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Abstract  

  
There is growing acknowledgment and awareness of the reproducibility challenge facing 

computational environmental modeling. To overcome this challenge, data sharing using open, 

online repositories that meet the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding 

principles is recognized as a minimum standard to reproduce computational research. Even with 

these data sharing guidelines and well-documented workflows, it remains challenging to reproduce 

computational models due to complexities like inconsistent computational environments or 

difficulties in dealing with large datasets that prevent seamless, end-to-end modeling. 

Containerization technologies have been put forward as a means for addressing these problems by 

encapsulating computational environments, yet domain science researchers are often unclear about 

which containerization approach and technology is best for achieving a given modeling objective. 

Thus, to meet FAIR principles, researchers need clear guidelines for encapsulating seamless 

modeling workflows, especially for environmental modeling use cases that require large datasets. 

Toward these aims, this dissertation presents three studies to address current limitations of 

reproducibility in environmental modeling. The first study presents a framework for integrating 

three key components to improve reproducibility within modern computational environmental 

modeling: 1) online repositories for data and model sharing, 2) computational environments along 

with containerization technology and Jupyter notebooks for capturing reproducible modeling 

workflows, and 3) Application Programming Interfaces (APIs) for intuitive programmatic control 

of simulation models. The second study focuses on approaches for containerizing computational 

processes and suggests best practices and guidance for which approach is most appropriate to 

achieve specific modeling objectives when simulating environmental systems. The third study 

focuses on open and reproducible seamless environmental modeling workflows, especially when 

creating and sharing interoperable and reusable large-extent spatial datasets as model input. Key 

research contributions across these three studies are as follows. 1) Integration of online repositories 

for data and model sharing, computational environments along with containerization technology 

for capturing software dependencies, and workflows using model APIs and notebooks for model 

simulations creates a powerful system more open and reproducible environmental modeling. 2) 

Considering the needs and purposes of research and educational projects, and applying the 

appropriate containerization approach for each use case, makes computational research more 

reliable and efficient. 3) Sharing interoperable and reusable large-extent spatial datasets through 

open data repositories for model input supports seamless environmental modeling where data and 

processes can be reused across multiple applications. Finally, the methods developed and insights 

gained in this dissertation not only advance reliable and efficient computational reproducibility in 

environmental modeling, but also serve as best practices and guidance for achieving 

reproducibility in engineering practice and other scientific fields that rely on computational 

modeling.  
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Chapter 1 

1 Introduction 

Nearly all computational modeling fields are facing a reproducibility crisis (Monya; Baker, 

2016; Hutton et al., 2016; McNutt, 2014; National Academies of Sciences, 2019; Stagge et al., 

2019). According to a survey of 1,500 researchers, about 70% had tried but failed to reproduce 

published research and 90% agreed that the problem of reproducibility is a critical problem for 

scientific advancement (Monya; Baker, 2016). Within the hydrology and water resources fields, 

Stagge et al. (2019) analyzed 360 articles in six leading journals to understand if their data were 

available online and if the study results were reproducible. Their analysis showed that only 5.6% 

of the articles had data and model code available online along with directions for use, and only 

1.1% were fully reproducible while 0.6% were partially reproducible. There are many possible 

reasons for this outcome; however, in this dissertation I argue that there is a need to extend the 

requirements to reproduce computational research from data sharing and well-documented 

workflows, the common practice now, to encapsulating all artifacts used in the original 

computational environments (Hut et al., 2017; Hutton et al., 2016). Reviewing recent research 

toward this goal of improving computational reproducibility, three distinct thrusts emerge: 1) open 

sharing of data and models online, 2) containerizing computational environments for core software 

and other secondary software, and 3) encapsulating computational workflows using Application 

Programming Interfaces (APIs) for programmatically control of complex computational research. 

First, for the open sharing of data and models online, the FAIR principles have been 

presented as high-level guidelines to improve scientific data by making them Findable, Accessible, 

Interoperable, and Reusable (Wilkinson et al., 2016). The FAIR principles emphasize the 

necessities of both human and machine applicable data management environments and ongoing 

efforts on FAIR guiding principles have advanced data repositories with unique identifier 

mechanisms, data management plans, policies, and standards (Collins et al., 2018). Based on the 

use of unique identifiers such as the Digital Object Identifier (DOI), data can become “Findable.” 

Public machine-accessible APIs allow datasets and metadata to become “Accessible,” and the use 

of standard terms, metadata, and a wide range of data types allow data to become “Interoperable.” 

Finally, detailed documents together with metadata make data “Reusable.” Recently, numerous 

online repositories have accepted FAIR principles and enhanced their functionalities to be more 

Finable, Accessible, Interoperable, and Reusable. However, reproducibility research has led to a 

growing demand not only for data sharing with well-documented data, source code, software, and 

workflows, but also with tools for automatically encapsulating computational environments and 

workflows using containerization and literate programming (Kery et al., 2018; Knuth, 1984). For 

example, Bast (2019) suggested source code management and containerization tools are needed to 

reproduce computational environments for FAIRer principles, while Goble et al. (2020) suggested 

the FAIR principles need computational workflows to describe the execution of a computational 

workflow such as data collection, data preparation, data analysis, and modeling simulation. In 

hydrology, Hutton et al. (2016) recommended an online repository to easily find data and source 

code with unique persistent identifiers and computational workflows to describe the precise 
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procedure among data and modeling processes. In addition, Hut et al. (2017) suggested the use of 

containerization tools and open interfaces to complement the preservation of computational 

environments suggested in Hutton et al. (2016). 

Second, containerization technologies have been developed and advanced for capturing 

computational environments for core model software along with other secondary, supporting 

software. Traditional approaches such as compiling software from source code to reproduce 

computational environments are difficult because they require a certain level of expertise about 

software dependencies, compilers, and computer environments to install and configure a complex 

computational modeling setup. While most model developers may know the specific requirements 

to reproduce their own model on another computer, for many modern scientific models it is 

challenging to completely document this procedure so that others can effectively and consistently 

reproduce it. To address this challenge, model developers have recently started using 

containerization tools such as Docker (Merkel, 2014), Singularity (Kurtzer et al., 2017), and 

Sciunit (That et al., 2017). Currently, Docker is the most popular containerization tool to 

encapsulate computational environments. Singularity is another containerization tool that is more 

popular for use in high performance computing (HPC) environments due to security concerns with 

Docker in these HPC environments. Sciunit is another containerization tool under active 

development that is more tailored for geoscience researchers with the goal of lowering the barrier 

to containerizing for this community. These containerization tools can be used to encapsulate the 

entire computational end-to-end environmental modeling workflow, allowing developers and 

researchers to more easily and confidently create reproducible modeling studies that can be 

repeated across machines. While these containerization tools offer an important opportunity, the 

challenge remains in deciding how to best utilize the tools for different modeling use cases and 

computational environments.  

Third, APIs are growing in popularity for interacting with various complex environmental 

models. In environmental modeling, many studies mentioned that capturing the entire end-to-end 

workflows is important to achieve reproducibility and replicability. Current approaches to 

encapsulate workflows have focused on model execution and visualization. However, to complete 

“end-to-end” workflows, data preprocessing is critical for improving reproducibility, as the steps 

to create model input files are often nontrivial, requires a significant time investment (L. N. 

Leonard, 2015; Miles & Band, 2015). Therefore, the ability to improve preprocessing in “end-to-

end” workflows is an important step for achieving reproducibility and replicability. Model APIs 

offer a means to programmatically interact with models in creating these end-to-end workflows. 

