𝛽2). Furthermore, one can see (as in [4]) that (Σ, 𝛼, 𝛾, 𝛽, 𝑧, 𝑤)

describes the capping off cobordism map from 𝑀 to 𝑀 ′ and send 𝐿 to 𝐿′. When

we turn the cobordism upside down (Σ, 𝛾, 𝛽, 𝛼) describes the cobordism map from

−𝑀 ′ to −𝑀 (As in [4],[22], (Σ, 𝛾, 𝛽, 𝛼) is left-subordinate to this cobordism; see [28]

sections 4 and 5). After verifying admissibility conditions, this means that the dou-

bly pointed Heegaard triple (Σ, 𝛾, 𝛽, 𝛼, 𝑤, 𝑧) (Figure 4-2) can be used to calculate the

map

𝐹𝐵,s : 𝐻𝐹𝐾
−(−𝑀 ′, 𝐿′) → 𝐻𝐹𝐾−(−𝑀,𝐿) (4.1.2)

Let x = {𝑥1, 𝑥2, ...𝑥𝑔}, Θ = {𝜃1, 𝜃2, ...𝜃𝑔} and y = {𝑦1, 𝑦2, ...𝑦𝑔} where 𝑥𝑖 = 𝑎𝑖 ∩ 𝑏𝑖,

𝜃𝑖 = 𝑏𝑖 ∩ 𝑐𝑖, and 𝑦𝑖 = 𝑎𝑖 ∩ 𝑐𝑖 on 𝑃+1. If we denote by ∆𝑖 the small triangle connecting

𝑥𝑖, 𝜃𝑖, 𝑦𝑖 then the 𝑠𝑝𝑖𝑛𝑐 structure s we wish to use in equation (4.1) is described by

the Whitney triangle 𝜓 ∈ 𝜋2(x,Θ,y) (i.e. s𝑧(𝜓) = s) where the domain D(𝜓) is the

sum of all ∆𝑖 ([27] Proposition 8.4). Then we have the following key proposition.

Proposition 4.1.3. Given adapted (𝐿,𝐵, {ai}) and map 𝐹𝐵,s in the above setting.

If we further assume 𝑀 ′ is a rational homology sphere and 𝐿′ is null-homologous in

𝑀 ′ then we have

𝐹𝐵,s(L(𝑀
′, 𝜉′, 𝐿′)) = L(𝑀, 𝜉, 𝐿) (4.1.4)

We remark that by the choices we made in the pushoffs of 𝑎𝑖, the intersections 𝑥𝑖,

𝑦𝑖, and 𝜃𝑖 appear in clockwise order around ∆𝑖 for each 𝑖.

To prove the above Proposition we divide it into several lemmas.

Lemma 4.1.5. (cf. [4, Lemma 2.2]) The doubly pointed diagram (Σ, 𝛾, 𝛽, 𝛼, 𝑤, 𝑧) is

weakly admissible, in the sense that any non-trivial triply-periodic domain has both

positive and negative multiplicities.

Observe that if we ignore the 𝑤 base point then the local picture near ∆𝑖 are all

the same except for 𝑖 = 2. (See figure 4-3, for local description of ∆𝑖 and ∆2.)
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Figure 4-2: Since all of what we care are on the 𝑃+1 page, we can just draw things
on 𝑃+1 to capture all the information instead of drawing the whole doubly pointed
Heegaard triple. (The black circles are binding, red curves are 𝑎𝑖 (parts of the 𝛼𝑖),
blue curves are 𝑏𝑖 (parts of the 𝛽𝑖), green curves are 𝑐𝑖 (parts of the 𝛾𝑖). The 𝑠𝑝𝑖𝑛𝑐
structure s is represented by the small shaded triangle. There might be genus but
it’s not shown on the picture.)

Figure 4-3: On the left is the local picture for ∆𝑖 for 𝑖 ̸= 2, and on the right is the
local picture for ∆2. A,B,C,D,E,F are the letters used to label the regions in local
picture.
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Proof. We first analyze the local picture for ∆𝑖 where 𝑖 ̸= 2. Let 𝑄 be a triply-periodic

domain whose multiplicities in the regions 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are given by the

integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 , respectively. Since 𝜕𝑄 (rather, the portion of 𝜕𝑄 lying on

the 𝛼 circles) consists of full 𝛼 arcs, we must have

𝑏− 𝑐 = 𝑑− 𝑒 = 𝑐− 𝑓.

Similarly 𝜕𝑄 also contains only full 𝛽 arcs so we have

𝑐− 𝑎 = 𝑑− 𝑏 = 𝑒− 𝑐.

Note that the region 𝐶 contains base point 𝑧 so 𝑐 = 0, which implies 𝑄 has both

positive and negative multiplicity unless

𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑒 = 𝑓 = 0.

Since for each ∆𝑖 𝑖 ̸= 2 the local pictures are the same, this tells us that if 𝑄 has only

positive or only negative multiplicities then 𝑄 contains no 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 as boundary for

𝑖 ̸= 2. So the only possibility for 𝑄 to be nonzero is near ∆2.

For the region around ∆2 we again label the regions 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 as in

Figure 4-3, and the multiplicities are given by the integers 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 respectively.

Again since 𝜕𝑄 contains only full 𝛼 curves we must have

𝑎− 𝑐 = 𝑐− 𝑑 = 𝑏− 𝑒,

and since 𝐶 is the region containing base point 𝑧 we have 𝑐 = 0. Hence if 𝑄 has only

positive or only negative multiplicities then 𝑎 = 𝑑 = 0, and 𝑏 = 𝑒. If 𝑏 = 𝑒 ̸= 0 we

infer 𝜕𝑄 contains only the curve 𝛽2, however since 𝛽2 is not null-homologous in Σ it

can’t bound a 2 chain by itself. So 𝑏 = 𝑒 = 0 which shows the diagram is weakly

admissible.
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Lemma 4.1.6. (cf. [4, Proposition 2.3]) In the above setting, let y′ = (y′
1,y

′
2, ...,y

′
g) ∈

T𝛾 ∩ T𝛼 be an intersection point and 𝜓′ ∈ 𝜋2(x,Θ,y
′) a Whitney triangle with only

nonnegative local multiplicities. If 𝑛𝑧(𝜓′) = 0 and s𝑧(𝜓
′) = s, then y′ = y, and

𝜓′ = 𝜓.

Proof. We want to show that the domain of 𝜓′, D(𝜓′) is the same as that of 𝜓, i.e.

that D(𝜓′) = D(𝜓) = ∆1 + ∆2 + ... + ∆𝑔. As what we did above, we again look at

what happens locally near ∆𝑖 (𝑖 ̸= 2) and ∆2.

First we look around ∆𝑖 (𝑖 ̸= 2). Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 be the multiplicities of

D(𝜓′) at 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 . Since D(𝜓′) has corners at 𝑥𝑖 and 𝜃𝑖, we have

𝑎+ 𝑑 = 𝑏+ 𝑐+ 1, 𝑑+ 𝑐 = 𝑏+ 𝑒+ 1 (1)

Since 𝑐 = 0, equations (1) imply 𝑎 = −𝑒, and because the domain only contains

nonnegative multiplicities 𝑎 = 𝑒 = 0. Therefore (1) becomes

𝑑 = 𝑏+ 1 (2)

Now if 𝑦′𝑖 ̸= 𝑦𝑖 for some 𝑖 ̸= 2 it implies 𝑑 + 𝑓 = 0, so 𝑑 = 𝑓 = 0, but when we

put 𝑑 = 0 in (2) we have 𝑏 = −1 which is a contradiction. So 𝑦𝑖 = 𝑦′𝑖, which implies

𝑑+ 𝑓 = 1 (since 𝑐 = 𝑒 = 0). If 𝑑 = 0 then combining with (2) again we get 𝑏 = −1, a

contradiction. So we must have 𝑑 = 1 and 𝑓 = 0, which means that altogether 𝑑 = 1

and 𝑎 = 𝑏 = 𝑐 = 𝑒 = 𝑓 = 0.

Because the above argument works for all 𝑖 ̸= 2, we conclude that D(𝜓′) is locally

just ∆𝑖 for 𝑖 ̸= 2, in other words D(𝜓′) = ∆1 + ∆′
2 + ∆3 + ... + ∆𝑔, where ∆′

2 is a

region missing base point 𝑧 and whose oriented boundary consists of arcs along 𝛽2

from 𝜃2 to 𝑥2; along 𝛼2 from 𝑥2 to 𝑦′2; and along 𝛾2 from 𝑦′2 to 𝜃2. So we are left to

show 𝑦′2 = 𝑦2, and ∆′
2 = ∆2.

Since s𝑧(𝜓
′) = s(𝜓) = s, by [27, Proposition 8.5] we have

D(𝜓′)− D(𝜓) = D(𝜑1) + D(𝜑2) + D(𝜑3)
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where 𝜑1, 𝜑2, and 𝜑3 are in 𝜋2(x,x), 𝜋2(Θ,Θ), and 𝜋2(y,y
′) respectively. We want

to show D(𝜓′)− D(𝜓) = 0.

First since −𝑀 ′, which has Heegaard description (Σ, 𝛽, 𝛼), is a rational homology

sphere, we have 𝜋2(x,x) = 0 and therefore we can suppose D(𝜑1) = 0 (strictly, 𝜋2(x,x)

always contains a copy of Z corresponding to multiples of the Heegaard surface, but

these are not relevant here because of positivity of multiplicities and the condition

that 𝑛𝑧(𝜓) = 𝑛𝑧(𝜓
′) = 0). Moreover since D(𝜓′)−D(𝜓) = ∆′

2 −∆2 and 𝜋2(x,x) = 0,

if D(𝜑2) ̸= 0 the (𝛽2 portion of the) boundary of D(𝜑2) can contain only multiples of

𝛽2. However 𝛽2 is homologically independent from all linear combinations of 𝛽𝑖 for

𝑖 ̸= 2 and 𝛾𝑗 for all 𝑗, and we conclude D(𝜑2) = 0.

