

Advancing Reproducibility in Environmental Modeling: Integration of Open

Repositories, Process Containerizations, and Seamless Workflows

A Dissertation

Presented to

The Faculty of the School of Engineering and Applied Sciences

University of Virginia

In Partial Fulfillment

of the requirements for the Degree of

Doctor of Philosophy (Civil and Environmental Engineering)

By

YoungDon Choi

July 27, 2021

Abstract

There is growing acknowledgment and awareness of the reproducibility challenge facing

computational environmental modeling. To overcome this challenge, data sharing using open,

online repositories that meet the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding

principles is recognized as a minimum standard to reproduce computational research. Even with

these data sharing guidelines and well-documented workflows, it remains challenging to reproduce

computational models due to complexities like inconsistent computational environments or

difficulties in dealing with large datasets that prevent seamless, end-to-end modeling.

Containerization technologies have been put forward as a means for addressing these problems by

encapsulating computational environments, yet domain science researchers are often unclear about

which containerization approach and technology is best for achieving a given modeling objective.

Thus, to meet FAIR principles, researchers need clear guidelines for encapsulating seamless

modeling workflows, especially for environmental modeling use cases that require large datasets.

Toward these aims, this dissertation presents three studies to address current limitations of

reproducibility in environmental modeling. The first study presents a framework for integrating

three key components to improve reproducibility within modern computational environmental

modeling: 1) online repositories for data and model sharing, 2) computational environments along

with containerization technology and Jupyter notebooks for capturing reproducible modeling

workflows, and 3) Application Programming Interfaces (APIs) for intuitive programmatic control

of simulation models. The second study focuses on approaches for containerizing computational

processes and suggests best practices and guidance for which approach is most appropriate to

achieve specific modeling objectives when simulating environmental systems. The third study

focuses on open and reproducible seamless environmental modeling workflows, especially when

creating and sharing interoperable and reusable large-extent spatial datasets as model input. Key

research contributions across these three studies are as follows. 1) Integration of online repositories

for data and model sharing, computational environments along with containerization technology

for capturing software dependencies, and workflows using model APIs and notebooks for model

simulations creates a powerful system more open and reproducible environmental modeling. 2)

Considering the needs and purposes of research and educational projects, and applying the

appropriate containerization approach for each use case, makes computational research more

reliable and efficient. 3) Sharing interoperable and reusable large-extent spatial datasets through

open data repositories for model input supports seamless environmental modeling where data and

processes can be reused across multiple applications. Finally, the methods developed and insights

gained in this dissertation not only advance reliable and efficient computational reproducibility in

environmental modeling, but also serve as best practices and guidance for achieving

reproducibility in engineering practice and other scientific fields that rely on computational

modeling.

Table of Contents

1 Introduction ... 1

2 Toward Open and Reproducible Environmental Modeling by Integrating Online Data

Repositories, Computational Environment, and Model Application Programming Interfaces 5

2.1 Introduction ... 5

2.2 Methodology ... 8

2.2.1 Overview of General Approach and Description of System Components 8

2.2.2 Example Implementation .. 11

2.3 Results and Discussion ... 16

2.3.1 Case Study Description ... 17

2.3.2 Model and Data Resources ... 18

2.3.3 Demonstrating Reproducibility ... 19

2.3.4 Evaluating Reproducibility ... 22

2.3.5 Approach Limitations and Opportunities for Future Research ... 23

2.4 Conclusions ... 25

3 Comparing Containerization Approaches for Achieving Reproducible Environmental

Modeling across Computing Environments ... 28

3.1 Introduction ... 28

3.2 Methodology ... 30

3.2.1 Introducing the Reproducible Environmental Modeling Approaches 30

3.2.2 Local Reproducible Approaches ... 31

3.2.3 Remote Reproducible Approaches .. 37

3.2.4 Evaluation ... 40

3.3 Results ... 43

3.3.1 Quantitative Performance ... 43

3.3.2 Qualitative Performance ... 47

3.4 Discussion ... 51

3.4.1 Guidance and Recommended Uses ... 51

3.4.2 Limitations of Current Sciunit Software ... 52

3.4.3 Limitations of Currently Available Virtual Environments for Environmental Modeling ... 53

3.5 Conclusions ... 53

4 Toward Seamless Environmental Modeling: Integration of HydroShare with Server-side

Methods for Exposing Large Datasets to Models... 57

4.1 Introduction ... 57

4.2 Background ... 60

4.2.1 GeoServer ... 60

4.2.2 THREDDS Data Server (TDS) ... 61

4.3 Methodology ... 62

4.3.1 Create and Share Large Spatial Sample Datasets.. 62

4.3.2 Example Application for an Environmental Model Use Case .. 67

4.4 Results ... 68

4.4.1 Example Watersheds ... 68

4.4.2 Creating the State-Scale LES Datasets ... 69

4.4.3 Subset State Scale Large Spatial Sample Datasets ... 72

4.4.4 Evaluation of Data Consistency .. 74

4.5 Discussion ... 79

4.6 Conclusions ... 80

5 Conclusions .. 84

6 References .. 86

Appendix .. 97

Appendix-1 Total scores of complexity (Table A.1-7), size of reproducible artifacts (Table A.8-12), and

reproduced figures (Figure A.1 and A.2) .. 97

List of Figures
Figure 1.1. Overview of the integration of three key components and the advancement of each component through

three targeted studies. .. 3

Figure 2.1. A general modeling approach consisting of three primary components with seamless data transfers for

open and reproducible environmental modeling. ... 8

Figure 2.2. A methodology for sharing resources used for a modeling analysis through HydroShare. 3

Figure 2.3. The CUAHSI JH and CyberGIS JW environments with model execution environments configured as

Docker images to support concurrent model execution through Jupyter notebooks ... 3

Figure 2.4. pySUMMA library classes. .. 3

Figure 2.5. Reynolds Mountain East Area in the Reynolds Creek Experimental Watershed. 17

Figure 2.6. The HydroShare landing page for a SUMMA model program resource used in the example analysis (Y.

Choi et al., 2020). .. 18

Figure 2.7. The basic step for a SUMMA model run using Jupyter notebooks. .. 20

Figure 2.8. Reproducibility of Figure 7 from Clark et al. (2015b) showing the impact of the three different stomatal

resistance parameterizations on total evapotranspiration (a): published result, (b): reproduced result........................ 21

Figure 2.9. Reproducibility and reusability of Figure 8 (a) of Clark et al. (2015b) showing the impact of root

distribution parameter with different stomatal resistance parameterization on total evapotranspiration (a): published

output, (b): reproduced output, (c) and (d): output from reusability application extending the prior study. 22

Figure 3.1. A general procedure of “Approach 1: Compiling the Core Model Software.”. ... 33

Figure 3.2. A general procedure of “Approach 2: Containerizing the Core Model Software only with Docker.” 34

Figure 3.3. A general procedure of “Approach 3: Containerizing All Software with Docker.” 35

Figure 3.4. A general procedure of “Approach 4: Containerizing All Software with Singularity.” 36

Figure 3.5. A general procedure of “Approach 5: Containerizing All Software and Modeling Workflows with

Sciunit.” ... 37

Figure 3.6. A general procedure to create “Approach 6 and 7: CUAHSI JupyterHub and CyberGIS Jupyter for

water.” ... 38

Figure 3.7. A general procedure to create “Approach 10: Using Binder.” .. 39

Figure 3.8. A general procedure to create “Approach 11: Using a HPC Cluster.” .. 40

Figure 3.9. The total scores of complexity on reproducible approaches for developer and user work. 44

Figure 3.10. Comparison of the size for reproducible artifacts in five local reproducible approaches. 45

Figure 3.11. Comparison of computational time in five local reproducible approaches. .. 46

Figure 3.12. Comparison of computational time in six remote reproducible approaches. ... 46

Figure 4.1. The workflows to create, share, subset, apply, and evaluate LES datasets for seamless environmental

modeling workflows. ... 60

Figure 4.2. The selection of data distribution systems and spatial data to create LES datasets 63

Figure 4.3. The workflows to create the state-scale large spatial sample datasets as GeoTIFF and NetCDF format .. 65

Figure 4.4. Workflows for seamless RHESSys modeling and evaluation of data consistency using LES datasets. ... 67

Figure 4.5 Three different scale watersheds to evaluate data consistency in different resolutions using state scale

LES datasets: 1) Coweeta subbasin18, NC (A=0.126 km2, resolution: 10m), 2) Scotts Level Branch, MD (A=8.36

km2, resolution: 30m), 3) Spout Run, VA (A=55.42 km2, resolution: 60m). .. 68

Figure 4.6. An automated workflow to create Virginia LES DEM as a GeoTIFF and NetCDF format. 70

Figure 4.7. Example of subsetting LES Datasets (GeoTIFF) from GeoServer using OWSLib. 72

Figure 4.8. Example of subsetting LES Datasets (NetCDF) from TDS using xarray. ... 73

Figure 4.9. Difference maps of DEM elevation between original data (HydroShare) and LES datasets (GeoServer or

TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before applying

georeferencing. .. 74

Figure 4.10. Difference maps of extracted Land Cover classification code between original data and LES datasets

(GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before

applying georeferencing. ... 75

Figure 4.11. Difference maps of extracted SSURGO soil texture between original data (HydroShare) and LES

datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA,

before applying georeferencing. .. 75

Figure 4.12. Difference maps of (a) DEM elevation (in meters), extracted Land Cover classification code, and

extracted SSURGO soil texture at Coweeta Subbbasin18, NC, (b) DEM elevation, extracted Land Cover

classification code, and extracted SSURGO soil texture at Scott Level Branch, MD, (c) DEM between the original

data (HydroShare) and LES datasets (GeoServer or TDS), after applying georeferencing. .. 76

Figure 4.13. Three regression analyses, each comparing two RHESSys outputs out of the three different approaches:

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Coweeta subbasin18 in North Carolina,

before applying georeferencing. .. 77

Figure 4.14 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches:

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Coweeta subbasin18 in North Carolina,

after applying georeferencing. ... 77

Figure 4.15 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches:

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Scotts Level Branch in Maryland, after

applying georeferencing. ... 77

Figure 4.16 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches:

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Spout Run in Virginia, after applying

georeferencing. .. 78

List of Tables
Table 2.1. Comparison of interface similarity and supported languages of cloud services for executing computational

notebooks (expanded from Markham, 2019). .. 10

Table 2.2. General categories for a model API mapped to examples from PRMS-Python and PyHSPF. 11

Table 2.3. Implementation of a model API for SUMMA. ... 15

Table 2.4. Mapping between the modeling experiments of Clark et al. (2015b) and Model Instance Resources on

HydroShare used to store the input files for that model experiment .. 19

Table 3.1. The 11 representative reproducible approaches using different combinations of software tools and

computational environments. ... 31

Table 3.2. Specification of the base local computational environment ... 32

Table 3.3. The programming languages in the popular hydrologic models ... 32

Table 3.4. An example of reproducible approaches for “Approach 2: Containerizing the Core Model Software only

with Docker” (Tables for other approaches are in Appendix) ... 42

Table 3.5. SUMMA simulation scenarios for comparison of computational time on 11 reproducible approaches..... 43

Table 3.6. Qualitative measurement and recommended usages in “Approach-1: Compiling the Core Model

Software.” .. 47

Table 3.7. Qualitative measurement and recommended usages in “Approach 2: Containerizing the Core Model

Software only with Docker.” ... 47

Table 3.8. Qualitative measurement and recommended usages in “Approach 3: Containerizing All Software with

Docker.”... 48

Table 3.9. Qualitative measurement and recommended usages in “Approach-5, 8 and 9: Using Sciunit.” 48

Table 3.10. Qualitative measurement and recommended usages in “Approach-6 and 7: Using CJH and CJW.” 49

Table 3.11. Qualitative measurement and recommended usages in “Approach 10: Using Binder.” 49

Table 3.12. Qualitative measurement and recommended usages in “Approach 11: Using a HPC Cluster.” 50

Table 3.13. Best practices for reproducible approaches on local and remote environments to achieve environmental

modeling objectives. .. 51

Table 4.1. Compressed file sizes and resolutions of GeoTIFF and NetCDF in the three states 71

Chapter 1

1

Chapter 1

1 Introduction

Nearly all computational modeling fields are facing a reproducibility crisis (Monya; Baker,

2016; Hutton et al., 2016; McNutt, 2014; National Academies of Sciences, 2019; Stagge et al.,

2019). According to a survey of 1,500 researchers, about 70% had tried but failed to reproduce

published research and 90% agreed that the problem of reproducibility is a critical problem for

scientific advancement (Monya; Baker, 2016). Within the hydrology and water resources fields,

Stagge et al. (2019) analyzed 360 articles in six leading journals to understand if their data were

available online and if the study results were reproducible. Their analysis showed that only 5.6%

of the articles had data and model code available online along with directions for use, and only

1.1% were fully reproducible while 0.6% were partially reproducible. There are many possible

reasons for this outcome; however, in this dissertation I argue that there is a need to extend the

requirements to reproduce computational research from data sharing and well-documented

workflows, the common practice now, to encapsulating all artifacts used in the original

computational environments (Hut et al., 2017; Hutton et al., 2016). Reviewing recent research

toward this goal of improving computational reproducibility, three distinct thrusts emerge: 1) open

sharing of data and models online, 2) containerizing computational environments for core software

and other secondary software, and 3) encapsulating computational workflows using Application

Programming Interfaces (APIs) for programmatically control of complex computational research.

First, for the open sharing of data and models online, the FAIR principles have been

presented as high-level guidelines to improve scientific data by making them Findable, Accessible,

Interoperable, and Reusable (Wilkinson et al., 2016). The FAIR principles emphasize the

necessities of both human and machine applicable data management environments and ongoing

efforts on FAIR guiding principles have advanced data repositories with unique identifier

mechanisms, data management plans, policies, and standards (Collins et al., 2018). Based on the

use of unique identifiers such as the Digital Object Identifier (DOI), data can become “Findable.”

Public machine-accessible APIs allow datasets and metadata to become “Accessible,” and the use

of standard terms, metadata, and a wide range of data types allow data to become “Interoperable.”

Finally, detailed documents together with metadata make data “Reusable.” Recently, numerous

online repositories have accepted FAIR principles and enhanced their functionalities to be more

Finable, Accessible, Interoperable, and Reusable. However, reproducibility research has led to a

growing demand not only for data sharing with well-documented data, source code, software, and

workflows, but also with tools for automatically encapsulating computational environments and

workflows using containerization and literate programming (Kery et al., 2018; Knuth, 1984). For

example, Bast (2019) suggested source code management and containerization tools are needed to

reproduce computational environments for FAIRer principles, while Goble et al. (2020) suggested

the FAIR principles need computational workflows to describe the execution of a computational

workflow such as data collection, data preparation, data analysis, and modeling simulation. In

hydrology, Hutton et al. (2016) recommended an online repository to easily find data and source

code with unique persistent identifiers and computational workflows to describe the precise

Chapter 1

2

procedure among data and modeling processes. In addition, Hut et al. (2017) suggested the use of

containerization tools and open interfaces to complement the preservation of computational

environments suggested in Hutton et al. (2016).

Second, containerization technologies have been developed and advanced for capturing

computational environments for core model software along with other secondary, supporting

software. Traditional approaches such as compiling software from source code to reproduce

computational environments are difficult because they require a certain level of expertise about

software dependencies, compilers, and computer environments to install and configure a complex

computational modeling setup. While most model developers may know the specific requirements

to reproduce their own model on another computer, for many modern scientific models it is

challenging to completely document this procedure so that others can effectively and consistently

reproduce it. To address this challenge, model developers have recently started using

containerization tools such as Docker (Merkel, 2014), Singularity (Kurtzer et al., 2017), and

Sciunit (That et al., 2017). Currently, Docker is the most popular containerization tool to

encapsulate computational environments. Singularity is another containerization tool that is more

popular for use in high performance computing (HPC) environments due to security concerns with

Docker in these HPC environments. Sciunit is another containerization tool under active

development that is more tailored for geoscience researchers with the goal of lowering the barrier

to containerizing for this community. These containerization tools can be used to encapsulate the

entire computational end-to-end environmental modeling workflow, allowing developers and

researchers to more easily and confidently create reproducible modeling studies that can be

repeated across machines. While these containerization tools offer an important opportunity, the

challenge remains in deciding how to best utilize the tools for different modeling use cases and

computational environments.

Third, APIs are growing in popularity for interacting with various complex environmental

models. In environmental modeling, many studies mentioned that capturing the entire end-to-end

workflows is important to achieve reproducibility and replicability. Current approaches to

encapsulate workflows have focused on model execution and visualization. However, to complete

“end-to-end” workflows, data preprocessing is critical for improving reproducibility, as the steps

to create model input files are often nontrivial, requires a significant time investment (L. N.

Leonard, 2015; Miles & Band, 2015). Therefore, the ability to improve preprocessing in “end-to-

end” workflows is an important step for achieving reproducibility and replicability. Model APIs

offer a means to programmatically interact with models in creating these end-to-end workflows.

The recent popularity of literate programming tools offer a way to capture a modeling workflow

as a narrative that intermingles code, making using of model APIs, text-based documentation, and

inline visualization of model output directly within the same narrative (Kery et al., 2018; Knuth,

1984; Pimentel et al., 2019). For example, Jupyter (Avila et al., 2020; Pérez & Granger, 2007) and

RMarkdown (Baumer et al., 2014; Rstudio Team, 2020) are used to incorporate code, data,

description, and visualization needed to reproduce a computational experiment. Jupyter notebooks

are growing quickly in use and popularity in computational fields as a means to document

modeling workflows (Kluyver et al., 2016). When combined with model APIs, literate

Chapter 1

3

programming tools like Jupyter notebooks offer a powerful means for creating end-to-end

reproducible workflows.

In this dissertation, I aim to present a general framework to integrate the three components,

online data repositories, computational environments, and modeling workflows through

Application Programming Interfaces (APIs), for FAIRer environmental modeling. Online

repositories are continuously maturing through FAIR principles to meet the requirements for

reproducibility. Therefore, the second two studies in this dissertation focus on advancing other

components of the framework, namely computational environments (the second component) and

seamless environmental modeling workflows (the third component). This dissertation is, therefore,

organized around three objectives, each addressing one of these specific research gaps, and each

objective the focus of a separate chapter in the dissertation (Figure 1.1). These objectives are (1)

to explore the integration of three key components within modern environment modeling, (2) to

determine best practices for using tools and approaches available for containerizing environmental

modeling software and executing it in different computing environments, and (3) to create and

share interoperable and reusable large-extent spatial sample datasets as model input for seamless

environmental modeling.

Figure 1.1. Overview of the integration of three key components and the advancement of each component through

three targeted studies.

The first study (Chapter 2) presents the high-level concept and general design for

integrating 1) online repositories for data and model sharing, 2) computational environments along

with containerization technology and notebooks for capturing reproducible computational studies,

and 3) APIs for simulation models to foster intuitive programmatic control. An example

implementation of this framework is provided using HydroShare as the online repositories,

CUAHSI JupyterHub and CyberGIS-Jupyter for water as computational environments, and

pySUMMA as an example Python-based model API. The example implementation is applied for

a SUMMA hydrologic modeling use case to demonstrate how the general approach can advance

reproducible environmental modeling.

Chapter 1

4

 The second study (Chapter 3) focuses on determining best practices for containerization of

computational environments. Many containerization approaches currently exist, however the

challenge is deciding how best to utilize containerization tools for different modeling use cases

and computational environments. This study presents best practices for reproducibility by

comparing 11 approaches to achieving environmental modeling objectives. Five approaches were

explored for using different combinations of software containerization methods on a local

computing environment. Six additional approaches were considered that leveraged remote

computing environments such as clusters and cloud computing architectures along with different

containerization methods (Li, 2020; Prasad et al., 2020; Shuler & Mariner, 2020). Remote

resources utilized were the CUAHSI JupyterHub, CyberGIS-Jupyter for water, MyBinder, and

University of Virginia HPC environment. The results of both quantitative and qualitative

performance tests across the 11 approaches are presented using a hydrologic modeling use case

example. The findings of this study are described in terms of best practices for using reproducible

workflows for different environmental modeling objectives.

 The third study (Chapter 4) focuses on improving seamless environmental modeling,

especially in terms of accessing and processing large-extent data inputs for environmental models.

Seamless environmental modeling seeks to integrate model processes alongside end-to-end

modeling workflows and large, seamless datasets to enable “models of everywhere” (Blair et al.,

2019; L. N. Leonard, 2015; Miles & Band, 2015; Slater et al., 2019) and provide consistent data

across model applications (Mizukami et al., 2017; Samaniego et al., 2017). This study creates and

shares interoperable and reusable large-extent spatial datasets on GeoServer and THREDDS data

server (TDS) to support open and reproducible seamless environmental modeling workflows. As

an example application, three state-scale (North Carolina, Maryland, and Virginia) spatial datasets

were created and used in RHESSys seamless modeling workflows on the CyberGIS-Jupyter for

water platform. Using three watershed models as case studies (Coweeta subbasin18 in NC, Scotts

Level Branch in MD, and Spout Run in VA), the results of data consistency, both in terms of model

input and output data, are presented to demonstrate the feasibility of the approach for distributing

large-extent, spatial data for building environmental models.

Following this introduction are chapters for each of the three studies followed by an

overall conclusions section. Each chapter is written as a standalone study to enable publication in

peer-reviewed journals.

A version of this chapter was published in the January 2021 issue of Environmental Modelling &

Software. The publication can be found at https://doi.org/10.1016/j.envsoft.2020.104888.

5

Chapter 2

2 Toward Open and Reproducible Environmental

Modeling by Integrating Online Data

Repositories, Computational Environment, and

Model Application Programming Interfaces

2.1 Introduction

There is a growing acknowledgment and awareness of the reproducibility challenge facing

computational environmental modeling fields (Hutton et al., 2016; Stagge et al., 2019) as well as

in other computational modeling disciplines (Monya; Baker, 2016; McNutt, 2014; National

Academies of Sciences, 2019). According to a survey of 1,576 researchers, about 70% had tried

but failed to reproduce published research and 90% agreed that the problem of reproducibility is a

critical problem for scientific advancement (Monya; Baker, 2016). Within the hydrology and water

resources fields, Stagge et al. (2019) analyzed 360 articles in six leading journals to understand if

their data were available online and if the study results were reproducible. Their analysis showed

that only 5.6% of the articles had data and model code available online along with directions for

use, and only 1.1% were fully reproducible while 0.6% were partially reproducible. There are

many possible reasons for this outcome; however, we argue along with others that advances in the

cyberinfrastructure that enable modern computational science is critical to achieving reproducible

research (Hut et al., 2017; Hutton et al., 2016).

Reviewing recent research toward this goal of improving the underlying cyberinfrastructure

necessary to support reproducible computational studies, we see three distinct thrusts: 1) open

sharing of data and models online, 2) encapsulating computational environments through

containers and self-documented computational notebooks, and 3) creating Application

Programming Interfaces (APIs) for programmatically control of complex computational models.

A major effort to improve the open sharing of data and models is the FAIR (Findable, Accessible,

Interoperable, Reusable) guiding principles for scientific data management and stewardship

(Wilkinson et al., 2016). However, FAIR principles speak primarily to openness, which is essential

but insufficient on its own for addressing reproducibility of computational software and

computational environments (Bast, 2019). Ince et al. (2012) argued that, even with well-developed

data and software sharing capabilities, it remains challenging to reproduce published results due

to difficulties in documenting computational environments needed to repeat past studies.

Moreover, they found this especially true for operating system environments and software

dependencies that can cause unpredictable differences with even slight changes in model source

code or configuration.

https://doi.org/10.1016/j.envsoft.2020.104888

Chapter 2

6

To address this need, a second thrust in recent research is aimed at overcoming the

difficulties with sharing complete computational software environments. Research that has

focused on improving the sharing of well documented data and software workflows for

computational studies includes Stodden and Miguez (2013), for example, who proposed sharing

data, algorithms, and workflows to utilize and verify published results. Similarly, Gil et al. (2016)

suggested the best practices of sharing data, software, and documents in an open and transparent

way using a high-level roadmap of approaches to strengthen reproducibility in the geosciences. In

the meantime, the broader information technology community has introduced the concept of

containers as a means for encapsulating computational environments (Kurtzer et al., 2017; Merkel,

2014). The result of this work has benefited computational modeling fields and led to efforts to

improve the preservation of operating system and software dependencies, strengthening

reproducibility in computational research (Boettiger, 2015; Brinckman et al., 2019).

Containerization technologies such as Docker (Merkel, 2014) have been used to reproduce

computational modeling environments without requiring users to install additional dependencies

(Boettiger, 2015; Signell & Pothina, 2019). Software tools like Sciunit (Essawy et al., 2018; Yuan

et al., 2018) ease the process of containerizing, sharing, and tracking scientific applications,

lowering the barrier to entry for researchers to use containerization tools.

Containerization has also led to the ability to create new modeling environments and deploy

them through interactive, online analysis environments such as JupyterHub (Kluyver et al., 2016).

Jupyter notebooks are quickly growing in use and popularity in computational fields as a means to

document studies as a mix of formatted text, mathematical equations, and executable code with

in-line visualizations resulting from the code (Kluyver et al., 2016). JupyterHub is a cloud-based

software that utilizes containerization to support the execution of multiple Jupyter notebooks

simultaneously. Recent advances leveraging Jupyter for environmental modeling include work by

Castronova et al. (2018) who created the CUAHSI JupyterHub to support online hydrologic

modeling and analysis, Yin et al. (2017) who created a TauDEM (Tarboton, 1997) modeling

environment with JupyterHub, Eynard-Bontemps et al. (2019) who created the PANGEO project

that supports big data studies in the geosciences and heavily leverages JupyterHub, and

Bandaragoda et al. (2019) who used JupyterHub within a larger knowledge infrastructure to

support earth system modeling. Recent work has also begun to explore combining external

computational environments including high performance computing (HPC) and high throughput

computing (HTC) cyberinfrastructure for model execution directly through Jupyter notebooks

(Lyu et al., 2019). That work also takes advantage of containerization concepts to easily port

preconfigured model execution environments to available computational resources.

The third thrust we observe in recent research is efforts to create APIs for computational

environmental models. While many models have Graphical User Interfaces (GUIs) for improving

the usability of the models, APIs are different in that they facilitate programmatically interacting

with a simulation model to configure input files, execute models, and analyze model outputs.

Python (https://www.python.org) and R (https://rstudio.com) are common programming

languages used for creating model APIs. Python has examples including model APIs for the

Stormwater Management Model (PySWMM, B. E. McDonnell, 2017), MODFLOW (FloPy,

Bakker et al., 2016), Hydrologic Simulation Program in Fortran (PyHSPF, Lampert & Wu, 2015),

Chapter 2

7

and Precipitation Runoff Modeling System (PRMS-Python, Volk & Turner, 2019). R has examples

including model APIs for TOPMODEL (topmodel, Buytaert, 2011), SWAT (SWATmodel, Fuka

et al., 2014), and TUW model (TUWmodel, Viglione & Parajka, 2020). These model APIs help

by abstracting low-level programmatic details of input file manipulation and model execution

operations from end users. In this way, they are particularly useful when combined with

computational notebooks for creating self-documented modeling studies that can be more easily

understood and reproduced by both modelers and non-modelers alike.

While work along each of these thrusts – online data repositories, computational

environments leveraging containerization and computational notebooks, and model APIs – is

important individually, integrating these three thrusts offers a powerful approach for reproducible

computational modeling. Recent research has started to explore this integration includes (1) the

GI-RHESSys (Green Infrastructure-Regional Hydro-Ecological Simulation System) Jupyter

environment created for Green Infrastructure (GI) landscape designs and modeling output using

JupyterHub (Leonard et al., 2019), (2) the Landlab model (Hobley et al., 2017) with recent work

to implement Landlab within JupyterHub as a knowledge infrastructure (Bandaragoda et al., 2019),

and (3) the HydroTerre system (L. Leonard & Duffy, 2016) that links an online data repository

with the Penn State Integrated Hydrologic Model (PIHM). While these examples focused on

supporting individual modeling use cases, they reveal general patterns of infrastructure

components necessary to implement their systems. Our aim is to build on this past work by first

presenting this general pattern as a general approach that can be followed for building new

modeling systems. Second, we provide an example implementation of the general approach that

can be easily expanded to support any computational environmental model that is containerized

and has an accompanying model API.