The recent popularity of literate programming tools offer a way to capture a modeling workflow 

as a narrative that intermingles code, making using of model APIs, text-based documentation, and 

inline visualization of model output directly within the same narrative (Kery et al., 2018; Knuth, 

1984; Pimentel et al., 2019). For example, Jupyter (Avila et al., 2020; Pérez & Granger, 2007) and 

RMarkdown (Baumer et al., 2014; Rstudio Team, 2020) are used to incorporate code, data, 

description, and visualization needed to reproduce a computational experiment. Jupyter notebooks 

are growing quickly in use and popularity in computational fields as a means to document 

modeling workflows (Kluyver et al., 2016). When combined with model APIs, literate 
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programming tools like Jupyter notebooks offer a powerful means for creating end-to-end 

reproducible workflows.  

In this dissertation, I aim to present a general framework to integrate the three components, 

online data repositories, computational environments, and modeling workflows through 

Application Programming Interfaces (APIs), for FAIRer environmental modeling. Online 

repositories are continuously maturing through FAIR principles to meet the requirements for 

reproducibility. Therefore, the second two studies in this dissertation focus on advancing other 

components of the framework, namely computational environments (the second component) and 

seamless environmental modeling workflows (the third component). This dissertation is, therefore, 

organized around three objectives, each addressing one of these specific research gaps, and each 

objective the focus of a separate chapter in the dissertation (Figure 1.1). These objectives are (1) 

to explore the integration of three key components within modern environment modeling, (2) to 

determine best practices for using tools and approaches available for containerizing environmental 

modeling software and executing it in different computing environments, and (3) to create and 

share interoperable and reusable large-extent spatial sample datasets as model input for seamless 

environmental modeling. 

 

Figure 1.1. Overview of the integration of three key components and the advancement of each component through 

three targeted studies. 

The first study (Chapter 2) presents the high-level concept and general design for 

integrating 1) online repositories for data and model sharing, 2) computational environments along 

with containerization technology and notebooks for capturing reproducible computational studies, 

and 3) APIs for simulation models to foster intuitive programmatic control. An example 

implementation of this framework is provided using HydroShare as the online repositories, 

CUAHSI JupyterHub and CyberGIS-Jupyter for water as computational environments, and 

pySUMMA as an example Python-based model API. The example implementation is applied for 

a SUMMA hydrologic modeling use case to demonstrate how the general approach can advance 

reproducible environmental modeling. 
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 The second study (Chapter 3) focuses on determining best practices for containerization of 

computational environments. Many containerization approaches currently exist, however the 

challenge is deciding how best to utilize containerization tools for different modeling use cases 

and computational environments. This study presents best practices for reproducibility by 

comparing 11 approaches to achieving environmental modeling objectives. Five approaches were 

explored for using different combinations of software containerization methods on a local 

computing environment. Six additional approaches were considered that leveraged remote 

computing environments such as clusters and cloud computing architectures along with different 

containerization methods (Li, 2020; Prasad et al., 2020; Shuler & Mariner, 2020). Remote 

resources utilized were the CUAHSI JupyterHub, CyberGIS-Jupyter for water, MyBinder, and 

University of Virginia HPC environment. The results of both quantitative and qualitative 

performance tests across the 11 approaches are presented using a hydrologic modeling use case 

example. The findings of this study are described in terms of best practices for using reproducible 

workflows for different environmental modeling objectives. 

 The third study (Chapter 4) focuses on improving seamless environmental modeling, 

especially in terms of accessing and processing large-extent data inputs for environmental models. 

Seamless environmental modeling seeks to integrate model processes alongside end-to-end 

modeling workflows and large, seamless datasets to enable “models of everywhere”  (Blair et al., 

2019; L. N. Leonard, 2015; Miles & Band, 2015; Slater et al., 2019) and provide consistent data 

across model applications (Mizukami et al., 2017; Samaniego et al., 2017). This study creates and 

shares interoperable and reusable large-extent spatial datasets on GeoServer and THREDDS data 

server (TDS) to support open and reproducible seamless environmental modeling workflows. As 

an example application, three state-scale (North Carolina, Maryland, and Virginia) spatial datasets 

were created and used in RHESSys seamless modeling workflows on the CyberGIS-Jupyter for 

water platform. Using three watershed models as case studies (Coweeta subbasin18 in NC, Scotts 

Level Branch in MD, and Spout Run in VA), the results of data consistency, both in terms of model 

input and output data, are presented to demonstrate the feasibility of the approach for distributing 

large-extent, spatial data for building environmental models. 

Following this introduction are chapters for each of the three studies followed by an 

overall conclusions section. Each chapter is written as a standalone study to enable publication in 

peer-reviewed journals.



A version of this chapter was published in the January 2021 issue of Environmental Modelling & 

Software. The publication can be found at https://doi.org/10.1016/j.envsoft.2020.104888.  
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Chapter 2 

2 Toward Open and Reproducible Environmental 

Modeling by Integrating Online Data 

Repositories, Computational Environment, and 

Model Application Programming Interfaces 

 

2.1 Introduction 

There is a growing acknowledgment and awareness of the reproducibility challenge facing 

computational environmental modeling fields (Hutton et al., 2016; Stagge et al., 2019) as well as 

in other computational modeling disciplines (Monya; Baker, 2016; McNutt, 2014; National 

Academies of Sciences, 2019). According to a survey of 1,576 researchers, about 70% had tried 

but failed to reproduce published research and 90% agreed that the problem of reproducibility is a 

critical problem for scientific advancement (Monya; Baker, 2016). Within the hydrology and water 

resources fields, Stagge et al. (2019) analyzed 360 articles in six leading journals to understand if 

their data were available online and if the study results were reproducible. Their analysis showed 

that only 5.6% of the articles had data and model code available online along with directions for 

use, and only 1.1% were fully reproducible while 0.6% were partially reproducible. There are 

many possible reasons for this outcome; however, we argue along with others that advances in the 

cyberinfrastructure that enable modern computational science is critical to achieving reproducible 

research (Hut et al., 2017; Hutton et al., 2016). 

Reviewing recent research toward this goal of improving the underlying cyberinfrastructure 

necessary to support reproducible computational studies, we see three distinct thrusts: 1) open 

sharing of data and models online, 2) encapsulating computational environments through 

containers and self-documented computational notebooks, and 3) creating Application 

Programming Interfaces (APIs) for programmatically control of complex computational models. 

A major effort to improve the open sharing of data and models is the FAIR (Findable, Accessible, 

Interoperable, Reusable) guiding principles for scientific data management and stewardship 

(Wilkinson et al., 2016). However, FAIR principles speak primarily to openness, which is essential 

but insufficient on its own for addressing reproducibility of computational software and 

computational environments (Bast, 2019). Ince et al. (2012) argued that, even with well-developed 

data and software sharing capabilities, it remains challenging to reproduce published results due 

to difficulties in documenting computational environments needed to repeat past studies. 

Moreover, they found this especially true for operating system environments and software 

dependencies that can cause unpredictable differences with even slight changes in model source 

code or configuration. 

https://doi.org/10.1016/j.envsoft.2020.104888
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To address this need, a second thrust in recent research is aimed at overcoming the 

difficulties with sharing complete computational software environments. Research that has 

focused on improving the sharing of well documented data and software workflows for 

computational studies includes Stodden and Miguez (2013), for example, who proposed sharing 

data, algorithms, and workflows to utilize and verify published results. Similarly, Gil et al. (2016) 

suggested the best practices of sharing data, software, and documents in an open and transparent 

way using a high-level roadmap of approaches to strengthen reproducibility in the geosciences. In 

the meantime, the broader information technology community has introduced the concept of 

containers as a means for encapsulating computational environments (Kurtzer et al., 2017; Merkel, 

2014). The result of this work has benefited computational modeling fields and led to efforts to 

improve the preservation of operating system and software dependencies, strengthening 

reproducibility in computational research (Boettiger, 2015; Brinckman et al., 2019). 