Therefore

D(𝜓′)− D(𝜓) = ∆′
2 −∆2 = D(𝜑3)

where D(𝜑3) is a domain not containing 𝑧, whose oriented boundary consists of arcs

along 𝛼2 from 𝑦2 to 𝑦′2 and arcs along 𝛾2 from 𝑦′2 to 𝑦2. Since ∆2 has multiplicities 1

and 0 in the regions 𝐷 and 𝐸 respectively, the multiplicities of ∆′
2 at 𝐷 and 𝐸 must

satisfy

𝑑− 1 = 𝑒. (3)

At the same time, the boundary conditions at 𝑥2 and 𝜃2 tell us

𝑑+ 𝑏− 1 = 𝑐+ 𝑒.

Combining these two we get 𝑏 = 𝑐 = 0.

Now suppose 𝑦2 ̸= 𝑦′2. The boundary conditions then say 𝑎+𝑑 = 𝑐+𝑐 = 0, so that

𝑎 = 𝑑 = 0. Then when we return to (3) we get 𝑒 = −1, which is a contradiction—so

𝑦2 = 𝑦′2. In this case the boundary constraint tells us

𝑎+ 𝑑 = 1.

If we combine this with (3) it follows 𝑎 = 0 = 𝑐 = 𝑒 = 𝑏 and 𝑑 = 1. Hence ∆′
2 = ∆2,

which implies D(𝜓′)− D(𝜓) = 0.
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Now we are ready to show Proposition 4.1.3.

Proof of Proposition 4.1.3. Lemma 4.1.5 says the map 𝐹𝐵,s can be computed from

the Heegaard diagram now under consideration. (Strictly, weak admissibility suffices

to compute the homomorphism in the hat theory, while the minus theory requires

strong admissibility for the 𝑠𝑝𝑖𝑛𝑐 structure under consideration. Weak and strong

admissibility coincide if the 𝑠𝑝𝑖𝑛𝑐 structure is torsion on each boundary component.

Alternatively, weak admissibility is also sufficient to define maps in the minus theory

if we work over the power series ring F[[𝑈 ]], so we work in that setting in the most

general case.) Since the small triangle 𝜓 has a unique holomorphic representative,

and Lemma 4.1.6 implies that the small triangle is the only one contributing to

the map 𝐹𝐵,s, we have 𝐹𝐵,s(x) = y. We only left to show x = L(𝑀 ′, 𝜉′, 𝐿′), and

y = L(𝑀, 𝜉, 𝐿). The latter is clear by the definition of LOSS invariant .

For L(𝑀 ′, 𝜉′, 𝐿′), denote (𝑃𝐵, 𝜑𝐵) the corresponding open book after capping off

binding 𝐵, and by abuse of notation consider {𝑎𝑖} (for 𝑖 ̸= 2) as a basis for 𝑃𝐵.

By definition of LOSS again we can see that L(𝑀 ′, 𝜉′, 𝐿′) is represented by x′ =

(𝑥1, 𝑥3, ..., 𝑥𝑔). The diagram (Σ, 𝛽, 𝛼, 𝑧, 𝑤) then differs from the one obtained from 𝑃𝐵

by a stabilization of the Heegaard diagram. Then by [27, Section 10], we see under the

isomorphism induced by the stabilization we map x′ to x. So x = L(𝑀 ′, 𝜉′, 𝐿′).

Remark 4.1.7. Since the Legendrian knot 𝐿 is a Legendrian approximation of 𝑇 (𝐿

is parallel to 𝑇 in the open book), the Theorem 1.2.8 follows.

4.2 Naturality of LOSS invariant under +𝑛 contact

surgery

Now we are ready to prove Theorem 1.2.1.

Proof of Theorem 1.1. We first choose an arbitrary open book (𝑃, 𝜑) supporting (𝑌, 𝜉)

and having 𝐿 and 𝑆 on the page 𝑃 , where as we saw in section 2.4.1 we may further

38



assume 𝑆 is parallel to some binding of 𝑃 . Again by [3, Lemma 6.5] we can stabilize

the open book such that 𝑆−, the negative stabilization of 𝑆, is parallel to a binding

component 𝐵, and 𝐿− is also parallel to some other binding component 𝑇 . We again

call the stabilized open book (𝑃, 𝜑).

Now by Theorem 2.4.6 the smooth cobordism from −𝑌 to −𝑌𝑛(𝑆) induced by

contact 𝑛 surgery (smooth 𝑡𝑏(𝑆) + 𝑛) is the same as a capping off cobordism from

𝑌𝑛(𝑆) to 𝑌 viewed upside down, where we cap off a binding component 𝐵𝑆 ⊂ 𝑌𝑛(𝑆)

as we saw in section 2.4.1. (Note here that 𝑆 is playing the role of 𝐿 in section 2.4.1

and the above parts of this section.)

In other words we have an open book (𝑃𝑆, 𝜑𝑆) for (𝑌𝑛(𝑆), 𝜉−𝑛 (𝑆)) such that capping

off 𝐵𝑆 gives us back (𝑃, 𝜑), and such that the knot induced by (𝐿−)𝑆 is 𝐿−. Then

(possibly after further stabilization of (𝑃𝑆, 𝜑𝑆)) we choose a basis {ai} such that

((𝐿−)𝑆, 𝐵𝑆, {ai}) is adapted to (𝑃𝑆, 𝜑𝑆), and thus by Proposition 4.1.3

𝐹𝐵𝑆 ,s(L(−𝑌, 𝜉, 𝐿−)) = L(−𝑌𝑛(𝑆), 𝜉−𝑛 (𝑆), (𝐿−)𝑆).

By equivalence of contact surgery and capping off we have

𝐹𝑆,s(L(−𝑌, 𝜉, 𝐿−)) = L(−𝑌𝑛(𝑆), 𝜉−𝑛 (𝑆), (𝐿−)𝑆)

Finally because (𝐿−)𝑆 = (𝐿𝑆)
−, and the LOSS invariant is invariant under nega-

tive stabilization (Theorem 3.3.1) we conclude that

𝐹𝑆,s(L(−𝑌, 𝜉, 𝐿)) = L(−𝑌𝑛(𝑆), 𝜉−𝑛 (𝑆), 𝐿𝑆)
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Chapter 5

Application to Legendrian and

transverse non-simple knot

One interesting application of the main theorem is to give many more examples of

Legendrian and transversely non-simple knots which are distinguished by their LOSS

invariants.

5.1 Adding twist preserve the distinction of LOSS

invariant

In this section we will prove the Theorem 1.2.15 which can be summarised as fol-

lows: if we start with two Legendrian knots with different LOSS invariants, then, after

adding twist, the new Legendrian knots we get also have different LOSS invariants.

To prove Theorem 1.2.15 we need the following lemma.

Lemma 5.1.1. Let 𝐿 be an oriented Legendrian knot in (𝑌, 𝜉), and for 𝑖 = 1, 2, ...𝑛

let 𝑒𝑖 be arcs of 𝐿 such that they are horizontal parallel with the same orientation

inside some Darboux ball 𝐵. Moreover let 𝑆 be an oriented max tb unknot in 𝐵 that

links each 𝑒𝑖 positively once (so the linking number between 𝑆 and 𝐿 is +𝑛). Then

after doing +2 contact surgery on 𝑆, with the choice of stabilization being negative,

the resulting contact manifold is contactomorphic to (𝑌, 𝜉), but the resulting 𝑒𝑖’s are
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parallel Legendrian pushoffs of a negative stabilization of 𝑒1 (thus, smoothly, the new

strands have a full negative twist).

Figure 5-1: there are 𝑛 red arcs 𝑒1 to 𝑒𝑛

Proof. There are two possibilities of how those 𝑒𝑖 are oriented, either from left to right

or from right to left. So to prove the Lemma it’s the same to show the equivalence of

the pair of contact surgery diagrams in Figure 5-1.

Since the proof is symmetric with one and the other we will only show top case of

the figure (strand orientation from left to right). Note that since the 𝑒𝑖 are Legendrian

push-offs of each other, it’s enough to consider the case when 𝑛 = 1. In Figure 5-2 we

exhibit a sequence of Legendrian isotopies, contact surgery and contact handle moves

to show the equivalence of the two diagrams when 𝑛 = 1.

To prove Theorem 1.2.15 notice that given a compatible triple (𝐿, 𝜎𝑛, 𝐵) the new

Legendrian knot 𝐿𝜎 we form only differs from 𝐿 by a positive twist. We intend to

use the above Lemma on 𝐿𝜎, so we can cancel out the positive twist with a negative

twist and give back 𝐿. With this idea in mind we are ready to start the proof.

Proof of Theorem 1.2.15. Since there exist a smoothly isotopy from 𝐿 to 𝐿′ that takes

the 𝐵 to 𝐵′, and inside the balls we are doing the same operation to the arcs, we

infer the resulting knots 𝐿𝜎 and 𝐿′
𝜎′ are smoothly isotopic, proving the first part.

42



Figure 5-2: From a to b we use Legendrian Reidemeister 1 moves; from b to c we
isotopy Legendrian meridian from bottom to top using [8, Figure 13-15]; from c to d
we use the DGS algorithm [9] to change +2 contact surgery to +1 and −1 contact
surgeries, and we use negative stabilization as the assumption; from d to e we use [8,
Theorem 4] to identify surgery diagram with handle diagram; from e to f we handle
slide the red curve over the −1 framed handle using [8, Proposition 1]; from f to
g we cancel out the −1 framed 2 handle with the 1 handle; and last we perform a
Legendrian Reidemeister move to get rid of the extra crossing and attain h.
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Then let’s consider the Darboux ball 𝐵 and the new Legendrian knot 𝐿𝜎. Inside

the ball the arcs 𝑒𝑖 have the same orientation and can be considered to be initially

horizontal and parallel (near the left side of the ball), then they start doing a positive

twist as we move from left to right. Now as in Lemma 5.1 let 𝑆 be an oriented max

tb unknot that links both 𝑒𝑖 positively one time, and perform +2 contact surgery on

𝑆. We can think of this as happening near the horizontal parallel part of the 𝑒𝑖, so

it looks like the top left diagram of figure 5-3. By Lemma 5.1.1 this is equivalent to

the top right of figure 5-3, then after sequence of Legendrian Reidemeister moves it’s

not hard to see we obtain the bottom right.