The objective of this research is, therefore, to put forward a general approach or framework

for integrating online data repositories, computational environments, and model APIs to enable

more open and reproducible environmental modeling. In the Methodology section, we first present

a high-level design of the approach describing each of the three components in more detail while

also discussing different options available for online repositories, notebook-based and

containerized modeling environments, and model APIs. We then present an example

implementation that makes use of HydroShare as an online repository, CUAHSI JupyterHub and

CyberGIS-Jupyter for water as computational environments, and pySUMMA as an example model

API. In the Results and Discussion section, we present the results of applying the example

implementation to reproduce a prior hydrologic modeling study (Clark et al., 2015b) and discuss

the difficulty and nuance in claiming to achieve reproducibility. We also present limitations of the

work that could be a focus of future research. Finally, we conclude by summarizing the findings

and emphasizing their contribution to the larger goal of making past and future studies simpler to

reproduce through advances in cyberinfrastructure.

Chapter 2

8

2.2 Methodology

In this section, we describe the general approach being put forward for open and reproducible

environmental modeling (Section 2.1) and then present an example implementation of this general

approach for hydrologic modeling (Section 2.2).

2.2.1 Overview of General Approach and Description of System Components

The general modeling system approach considered in this research consists of three

primary components (Figure 2.1). Component 1 is the online repository where data, models, and

notebooks can be openly shared with the community. Component 2 is the JupyterHub

computational environment where containerized models can be executed using notebooks.

Component 3 consists of a collection of model APIs, one for each model supported within the

system, that allow for programmatic configuration, execution, and visualization through

computational notebooks. The three components are integrated through seamless data transfers to

create a powerful framework for open and reproducible modeling analyses. In practice, we

anticipate that this general approach or framework may have many different physical

implementations, where different technologies may serve the needs of specific subcommunities

within the broader environmental modeling field. We demonstrate one such implementation in

Section 2.2 for the hydrology community. In the following subsections, we describe each of these

components in more detail while also providing examples of each that are available for integration.

Figure 2.1. A general modeling approach consisting of three primary components with seamless data transfers for

open and reproducible environmental modeling

Chapter 2

9

2.2.1.1 Online Repository

Online repositories allow for storing, sharing, and publishing data, metadata, and other

resources required to reproduce computational research findings. These online repositories often

support a rich set of user-friendly features such as metadata capture, persistent digital object

identifiers (DOIs), and extensive APIs for programmatically creating, updating, and deleting

resources. They also often support various data types such as documents, figures, code, audio, and

video with metadata tailored to each data type. Some examples of online repositories used by

researchers include DataOne member nodes (https://www.dataone.org), FigShare

(https://figshare.com), Harvard Dataverse (https://dataverse.harvard.edu), and HydroShare

(https://www.hydroshare.org).

Many online repositories serve broad scientific communities and, therefore, maintain only

general and widely applicable capabilities. Others are more targeted to specific communities and,

as a result, can offer more specific functionality. Environmental modeling, for example, is not a

common use case for many repositories that focus on more general data sharing needs (e.g.

FigShare). Environmental models, however, have their own characteristics that consist of software,

input and output files, and data processing workflows. Morsy et al. (2017) described these unique

needs of models being stored in data repositories and presented a data model design including

metadata descriptions for key modeling objects to support flexible and applicable model sharing

framework. This design is implemented within the HydroShare data repository, allowing for

describing and sharing more specific model resource types.

2.2.1.2 Computational Environment

A computational environment serves as a gateway for model configuration, execution, and

post-processing. In the case of model execution, environmental modeling often includes complex

simulation models along with data pre- and post-processing software, all with software

dependencies that range from the operating system, to modules used within a model engine, to

libraries used by data processing and analysis software (e.g., Python libraries). Without the ability

to replicate a computational environment, slight inconsistencies in software dependencies can

result in well-documented model studies failing when ported to a new machine. Without the use

of recent innovations like containers, documenting the exact computational environment used in

an analysis is difficult, time consuming, and error prone. To overcome these challenges, Docker

(Merkel, 2014) and Singularity (Kurtzer et al., 2017) have emerged as containerization techniques

used to encapsulate a computational modeling environment, as described further in the

implementation (see Section 2.2).

Along with containers, computational gateway interfaces are also critical to lowering the

barrier to entry and supporting more open and reproducible modeling in online computational

environments. With the emergence of JupyterHub as a gateway innovation, there has been an

increased interest in cloud-based modeling environments for creating, editing, and running

computational notebooks. Markham (2019) reviewed five popular cloud services that support

computational notebooks (Table 2.1). We reviewed two additional cloud services, 1) CUAHSI

JupyterHub (hereafter CUAHSI JH) and 2) CyberGIS-Jupyter for water (hereafter CyberGIS JW),

Chapter 2

10

and included them in Table 2.1 as well. The environments range from scientific services (e.g., the

CUAHSI JH and CyberGIS JW that are used in this work) to more general services such as Binder

(Jupyter Project et al., 2018). Large technology companies including Google and Microsoft have

provided notebook execution environments such as Google Colab and Microsoft Azure

Notebooks, demonstrating the popularity and growing interest in a variety of fields. Many cloud

services have adopted the default Jupyter interface available from the Jupyter project without

modification, while others have modified this interface to customize it for their own purposes

(Markham, 2019). Furthermore, many cloud services support Python, R and other languages as

well. Interface similarity in Table 2.1 considers available menus, buttons, and other visual elements

that make up the user interface, and how different they are from a default Jupyter interface. All

services listed in Table 2.1 are candidates for integration into an implementation of the modeling

system described in this paper.

Table 2.1. Comparison of interface similarity and supported languages of cloud services for executing

computational notebooks (expanded from Markham, 2019)

2.2.1.3 Model APIs

An API defines a set of protocols or tools to communicate with an operating system,

database, network, and other lower-level aspects of a software system (Reddy, 2011). The

abstraction provided by an API has benefits (Brooks, 2013) including 1) flexibility and efficiency

for data access, 2) personalization to customize the functionality that users access the most, and 3)

reusability of code to work more productively. Examples of widely used APIs include the Google

Maps API for map services and the Twitter API for social networking services. Services also

widely exist for scientific systems relevant to environmental modeling including the HydroShare

REST (Representational State Transfer) API for sharing and publishing water data as well as APIs

for a growing number of environmental models.

 In this study, we focused on Python-based model APIs and reviewed a series of model

APIs including PRMS-Python (Volk & Turner, 2019) and PyHSPF (Lampert & Wu, 2015) to

better understand how they are designed and structured. Doing this can help to inform the design

and structure of future APIs created to support specific environmental models. We observed that

model API functionalities fell into three categories: model input, model execution, and model

output (Table 2.2). For PRMS-Python, as an example, input files often have corresponding Python

modules that can be used for data manipulation. For PyHSPF, as an example, the Python modules

do not have a one-to-one correspondence with the core model files and modules. Instead, the API

Cloud

Services

CUAHSI

JH

CyberGIS

JW
Binder

Kaggle

Kernels

Google

Collaboratory

Microsoft Azure

Notebooks

(free plan)

CoCalc

(free plan)

Interface

similarity to

Jupyter

100% 100% 100% 70% 60% 100% 95%

Supported

Languages
Python 3

R

Python 3

R

Python 3

R, Julia,

Many others

Python 3

R

Python 3

Swift

Python 3

R, F#

Python 3

R, Julia,

Many others

Chapter 2

11

designs include a higher-level abstraction to consider core classes needed for interacting with the

model.

Table 2.2. General categories for a model API mapped to examples from PRMS-Python and PyHSPF

General

Categories
API Objective PRMS PRMS-Python HSPF PyHSPF

(a) Model

Input
- Generating and manipulating

 model input

-control file

-data file

-parameters file

-prms_config.txt

-data.py

-parameters.py

-control file

-watershed data

-management file

- wdmutil.py

- watershed.py

- hspfmodel.py

 :

(b) Model

Execution
- Executing and refining

models
-shell script

-simulation.py

-scenario.py

-optimization.py

-shell script

- forecaster.py

- extract.py

- calibratormodel.py

 :

(c) Model

Output
- Visualizing and analyzing

 model output
-text file

-optimizer.py

-utils.py
-text file

- gisplots.py

- forecastplots.py

- autocalibrator.py

 :

From this review, we suggest that communities of modelers (e.g., researchers or groups of

researchers) who are considering building a model API for a specific environmental model begin

with answering the following questions. 1) What configuration and input files should be exposed

through the API to allow for programmatic changes and what are the logical classes for organizing

these model input configuration attributes? 2) What methods and attributes should the API expose

for executing the model and refining the model through, for example, calibration or sensitivity

analysis? 3) What are common visualizations of the model output that many users would wish to

produce? Creating a model API with this functionality in a well thought through design will serve

as a solid foundation for future extensions to the software. Furthermore, the extent to which

environmental model APIs can adopt conventions for the organization of their design and structure

will allow users to more easily learn new model APIs by having some consistency across model

APIs.

2.2.2 Example Implementation

In this section, we present one possible physical implementation of approach described in

the prior section. This example implementation uses HydroShare as the online repository,

CUAHSI JH and CyberGIS JW the computational environments, and pySUMMA as one of

potentially many model APIs within the system. While this example implementation targets the

needs of the hydrologic modeling community, we anticipate that multiple other permutations of

the technologies described in the prior section could be assembled to meet the needs of other

environmental modeling communities.

2.2.2.1 HydroShare as the Online Repository

 We used HydroShare as the data repository in our example implementation due to both its

flexibility and tailored functionalities for supporting environmental modeling use cases.

Chapter 2

12

HydroShare is an online repository tailored for the needs of the hydrologic community, but general

enough to satisfy other environmental modeling needs (Tarboton et al., 2014). HydroShare defines

a “Resource” as “the fundamental unit of digital content in HydroShare that contains data and/or

model files and their corresponding metadata” (Horsburgh et al., 2016). HydroShare resources

support various content types such as geographic raster (GeoTIFF), multidimensional arrays

(NetCDF), geographic features (Shapefile), and time series. HydroShare also defines a composite

resource type that supports combining data of different content types into a single HydroShare

resource, as well as a collection resource type that supports aggregation of related HydroShare

resources into a list that can be referenced with a single unique identifier. Furthermore, realizing

that data associated with models have their own characteristics, HydroShare defines unique model

resource types of a model program (the software) and a model instance (the input and output files

for a specific model run) (Morsy et al., 2017). Resources with these two resource types are related

through the “ExecutedBy” attribute of a model instance, which points to the specific model

program resource used to execute that model instance. This design allows for a one-to-many link

between a model program that is used to execute many different model instances built for different

geographic locations or to address different research questions.

The methodology for sharing computational modeling resources is shown in Figure 2.2.

First, the user creates a model program resource for each version of a model program software

used in the analysis. This resource can include the source code, executable, and container for the

model program itself, or a link to one or more of these resources shared in a system external to

HydroShare (e.g., in GitHub, BinderHub or DockerHub). Second, the model instance resources

are created to store and describe the input data required to execute the model and can optionally

store the output after the model is executed. Then the model instance is linked to a specific model

program resource using the “ExecutedBy” metadata term. A separate composite resource is used

to store Jupyter notebooks that describe the overall analysis workflow. Finally, a collection

resource is used to combine and conveniently share all of the resources used to complete the study.

Figure 2.2. A methodology for sharing resources used for a modeling analysis through HydroShare

Chapter 2

13

2.2.2.2 JupyterHub as the Computational Environment

We integrated both the CUAHSI JH and CyberGIS JW as computational environments in

our example implementation. We chose these environments because both are publicly available

and aimed at scientific modeling in the water and environmental communities. Moreover, both

systems allow for seamless data transfer with HydroShare as a data repository supporting the

necessary interoperability between these two components of the general framework. This data

transfer is enabled through the HydroShare REST API and the standardization of HydroShare

resource data structures.

The CUAHSI JH is a cloud computing environment on the Google Cloud Platform

specifically designed to support research and education in the water sciences (Figure 2.3). To

support a variety of applications, it leverages environment profiles that allow users to choose the

ideal computing configuration for their work. Each of these profiles is a separate containerized

environment that has been built with a specific set of software to support various water science use

cases. Currently, the CUAHSI JH consists of seven profiles that range from scientific Python and

R to HydroLearn (https://www.hydrolearn.org), educational modules and hydrologic modeling. In

addition, the CUAHSI JH supports persistent data, meaning user-created content is stored between

sessions and shared between profile environments. Moreover, this environment enables users to

install custom software using conda virtual environments. For this study, we created a “Python 3.7

SUMMA Modeling” profile to support SUMMA 3.0 modeling environment using a Dockerfile in

CUAHSI JH.

Figure 2.3. The CUAHSI JH and CyberGIS JW environments with model execution environments configured as

Docker images to support concurrent model execution through Jupyter notebooks.

Chapter 2

14

Another model execution environment interoperable with HydroShare, CyberGIS JW, is a

well-tailored CyberGISX (https://cybergisxhub.cigi.illinois.edu) instance to serve the fast-

emerging needs for data-intensive and reproducible research in the environmental modeling

community (Figure 2.4). Overall, CyberGIS JW is similar to CUAHSI JH, but CyberGIS JW also

includes interoperability with advanced cyberinfrastructure resources such as Virtual ROGER (a

cyberGIS supercomputer hosted by the CyberGIS Center for Advanced Digital and Spatial Studies

at the University of Illinois) and XSEDE Comet (an HPC resource on the Extreme Science and

Engineering Discovery Environment) for model execution support. Lyu et al. (2019) describe how

to use HTC through a Jupyter notebook using SUMMA as an example case in CyberGIS-Jupyter

(beta), which is the previous version of CyberGIS JW. Currently CyberGIS JW is supporting

LandLab (Hobley et al., 2017) and RHESSys (Tague et al., 2004) modeling environments. For this

study, we created a SUMMA modeling environment using a Dockerfile. Users can use this

SUMMA modeling environment via a SUMMA kernel. For use of HPC resources, CyberGIS JW

requires a Singularity image to support a computational modeling environment in XSEDE because

CyberGIS JW and XSEDE are separately placed. Also, CyberGIS JW needs a particular library to

connect to computational resources for submitting jobs and data exchange in XSEDE.

2.2.2.3 pySUMMA as the Model API

The model API pySUMMA was created through this research as an example model API.

pySUMMA wraps the hydrologic model Structure for Unifying Multiple Modeling Alternative

(SUMMA) (Clark et al., 2015a). SUMMA was selected for this study because it is a general

hydrologic modeling environment offering the ability to conduct model experiments with

controlled and systematic evaluation of multiple model representations of hydrologic processes

and scaling behavior. The SUMMA model simulates both the thermodynamics, the storage and

flux of energy such as the heat balance of the vegetation canopy, snow, and soil affected by the

radiative fluxes, as well as the hydrology, the storage and transmission of water (for example,

vertical and lateral transmission of water through vegetation canopy, snow, soil, aquifer and river

within a catchment system). The flexible hierarchical spatial structure of SUMMA supports

different spatial configurations including the size and shape of model elements with Grouped

Response Units (GRUs) (Kouwen et al., 1993) and Hydrologic Response Units (HRUs). In

addition, the flexible structure enables researchers to consider the lateral flux of water across the

model domain and complex topographical properties like hillslopes and riparian areas. This

flexibility within SUMMA enables hydrologists to find solutions for the application of scaling

behavior in relation to different physical processes.

SUMMA also enables hydrologists to select the appropriate physical process methods and

model complexity. This process implements a modular structure that is supported by the

conservation equations to calculate each process in a controlled and systematic way. This unified

process helps users to concentrate important physical parameterizations with higher complexity

and, conversely, to simplify specific processes to minimize uncertainty according to the purpose

and characteristics of biophysics and hydrology. Moreover, the structure of SUMMA, which

Chapter 2

15

consists of a core (solver) and outer branches, enables the output of a numerical solution from

SUMMA so that the user can evaluate the accuracy and efficiency of the model. Therefore,

SUMMA supports flexibility to simulate different options of physical processes and numerical

solutions.

We designed and implemented pySUMMA as a model API for SUMMA using the

questions proposed in Section 2.1.3 for guiding the design of a new model API (Table 2.3). For

the model input category, there are six configuration files to manipulate SUMMA input: 1) File

Manager, 2) Decisions, 3) Forcing File List, 4) Model Output, 5) Param Trial, and 6) Local

Attribute files. To expose the first four configuration files through the API, we created

file_manger.py, decisions.py, force_file_list.py, output_control.py and option.py. For the rest of

the configuration files, we created assign_trial_params and assign_attributes methods in

Simulation.py. In the model execution category, we created Simulation.py to use the model

execution command conveniently from the shell script format so that users do not need to edit

manually every time. We also created two options to execute the SUMMA model, ‘local’ and

‘docker’, to satisfy different user requirements. Finally, the output format of SUMMA is NetCDF;

therefore, we created plotting.py for visualization considering the output variables and their output

structure in NetCDF.

Table 2.3. Implementation of a model API for SUMMA

General

Categories
Questions SUMMA pySUMMA

(a) Model

Input

(1) What configuration and input files should be

exposed through the API to allow for programmatic

changes?

-file manager

-decision file

-forcing file list file

-model output file

-param trial file

-local attribute file

-file_manager.py

-decisions.py

-force_file_list.py

-output_control.py

-option.py

(b) Model

Execution
(2) What methods and commands should the API

expose for executing the model?

-shell script

-SUMMA compilation

(summa.exe) or Docker

-simulation.py

-SUMMA compilation

(summa.exe) or Docker

(c) Model

Output
(3) What are common visualizations of the model

output that many users would wish to produce?
-output NetCDF -plotting.py

The classes of pySUMMA are shown in Figure 2.4. A Simulation module (Simulation.py)

is used as the initial Python module to start a pySUMMA API and combine most pySUMMA

functionalities, such as manipulating configuration files and executing SUMMA. After creating a

pySUMMA simulation object, users can manipulate six configuration files. A File manager

module (file_manager.py) reads and manipulates a File Manager file which controls the location

of every configuration file for the SUMMA model. For example, the File Manager file sets the

directory and configuration files including the decision, forcing, parameter, and attribute files. A

Decisions module (decisions.py) reads and manipulates a Decisions file which sets different

physical process parameterizations. Through the available_options object in decisions.py, users

can determine what options are available for model parameterizations and select model

parameterizations from a list of options for each physical process (SUMMA Online Document,

Chapter 2

16

2020). Four input configuration modules (file_manager.py, decisions.py, force_file_list.py, and

output_control.py) have the same pattern of classes. For example, a File manager module

(file_manager.py) is composed of FileManagerOption and FileManager classes and a Decisions

module (decisions.py) is composed of DecisionOption and Decision classes. Each class is

connected to an Option module (option.py) to avoid repetition of functions such as comparing,

setting and writing each configuration file. After setting the SUMMA configuration, the simulation

module (Simulation.py) is used for model execution. The run() method of the Simulation class is

used to execute the SUMMA model. This execution can be done in both “local” and “docker”

computational environments. The environments are set using the run_option parameter for the

run() method as discussed later in the Results and Discussion section.

Figure 2.4. pySUMMA library classes

Once a SUMMA model run has been completed, the plotting module (plotting.py) can be

used to visualize the results. There are two different data output structures for SUMMA: 1) time,

HRU (or GRU) number, and variable; 2) time, HRU (or GRU) number, soil (or snow) layer

number, and variable. To visualize each of these output structures, the Plotting class consists of

three methods: ts_plot(), ts_plot_layer(), and heatmap_plot(). We used the seaborn library

(statistical data visualization library) to create a 2D heat map with soil or snow layer and time as

the axis for displaying a selected variable. Lastly, the model output module (output_control.py) is

used to manipulate the output variables of SUMMA and the utilities module (hydroshare_utils.py)

has functions to download test cases of SUMMA (model instance resources) and execution files

(model program resources) from HydroShare.

2.3 Results and Discussion

In this section, we present a modeling case study application of the example implementation

system described in Section 2.2. Then, we discuss how this approach addresses the challenge of

achieving more reproducible studies summarized in the Introduction section by evaluating the

Chapter 2

17

approach against definitions, concepts, and metrics for reproducibility proposed by others. Lastly,

we discuss the limitations of our approach that present opportunities for future research.

2.3.1 Case Study Description

Clark et al. (2015b) describe a set of thirteen modeling experiments exploring various

hydrologic modeling scenarios using SUMMA. The study area for these modeling experiments is

the Reynolds Mountain East Area (A=32.7km2) in the Reynolds Creek Experimental Watershed

in Idaho, USA (Figure 2.5). In this paper, we focus on these modeling experiments as a case study

with the goal of applying our approach so that each Clark et al. (2015b) experiment can be

reconstructed and shared openly in a way that is easier to reproduce.

The first step toward this goal is the creation and organization of HydroShare resources to

share all models and data files required for the analysis. The second step is to create Jupyter

notebooks that describe the modeling experiments. These notebooks include text and equations to

describe the modeling experiments while also including executable Python code using the

pySUMMA API and inline visualizations that can be repeated and extended by others. We created

seven Jupyter notebooks, each one documenting an experiment in the Clark et al. (2015b) study,

and published them through HydroShare as a collection resource (Choi et al., 2020).

Figure 2.5. Reynolds Mountain East Area in the Reynolds Creek Experimental Watershed

Chapter 2

18

2.3.2 Model and Data Resources

Our first step in reproducing the Clark et al. (2015b) modeling experiments was to publish

the specific SUMMA model version used in the analysis as a resource on HydroShare. To do this,

we created a HydroShare resource using the Model Program resource type and upload the

SUMMA 3.0.0 source code to the resource. We then published the resource through HydroShare

so that it is persistent and immutable with a unique Digital Object Identifier (DOI) (Choi et al.,

2020). Figure 2.6 shows the landing page for this resource on HydroShare that includes detailed

metadata describing 1) the source code and compiled software engine, 2) metadata for the software,

3) a link showing the model was derived from a particular branch of a GitHub repository for

SUMMA, and 4) a citation for referencing the resource. This same SUMMA 3.0.0 was also

installed on the CUAHSI JH allowing users to execute the SUMMA model directly from CUAHSI

JH.

Figure 2.6. The HydroShare landing page for a SUMMA model program resource used in the example analysis

(Choi et al., 2020).

Chapter 2

19

We next created multiple resources in HydroShare to store the specific model inputs for

each different SUMMA model experiment used in the Clark et al. (2015b) paper. There were four

synthetic and nine field study test cases available as an online supplement to the Clark et al.

(2015b) paper. From these data, we created seven unique model instance resources in HydroShare

(Table 2.4) and grouped them into a collection resource (Choi et al., 2020). Each model instance

resource includes 1) input data for the SUMMA model, 2) a reference to the Clark et al. (2015b)

paper, 3) a composite resource link that points to the Jupyter notebook used to execute the

SUMMA model, and 4) a link to the model program resource used to execute the model instance.

Table 2.4. Mapping between the modeling experiments of Clark et al. (2015b) and Model Instance Resources on

HydroShare used to store the input files for that model experiment

Figures from Clark et

al. (2015b)
Resource Name on HydroShare to Reproduce each Clark et al. (2015b) Figure

Figure 1 (top)
The impact of the canopy shortwave radiation parameterizations of SUMMA Model

in Aspen stand at Reynolds Mountain East

Figure 1 (bottom)
The impact of LAI parameter on the below canopy shortwave radiation of SUMMA Model

in Aspen stand at Reynolds Mountain East

Figure 2
The impact of the canopy wind parameter for the exponential wind profile of SUMMA

Model in Aspen stand at Reynolds Mountain East

Figure 7
The impact of Stomatal Resistance Parameterization on ET of SUMMA Model

in Aspen stand at Reynolds Mountain East

Figure 8 (left)
The impact of Root Distributions Parameters on ET of SUMMA Model

in Aspen stand at Reynolds Mountain East

Figure 8 (right)
The impact of Lateral Flow Parameterizations on ET of SUMMA Model

in Aspen stand at Reynolds Mountain East

Figure 9
The impact of Lateral Flow Parameterizations on Runoff of SUMMA Model

in Aspen stand at Reynolds Mountain East

Once this step is complete, the model and data resources required to reproduce the Clark

et al. (2015b) experiments are publicly accessible in HydroShare with metadata to describe each

resource and a unique URL to locate each resource. HydroShare also allows for publishing these

resources in which case the resources become immutable and are assigned a Digital Object

Identifier (DOI). This pattern can be adopted by other environmental modeling studies whereby

both the model and data resources required to reproduce the study are uploaded into HydroShare,

given metadata to describe each resource (including relationships between resources such as the

“ExecutedBy” relationship between model program and model instance resources), and published

with a DOI.

2.3.3 Demonstrating Reproducibility

This section describes the steps that should be taken to reproduce one of the experiments

described in Clark et al. (2015b). As a preparation step before starting a SUMMA simulation using

Jupyter notebooks on CUAHSI JupyterHub, we recommend creating a pySUMMA conda virtual

environment by running the steps described in the notebook “Creating_ pySUMMA

_conda_virtual_environment_in_CUAHSI_JupyterHub.ipynb” in the HydroShare composite

resource for CUAHSI JH notebooks. Once this preparation step is completed, the basic algorithm

Chapter 2

20

to run a notebook is shown in Figure 2.7. First, the pySUMMA hydroshare_utils module is used

to download the model instance that will be used in the notebook directly from HydroShare. After

downloading the SUMMA model instance, it is possible to create a pySUMMA simulation object

using the Simulation class of pySUMMA and supplying SUMMA executable (summa.exe) and

the File Manager file path. After creating the pySUMMA simulation object, the SUMMA model

can be executed using the run() method, which takes a run_option argument as local. When

CUAHSI JH was created by using Docker, SUMMA was automatically complied and created

SUMMA executable in ‘/usr/local/bin/summa.exe’. Therefore, after setting the executable variable

to the location of “summa.exe”, users can set a run_option as local. By changing the executable

variable as "/usr/bin/summa.exe", it is possible to execute the same notebook on CyberGIS JW.

Figure 2.7. The basic step for a SUMMA model run using Jupyter notebooks

As an example, we present here the results from running two different experiments

included in the Clark et al. (2015b) paper. The first reproduces Figure 7 from Clark et al. (2015b)

and is published as a HydroShare resource with the title “The impact of Stomatal Resistance

Parameterization on ET of SUMMA Model in Aspen stand at Reynolds Mountain East.” The

second reproduces Figure 9 (left) from Clark et al. (2015b) and is published as a HydroShare

resource with the title “The impact of Root Distributions Parameters on ET of SUMMA Model in

Aspen stand at Reynolds Mountain East.”

Figure 2.8 gives the results from the first experiment that explores the impact of three

different stomatal resistance parameterizations on total evapotranspiration: Ball-Berry (Ball et al.,

1987), Jarvis (Jarvis, 1976), and the simple resistance method. Figure 2.8a is the original result

from the SUMMA paper (Clark, Nijssen, Lundquist, Kavetski, Rupp, Woods, Freer, Gutmann,

Wood, Gochis, et al., 2015) and Figure 2.8b is a reproduced figure resulting from applying this

framework. These stomatal resistance parameterizations have different physical characteristics:

both the Jarvis and Ball Berry methods consider photosynthesis, while the simple soil resistance

method mainly considers the soil water conditions. The results show that the simple soil resistance

method is higher than the other methods during the night hours. Comparing the two plots shows

the complexity associated with reproducing past computational modeling studies. While the results

are consistent, they are not exact. The precise reason for the differences in the model results is

difficult to determine. We suspect it due in part to upgrades to SUMMA or SUMMA dependencies

between the versions of the SUMMA 2.0 used in the Clark et al. (2015b) paper and the SUMMA

3.0 used to create the newer plot. More vexing is that some of the observed data points appear to

Chapter 2

21

have shifted with no good explanation for why. One possible explanation could be the fact that

different visualization tools were used to create each plot: Interactive Data Language (IDL) for the

plot on the left and matplotlib for the plot on the right. We suspect differences like this would not

be uncommon when trying to reproduce any past computational study given the difficulties in

recreating the exact computational and analysis environment including data preparation routines,

computational modeling software, and post-processing analysis and visualization tools. This, in

fact, speaks to the difficulty of the problem and the need for innovation in cyberinfrastructure

approaches that is at the heart of this study. This said, it is also important to stress that the goal of

reproducibility may not be to obtain the exact same results, but rather consistent results that would

produce in the same conclusion. This is an idea expressed by high level reports on computational

reproducibility (National Academies of Sciences, 2019) that we will discuss further in Section 3.4.