Containerization technologies such as Docker (Merkel, 2014) have been used to reproduce 

computational modeling environments without requiring users to install additional dependencies 

(Boettiger, 2015; Signell & Pothina, 2019). Software tools like Sciunit (Essawy et al., 2018; Yuan 

et al., 2018) ease the process of containerizing, sharing, and tracking scientific applications, 

lowering the barrier to entry for researchers to use containerization tools. 

Containerization has also led to the ability to create new modeling environments and deploy 

them through interactive, online analysis environments such as JupyterHub (Kluyver et al., 2016). 

Jupyter notebooks are quickly growing in use and popularity in computational fields as a means to 

document studies as a mix of formatted text, mathematical equations, and executable code with 

in-line visualizations resulting from the code (Kluyver et al., 2016). JupyterHub is a cloud-based 

software that utilizes containerization to support the execution of multiple Jupyter notebooks 

simultaneously. Recent advances leveraging Jupyter for environmental modeling include work by 

Castronova et al. (2018) who created the CUAHSI JupyterHub to support online hydrologic 

modeling and analysis, Yin et al. (2017) who created a TauDEM (Tarboton, 1997) modeling 

environment with JupyterHub, Eynard-Bontemps et al. (2019) who created the PANGEO project 

that supports big data studies in the geosciences and heavily leverages JupyterHub, and 

Bandaragoda et al. (2019) who used JupyterHub within a larger knowledge infrastructure to 

support earth system modeling. Recent work has also begun to explore combining external 

computational environments including high performance computing (HPC) and high throughput 

computing (HTC) cyberinfrastructure for model execution directly through Jupyter notebooks 

(Lyu et al., 2019). That work also takes advantage of containerization concepts to easily port 

preconfigured model execution environments to available computational resources. 

The third thrust we observe in recent research is efforts to create APIs for computational 

environmental models. While many models have Graphical User Interfaces (GUIs) for improving 

the usability of the models, APIs are different in that they facilitate programmatically interacting 

with a simulation model to configure input files, execute models, and analyze model outputs. 

Python (https://www.python.org) and R (https://rstudio.com) are common programming 

languages used for creating model APIs. Python has examples including model APIs for the 

Stormwater Management Model (PySWMM, B. E. McDonnell, 2017), MODFLOW (FloPy, 

Bakker et al., 2016), Hydrologic Simulation Program in Fortran (PyHSPF, Lampert & Wu, 2015), 
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and Precipitation Runoff Modeling System (PRMS-Python, Volk & Turner, 2019). R has examples 

including model APIs for TOPMODEL (topmodel, Buytaert, 2011), SWAT (SWATmodel, Fuka 

et al., 2014), and TUW model (TUWmodel, Viglione & Parajka, 2020). These model APIs help 

by abstracting low-level programmatic details of input file manipulation and model execution 

operations from end users. In this way, they are particularly useful when combined with 

computational notebooks for creating self-documented modeling studies that can be more easily 

understood and reproduced by both modelers and non-modelers alike. 

While work along each of these thrusts – online data repositories, computational 

environments leveraging containerization and computational notebooks, and model APIs – is 

important individually, integrating these three thrusts offers a powerful approach for reproducible 

computational modeling. Recent research has started to explore this integration includes (1) the 

GI-RHESSys (Green Infrastructure-Regional Hydro-Ecological Simulation System) Jupyter 

environment created for Green Infrastructure (GI) landscape designs and modeling output using 

JupyterHub (Leonard et al., 2019), (2) the Landlab model (Hobley et al., 2017) with recent work 

to implement Landlab within JupyterHub as a knowledge infrastructure (Bandaragoda et al., 2019), 

and (3) the HydroTerre system (L. Leonard & Duffy, 2016) that links an online data repository 

with the Penn State Integrated Hydrologic Model (PIHM). While these examples focused on 

supporting individual modeling use cases, they reveal general patterns of infrastructure 

components necessary to implement their systems. Our aim is to build on this past work by first 

presenting this general pattern as a general approach that can be followed for building new 

modeling systems. Second, we provide an example implementation of the general approach that 

can be easily expanded to support any computational environmental model that is containerized 

and has an accompanying model API. 

The objective of this research is, therefore, to put forward a general approach or framework 

for integrating online data repositories, computational environments, and model APIs to enable 

more open and reproducible environmental modeling. In the Methodology section, we first present 

a high-level design of the approach describing each of the three components in more detail while 

also discussing different options available for online repositories, notebook-based and 

containerized modeling environments, and model APIs.  We then present an example 

implementation that makes use of HydroShare as an online repository, CUAHSI JupyterHub and 

CyberGIS-Jupyter for water as computational environments, and pySUMMA as an example model 

API. In the Results and Discussion section, we present the results of applying the example 

implementation to reproduce a prior hydrologic modeling study (Clark et al., 2015b) and discuss 

the difficulty and nuance in claiming to achieve reproducibility. We also present limitations of the 

work that could be a focus of future research. Finally, we conclude by summarizing the findings 

and emphasizing their contribution to the larger goal of making past and future studies simpler to 

reproduce through advances in cyberinfrastructure.    
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2.2 Methodology 

In this section, we describe the general approach being put forward for open and reproducible 

environmental modeling (Section 2.1) and then present an example implementation of this general 

approach for hydrologic modeling (Section 2.2). 

  

2.2.1 Overview of General Approach and Description of System Components 

The general modeling system approach considered in this research consists of three 

primary components (Figure 2.1). Component 1 is the online repository where data, models, and 

notebooks can be openly shared with the community. Component 2 is the JupyterHub 

computational environment where containerized models can be executed using notebooks. 

Component 3 consists of a collection of model APIs, one for each model supported within the 

system, that allow for programmatic configuration, execution, and visualization through 

computational notebooks. The three components are integrated through seamless data transfers to 

create a powerful framework for open and reproducible modeling analyses. In practice, we 

anticipate that this general approach or framework may have many different physical 

implementations, where different technologies may serve the needs of specific subcommunities 

within the broader environmental modeling field. We demonstrate one such implementation in 

Section 2.2 for the hydrology community. In the following subsections, we describe each of these 

components in more detail while also providing examples of each that are available for integration. 

 

Figure 2.1. A general modeling approach consisting of three primary components with seamless data transfers for 

open and reproducible environmental modeling  
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2.2.1.1 Online Repository 

Online repositories allow for storing, sharing, and publishing data, metadata, and other 

resources required to reproduce computational research findings. These online repositories often 

support a rich set of user-friendly features such as metadata capture, persistent digital object 

identifiers (DOIs), and extensive APIs for programmatically creating, updating, and deleting 

resources. They also often support various data types such as documents, figures, code, audio, and 

video with metadata tailored to each data type. Some examples of online repositories used by 

researchers include DataOne member nodes (https://www.dataone.org), FigShare 

(https://figshare.com), Harvard Dataverse (https://dataverse.harvard.edu), and HydroShare 

(https://www.hydroshare.org). 

Many online repositories serve broad scientific communities and, therefore, maintain only 

general and widely applicable capabilities. Others are more targeted to specific communities and, 

as a result, can offer more specific functionality. Environmental modeling, for example, is not a 

common use case for many repositories that focus on more general data sharing needs (e.g. 

FigShare). Environmental models, however, have their own characteristics that consist of software, 

input and output files, and data processing workflows. Morsy et al. (2017) described these unique 

needs of models being stored in data repositories and presented a data model design including 

metadata descriptions for key modeling objects to support flexible and applicable model sharing 

framework. This design is implemented within the HydroShare data repository, allowing for 

describing and sharing more specific model resource types. 