Figure 5-3: We apply the Lemma 5.1.1 on the arcs in 𝐿𝜎, then we undo the twist
which gives back 𝐿 with 𝑛 additional negative stabilization.

From the picture we can easily see that doing this +2 contact surgery on 𝑆 trans-

forms 𝐿𝜎 to the 𝑛-fold negative stabilization 𝐿−𝑛 of 𝐿. Now we want to apply Theorem

1.2.1. Since 𝐿 is null-homologous, by construction 𝐿𝜎 is also null-homologous (we can

add bands to the Seifert surface of 𝐿), and since we do not change the ambient contact

3 manifold (𝑌, 𝜉) by doing +2 contact surgery, the map in Theorem 1.2.1 is of the

form

𝐹𝑆,s : 𝐻𝐹𝐾
−(−𝑌, 𝐿𝜎) → 𝐻𝐹𝐾−(−𝑌, 𝐿). (5.1.2)

Since 𝑌 is a rational homology sphere, and LOSS invariant is unchanged under neg-

ative stabilization, by Theorem 1.2.1 there exist some 𝑠𝑝𝑖𝑛𝑐 structure s such that
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𝐹𝑆,s(L(𝐿𝜎)) = L(𝐿−𝑛) = L(𝐿) (5.1.3)

We do the same thing, +2 contact surgery on 𝑆 ′ for arcs 𝑒′𝑖 of 𝐿′
𝜎′ inside 𝐵𝜎′ . So

we also get a map

𝐹𝑆′,s′ : 𝐻𝐹𝐾
−(−𝑌, 𝐿′

𝜎′) → 𝐻𝐹𝐾−(−𝑌, 𝐿′) (5.1.4)

such that

𝐹𝑆′,s′(L(𝐿
′
𝜎′)) = L(𝐿′−𝑛) = L(𝐿′) (5.1.5)

By the construction of 𝐿𝜎 and 𝐿′
𝜎′ and the assumption about the isotopy from 𝐿

to 𝐿′ it’s easy to see that there also exist a smooth isotopy from 𝐿𝜎 to 𝐿′
𝜎′ that sends

𝑆 to 𝑆 ′. Moreover since 𝑆 and 𝑆 ′ are null-homologous (they are inside the ball) and 𝜉

has torsion first Chern class (𝑌 is a rational homology sphere), by Proposition 1.2.11

±⟨𝑐1(s), [𝑍]⟩ = 𝑟𝑜𝑡(𝑆) + 1

and

±⟨𝑐1(s′), [𝑍]⟩ = 𝑟𝑜𝑡(𝑆 ′) + 1

Note that both s and s′ restrict to the 𝑠𝑝𝑖𝑛𝑐 structure corresponding to 𝜉 on both

boundaries of the cobordism. This condition together with the value of ⟨𝑐1(s), [𝑍]⟩

determines a 𝑠𝑝𝑖𝑛𝑐 structure uniquely on the surgery cobordism. Thus, s and s′ are

either equal or conjugate to each other. If s and s′ are conjugate to each other we

have the following commutative diagram.

because 𝑟𝑜𝑡(𝑆) = 𝑟𝑜𝑡(𝑆 ′), we infer s is equal to s′.

Let us write 𝐾 and 𝐾𝜎 for the smooth knot types underlying 𝐿, 𝐿′ and 𝐿𝜎, 𝐿′
𝜎′ ,

respectively. By the results of [19], we can consider the LOSS invariants of 𝐿 and

𝐿′ to lie in the same group 𝐻𝐹𝐾−(−𝑌,𝐾), and similarly those of 𝐿𝜎 and 𝐿′
𝜎′ lie in
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𝐻𝐹𝐾−(−𝑌,𝐾𝜎). More precisely, this means that there are canonical isomorphisms

𝐻𝐹𝐾−(−𝑌, 𝐿𝜎) → 𝐻𝐹𝐾−(−𝑌,𝐾𝜎), 𝐻𝐹𝐾−(−𝑌, 𝐿′
𝜎′) → 𝐻𝐹𝐾−(−𝑌,𝐾𝜎)

𝐻𝐹𝐾−(−𝑌, 𝐿) → 𝐻𝐹𝐾−(−𝑌,𝐾), 𝐻𝐹𝐾−(−𝑌, 𝐿′) → 𝐻𝐹𝐾−(−𝑌,𝐾).

With these identifications in mind, we will drop the distinction between the circles 𝑆

and 𝑆 ′, as they are ambiently smoothly isotopic.

Now for any 𝑑 ∈ 𝑀𝐶𝐺(𝑌,𝐾𝜎), let 𝑑(𝑆) denote the induced knot and 𝑑𝑆 ∈

𝑀𝐶𝐺(𝑌,𝐾) the induced diffeomorphism after the surgery on 𝑆; moreover let 𝑑*,𝑑*𝑆
be the induced maps on knot Floer homology and 𝑑(s) be the induced 𝑠𝑝𝑖𝑛𝑐 structure.

Then by Theorem 8.9 and Corollary 11.17 in [18], and Theorem 1.8 in [19] we have

the following commutative diagram.

𝐻𝐹𝐾−(−𝑌,𝐾𝜎) 𝐻𝐹𝐾−(−𝑌,𝐾)

𝐻𝐹𝐾−(−𝑌,𝐾𝜎) 𝐻𝐹𝐾−(−𝑌,𝐾)

𝐹𝑆,s

𝑑* 𝑑*𝑆

𝐹𝑑(𝑆),𝑑(s)

(5.1.6)

which implies

𝑑*𝑆(𝐹𝑆,s(L(𝐿𝜎))) = 𝐹𝑑(𝑆),𝑑(s)(𝑑
*(L(𝐿𝜎))).

Since 𝐹𝑆,s(L(𝐿𝜎)) = L(𝐿), we have

𝑑*𝑆(L(𝐿)) = 𝐹𝑑(𝑆),𝑑(s)(𝑑
*(L(𝐿𝜎))).

Our assumption is that [L(𝐿)] ̸= [L(𝐿′)] (strictly, that these 𝑀𝐶𝐺 orbits are

different under the canonical isomorphisms above). Now suppose [L(𝐿𝜎)] = [L(𝐿′
𝜎′)],

so that there exists 𝑑 ∈ 𝑀𝐶𝐺(𝑌, 𝐿𝜎) such that 𝑑*(L(𝐿𝜎)) = L(𝐿′
𝜎′). Combined with

the above, we infer

𝑑*𝑆(L(𝐿)) = 𝐹𝑑(𝑆),𝑑(s)(L(𝐿
′
𝜎′)).

Now we claim that this class is the same as 𝐹𝑆,s(L(𝐿′
𝜎′)). To see this, note first

that implicit in the condition that 𝑑*(L𝜎) = L′
𝜎′ is the requirement that 𝑑*(𝜉) = 𝜉.
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Moreover, since we are free to modify 𝑑 by an isotopy (fixing 𝐾𝜎), we can suppose

that 𝑑 is the identity on the ball containing 𝑆. Since 𝑑 preserves the contact structures

it must fix the induced 𝑠𝑝𝑖𝑛𝑐 structures on the boundary −𝑌 ⊔ −𝑌 . As the Chern

number evaluation on the cobordism is also preserved, we infer (𝑑(𝑆), 𝑑(s)) = (𝑆, s).

By the naturality theorem, it then follows that 𝐹𝑑(𝑆),𝑑(s)(L′
𝜎′) = 𝐹𝑆′,s′(L

′
𝜎′) = L(𝐿′).

From the equation above, we obtain 𝑑*𝑆(L(𝐿)) = L(𝐿′), contrary to assumption.

Exactly same arguments work for L̂.

5.2 Non-simplicity of Legendrian and transverse knot

Let’s now construct an example of non-simple knot using Theorem 1.2.15.

Proof of Corollary 1.2.16. It’s easy to see the two Legendrian knots in figure 5-4 are

smoothly isotopic to 𝑚(97) and have same 𝑡𝑏 and 𝑟𝑜𝑡. We claim that they have

different [L̂], which will imply the two are not Legendrian isotopic, and also that

their transverse push-offs are not transverse isotopic. The Legendrians in Figure 5-4

were obtained by an application of (the construction leading to) Theorem 1.2.15 to

the two knots in figure 5-5. According to [24, Theorem 1.3] the two knots in Figure

5-5 have different [L̂]; moreover we can smoothly isotop the left side of Figure 5-5

to the right while fixing everything in the green circle. This verifies the assumptions

of Theorem 1.2.15, thus after adding a full twist to the arcs in green circle, two new

Legendrian knots in figure 5-4 have different [L̂] invariant.

Figure 5-4: Both of these are smoothly isotopic to 𝑚(97)
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Figure 5-5: Two different Legendrian representatives of the Eliashberg–Chekanov
twist knot 𝐸5 = 𝑚(72). The green circle indicate where we apply Theorem 1.2.15

Notice that the knot 𝑚(97) is a rational knot. In Conway’s notation [6] this is the

[-3,-5,2] knot. Using similar ideas as the above, we can get infinite families of knots

that are Legendrian and transversely non-simple.

Theorem 5.2.1. Let 𝑚,𝑛 be positive integers with 𝑛 > 3 and odd. In Conway’s no-

tation the knot [−2𝑚−1,−𝑛, 2] (Figure 5-6) has at least ⌈𝑛
4
⌉ Legendrian (transverse)

representatives that have 𝑡𝑏 = 2𝑚+ 1 and 𝑟𝑜𝑡 = 0 (self-linking number 2𝑚+ 1) that

are pairwise not Legendrian (transverse) isotopic.