Figure 2.8. Reproducibility of Figure 7 from Clark et al. (2015b) showing the impact of the three different stomatal

resistance parameterizations on total evapotranspiration (a): published result, (b): reproduced result

Figure 2.9 shows the results from the second experiment from Clark et al. (2015b), which

explores the impact of the root distribution parameters with different stomatal resistance

parameterizations for total evapotranspiration. In this case, we reproduced the plot that shows the

impact of root distribution parameters (Figure 2.9b) and compared it to the previous result (Figure

2.9a). Again, we see consistent (although not exact) results between the two model runs. Given

that the modeling experiment is now implemented within the system, it is also possible to more

easily extend and repurpose it for other purposes. To this point, we demonstrate reuse of past

modeling studies by creating two additional plots for determining the effect of different root

distribution (Figure 2.9c) and stomatal resistance parameterizations (Figure 2.9d) on total

evapotranspiration. These plots show how higher root distribution exponents in the soil profile

indicate that the roots are deeper in the soil, which makes it easier for plants to extract soil water.

As a result, during the higher evapotranspiration periods (10:00-17:00), the Jarvis method more

closely matched the observation data. However, during the period when evapotranspiration is

decreasing (17:00-20:00), the Ball-Berry method was more precise compared to the simple

Chapter 2

22

resistance method. Over the complete time period, the analysis shows that the Jarvis method had

the best fit with observations.

Figure 2.9. Reproducibility and reusability of Figure 8 (a) of Clark et al. (2015b) showing the impact of root

distribution parameter with different stomatal resistance parameterization on total evapotranspiration (a):

published output, (b): reproduced output, (c) and (d): output from reusability application extending the prior study

2.3.4 Evaluating Reproducibility

To evaluate if reproducibility was achieved, we considered definitions and concepts for

evaluating reproducibility being put forward by others. For example, the National Academies of

Science, Engineering, and Medicine (National Academies of Sciences, 2019) define

reproducibility, focused on computational reproducibility, as “obtaining consistent results using

the same input data; computational steps, methods, and code; and conditions of analysis.” To

guarantee reproducibility, the organization recommended delivering “clear, specific, and complete

information about any computational methods and data products to repeat the previous study, and

that information should include the data, methods, and computational environment.” FAIR

Chapter 2

23

principles (Wilkinson et al., 2016) include 15 metrics that should be met as a minimum for

reproducibility. These metrics are a) Findable (4 metrics): (meta) data to find easy, b) Accessible

(4 metrics): (meta) data to access with authentication and authorization; c) Interoperable (3

metrics): (meta) data to interoperate with applications; d) Reusable (4 metrics): (meta) data to

achieve reusability, reproducibility, and replicability.

In the hydrology and water resources fields, Hutton et al. (2016) recommended

reproducible studies have 1) readable and reusable code, 2) an unambiguous workflow, 3) a

repository to easily find data and code with associated metadata, 4) use of unique persistent

identifiers, 5) new procedures to reproduce large-extent studies using HPC. Additionally, Hut et

al. (2017) suggested the use of containers and open interfaces to guarantee stronger reproducibility

as a response to Hutton et al., (2016). Finally, Stagge et al. (2019) proposed a set of survey

questions to assess the reproducibility of a journal article. The survey requires that eight elements

be available for a study to be called reproducible: 1) directions to run or reproduce the study, 2)

code/model/software files, 3) input data, 4) hardware/software requirements, 5) stated data

persistence policy, 6) materials linked by unique and persistent identifiers, 7) metadata to describe

the code, and 8) common file format and instructions to open these files.

With these criteria in mind, by simply using HydroShare as the data repository for all data

and software used for the study, we can support many of the metrics associated with

reproducibility. HydroShare supports FAIR principles (Tarboton et al., 2018) for each resource

that includes model input, source code, metadata, and supplementary documents. Using

JupyterHub as described in the paper provides a consistent computational environment and using

Jupyter notebooks and containerized model execution environments provides a clear and easy

workflow to assure users can reproduce a published study. Finally, using a model API makes it

easier for a user to follow the logic and steps used to configure, run, and postprocess a modeling

simulation, allowing for not only reproducibility but also reuse and extension of prior work.

Therefore, if we compare these definitions and concepts for a validation of reproducibility to our

approach and its example application, we can claim that it satisfies the criteria for reproducible

computational modeling. Still, while the framework allows for satisfying the criteria, it is still up

to the user to ensure care is taken with sharing and documenting resources with adequate metadata

and instructions to achieve reproducibility.

2.3.5 Approach Limitations and Opportunities for Future Research

This research focuses on examples that assume model input files had already been

processed and are available for use in the modeling analysis. The preprocessing steps required to

generate model input files from raw geospatial and time series observational data are a necessary

component of longer-term goals for creating so called “end-to-end” reproducible analysis

workflows. For example, Slater et al. (2019) provided an “end-to-end” reproducible hydrology

workflow using R for climate data retrieval, spatial analysis, modeling, statistical analysis,

visualization, and data publishing. As another example of automated end-to-end workflows,

HydroTerre (L. N. Leonard, 2015) includes 1) data workflows (L. Leonard & Duffy, 2013) to

create watershed models using Essential Terrestrial Variables (ETV), 2) data-model workflows to

Chapter 2

24

transform watershed data into model inputs, 3) model workflows (L. Leonard & Duffy, 2014) to

execute models in HPC, especially The Penn State Integrated Hydrologic Modeling System

(PIHM), and 4) visualization workflows to visualize the first three workflows to easily create and

share model results for analysis.

Currently, pySUMMA has developed the functionalities of manipulating created model

input, executing SUMMA, and plotting model output. To complete “end-to-end” workflows, data

preprocessing is critical for improving reproducibility as the steps to create model input files are

often nontrivial and require a significant time investment. Prior work to address this challenge

includes the EcohydroLib Python library developed as a software framework for managing spatial

data acquisition and preparation workflows for ecohydrology modeling (Miles & Band, 2015).

EcohydroLib takes advantage of open source GRASS GIS libraries to automate data gathering and

preparation for environmental models. It is a model agnostic approach for mapping a variety of

data sources into input files required by environmental models. Alternative data processing

workflows and pipelines such as HydroTerre could also be explored for bringing data

preprocessing capabilities for environmental models into the general approach described through

this work. However, just having new data processing pipelines alone will be insufficient. We also

need more detailed modeling protocols and procedures to replicate (or even reproduce) a study

(Ceola et al., 2015) because reproducibility is not just a technological problem, it is equally an

educational problem (Grüning et al., 2018).

Post-processing for visualization and model analysis procedures is also essential to creating

a powerful modeling environment, saving time when analyzing model output, and strengthening

reproducibility. To grow use of model APIs, many analysis methods will be necessary such as

plotting, calibration, optimization, and uncertainty analysis. While pySUMMA is still being

developed toward these goals, other model APIs discussed in this paper and that could be used

within the example modeling system do have more robust processing capabilities already. One

question that remains is the extent to which environmental model APIs can reuse underlying

software to support common model post-processing routines. General libraries in Python, such as

Pandas and matplotlib, are universally applicable to environmental modeling post-processing

tasks. However, is a plotting or data analysis library more tailored for environmental modeling but

still sufficiently general to serve many environmental models possible? If so, it could further

reduce the duplication of code across environmental model APIs and, ultimately, encourage more

environmental model APIs that are robust, easier to maintain, and feature rich.

The ability to include data pre- and post-processing within the framework would be an

important step for moving from reproducibility to replicability within the framework. Replicability

is defined by the National Academies of Science, Engineering, and Medicine (National Academies

of Sciences, 2019) as “obtaining consistent results across studies aimed at answering the same

scientific question, each of which has obtained its own data.” Replication, therefore, can be thought

of as a next step beyond reproducibility where a study is repeated using new data, potentially from

a new site or different time period, but similar methods. This work has focused on a general

approach to support reproducibility of computational models. The framework could be extended

for replication by extending a model API, like the pySUMMA API described in this paper, to

Chapter 2

25

include not only functions for model configuration (e.g., settings and parameter values assuming

model input files have already been generated), but also for model preprocessing where input files

for the model are generated from raw data sources.

2.4 Conclusions

Computational irreproducibility is an important problem in many scientific fields. Recent

research to improve computational reproducibility has focused on advancing the sharing of data

used in studies, using computational notebooks and containers for encapsulating complete

computational environments, and developing model APIs for programmatically interacting with

simulation models. A contribution of this research is to present a general approach to integrate

these three areas of past work into a general approach for supporting more open and reproducible

environmental modeling. We present an example implementation of this approach by leveraging

1) HydroShare as a data sharing repository, 2) JupyterHub as a notebook-based, containerized, and

cloud-based computational environment, and 3) pySUMMA as an example model API able to

abstract lower-level details for model configuration, execution, and visualization from end users.

Using the example implementation, we demonstrate how modeling analyses can be

completed in a more open and reproducible way. Building from a prior study presenting a series

of modeling experiments applying SUMMA at the Reynolds Mountain East Area in the Reynolds

Creek Experimental Watershed in Idaho, USA (Clark et al., 2015b), we first create and organize

HydroShare resources to share data and model files. Next, we create Jupyter notebooks that

leveraged the pySUMMA API, introduced in this paper, to reproduce and extend figures from the

prior study. Each notebook (a) pulled required data from HydroShare into the computational

environment, (b) provided a notebook using text, equations, code, and inline visualizations for

documenting the experiment, and (c) allowed for online execution of the notebook and sharing of

modifications to the notebook through HydroShare. Finally, we discuss how we evaluated that

reproducibility was achieved and future steps that could be taken to further improve the proposed

framework.

From this research, we conclude that cyberinfrastructure is reaching a point where it is

possible to build open and transparent environmental modeling systems. Online repositories are

sufficiently mature where they can be relied upon for storing key data and software resources for

studies. Computational environments able to execute containerized environmental models can be

interlinked with data repositories and the ability for these computational environments to serve as

gateways to High Performance Computing (HPC) resources is improving. More models are being

provided with APIs that allow for programmatic control of the model configuration, execution,

and visualization. Jupyter notebooks provide an important orchestration and documentation glue

across these components where users can leverage APIs to access and publish data from online

repositories, submit jobs to HPC resources, and programmatically interact with state-of-the-art

environmental models. Linking these capabilities in a way that can be built upon and expanded as

new models become available, as demonstrated in this paper, will move environmental modeling

in a direction where open, transparent, reproducible, reusable, and replicable studies become the

rule rather than the exception.

Chapter 2

26

Software and Data Availability

All software and data used in this study were published with persistent digital object identifiers

(DOI’s) on HydroShare. A collection resource in HydroShare (Choi et al., 2020) contains each of

these resources. In addition to these resources published through HydroShare, the pySUMMA

source code created though this study is available on GitHub as detailed below.

Product Title: pySUMMA v3.0.0

Lead Developers: Young-Don Choi and Andrew Bennett

Contact Email: yc5ef@virginia.edu, andrbenn@uw.edu

Tested Platform:

- HydroShare CUAHSI JupyterHub

- CyberGIS-Jupyter for water

Software Required: Python 3.5 or above

Availability: The pySUMMA source code is publicly available through GitHub

- https://github.com/UW-Hydro/pysumma/releases/tag/3.0.0

License: BSD 3-Clause License

Chapter 2

27

List of Relevant URLs

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org/

CUAHSI JupyterHub Legacy Environment: https://jupyter.cuahsi.org

CUAHSI JupyterHub GitHub: https://github.com/hydroshare/hydroshare-jupyterhub

CyberGIS-Jupyter (beta): https://hsjupyter.cigi.illinois.edu:8000

CyberGIS-Jupyter for Water: https://go.illinois.edu/cybergis-jupyter-water

DataOne: https://www.dataone.org

Docker: https://www.docker.com

DockerHub: https://hub.docker.com

DockerSpawner GitHub: https://github.com/jupyterhub/dockerspawner

EcohydroLib: https://github.com/selimnairb/EcohydroLib

Facebook API: https://developers.facebook.com/docs/apis-and-sdks

FigShare: https://figshare.com

Google API: https://developers.google.com/apis-explorer

Harvard Dataverse: https://dataverse.harvard.edu

HydroShare REST API: https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API

NetCDF4 GitHub: https://github.com/Unidata/netcdf4-python

Numpy: https://www.numpy.org

Pandas: https://pandas.pydata.org

Seaborn: https://seaborn.pydata.org

Singularity: https://sylabs.io

SUMMA on the UCAR: https://ral.ucar.edu/projects/summa

xarray: http://xarray.pydata.org

XSEDE: https://www.xsede.org

This chapter is in preparation for submission to a peer-reviewed journal.

28

Chapter 3

3 Comparing Containerization Approaches for

Achieving Reproducible Environmental Modeling

across Computing Environments

3.1 Introduction
The rapid advancement of computing has played an important role and offers both

opportunities and challenges for reproducibility in computational research (de Lusignan & van

Weel, 2006). On one hand, new tools and technologies have made possible complex modeling

(Kerandi et al., 2018), deep learning (Shen, 2018), and interdisciplinary research (Laniak et al.,

2013; Vogel et al., 2015). Additionally, with the possible exception of stochastic modeling, there

is some level of certainty that if the same input data and model software or code are used on

identical machines, it should result in the same output, even when the modeling software is very

complicated (Sacks et al., 1989). On the other hand, creating “identical machines” can be very

difficult in practice. When these computational models are moved to a new machine, scientists can

often experience difficulties in reproducing the same model results (Monya; Baker, 2016; Essawy

et al., 2020; Hothorn & Leisch, 2011; Wilson et al., 2017). This is because the way software is

packaged, installed, and executed to reproduce complete computational environments and

workflows is often very complicated and challenging, even when these steps are well documented

(Garijo et al., 2013). To make matters worse, the rapid evolution and changing versions of

software, especially open source software commonly used in many scientific communities, make

computational reproducibility even more difficult (Epskamp, 2019). Just minor differences in

computational approaches can result in fatal errors in re-executing computational environments

and can have major influences on the analytical outputs. As a result, researchers have been

highlighting the difference between what might be thought of as reproducible work, such as simply

sharing data and workflow documents, and what is actually required for reproducible work:

sharing computational environments and automated workflows (Beaulieu-Jones & Greene, 2017;

Essawy et al., 2020; Kim et al., 2018).

To overcome this reproducibility gap, researchers have presented guidelines and principles

(Choi et al., 2021; Essawy et al., 2020; Gil et al., 2016; Wilkinson et al., 2016) and developed

various reproducible tools (e.g., Singularity, Kurtzer et al., 2017; Docker, Merkel, 2014; Sciunit,

That et al., 2017) to increase the likelihood of reproducibility. For example, as online repositories

that follow FAIR (Findable, Accessible, Interoperable, Reusable) guiding principles (Wilkinson

et al., 2016) continue to mature, reproducibility research has led to a growing demand not only for

data sharing with well-documented data, source code, software, and workflows, but also with tools

for automatically encapsulating computational environments and workflows using

containerization and literate programming (Kery et al., 2018; Knuth, 1984). For example, Bast

(2019) suggested that source code management and containerization tools are needed to reproduce

Chapter 4

29

computational environments while Goble et al. (2020) suggested the FAIR principles need end-to-

end workflows to describe the execution of a computational process such as data collection, data

preparation, data analysis, and modeling simulation. In hydrology, Hutton et al. (2016)

recommended an online repository to easily find data and source code with unique persistent

identifiers and computational workflows to describe the precise procedure among data and

modeling processes. In addition, Hut et al. (2017) suggested the use of containerization tools and

open interfaces to complement the preservation of computational environments suggested by

Hutton et al. (2016).

Reproducibility of computational environments and automated workflows have been shown

to be critical to filling the gaps of computational reproducibility in practice (Piccolo & Frampton,

2016; Rosenberg et al., 2020; Sandve et al., 2013). In order to reproduce computational

environmental models, it is important to consider the fact that computational modeling software is

actually comprised of multiple interdependent components: 1) the core model software, 2) other

secondary software needed to support the modeling application, and 3) modeling workflows that

capture the end-to-end modeling application. The core model software is the main computational

engine for the environmental model and is most often developed using a compiled programming

language such as Fortran, C, or C++. Other secondary software needed to support the modeling

application can include a Graphical User Interface (GUI) or an Application Programming Interface

(API) often programmed using an interpreted language like Python (Choi et al., 2021; Lampert &

Wu, 2015; B. McDonnell et al., 2020; Volk & Turner, 2019). Finally, modeling workflows are an

important component to capture the entire end-to-end process required to reproduce published

modeling results. Literate programming is an increasingly popular means for creating modeling

workflows as a narrative that combines code, documentation, and model output directly within a

single narrative (Kery et al., 2018; Knuth, 1984; Pimentel et al., 2019). For example, Jupyter (Avila

et al., 2020; Pérez & Granger, 2007) and RMarkdown (Baumer et al., 2014; Rstudio Team, 2020)

are becoming increasingly used to conduct and document computational experiments.

Reproducing computational models is difficult in part because it requires a certain level of

expertise in order to install and configure complete computational modeling setups. While most

model developers may know the specific requirements to reproduce their environmental model on

another computer, it is challenging to completely document this procedure for others to follow. To

address this challenge, model developers have recently started using containerization tools such as

Docker, Singularity, and Sciunit. Because these containerization tools can encapsulate complex

software, developers and researchers can more easily and confidently create reproducible

modeling studies that can be repeated across machines. While these containerization tools offer an

important opportunity, it can be challenging for domain scientists to know how best to utilize these

tools for different modeling use cases and computational experiments. Many containerization

approaches exist, and these approaches can be executed in different computational environments

that include both local compute resources (i.e., the researcher’s personal computer) and a growing

number of remote computing resources (i.e., high performance computing (HPC) clusters or cloud-

computing environments) available for environmental modeling.

Chapter 4

30

Thus, we focus in this paper on comparing different containerization approaches for

advancing reproducible environmental modeling. In total, 11 approaches are considered, with each

using a different combination of containerization software and computational environments. In the

methodology section, we describe the characteristics and typical procedures for each approach.

We also explain the methodology for evaluating and comparing the approaches. Then, in the

results section we present the evaluation results generated from a hydrologic modeling case study

that uses the Structure for Unifying Multiple Modeling Alternative (SUMMA) (Clark et al., 2015a)

hydrological model. We then discuss the benefits and weaknesses of each of the 11 reproducible

approaches and, in the conclusion section, summarize best practices for using the approaches to

achieve different modeling objectives. Lastly, we list remaining knowledge gaps that require

future research to develop more reliable and efficient containerization approaches for reproducible

environmental modeling.

3.2 Methodology

3.2.1 Introducing the Reproducible Environmental Modeling Approaches

When discussing reproducible environmental modeling, it is first necessary to define

terminology and components of typical environmental modeling workflows. First, we consider a

computational model as consisting of three primary software components, as introduced earlier:

1) the core model software, 2) other secondary software needed to support the modeling

application, and 3) a modeling workflow that links the core and secondary software.

Reproducibility approaches may address one or more of these components and, therefore, may not

necessarily address the entire end-to-end modeling workflow. This is described further as we

introduce the 11 reproducible approaches compared in this study. Across these 11 reproducible

approaches, we used different software tools to achieve reproducibility, namely GNU Make,

Conda Virtual Environment (hereafter Conda VE), Docker, Singularity, Sciunit, and Jupyter

notebooks. Through different combinations of these tools and using different computational

environments, we arrived at the 11 representative reproducible approaches considered in this

study.

The 11 reproducible approaches consist of five strategies using local computing resources

and six strategies using remote computing resources (Table 3.1). The first local approach compiles

the model software using GNU Make and encapsulates other secondary software using Conda VE

to support the modeling application. This can be thought of as a standard approach commonly used

now by model developers that does not adopt containerization. The second approach introduces

containerization for only the core model software component of the workflow using Docker as the

containerization tool. The third approach uses containerization for not only the core model

software, but also the secondary software supporting the model, again using Docker as the

containerization tool. The fourth approach builds from the third by keeping the same

containerization strategy, but using Singularity as the containerization tool rather than Docker. The

fifth approach is like the third and fourth approaches, except Sciunit is used as the containerization

tool.

Chapter 4

31

The six remote approaches leverage either HPC clusters or cloud computing environments

as the computational resource (Li, 2020; Prasad et al., 2020; Shuler & Mariner, 2020). The sixth

approach uses the CUAHSI JupyterHub (hereafter CJH), which is a cloud computing environment

on the Google Cloud Platform specifically designed to support research and education in the water

sciences. The seventh approach uses CyberGIS-Jupyter for Water (hereafter CJW), which is a

tailored CyberGISX instance to support data-intensive and reproducible research in the

environmental modeling community built on the XSEDE Jetstream computational resource. The

eighth and ninth approaches use CJH and CJW, respectively, with Sciunit as the containerization

tool for capturing the workflow. The tenth approach uses a different computational environment

and containerization approach: Binder. Binder is an online JupyterHub for building and sharing

reproducible and interactive computational environments from online repositories. It uses Docker

as a containerization technology, although it attempts to hide the user from the details of Docker

containerization to lower the barrier to entry. The last approach uses a HPC cluster with Singularity

to support the use of multiple cores for parallel computation. A common tool across the 11

reproducible approaches is Jupyter, a literal programming approach for capturing modeling

workflows. In the following subsection, we describe the specific procedures and characteristics of

each approach in further detail.

Table 3.1. The 11 representative reproducible approaches using different combinations of software tools and

computational environments

Approach

No.

Local and Remote

Computational Environments

Combination of Software Tools and Modeling Workflows

1) Core Model

Software

2) Secondary

Software

3) Modeling

Workflows

1 L

O

C

A

L

Virtual Box

GNU Make Conda Virtual

Environment Jupyter

Notebook

2 Docker

3 Docker

4 Singularity

5 Sciunit

6 R

E

M

O

T

E

CUAHSI JupyterHub Docker Jupyter

Notebook 7 CyberGIS-Jupyter for water Docker

8 CUAHSI JupyterHub Sciunit

9 CyberGIS-Jupyter for water Sciunit

10 Binder Docker Jupyter

Notebook 11 HPC Singularity

3.2.2 Local Reproducible Approaches

In this subsection, we describe the five local reproducible approaches for sharing modeling

environments and workflows. For all five local approaches, we used Virtual Box to create a Linux

virtual environment (Ubuntu 20.04 LDT) on a Windows operating system (Table 3.2) with a

single-core processor. Using this computer setup, we reproduced approaches 1-5 as shown in Table

3.1.

Chapter 4

32

Table 3.2. Specification of the base local computational environment

Specification Descriptions

Processor Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

RAM 15.6GB

Base Operating System Window 10

Linux Emulator VirtualBox 5.2.12

Linux Operating System Ubuntu 20.04 LDT

Number of CPU Core 1

3.2.2.1 Approach 1: Compiling the Core Model Software

The first approach compiles the core model software using GNU Make and encapsulates

the other secondary software using Conda VE. This approach is a very common approach for

reproducing hydrologic models (Peckham et al., 2013). GNU Make is used to create a core model

software executable with a configuration file called Makefile. The Makefile provides the procedure

for how to build the source code on a particular operating system. According to the technical

specification of hydrologic models in Community Surface Dynamic Modeling System (CSDMS),

most hydrologic models were developed by compiled programming languages (Fortran, C, and

C++) (Table 3.3), perhaps because of computing speed and the use of legacy source codes.

Therefore, we used GNU Make as the approach to reproducing hydrologic model software.

Creating model executables using GNU Make requires a substantial time investment at first

because it requires an understanding of the necessary dependencies, file paths, and environmental

variables.

Table 3.3. The programming languages in the popular hydrologic models

(https://csdms.colorado.edu/wiki/Hydrological_Models)

Models Programming Languages Models Programming Languages

DHSVM C PRMS Fortran77, C

Delft3D Fortran77, Fortran90, C, C++ ParFlow Fortran90, C

GSFLOW Fortran90, C RHESSys C

PIHM C, C++ SWAT Fortran

VIC C SWMM C

In addition, Conda VEs are used to encapsulate other secondary software needed to support

the modeling application. While Python has a lot of advantages in that we are able to use a vast

number of Python packages, it requires package and environment management to avoid version

conflicts between each package. There are several package and environment managers to

overcome version conflicts in Python. The most commonly used ones are pip, virtualenv, and

Conda. Pip is a package manager and most Python users use pip to install Python packages, but

pip does not support environment management. Virtualenv is an environment manager to create

isolated virtual environments, but virtualenv does not support package management. Conda is a

Python environment and package manager capable of providing isolated virtual environments,

Chapter 4

33

installation of software packages, and a record of the exact versions of open source libraries used

within a virtual environment. Therefore, we used Conda to encapsulate other software needed to

support modeling applications, especially Python APIs.

Figure 3.1 shows the general procedure of “Approach 1: Compiling the Core Model

Software” using the GNU Make tool and Conda VE. To describe the approach, we divided Figure

3.1 into two parts: developer work and user work. For the developer work, the first reproducible

step for environmental model software has three substeps: 1) creating a Makefile, 2) compiling

and building a core software executable, and 3) sharing the source code and Makefile on an online

repository such as GitHub or HydroShare. The second step is for Python-based model APIs that

require an environment.yml file, which is a configuration file containing a list of Python packages

needed to create the Conda VE. These two steps encapsulate the computational environment for

the environmental model. The final step encapsulates the modeling workflows by using Jupyter

notebooks that document the end-to-end modeling steps. Once the model has been captured,

developers need to share the model input files needed to reproduce the original study.

After the developer’s work is complete, users can reproduce the modeling environment and

workflows. The steps in this process are as follows: 1) download the source code and Makefile for

building the environmental model, 2) edit the Makefile to set the paths to the configuration files

and software dependencies for the environmental model software on the user’s computer, and 3)

compile and build the executable of core model software. Next, users need to download the Jupyter

notebooks that document every step in the workflow including installing Python-based model

APIs, downloading model input data, and executing the environmental model. Compared to the

developer work, the user work becomes simpler because Jupyter notebooks are able to document

most of the workflow, except for the step of compiling the core model software.

Figure 3.1. A general procedure of “Approach 1: Compiling the Core Model Software”

3.2.2.2 Approach 2: Containerizing the Core Model Software only with Docker

The second approach containerizes only the core model software using Docker. While

Docker may be somewhat difficult for those without software development expertise, it is a

revolutionary tool in that it allows for 1) ease of use to set up and apply computational

Chapter 4

34

environments, 2) speed to execute applications, 3) ease of sharing via DockerHub, and 4)

modularity and scalability to break, scale, and update Docker images (Boettiger, 2015). In

environmental modeling, we can use Docker to containerize computational environments,

software packages, libraries, model input, and model output into a Docker image. Python has

become a popular language for environmental modelers and many modelers will be familiar with

Conda VE to encapsulate Python-based environments without using containerization tools like

Docker. In addition, Conda VE is more compatible than Docker to install new software to a VE,

provided that the software is available through Conda. Thus, we use Docker to containerize the

core model software to easily reproduce it but use Conda to encapsulate secondary software, which

is Python-based and available through Conda.

Figure 3.2 shows the general procedure of “Approach 2: Containerizing the Core Model

Software only with Docker.” In developer work, the first reproducible step for the environmental

model software has three substeps: 1) creating a Dockerfile, 2) creating a Docker image, and 3)

sharing a Docker image on online repositories such as DockerHub. The next two steps for the

Python-based model APIs and modeling workflows are the same as “Approach 1: Compiling the

Core Model Software.” However, the user work is simpler than “Approach 1” because we used

Docker to containerize the environmental model software. Therefore, users only need to install

Docker using the simple command “sudo apt install docker.io,” then open and run the Jupyter

notebooks including installing Python-based model APIs, downloading the model input and the

Docker image, and executing the environmental model.

Figure 3.2. A general procedure of “Approach 2: Containerizing the Core Model Software only with Docker”

3.2.2.3 Approach 3: Containerizing All Software with Docker

The third approach containerizes all software in the end-to-end workflow in Docker: the core

model software, other secondary software, and workflows for running the experiment. After

creating a Dockerfile, it is easy to share and recreate a Docker image from it on different machines.