 

2.2.1.2 Computational Environment 

A computational environment serves as a gateway for model configuration, execution, and 

post-processing. In the case of model execution, environmental modeling often includes complex 

simulation models along with data pre- and post-processing software, all with software 

dependencies that range from the operating system, to modules used within a model engine, to 

libraries used by data processing and analysis software (e.g., Python libraries). Without the ability 

to replicate a computational environment, slight inconsistencies in software dependencies can 

result in well-documented model studies failing when ported to a new machine. Without the use 

of recent innovations like containers, documenting the exact computational environment used in 

an analysis is difficult, time consuming, and error prone. To overcome these challenges, Docker 

(Merkel, 2014) and Singularity (Kurtzer et al., 2017)  have emerged as containerization techniques 

used to encapsulate a computational modeling environment, as described further in the 

implementation (see Section 2.2). 

Along with containers, computational gateway interfaces are also critical to lowering the 

barrier to entry and supporting more open and reproducible modeling in online computational 

environments. With the emergence of JupyterHub as a gateway innovation, there has been an 

increased interest in cloud-based modeling environments for creating, editing, and running 

computational notebooks. Markham (2019) reviewed five popular cloud services that support 

computational notebooks (Table 2.1). We reviewed two additional cloud services, 1) CUAHSI 

JupyterHub (hereafter CUAHSI JH) and 2) CyberGIS-Jupyter for water (hereafter CyberGIS JW), 
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and included them in Table 2.1 as well. The environments range from scientific services (e.g., the 

CUAHSI JH and CyberGIS JW that are used in this work) to more general services such as Binder 

(Jupyter Project et al., 2018). Large technology companies including Google and Microsoft have 

provided notebook execution environments such as Google Colab and Microsoft Azure 

Notebooks, demonstrating the popularity and growing interest in a variety of fields. Many cloud 

services have adopted the default Jupyter interface available from the Jupyter project without 

modification, while others have modified this interface to customize it for their own purposes 

(Markham, 2019). Furthermore, many cloud services support Python, R and other languages as 

well. Interface similarity in Table 2.1 considers available menus, buttons, and other visual elements 

that make up the user interface, and how different they are from a default Jupyter interface. All 

services listed in Table 2.1 are candidates for integration into an implementation of the modeling 

system described in this paper. 

Table 2.1. Comparison of interface similarity and supported languages of cloud services for executing 

computational notebooks (expanded from Markham, 2019) 

 

2.2.1.3 Model APIs 

An API defines a set of protocols or tools to communicate with an operating system, 

database, network, and other lower-level aspects of a software system (Reddy, 2011). The 

abstraction provided by an API has benefits (Brooks, 2013) including 1) flexibility and efficiency 

for data access, 2) personalization to customize the functionality that users access the most, and 3) 

reusability of code to work more productively. Examples of widely used APIs include the Google 

Maps API for map services and the Twitter API for social networking services. Services also 

widely exist for scientific systems relevant to environmental modeling including the HydroShare 

REST (Representational State Transfer) API for sharing and publishing water data as well as APIs 

for a growing number of environmental models.  

 In this study, we focused on Python-based model APIs and reviewed a series of model 

APIs including PRMS-Python (Volk & Turner, 2019) and PyHSPF (Lampert & Wu, 2015)  to 

better understand how they are designed and structured. Doing this can help to inform the design 

and structure of future APIs created to support specific environmental models. We observed that 

model API functionalities fell into three categories: model input, model execution, and model 

output (Table 2.2). For PRMS-Python, as an example, input files often have corresponding Python 

modules that can be used for data manipulation. For PyHSPF, as an example, the Python modules 

do not have a one-to-one correspondence with the core model files and modules. Instead, the API 

Cloud 

Services 

CUAHSI 

JH 

CyberGIS 

JW 
Binder 

Kaggle 

Kernels 

Google 

Collaboratory 

Microsoft Azure 

Notebooks 

(free plan) 

CoCalc 

(free plan) 

Interface 

similarity to 

Jupyter 

100% 100% 100% 70% 60% 100% 95% 

Supported 

Languages 
Python 3 

R 

Python 3 

R 

Python 3 

R, Julia, 

Many others 

Python 3 

R 

Python 3 

Swift 

Python 3 

R, F# 

Python 3 

R, Julia, 

Many others 
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designs include a higher-level abstraction to consider core classes needed for interacting with the 

model.  

Table 2.2. General categories for a model API mapped to examples from PRMS-Python and PyHSPF 

General 

Categories 
API Objective PRMS PRMS-Python HSPF PyHSPF 

(a) Model 

Input 
- Generating and manipulating  

   model input 

-control file 

-data file 

-parameters file 

-prms_config.txt 

-data.py 

-parameters.py 

-control file 

-watershed data 

-management file 

- wdmutil.py 

- watershed.py 

- hspfmodel.py 

              : 

(b) Model 

Execution 
- Executing and refining 

models  
-shell script 

-simulation.py 

-scenario.py 

-optimization.py 

-shell script 

- forecaster.py 

- extract.py 

- calibratormodel.py 

              : 

(c) Model   

Output 
- Visualizing and analyzing   

   model output 
-text file 

-optimizer.py 

-utils.py 
-text file 

- gisplots.py 

- forecastplots.py 

- autocalibrator.py 

              : 

 

From this review, we suggest that communities of modelers (e.g., researchers or groups of 

researchers) who are considering building a model API for a specific environmental model begin 

with answering the following questions. 1) What configuration and input files should be exposed 

through the API to allow for programmatic changes and what are the logical classes for organizing 

these model input configuration attributes? 2) What methods and attributes should the API expose 

for executing the model and refining the model through, for example, calibration or sensitivity 

analysis? 3) What are common visualizations of the model output that many users would wish to 

produce? Creating a model API with this functionality in a well thought through design will serve 

as a solid foundation for future extensions to the software. Furthermore, the extent to which 

environmental model APIs can adopt conventions for the organization of their design and structure 

will allow users to more easily learn new model APIs by having some consistency across model 

APIs. 

 

2.2.2 Example Implementation 

In this section, we present one possible physical implementation of approach described in 

the prior section. This example implementation uses HydroShare as the online repository, 

CUAHSI JH and CyberGIS JW the computational environments, and pySUMMA as one of 

potentially many model APIs within the system. While this example implementation targets the 

needs of the hydrologic modeling community, we anticipate that multiple other permutations of 

the technologies described in the prior section could be assembled to meet the needs of other 

environmental modeling communities. 

 

2.2.2.1 HydroShare as the Online Repository 

  We used HydroShare as the data repository in our example implementation due to both its 

flexibility and tailored functionalities for supporting environmental modeling use cases. 
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HydroShare is an online repository tailored for the needs of the hydrologic community, but general 

enough to satisfy other environmental modeling needs (Tarboton et al., 2014). HydroShare defines 

a “Resource” as “the fundamental unit of digital content in HydroShare that contains data and/or 

model files and their corresponding metadata” (Horsburgh et al., 2016). HydroShare resources 

support various content types such as geographic raster (GeoTIFF), multidimensional arrays 

(NetCDF), geographic features (Shapefile), and time series. HydroShare also defines a composite 

resource type that supports combining data of different content types into a single HydroShare 

resource, as well as a collection resource type that supports aggregation of related HydroShare 

resources into a list that can be referenced with a single unique identifier. Furthermore, realizing 

that data associated with models have their own characteristics, HydroShare defines unique model 

resource types of a model program (the software) and a model instance (the input and output files 

for a specific model run) (Morsy et al., 2017). Resources with these two resource types are related 

through the “ExecutedBy” attribute of a model instance, which points to the specific model 

program resource used to execute that model instance. This design allows for a one-to-many link 

between a model program that is used to execute many different model instances built for different 

geographic locations or to address different research questions. 

The methodology for sharing computational modeling resources is shown in Figure 2.2. 