Figure 5-6: +1 means one right handed half twist and -1 means one left handed half
twist. For 𝑚 = 1 𝑛 = 5 the result is 𝑚(97); if 𝑚 = 2 𝑛 = 5 we have 𝑚(11𝑎242); if
𝑚 = 1 𝑛 = 7 we have 𝑚(11𝑎246)

Proof. Again in [24, Theorem 1.3] Ozsváth and Stipsicz prove that the Eliashberg–Chekanov

twist knot 𝐸𝑛 shown in figure 5-7 has ⌈𝑛
4
⌉ many Legendrian representatives 𝐸(𝑘, 𝑙)

(see figure 5-8), moreover 𝐸(𝑘, 𝑙) and 𝐸(𝑘′.𝑙′) have different [L̂] provided that 𝑘, 𝑙, 𝑘′, 𝑙′

are odd, 𝑘 + 𝑙 − 1 = 𝑘′ + 𝑙′ − 1 = 𝑛, 𝑘 ≥ 𝑙, 𝑘′ ≥ 𝑙′, and 𝑘 ̸= 𝑘′.

So similar to the proof of Corollary 1.2.16, to construct Legendrian [−2𝑚−1,−𝑛, 2]

we just apply Theorem 1.2.15 𝑚 times to all pairs of 𝐸(𝑘, 𝑙), in the Darboux ball rep-

resented by green circle in figure 5-8. Notice that each time we apply the Theorem

48



1.2.15 we add one full right handed twist to the green circle in figure 5-7. So we still

have ⌈𝑛
4
⌉ many representative of the new knot [−2𝑚−1,−𝑛, 2] that have pairwise dis-

tinct [L̂]. Moreover, 𝐸(𝑘, 𝑙) all have 𝑟𝑜𝑡 = 0 and 𝑡𝑏 = 1, and adding a positive twist to

𝐸(𝑘, 𝑙) does not change the rotation number and adds two to the Thurston–Bennequin

number. So all those new representative have the same 𝑡𝑏 = 2𝑚 + 1 and 𝑟𝑜𝑡 = 0.

Since these representatives are distinguished by [L̂], their transverse pushoffs are also

not transversely isotopic and have self-linking number 2𝑚+ 1.

Figure 5-7: The Eliashberg–Chekanov twist knot 𝐸𝑛. The green (blue) circle smoothly
corresponds to the green (blue) circle on the different Legendrian realizations of 𝐸(𝑘, 𝑙)
of 𝐸(𝑛) in Figure 5-8.

Figure 5-8: The Legendrian knots 𝐸(𝑘, 𝑙), 𝑘, 𝑙 ≥ 1 odd. These knots are smoothly
isotopic to 𝐸𝑛, with 𝑘 + 𝑙 − 1 = 𝑛. The green, blue or red circle indicates possible
place where we can apply the Theorem 1.2.15. (Diagram from Figure 8 in [24] )

Instead of applying Theorem 1.2.15 to the green circle on 𝐸(𝑘, 𝑙), we can also

apply it to the blue circle. The exact same proof applies, and it will give us a family

of double twist knot that are non-simple.

Theorem 5.2.2. Let 𝑚,𝑛 be positive integers with 𝑛 > 3 and odd. The double twist

knot 𝐾(2𝑚+2,−𝑛) (Figure 5-9, the knot [−𝑛,−2𝑚− 2] in Conway notation) has at
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least ⌈𝑛
4
⌉ Legendrian (transverse) representatives that have 𝑡𝑏 = 2𝑚 + 1 and 𝑟𝑜𝑡 = 0

(self-linking number 2𝑚+ 1) and are pairwise not Legendrian (transverse) isotopic.

Figure 5-9: The double twist knot 𝐾(2𝑚+2,−𝑛), or in Conway notation [−𝑛,−2𝑚−
2]. For 𝑚 = 1 𝑛 = 5 this is 𝑚(9, 4); if 𝑚 = 2 𝑛 = 5 we have 𝑚(11𝑎358); if 𝑚 = 1
𝑛 = 7 it is 𝑚(11𝑎342)

We remark that in [24, Theorem 5.8] and [14, Theorem 1.2] there are transverse

non-simplicity statements about certain families of rational knots, and all the double

twist in Theorem 5.2.2 are included there. However, the knots [−2𝑚 − 1,−𝑛, 2] in

Theorem 5.2.1 are not. Moreover, instead of applying Theorem 1.2.15 to individual

green or blue circles, we can apply it to them simultaneously, or to the red circle on 3

arcs, or to some green, some blue and some red. Each of those gives different families

of non-simple knots.

We can also apply our theorem to more complicated (non 2-bridge) non-simple

knot. In [23] Ng, Ozsváth, and Thurston found many examples of non-simple knots.

Those knots have pair of representatives 𝑇1 and 𝑇2 with same tb and rot but 𝜃(𝑇1) = 0

and 𝜃(𝑇2) ̸= 0, where 𝜃 is the Legendrian invariant living in grid homology [29]. It has

been shown in [5] that 𝜃 is the same as L̂, so we can apply Theorem 1.2.15 to those

knots. For example the two knots in figure 5-10 are two Legendrian representatives

of (2, 3) cable of (2, 3) torus knot with same tb and rot but different L̂ invariant, so

if we apply Theorem 1.2.15 to add twists in the circled region we will produce more

non-simple knots. As we have seen, it’s easy to produce a lot of infinite families of

non-simple knots as long as we start with a non-simple ones that distinguished by L̂

invariants.
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Figure 5-10: Legendrian fronts for 𝐿1 (left) and 𝐿2 (right), which are both (2, 3)
cables of the (2, 3) torus knot. They have same tb and rot ,but L̂(𝐿1) = 0, L̂(𝐿2) ̸= 0
(this diagram is from Figure 6 in [29]; the dotted circle indicates the only region in
which the diagrams differ).
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Chapter 6

𝑆𝑝𝑖𝑛𝑐 structure in contact surgery

cobordism

In this chapter, we will prove the 𝑆𝑝𝑖𝑛𝑐 formula in Proposition 1.2.11 but in a more

general setting where we allow the surgery Legendrian to be rational null-homologous.

6.1 Rational null-homologous Legendrian knot and

surgery cobordism

We start with the setting of 𝑌 being a rational homology sphere, 𝐾 an oriented

rationally null-homologous knot with order 𝑝 which means [𝐾] in 𝐻1(𝑌,Z) has order

𝑝. Following the definition and convention in [10], a rational Seifert surface for

smooth 𝐾 is a smooth map 𝑖 : 𝐹 → 𝑌 from a connected compact oriented surface

𝐹 to 𝑌 that is an embedding from the interior of 𝐹 into the exterior of 𝐿, together

with a 𝑝-fold cover from 𝜕𝐹 to 𝐾. Let 𝑁(𝐾) be the closed neighborhood of 𝐾, and

𝜇 ⊂ 𝜕𝑁(𝐾) a meridian. We can assume that 𝑖(𝐹 ) ∩ 𝜕𝑁(𝐾) consists of 𝑐 parallel

oriented simple closed curves such that each represents the same homology class 𝜈

in 𝐻1(𝜕𝑁(𝐾),Z). Define the canonical longitude 𝜆𝑐𝑎𝑛 be the longitude satisfying

𝜈 = 𝑡𝜆𝑐𝑎𝑛 + 𝑟𝜇, where for simplicity the homology classes are also denoted by 𝜆𝑐𝑎𝑛

and 𝜈 respectively, 𝑡 and 𝑟 are coprime integers with 0 ≤ 𝑟 < 𝑡. In other words,
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[𝜕𝐹 ] = 𝑐(𝑡𝜆𝑐𝑎𝑛 + 𝑟𝜇), and 𝜆𝑐𝑎𝑛 is the choice of longitude for which 𝑟/𝑡 is the unique

representative of the rational self-linking number of 𝐾 in [0, 1) (see also [22] and [30,

Section 2.6]).

If we perform smooth integer 𝑛 surgery along an order 𝑝 rationally null-homologous

knot 𝐾, our convention is that the surgery coefficient is measured with respect to

the canonical longitude 𝜆𝑐𝑎𝑛, and we denote by 𝑌𝑛(𝐾) the resulting manifold. Let

𝑋𝑛(𝐾) be the 4-manifold obtained by attaching a 4-dimensional 2-handle 𝐻 to 𝑌 × 𝐼

along 𝐾 × {1} where the coefficient 𝑛 is with respect to 𝜆𝑐𝑎𝑛, in other words we

have 𝜕𝑋𝑛(𝐾) = (−𝑌 ) ∪ 𝑌𝑛(𝐾). Let 𝐶 be the core of the 2-handle in 𝑋𝑛(𝐾), with

𝜕𝐶 = 𝐾 × {1}. For a rational Seifert surface 𝑖 : 𝐹 → 𝑌 of 𝐾 we let 𝐹 be the 2-cycle

in 𝑋𝑛(𝐾) given by 𝐹 = (𝑖(𝐹 )×{1})∪ (−𝑝𝐶). We think of 𝐹 as a “capped off Seifert

surface”, which is precisely true if 𝑝 = 1, i.e., the knot is null-homologous. Here 𝐹

is merely a 2-chain; with more care one can construct a smooth representative of the

class [𝐹 ] ∈ 𝐻2(𝑋𝑛(𝐾);Z) if desired.

Now we move on to an order 𝑝 Legendrian rationally null-homologous knot 𝐿 in

some contact rational homology sphere (𝑌, 𝜉). In [2], using rational Seifert surfaces

Baker-Etnyre defined the rational Thurston-Bennequin number 𝑡𝑏Q(𝐿) and rational

rotation number 𝑟𝑜𝑡Q(𝐿) for such a Legendrian knot 𝐿, and we refer the reader to [2]

for detailed definitions. Now, the Legendrian 𝐿 has a canonical framing 𝜆𝑐 induced

by the contact planes, which is given by 𝜆𝑐 = 𝜆𝑐𝑎𝑛 + 𝑘𝜇 for some 𝑘. In the null-

homologous case 𝑘 is precisely the Thurston-Bennequin number, but in general we

have the following. The definition in [2] is that

𝑡𝑏Q(𝐿) :=
1

𝑝
([𝐹 ] · 𝜆𝑐) = −1

𝑝
(𝑝𝜆𝑐𝑎𝑛 + 𝑐𝑟𝜇) · (𝜆𝑐𝑎𝑛 + 𝑘𝜇).