While there are some benefits in “Approach 3” compared to earlier approaches, there are some

inconveniences as well. First, to install additional software or Python packages permanently to the

secondary software requires changes to the Docker image, which can be time consuming to

rebuild. Also, if users install new Python packages in the Docker image without rebuilding the

Chapter 4

35

Docker image, Docker requires Python packages to be reinstalled when the container is started,

which can also be time consuming. Finally, researchers need to save their modeling results outside

of the Docker image before stopping the Docker container, or else the results will be lost as the

Docker container is temporary.

Figure 3.3 shows the general procedure of “Approach 3: Containerizing All Software with

Docker.” In the developer’s work, the first step is creating Jupyter notebooks to containerize

workflows into the Docker container. Next, developers must create a Dockerfile that includes each

command needed to containerize the environmental model software, Python-based model APIs,

and modeling workflows. In this approach, users only need to install the Docker tool and run the

Docker image because the Docker image has all of the required dependencies. Then users can open

and run Jupyter notebooks to reproduce the environmental model software, Python-based model

APIs, and the modeling workflows.

Figure 3.3. A general procedure of “Approach 3: Containerizing All Software with Docker”

3.2.2.4 Approach 4: Containerizing All Software with Singularity

The fourth approach containerizes all software using Singularity, which is another

containerization tool to support computational environments. Singularity is more popular to use in

HPC environments over Docker for avoiding security concerns, and we will describe the

characteristics of Singularity in detail later in “Approach 11: using a HPC Cluster.” A Singularity

image can be created using a Definition file, similar to Dockerfile, which defines an operating

system and various software requirements. Recently, many HPC environments, such as XSEDE

(an HPC resource on the Extreme Science and Engineering Discovery Environment), Rivanna

(HPC at University of Virginia), and NCAR (National Center for Atmospheric Research) HPC

support Jupyter and Singularity. Thus, it is possible to utilize a Singularity image through the

Jupyter user interface by linking the Singularity image and Jupyter notebooks through the Jupyter

kernel. In addition, the docker2singularity library can support automatically converting a Docker

image to a Singularity image.

Figure 3.4 shows the general procedure of “Approach 4: Containerizing All Software with

Singularity.” In the developer work, the first step is creating a Definition file to create a Singularity

Chapter 4

36

image that includes a dependency list. Next, developers need to make a “kernel.json” file to link a

Jupyter kernel with the Singularity image and Jupyter notebooks. Next, developers can share the

Singularity image through online repositories or Singularity Hub. Also, developers have to create

and share Jupyter notebooks and the model input for the modeling workflows. After the

developer’s work is complete, users need to first download the Jupyter notebooks, then open and

run the Jupyter notebooks. For automated workflows, Jupyter notebooks handle the rest of the

workflows such as downloading the Singularity image of the core model software, creating the

Jupyter kernel to create a link between the Singularity image and Jupyter notebooks, downloading

the model input data, and executing the environmental model.

Figure 3.4. A general procedure of “Approach 4: Containerizing All Software with Singularity”

3.2.2.5 Approach 5: Containerizing All Software and Modeling Workflows with Sciunit

The fifth approach is similar to the third and fourth approaches, except Sciunit is used as

the containerization tool. Sciunit was developed by the Geotrust project funded through the US

National Science Foundation (NSF) EarthCube program and is a tool to ease the process of

containerizing, sharing and tracking scientific applications, lowering the barrier to entry for

researchers. While Docker and Singularity require document scripts for creating container images,

Sciunit (That et al., 2017) can capture every dependency by monitoring software usage during

execution of the analysis workflow. Sciunit then generates container-like packages called sciunits

that contain all software used during the analysis workflow and that are portable across machines

and different computational environments. These sciunit packages are also more lightweight than

other containerization tools because Sciunit is able to trace the program execution and captures

only those software dependencies that the model run used. Therefore, Sciunit is helpful for

researchers who are non-experts to reproduce model run, but also experts can benefit from Sciunit

by creating minimal containers to reproduce computational experiments.

Figure 3.5 shows the general procedure of “Approach 5: Containerizing All Software and

Modeling Workflows with Sciunit.” Developers first need to create a Jupyter notebook to

encapsulate Sciunit workflows. Next, developers need to create a Sciunit image using the created

programming code and the Jupyter notebook. After that, developers can share the Sciunit image

and the Jupyter notebook. Users can then download a Sciunit image and a Jupyter notebook and

Chapter 4

37

only need to open and run a Jupyter notebook. Unlike other approaches, users do not need to

download the model input as the Sciunit image includes the model input and all the software

dependencies.

Figure 3.5. A general procedure of “Approach 5: Containerizing All Software and Modeling Workflows with

Sciunit”

3.2.3 Remote Reproducible Approaches

Many science gateways and virtual research environments (Prasad et al., 2020) and many

large companies (Google: Google Colab, Microsoft: Azure Notebooks, and Amazon: SageMaker)

have created advanced remote computing environments to support computational research and

education (Prasad et al., 2020). In this study, we considered four remote environments (CJH, CJW,

HPC, and Binder) and six approaches for reproducible modeling across these remote environments

using different containerization tools.

3.2.3.1 Approaches 6 and 7: Using CUAHSI JupyterHub and CyberGIS Jupyter for water

The sixth and seventh approaches use CJH and CJW, respectively, which are Docker-based

remote environments. Docker-based remote environments can provide consistent preconfigured

modeling environments and there has been a rapid adoption of Docker-based remote environments

in industry and academic fields (Prasad et al., 2020). CJH and CJW are two examples of such

remote environments. To add new Docker images into CJH and CJW, model developers need to

share Dockerfiles that have lists of the core model software and other secondary software with

CJH and CJW development teams. Then the CJH and CJW development team can review and

deploy the new Docker images into CJH and CJW. After deploying the new Docker images, users

can easily use the preconfigured environments for their modeling work. Also, CJH supports the

installation of a custom Conda VE, so users can easily apply new Python or other packages in a

consistent environment (Choi et al., 2021).

Figure 3.6 shows the general procedure of deploying environmental models and Python-

based APIs on CJH and CJW from the developer’s perspective and how to execute model software

using preconfigured modeling environments from the user’s perspective. The developer must

create a Dockerfile similar to “Approach 2” or “Approach 3” and may use GitHub to add a new

Chapter 4

38

Dockerfile as a pull request to the CJH or CJW GitHub. After sending a pull request to the GitHub

repository of CJH or CJW, the Dockerfile needs to be reviewed by CJH or CJW development team

to deploy a new Docker image. After finishing the developer’s work, users only need to log into

CJH or CJW and run Jupyter notebooks because modeling environments are preconfigured and

shared through environmental profiles of CJH or Jupyter kernels of CJW.

Figure 3.6. A general procedure to create “Approach 6 and 7: Using CUAHSI JupyterHub and CyberGIS Jupyter

for water”

3.2.3.2 Approach 8 and 9: Using Sciunit in CJH and CJW

The eighth and ninth approaches use Sciunit in CJH and CJW, respectively. Unlike Docker

and Singularity, Sciunit is an installable package in both local and remote Linux operating systems

without administrative privileges. Therefore, even without deploying preconfigured computational

environments in remote environments, researchers can containerize the core model software, other

secondary software, and modeling workflows after simply installing Sciunit. The general

procedure of Sciunit is the same with “Approach 5: Containerizing All Software and Modeling

Workflows with Sciunit.” Therefore, we have omitted additional explanation of the approach

including a general procedure figure since it repeats what is shown in Figure 3.5.

3.2.3.3 Approach 10: Using Binder

The tenth approach uses Binder, which is an open source web service to allow creating

sharable, interactive, and reproducible environments (Jupyter Project et al., 2018). Binder was

developed by integrating three tools: 1) JupyterHub deployed using Kubernetes, 2) Online open

source repositories (GitHub, Figshare, Zenodo, and HydroShare) combined with a Repo2Docker

library (Forde et al., 2018), and 3) BinderHub, a web-interface to bind JupyterHub and

Repo2docker using user-defined kernels and interactive sessions. JupyterHub and Kubernetes

support scalable interactive user sessions to handle many user sessions and sustainable user work.

Repo2Docker is a lightweight tool to convert online open-source repositories into a Docker image

that can be run with JupyterHub using various configuration files such as enivironment.yml,

Chapter 4

39

setup.py, install.R, postBuild, and Dockerfile. By combining these tools, Binder can create

containers to encapsulate the core model software and other secondary software, and generate user

sessions to run the computational workflows expressed as Jupyter notebooks. Also, Binder can

provide a URL to share with others that allows them to interact with the remote Binder

environment. However, currently Binder implementations like MyBinder.org do not support

persistent user sessions because sessions are ephemeral.

Figure 3.7 shows the general procedure of “Approach 10: Using Binder.” First, the

developer must create a configuration file that is supported by Binder to encapsulate the

environmental model software and Python-based model APIs used by the model. Next, the

developer must create Jupyter notebooks to document the modeling workflows. Then, the

developer needs to share configuration files and the Jupyter notebooks through an online repository

such as GitHub, Figshare, Zenodo, or HydroShare. After that, the developer uses the MyBinder

website (https://mybinder.org) to create a remote modeling environment for the modeling setup.

Finally, the developer can share the Binder URL pointing to the remote modeling environment

with end users.

Figure 3.7. A general procedure to create “Approach 10: Using Binder”

3.2.3.4 Approach 11: Using a HPC Cluster

The final approach uses a HPC cluster with Singularity to perform the model computation

in parallel. While Docker is the standard containerization tool, it does not meet the needs for

scientific computing in HPC environments (Kurtzer et al., 2017). A major limitation is security

concerns with using Docker in HPC environments because Docker requires root access to create

and execute Docker containers. To overcome these problems, Singularity was developed to

support portable and flexible computational environments without security risks, particularly for

the use case of HPC modeling (Kurtzer et al., 2017).

Figure 3.8 shows the general procedure of “Approach 11: Using a HPC Cluster.” Most steps

are the same as Approach 4 but there are two important differences. First, developers need to

upload a Singularity image into the HPC environment to use the containerized modeling

environment. Second, users only need to create a Jupyter kernel to establish a link between Jupyter

Chapter 4

40

notebooks of the modeling workflow and the Singularity image that the developer uploaded into

the HPC that includes the model code.

Figure 3.8. A general procedure to create “Approach 11: Using a HPC Cluster”

3.2.4 Evaluation

To evaluate each of the 11 approaches, we first selected an example modeling case study

including three components: SUMMA (Clark et al., 2015a) as the core model software,

pySUMMA (Choi et al., 2021) and other Python packages as other secondary software, and Jupyter

notebooks as modeling workflows. Each of these three components is described in further detail

in the coming subsections. Then, we defined quantitative and qualitative criteria to evaluate the 11

reproducible approaches. These evaluation criteria are also described in the subsections below.

3.2.4.1 The Example Modeling Case Study

SUMMA was selected as the case study model for this study because it is a general

environmental model that enables the controlled and systematic evaluation of multiple model

representations of hydrologic processes and scaling behavior through a flexible hierarchical spatial

structure. SUMMA was developed in the Fortran programming language; therefore, we need a

Fortran compiler (i.e., gfortran) to compile SUMMA source code. Also, SUMMA requires the

NetCDF (Network Common Data Form) and LAPACK (Linear Algebra PACKage) libraries. The

NetCDF library (libnetcdff.*) supports creating, accessing, and sharing data stored in a NetCDF

format. The LAPACK library provides a series of routines for linear algebra operations, including

matrix solvers. These libraries are considered core software for the model because they are

required for the model to run. SUMMA Makefile and Dockerfiles are shared through the SUMMA

GitHub repository (SUMMA GitHub, 2021) to support compiling SUMMA source code and

creating a SUMMA Docker image. Also, the created SUMMA Docker image is shared via

DockerHub (SUMMA DockerHub, 2021).

Other secondary software, not required to run SUMMA but convenient for working with

SUMMA models, includes pySUMMA: a Python-based SUMMA model API. pySUMMA allows

for programmatic control of the model configuration, execution, and visualization of SUMMA

models. Currently, pySUMMA can be installed from either a conda command (e.g., “conda install

Chapter 4

41

–c conda-forge pysumma”) or a pip command (e.g., “pip install pysumma”). Users can also

download the pySUMMA source code from the pySUMMA GitHub and install it manually using

“environment.yml” for conda install or “setup.py” for pip install. The “environment.yml” and

“setup.py” files have the lists of pySUMMA dependencies for each installation method, thus

making it possible to reproduce the pySUMMA environment with dependencies on a new

machine.

Finally, for modeling workflows we used Jupyter notebooks to document SUMMA and

pySUMMA modeling workflows through a mix of formatted text, mathematical equations, and

executable code with in-line visualizations. We created Jupyter notebooks for each reproducible

approach to encapsulate reproducible artifacts and modeling workflows for SUMMA and

pySUMMA. These notebooks are available as described in the Data and Software Availability

section.

3.2.4.2 Quantitative Performance

The following quantitative measures were used to evaluate each of the 11 approaches. (1)

Complexity considers the total number of steps weighted by the difficulty in reproducing each step

and is an important metric for lessening the burden of reproducibility work for researchers

(Atmanspacher et al., 2014). (2) The size of computational artifacts takes into account storage

requirements for storing and sharing each approach (Craig & Victoria., 2020; Kovács, 2017). (3)

The computational time measures the wall time required to execute the model and can vary

significantly across approaches (Kozhirbayev & Sinnott, 2017).

In the complexity metric, we measured the number of steps and the level of difficulty to

evaluate the complexity of each approach considering both developer work and user work. We

used the general procedures for the 11 reproducible approaches shown in Figures 3.1 through 3.8

to count the steps. We defined the level of difficulty for each step using three levels: Easy, Medium,

and Difficult. Considering the time and expertise required for completing a medium task, we set

the score to be five times that of an easy task. Likewise, we estimated that a difficult task was

twice the score of a medium task. Therefore, we set an Easy task to a score of 1, Medium to a score

of 5, and Difficult to a score of 10.

In the size metric, we measured how much space is used to store all components of the

reproducible environment. We only considered the size metric for the five local approaches

because the size of the preconfigured computational artifacts in remote environment will be

determined by the specific technical implementation in that remote environment.

Finally, in the computational time metric, we measured the execution time across all 11

reproducible approaches. In this performance metric, we measure time considering the capabilities

of the reproducible tools themselves in a local environment and extensible capabilities to connect

with remote environments such as using Dask (Rocklin, 2015) for parallel computing. As model

software is rapidly becoming complicated with the use of large datasets (Addor et al., 2017;

Boulmaiz et al., 2020; Kerandi et al., 2018), this computational time performance is critical. For

Chapter 4

42

example, many environmental models require multiple runs for calibration, sensitivity and

uncertainty analysis.

We measured these three metrics using a SUMMA modeling case study. Clark et al.

(2015b) created a set of thirteen SUMMA modeling datasets exploring various hydrologic

modeling scenarios. Based on these datasets, we created four scenarios (Table 3.4) using two

datasets to reproduce Figures 7, 8, and 9 in Clark et al. (2015b) and to measure computational time

across our eleven approaches. These four scenarios include additional model simulations based on

Clark et al. (2015b) to compare computational time across different simulation periods (15 vs 75

months) and intensity (3 vs 9 ensemble simulations). The first scenario is a single simulation

during 15 months for analyzing the impact on ET using the Simple Resistance method, which is

one of stomatal resistance parameterizations in SUMMA. The second scenario is nine ensemble

simulations for analyzing the impact on ET using 1) three different stomatal resistance

parameterizations which are Simple Resistance, Ball-Berry (Ball et al., 1987), and Jarvis (Jarvis,

1976) and 2) three different values (1.0, 0.5, 0.25) of the root exponential distribution parameter.

From the first and second scenarios, we reproduced Appendix Figure A.1 from Figures 7 and 8 in

Clark et al. (2015b) to verify the reproducible approach in this study. The third scenario is a single

simulation for a 75 month period for analyzing the impact on runoff using the 1d Richards method

(Celia et al., 1990), which is one of the lateral flow parameterizations in SUMMA. The last

scenario is three ensemble simulations for analyzing the impact on runoff using three different

lateral flow parameterizations: 1d Richards, Lumped Topmodel, and Distributed Topmodel (J.

Duan & Miller, 1997). From the third and fourth scenarios, we reproduced Appendix Figure A.2

from Figure 9 in Clark et al. (2015b).

Table 3.4. SUMMA simulation scenarios for comparison of computational time on eleven reproducible approaches

Scenario Descriptions

(d) Scenario -1
□ A single simulation (simple resistance method)

□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months)

(e) Scenario -2

□ Ensemble simulations (9 simulations)

- 3 different parameterizations (Simple Resistance, Ball-Berry, and Jarvis)

 × 3 different parameters (Root Exponential values 1.0, 0.5, 0.25)

□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months)

(f) Scenario -3
□ A single simulation (1d Richards)

□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months)

(d) Scenario -4

□ Ensemble simulations (3 simulations)

 - 3 different parameterizations (1d Richards, Lumped Topmodel, and Distributed Topmodel)

□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months)

3.2.4.3 Qualitative Performance

Qualitative performance was analyzed to complement limitations of using quantitative

performance measures alone. In evaluating qualitative performance, we describe the strengths and

weaknesses of each approach through experiences learned from applications of the 11 different

reproducible approaches from both the developer and user perspectives. We then classified various

Chapter 4

43

environmental modeling objectives into two broad categories: 1) education and 2) research

because the purpose of reproducibility is to practice and extend previous knowledge based on

confirmation of published results (Craig & Victoria., 2020; Prasad et al., 2020). Finally, based on

these strengths and weaknesses and the two broad categories, we present recommendations for

best practices when using the containerization approaches.

3.3 Results

3.3.1 Quantitative Performance

3.3.1.1 Complexity

Table 3.5 is an example of the complexity metric output for “Approach 2: Containerizing

the Core Model Software only with Docker.” In the developer work, we divided three categories

considering three primary components for this study. In the “1. Create a Reproducible Approach

for SUMMA” step for the core model software, we measured “1.1 Create SUMMA Dockerfile”

as a “Difficult” because creating the Dockerfile requires understanding the required dependencies,

executable locations of software, and Docker commands. “1.2 Create SUMMA Docker Image”

and “1.3 Share SUMMA Docker Image” were measured as “Easy” because this procedure can be

completed using simple Docker commands. In the “2 Create a Reproducible Approach for

pySUMMA” step for the secondary software, we measured “1.2 Create pySUMMA

environment.yml” as “Medium” because often users can simply install pySUMMA using pip or

Conda, but other times users have to install the software manually because of version conflicts

with Python or other Python packages. In the final step of the developer work, we measured “3.1

Create Jupyter Notebooks” as a “Difficult” because this process requires significant effort to

encapsulate SUMMA modeling workflows considering the interaction with online repositories and

software. In the user work, every step was measured as “Easy” because every reproducible

component is shared online, allowing users to complete each step using simple commands and

Jupyter notebooks. Similar tables to Table 3.5 for the other approaches are included in the

Appendix.

Chapter 4

44

Table 3.5. An example of reproducible approaches for “Approach 2: Containerizing the Core Model Software only

with Docker” (Tables for other approaches are in Appendix)

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA 12 1.Reproduce SUMMA, pySUMMA, and Modeling

Workflows
3

1.1 Create SUMMA Dockerfile Difficult 10

1.2 Create SUMMA Docker Image Easy 1 1.1 Install Docker Easy 1

1.3 Share SUMMA Docker Image Easy 1 1.2 Download Jupyter Notebooks Easy 1

2. Create a Reproducible Approach for pySUMMA 6

1.3 Open and Run Jupyter Notebooks

- Install pySUMMA

- Download SUMMA input

- Download SUMMA Docker Image

- Execute SUMMA

Easy

1

2.1 Create pySUMMA environment.yml Medium 5

2.2 Share Source Code and environment.yml Easy 1

3.Create a Reproducible Approach of Modeling Workflows 12

3.1 Create Jupyter Notebooks Difficult 10

3.2 Share Jupyter Notebooks Easy 1

3.3 Share SUMMA Input Easy 1

Total Score 30 Total Score 3

Figure 3.9 compares the total scores of complexity for the nine reproducible approaches

considered in this metric except for two Sciunit approaches “Approach-8 and 9” because of the

same complexity with “Approach-5.” Overall, user work is much simpler than developer work, as

expected, and we can see that creating appropriate reproducible approaches is important and

helpful for the reproducibility of other researchers (Piccolo & Frampton, 2016). In terms of

developer work, “Approach-1: Compiling the Core Model Software” is the most complicated

approach because it does not use containerization tools, so in this approach the developer needs to

reproduce every step individually. Compared to this, “Approach-5, 8 and 9: Using Sciunit” are the

simplest approaches. In terms of user work, most approaches are simple except for “Approach-1:

Compiling the Core Model Software.” “Approach-6 and 7: CJH and CJW”, “Approach 10: Using

Binder”, and “Approach-5, 8 and 9: Using Sciunit” are the simplest approaches because every

dependency for environmental modeling is preconfigured into containers. Sciunit is the simplest

and most straightforward from both the developer and user perspectives, because Sciunit can

containerize every modeling environment and workflow into a Sciunit container using model

execution code that was created for the original study, with no additional work. Users can

reproduce published results using Sciunit containers easily using simple Sciunit commands in a

Jupyter notebook.

Chapter 4

45

Figure 3.9. The total scores of complexity on reproducible approaches for developer and user work

3.3.1.2 Size of Reproducible Artifacts

Figure 3.10 shows the comparison of sizes for the five local reproducible approaches.

“Approach-5: Containerizing All Software and Modeling Workflows with Sciunit” is the most

lightweight and it is ten times smaller than “Approach-4: Containerizing All Software with

Singularity,” which is the second most lightweight. The reason for this is that Sciunit only

encapsulates dependencies when dependencies are used during modeling workflows, compared to

other containerization tools that containerize additional software and Python libraries perhaps not

directly used in the workflow. In addition, “Approach-4: Containerizing All Software with

Singularity” is more lightweight than approaches 1-3 (“Approach-1: Compiling the Core Model

Software”, “Approach 2: Containerizing the Core Model Software only with Docker”, and

“Approach 3: Containerizing All Software with Docker”) because Singularity utilizes a flatter

structure, meaning every dependency is included in only one image. In contrast, Docker has a layer

structure concept for multiple images; therefore, dependencies in each image can separately be

used. This concept used in Docker is not helpful for a single model software run, but it is important

when researchers want to use multiple commands with layered images such as web development

and operation. Finally, container tools have a compression function, so “Approach 3:

Containerizing All Software with Docker” is more lightweight than “Approach-1: Compiling the

Core Model Software” and “Approach 2: Containerizing the Core Model Software only with

Docker.”

Chapter 4

46

Figure 3.10. Comparison of the size for reproducible artifacts in five local reproducible approaches

3.3.1.3 Computational Time

Figure 3.11 shows the results of computational time for the five approaches using a local

computer. It shows that “Approach 2: Containerizing the Core Model Software only with Docker”

and “Approach-5: Containerizing All Software and Modeling Workflows with Sciunit” are slightly

slower than the other approaches. However, overall computational time is similar across the five

local reproducible approaches. For the remote approaches (Figure 3.12), “Approach 11: Using a

HPC Cluster” was the fastest approach, followed by “Approach-7: Using CJW.” Because CJW

and XSEDE are on separated machines connected by the Internet, unlike “Approach 11: Using a

HPC Cluster”, “Approach-7: Using CJW” requires additional time to submit jobs between CJW

to XSEDE and retrieve model output from XSEDE to CJW. Although there are variations

according to the status of memory use, the rest of the remote reproducible approaches are similar

to the local reproducible approaches. Also, Sciunit can currently use only one core. Because Dask

(Rocklin, 2015) automatically allocates multiple cores for ensemble simulations, Sciunit cannot

encapsulate ensemble simulations (Scenario 2 and 4). Therefore, when Sciunit reproduced

modeling workflows, it could not find cores that were used when a Sciunit container was created.

Hence, we could not measure its computational time for scenarios 2 and 4. From the performance

test of computational time, for data intensive modeling such as the simulation of fully distributed

models and Contiguous United States (CONUS) scale models, we can see that it is invaluable to

use remote environments, especially HPC clusters.

Chapter 4

47

Figure 3.11. Comparison of computational time in five local reproducible approaches

Figure 3.12. Comparison of computational time in six remote reproducible approaches

3.3.2 Qualitative Performance

Table 3.6 presents results from the qualitative performance tests for “Approach 1: Compiling

the Core Model Software.” As the GNU Make tool is a traditional method to reproduce model

software, GNU Make itself is important because, even though we use containerization tools, this

tool has to be used across the 11 reproducible approaches by the developer to build the SUMMA

executable. However, this approach is still difficult for model users. Therefore, programming

experts or model developers should use GNU Make to efficiently review and apply their new and

modified source code in model software. Consequently, we recommend this approach to

researchers who want to participate in model software development and management.

Chapter 4

48

Table 3.6. Qualitative evaluation and recommended uses for “Approach-1: Compiling the Core Model Software”

Scenario Descriptions [D: Developer, U: User]

Strengths
□ [D, U] GNU Make itself is important because this tool has to use in 11 reproducible approaches

□ [D] Efficient for model software developers to review and apply their new and modified source code

Weaknesses □ [U] Difficult to apply Makefile configuration setting for compiling model software

Recommended

usages
□ [Research] model software development and management

Table 3.7 presents the results of the qualitative performance evaluation for “Approach 2:

Containerizing the Core Model Software only with Docker.” This approach uses Docker to

containerize only the core model software; therefore, users can easily reproduce SUMMA using

Docker from DockerHub. In addition, because users can install and apply new Python libraries as

model APIs without any limitations, this approach has become popular. After downloading the

SUMMA Docker image and installing pySUMMA within a Conda VE, users can execute

SUMMA using the “docker” option in pySUMMA “run” method. Even if users have not

downloaded the SUMMA Docker image in local computer, pySUMMA can automatically

download it from DockerHub. However, sometimes when users create the Conda VE, unexpected

errors may occur causing the user to have to create the Conda VE manually. Therefore, we

recommend this approach for model applications where the user requires flexibility in what Python

packages and other libraries are needed to complete the application.

Table 3.7. Qualitative evaluation and recommended uses for “Approach 2: Containerizing the Core Model Software

only with Docker”

Scenario Descriptions [D: Developer, U: User]

Strengths
□ [U] Easy to download and use Docker images for model software via DockerHub

□ [U] Efficient to install new Python packages or other libraries for various application research

Weaknesses □ [U] Unexpected errors may occur when users create Conda VE manually

Recommended

usages
□ [Research] Model application with flexible application of various Python packages and other libraries

Table 3.8 presents the results for the qualitative performance evaluation for “Approach 3:

Containerizing All Software with Docker.” This approach containerizes every dependency into a

Docker image; therefore, the procedure is stable and consistent in that it is very unlikely that errors

will occur across users. However, there is a limitation for installing new software or dependencies.

Because users have to work inside a Docker image, even if users can install new dependencies,

they are temporary. Therefore, this approach is helpful for the purpose of offline education for

practicing and reproducing published results in local computers (public or personal computers),

but is less well suited for use cases that require extension of past work.

Chapter 4

49

Table 3.8. Qualitative evaluation and recommended uses for “Approach 3: Containerizing All Software with

Docker”

Scenario Descriptions [D: Developer, U: User]

Strengths

□ [U] Easy to download and use Docker images for environmental modeling via DockerHub

□ [U] Possible to use all required model software and other software from a Docker image

□ [U] Stable steps to use environmental models

Weaknesses □ [U] Limitation to install new model software or other software

Recommended

usages
□ [Education] Offline education requiring stable and consistent reproducibility

Table 3.9 presents the qualitative performance evaluation results for “Approach-5, 8 and 9:

Using Sciunit.” Sciunit has many advantages such as being the most simple and lightweight of the

11 reproducible approaches considered in this study. However, Sciunit sometimes struggles to

encapsulate not only every dependency, but also all workflows for complicated applications. Due

to the lightweight containers and easy installation of the Sciunit tool, this approach is helpful for

education use cases where instructors can share educational reproducible computational materials

and students are asked to containerize their own analyses. In addition, Sciunit is efficient in terms

of memory use for encapsulating all modeling environments, workflows, and data into one

container. Thus, it is also a powerful tool for reliable reproducible research without continuous

version control.