First, the user creates a model program resource for each version of a model program software 

used in the analysis. This resource can include the source code, executable, and container for the 

model program itself, or a link to one or more of these resources shared in a system external to 

HydroShare (e.g., in GitHub, BinderHub or DockerHub). Second, the model instance resources 

are created to store and describe the input data required to execute the model and can optionally 

store the output after the model is executed. Then the model instance is linked to a specific model 

program resource using the “ExecutedBy” metadata term. A separate composite resource is used 

to store Jupyter notebooks that describe the overall analysis workflow. Finally, a collection 

resource is used to combine and conveniently share all of the resources used to complete the study. 

 

Figure 2.2. A methodology for sharing resources used for a modeling analysis through HydroShare 
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2.2.2.2 JupyterHub as the Computational Environment 

We integrated both the CUAHSI JH and CyberGIS JW as computational environments in 

our example implementation. We chose these environments because both are publicly available 

and aimed at scientific modeling in the water and environmental communities. Moreover, both 

systems allow for seamless data transfer with HydroShare as a data repository supporting the 

necessary interoperability between these two components of the general framework. This data 

transfer is enabled through the HydroShare REST API and the standardization of HydroShare 

resource data structures. 

The CUAHSI JH is a cloud computing environment on the Google Cloud Platform 

specifically designed to support research and education in the water sciences (Figure 2.3). To 

support a variety of applications, it leverages environment profiles that allow users to choose the 

ideal computing configuration for their work. Each of these profiles is a separate containerized 

environment that has been built with a specific set of software to support various water science use 

cases. Currently, the CUAHSI JH consists of seven profiles that range from scientific Python and 

R to HydroLearn (https://www.hydrolearn.org), educational modules and hydrologic modeling. In 

addition, the CUAHSI JH supports persistent data, meaning user-created content is stored between 

sessions and shared between profile environments. Moreover, this environment enables users to 

install custom software using conda virtual environments. For this study, we created a “Python 3.7 

SUMMA Modeling” profile to support SUMMA 3.0 modeling environment using a Dockerfile in 

CUAHSI JH.  

 

Figure 2.3. The CUAHSI JH and CyberGIS JW environments with model execution environments configured as 

Docker images to support concurrent model execution through Jupyter notebooks.   
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Another model execution environment interoperable with HydroShare, CyberGIS JW, is a 

well-tailored CyberGISX (https://cybergisxhub.cigi.illinois.edu) instance to serve the fast-

emerging needs for data-intensive and reproducible research in the environmental modeling 

community (Figure 2.4). Overall, CyberGIS JW is similar to CUAHSI JH, but CyberGIS JW also 

includes interoperability with advanced cyberinfrastructure resources such as Virtual ROGER (a 

cyberGIS supercomputer hosted by the CyberGIS Center for Advanced Digital and Spatial Studies 

at the University of Illinois) and XSEDE Comet (an HPC resource on the Extreme Science and 

Engineering Discovery Environment) for model execution support. Lyu et al. (2019) describe how 

to use HTC through a Jupyter notebook using SUMMA as an example case in CyberGIS-Jupyter 

(beta), which is the previous version of CyberGIS JW. Currently CyberGIS JW is supporting 

LandLab (Hobley et al., 2017) and RHESSys (Tague et al., 2004) modeling environments. For this 

study, we created a SUMMA modeling environment using a Dockerfile. Users can use this 

SUMMA modeling environment via a SUMMA kernel. For use of HPC resources, CyberGIS JW 

requires a Singularity image to support a computational modeling environment in XSEDE because 

CyberGIS JW and XSEDE are separately placed. Also, CyberGIS JW needs a particular library to 

connect to computational resources for submitting jobs and data exchange in XSEDE. 

 

2.2.2.3 pySUMMA as the Model API 

The model API pySUMMA was created through this research as an example model API. 

pySUMMA wraps the hydrologic model Structure for Unifying Multiple Modeling Alternative 

(SUMMA) (Clark et al., 2015a). SUMMA was selected for this study because it is a general 

hydrologic modeling environment offering the ability to conduct model experiments with 

controlled and systematic evaluation of multiple model representations of hydrologic processes 

and scaling behavior. The SUMMA model simulates both the thermodynamics, the storage and 

flux of energy such as the heat balance of the vegetation canopy, snow, and soil affected by the 

radiative fluxes, as well as the hydrology, the storage and transmission of water (for example, 

vertical and lateral transmission of water through vegetation canopy, snow, soil, aquifer and river 

within a catchment system). The flexible hierarchical spatial structure of SUMMA supports 

different spatial configurations including the size and shape of model elements with Grouped 

Response Units (GRUs) (Kouwen et al., 1993) and Hydrologic Response Units (HRUs). In 

addition, the flexible structure enables researchers to consider the lateral flux of water across the 

model domain and complex topographical properties like hillslopes and riparian areas. This 

flexibility within SUMMA enables hydrologists to find solutions for the application of scaling 

behavior in relation to different physical processes. 

SUMMA also enables hydrologists to select the appropriate physical process methods and 

model complexity. This process implements a modular structure that is supported by the 

conservation equations to calculate each process in a controlled and systematic way. This unified 

process helps users to concentrate important physical parameterizations with higher complexity 

and, conversely, to simplify specific processes to minimize uncertainty according to the purpose 

and characteristics of biophysics and hydrology. Moreover, the structure of SUMMA, which 
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consists of a core (solver) and outer branches, enables the output of a numerical solution from 

SUMMA so that the user can evaluate the accuracy and efficiency of the model. Therefore, 

SUMMA supports flexibility to simulate different options of physical processes and numerical 

solutions. 

We designed and implemented pySUMMA as a model API for SUMMA using the 

questions proposed in Section 2.1.3 for guiding the design of a new model API (Table 2.3). For 

the model input category, there are six configuration files to manipulate SUMMA input: 1) File 

Manager, 2) Decisions, 3) Forcing File List, 4) Model Output, 5) Param Trial, and 6) Local 

Attribute files. To expose the first four configuration files through the API, we created 

file_manger.py, decisions.py, force_file_list.py, output_control.py and option.py. For the rest of 

the configuration files, we created assign_trial_params and assign_attributes methods in 

Simulation.py. In the model execution category, we created Simulation.py to use the model 

execution command conveniently from the shell script format so that users do not need to edit 

manually every time. We also created two options to execute the SUMMA model, ‘local’ and 

‘docker’, to satisfy different user requirements. Finally, the output format of SUMMA is NetCDF; 

therefore, we created plotting.py for visualization considering the output variables and their output 

structure in NetCDF. 

Table 2.3. Implementation of a model API for SUMMA  

General 

Categories 
Questions SUMMA pySUMMA 

(a) Model 

Input 

(1) What configuration and input files should be 

exposed through the API to allow for programmatic 

changes? 

-file manager 

-decision file 

-forcing file list file 

-model output file 

-param trial file 

-local attribute file 

-file_manager.py 

-decisions.py 

-force_file_list.py 

-output_control.py 

-option.py 

(b) Model 

Execution 
(2) What methods and commands should the API 

expose for executing the model? 