(The sign appears because the intersection on the left happens in 𝜕(𝑌 −𝑁(𝐾)) while

on the right we work in 𝜕𝑁(𝐾).) If we write 𝑡𝑏Q(𝐿) = 𝑞
𝑝
, then the above yields

𝑘 =
𝑞 + 𝑐𝑟

𝑝
= 𝑡𝑏Q(𝐿) +

𝑐𝑟

𝑝
. (6.1.1)

Observe that the number 𝑘 is uniquely determined by 𝐿, and we denote the
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corresponding 𝑘 as 𝑘(𝐿). Finally, note that performing +𝑛-contact surgery on 𝐿 is

given smoothly by +𝑛 surgery with respect to contact framing 𝜆𝑐, which is equivalent

to doing 𝑘 + 𝑛 surgery on 𝐿 with respect to the canonical framing 𝜆𝑐𝑎𝑛.

We have the following naturality theorem of the contact invariant.

Theorem 6.1.2. [22, Theorem 1.1] Let 𝐿 be an oriented rationally null-homologous

Legendrian knot in a contact rational homology sphere (𝑌, 𝜉) with non-vanishing con-

tact invariant 𝑐(𝜉). Let 0 < 𝑛 ∈ Z be the contact surgery coefficient, and 𝐾 be the

smooth knot type of 𝐿. Let 𝑊 : 𝑌 → 𝑌𝑘(𝐿)+𝑛(𝐾) be the corresponding rational surgery

cobordism where 𝑊 = 𝑋𝑘(𝐿)+𝑛(𝐾), and consider 𝜉−𝑛 (𝐿) on 𝑌𝑘(𝐿)+𝑛(𝐾). There exist a

𝑆𝑝𝑖𝑛𝑐 structure s on −𝑊 such that the homomorphism

𝐹−𝑊,s : ̂︁HF(−𝑌 ) → ̂︁HF(−𝑌𝑘(𝐿)+𝑛(𝐾))

induced by 𝑊 with its orientation reversed satisfies

𝐹−𝑊,s(𝑐(𝜉)) = 𝑐(𝜉−𝑛 (𝐿)).

Remark 6.1.3. In [22] the knot is assumed to be null-homologous, but the version

stated above follows by the same arguments. In fact, even though we cite the above

theorem from [22], naturality under +𝑛 contact surgery actually comes from the

combination of [4, Theorem 1.2] (naturality of the contact invariant under capping off

cobordism) and Theorem 2.4.6 (Equivalence of capping off and +𝑛-contact surgery).

Since we don’t require the knot to be null-homologous in those theorems we have the

rationally null-homologous version for the contact surgery.

What we want to characterize here is the 𝑆𝑝𝑖𝑛𝑐 structure mentioned in the above

theorem without conjugation ambiguity. Note that in the following statement we use

𝑦 to denote the order of 𝐿 in homology instead of 𝑝, since elsewhere 𝑝 refers to the

order of the induced knot in 𝑌𝑛(𝐿) = 𝑌𝑘(𝐿)+𝑛(𝐾).

Theorem 6.1.4. In the above setting, assume 𝑌𝑛(𝐿) is also a rational homology
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sphere. Then the s in Theorem 6.1.2 has the property that

⟨𝑐1(s), [𝐹 ]⟩ = 𝑦(𝑟𝑜𝑡Q(𝐿) + 𝑛− 1)

where 𝑦 is the order of [𝐿], 𝐹 is a rational Seifert surface for 𝐿 and 𝐹 is the “capped

off" surface of 𝐹 .

We will prove the above theorem at the end of this section. Then Proposition

1.2.11 follows directly from the above theorem where 𝐿 is null-homologous in 𝑌 .

6.2 𝑆𝑝𝑖𝑛𝑐 for capping off cobordism

To prove Theorem 6.1.4 we again need to first prove the analogue theorem for the

capping off cobordism.

Theorem 6.2.1. Let (𝑃𝑔,𝑟, 𝜑) be an abstract open book with genus 𝑔 and 𝑟 > 1 binding

components with a chosen transverse binding component 𝐵.Then capping off 𝐵 we

get a new open book (𝑃𝑔,𝑟−1, 𝜑
′). Denote by (𝑀, 𝜉), (𝑀 ′, 𝜉′) the contact 3 manifolds

corresponding to those two open books. The capping off cobordism gives rise to a map

𝐹𝐵,s : ̂︁HF(−𝑀 ′) → ̂︁HF(−𝑀) (6.2.2)

where s is a 𝑆𝑝𝑖𝑛𝑐 structure on the cobordism 𝑊 from −𝑀 ′ to −𝑀 . Then

(i) [4, Theorem 1.2] if 𝑀 ′ is a rational homology sphere, there is a choice of s for

which

𝐹𝐵,s(𝑐(𝜉
′)) = 𝑐(𝜉) (6.2.3)

holds.

(ii) Assume also that 𝑀 is a rational homology sphere, and let 𝐿 be the Legendrian

push off of 𝐵, realised as a curve on the page of the open book (𝑆𝑔,𝑟, 𝜑) that is

parallel to the binding 𝐵. Then the 𝑆𝑝𝑖𝑛𝑐 structure smentioned in (𝑖) satisfies:

⟨𝑐1(s), [𝑉 ]⟩ = −𝑝(𝑟𝑜𝑡Q(𝐿) + 1),
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where 𝑝 is the order of [𝐵], and 𝑉 is homology class in 𝑊 represented by the

“capped off” rational Seifert surface 𝑉 of 𝐵.

To prove the second part of the above theorem we first need the following (ratio-

nally null-homologous version of) Lemmas from [24, section 4].

Lemma 6.2.4. Let (𝑃, 𝜑) be an abstract open book and 𝑀(𝜑) the corresponding 3-

manifold. Let 𝐿 be a homologically non-trivial closed curve on 𝑃 , then 𝑝[𝐿] ∈ 𝐻1(𝑃 ) is

in the kernel of 𝐻1(𝑃 ) → 𝐻1(𝑀(𝜑)) if and only if it can be written as 𝑝[𝐿] = 𝜑*(𝑍)−𝑍

for some 𝑍 ∈ 𝐻1(𝑃, 𝜕𝑃 ).

Proof. The case for the connected binding is proved in [24, Lemma 4.2], where in the

connected binding case 𝑍 is actually an absolute class in 𝐻1(𝑃 ). Now we suppose

(𝑃, 𝜑) has two binding components. To make the proof clear we first pick useful basis

representatives for 𝐻1(𝑃 ) as follows. We let 𝑙2 be a curve that is parallel to one of

the boundary components of 𝑃 , then we pick curves 𝑙𝑖 for 3 ≤ 𝑖 ≤ 𝑘 such that they

are disjoint from 𝑙2 and form a standard symplectic basis for 𝐻1(𝑃/𝑙2). Then it is

clear that {[𝑙2], [𝑙3], ..., [𝑙𝑘]} form the basis of 𝐻1(𝑃 ).

Now we positively stabilize the open book by attaching a 1-handle between the

two binding components to obtain a new page 𝑃+. Then (𝑃+, 𝜑+) = (𝑃+, 𝜑∘𝜏𝑐) is an

open book with connected binding where 𝜏𝑐 is a right handed Dehn twist along a curve

𝑐 in 𝑃+ that intersects both the co-core of the 1-handle and 𝑙2 exactly one time but

misses all the other 𝑙𝑖. Then from the one-boundary case we know 𝑝[𝐿] = 𝜑+
* (𝑍

+)−𝑍+

for some 𝑍+ ∈ 𝐻1(𝑃
+). We view 𝑃 as a subsurface of 𝑃+, and let 𝑙1 = 𝑐 where the

orientation is chosen so that 𝑙1 · 𝑙2 = 1; then {[𝑙1], [𝑙2], ..., [𝑙𝑘]} is a basis for 𝐻1(𝑃
+).

First we have the following observations regarding this basis:

1. If we let 𝑙1 = 𝑙1 ∩𝑃 then 𝑙1 ∈ 𝐻1(𝑃, 𝜕𝑃 ), and moreover 𝜑+
* (𝑙1)− 𝑙1 = 𝜑*(𝑙1)− 𝑙1

is an absolute class on 𝐻1(𝑃 ).

2. 𝜑+
* (𝑙2)− 𝑙2 = 𝑐 = 𝑙1

3. 𝜑+
* (𝑙𝑖)− 𝑙𝑖 = 𝜑*(𝑙𝑖)− 𝑙𝑖 which is also an absolute class on 𝐻1(𝑃 ), for 𝑖 ̸= 1, 2.

57



4. For any absolute class [𝑂] ∈ 𝐻1(𝑃 ), 𝑂 · 𝑙2 = 0.

Using the above basis we write 𝑍+ =
∑︀

𝑖=1 𝑢𝑖𝑙𝑖 and 𝜑+
* (𝑍

+) − 𝑍+ =
∑︀

𝑖=1 𝑣𝑖𝑙𝑖.

We can also express 𝜑+
* (𝑍

+) − 𝑍+ as
∑︀

𝑖=1 𝑢𝑖(𝜑
+
* (𝑙𝑖) − 𝑙𝑖), and we claim 𝑣1 = 𝑢2.

This is because the coefficient 𝑣1 of 𝑙1 is the same as the intersection number between

𝜑+
* (𝑍

+)− 𝑍+ =
∑︀

𝑖=1 𝑢𝑖(𝜑
+
* (𝑙𝑖)− 𝑙𝑖) and 𝑙2. The observations above imply (𝜑+

* (𝑙2)−

𝑙2) · 𝑙2 = 1, and (𝜑+
* (𝑙𝑖) − 𝑙𝑖) · 𝑙2 = 0 for 𝑖 ̸= 2. Thus (𝜑+

* (𝑍
+) − 𝑍+) · 𝑙2 = 𝑢2 which

proves the claim.

Our assumptions tell us 𝐿 ⊂ 𝑃 which implies [𝐿] · 𝑙2 = 0, and we also know that

𝑝[𝐿] = 𝜑+
* (𝑍

+)− 𝑍+, so (𝜑+
* (𝑍

+)− 𝑍+) · 𝑙2 = 0 thus we conclude 𝑢2 = 0. Using the

observation 1 and 3, we can express 𝑝[𝐿] = 𝜑*(𝑍)− 𝑍, where 𝑍 = 𝑢1𝑙1 +
∑︀

𝑖=3 𝑢𝑖𝑙𝑖 ∈

𝐻1(𝑃, 𝜕𝑃 ).