Table 3.9. Qualitative evaluation and recommended uses for Approach-5, 8 and 9: Using Sciunit

Scenario Descriptions [D: Developer, U: User]

Strengths

□ [D, U] The simplest complexity for reproducibility in both developer and user perspective

□ [U] The most lightweight in 11 reproducible approaches

□ [D, U] Easy to share Sciunit containers as a file format

□ [D, U] Possible to use Sciunit on local and remote environments after installing it using pip install

Weaknesses
□ [U] Niche usage comparing to Docker and Singularity, sometimes unstable to create containers

□ [U] Impossible to encapsulate automatic allocation of parallel computing such as Dask

Recommended

usages

□ [Education] Offline education

□ [Research] Reliable reproducibility because Sciunit can containerize all reproducible artifacts into a

 Container without significant memory use

Table 3.10 presents the qualitative performance evaluation results for “Approach-6 and 7:

Using CJH and CJW.” This approach allows for users to use preconfigured modeling

environments; therefore, users can use environmental models in a straightforward way without any

additional software installation. In addition, CJW supports HPC (XSEDE) use for parallel

computing. Also, CJH supports a custom Conda VE to install Python or other libraries

permanently, like the “Approach 2: Containerizing the Core Model Software only with Docker.”

However, there is a limitation to install a new model software into CJH and CJW by users because

both are developed by Docker, so there is a security issue when users install the new software.

Therefore, it takes time to deploy new software into CJH and CJW because the CJH and CJW

Chapter 4

50

development teams need a certain amount of time to review and deploy the new software on CJH

and CJW. Consequently, we recommend this approach for online education and data-intensive

computing research (CJW).

Table 3.10. Qualitative evaluation and recommended uses for “Approach-6 and 7: Using CJH and CJW”

Scenario Descriptions [D: Developer, U: User]

Strengths

□ [U] The simplest complexity for users, possible to use preconfigured modeling environments

□ [U] Possible to use HPC (XSEDE) for parallel computing (CyberGIS-Jupyter for water)

□ [U] Possible to install custom Conda VE (CUAHSI JupyterHub)

Weaknesses

□ [U] Impossible to install particular model software or packages that uses ‘sudo’ command

□ [D] Requires a certain amount of time to review and deploy a new software by CJH and CJW

 development team

Recommended

usages

□ [Education] Online education (CJH and CJW)

□ [Research] Data-intensive computing (CJW)

Table 3.11 presents the qualitative performance test results for “Approach 10: Using

Binder.” This approach allows developers to share modeling environments online with users

through a single click. Also, users can add new software or libraries, though users need to

understand how to edit Binder configuration files to do so. Despite these conveniences, MyBinder

has a limitation in persistent sessions because it supports these online modeling environments for

free. Therefore, if there is no activity by users for 10 minutes, the Jupyter modeling environment

is automatically shut down without saving into a persistent data storage. Therefore, we recommend

this approach for online education use cases, but not for more sophisticated research applications

unless Binder can be implemented with persistent data storage. That said, this approach is useful

as a preliminary auditing procedure for research applications to deploy new software or libraries

into Docker-based virtual research environments (Prasad et al., 2020) such as CJH and CJW

because both Binder and these cyberinfrastructure are developed by Docker.

Table 3.11. Qualitative evaluation and recommended uses for “Approach 10: Using Binder”

Scenario Descriptions [D: Developer, U: User]

Strengths □ [U] Easy to share modeling environments online

Weaknesses □ [U] Non-persistent sessions (automatically shut down if there is no activity for 10 min)

Recommended

usages
□ [Education] Online education

Table 3.12 presents the qualitative performance evaluation results for “Approach 11: Using

a HPC Cluster.” Comparing to “Approach-6 and 7: Using CJH and CJW”, “Approach 11: Using

a HPC Cluster” can add new model software or libraries by users without security issues.

Therefore, if researchers want to add new software by themselves and use HPC clusters for parallel

computing, “Approach 11” is the most appropriate approach. Therefore, we recommend this

approach for data intensive computing research. Currently, Singularity is less popular than Docker,

so sometimes researchers need to create Singularity definition files by themselves. In this scenario,

Chapter 4

51

we recommend researchers try to find a Dockerfile first and then use the docker2singularity library

to automatically convert the Dockerfile into a Singularity definition file.

Table 3.12. Qualitative evaluation and recommended use for “Approach 11: Using a HPC Cluster”

Scenario Descriptions [D: Developer, U: User]

Strengths

□ [D] Possible to add new software or libraries in HPC without other’s help

□ [D] Easy to convert Docker images to Singularity images using docker2singularity library

□ [U] The fastest computational time (Possible to use multiple cores for parallel computing in HPC)

□ [U] Lightweight than other reproducible approaches except Sciunit

Weaknesses
□ [U] Niche usage comparing to Docker

□ [U] Requires preinstalled JupyterHub environment in HPC for a user-friendly interface

Recommended

usages
□ [Research] Data and compute intensive modeling

3.4 Discussion

3.4.1 Guidance and Recommended Uses

Across the quantitative and qualitative results presented in this study, it is possible to draw

out best practices for leveraging containerization and computing environments to achieve

reproducible environmental modeling objectives. We can classify various environmental modeling

objectives into two broad categories: 1) education and 2) research. Traditionally, we practice

environmental modeling through classes and workshops in an “offline” manner that requires

installing software on local computers. However, recently many educational institutions are

transitioning to remote or “online” compute environments (Prasad et al., 2020). Therefore, we

divide the objectives of education into 1) online and 2) offline. For environmental modeling

research, we can generally divide the objectives of research into 1) model installation as

developers, 2) model application as users, and 3) data-intensive computing for complex modeling

using large datasets (Addor et al., 2020).

For education purposes, especially online education, “Approach-6 and 7: Using CJH and

CJW” and “Approach 10: Using Binder” are the best approaches because they offer the lowest

complexity for users (complexity score of users: 2, Figure 3.9). In addition, these remote

reproducible approaches offer more flexibly than HPC because, in general, HPC requires more

rigid account permissions (like YubiKey for NCAR HPC) than CJH and CJW. Moreover, these

environments support easy sharing via HydroShare and preconfigured modeling environments.

Sciunit also has the lowest complexity; however, because Sciunit needs to encapsulate

dependencies and workflows together, sometimes creating Sciunit containers can be more unstable

than other approaches. Next, for offline education, “Approach 3: Containerizing All Software with

Docker” and “Approach-5: Containerizing All Software and Modeling Workflows with Sciunit”

are the best approaches because of the first and second lowest complexity scores for users (2 for

Approach-5 and 3 for Approach 3). Among these reproducible approaches, if users want a more

reliable approach, “Approach 3: Containerizing All Software with Docker” is better because

Docker containerizes every dependency into Docker images. In addition, if users want a more

lightweight approach (Figure 3.10) to distribute containerized images and a reliable approach

Chapter 4

52

without considering version control for offline education, “Approach-5: Containerizing All

Software and Modeling Workflows with Sciunit” is better.

For the purpose of model development in research, “Approach-1: Compiling the Core Model

Software” is the only approach that can build new or modified model software source code

efficiently. Other approaches can only create a container image using existing model software

source code for reproducibility. For the purpose of model application in research, “Approach 2:

Containerizing the Core Model Software only with Docker” and “Approach-6: Using CJH” are

the best because these approaches have the flexibility to install and apply new Python libraries for

various analyses and visualizations. For the research purpose of data-intensive computing,

“Approach- 7: Using CJW” and “Approach 11: Using a HPC Cluster” are the best approaches

because both remote approaches are able to use multiple cores for parallel computing; therefore,

these two approaches have the first and second fastest computational time (Figure 3.12).

Table 3.13. Best practices for reproducible approaches on local and remote environments to achieve environmental

modeling objectives

Objectives Best Practices

(a) Education
(1) Online
 (Class or Workshop)

□ CUAHSI JupyterHub and CyberGIS-Jupyter for water (AP-6 and 7) and

 Binder (AP-10)

→ The lowest complexity for users (score:2), a flexible approach, and easy sharing

(2) Offline
 (Class or Workshop)

□ Containerizing Model Software and Other Software (AP-3) and Sciunit (AP-5)

→ The first (AP-5, score:2) and second (AP-3, score:3) lowest complexity for

 users, a more stable approach (AP-3), and the most lightweight artifacts (AP-5)

(b) Research (3) Model

 Development

□ Compiling Model Software (AP-1)

→ The only approach to build new or modified model software source code

(4) Model

 Application

□ Containerizing Model Software (AP-2) and CUAHSI JupyterHub (AP-6)

→ Lower complexity than others (score:3), flexibility to install and apply new

 Python libraries for various analysis and visualization

(5) Data-Intensive

 Computing

□ CyberGIS-Jupyter for water (AP-7) and HPC Cluster (AP-11)

→ The first and second fastest computational time, possible to use multiple cores
 for parallel computing

3.4.2 Limitations of Current Sciunit Software

“Approach-5, 8 and 9: Using Sciunit” is the simplest and most lightweight reproducible

approach. However, because Sciunit is still in active development, there are limitations to

reproduce modeling environments and workflows together in Sciunit. As Sciunit containerizes

both modeling environments and workflows, Sciunit has to interact with the same workflow that

was applied to create the Sciunit container. Other approaches such as Docker and Singularity

separate the computational modeling environments and workflows, so they are more flexible than

Sciunit and can apply different workflows based on containerized computational environments.

Therefore, Sciunit is developing a functionality to convert a Sciunit container to a Docker image

for more flexible workflow applications. In addition, Sciunit only containerizes dependencies that

were used in workflows; therefore, users cannot employ functions that were not originally part of

workflows that created the Sciunit container even though these functions exist in model software

or Python-based model APIs. Therefore, Sciunit is in active development to develop a way to

Chapter 4

53

import new libraries into Sciunit containers. Moreover, as Sciunit encapsulates modeling

environments and workflows simultaneously, Sciunit can cause unpredictable errors during

tracking and self-containerizing. Therefore, Sciunit needs more experiments and evaluations in

various modeling environments and workflows.

3.4.3 Limitations of Currently Available Virtual Environments for Environmental

Modeling

“Approach-6 and 7: Using CJH and CJW” use a Jupyter interface and have been widely

used because of easy access and preconfigured modeling environments (Prasad et al., 2020).

However, these virtual research environments still have limitations for users installing new

software. Therefore, to foster remote environmental modeling, we need more compatible

computational modeling environments to allow users to install new software on virtual research

environments. The “udocker” tool, which is a tool for using Docker without privileges (Gomes et

al., 2018), would allow users to add new model software to a Docker image. In addition, we need

official and standard procedures for adding new software on CJH and CJW because the CJH and

CJW development team cannot control every deployment of new software. Using compatible

capabilities to install new software, users could verify modeling environments in their own user

sessions. Then, once tested, they could request their successful modeling environments be made

public for other researchers to use on the CJH and CJW.

“Approach 10: Using Binder” is also a powerful remote modeling environment. But there

are limitations such as if users have no activity for 10 min, the MyBinder user session is

automatically shut down. This is because creating MyBinder sessions on BinderHub is open to

anybody, anywhere, and anytime for free. Therefore, some time limits for BinderHub user session

resources are inevitable. As a short term solution, the current Binder supports an automatic save

function when the user session is shut down if users are setting the local directory to save files in

the user session. A potential solution would be creating online JupyterHub environments with a

Binder-ready repository such as GESIS Notebook (https://notebooks.gesis.org).

3.5 Conclusions
Reproducibility is the cornerstone of science because it allows for the accumulation of

knowledge by building on prior work (Pauliuk, 2020). While recent research has highlighted the

difficulties in achieving reproducible computational work (Monya Baker, 2016) such as sharing

modeling environments and automated workflows, gaps remain in understanding how to

effectively use modern software tools and practices to achieve more reproducible computational

analyses (Kim et al., 2018). To this aim, we explored 11 approaches for achieving reproducible

modeling goals using a combination of different containerization tools and virtual environments.

We assessed the approaches using both quantitative (complexity, size of reproducible

environments, and computational time) and qualitative (strengths, weaknesses, and recommended

usages) measures in order to offer perspectives on the best practices for different use cases

commonly in the environmental modeling community. We used SUMMA, pySUMMA, and

Jupyter notebooks to represent a common environmental modeling use case to assess the 11

methods.

Chapter 4

54

From this study, we showed how no single approach is the best for all reproducibility use

cases. We need to understand the specific modeling reproducibility objectives and find the best

approach for those objectives. For educational use cases, we considered low complexity for users

as the most important factor. Thus, the best methods for online education are CUAHSI JupyterHub,

CyberGIS Jupyter for Water, and Binder (Approaches 6, 7, and 10) and the best method for offline

education is Sciunit (Approach 5). For research use cases, we considered three possible objectives:

model development, model application, and data-intensive modeling. For model development, it

is important to be able to recompile after editing and updating model source code; therefore, the

best method for model development is compiling the core model software (Approach 1). For model

application, flexibility is important to deploy new software and to apply new methods; therefore,

the best methods for model application are containerizing the core model software only with

Docker and using an online JuypyterHub environment like CUAHSI JupyterHub (Approaches 2

and 6) for deploying the software. For data-intensive computing, it is important to be able to use

multiple cores to improve computational time; therefore, the best methods for data-intensive

computing are using Singularity for containerization with either the CyberGIS Jupyter for Water

environment, which interfaces with XSEDE, or a HPC cluster with a Jupyter instance as the

computational environment (Approaches 7 and 11).

Future research to further advance reliable and efficient reproducible approaches for

environmental modeling should improve weaknesses in reproducible approaches we identified in

this study. For education purposes, the trend of environmental modeling is moving to remote or

online computational environments, so we need to focus on deployment flexibility for virtual

research environments and persistent sessions and storage for solutions like Binder. While Sciunit

has the strongest capabilities compared to other approaches for environmental modeling, it can

benefit from adding flexibility to apply different modeling workflows and new software

dependencies. This continued research and virtual environment enhancement will improve the

software ecosystem needed to make computational research more reproducible, open, transparent,

ultimately fostering a “culture of reproducibility” (Rosenberg et al., 2020) within environmental

modeling.

Data and Software Availability

All data and computational environments used in this study are ten HydroShare resources

and three GitHub repositories. We published all data and computational environments with

persistent digital object identifiers (DOI’s) on HydroShare and shared them by a collection

resource in HydroShare (Choi Y. J., 2021). This collection resource provides the links for all

HydroShare resources as “Collection Contents” and three GitHub repositories as “Related

Resource Reference.” Ten HydroShare resources consist of one collection resource, two model

instance resources for SUMMA model input, one model program resource for Singularity image,

one composite resource for Virtual Box image of five local approaches, four composite resources

for Jupyter notebooks of four remote approaches (AP-6, 7, 8, and 9), and one composite resource

for a Jupyter notebook to create Figure 3.9-3.12 using performance results. Three GitHub

repositories created to share Jupyter notebooks and configuration files for AP-3, AP-4, AP-10, and

AP-11.

Chapter 4

55

List of Relevant URLs

Binder: https://mybinder.org

Binder Configuration: https://mybinder.readthedocs.io/en/latest/using/config_files.html

CSDMS: https://csdms.colorado.edu/wiki/Hydrological_Models

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org

Docker recipes of CUAHSI JupyterHub: https://github.com/CUAHSI/cuahsi-stacks

CyberGISX: https://cybergisxhub.cigi.illinois.edu

CyberGIS-Jupyter for water: http://go.illinois.edu/cybergis-jupyter-water

Docker recipes of CyberGIS-Jupyter for water: https://github.com/cybergis/Jupyter-

xsede/tree/master/singularity_def

docker2singularity: https://github.com/singularityhub/docker2singularity

Figshare: https://figshare.com

GESIS Notebook: https://notebooks.gesis.org/binder

GitHub: https://github.com

Google Colab: https://colab.research.google.com

GNU compilers (gfortran): https://gcc.gnu.org/fortran

GNU compilers (GCC): https://gcc.gnu.org

GNU builders (Make): https://www. gnu.org/software/make

HydroShare: https://www.hydroshare.org

Jupyter notebooks for pySUMMA tutorial: https://github.com/arbennett/pysumma-tutorial

Microsoft Azure: https://note books.azure.com

NCAR, National Center for Atmospheric Research, HPC: https://jupyterhub.ucar.edu

Pip: https://pip.pypa.io

pySUMMA: https://github.com/UW-Hydro/pysumma

Python: https://www.python.org

R: https://www.r-project.org

Rivanna, HPC at University of Virginia HPC: https://www.rc.virginia.edu

SUMMA GitHub: https://github.com/NCAR/summa

SUMMA DockerHub: https://hub.docker.com/r/uwhydro/summa

Chapter 4

56

Virtual Box: https://www.virtualbox.org

Virtualenv: https://virtualenv.pypa.io

XSEDE, an HPC resource on the Extreme Science and Engineering Discovery Environment,

https://www.xsede.org

Zenodo: https://zenodo.org

Chapter 4

57

Chapter 4

4 Toward Seamless Environmental Modeling:

Integration of HydroShare with Server-side

Methods for Exposing Large Datasets to Models

4.1 Introduction
Reproducibility is a fundamental requirement to accumulate knowledge and advance science

(Monya; Baker, 2016; National Academies of Sciences, 2019; Stagge et al., 2019; Wilkinson et

al., 2016). In Nature’s survey of reproducibility, however, about 70% of researchers had failed to

reproduce another researcher’s results and 50% of researchers failed to reproduce their own

research results (Monya; Baker, 2016). To improve reproducibility, data management and

stewardship are the basic elements (Wilkinson et al., 2016). However, a data science survey

reported that data scientists spent 19% of their time collecting data (finding and accessing) and

60% of their time cleaning and organizing data (CrowdFlower, 2016). That leaves 21% of their

time for core analysis. To overcome these problems, the FAIR principles have been presented as

high level guidelines to improve scientific data management and access by making them Findable,

Accessible, Interoperable, and Reusable (Wilkinson et al., 2016). The FAIR principles emphasize

the necessities of both human and machine applicable data management environments. Ongoing

efforts on FAIR guiding principles have advanced data repositories with identifier mechanisms,

data management plans, policies and standards (Hodson et al., 2018). Based on the use of unique

identifiers, such as the Digital Object Identifier (DOI) or other persistent identifiers, data can

become “Findable.” Public machine-accessible interfaces allow datasets and metadata to become

“Accessible,” and the use of standard terms, metadata, and wide range of datatypes allows data to

become “Interoperable.” Finally, detailed documents together with metadata can allow data to

become “Reusable.”

Recently, numerous online repositories have accepted FAIR principles and enhanced their

functionalities to be more Findable, Accessible, Interoperable, and Reusable (Crosas, 2020;

Wilkinson et al., 2017). For example, Dataverse (https://dataverse.org) provides the functionalities

to create Digital Object Identifiers (DOI), share metadata and data files, and access data with public

licenses on their data landing pages. Similar to Dataverse, FigShare (https://figshare.com),

Mendeley (https://mendeley.com), and Zenodo (https://zenodo.org/) are other online repository

examples that support these capabilities to follow FAIR principles. However, these online

repositories have been developed for general purposes and have focused on data publication using

metadata at the file level. This means the data are preconfigured for particular purposes, such as

understanding published research and practicing data analysis in workshops. Therefore, there are

limitations regarding reusability for multiple applications across different case studies and

interoperability for programmatic access to multiple data collections using complementary tools.

Chapter 4

58

In the hydrologic science community, the types of data and models, and thus the data and

file sharing needs of the modeling community, are diverse (Horsburgh et al., 2016). HydroShare

(https://www.hydroshare.org) helps to meet these needs by providing an online repository to

support sharing these multiple types of data and models (Morsy et al., 2017). Data types include

time series, geographic features (Shapefile), geographic rasters (GeoTIFF), and multidimensional

space-time datasets (NetCDF). In addition, HydroShare supports model sharing using model

programming (source code or compiled software with related metadata such as version,

programming language, and release date) and model instance resources (model input and output

with related metadata such as application methods and a relationship to a model program resource).

After creating a HydroShare resource, users can share it using a unique URL (public sharing status)

or DOI (published sharing status). Moreover, HydroShare supports RDF (Resource Description

Framework) HydroShare Python Client, hsclient (https://github.com/hydroshare/hsclient) to

interact with HydroShare resources and JupyterHub computational environments (CUAHSI

JupyterHub and CyberGIS-Jupyter for Water) for various analyses such as modeling and big data

analysis using Jupyter notebooks (Choi et al., 2021). Therefore, we can say HydroShare supports

FAIR principles, using unique identifiers (Findable), metadata of multiple resource types

(Accessible), hsclient (Interoperable), and JupyterHub (Reusable). HydroShare is mainly utilized

for spatial data publication at the file level and is not commonly used to distributed large, national-

scale datasets. However, HydroShare does serve as a shortcut to the CUAHSI HIS HydroClient

(https://data.cuahsi.org), an external web application to support national-scale time series data

distribution. However, there is no similar support for national-scale spatial data distribution within

HydroShare.

For national-scale spatial data sharing, there are a number of government-sponsored

organizations and research centers with open-web data distribution systems. For example, USDA

(United States Department of Agriculture) NRCS (National Resources Conservation Service)

provides over 100 high resolution raster and vector data such as Census, Digital Elevation Model

(DEM), Hydrography, Land Cover, Soil, and Transportation in the Geospatial Data Gateway

(https://datagateway.nrcs.usda.gov). USGS 3D Elevation Program (3DEP,

https://www.usgs.gov/core-science-systems/ngp/3dep) provides various elevation maps such as

DEMs and Lidar point clouds. MRLC (Multi-Resolution Land Characteristics Consortium,

https://www.mrlc.gov) currently provides land cover, tree canopy, urban imperviousness and other

related data from 2001 to 2016. In addition, some open-web distributed systems support

application programming interfaces (APIs) to programmatically interoperate between users and

open-web distributed system. However, the use of spatial data APIs is difficult and has a steep

learning curve. Therefore, usually researchers collect spatial data manually, meaning downloaded

needed data from these open-web distributed systems, for their modeling needs.

Service-Oriented Architecture (SOA) and open web-based data sharing technologies have

been put forth as more convenient data access approaches, as well as approaches for integration of

certain environmental models (Chen et al., 2020). However, these advanced approaches care

difficult to design, build, and sustain, especially for the complex and heterogeneous data required

in environmental modeling. Miles and Band (2015) put further one solution to the problem: the

Ecohydrolib Python library for managing spatial data acquisition and preparation workflows for

Chapter 4

59

ecohydrology modeling. The idea was to access data from data providers and to use data processing

software to map these data into specific environmental model needs. HydroTerre (L. N. Leonard,

2015) offered a different approach to solving the problem by created a database of essential

terrestrial variables built from multiple national-scale spatial datasets and processed to create input

to the PIHM (The Penn State Integrated Hydrologic Modeling System) (M. Kumar et al., 2010)

model. The EcoLib approach relied on having consistent and reliable APIs from data providers,

which can change and create vulnerabilities within the system. The HydroTerre approach removed

the reliance on data providers by creating copies of the data, but doing so for the national creates

a major data management and storage problem due to the scale of the data required.

There are a growing number of scientific datasets that are national and international in scope,

and that could benefit from ways to easily share them online in a machine readable way. Large

sample hydrology studies (Addor et al., 2020) have become popular to cover large areas with

consistent and robust high-quality datasets to “balance depth with breadth” (Gupta et al., 2014).

For example, Model Parameter Estimation Experiment project (MOPEX) provided

hydrometeorological observation and attribute data for 438 catchments across the USA (Q. Duan

et al., 2006). Another example is the European catchments of Hydrological Predictions for the

Environment model (E-HYPE), providing streamflow data and catchment attributes in 35,215

catchments and 1,366 river gauges in Europe (Kuentz et al., 2017). In an recent effort, Catchment

Attributes and Meteorology for Large sample Studies (CAMELS, 671 catchments in the USA)

(Addor et al., 2017; Newman et al., 2015) and CAMELS-Chile (516 catchments in the Chile)

(Alvarez-Garreton et al., 2018) were created to provide climate data and catchment attribute data.

Computational platforms are being developed to support big data in geosciences. For example,

PANGEO (https://pangeo.io) supports a community platform with big data in climate, hydrologic,

and ocean field (Hamman et al., 2018). However, outside of such systems, MOPEX, E-HYPE,

CAMELS, and CAMELS-Chile data need to be downloaded manually and processed to be used

in particular environmental models.

Recent research has made strides to overcome the limitations of spatial data sharing. In

HydroShare, for example, two server-side methods are used to distribute spatial data in a machine-

readable form: GeoServer (http://geoserver.org) (Crawley et al., 2017) and Thematic Real-time

Environmental Distributed Data Services (THREDDS) Data Server (TDS) (Gan et al., 2020).

GeoServer supports data access, display, and processing of geographic raster and feature data using

the Open Geospatial Consortium (OGC) web service (OWS) (Wenjue et al., 2004). TDS is an

advanced client/server software that provides remote access to data and metadata stored in various

geo-temporal datasets. Using these services, HydroShare users can easily share, access, retrieve,

and subset geographical data via GeoServer and various types of scientific data such as NetCDF

via TDS. Automatic metadata harvesting and data transfer functionalities in HydroShare enable

user uploaded NetCDF, geographic rasters, and feature data to be available through its connected

GeoServer and TDS instances. This allows functionalities provided by GeoServer and TDS to be

leveraged to not only visualize but also analyze spatial data stored in HydroShare. Despite the

availability of these capabilities of GeoServer and TDS, both are being underutlized in

HydroShare. For example, GeoServer is mainly being used for visualizing geographic raster and

feature data online. TDS is mainly being used for sharing and visualizing grid-based

Chapter 4

60

multidimensional climate data (Gan et al., 2020). The goal of this research is, therefore, to explore

how these services can be used to support more complex use cases required in environmental

modeling.

With this goal in mind, we aim to answer the following research questions. 1) Can the

GeoServer and TDS implementations with HydroShare be used to enable more seamless

environmental modeling? 2) Can HydroShare along with GeoServer and TDS provide a more

sustainable and scalable solution for sharing machine-readable large-extent spatial datasets? The

remainder of the paper is organized as follows. In the methodology section, we first present the

procedures for creating large-extent spatial (LES) datasets and sharing them on GeoServer and

TDS in HydroShare. Second, we describe how to subset LES datasets from GeoServer and TDS.

Third, we present application workflows of these datasets for seamless environmental modeling

using the Regional Hydro-Ecologic Simulation System (RHESSys) (Tague & Band, 2004a) as an

example modeling system. In the results section, we present examples for three different

watersheds: 1) Coweeta Subbasin18 in North Carolina, 2) Scotts Level Branch in Maryland, and

3) Spout Run in Virginia. In the discussion section, we review the advantages and limitations of

using LES datasets on GeoServer and TDS. Finally, we conclude with a summary of the

contributions of this research and suggest pathways for future research to further advance spatial

data analysis in end-to-end environmental modeling.

4.2 Background

4.2.1 GeoServer

GeoServer is a Java-based open-source software that has been developed for publishing and

visualizing spatial data online. Open Geospatial Consortium (OGC), a non-profit organization, has

released standards for sharing spatial data online including the Web Map Service (WMS), Web

Feature Service (WFS), and Web Coverage Service (WCS). WMS provides geo-registered spatial

images either as a jpeg or png using a simple HTTP interface. WFS provides the direct

interoperability to discover, retrieve, and subset feature geographic data rather than sharing

geographic data at the file level. WCS is similar to WFS except that WCS provides direct

interoperability to the raster geographic data. In addition, there are many client libraries that use

OGC web service interface standards. In this study, we used OWSLib to visualize, retrieve, and

subset spatial data using various formats such as through OGC web services, Shapefiles,

ArcGRID, and GeoTIFF. In the past, GeoServer has been used within Hydroshare to support

spatial data visualization. Initially it served as the spatial backend for the Hydroshare GIS Web

App that was based on the Tethys framework (Crawley et al., 2017). This app has been deprecated

in favor of an implementation that uses GeoServer natively to provide direct access to the data

through built-in standardized OGC compliant web services. This feature allows sharing and

visualizing public resources in HydroShare that contain spatial data. Every resource that becomes

public and contains geographic raster or feature content is automatically registered with GeoServer

using a customized middleware.

Chapter 4

61

4.2.2 THREDDS Data Server (TDS)

The Thematic Real-time Environmental Distributed Data Services (THREDDS) Data

Server (TDS) is open-source software distributed by the Unidata community program of the

University Corporation for Atmospheric Research (UCAR). TDS provides web services that

publish remote access to data and metadata stored in a variety of well-known geo-temporal dataset

formats used for environmental research such as GRIB (Gridded Binary), HDF5 (Hierarchical

Data Format version 5), and, most commonly, NetCDF (Network Common Data Form) as viewed

through a Common Data Model (CDM) (Nativi et al., 2008). TDS presents gridded, point, and

time series datasets organized into thematic catalogs and provides access to data through suites of

web services such as TDS and OGC.