-shell script 

-SUMMA compilation 

(summa.exe) or Docker 

 

-simulation.py 

-SUMMA compilation 

(summa.exe) or Docker 

 

(c) Model   

Output 
(3) What are common visualizations of the model 

output that many users would wish to produce? 
-output NetCDF -plotting.py 

 

The classes of pySUMMA are shown in Figure 2.4. A Simulation module (Simulation.py) 

is used as the initial Python module to start a pySUMMA API and combine most pySUMMA 

functionalities, such as manipulating configuration files and executing SUMMA. After creating a 

pySUMMA simulation object, users can manipulate six configuration files. A File manager 

module (file_manager.py) reads and manipulates a File Manager file which controls the location 

of every configuration file for the SUMMA model. For example, the File Manager file sets the 

directory and configuration files including the decision, forcing, parameter, and attribute files. A 

Decisions module (decisions.py) reads and manipulates a Decisions file which sets different 

physical process parameterizations. Through the available_options object in decisions.py, users 

can determine what options are available for model parameterizations and select model 

parameterizations from a list of options for each physical process (SUMMA Online Document, 
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2020). Four input configuration modules (file_manager.py, decisions.py, force_file_list.py, and 

output_control.py) have the same pattern of classes. For example, a File manager module 

(file_manager.py) is composed of FileManagerOption and FileManager classes and a Decisions 

module (decisions.py) is composed of DecisionOption and Decision classes. Each class is 

connected to an Option module (option.py) to avoid repetition of functions such as comparing, 

setting and writing each configuration file. After setting the SUMMA configuration, the simulation 

module (Simulation.py) is used for model execution. The run() method of the Simulation class is 

used to execute the SUMMA model. This execution can be done in both “local” and “docker” 

computational environments. The environments are set using the run_option parameter for the 

run() method as discussed later in the Results and Discussion section. 

 

Figure 2.4. pySUMMA library classes  

Once a SUMMA model run has been completed, the plotting module (plotting.py) can be 

used to visualize the results. There are two different data output structures for SUMMA: 1) time, 

HRU (or GRU) number, and variable; 2) time, HRU (or GRU) number, soil (or snow) layer 

number, and variable. To visualize each of these output structures, the Plotting class consists of 

three methods: ts_plot(), ts_plot_layer(), and heatmap_plot(). We used the seaborn library 

(statistical data visualization library) to create a 2D heat map with soil or snow layer and time as 

the axis for displaying a selected variable. Lastly, the model output module (output_control.py) is 

used to manipulate the output variables of SUMMA and the utilities module (hydroshare_utils.py) 

has functions to download test cases of SUMMA (model instance resources) and execution files 

(model program resources) from HydroShare. 

 

2.3 Results and Discussion 

In this section, we present a modeling case study application of the example implementation 

system described in Section 2.2. Then, we discuss how this approach addresses the challenge of 

achieving more reproducible studies summarized in the Introduction section by evaluating the 
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approach against definitions, concepts, and metrics for reproducibility proposed by others. Lastly, 

we discuss the limitations of our approach that present opportunities for future research. 

 

2.3.1 Case Study Description 

Clark et al. (2015b) describe a set of thirteen modeling experiments exploring various 

hydrologic modeling scenarios using SUMMA. The study area for these modeling experiments is 

the Reynolds Mountain East Area (A=32.7km2) in the Reynolds Creek Experimental Watershed 

in Idaho, USA (Figure 2.5). In this paper, we focus on these modeling experiments as a case study 

with the goal of applying our approach so that each Clark et al. (2015b) experiment can be 

reconstructed and shared openly in a way that is easier to reproduce.  

The first step toward this goal is the creation and organization of HydroShare resources to 

share all models and data files required for the analysis. The second step is to create Jupyter 

notebooks that describe the modeling experiments. These notebooks include text and equations to 

describe the modeling experiments while also including executable Python code using the 

pySUMMA API and inline visualizations that can be repeated and extended by others. We created 

seven Jupyter notebooks, each one documenting an experiment in the Clark et al. (2015b) study, 

and published them through HydroShare as a collection resource (Choi et al., 2020). 

 

Figure 2.5. Reynolds Mountain East Area in the Reynolds Creek Experimental Watershed 
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2.3.2 Model and Data Resources 

Our first step in reproducing the Clark et al. (2015b) modeling experiments was to publish 

the specific SUMMA model version used in the analysis as a resource on HydroShare. To do this, 

we created a HydroShare resource using the Model Program resource type and upload the 

SUMMA 3.0.0 source code to the resource. We then published the resource through HydroShare 

so that it is persistent and immutable with a unique Digital Object Identifier (DOI) (Choi et al., 

2020).  Figure 2.6 shows the landing page for this resource on HydroShare that includes detailed 

metadata describing 1) the source code and compiled software engine, 2) metadata for the software, 

3) a link showing the model was derived from a particular branch of a GitHub repository for 

SUMMA, and 4) a citation for referencing the resource. This same SUMMA 3.0.0 was also 

installed on the CUAHSI JH allowing users to execute the SUMMA model directly from CUAHSI 

JH. 

 

Figure 2.6. The HydroShare landing page for a SUMMA model program resource used in the example analysis 

(Choi et al., 2020). 
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We next created multiple resources in HydroShare to store the specific model inputs for 

each different SUMMA model experiment used in the Clark et al. (2015b) paper. There were four 

synthetic and nine field study test cases available as an online supplement to the Clark et al. 

(2015b) paper. From these data, we created seven unique model instance resources in HydroShare 

(Table 2.4) and grouped them into a collection resource (Choi et al., 2020). Each model instance 

resource includes 1) input data for the SUMMA model, 2) a reference to the Clark et al. (2015b) 

paper, 3) a composite resource link that points to the Jupyter notebook used to execute the 

SUMMA model, and 4) a link to the model program resource used to execute the model instance.  

Table 2.4. Mapping between the modeling experiments of Clark et al. (2015b) and Model Instance Resources on 

HydroShare used to store the input files for that model experiment 

Figures from Clark et 

al. (2015b) 
Resource Name on HydroShare to Reproduce each Clark et al. (2015b) Figure 

Figure 1 (top) 
The impact of the canopy shortwave radiation parameterizations of SUMMA Model  

in Aspen stand at Reynolds Mountain East 

Figure 1 (bottom) 
The impact of LAI parameter on the below canopy shortwave radiation of SUMMA Model  

in Aspen stand at Reynolds Mountain East 

Figure 2 
The impact of the canopy wind parameter for the exponential wind profile of SUMMA 

Model in Aspen stand at Reynolds Mountain East 

Figure 7 
The impact of Stomatal Resistance Parameterization on ET of SUMMA Model  

in Aspen stand at Reynolds Mountain East 

Figure 8 (left) 
The impact of Root Distributions Parameters on ET of SUMMA Model  

in Aspen stand at Reynolds Mountain East 

Figure 8 (right) 
The impact of Lateral Flow Parameterizations on ET of SUMMA Model  

in Aspen stand at Reynolds Mountain East 

Figure 9 
The impact of Lateral Flow Parameterizations on Runoff of SUMMA Model  

in Aspen stand at Reynolds Mountain East 
 

Once this step is complete, the model and data resources required to reproduce the Clark 

et al. (2015b) experiments are publicly accessible in HydroShare with metadata to describe each 

resource and a unique URL to locate each resource. HydroShare also allows for publishing these 

resources in which case the resources become immutable and are assigned a Digital Object 

Identifier (DOI). This pattern can be adopted by other environmental modeling studies whereby 

both the model and data resources required to reproduce the study are uploaded into HydroShare, 

given metadata to describe each resource (including relationships between resources such as the 

“ExecutedBy” relationship between model program and model instance resources), and published 

with a DOI.  

 

2.3.3 Demonstrating Reproducibility 

This section describes the steps that should be taken to reproduce one of the experiments 

described in Clark et al. (2015b). As a preparation step before starting a SUMMA simulation using 

Jupyter notebooks on CUAHSI JupyterHub, we recommend creating a pySUMMA conda virtual 

environment by running the steps described in the notebook “Creating_ pySUMMA 

_conda_virtual_environment_in_CUAHSI_JupyterHub.ipynb” in the HydroShare composite 

resource for CUAHSI JH notebooks. Once this preparation step is completed, the basic algorithm 
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to run a notebook is shown in Figure 2.7. First, the pySUMMA hydroshare_utils module is used 

to download the model instance that will be used in the notebook directly from HydroShare. After 

downloading the SUMMA model instance, it is possible to create a pySUMMA simulation object 

using the Simulation class of pySUMMA and supplying SUMMA executable (summa.exe) and 

the File Manager file path. After creating the pySUMMA simulation object, the SUMMA model 

can be executed using the run() method, which takes a run_option argument as local. When 

CUAHSI JH was created by using Docker, SUMMA was automatically complied and created 

SUMMA executable in ‘/usr/local/bin/summa.exe’. Therefore, after setting the executable variable 

to the location of “summa.exe”, users can set a run_option as local. By changing the executable 

variable as "/usr/bin/summa.exe", it is possible to execute the same notebook on CyberGIS JW. 