For open book with more than two binding components the above argument easily

extends inductively.

Lemma 6.2.5. [24, Lemma 4.4] Let 𝐿 ∈𝑀(𝜑) be an order 𝑝 rationally null-homologous

Legendrian knot supported in the page 𝑃 of the open book (page framing equals to con-

tact framing). Let p be a two-chain with 𝜕p = 𝑝[𝐿] + (𝑍 − 𝜑*(𝑍)) for some one–cycle

𝑍 ∈ 𝐻1(𝑃, 𝜕𝑃 ). Then, 𝑝 · 𝑟𝑜𝑡Q(𝐿) is equal to 𝑒(p), the Euler measure of p (see [26,

section 7.1] for details about Euler measure).

Proof. This is more straight forward than the previous lemma. We start with the same

set up as above let (𝑃, 𝜑) be the open book with multiple binding components and

(𝑃 ′, 𝜑′) be the positive stabilization of (𝑃, 𝜑) with connected binding (note positive

stabilization does not change the contact structure, so when we view 𝑃 as subsurface

of 𝑃 ′ the Legendrian knot 𝐿 sitting on 𝑃 ′ is Legendrian isotopic to the one sitting

on 𝑃 ). [24, Lemma 4.4] says any two chain p′ with 𝜕p′ = 𝑝[𝐿] + (𝑍 ′ − 𝜑*(𝑍
′)), where

𝑍 ′ ∈ 𝐻1(𝑃
′) is the cycle in the proof of the above lemma, satisfies 𝑒(p′) = 𝑝 · 𝑟𝑜𝑡(𝐿).

Then according to the proof of the above lemma it’s clear that the corresponding

two chain p = 𝑝[𝐿] + (𝑍 − 𝜑*(𝑍)), where 𝑍 ∈ 𝐻1(𝑃, 𝜕𝑃 ) as described above, gives

rise to such a p′ when we include p into 𝑃 ′. Thus the lemma follows.
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For a rationally null-homologous Legendrian 𝐿 on page 𝑃 with order 𝑝, we Let

{𝑎1, ..., 𝑎𝑘} be a basis for 𝐻1(𝑃, 𝜕𝑃 ) with the property that 𝑎𝑖 are embedded arcs

in 𝑃 , 𝑎2, ..., 𝑎𝑘 are disjoint from 𝐿 and 𝑎1 meets 𝐿 in a single transverse intersection

point with the convention 𝐿 · 𝑎1 = +1. For 𝑍 ∈ 𝐻1(𝑃, 𝜕𝑃 ) and two-chain p we found

in the above two lemmas, using above basis we can rewrite them as

𝑍 =
𝑘∑︁
𝑖=1

𝑛𝑖 · 𝑎𝑖, and 𝜕p = 𝑝[𝐿] +
𝑘∑︁
𝑖=1

𝑛𝑖 · (𝑎𝑖 − 𝜑*(𝑎𝑖)).

Now we are ready to proceed the proof of Theorem 6.2.1. We first recall the setting

of the Heegaard triple diagram (Σ, 𝛼, 𝛾, 𝛽, 𝑧) that describe the capping off cobordism

from 𝑀 to 𝑀 ′, for simplicity we let 𝑃 = 𝑃𝑔,𝑟, and 𝑃 ′ = 𝑃𝑔,𝑟−1.

Σ is the Heegard surface of the union of two pages 𝑃+1∪−𝑃−1. Let arcs {𝑎1, ..., 𝑎𝑘}

be a basis for 𝑃+1 with the property that 𝑎2, ..., 𝑎𝑘 are disjoint from 𝐿 and 𝑎1 meets 𝐿

in a single transverse intersection point (note this is the exactly same basis we used

for 𝑍 and p), where 𝐿 is the Legendrian push off of the binding 𝐵 on 𝑃+1. We let

𝑐𝑖 be a push off of 𝑎𝑖 for all 𝑖, 𝑏𝑖 be a further push off of 𝑐𝑖 for 𝑖 ̸= 1, and 𝑏1 be the

parallel push of of binding 𝐵 on 𝑃+1. Then in particular we will have a triangle ∆𝑖

formed by 𝑎𝑖, 𝑐𝑖 and 𝑏𝑖 for all 𝑖 (see Figure 6-1).

Now we let 𝛼𝑖 = 𝑎𝑖 ∪ 𝑎𝑖 and 𝛾𝑖 = 𝑐𝑖 ∪ 𝜑(𝑐𝑖) for all 𝑖. For the 𝛽 curves let

𝛽𝑖 = 𝑏𝑖∪𝜑(𝑏𝑖) for 𝑖 ̸= 1, and 𝛽1 = 𝑏1. For base point 𝑧, we put it outside the thin strips

region between the arcs. Then the manifolds 𝑀 and 𝑀 ′ are represented by (Σ, 𝛼, 𝛾)

and (Σ, 𝛼, 𝛽) respectively. The pointed Heegaard triple (Σ, 𝛼, 𝛾, 𝛽, 𝑧) describes the

capping off cobordism from 𝑀 to 𝑀 ′, and (Σ, 𝛾, 𝛽, 𝛼, 𝑧) is the opposite cobordism

from −𝑀 ′ to −𝑀 . This is exactly the same setting in section 4 but ignoring the

extra Legendrian knot.

According to [4], the small triangle we formed by 𝑎𝑖, 𝑐𝑖, 𝑏𝑖 is representing the

𝑆𝑝𝑖𝑛𝑐 structure in Theorem 6.2.1 (𝑖), since (Σ, 𝛼, 𝛾, 𝛽, 𝑧) and (Σ, 𝛾, 𝛽, 𝛼, 𝑧) represent

the same 4-manifold 𝑊 we will calculate this 𝑆𝑝𝑖𝑛𝑐 structures using (Σ, 𝛼, 𝛾, 𝛽, 𝑧).

To calculate the first Chern class we will use the formula in [28, Proposition 6.3]. If

we let 𝜓 : ∆ → 𝑆𝑦𝑚𝑘(Σ) be the Whitney triangle correspond to the domain consists

59



of little triangles ∆ we are interested in, 𝐷 a triply periodic domain representing the

two-dimensional homology class 𝐻(𝐷) ∈ 𝐻2(𝑊,Q), then

⟨𝑐1(s𝑧(𝜓), 𝐻(𝐷)⟩ = 𝑒(𝐷) + #(𝜕𝐷)− 2𝑛𝑧(𝐷) + 2𝜎(𝜓,𝐷), (6.2.6)

where 𝑒(𝐷) is the Euler measure of 𝐷, #(𝜕𝐷) is the coefficient sum of all terms in

𝜕𝐷, and 𝜎(𝜓,𝐷) is the dual spider number. The dual spider number 𝜎(𝜓,𝐷) can be

calculated as follows:

We first choose an orientation on 𝛼, 𝛾 and 𝛽 we let 𝛼′, 𝛾′ and 𝛽′ be the leftward

push offs of the corresponding curve. Let 𝜕𝛼′(𝐷), 𝜕𝛾′(𝐷) and 𝜕𝛽′(𝐷) be the 1-chains

obtained by translating the corresponding components of 𝜕𝐷. Let 𝑢 be an interior

point of ∆ so that 𝜓(𝑢) misses 𝛼, 𝛾, 𝛽 curves, then choose three oriented paths 𝑟, 𝑡

and 𝑠, from 𝑢 to the 𝛼, 𝛾, 𝛽 boundaries respectively such that 𝑟, 𝑡 and 𝑠 are in the

2-simplex ∆ that is the domain of 𝜓 : ∆ → 𝑆𝑦𝑚𝑘(Σ). Identifying these arcs with

their image 1-chain in Σ, the dual spider number is given by

𝜎(𝜓,𝐷) = 𝑛𝜓(𝑢)(𝐷) + 𝜕𝛼′(𝐷) · 𝑟 + 𝜕𝛾′(𝐷) · 𝑡+ 𝜕𝛽′(𝐷) · 𝑠 (6.2.7)

Now we are ready to prove the Theorem 6.2.1 (𝑖𝑖)

Proof of Theorem 6.2.1 (𝑖𝑖). We first need to identify a triply periodic domain in the

triple diagram.

Recall that we have a domain p in the page 𝑃 with 𝜕p = 𝑝[𝐿]+
∑︀𝑘

𝑖=1 𝑛𝑖·(𝑎𝑖−𝜑*(𝑎𝑖))

and 𝑒(p) = 𝑝 · 𝑟𝑜𝑡Q(𝐿). Consider p as lying on 𝑃−1, and 𝑃−1 lying in Σ = 𝑃+1∪−𝑃−1.

With this point of view we write p̄ instead as the domain p on Σ with

𝜕p = 𝑝[𝐿] +
𝑘∑︁
𝑖=1

𝑛𝑖 · (𝑎𝑖 − 𝜑*(𝑎𝑖)),

where we are using 𝐿 and 𝑎𝑖 to mean the images of 𝐿 and 𝑎𝑖 (considered on 𝑃+1)

under identity map on the opposite page −𝑃−1. Then p satisfies 𝑒(p) = −𝑝 · 𝑟𝑜𝑡Q(𝐿).

We then observe that the cycle (𝛼𝑖 − 𝛾𝑖) is exactly (𝑎𝑖 − 𝜑*(𝑎𝑖)), and thus when
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Figure 6-1: We oriented the curves as it shown, and the 𝑆𝑝𝑖𝑛𝑐 structure s corresponds
to the shaded small triangle.

we push 𝐿 across 𝐵 to 𝐿 (from −𝑃−1 to 𝑃+1) we obtain a corresponding domain (still

denoted p) on Σ with

𝜕p = 𝑝[𝐿] +
𝑘∑︁
𝑖=1

𝑛𝑖 · (𝛼𝑖 − 𝛾𝑖)

such that 𝑒(p) = −𝑝 · 𝑟𝑜𝑡Q(𝐿).