The Open-source Project for Network Data Access Protocols (OPeNDAP) specifies two

suites of web service requests and responses, DAP2 and DAP4, for remotely accessing CDM

datasets. Remote access of TDS-hosted datasets through DAP2 client software allows the

advantage of placing dimensional constraints on the CDM variable arrays transported in a

response. The DAP2 request contains the constraints and effectively creates a subset of the TDS-

hosted dataset for transport. The requesting client, therefore, need not concern itself with the size

of the TDS-hosted dataset, but only with the size of the data response.

As an additional advantage, DAP2 clients, such as Unidata’s NetCDF libraries or higher-

level software utilizing those libraries such as xarray, initially make requests for only the metadata

contained in the CDM header via a DAP2 Data Descriptor Structure (DDS) request and do not

further request data until the variable array data is instantiated in the client via a DAP2 Distributed

Oceanographic Data Systems (DODS) request. This “lazy-loading” behavior allows remotely

opening the entire dataset but only transports portions of the dataset as needed programmatically,

thereby reducing network load, transmission time, and memory consumption.

In contrast, due to dimensional constraints in DAP2 requests and DAP2 client lazy-loading,

tools which assemble and manage Network Common Data Form (NetCDF) datasets have more

influence on the size of TDS-hosted datasets. When only subsets of the datasets require transport,

practicalities concerning dataset construction and server-side dataset management become the

principles determining how to best partition large collections of data. Often the tools and computer

stations which remotely access CDM datasets through TDS are the same or similar tools and

stations constructing and managing the datasets prior to hosting. When collection-wide views of

data are desirable, TDS supports NetCDF Markup Language (NCML) facilities to aggregate many

datasets into one virtual dataset.

CDM is a general model for dataset, dimensional, and variable attribute instantiation. Many

TDS services depend on the recognition of dataset feature types (i.e., point, trajectory, station,

profile, radial, grid, swath, etc.) for optimal operation. NetCDF, which configures metadata in

compliance with Climate Forecast (CF) conventions, also enables both TDS and DAP2 clients to

intelligently recognize feature types beyond what the general model would otherwise convey,

particularly for geo-referencing and projection.

Chapter 4

62

4.3 Methodology
Figure 4.1 presents the overall modeling workflow used as a demonstration case study in the

study. The figure shows how datasets can be shared through HydroShare with different data

management and distribution systems underneath. All files in HydroShare are stored in iRODS,

which is a distributed data storage and management system that also allows for the transfer of large

datasets (Yi et al., 2018). Public spatial datasets are also replicated into GeoServer and TDS in

HydroShare. We describe how to retrieve spatial datasets from GeoServer and TDS for supporting

seamless end-to-end environmental modeling. To do this, we present an example application

showing how to use LES datasets within RHESSys on CyberGIS-Jupyter for Water platform,

which is a well-tailored CyberGISX instance to support data-intensive and reproducible research

in environmental modeling community. Further detail on these steps is provided in the following

subsections.

Figure 4.1. The workflows to create, share, subset, apply, and evaluate LES datasets for seamless environmental

modeling workflows

4.3.1 Create and Share Large Spatial Sample Datasets

4.3.1.1 Collect Spatial Data

Environmental models often require spatial datasets including digital elevation models

(DEMs), land cover, and soil maps to generate model inputs (DeVantier & Feldman, 1993). DEMs

are used to delineate a watershed and extract spatial attributes such as flow direction, slope, aspect,

and flow accumulation. The land cover is used to calculate surface roughness, evaporation, and

transpiration according to the different land cover types such as urban, agricultural, and forest

areas. The soil map is used to calculate water movement through soil including infiltration.

Currently, there are many web-based spatial data distribution systems that provide spatial data

from low to high resolution. They provide low resolution data services such as the 90 meter

resolution Shuttle Radar Topography Mission (SRTM) (https://srtm.csi.cgiar.org) and the Google

Earth Engine Datasets (https://earthengine.google.com) for various earth science data and analysis.

National scale data is supported by federal government organizations such as USGS and USDA

Chapter 4

63

as mentioned earlier. High resolution data services, most often hosted by particular research

centers or state government organizations such as Chesapeake Conservancy Conservation

Innovation Center, provide 1 meter resolution or higher DEM and land cover data.

Hydrologists most often use 10 or 30 meters resolutions of GeoTIFF data in environmental

models considering the size of watersheds. For collecting DEM, we tested different data

distribution interfaces and selected the Geospatial Data Gateway (GDG), which is operated by

inter-government cooperation between the three service center agencies: Natural Resources

Conservation (NRCS), Farm Service Agency (FSA), and Rural Development (RD). We selected

GDG because it distributes data by various selection interfaces including by states, counties,

bounding box, and custom area of interest. For collecting land cover, we emphasized data

continuity for various applications such as land cover change. Therefore, we selected MRLC,

which is a group of federal agencies, because this product provides consistent and reliable land

cover information from 2001 to 2016 at the national scale. Finally, for collecting soil data, we

selected GDG. There are three soil datasets in GDG: 1) the National Soil Geographic Database

(NATSGO), which is a very general soil map of the entire U.S., 2) the State Soil Geographic

Database (STATSGO), which is less detailed state-wide map, and 3) Soil Survey Geographic

Database (SSURGO), which is the most detailed county level data. To support watershed modeling

use cases, we obtained the most detailed soil data from SSURGO. In addition, we collected

attributes data of SSURGO for environmental models. GeoTIFF datasets have Mukey (Map unit

key which is the index to link different soil metadata table) values in each cell. Therefore, we

selected five SSURGO attribute tables that RHESSys required to link with the Mukey in the

GeoTIFF: 1) mapunit (mukey table), 2) chorizon (horizon table), 3) chtexgrp (horizon texture

group table), 4) chtextur (horizon texture table), and 5) comp (component table). These tables are

distributed at the county level though the Web Soil Survey web distributed system, which is linked

by GDG. Therefore, we downloaded county-level SSURGO metadata for each state and merge

them into a single SSURGO attribute table that can be joined to the GeoTIFF through the Mukey

attribute.

After selecting a source for obtaining the spatial datasets, we next decided the best scale

(National, State, or Local) for storing the datasets in HydroShare. In making this decision, we

considered 1) the file size of spatial datasets, 2) the capabilities of GeoServer and TDS at handling

different sized datasets, and 3) the reusability of applications across different watersheds.

Ultimately, we decided that aggregating the spatial data at the state-scale would be best for the

following reasons. First, we considered the feasibility of using national-scale spatial data within

GeoServer and TDS because this would allow for truly seamless environmental modeling. The

size of national-scale 30 meter resolution DEM, land cover dataset, and SSURGO dataset at the

national scale are 44.6GB, 20GB, and 3.7GB, respectively. We were unable to find specific

guidelines for the maximum size of datasets distributed using GeoServer and TDS. However, in

our experience if a GeoTIFF is over 5~10 GB, it is difficult to manipulate them on most personal

computers, therefore while a national-scale dataset may be feasible, it would be difficult to work

with and maintain. Next, we considered state-scale data aggregations. In this case and using

Virginia as an example, the DEM is 951MB, land cover is 342MB, and SSURGO is 157MB. At

this file size, the process of uploading and subsetting the data on GeoServer and TDS went

Chapter 4

64

smoothly. If datasets are smaller than state scale, it will be hard to support seamless modeling

because many watersheds cross county boundaries. Therefore, in this study, we chose state scale

as the optimal aggregation for distributing LES datasets. Finally, based on this decision, we

obtained 10 or 30 m DEM and 30 m SSURGO spatial data from GDG. Also, we collected 30 m

land cover spatial data in 2001, 2003, 2006, 2008, 2011, 2013, and 2016 from MRLC to create

state scale LES datasets (Figure 4.2). The following subsections describe how these data were

processed to have a consistent spatial reference system and then uploaded and shared through

HydroShare.

Figure 4.2. The selection of data distribution systems and spatial data to create LES datasets

4.3.1.2 Create Consistent State-Scale Spatial Datasets

In this step, we considered the following factors to create consistent state-scale spatial

datasets for use in GeoServer and TDS: 1) using data types optimal for GeoServer and TDS, 2)

adopting a consistent coordinate system across all spatial data, 3) applying georeferencing

transformations to adjust shifted locations in the merged state-scale DEM, and 4) having complete

and meaningful metadata compatible with HydroShare for each datasets.

We adopted the GeoTIFF as the spatial data type for LES datasets. GeoTIFF is an OGC

implementation standard for raster data that is commonly used to store grid-based spatial data with

geographic metadata that describes the spatial location including spatial extent, coordinate

reference system, and resolution. Most data providers serve DEM and land cover data as GeoTIFF,

which is also one of the main data types supported by GeoServer. For SSURGO data, the

information is typically served at county-scale using a shapefile format with soil attribute

metadata. We explored merging the county-scale SSURGO shapefiles into a state-scale shapefile

and serving the data though GeoServer. However, doing so resulted in a large dataset that is

difficult to manage and feed into environmental models. Fortunately, since Feb 2021, USDA

NRCS National Soil Survey Center has started to service National scale SSURGO data as a 30

meter resolution GeoTIFF. In addition, GeoTIFF can store a collection of 2D arrays, so GeoTIFFs

can be easily transferred into a NetCDF multidimensional array as well. Given that TDS supports

the NetCDF format, we decided to use GeoTIFF in GeoServer and NetCDF in TDS as the data

types of distributing replicated copies of the DEM, land cover, and soils spatial datasets at a state-

scale.

Adopting a consistent coordinate system is important to create a unified LES dataset to

support environmental modeling. Each dataset was distributed in a different spatial coordinate

Chapter 4

65

system. We adopted the UTM geographic coordinate system for consistency at the state-scale.

Resampling is required when transforming coordinate systems. For resampling of the LES

datasets, we used a bilinear interpolation resampling method for the DEM because it is continuous

data and used a nearest neighbor resampling method in land cover and soils data because they are

categorical data.

When multiple DEMs are merged into one DEM, there is often overlapping areas at the

edges of the each original DEMs. These areas made the merged DEM (GeoServer and TDS LES

DEM) shift about 0.3-1.0m compared to the original raw DEM. If users delineate a watershed

using the merged LES datasets without recognizing these changes, they will get a different

watershed compared to using the original data products. Therefore, we needed to apply a

georeferencing tool in ArcGIS to shift linearly the merged DEM to the original location using

control points.

 Figure 4.3 shows the complete workflow using these three steps to create the state-scale

LES datasets in both GeoTIFF and NetCDF formats. First, the data is projected using the

appropriate UTM Zone coordinate system for each state. We use a projected coordinate system

because environmental models use length units such as meter, instead of degrees used in the

geographic coordinate system. After creating the state-scale merged DEM, we applied the

georeferencing tool to adjust the locations of the merged DEM to the original location. Land cover

data are distributed at the national scale; therefore, we extracted state-scale land cover datasets and

projected the data to the same coordinate system as state-scale DEM. Finally, SSURGO data,

which is also distributed by the national scale using a USA Contiguous Albers Equal-Area Conic

USGS version, was clipped to the state-scale and projected to the same coordinate system as the

DEM and land cover data.

Chapter 4

66

Figure 4.3. The workflows to create the state-scale large spatial sample datasets as GeoTIFF and NetCDF format

After creating the state-scale LES datasets, we added metadata directly within the NetCDF

datasets to share key information in the original information distributed by GDG as a text file.

There was a lot of metadata in the metadata text file and we selected and added 16 useful pieces

of information such as data title, bounding coordinates, grid coordinate system name, UTM zone

number, scale factor at central meridian, and horizontal datum name.

4.3.1.3 Share Datasets in HydroShare

For this step, we reviewed and used the three tools to share the state-scale LES datasets

through HydroShare: 1) iRODS (Integrated Rule-Oriented Data System) to transfer large datasets

(over 1 GB) into HydroShare, 2) OWSLib (https://github.com/geopython/OWSLib) and 3) xarray

(http://xarray.pydata.org) Python libraries to make the LES datasets interoperable via GeoServer

and TDS.

The first step was to upload the datasets into a new HydroShare resource. This step is trivial

if the size of datasets is under 1 GB as datasets can then directly be upload through the HydroShare

Chapter 4

67

user interface. However, for datasets over 1GB, users need to use iRODS for the transfer into

HydroShare. There are multiple iRODS client including icommands and Cyberduck that can be

used to upload large datasets into the HydroShare iRODS user space. After uploading the state-

scale LES datasets into the HydroShare resource, datasets were automatically recognized with the

proper aggregation type of geographic raster (GeoTIFF) or multidimensional contents (NetCDF).

The content type metadata, such as title, keywords, spatial/temporal coverage, and spatial

reference, and variable metadata, were automatically extracted by HydroShare as part of the upload

process. When the HydorShare resource is made public, it automatically makes the spatial datasets

available through GeoServer and TDS.

After the LES datasets are available on HydroShare and through the linked GeoServer and

TDS access points, users can easily discover and programmatically interact with the LES datasets

from GeoServer and TDS using the newly created HydroShare resource ID. In the GeoServer,

users can use OWSLib to request subsets of data from GeoServer. In TDS, users can use xarray to

subset particular data of interest. Then users can convert NetCDF output from TDS into GeoTIFF

using the rioxarray (https://github.com/corteva/rioxarray) package for using the data as input to

environmental models that expect GeoTIFF raster inputs.

4.3.2 Example Application for an Environmental Model Use Case

We used an example application to demonstrate the data service and how it supports

seamless, end-to-end environmental modeling workflows. Figure 4.4 shows the workflow steps

from seamlessly applying state scale LES datasets as model input for environmental modeling

using the DEM, extracted land cover and soil texture maps after creating model inputs. We also

used streamflow outputs from the environmental model as part of the evaluation of data

consistency between the LES datasets compared to raw datasets provided by federal data

providers. We used RHESSys (Tague & Band, 2004b) as the example model. RHESSys is a GIS-

based, hydro-ecological modeling framework designed to simulate carbon, water, and nutrient

fluxes. The newly developed pyRHESSys (https://github.com/uva-hydroinformatics/pyRHESSys)

is an API for RHESSys providing programmatic control of model input creation and manipulation,

model execution, and model output visualization and analysis.

We compared three approaches for accessing the spatial data required to parameterize the

RHESSys model. 1) The original spatial data provided by federal agencies, 2) the data processed

and distributed through GeoServer in the GeoTIFF format, and 3) the same data processed and

distributed through TDS in a NetCDF format. We compared the watershed DEM, extracted land

cover, and SSURGO data to evaluate data consistency across the three approaches. Then, after

executing RHESSys using data from these three approaches as input, we compared streamflow

outputs to evaluate the effect of the three data access approaches on model output.

Chapter 4

68

Figure 4.4. Workflows for seamless RHESSys modeling and evaluation of data consistency using LES datasets

4.4 Results
In this section, we present results from the example application where the methodology is

applied for three different watersheds for end-to-end modeling using RHESSys. We present the

resulting workflows as Jupyter notebooks that show how to create and subset state-scale LES

datasets based on Figure 4.1 in the methodology section. Finally, we present results from the

evaluation methodology described in Figure 4.4 that aims to measure data consistency across three

approaches for distributing spatial data and how each method impacts the results of an end-to-end

RHESSys model run.

4.4.1 Example Watersheds

The three watersheds used in this study are 1) Coweeta subbasin18, NC (A=0.126 km2,

resolution: 10m), 2) Scotts Level Branch, MD (A=8.36 km2, resolution: 30m), 3) Spout Run, VA

(A=55.42 km2, resolution: 60m). The Coweeta Long Term Ecological Research (LTER) station

has been measuring hydrologic and ecologic variables from 1980 to 2020, and subbasin 18 is a

forest-dominated Coweeta subbasin with moderate topographic relief that is often used in

hydrologic studies. Scotts Level Branch is located near Baltimore Maryland and has a USGS

streamflow observation station (USGS 01589290) and represents an agricultural watershed. Spout

Run is located in Northern Virginia and has a USGS streamflow observation station (USGS

01636316). In addition, there is a neighboring site that is a part of the National Science

Chapter 4

69

Foundation’s National Ecological Observatory Network (NEON). Using these three different sized

watersheds, we evaluate the applicability of the LES dataset distribution method as part of an end-

to-end modeling workflow.

Figure 4.5 Three different scale watersheds to evaluate data consistency in different resolutions using state scale

LES datasets: 1) Coweeta subbasin18, NC (A=0.126 km2, resolution: 10m), 2) Scotts Level Branch, MD (A=8.36

km2, resolution: 30m), 3) Spout Run, VA (A=55.42 km2, resolution: 60m)

4.4.2 Creating the State-Scale LES Datasets

We created a Jupyter notebook for each state to automate the data processing workflow

required to create the LES datasets (Choi., 2021) (HS 17). “HS number” used to distinguish each

HS resource in the collection HS resource that includes 18 HS resources lists (Choi., 2021) and 18

HS resources are explained in Data availability section. In these workflows, GIS processing was

done first to merge, extract and project GeoTIFF data was the most important process. For this

process, we used ArcPy which is a python package to perform geographic data analysis, data

conversion, and data management in ArcGIS (Toms, 2015). After creating state scale LES datasets

in GeoTIFF format, we converted GeoTIFF to NetCDF using xarray and rioxarray Python

packages. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is

rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster

formats. We used xarray to manipulate data type and add metadata in NetCDF file and rioxarray

Chapter 4

70

to save GeoTIFF to NetCDF format. Through these procedures, we created three composite

HydroShare resources to share state scale LES datasets (Choi., 2021) (HS 2-4).

The automated workflows consist of three parts (DEM, land cover, and SSURGO) as we

mentioned in Figure 4.3 in subsection 4.3. In this section, we demonstrated an example to create

Virginia LES DEM as a GeoTIFF format (Figure 4.6). Before starting this procedure, we created

Arcpy Conda virtual environments from ArcGIS Pro 2.1. Then we created Jupyter notebooks to

capture these automated workflows (Figure 4.6). We imported required libraries such as Arcpy,

xarray, and numpy. Then, after collecting 30m resolution DEM from GDG, we unified the multiple

projected coordinate systems of the original DEMs into one projected coordinate system using

ProjectRaster_management module in Arcpy. In the case of Virginia, DEM has UTM Zone 17N

and 18N projected coordinate system, so we unified them to UTM Zone 17N. After that, we

merged each DEM into one state scale DEM as GeoTIFF format using

MosaicToNewRaster_management module in Arcpy. After that, we read the created Virginia

GeoTIFF file and created xarray data format using rasterio Python library. Then we added

metadata of original DEM, such as spatial domain, UTM detail information, and geodetic model

information, into NetCDF. Finally, we saved a xarray format data to NetCDF. Following similar

procedures, we created state scale LES land cover and SSURGO using this Jupyter notebook. Due

to the limitation of ArcGIS Pro license which is a commercial GIS software, we developed these

Jupyter notebooks in the Windows OS. Therefore, researchers cannot use these notebooks in

CyberGIS Jupyter for Water. To create state scale LES datasets to different states, researchers can

create state scale LES datasets using these Jupyter notebooks.

Chapter 4

71

Figure 4.6. An automated workflow to create Virginia LES DEM as a GeoTIFF and NetCDF format

Using these automated workflows, we created GeoTIFF and NetCDF LES datasets for the

DEM, land cover, and SSURGO in North Carolina, Maryland, and Virginia. In this study,

considering drainage areas of Coweeta Subbasin18 and the evaluation of higher resolution data

consistency, we created 10 m resolution DEM as GeoTIFF in North Carolina. However, we could

not create NetCDF LES datasets due to memory limitation in both a local computer and CyberGIS

Jupyter for water. In Maryland and Virginia, we created 30 m resolution LES DEM in GeoTIFF

format. We applied 30 m resolution DEM to Scotts Level Branch as an example for general

resolution application. Considering drainage areas of Spout Run and the evaluation of lower

Chapter 4

72

resolution data consistency, we resampled 30 m to 60 m resolution DEM. Land cover from MLRC

and SSURO from GDG only have 30 meter resolution GeoTIFF; therefore, we created 30 m

resolution land cover and SSURGO state scale LES datasets. After creating GeoTIFF LES datasets

for DEM, land cover, and SSURGO, we converted them to NetCDF LES datasets. Since NetCDF

is easy to create time or variable stacked NetCDF in the same domain using dimension and

coordinate structures, we created a stacked land cover NetCDF LES dataset using seven GeoTIFF

LES datasets from 2011 to 2016.

Table 4.1 shows the file sizes and resolutions of GeoTIFF and NetCDF LES datasets in the

three states. In general, the original LES datasets which is not the compressed file are very big to

control. To minimize the file sizes, we used a compressed format of GeoTIFF and NetCDF. We

used a LZW compression algorithm (Akoguz et al., 2016) for GeoTIFF in ArcGIS. The nccopy

tool, which is a command-line utility to compress NetCDF files, supports to specify the level of

compression (level 0-9, a high value supports high compression and requires more time) for

variable data in NetCDF. We used the level 1 compression command “nccop –d1 input.nc

output.nc” to create compressed NetCDF. For example, the original size of Virginia GeoTIFF

DEM (30m) was 1.53 GB, and the compressed size was 0.95 GB. The original size of Virginia

NetCDF DEM (30m) was 1.60 GB and the compressed size was 0.78 GB. Therefore, for the

convenience of creating and transferring data according to the file size, we recommend using the

compressed format. In the case of North Carolina GeoTIFF DEM (10m), the file size was 5.66 GB

which is very big; however, there was no problem to create GeoTIFF DEM. Yet converting

GeoTIFF to NetCDF LES datasets had a problem of memory limitation in both the local computer

and CyberGIS Jupyter for water, we could not create NetCDF LES datasets. To create, upload and

interoperate large datasets, the capacity of local computer and server is important. However, it is

difficult to give an exact guideline for the size of large datasets. Especially, the server of GeoServer

and TDS requires a significant amount of testing considering how many and what size of transfers

are occurring simultaneously using various combinations. Therefore, based on these experiences,

we recommend using 1~2 GB for the size of large datasets on GeoServer and TDS in HydroShare.

Table 4.1. Compressed file sizes and resolutions of GeoTIFF and NetCDF in the three states

States
DEM Land Cover (7 Years) SSURGO

GeoTIFF NetCDF GeoTIFF NetCDF GeoTIFF NetCDF

North Carolina
File Size

(MB)

5,659 - 257 304 112 80

Maryland 358 294 134 165 52 44

Virginia 951 783 342 422 157 121

North Carolina
Resolution

(m)

10 - 30 30 30 30

Maryland 30 30 30 30 30 30

Virginia 60 60 30 30 30 30

4.4.3 Subset State Scale Large Spatial Sample Datasets

After creating three states’ LES datasets and sharing them on the HydroShare GeoServer

and TDS, we subsetted these datasets to collect spatial model input in specific watersheds for

RHESSys preprocessing. In Figures 4.7 and 4.8, we presented Scotts Level Branch, MD to

Chapter 4

73

demonstrate how to subset LES datasets on GeoServer and TDS in HydroShare. This subsetting

procedure is shared with RHESSys workflow notebooks in HydroShare (Choi., 2021) (HS 5-13).

4.4.3.1 Subset LES Datasets from GeoServer

We used OWSLib to subset GeoTIFF DEM from GeoServer using the Jupyter notebook in

CyberGIS-Jupyter for Water. Figure 4.7 shows the procedure to subset from the Maryland LES

Datasets (GeoTIFF) from GeoSever in HydroShare, as an example. First, we imported the required

Python libraries to use WCS service in GeoServer. Second, we requested GeoTIFF as an object

using a WebCoverageService module in OWSLib. Then we subsetted certain areas using a

getCoverage method with a bounding box. Finally, we saved the subsetted object to GeoTIFF

format.

Figure 4.7. Example of subsetting LES Datasets (GeoTIFF) from GeoServer using OWSLib

4.4.3.2 Subset Large Spatial Sample Datasets from TDS

This procedure to subset land cover LES Datasets in TDS (NetCDF) is simpler than the

procedure for subsetting in GeoTIFF because users can access directly TDS using xarray.

Therefore, users can easily create xarray array format (xarray.DataArray) using a xarray

open_dataset module. Then users can subset the land cover data in the Scotts Level Branch

watershed for the year 2006 using slicing range for x and y coordinate and years (Figure 4.8).

Finally, users can convert xarray data array to GeoTIFF format using the rioxarry library.

Chapter 4

74

Figure 4.8. Example of subsetting LES Datasets (NetCDF) from TDS using xarray

4.4.4 Evaluation of Data Consistency

In this section, we created RHESSys input from state-scale LES datasets and executed

RHESSys using an end-to-end RHESSys Jupyter notebook (Choi., 2021) (HS 5-13) to evaluate

the data consistency in three different watersheds with different spatial data resolutions: 10, 30,

and 60 m. In these procedures, we created nine case studies using three different datasets (Original

data, GeoServer, and TDS) and three watersheds (Coweeta subbasin18, Scotts Level Branch, and

Spout Run). For evaluation of the original datasets, the spatial datasets were manually collected to

represent the traditional approach, we created three model instance resources for each watershed

in HydroShare (Choi., 2021) (HS 14-16). We then presented the evaluation results of data

consistency in three different watersheds using Jupyter notebooks (Choi., 2021) (HS 18). For

evaluation, we used difference maps between original data and LES datasets (GeoServer and TDS)

for model inputs (watershed DEMs, extracted land covers, and SSURGO maps) (Figure 4.9-4.12)

and regression plots for model outputs (RHESSys streamflow outputs) (Figure 4.13-4.16).

4.4.4.1 Evaluation of Spatial Model Input

 Results of the data consistency analysis where RHESSys ouputs were compared before and

after applying georeferencing to the LES datasets. As we explained earlier, when we create LES

datasets, the application of appropriate coordinate systems and the georeferencing tool is

important. Researchers often consider the appropriate coordinate systems because improper

coordinate systems can cause errors. However, if researchers do not apply the georeferencing steps

described in this paper, in some cases, environmental models can be executed without any errors

depending on the watershed. In other cases, the shape of delineated watershed is changed, so users

can recognize the problem. In the first cases, users can not reproduce the same results if there is a

prior study. However, if users do not have the prior result, they may think the LES datasets are the

same as the original data. They set up the models and tune the model parameters. Therefore,

Figures 4.9, 4.10, and 4.11 demonstrate how much with or without the application of

georeferencing affects spatial model input between original data (HydroShare) and LES datasets

(GeoServer or TDS).

Chapter 4

75

Figure 4.9 shows the differences in the DEM elevation between the original data

(HydroShare) and the LES datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18 (10 m), NC,

(b) Scott Level Branch (30 m), MD, and (c) Spout Run (60 m), VA before applying georeferencing.

Coweeta Subbasin18 (Figure 4.9 (a)) is forest dominant watershed and others are urban

watersheds. Therefore, Coweeta Subbasin18 shows the biggest elevation differences compared to

other two watersheds. In addition, the cell values (elevation) of the raw DEM are float data type,

thus the values of most cells are changed by resampling and merging multiple DEMs, it is not

meaningful to present the ratio of changed DEM cells. We present the ratio of land cover and soil

maps because these used land cover classification code and soil texture code as discrete integer

values.

Figure 4.9. Difference maps of DEM elevation between original data (HydroShare) and LES datasets (GeoServer or

TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before applying

georeferencing

Figure 4.10 shows the differences of extracted land cover classification code between

original data (HydroShare) and LES datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18,

NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before applying georeferencing. The original

land covers were extracted from national scale land cover maps, therefore, theoretically, the value

of original data and LES data in the same location are the same. However, in the model

preprocessing, watershed DEMs are used to extract land cover and soil maps. So watershed DEMs

affect the difference of land cover classification codes. In Figure 4.10, the red color indicates a

negative difference (= original cell values – GeoServer cell values) and the blue color indicates a

positive difference (= original cell values – TDS cell values). Figure 4.10 (a), Figure 4.10 (b), and

Figure 4.10 (c) show 4.2%, 9.1%, and 9.4% (= the count of the changed cells/the count of the total

cells) of land cover were changed by creating LES datasets and RHESSys preprocessing.