 

 

Figure 2.7. The basic step for a SUMMA model run using Jupyter notebooks  

As an example, we present here the results from running two different experiments 

included in the Clark et al. (2015b) paper. The first reproduces Figure 7 from Clark et al. (2015b) 

and is published as a HydroShare resource with the title “The impact of Stomatal Resistance 

Parameterization on ET of SUMMA Model in Aspen stand at Reynolds Mountain East.”  The 

second reproduces Figure 9 (left) from Clark et al. (2015b) and is published as a HydroShare 

resource with the title “The impact of Root Distributions Parameters on ET of SUMMA Model in 

Aspen stand at Reynolds Mountain East.”  

Figure 2.8 gives the results from the first experiment that explores the impact of three 

different stomatal resistance parameterizations on total evapotranspiration: Ball-Berry (Ball et al., 

1987), Jarvis (Jarvis, 1976), and the simple resistance method. Figure 2.8a is the original result 

from the SUMMA paper (Clark, Nijssen, Lundquist, Kavetski, Rupp, Woods, Freer, Gutmann, 

Wood, Gochis, et al., 2015) and Figure 2.8b is a reproduced figure resulting from applying this 

framework. These stomatal resistance parameterizations have different physical characteristics: 

both the Jarvis and Ball Berry methods consider photosynthesis, while the simple soil resistance 

method mainly considers the soil water conditions. The results show that the simple soil resistance 

method is higher than the other methods during the night hours. Comparing the two plots shows 

the complexity associated with reproducing past computational modeling studies. While the results 

are consistent, they are not exact. The precise reason for the differences in the model results is 

difficult to determine. We suspect it due in part to upgrades to SUMMA or SUMMA dependencies 

between the versions of the SUMMA 2.0 used in the Clark et al. (2015b) paper and the SUMMA 

3.0 used to create the newer plot. More vexing is that some of the observed data points appear to 
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have shifted with no good explanation for why. One possible explanation could be the fact that 

different visualization tools were used to create each plot: Interactive Data Language (IDL) for the 

plot on the left and matplotlib for the plot on the right. We suspect differences like this would not 

be uncommon when trying to reproduce any past computational study given the difficulties in 

recreating the exact computational and analysis environment including data preparation routines, 

computational modeling software, and post-processing analysis and visualization tools. This, in 

fact, speaks to the difficulty of the problem and the need for innovation in cyberinfrastructure 

approaches that is at the heart of this study. This said, it is also important to stress that the goal of 

reproducibility may not be to obtain the exact same results, but rather consistent results that would 

produce in the same conclusion. This is an idea expressed by high level reports on computational 

reproducibility (National Academies of Sciences, 2019) that we will discuss further in Section 3.4. 

 

Figure 2.8. Reproducibility of Figure 7 from Clark et al. (2015b) showing the impact of the three different stomatal 

resistance parameterizations on total evapotranspiration (a): published result, (b): reproduced result 

Figure 2.9 shows the results from the second experiment from Clark et al. (2015b), which 

explores the impact of the root distribution parameters with different stomatal resistance 

parameterizations for total evapotranspiration. In this case, we reproduced the plot that shows the 

impact of root distribution parameters (Figure 2.9b) and compared it to the previous result (Figure 

2.9a). Again, we see consistent (although not exact) results between the two model runs. Given 

that the modeling experiment is now implemented within the system, it is also possible to more 

easily extend and repurpose it for other purposes. To this point, we demonstrate reuse of past 

modeling studies by creating two additional plots for determining the effect of different root 

distribution (Figure 2.9c) and stomatal resistance parameterizations (Figure 2.9d) on total 

evapotranspiration. These plots show how higher root distribution exponents in the soil profile 

indicate that the roots are deeper in the soil, which makes it easier for plants to extract soil water. 

As a result, during the higher evapotranspiration periods (10:00-17:00), the Jarvis method more 

closely matched the observation data. However, during the period when evapotranspiration is 

decreasing (17:00-20:00), the Ball-Berry method was more precise compared to the simple 
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resistance method. Over the complete time period, the analysis shows that the Jarvis method had 

the best fit with observations.  

 

Figure 2.9. Reproducibility and reusability of Figure 8 (a) of Clark et al. (2015b) showing the impact of root 

distribution parameter with different stomatal resistance parameterization on total evapotranspiration (a): 

published output, (b): reproduced output, (c) and (d): output from reusability application extending the prior study 

 

2.3.4 Evaluating Reproducibility 

To evaluate if reproducibility was achieved, we considered definitions and concepts for 

evaluating reproducibility being put forward by others. For example, the National Academies of 

Science, Engineering, and Medicine (National Academies of Sciences, 2019) define 

reproducibility, focused on computational reproducibility, as “obtaining consistent results using 

the same input data; computational steps, methods, and code; and conditions of analysis.” To 

guarantee reproducibility, the organization recommended delivering “clear, specific, and complete 

information about any computational methods and data products to repeat the previous study, and 

that information should include the data, methods, and computational environment.” FAIR 
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principles (Wilkinson et al., 2016) include 15 metrics that should be met as a minimum for 

reproducibility. These metrics are a) Findable (4 metrics): (meta) data to find easy, b) Accessible 

(4 metrics): (meta) data to access with authentication and authorization; c) Interoperable (3 

metrics): (meta) data to interoperate with applications; d) Reusable (4 metrics): (meta) data to 

achieve reusability, reproducibility, and replicability.  

In the hydrology and water resources fields, Hutton et al. (2016) recommended 

reproducible studies have 1) readable and reusable code, 2) an unambiguous workflow, 3) a 

repository to easily find data and code with associated metadata, 4) use of unique persistent 

identifiers, 5) new procedures to reproduce large-extent studies using HPC. Additionally, Hut et 

al. (2017) suggested the use of containers and open interfaces to guarantee stronger reproducibility 

as a response to Hutton et al., (2016). Finally, Stagge et al. (2019) proposed a set of survey 

questions to assess the reproducibility of a journal article. The survey requires that eight elements 

be available for a study to be called reproducible: 1) directions to run or reproduce the study, 2) 

code/model/software files, 3) input data, 4) hardware/software requirements, 5) stated data 

persistence policy, 6) materials linked by unique and persistent identifiers, 7) metadata to describe 

the code, and 8) common file format and instructions to open these files.  

With these criteria in mind, by simply using HydroShare as the data repository for all data 

and software used for the study, we can support many of the metrics associated with 

reproducibility. HydroShare supports FAIR principles (Tarboton et al., 2018) for each resource 

that includes model input, source code, metadata, and supplementary documents. Using 

JupyterHub as described in the paper provides a consistent computational environment and using 

Jupyter notebooks and containerized model execution environments provides a clear and easy 

workflow to assure users can reproduce a published study. Finally, using a model API makes it 

easier for a user to follow the logic and steps used to configure, run, and postprocess a modeling 

simulation, allowing for not only reproducibility but also reuse and extension of prior work. 