Now since 𝐿 is the Legendrian push off of the binding 𝐵 its orientation coincides

with that of 𝐵, which is compatible with the orientation of the page (the page 𝑃+1 is

oriented counter clockwise). Thus the arc 𝑎1 is oriented by the requirement 𝐿.𝑎1 = +1,

which induces natural orientations on 𝛼1 and 𝛾1. We manually give an orientation to

𝛽1 that is opposite to the orientation of 𝐿, and for the orientation of the rest curves

we make choice such that near each little triangle ∆𝑖 for 𝑖 ̸= 1, it looks like ∆2 as

shown in Figure 6-1. We will use those orientation for calculation.

Notice that 𝐿 ≃ −𝛽1, thus we can take our p to be a triply periodic domain on

(Σ, 𝛼, 𝛾, 𝛽, 𝑧) with boundary −𝑝𝛽1 +
∑︀𝑘

𝑖=1 𝑛𝑖 · (𝛼𝑖 − 𝛾𝑖). Moreover we can add or

subtract a multiple of the whole Σ to make 𝑛𝑧(p) = 0. Thus by formula 6.2.6
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⟨𝑐1(s𝑧(𝜓), 𝐻(p̄)⟩ = 𝑒(p̄) + #(𝜕p̄)− 2𝑛𝑧(p̄) + 2𝜎(𝜓, p̄)

= −𝑝 · 𝑟𝑜𝑡Q(𝐿) + (−𝑝+
∑︁

𝑛𝑖 − 𝑛𝑖)− 0 + 2𝜎(𝜓, p̄)

= −𝑝 · 𝑟𝑜𝑡Q(𝐿)− 𝑝+ 2𝜎(𝜓, p̄)

We claim that 2𝜎(𝜓, p̄) = 0. We draw the “dual spider" 𝛼′, 𝛾′, 𝛽′ and 𝑟, 𝑠, 𝑡 based

on the orientation, recall ∆ = ∆1+∆2+ ...+∆𝑘, and except ∆1 the neighborhood of

the rest triangles look the same, so the contribute for the dual spider can be divided

into two case for ∆1 and ∆𝑖 where 𝑖 ̸= 1.

We first look at the contribution of dual spider number 𝜎(𝜓, p̄|)Δ1from ∆1, see

Figure 6-2. Since we assume 𝑛𝑧(p̄) = 0, and the multiplicity of 𝛼1 and 𝛾1 are 𝑛1 and

−𝑛1 respectively, this force 𝑛𝜓(𝑢)(p̄)|Δ1 = −𝑛1. It is easy to see 𝜕𝛼′
1
(p̄) · 𝑟 = 0 and

𝜕𝛽′
1
(p̄) ·𝑠 = 0 because both 𝛼′

1 and 𝛽′
1 are outside of the triangle ∆1. The last quantity

𝜕𝛾′1(p̄) · 𝑡 = 𝑛1 because 𝛾′1 · 𝑡 = −1 and 𝛾1 has multiplicity −𝑛1. Thus

𝜎(𝜓, p̄)|Δ1 = 𝑛𝜓(𝑢)(p̄)|Δ1 + 𝜕𝛼′
1
(p̄) · 𝑟 + 𝜕𝛾′1(p̄) · 𝑡+ 𝜕𝛽′

1
(p̄) · 𝑠

= −𝑛1 + 0 + 𝑛1 + 0.

= 0

We then look at the contribution of dual spider number 𝜎(𝜓, p̄|)Δ𝑖
from ∆𝑖 for

𝑖 ̸= 1, see Figure 6-2. Again the assumption 𝑛𝑧(p̄) = 0 with the fact that the

multiplicity of 𝛼𝑖 and 𝛾𝑖 are 𝑛𝑖 and −𝑛𝑖 respectively force 𝑛𝜓(𝑢)(p̄)|Δ𝑖
= 𝑛𝑖. This time

we see 𝜕𝛾′𝑖(p̄) · 𝑡 = 0 because 𝛾′𝑖 are outside of the triangle ∆𝑖, and 𝜕𝛽′
1
(p̄) · 𝑠 = 0

because 𝛽𝑖 has multiplicity 0. The last quantity 𝜕𝛼′
1
(p̄) · 𝑟 = −𝑛1 because 𝛼′

𝑖 · 𝑡 = −1

and 𝛼𝑖 has multiplicity 𝑛1. Thus

𝜎(𝜓, p̄)|Δ𝑖
= 𝑛𝜓(𝑢)(p̄)|Δ𝑖

+ 𝜕𝛼′
𝑖
(p̄) · 𝑟 + 𝜕𝛾′𝑖(p̄) · 𝑡+ 𝜕𝛽′

𝑖
(p̄) · 𝑠

= 𝑛𝑖 − 𝑛𝑖 + 0 + 0

= 0
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Thus each triangles contribute 0, we have 𝜎(𝜓, p̄) = 0, which proves the claim.

Hence when we plug in back to the Chern class evaluation we get

⟨𝑐1(s𝑧(𝜓), 𝐻(p̄)⟩ = −𝑝 · 𝑟𝑜𝑡Q(𝐿)− 𝑝

To complete the proof we claim that 𝐻(p̄) is the same as the class of the capped

off rational Seifert surface. This is clear by the fact that the 𝛽-boundary of p̄ is just

𝑝𝐿, together with the construction of the identification between periodic domains in

(Σ, 𝛼, 𝛾, 𝛽) and homology classes in the cobordism between𝑀 and𝑀 ′ [27, Proposition

8.2].
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Figure 6-2: The picture on the left describes the dual spider near ∆1, and the picture
on the right describes the dual spider near ∆𝑖 for 𝑖 ̸= 1.

6.3 𝑆𝑝𝑖𝑛𝑐 characterization from capping off cobor-

dism to surgery cobordism

Before going in to the proof of Theorem 6.1.4, we first recall some the general

settings about the +𝑛 contact surgery, capping off and rationally null-homologous

knot.
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We will use the same notation as is described in section 2.4.1. Namely, (𝑃 ′, 𝑘∘𝜑) is

a stabilized open book compatible with (𝑌, 𝜉) with 𝐿 on its page, and the stabilization

𝐿− parallel to some binding𝐵; (𝑃 ′, 𝜑′) is an open book compatible with (𝑌𝑛(𝐿), 𝜉
−
𝑛 (𝐿))

(where 𝜑′ is obtained by composing 𝑘 ∘ 𝜑 with some twists along 𝐿 and 𝐿−); and 𝐵𝐿

is the binding in (𝑃 ′, 𝜑′) corresponding to 𝐵 in (𝑃 ′, 𝑘 ∘ 𝜑). Thus the cobordism

corresponding to +𝑛 contact surgery on 𝐿 in 𝑌 is the same 4-manifold (with opposite

orientation) as the cobordism corresponding to capping off 𝐵𝐿 in 𝑌𝑛(𝐿). Observe that

the capped-off rational Seifert surfaces 𝐹 (for 𝐿) and 𝑉 (for 𝐵𝐿) are both generators

of the second rational homology of this cobordism, but need not be identical classes.

We also recall that [𝜕𝐹 ] = 𝑐(𝑡𝜆𝑐𝑎𝑛 + 𝑟𝜇), where 𝜆𝑐𝑎𝑛 is the canonical framing and

𝑐𝑡 = 𝑦 is the order of 𝐿. Moreover if 𝑡𝑏Q(𝐿) = 𝑥
𝑦
, then contact +𝑛 surgery on 𝐿 is

the same as smooth 𝑘(𝐿) + 𝑛 surgery on 𝐿 which is equivalent to smooth 𝑥+𝑐𝑟+𝑛𝑦
𝑦

(according to 6.1.1) surgery on 𝐿.

Under the above setting we are able to state the most essential Lemma we need

to prove the Theorem 6.1.4.

Lemma 6.3.1. As classes in 𝐻2(𝑊 ;Z)/𝑇𝑜𝑟𝑠, we have

[𝐹 ] =

⎧⎪⎨⎪⎩−[𝑉 ] if 𝑥+ 𝑛𝑦 > 0

[𝑉 ] if 𝑥+ 𝑛𝑦 < 0

.

Proof. First notice the classes [𝐹 ] and [𝑉 ] are represented by 2-chains obtained by

adding 𝑦 (the order of 𝐿 in homology) copies of the core disk 𝐶 of the surgery handle

to 𝐹 in the first case, or 𝑝 (the order of 𝐵𝐿 in homology) copies of the cocore disk

𝐶𝑐 to 𝑉 in the second case. Here the disk 𝐶 is oriented so that 𝜕𝐶 = −𝐿, and

we take the cocore disk to be oriented so that its signed intersection with the core

disk is +1. It follows that [𝐹 ] · [𝑉 ] = ±𝑦𝑝, where the sign depends on the relative

orientation between 𝜕𝑉 (or equivalently 𝐿′) and the boundary of the cocore. We

make the following 2 claims.

Claim 1: [𝐹 ] · [𝑉 ] = −𝑦𝑝

Claim 2: [𝐹 ] · [𝐹 ] = 𝑦(𝑥+ 𝑛𝑦)
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Once we have achieved the above two claims then by [22, commment after Lemma

5.1] or [10, Lemma 5.2] the order of 𝐿′ is 𝑝 = |𝑐(𝑘(𝐿)+𝑛)𝑡−𝑐𝑟| = |𝑐(𝑥+𝑐𝑟+𝑛𝑦
𝑦

)𝑡−𝑐𝑟| =

|𝑥 + 𝑛𝑦|. Thus Claim 1 implies [𝐹 ] · [𝑉 ] = −𝑦|𝑥 + 𝑛𝑦|. But [𝐹 ] and [𝑉 ] rational

generators of 𝐻2(𝑊 ), hence (modulo torsion) one is a multiple of the other; on the

other hand we now have that [𝐹 ] · [𝐹 ] = ±[𝐹 ] · [𝑉 ] where the sign depends on the

positivity of 𝑥+ 𝑛𝑦. The lemma follows.