Chapter 4

76

Figure 4.10. Difference maps of extracted Land Cover classification code between original data and LES datasets

(GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before

applying georeferencing

Figure 4.11 shows the differences of extracted SSURGO soil texture between the original

data and the LES datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level

Branch, MD, (c) Spout Run, VA before applying georeferencing. The reason for the difference in

the land cover is the same as the DEM data discussed earlier. Figure 4.11 (a), Figure 4.11 (b), and

Figure 4.11 (c) show 18.0%, 4.9%, and 5.3% (= the count of the changed cells/the count of the

total cells) of soil maps were changed by creating LES datasets and RHESSys preprocessing.

Figure 4.11. Difference maps of extracted SSURGO soil texture between original data (HydroShare) and LES

datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA,

before applying georeferencing

Figure 4.12 shows the differences of (a) the watershed DEM elevation, extracted Land

Cover classification code, and extracted SSURGO soil texture at Coweeta Subbbasin18, NC, (b)

the watershed DEM elevation, extracted Land Cover classification code, and extracted SSURGO

soil textures at Scott Level Branch, MD, (c) the watershed DEM elevation between original data

(HydroShare) and LES datasets (GeoServer or TDS) after applying georeferencing. From the

recognition of differences between the original data and LES datasets (GeoServer or TDS), we

applied a georeferencing tool in ArcGIS. In general, georeferenced method use at least three points

Chapter 4

77

to transform a raster or shapefile; however, resampling and merging multiple GeoTiff files only

changed the cell values and shifted the cell location without distortion Therefore, we only used

one control point to shift linearly the merged DEM to the original location. As a result, we can

eliminate the DEM differences except for the DEM of Spout Run (60 m resolution) because

Coweeta Subbasin 18 (30 m resolution) and Scott Level Branch (30 m resolution) have the same

DEM resolution as the original DEM and LES DEM. However, in the case of Spout Run (60 m

resolution), we resampled the 30 m to 60 m resolution to evaluate the applicability of large

resolution. Therefore, every difference map of the DEMs, land cover, and soil in Coweeta

Subbasin18 and Scott Level Branch is the same.

Coweeta subbasin18 and Scott Level Branch used the same resolution of DEM as the

original data. However, Spout Run resampled the original DEM (30 m) to 60 m resolution to

evaluate the applicability of different resolutions for the large watershed. This is the reason why

there are still slight differences between original data (HydroShare) and LES datasets (GeoServer

or TDS). However, the range of difference in elevation is below 5 cm.

Figure 4.12. Difference maps of (a) DEM elevation (in meters), extracted Land Cover classification code, and

extracted SSURGO soil texture at Coweeta Subbbasin18, NC, (b) DEM elevation, extracted Land Cover

classification code, and extracted SSURGO soil texture at Scott Level Branch, MD, (c) DEM between the original

data (HydroShare) and LES datasets (GeoServer or TDS), after applying georeferencing

4.4.4.2 Evaluation of Model Output

Figures 4.13-4.16 show three regression analyses, each comparing two RHESSys outputs

from the three different data input approaches: original, GeoServer, and TDS. The results are

provided for the three watersheds: Coweeta subbasin18 in North Carolina, Scott Level Branch in

Maryland, and Spout Run in Virginia. At first, to emphasize the importance of georeferencing, we

presented Figure 4.13 to explain the performance results of RHESSys outputs without appling the

georeferencing tool (Original vs GeoServer: NSE 0.684, Original vs TDS: NSE 0.647). As

explained earlier, after applying the georeferencing tool we significantly improved the results and

the RHESSys outputs from the original data compared to the LES data. Figure 4.14 (a) and Figure

4.14 (b) showed perfect agreement (Original vs GeoServer: NSE 1.0, Original vs TDS: NSE 1.0).

Also, Figures 4.15 and 4.16 showed perfect agreement after applying the georeferencing tool. As

Chapter 4

78

result, the application of georeferencing is important for data consistency so that spatial data input

results in the expected modeled streamflow output.

Figure 4.13. Three regression analyses, each comparing two RHESSys outputs out of the three different

approaches: (a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Coweeta subbasin18 in

North Carolina, before applying georeferencing

Figure 4.14 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches:

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Coweeta subbasin18 in North Carolina,

after applying georeferencing

Figure 4.15 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches:

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Scotts Level Branch in Maryland, after

applying georeferencing

Chapter 4

79

Figure 4.16 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches:

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Spout Run in Virginia, after applying

georeferencing

4.5 Discussion
This research focuses on integrating HydroShare with GeoServer and TDS for exposing LES

datasets to environmental models for open and reproducible seamless environmental modeling.

This approach improved limitations of previous spatial data sharing for hydrologic research.

However, there are still limitations to use various types of geographic datasets. We mainly used

GeoTIFF format with GeoServer, though shapefile is also a popular geographic format to share

spatial data. However, subsetting the SSURGO shapefile requires more memory because it is very

complicated to support the heterogenous details of soil attributes in a shapefile format, unlike grid-

based geographic data. Therefore, to effectively use state-scale LES datasets in the future,

additional approaches or capabilities to leverage shapefiles with attributes (dbf table) that are well

suited for environmental modeling and that require a similar amount of memory as grids would be

valuable.

In this study, we used state-scale as the spatial unit for distributing LES datasets. However,

other spatial aggregations may also be used. For example, for hydrology applications alone the

Hydrologic Unit Code (HUC) (Seaber et al., 1987) may make more sense than administrative maps

such as states. The advantage for using states as the spatial unit is current federal web-based

distribution systems easily provide the data with this aggregation, but it requires minimal

processing to prepare the data for GeoServer and TDS distribution. However, the general methods

of the approach are agnostic to the specific spatial aggregation unit used. Therefore, if researchers

want to set up datasets for inter-state boundary watersheds, they can follow the same steps for

creating and sharing the datasets presented in this study.

In the introduction we compared our approach to two other approaches for supporting

seamless environmental modeling in the literature: EcoHydroLib and HydroTerre. A third

approach that is important to consider is the Google Earth Engine (GEE) (Gorelick et al., 2017).

GEE is a cloud-based platform for planetary-scale geospatial analysis supporting such applications

as climate change, disease, environmental protection, and water management. Over 450 journal

articles published in 150 journals have used GEE datasets (L. Kumar & Mutanga, 2018), and the

datasets available through GEE are continuously updated at a rate of nearly 6000 scenes per day

(Gorelick et al., 2017). However, while GEE does allow users to upload their own data, datasets

Chapter 4

80

like SSURGO are not natively included in GEE. More importantly, it is valuable to have an open

and fully transparent alternative to GEE to support scientific modeling where users have control

over the spatial data used as model input and the data can be easily shared with appropriate

metadata from HydroShare.

In addition, containerizing proprietary software such as ArcPy, which is part of ArcGIS, is

an issue for reproducibility because not everyone may have access to this software. In this study,

we used ArcPy to create the LES datasets. ArcPy currently only supports Windows operating

system, owever Docker Containers on Windows is experimental and only available on Window

Server 2019. This said, it is possible to containerize proprietary software like ArcPy that operate

only on Windows operating systems. Thus, if we can install the proprietary software with

containerization tools in the same operating system and if there is no problem to recognize the

license for the software, it is possible to containerize proprietary software. The issue remains as to

access to the software license so that anyone, and not only those with access to the software, can

reproduce the work.

The availability of data to support environmental modeling is increasing rapidly and the

replication of this data across data distribution systems can present problems. For one, there may

be issues of copyright for some data because these data represent important intellectual property

(Abubahia & Cocea, 2017). Even if data can be freely used and copied, like the data used in this

study, it will become increasingly difficult to understand if verified data are being used to support

a study. In this study, we had to manipulate the raw data provided by the federal agencies in order

to give the data a consistent and accurate spatial coordinate system. For reproducibility, it is

important to document these changes and associate the procedure for making the changes with the

new data product. As a result, geographic data ownership and provenance are important concepts

(Licens. Geogr. Data Serv., 2004). In the broader technology landscape, similar challenges are

being addressed through blockchain technology where a distributed digital ledger can be used to

track changes to a digital object. Related to blockchain technology, the concept of Non-Fungible

Tokens (NFTs) (Farnaghi & Mansourian, 2020; Franke et al., 2020) where digital objects are

uniquely identified within the blockchain could prove valuable for identifying digital objects used

in environmental modeling (e.g., both data and processing scripts) and tracking the provenance of

these objects in a consistent, globally assessable, and secure way. Therefore, an extension of this

work would be to consider spatial datasets as NFTs with ownership and provenance, thereby

adding blockchain to the existing HydroShare data management capabilities, to clarify the specific

attributes and provenance of the growing number of raw and processed datasets required in

reproducible, open environmental modeling.

4.6 Conclusions
Spatial data is an important component for open and reproducible seamless environmental

modeling. Recently, there have been many efforts to improve the use of spatial data as model

input. HydroShare provides a means for easily sharing datasets including spatial datasets. It also

provides the ability to expose spatial data stored in HydroShare through APIs for programmatic

data access within environmental modeling. Currently, HydroShare provides the capability for

Chapter 4

81

spatial datasets to be distributed using GeoServer and TDS, which each can be accessed using

APIs. However, these capabilities have been underutilized to data, serving mainly data

visualization use cases. This research demonstrates how these capabilities can be used to support

seamless, end-to-end environmental modeling workflows.

Therefore, the primary contribution of this research is methodologies for integrating

HydroShare with GeoServer and TDS for exposing LES datasets to models for open and

reproducible seamless environmental modeling. We demonstrate how to create, share and subset

large datasets as input to environmental model, thereby advancing the concept of seamless

modeling where model inputs can be constructed using end-to-end workflows driven using

common base datasets. Through three different watershed applications in three different states at

three different spatial scales, we show the applicability of methodologies. We show, using the

RHESSys model for each watershed, that no significant error is introduced when using the new

data distribution system compared to traditional approaches. We offer discussion on ways the

proposed approach can be further advanced by, for example, using other spatial aggregation of

large data, beyond the state-scale aggregation used in this paper. Finally, we offer discussion on

the challenge of data tracking and provenance, especially across systems and in the context of

environmental modeling where data from multiple sources is needed and each dataset requires

extensive preprocessing. We suggest that blockchain technology and the concept of NFTs could

offer assistances to this problem by identifying universally unique digital assets in data processing

and modeling workflows common in environmental modeling. Using these novel technologies

could offer a way to improve reproducibility in complex digital workflows where the management

of data and provenance tracking across various data providers and processing steps remains a

challenge in achieving the vision of open science.

Beyond sharing large, national-scale datasets maintained by federal agencies, the methods

used in this work can also be deployed by individual scientists. Current data sharing through online

repositories allows for data publication at the file level, which is an important step toward

reproducibility. The proposed approach builds on this step to show how technologies like

GeoServer and TDS, when integrated with an online repository, provides a means for scientists to

create and share file-based scientific data in a way that provides programmatic access, without the

need to deploy their own web-based data distribution systems. Scientists can easily share, update,

and extend their data through such systems, including HydroShare as demonstrated in this

research, to support reproducibility and replicability through robust API-based access to their data.

Creating and sharing datasets online using this approach offer a powerful means for scientists to

achieve FAIR guiding principles including reusability of data for multiple applications in different

case studies and interoperability for programmatic access to multiple data collections using a

consistent access protocol.

Data Availability

All data used in this study are available through eighteen HydroShare resources. We

published all data with persistent digital object identifiers (DOI’s) on HydroShare and shared all

Chapter 4

82

data in a collection resource in HydroShare (Choi., 2021). This collection resource provides the

links for all HydroShare resources as “Collection Contents.” Eighteen HydroShare resources

consist of the following: one collection resource (HS 1), three composite resources for three state

scale LES datasets (HS 2-4), nine composite resources with Jupyter notebooks for three different

approaches and three different watersheds (HS 5-13), three model instance resources for RHESSys

input of the original approaches in three different watersheds (HS 14-16), one composite resource

with Jupyter notebooks for automate workflows to create LES datasets (HS 17), and one composite

resource with Jupyter notebooks for evaluation of data consistency (HS 18).

List of Relevant URLs

Chesapeake Conservancy conservation innovation center:

 https://www.chesapeakeconservancy.org/conservation-innovation-center

Creating Python Conda virtual environment (arcpy) in ArcGIS Pro:

 https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/work-with-python-environments.htm

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org

CyberGIS-Jupyter for water: http://go.illinois.edu/cybergis-jupyter-water

CyberDuck: https://cyberduck.io

Cyberduck application: https://help.hydroshare.org/creating-and-managing-resources/accessing-

hydroshare-irods-from-a-windows-pc-or-mac

icommands: https://help.hydroshare.org/creating-and-managing-resources/accessing-hydroshare-

irods-from-linux

MRLC (Multi-Resolution Land Characteristics Consortium): https://www.mrlc.gov

National scale SSURGO 30 meter resolution GeoTIFF data:

 https://nrcs.app.box.com/v/soils/folder/132131296196

nccopy: https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Nccopy.html

OGC implementation standard: http://docs.opengeospatial.org/is/19-008r4/19-008r4.html

OWSLib: https://github.com/geopython/OWSLib

pyRHESSys: https://github.com/uva-hydroinformatics/pyRHESSys

rioxarray: https://github.com/corteva/rioxarray

SSUGRO Mukey Grids (GeoTIFF): https://nrcs.app.box.com/v/soils/folder/132131296196

Chapter 4

83

USDA NRCS Geospatial Data Gateway: https://datagateway.nrcs.usda.gov

USGS 3D Elevation Program (3DEP): https://www.usgs.gov/core-science-systems/ngp/3dep

Web Soil Survey web distributed system:

 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

xarray: http://xarray.pydata.org

Chapter 5

84

Chapter 5

5 Conclusions

 This dissertation presents research that advances approaches for improving openness,

reproducibility, and replicability in computational environmental modeling. These approaches can

supplement the current reproducibility research that individually focuses on sharing online data,

containerizing computational environments, and encapsulating computational workflows. In

addition, each advanced approach for each component (computational environments and modeling

workflows) can strengthen reproducibility for computational environmental modeling. The

contributions are 1) the development of an approach for integrating online data repositories,

computational environments, and model APIs to enable more open and reproducible

environmental modeling, 2) suggestion of best practices and guidance for which approach is most

appropriate to achieve modeling objectives, specifically for simulating environmental systems, and

3) the integration of HydroShare with server-side methods (GeoServer and TDS) using large-

extent spatial datasets for open and reproducible seamless environmental modeling.

 This research also highlights the selection and integration of key components for

reproducibility in computational environmental modeling. Chapter 2 presents an example

implementation of this approach by leveraging 1) HydroShare as a data sharing repository, 2)

CUAHSI JupyterHub and CyberGIS Jupyter for water as a notebook-based, containerized, and

cloud-based computational environment, and 3) pySUMMA as an example model API able to

abstract lower-level details for model configuration, execution, and visualization from end users.

Using the example implementation, I demonstrate how modeling analyses can be completed in a

more open and reproducible way using a prior study presenting a series of modeling experiments

applying SUMMA at the Reynolds Mountain East Area in the Reynolds Creek Experimental

Watershed in Idaho, USA (Clark et al., 2015b). As part of the research, I created a prototype

version of pySUMMA, which is a Python based model API for manipulating, executing, and

analyzing the SUMMA hydrological model.

 The research in this dissertation also presents best practices and guidance to reproduce

computational environments for achieving various modeling objectives. In Chapter 3, the example

application was evaluated using 1) HydroShare as an online repository, 2) SUMMA as the core

software and other secondary software, and 3) pySUMMA and Jupyter notebooks for a model API

and workflows. These example results show that each method had its own strengths and

weaknesses from the developer and user’s perspectives. With regard to educational purposes, the

best methods for online education were using CUAHSI JupyterHub, CyberGIS Jupyter for Water,

and Binder (Approaches 6, 7, and 10) and the best method for offline education was using Sciunit

(Approach 5). With regard to research purposes, the only method for model development was

Chapter 5 | Conclusions

85

compiling the core model software (Approach 1), the best methods for model application were

containrizing the core model software only with Docker and using CUAHSI JupyterHub

(Approaches 2 and 6), and the best methods for data-intensive computing were using CyberGIS

Jupyter for Water and a HPC cluster (Approaches 7 and 11).

 Finally, the research in this dissertation advances methods for the preprocessing of data to

serve as input to environmental modeling. This was done by integrating HydroShare with

GeoServer and TDS for exposing LES datasets to models for seamless environmental modeling.

Chapter 4 presented three example watersheds were this method was evaluated: 1) Coweeta

subbasin18, NC, 2) Scotts Level Branch, MD, and 3) Spout Run, VA. The results show data

consistency in RHESSys model input and output after running the RHESSys end-to-end modeling

workflows. This approach can save significant time to collect, clean, and apply large-extent spatial

data for environmental models. Finally, this approach can inspire scientists to share their data

without the need to deploy their own web-based data distribution system.

 Although this dissertation focuses on the computational environmental modeling, it could

be applied to broader areas of computational research to enhance reproducibility and replicability.

For example, the integration of three key components (i.e., online repositories, computational

environments, and model APIs) will be helpful for reproducibility in computational geospatial

science, bioinformatics, and many other research areas. Researchers can use best practices and

guidance for containerization of scientific modeling workflows from the second study for other

computational research in addition to environmental modeling. Lastly, integrating

cyberinfrastructures with server-side methods for exposing large datasets for various analyses can

be helpful for researchers in other fields as well. In particular, these approaches can be a specific

guidance for achieving FAIRer guiding principles in open science. Lastly, the hope of this research

is for these approaches to aid in fostering a “culture of reproducibility” within scientific

communities that rely on computational research to advancement of science.

86

6 References

Abubahia, A., & Cocea, M. (2017). Advancements in GIS map copyright protection schemes - a

critical review. Multimedia Tools and Applications, 76(10). https://doi.org/10.1007/s11042-

016-3441-z

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017). The CAMELS data set:

catchment attributes and meteorology for large-sample studies. Hydrology and Earth

System Sciences Discussions. https://doi.org/10.5194/hess-2017-169

Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., & Mendoza, P. A. (2020).

Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges.

Hydrological Sciences Journal, 65(5). https://doi.org/10.1080/02626667.2019.1683182

Akoguz, A., Bozkurt, S., Gozutok, A. A., Alp, G., Turan, E. G., Bogaz, M., & Kent, S. (2016).

Comparison of open source compression algorithms on VHR remote sensing images for

efficient storage hierarchy. In International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 41).

https://doi.org/10.5194/isprsarchives-XLI-B4-3-2016

Alvarez-Garreton, C., Mendoza, P. A., Pablo Boisier, J., Addor, N., Galleguillos, M., Zambrano-

Bigiarini, M., et al. (2018). The CAMELS-CL dataset: Catchment attributes and

meteorology for large sample studies-Chile dataset. Hydrology and Earth System Sciences,

22(11). https://doi.org/10.5194/hess-22-5817-2018

Atmanspacher, H., Bezzola Lambert, L., Folkers, G., & Schubiger, P. A. (2014). Relevance

relations for the concept of reproducibility. Journal of the Royal Society Interface, 11(94).

https://doi.org/10.1098/rsif.2013.1030

Avila, D., Bussonier, M., & Corlay, S. (2020). Jupyter.

Baker, Monya; (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(May 26), 452–

454. https://doi.org/10.1038/533452a

Baker, Monya. (2016). Is there a reproducibility crisis? Nature, 533.

Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., & Fienen, M. N.

(2016). Scripting MODFLOW Model Development Using Python and FloPy. Groundwater,

54(5), 733–739. https://doi.org/10.1111/gwat.12413

Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting Stomatal Conductance

and its Contribution to the Control of Photosynthesis under Different Environmental

Conditions. In Progress in Photosynthesis Research (pp. 221–224). Dordrecht: Springer

Netherlands. https://doi.org/10.1007/978-94-017-0519-6_48

Bandaragoda, C., Castronova, A., Istanbulluoglu, E., Strauch, R., Nudurupati, S. S., Phuong, J.,

et al. (2019). Enabling Collaborative Numerical Modeling in Earth Sciences using

Knowledge Infrastructure. Environmental Modelling and Software, 120.

https://doi.org/10.1016/j.envsoft.2019.03.020

References

87

Bast, R. (2019). A FAIRer future. Nature Physics. https://doi.org/10.1038/s41567-019-0624-3

Baumer, B., Çetinkaya-Rundel, M., Bray, A., Loi, L., & Horton, N. J. (2014). R Markdown:

Integrating a reproducible analysis tool. Technology Innovations in Statistics Education,

8(1).

Beaulieu-Jones, B. K., & Greene, C. S. (2017). Reproducibility of computational workflows is

automated using continuous analysis. Nature Biotechnology, 35(4).

https://doi.org/10.1038/nbt.3780

Blair, G. S., Beven, K., Lamb, R., Bassett, R., Cauwenberghs, K., Hankin, B., et al. (2019).

Models of everywhere revisited: A technological perspective. Environmental Modelling and

Software, 122. https://doi.org/10.1016/j.envsoft.2019.104521

Boettiger, C. (2015). An introduction to Docker for reproducible research. ACM SIGOPS

Operating Systems Review, 49(1), 71–79. https://doi.org/10.1145/2723872.2723882

Boulmaiz, T., Guermoui, M., & Boutaghane, H. (2020). Impact of training data size on the

LSTM performances for rainfall–runoff modeling. Modeling Earth Systems and

Environment, 6(4). https://doi.org/10.1007/s40808-020-00830-w

Brinckman, A., Chard, K., Gaffney, N., Hategan, M., Jones, M. B., Kowalik, K., et al. (2019).

Computing environments for reproducibility: Capturing the “Whole Tale.” Future

Generation Computer Systems. https://doi.org/10.1016/j.future.2017.12.029

Brooks, G. (2013). Benefits of APIs. Retrieved January 14, 2020, from

https://digital.gov/2013/03/12/benefits-of-apis/

Buytaert, W. (2011). topmodel: Implementation of the hydrological model TOPMODEL in R.

Global Change Biology. https://doi.org/10.1111/j.1365-2486.2006.01305.x

Castronova, A.; M. Seul, P. D. (2018). A General Approach for Cloud-based Hydrologic

Modeling using Jupyter Notebooks. Retrieved from

http://www.hydroshare.org/resource/075664b0f0df4c58892cb4665e77e497

Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass‐conservative numerical

solution for the unsaturated flow equation. Water Resources Research, 26(7).

https://doi.org/10.1029/WR026i007p01483

Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., et al. (2015). Virtual

laboratories: New opportunities for collaborative water science. Hydrology and Earth

System Sciences. https://doi.org/10.5194/hess-19-2101-2015

Chen, M., Voinov, A., Ames, D. P., Kettner, A. J., Goodall, J. L., Jakeman, A. J., et al. (2020).

Position paper: Open web-distributed integrated geographic modelling and simulation to

enable broader participation and applications. Earth-Science Reviews.

https://doi.org/10.1016/j.earscirev.2020.103223

Choi, Y.-D., Goodall, J. L., Sadler, J. M., Castronova, A. M., Bennett, A., Li, Z., et al. (2021).

Toward open and reproducible environmental modeling by integrating online data

repositories, computational environments, and model Application Programming Interfaces.

Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2020.104888

References

88

Choi, Y., Goodall., J., Sadler., J., Castronova., A. M., Bennett., A., LI., Z., et al. (2020). Toward

Open and Reproducible Environmental Modeling by Integrating Online Data Repositories,

Computational Environments, and Model Application Programming Interfaces. Retrieved

from https://www.hydroshare.org/resource/33cfb9622a354442b2b0a869b15ea6b0/

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E.,

Gutmann, E. D., Wood, A. W., Brekke, L. D., et al. (2015). A unified approach for process-

based hydrologic modeling: 1. Modeling concept. Water Resources Research.

https://doi.org/10.1002/2015WR017198

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E.,

Gutmann, E. D., Wood, A. W., Gochis, D. J., et al. (2015). A unified approach for process-

based hydrologic modeling: 2. Model implementation and case studies. Water Resources

Research. https://doi.org/10.1002/2015WR017200

Craig, W., & Victoria., S. (2020). Trust but Verify: How to Leverage Policies, Workflows, and

Infrastructure to Ensure Computational Reproducibility in Publication. Harvard Data

Science Review. https://doi.org/doi.org/10.1162/99608f92.25982dcf

Crawley, S., Ames, D., Li, Z., & Tarboton, D. (2017). HydroShare GIS: Visualizing Spatial Data

in the Cloud. Open Water Journal, 4(1).

Crosas, M. (2020). Fair Principles and Beyond: Implementation in Dataverse. Septentrio

Conference Series, (2). https://doi.org/10.7557/5.5334

CrowdFlower. (2016). Data Science Report - 2016.

DeVantier, B. A., & Feldman, A. D. (1993). Review of GIS Applications in Hydrologic

Modeling. Journal of Water Resources Planning and Management, 119(2).

https://doi.org/10.1061/(asce)0733-9496(1993)119:2(246)

Duan, J., & Miller, N. L. (1997). A generalized power function for the subsurface transmissivity

profile in TOPMODEL. Water Resources Research, 33(11).

https://doi.org/10.1029/97WR02186

Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H. V., et al. (2006). Model

Parameter Estimation Experiment (MOPEX): An overview of science strategy and major

results from the second and third workshops. In Journal of Hydrology (Vol. 320).

https://doi.org/10.1016/j.jhydrol.2005.07.031

Epskamp, S. (2019). Reproducibility and Replicability in a Fast-Paced Methodological World.

Advances in Methods and Practices in Psychological Science, 2(2).

https://doi.org/10.1177/2515245919847421

Essawy, B. T., Goodall, J. L., Zell, W., Voce, D., Morsy, M. M., Sadler, J., et al. (2018).

Integrating scientific cyberinfrastructures to improve reproducibility in computational

hydrology: Example for HydroShare and GeoTrust. Environmental Modelling and

Software, 105, 217–229. https://doi.org/10.1016/j.envsoft.2018.03.025

Essawy, B. T., Goodall, J. L., Voce, D., Morsy, M. M., Sadler, J. M., Choi, Y. D., et al. (2020).

A taxonomy for reproducible and replicable research in environmental modelling.

Environmental Modelling and Software, 134. https://doi.org/10.1016/j.envsoft.2020.104753

References

89

Eynard-Bontemps, G., Abernathey, R., Hamman, J., Ponte, A., & Rath, W. (2019). The

PANGEO Big Data Ecosystem and its use at CNES. In Proc. of the 2019 conference on Big

Data from Space (BiDS?2019), EUR 29660 EN (pp. 49–52). Luxembourg:

ARRAY(0xc86ce6c). https://doi.org/doi:10.2760/848593

Farnaghi, M., & Mansourian, A. (2020). Blockchain, an enabling technology for transparent and

accountable decentralized public participatory GIS. Cities, 105.

https://doi.org/10.1016/j.cities.2020.102850

Forde, J., Head, T., Holdgraf, C., & Sundell, E. (2018). Reproducible Research Environments

with Repo2Docker. In Reproducibility in ML Workshop (ICML ’18).

Franke, L., Schletz, M., & Salomo, S. (2020). Designing a blockchain model for the paris

agreement’s carbon market mechanism. Sustainability (Switzerland), 12(3).

https://doi.org/10.3390/su12031068

Fuka, D. R., Walter, M. T., Macalister, C., Steenhuis, T. S., & Easton, Z. M. (2014).

SWATmodel: A multi-operating system, multi-platform SWAT model package in R1.

Journal of the American Water Resources Association, 50(5).

https://doi.org/10.1111/jawr.12170

Gan, T., Tarboton, D. G., Horsburgh, J. S., Dash, P., Idaszak, R., & Yi, H. (2020). Collaborative

sharing of multidimensional space-time data in a next generation hydrologic information

system. Environmental Modelling and Software, 129.

https://doi.org/10.1016/j.envsoft.2020.104706

Garijo, D., Kinnings, S., Xie, L., Xie, L., Zhang, Y., Bourne, P. E., & Gil, Y. (2013).

Quantifying reproducibility in computational biology: The case of the tuberculosis

drugome. PLoS ONE. https://doi.org/10.1371/journal.pone.0080278

Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., et al. (2016).

Toward the Geoscience Paper of the Future: Best practices for documenting and sharing

research from data to software to provenance. Earth and Space Science, 3(10), 388–415.

https://doi.org/10.1002/2015EA000136

Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M. R., et al.