Now we will first prove Claim 1. We denote 𝐶𝑐(𝐿
′) to be the oriented cocore

of the handle correspond to the orientation of 𝐿′, then the Claim 1 is equivalent to

𝐶 · 𝐶𝑐(𝐿′) = −1.

To figure out the intersection number we recall that the DGS alogrithm (Theorem

2.3.2, c.f. [9]) says that +𝑛 surgery on 𝐿 is the same as surgery along a link 𝐿1 =

𝐿,𝐿2, . . . , 𝐿𝑛, so that 𝐿2 is the negativly stabilized Legendrian push off of 𝐿1, and

𝐿𝑖 is the Legendrian push off of 𝐿𝑖−1 for 𝑖 = 3, . . . , 𝑛. Moreover, if we denote 𝐿0

be a further push off of 𝐿𝑛 then 𝐿′ corresponds to 𝐿0 after performing contact +1

surgery on 𝐿1 and contact −1 surgery on 𝐿2, . . . , 𝐿𝑛. (Remark here the notation is a

bit different from the notation in Theorem 2.3.2.)

We will first slide every 𝐿𝑖 for 𝑖 = 2, . . . , 𝑛 with smooth framing 𝑘(𝐿)− 2 over 𝐿1

in order and further slide 𝐿0 over 𝐿1. If we denote 𝑠(𝐿𝑖) to be the new knots in the

surgery diagram corresponding to 𝐿𝑖 after the slide, then it’s not hard to see that for

𝑖 = 2, . . . , 𝑛 𝑠(𝐿𝑖) are all isotopic to the meridian of 𝐿 with smooth framing −1, and

𝑠(𝐿0) is also isotopic to the meridian of 𝐿. Thus after we blow down all the 𝑠(𝐿𝑖) for

𝑖 = 2, . . . , 𝑛, we are back to smooth 𝑘(𝐿) + 𝑛 surgery on 𝐿1 = 𝐿, and 𝑠(𝐿0) is still

the meridian of 𝐿1 that corresponds to the cocore of the handle.

Now [𝐶]·[𝐶𝑐(𝐿′)] is the same as 𝑙𝑘Q(𝐿1, 𝑠(𝐿0)). Equipping 𝐿1 and 𝐿0 with the same

orientation at the beginning, the slide of 𝐿0 over 𝐿1 becomes a handle subtraction,

so that 𝑙𝑘Q(𝐿1, 𝑠(𝐿0)) = 𝑙𝑘Q(𝐿1, 𝐿0)− 𝑙𝑘Q(𝐿1, 𝐿1) = 𝑡𝑏Q(𝐿1)− (𝑡𝑏Q(𝐿1) + 1) = −1 =

[𝐶] · [𝐶𝑐(𝐿′)], which finishes the proof of Claim 1.

Claim 2 is more straight forward following [22, Lemma 5.1] that tells us the self-

intersection [𝐹 ] · [𝐹 ] = 𝑦((𝑘(𝐿) + 𝑛)𝑦 − 𝑐𝑟) = 𝑦(𝑥+𝑐𝑟+𝑛𝑦
𝑦

𝑦 − 𝑐𝑟) = 𝑦(𝑥 + 𝑛𝑦), which

completes the proof.
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Proof of Theorem 6.1.4. First from Theorem 2.4.6 and 6.2.1 we have that the 𝑆𝑝𝑖𝑛𝑐

structure we are interested in satisfies

⟨𝑐1(s), [𝑉 ]⟩ = −𝑝(𝑟𝑜𝑡Q(𝐿′) + 1).

Combined with Lemma 6.3.1 this means

⟨𝑐1(s), [𝐹 ]⟩ =

⎧⎪⎨⎪⎩𝑝(𝑟𝑜𝑡Q(𝐿
′) + 1) if 𝑥+ 𝑛𝑦 > 0

−𝑝(𝑟𝑜𝑡Q(𝐿′) + 1) if 𝑥+ 𝑛𝑦 < 0

. (6.3.2)

The last step is to represent 𝑟𝑜𝑡Q(𝐿′) using 𝑟𝑜𝑡Q(𝐿). To simplify the notation

in calculation we let 𝑟𝑜𝑡Q(𝐿) = 𝑟 and 𝑡𝑏Q(𝐿) = 𝑎 = 𝑥
𝑦

where 𝑦 is the order of

𝐿; then the order of 𝐿′ is 𝑝 = |𝑥 + 𝑛𝑦| as we discussed above. Again we express

contact +𝑛 surgery on 𝐿 as surgery along a link 𝐿1 = 𝐿,𝐿2, . . . , 𝐿𝑛 following the

DGS algorithm (Theorem 2.3.2), and 𝐿0 is a further push off of 𝐿𝑛 that correspond

to 𝐿′ before performing contact surgery. Then [10, Lemma 4.1] indicates that the

rational rotation number of 𝐿′ is given by

𝑟𝑜𝑡Q(𝐿
′) = 𝑟𝑜𝑡Q(𝐿0)−

⟨⎛⎜⎜⎜⎝
𝑟𝑜𝑡Q(𝐿1)

...

𝑟𝑜𝑡Q(𝐿𝑛)

⎞⎟⎟⎟⎠ ,𝑀−1

⎛⎜⎜⎜⎝
𝑙𝑘Q(𝐿0, 𝐿1)

...

𝑙𝑘Q(𝐿0, 𝐿𝑛)

⎞⎟⎟⎟⎠
⟩

(6.3.3)

, where the < , > in the above equation is just the usual inner product (dot product)

of two vectors.

It’s easy to find those rotation numbers. In (𝑌, 𝜉) we have 𝐿1 = 𝐿 and 𝐿𝑖 = 𝐿−

for 𝑖 = 0, 2, ..., 𝑛, so 𝑟𝑜𝑡Q(𝐿1) = 𝑟 and 𝑟𝑜𝑡Q(𝐿𝑖) = 𝑟 − 1 for 𝑖 = 0, 2, ..., 𝑛. In (6.3.3),
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𝑀 is the 𝑛× 𝑛 rational linking matrix

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎+ 1 𝑎 . . . . . . . . . 𝑎

𝑎 𝑎− 2 𝑎− 1 . . . . . . 𝑎− 1
... 𝑎− 1 𝑎− 2 𝑎− 1 . . .

...
...

... 𝑎− 1 𝑎− 2 . . .
...

...
...

...
... . . . 𝑎− 1

𝑎 𝑎− 1 . . . . . . 𝑎− 1 𝑎− 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
whose inverse is

𝑀−1 =
1

𝑎+ 𝑛

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛− (𝑛− 1)𝑎 𝑎 . . . . . . . . . 𝑎

𝑎 1− 𝑎− 𝑛 1 . . . . . . 1
... 1 1− 𝑎− 𝑛 1 . . .

...
...

... 1 1− 𝑎− 𝑛 . . .
...

...
...

... . . .
. . . 1

𝑎 1 . . . . . . 1 1− 𝑎− 𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Moreover since 𝑙𝑘Q(𝐿0, 𝐿1) = 𝑎, and 𝑙𝑘Q(𝐿0, 𝐿𝑖) = 𝑎− 1 for all 𝑖 = 2, ...𝑛 we want

to calculate⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛− (𝑛− 1)𝑎 𝑎 . . . . . . . . . 𝑎

𝑎 1− 𝑎− 𝑛 1 . . . . . . 1
... 1 1− 𝑎− 𝑛 1 . . .

...
...

... 1 1− 𝑎− 𝑛 . . .
...

...
...

... . . .
. . . 1

𝑎 1 . . . . . . 1 1− 𝑎− 𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎

𝑎− 1
...
...
...

𝑎− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎

1
...
...
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Thus equation 6.3.3 becomes

𝑟𝑜𝑡Q(𝐿
′) = (𝑟 − 1)−

⟨
⎛⎜⎜⎜⎜⎜⎜⎝

𝑟

𝑟 − 1
...

𝑟 − 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
1

𝑎+ 𝑛

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎

1
...

1

⎞⎟⎟⎟⎟⎟⎟⎠
⟩

= (𝑟 − 1)− 𝑟𝑎+ (𝑛− 1)(𝑟 − 1)

𝑎+ 𝑛

=
𝑟 − 𝑎− 1

𝑎+ 𝑛
(substitute 𝑎 =

𝑥

𝑦
)

=
𝑦𝑟 − 𝑥− 𝑦

𝑥+ 𝑛𝑦

=
𝑦𝑟 + 𝑛𝑦 − 𝑦 − (𝑥+ 𝑛𝑦)

𝑥+ 𝑛𝑦

=
𝑦(𝑟 + 𝑛− 1)

𝑥+ 𝑛𝑦
− 1
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Now when we plug in back to equation 6.3.2 and 𝑝 = |𝑥+ 𝑛𝑦| we obtain

⟨𝑐1(s), [𝑉 ]⟩ =

⎧⎪⎨⎪⎩𝑝(𝑟𝑜𝑡Q(𝐿
′) + 1) if 𝑥+ 𝑛𝑦 > 0

−𝑝(𝑟𝑜𝑡Q(𝐿′) + 1) if 𝑥+ 𝑛𝑦 < 0

=

⎧⎪⎨⎪⎩|𝑥+ 𝑛𝑦|(𝑦(𝑟+𝑛−1)
𝑥+𝑛𝑦

− 1 + 1) if 𝑥+ 𝑛𝑦 > 0

−|𝑥+ 𝑛𝑦|(𝑦(𝑟+𝑛−1)
𝑥+𝑛𝑦

− 1 + 1) if 𝑥+ 𝑛𝑦 < 0

=

⎧⎪⎨⎪⎩𝑦(𝑟 + 𝑛− 1) if 𝑥+ 𝑛𝑦 > 0

𝑦(𝑟 + 𝑛− 1) if 𝑥+ 𝑛𝑦 < 0

= 𝑦(𝑟 + 𝑛− 1) if 𝑥+ 𝑛𝑦 ̸= 0.

Last the condition both 𝑌 and 𝑌𝑛(𝐿) are rational homology sphere implies the

order of 𝐿′, namely 𝑝 = |𝑥+ 𝑛𝑦|, is nonzero, which conclude the proof.
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