(2020). FAIR Computational Workflows. Data Intelligence.

https://doi.org/10.1162/dint_a_00033

Gomes, J., Bagnaschi, E., Campos, I., David, M., Alves, L., Martins, J., et al. (2018). Enabling

rootless Linux Containers in multi-user environments: The udocker tool. Computer Physics

Communications, 232. https://doi.org/10.1016/j.cpc.2018.05.021

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of

Environment, 202. https://doi.org/10.1016/j.rse.2017.06.031

Grüning, B., Chilton, J., Köster, J., Dale, R., Soranzo, N., van den Beek, M., et al. (2018).

Practical Computational Reproducibility in the Life Sciences. Cell Systems.

https://doi.org/10.1016/j.cels.2018.03.014

Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., & Andréassian, V.

References

90

(2014). Large-sample hydrology: A need to balance depth with breadth. Hydrology and

Earth System Sciences, 18(2). https://doi.org/10.5194/hess-18-463-2014

Hamman, J., Rocklin, M., & Abernathy, R. (2018). Pangeo: A Big-data Ecosystem for Scalable

Earth System Science. Geophysical Research Abstracts (Vol. 20).

Hobley, D. E. J., Adams, J. M., Siddhartha Nudurupati, S., Hutton, E. W. H., Gasparini, N. M.,

Istanbulluoglu, E., & Tucker, G. E. (2017). Creative computing with Landlab: An open-

source toolkit for building, coupling, and exploring two-dimensional numerical models of

Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–46.

https://doi.org/10.5194/esurf-5-21-2017

Hodson, S., Jones, S., Collins, S., Genova, F., Harrower, N., Laaksonen, L., et al. (2018).

Turning FAIR data into reality: interim report from the European Commission Expert

Group on FAIR data (Version Interim draft). Interim Report from the European

Commission Expert Group on FAIR Data, (June).

Horsburgh, J. S., Morsy, M. M., Castronova, A. M., Goodall, J. L., Gan, T., Yi, H., et al. (2016).

HydroShare: Sharing Diverse Environmental Data Types and Models as Social Objects with

Application to the Hydrology Domain. Journal of the American Water Resources

Association, 52(4). https://doi.org/10.1111/1752-1688.12363

Hothorn, T., & Leisch, F. (2011). Case studies in reproducibility. Briefings in Bioinformatics,

12(3). https://doi.org/10.1093/bib/bbq084

Hut, R. W., van de Giesen, N. C., & Drost, N. (2017, May 1). Comment on “Most computational

hydrology is not reproducible, so is it really science?” by Christopher Hutton et al.: Let

hydrologists learn the latest computer science by working with Research Software

Engineers (RSEs) and not reinvent the waterwheel ourselves. Water Resources Research.

Blackwell Publishing Ltd. https://doi.org/10.1002/2017WR020665

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., & Arheimer, B. (2016). Most

computational hydrology is not reproducible, so is it really science? Water Resources

Research, 52(10), 7548–7555. https://doi.org/10.1002/2016WR019285

Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The case for open computer programs.

Nature, 482(7386), 485–488. https://doi.org/10.1038/nature10836

Jarvis, P. (1976). The interpretation of the variations in leaf water potential and stomatal

conductance found in canopies in the field. Trans. R. Soc. B, 273(927), 593–610.

https://doi.org/10.1098/rstb.1976.0035

Jupyter Project, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., et al. (2018).

Binder 2.0 - Reproducible, interactive, sharable environments for science at scale.

Proceedings of the 17th Python in Science Conference, (Scipy).

https://doi.org/10.25080/majora-4af1f417-011

Kerandi, N., Arnault, J., Laux, P., Wagner, S., Kitheka, J., & Kunstmann, H. (2018). Joint

atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the

upper Tana River basin. Theoretical and Applied Climatology.

https://doi.org/10.1007/s00704-017-2050-8

References

91

Kery, M. B., Radensky, M., Arya, M., John, B. E., & Myers, B. A. (2018). The story in the

notebook: Exploratory data science using a literate programming tool. In Conference on

Human Factors in Computing Systems - Proceedings (Vol. 2018-April).

https://doi.org/10.1145/3173574.3173748

Kim, Y. M., Poline, J. B., & Dumas, G. (2018). Experimenting with reproducibility: A case

study of robustness in bioinformatics. GigaScience.

https://doi.org/10.1093/gigascience/giy077

Kluyver, T., Ragan-kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., et al. (2016).

Jupyter Notebooks—a publishing format for reproducible computational workflows.

Positioning and Power in Academic Publishing: https://doi.org/10.3233/978-1-61499-649-

1-87

Knuth, D. E. (1984). LITERATE PROGRAMMING. Computer Journal.

https://doi.org/10.1093/comjnl/27.2.97

Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J., & Harrington, R. A. (1993). Grouped

Response Units for Distributed Hydrologic Modeling. Journal of Water Resources Planning

and Management, 119(3), 289–305. https://doi.org/10.1061/(ASCE)0733-

9496(1993)119:3(289)

Kovács, Á. (2017). Comparison of different linux containers. In 2017 40th International

Conference on Telecommunications and Signal Processing, TSP 2017 (Vol. 2017-January).

https://doi.org/10.1109/TSP.2017.8075934

Kozhirbayev, Z., & Sinnott, R. O. (2017). A performance comparison of container-based

technologies for the Cloud. Future Generation Computer Systems, 68.

https://doi.org/10.1016/j.future.2016.08.025

Kuentz, A., Arheimer, B., Hundecha, Y., & Wagener, T. (2017). Understanding hydrologic

variability across Europe through catchment classification. Hydrology and Earth System

Sciences, 21(6). https://doi.org/10.5194/hess-21-2863-2017

Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage,

trends, and potential. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101509

Kumar, M., Bhatt, G., & Duffy, C. J. (2010). An object-oriented shared data model for GIS and

distributed hydrologic models. International Journal of Geographical Information Science,

24(7). https://doi.org/10.1080/13658810903289460

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for

mobility of compute. PLoS ONE, 12(5), e0177459.

https://doi.org/10.1371/journal.pone.0177459

Lampert, D. J., & Wu, M. (2015). Development of an open-source software package for

watershed modeling with the Hydrological Simulation Program in Fortran. Environmental

Modelling & Software, 68, 166–174. https://doi.org/10.1016/J.ENVSOFT.2015.02.018

Laniak, G. F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., et al. (2013). Integrated

environmental modeling: A vision and roadmap for the future. Environmental Modelling

and Software, 39. https://doi.org/10.1016/j.envsoft.2012.09.006

References

92

Leonard, L., & Duffy, C. (2016). Visualization workflows for level-12 HUC scales: Towards an

expert system for watershed analysis in a distributed computing environment.

Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2016.01.001

Leonard, L., & Duffy, C. J. (2013). Essential terrestrial variable data workflows for distributed

water resources modeling. Environmental Modelling and Software.

https://doi.org/10.1016/j.envsoft.2013.09.003

Leonard, L., & Duffy, C. J. (2014). Automating data-model workflows at a level 12 HUC scale:

Watershed modeling in a distributed computing environment. Environmental Modelling and

Software. https://doi.org/10.1016/j.envsoft.2014.07.015

Leonard, L., Miles, B., Heidari, B., Lin, L., Castronova, A. M., Minsker, B., et al. (2019).

Development of a participatory Green Infrastructure design, visualization and evaluation

system in a cloud supported jupyter notebook computing environment. Environmental

Modelling and Software. https://doi.org/10.1016/j.envsoft.2018.10.003

Leonard, L. N. (2015). HydroTerre: Towards an expert system for scaling hydrological data and

models from hill-slopes to major-river basins. ProQuest Dissertations and Theses Global.

Li, Y. (2020). Towards fast prototyping of cloud-based environmental decision support systems

for environmental scientists using R Shiny and Docker. Environmental Modelling and

Software, 132. https://doi.org/10.1016/j.envsoft.2020.104797

Licensing Geographic Data and Services. (2004). Licensing Geographic Data and Services.

https://doi.org/10.17226/11079

de Lusignan, S., & van Weel, C. (2006). The use of routinely collected computer data for

research in primary care: Opportunities and challenges. Family Practice.

https://doi.org/10.1093/fampra/cmi106

Lyu, F., Yin, D., Padmanabhan, A., Choi, Y., Goodall, J. L., Castronova, A., et al. (2019).

Reproducible Hydrological Modeling with CyberGIS-Jupyter: A Case Study on SUMMA.

In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of

the Machines (Learning) (pp. 21:1--21:6). New York, NY, USA: ACM.

https://doi.org/10.1145/3332186.3333052

Markham, K. (2019). Six easy ways to run your Jupyter Notebook in the cloud Retrieved from.

Retrieved December 10, 2019, from https://www.dataschool.io/cloud-services-for-jupyter-

notebook/

McDonnell, B., Ratliff, K., Tryby, M., Wu, J., & Mullapudi, A. (2020). PySWMM: The Python

Interface to Stormwater Management Model (SWMM). Journal of Open Source Software,

5(52). https://doi.org/10.21105/joss.02292

McDonnell, B. E. (2017). Pyswmm 0.4. 5: Python Wrapper for SWMM5 API. Retrieved

December 10, 2019, from https://github.com/OpenWaterAnalytics/pyswmm

McNutt, M. (2014). Reproducibility. Science. https://doi.org/10.1126/science.1250475

Merkel, D. (2014). Docker: lightweight Linux containers for consistent development and

deployment. Retrieved January 21, 2020, from

References

93

https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-

development-and-deployment

Miles, B., & Band, L. E. (2015). Ecohydrology Models without Borders?

https://doi.org/10.1007/978-3-319-15994-2_31

Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W., Gutmann, E. D., Nijssen, B., et al.

(2017). Towards seamless large-domain parameter estimation for hydrologic models. Water

Resources Research, 53(9). https://doi.org/10.1002/2017WR020401

Morsy, M. M., Goodall, J. L., Castronova, A. M., Dash, P., Merwade, V., Sadler, J. M., et al.

(2017). Design of a metadata framework for environmental models with an example

hydrologic application in HydroShare. Environmental Modelling & Software, 93, 13–28.

https://doi.org/10.1016/J.ENVSOFT.2017.02.028

National Academies of Sciences. (2019). Reproducibility and Replicability in Science.

https://doi.org/https://doi.org/10.17226/25303

Nativi, S., Caron, J., Domenico, B., & Bigagli, L. (2008). Unidata’s Common Data Model

mapping to the ISO 19123 Data Model. Earth Science Informatics, 1(2).

https://doi.org/10.1007/s12145-008-0011-6

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., et al. (2015).

Development of a large-sample watershed-scale hydrometeorological data set for the

contiguous USA: Data set characteristics and assessment of regional variability in

hydrologic model performance. Hydrology and Earth System Sciences, 19(1).

https://doi.org/10.5194/hess-19-209-2015

Pauliuk, S. (2020). Making sustainability science a cumulative effort. Nature Sustainability.

https://doi.org/10.1038/s41893-019-0443-7

Peckham, S. D., Hutton, E. W. H., & Norris, B. (2013). A component-based approach to

integrated modeling in the geosciences: The design of CSDMS. Computers and

Geosciences, 53. https://doi.org/10.1016/j.cageo.2012.04.002

Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing.

Computing in Science and Engineering, 9(3). https://doi.org/10.1109/MCSE.2007.53

Piccolo, S. R., & Frampton, M. B. (2016). Tools and techniques for computational

reproducibility. GigaScience, 5(1), 30. https://doi.org/10.1186/s13742-016-0135-4

Pimentel, J. F., Murta, L., Braganholo, V., & Freire, J. (2019). A large-scale study about quality

and reproducibility of jupyter notebooks. In IEEE International Working Conference on

Mining Software Repositories (Vol. 2019-May). https://doi.org/10.1109/MSR.2019.00077

Prasad, C., Nancy, W., Mark, M., & Emre H, B. (2020). Measuring success for a future vision:

Defining impact in science gateways/virtual research environments. Concurrency

Computation Practice and Experience. https://doi.org/10.1002/cpe.6099

Reddy, M. (2011). API design for c++. https://doi.org/10.1016/C2010-0-65832-9

Rocklin, M. (2015). Dask: Parallel Computation with Blocked algorithms and Task Scheduling.

References

94

In Proceedings of the 14th Python in Science Conference. https://doi.org/10.25080/majora-

7b98e3ed-013

Rosenberg, D. E., Filion, Y., Teasley, R., Sandoval-Solis, S., Hecht, J. S., van Zyl, J. E., et al.

(2020). The Next Frontier: Making Research More Reproducible. Journal of Water

Resources Planning and Management, 146(6). https://doi.org/10.1061/(asce)wr.1943-

5452.0001215

Rstudio Team. (2020). RStudio: Integrated development for R. RStudio, Inc., Boston MA.

RStudio.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of computer

experiments. Statistical Science. https://doi.org/10.1214/ss/1177012413

Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., et al. (2017).

Toward seamless hydrologic predictions across spatial scales. Hydrology and Earth System

Sciences, 21(9). https://doi.org/10.5194/hess-21-4323-2017

Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten Simple Rules for

Reproducible Computational Research. PLoS Computational Biology.

https://doi.org/10.1371/journal.pcbi.1003285

Seaber, P. R., Kapinos, F. P., & Knapp, G. L. (1987). Hydrologic Unit Maps (USA). US

Geological Survey Water-Supply Paper, 2294. https://doi.org/10.3133/wsp2294

Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for

Water Resources Scientists. Water Resources Research.

https://doi.org/10.1029/2018WR022643

Shuler, C. K., & Mariner, K. E. (2020). Collaborative groundwater modeling: Open-source,

cloud-based, applied science at a small-island water utility scale. Environmental Modelling

and Software, 127. https://doi.org/10.1016/j.envsoft.2020.104693

Signell, R. P., & Pothina, D. (2019). Analysis and visualization of coastal ocean model data in

the cloud. Journal of Marine Science and Engineering.

https://doi.org/10.3390/jmse7040110

Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi, A., et al. (2019). Using

R in hydrology: A review of recent developments and future directions. Hydrology and

Earth System Sciences. https://doi.org/10.5194/hess-23-2939-2019

Stagge, J. H., Rosenberg, D. E., Abdallah, A. M., Akbar, H., Attallah, N. A., & James, R. (2019).

Assessing data availability and research reproducibility in hydrology and water resources.

Scientific Data, 6. https://doi.org/10.1038/sdata.2019.30

Stodden, V., & Miguez, S. (2013). Best Practices for Computational Science: Software

Infrastructure and Environments for Reproducible and Extensible Research. SSRN

Electronic Journal. https://doi.org/10.2139/ssrn.2322276

SUMMA Online Document. (2020). SUMMA Online Document. Retrieved February 25, 2020,

from https://summa.readthedocs.io/en/latest/

References

95

Tague, C. L., & Band, L. E. (2004a). RHESSys: Regional Hydro-Ecologic Simulation System—

An Object-Oriented Approach to Spatially Distributed Modeling of Carbon, Water, and

Nutrient Cycling. Earth Interactions. https://doi.org/10.1175/1087-

3562(2004)8<1:rrhsso>2.0.co;2

Tague, C. L., & Band, L. E. (2004b). RHESSys: Regional Hydro-Ecologic Simulation System—

An Object-Oriented Approach to Spatially Distributed Modeling of Carbon, Water, and

Nutrient Cycling. Earth Interactions, 8(19). https://doi.org/10.1175/1087-

3562(2004)8<1:rrhsso>2.0.co;2

Tague, C. L., Band, L. E., Tague, C. L., & Band, L. E. (2004). RHESSys: Regional Hydro-

Ecologic Simulation System—An Object-Oriented Approach to Spatially Distributed

Modeling of Carbon, Water, and Nutrient Cycling. Earth Interactions, 8(19), 1–42.

https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2

Tarboton, David, Idaszak, Ray, & Horsburgh, J. (2018). HydroShare tools and recommended

practices for sharing and publishing data and models in support of collaborative

reproducible research. AGU 2018 Fall Meeting. https://doi.org/10.1002/essoar.10500174.1

Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope

areas in grid digital elevation models. Water Resources Research, 33(2), 309–319.

https://doi.org/10.1029/96WR03137

Tarboton, D. G., Idaszak, R., Horsburgh, J. S., Heard, J., Ames, D., Goodall, J. L., et al. (2014).

Hydro share: Advancing collaboration through hydrologic data and model sharing.

Proceedings - 7th International Congress on Environmental Modelling and Software: Bold

Visions for Environmental Modeling, IEMSs 2014, 1(October), 23–29.

https://doi.org/10.13140/2.1.4431.6801

That, D. H. T., Fils, G., Yuan, Z., & Malik, T. (2017). Sciunits: Reusable research objects. In

Proceedings - 13th IEEE International Conference on eScience, eScience 2017.

https://doi.org/10.1109/eScience.2017.51

Toms, S. (2015). ArcPy and ArcGIS - Geospatial Analysis with Python. Packt Publishing (Vol.

1).

Viglione, A., & Parajka, J. (2020). TUWmodel. R Package Documentation.

https://doi.org/10.1002/hyp.6253

Vogel, R. M., Lall, U., Cai, X., Rajagopalan, B., Weiskel, P. K., Hooper, R. P., & Matalas, N. C.

(2015). Hydrology: The interdisciplinary science of water. Water Resources Research,

51(6). https://doi.org/10.1002/2015WR017049

Volk, J. M., & Turner, M. A. (2019). PRMS-Python: A Python framework for programmatic

PRMS modeling and access to its data structures. Environmental Modelling and Software.

https://doi.org/10.1016/j.envsoft.2019.01.006

Wenjue, J., Yumin, C., & Jianya, G. (2004). Implementation of OGC web map service based on

web service. Geo-Spatial Information Science, 7(2). https://doi.org/10.1007/BF02826653

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., et al.

(2016). Comment: The FAIR Guiding Principles for scientific data management and

References

96

stewardship. Scientific Data. https://doi.org/10.1038/sdata.2016.18

Wilkinson, M. D., Verborgh, R., da Silva Santos, L. O. B., Clark, T., Swertz, M. A., Kelpin, F.

D. L., et al. (2017). Interoperability and FAIRness through a novel combination of Web

technologies. PeerJ Computer Science, 2017(4). https://doi.org/10.7717/peerj-cs.110

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good

enough practices in scientific computing. PLoS Computational Biology, 13(6).

https://doi.org/10.1371/journal.pcbi.1005510

Yi, H., Idaszak, R., Stealey, M., Calloway, C., Couch, A. L., & Tarboton, D. G. (2018).

Advancing distributed data management for the HydroShare hydrologic information system.

Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2017.12.008

Yin, D., Liu, Y., Padmanabhan, A., Terstriep, J., Rush, J., & Wang, S. (2017). A cybergis-

jupyter framework for geospatial analytics at scale. In ACM International Conference

Proceeding Series (Vol. Part F128771). Association for Computing Machinery.

https://doi.org/10.1145/3093338.3093378

Yuan, Z., Ton That, D. H., Kothari, S., Fils, G., & Malik, T. (2018). Utilizing provenance in

reusable research objects. Informatics. https://doi.org/10.3390/informatics5010014

97

Appendix

Appendix-1 Total scores of complexity (Table A.1-7), size of reproducible artifacts (Table

A.8-12), and reproduced figures (Figure A.1 and A.2)

Table A.1. An example of reproducible approach for Approach-1: Compiling Model Software

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA 16 1.Reproduce SUMMA 7

1.1 Create SUMMA Makefile Difficult 10 1.1 Download Source Code and Makefile Easy 1

1.2 Compile and Create Binary Executable Medium 5 1.2 Edit Makefile Medium 5

1.3 Share Source Code and Makefile Easy 1 1.3 Compile and Create Binary Executable Easy 1

2. Create a Reproducible Approach for pySUMMA 6 2. Reproduce pySUMMA and Modeling Workflows 2

2.1 Create pySUMMA environment.yml Medium 5 2.1 Download Jupyter Notebooks Easy 1

2.2 Share Source Code and environment.yml Easy 1 2.2 Open and Run Jupyter Notebooks

- Install pySUMMA

- Download SUMMA input

- Execute SUMMA

Easy

1

3.Create a Reproducible Approach of Modeling Workflows 12

3.1 Create Jupyter Notebooks Difficult 10

3.2 Share Jupyter Notebooks Easy 1

3.3 Share SUMMA Input Easy 1

Total Score 34 Total Score 9

Table A.2. An example of reproducible approach for Approach 3: Containerizing All Software

with Docker

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA,

pySUMMA, and Modeling Workflows
23

1.Reproduce SUMMA, pySUMMA, and Modeling

Workflows
3

1.1 Create Jupyter Notebooks Difficult 10 1.1 Install Docker Easy 1

1.2 Create SUMMA and pySUMMA

Dockerfile
Difficult 10 1.2 Download and Run Docker Image Easy 1

1.3 Create SUMMA and pySUMMA Docker

Image
Easy 1

1.3 Open and Run Jupyter Notebooks

- Download SUMMA Input

- Execute SUMMA

Easy

1

1.4 Share SUMMA and pySUMMA Docker

Image
Easy 1

1.5 Share SUMMA Input Easy 1

Total Score 23 Total Score 3

Appendix

98

Table A.3. An example of reproducible approach for Approach-4: Using Singularity

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA,

pySUMMA, and Modeling Workflows
13

 1.Reproduce SUMMA, pySUMMA, and Modeling

Workflows
5

1.1 Create SUMMA and pySUMMA

Definition file
Difficult 10

 1.1 Install Singularity Easy 1

 1.2 Install Anaconda and Jupyter Easy 1

1.2 Create SUMMA and pySUMMA

Singularity Image
Easy 1 1.3 Download Jupyter Notebooks Easy 1

1.3 Create Jupyter Kernel file Easy 1 1.4 Create Jupyter Kernel Easy 1

1.4 Upload SUMMA and pySUMMA

Singularity image on HPC
Easy 1

1.5 Open and Run Jupyter Notebooks

- Download Singularity image

- Create Jupyter Kernel

- Download SUMMA input

- Execute SUMMA

Easy

1

2.Create a Reproducible Approach of Modeling Workflows 12

2.1 Create Jupyter Notebooks Difficult 10

2.2 Share Jupyter Notebooks Easy 1

2.3 Share SUMMA Input Easy 1

Total Score 25 Total Score 5

Table A.4. An example of reproducible approach for Approach-5, 8 and 9: Using Sciunit

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA,

pySUMMA, and Modeling Workflows
17

1.Reproduce SUMMA, pySUMMA, and Modeling

Workflows
2

1.1 Create Python or Shell Script to Execute

SUMMA
Difficult 10

1.2 Create Jupyter Notebook to encapsulate

Sciunit Workflow
Medium 5

1.1 Download Sciunit Container and Jupyter

Notebooks
Easy 1

1.3 Create SUMMA Sciunit Container Easy 1 1.2 Open and Run Jupyter Notebooks

- Install Sciunit

- Execute Sciunit

Easy

1

1.4 Share SUMMA Sciunit Container and

Jupyter Notebooks
Easy 1

Total Score 17 Total Score 2

Appendix

99

Table A.5. An example of reproducible approach for Approach-6 and 7: Using CJH and CJW

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA and

pySUMMA
18

1.Reproduce Modeling Workflows 2
1.1 Git Clone CJH or CJW Dockerfile

Repository
Easy 1

1.2 Create Dockerfile for SUMMA and

pySUMMA
Difficult 10 1.1 Log in CJH or CJW Easy 1

1.3 Pull Request to add Dockerfile into CJH

or CJW
Easy 1

1.2 Open and Run Jupyter Notebooks

- Download SUMMA input

- Execute SUMMA

* To use XSEDE from CJW, we need

additional work

 - Create Singularity image to upload into

XSEDE

 - Create Python code to interact between CJW

and XSEDE for SUMMA modeling

Easy

1

1.4 Review Dockerfile by CJH or CJW

Development Team
Medium 5

1.5 Share the SUMMA and pySUMMA

Docker image on CJH or CJW
Easy 1

2.Create a Reproducible Approach of Modeling Workflows 12

2.1 Create Jupyter Notebooks Difficult 10

2.2 Share Jupyter Notebooks Easy 1

2.3 Share SUMMA Input Easy 1

Total Score 30 Total Score 2

Table A.6. An example of reproducible approach for Approach 10: Using Binder

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA,

pySUMMA, and Modeling Workflows
24

1.Reproduce SUMMA, pySUMMA, and Modeling

Workflows
2

1.1 Create SUMMA and pySUMMA

Configuration file for Binder
Difficult 10

1.2 Create Jupyter Notebooks Difficult 10 1.1 Click Binder Link Easy 1

1.3 Share SUMMA and pySUMMA

Configuration file and Jupyter Notebooks on

Online Repositories

Easy 1 1.2 Open and Run Jupyter Notebooks

- Download SUMMA input

- Execute SUMMA

Easy

1

1.4 Create Binder for SUMMA and

pySUMMA
Easy 1

1.5 Share Binder Link Easy 1

1.6 Share SUMMA input Easy 1

Total Score 24 Total Score 2

Appendix

100

Table A.7. An example of reproducible approach for Approach 11: Using a HPC Cluster

Developer Work User Work

Steps
Level of

Difficulty
Scores Steps

Level of

Difficulty
Scores

1. Create a Reproducible Approach for SUMMA,

pySUMMA, and Modeling Workflows
13

 1.Reproduce SUMMA, pySUMMA, and Modeling

Workflows
4

1.1 Create SUMMA and pySUMMA

Definition file
Difficult 10 1.1 Log in HPC Easy 1

1.2 Create SUMMA and pySUMMA

Singularity Image
Easy 1 1.2 Download Jupyter Notebooks Easy 1

1.3 Create Jupyter Kernel file Easy 1 1.3 Create Jupyter Kernel Easy 1

1.4 Upload SUMMA and pySUMMA

Singularity image on HPC
Easy 1

1.4 Open and Run Jupyter Notebooks

- Download Singularity image

- Create Jupyter Kernel

- Download SUMMA input

- Execute SUMMA
* Don’t need to install Singularity in HPC because

generally Singularity is preconfigured.

Easy

1

2. Create a Reproducible Approach of Modeling Workflows 12

2.1 Create Jupyter Notebooks Difficult 10

2.2 Share Jupyter Notebooks Easy 1

2.3 Share SUMMA Input Easy 1

Total Score 25 Total Score 4

Table A.8. The size of reproducible artifacts for Approach-1: Compiling Model Software

Dependencies Size (MB)

Ubuntu 8,870

Anaconda 6,382

SUMMA 28

pySUMMA 3,169

Subtotal (w/o Ubuntu) 9,578

Total 18,448

Table A.9. The size of reproducible artifacts for Approach 2: Containerizing Model Software

only with Docker

Dependencies Size (MB)

Ubuntu 8,870

Anaconda 6,382

Docker tool 386

Docker image (SUMMA) 615

pySUMMA 3,169

Subtotal (w/o Ubuntu) 10,551

Total 19,421

Appendix

101

Table A.10. The size of reproducible artifacts for Approach 3: Containerizing All Software with

Docker

Dependencies Size (MB)

Ubuntu 8,870

Docker tool 386

Docker image (SUMMA, Anaconda, pySUMMA) 5,770

Subtotal (w/o Ubuntu) 6,156

Total 15,026

Table A.11. The size of reproducible artifacts for Approach-4: Using Singularity

Dependencies Size (MB)

Ubuntu 8,870

Singularity tool 1,005

Singularity image (SUMMA, Anaconda, pySUMMA) 2,900

Subtotal (w/o Ubuntu) 3,905

Total 12,775

Table A.12. The size of reproducible artifacts for Approach-5, 8 and 9: Using Sciunit

Dependencies Size (MB)

Ubuntu 8,870

Sciunit tool 6

Sciunit image (SUMMA, Anaconda, pySUMMA) 306

Subtotal (w/o Ubuntu) 312

Total 9,182

Appendix

102

Figure A.1 Reproduced and additional figures of figure 7 and 8 from Clark et al. (2015b) showing the

impact of the three different stomatal resistance parameterizations on total evapotranspiration based on

Scenario 1 and 2

https://www.sciencedirect.com/science/article/pii/S1364815220309452#fig7
https://www.sciencedirect.com/science/article/pii/S1364815220309452#bib15

Appendix

103

Figure A.2 Reproduced and additional figures of figure 9 from Clark et al. (2015b) showing the impact of

the different lateral flux parameterizations on simulations of runoff based on Scenario 3 and 4