Therefore, if we compare these definitions and concepts for a validation of reproducibility to our 

approach and its example application, we can claim that it satisfies the criteria for reproducible 

computational modeling. Still, while the framework allows for satisfying the criteria, it is still up 

to the user to ensure care is taken with sharing and documenting resources with adequate metadata 

and instructions to achieve reproducibility. 

 

2.3.5 Approach Limitations and Opportunities for Future Research 

This research focuses on examples that assume model input files had already been 

processed and are available for use in the modeling analysis. The preprocessing steps required to 

generate model input files from raw geospatial and time series observational data are a necessary 

component of longer-term goals for creating so called “end-to-end” reproducible analysis 

workflows. For example, Slater et al. (2019) provided an “end-to-end” reproducible hydrology 

workflow using R for climate data retrieval, spatial analysis, modeling, statistical analysis, 

visualization, and data publishing. As another example of automated end-to-end workflows, 

HydroTerre (L. N. Leonard, 2015) includes 1) data workflows (L. Leonard & Duffy, 2013) to 

create watershed models using Essential Terrestrial Variables (ETV), 2) data-model workflows to 
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transform watershed data into model inputs, 3) model workflows (L. Leonard & Duffy, 2014) to 

execute models in HPC, especially The Penn State Integrated Hydrologic Modeling System 

(PIHM), and 4) visualization workflows to visualize the first three workflows to easily create and 

share model results for analysis. 

Currently, pySUMMA has developed the functionalities of manipulating created model 

input, executing SUMMA, and plotting model output. To complete “end-to-end” workflows, data 

preprocessing is critical for improving reproducibility as the steps to create model input files are 

often nontrivial and require a significant time investment. Prior work to address this challenge 

includes the EcohydroLib Python library developed as a software framework for managing spatial 

data acquisition and preparation workflows for ecohydrology modeling (Miles & Band, 2015). 

EcohydroLib takes advantage of open source GRASS GIS libraries to automate data gathering and 

preparation for environmental models. It is a model agnostic approach for mapping a variety of 

data sources into input files required by environmental models. Alternative data processing 

workflows and pipelines such as HydroTerre could also be explored for bringing data 

preprocessing capabilities for environmental models into the general approach described through 

this work. However, just having new data processing pipelines alone will be insufficient. We also 

need more detailed modeling protocols and procedures to replicate (or even reproduce) a study 

(Ceola et al., 2015) because reproducibility is not just a technological problem, it is equally an 

educational problem (Grüning et al., 2018). 

Post-processing for visualization and model analysis procedures is also essential to creating 

a powerful modeling environment, saving time when analyzing model output, and strengthening 

reproducibility. To grow use of model APIs, many analysis methods will be necessary such as 

plotting, calibration, optimization, and uncertainty analysis. While pySUMMA is still being 

developed toward these goals, other model APIs discussed in this paper and that could be used 

within the example modeling system do have more robust processing capabilities already. One 

question that remains is the extent to which environmental model APIs can reuse underlying 

software to support common model post-processing routines. General libraries in Python, such as 

Pandas and matplotlib, are universally applicable to environmental modeling post-processing 

tasks. However, is a plotting or data analysis library more tailored for environmental modeling but 

still sufficiently general to serve many environmental models possible? If so, it could further 

reduce the duplication of code across environmental model APIs and, ultimately, encourage more 

environmental model APIs that are robust, easier to maintain, and feature rich.  

The ability to include data pre- and post-processing within the framework would be an 

important step for moving from reproducibility to replicability within the framework. Replicability 

is defined by the National Academies of Science, Engineering, and Medicine (National Academies 

of Sciences, 2019) as “obtaining consistent results across studies aimed at answering the same 

scientific question, each of which has obtained its own data.” Replication, therefore, can be thought 

of as a next step beyond reproducibility where a study is repeated using new data, potentially from 

a new site or different time period, but similar methods. This work has focused on a general 

approach to support reproducibility of computational models. The framework could be extended 

for replication by extending a model API, like the pySUMMA API described in this paper, to 
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include not only functions for model configuration (e.g., settings and parameter values assuming 

model input files have already been generated), but also for model preprocessing where input files 

for the model are generated from raw data sources.  

 

2.4 Conclusions 

Computational irreproducibility is an important problem in many scientific fields. Recent 

research to improve computational reproducibility has focused on advancing the sharing of data 

used in studies, using computational notebooks and containers for encapsulating complete 

computational environments, and developing model APIs for programmatically interacting with 

simulation models. A contribution of this research is to present a general approach to integrate 

these three areas of past work into a general approach for supporting more open and reproducible 

environmental modeling. We present an example implementation of this approach by leveraging 

1) HydroShare as a data sharing repository, 2) JupyterHub as a notebook-based, containerized, and 

cloud-based computational environment, and 3) pySUMMA as an example model API able to 

abstract lower-level details for model configuration, execution, and visualization from end users. 

Using the example implementation, we demonstrate how modeling analyses can be 

completed in a more open and reproducible way. Building from a prior study presenting a series 

of modeling experiments applying SUMMA at the Reynolds Mountain East Area in the Reynolds 

Creek Experimental Watershed in Idaho, USA (Clark et al., 2015b), we first create and organize 

HydroShare resources to share data and model files. Next, we create Jupyter notebooks that 

leveraged the pySUMMA API, introduced in this paper, to reproduce and extend figures from the 

prior study. Each notebook (a) pulled required data from HydroShare into the computational 

environment, (b) provided a notebook using text, equations, code, and inline visualizations for 

documenting the experiment, and (c) allowed for online execution of the notebook and sharing of 

modifications to the notebook through HydroShare. Finally, we discuss how we evaluated that 

reproducibility was achieved and future steps that could be taken to further improve the proposed 

framework. 

From this research, we conclude that cyberinfrastructure is reaching a point where it is 

possible to build open and transparent environmental modeling systems. Online repositories are 

sufficiently mature where they can be relied upon for storing key data and software resources for 

studies. Computational environments able to execute containerized environmental models can be 

interlinked with data repositories and the ability for these computational environments to serve as 

gateways to High Performance Computing (HPC) resources is improving. More models are being 

provided with APIs that allow for programmatic control of the model configuration, execution, 

and visualization. Jupyter notebooks provide an important orchestration and documentation glue 

across these components where users can leverage APIs to access and publish data from online 

repositories, submit jobs to HPC resources, and programmatically interact with state-of-the-art 

environmental models. Linking these capabilities in a way that can be built upon and expanded as 

new models become available, as demonstrated in this paper, will move environmental modeling 

in a direction where open, transparent, reproducible, reusable, and replicable studies become the 

rule rather than the exception. 



Chapter 2 

26 

 

Software and Data Availability 

All software and data used in this study were published with persistent digital object identifiers 

(DOI’s) on HydroShare. A collection resource in HydroShare (Choi et al., 2020) contains each of 

these resources. In addition to these resources published through HydroShare, the pySUMMA 

source code created though this study is available on GitHub as detailed below. 

Product Title: pySUMMA v3.0.0 

Lead Developers: Young-Don Choi and Andrew Bennett 

Contact Email: yc5ef@virginia.edu, andrbenn@uw.edu 

Tested Platform:  

- HydroShare CUAHSI JupyterHub 

- CyberGIS-Jupyter for water  

Software Required: Python 3.5 or above 

Availability: The pySUMMA source code is publicly available through GitHub 

- https://github.com/UW-Hydro/pysumma/releases/tag/3.0.0  

License: BSD 3-Clause License 
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List of Relevant URLs 

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org/ 

CUAHSI JupyterHub Legacy Environment: https://jupyter.cuahsi.org 

CUAHSI JupyterHub GitHub: https://github.com/hydroshare/hydroshare-jupyterhub 

CyberGIS-Jupyter (beta): https://hsjupyter.cigi.illinois.edu:8000 

CyberGIS-Jupyter for Water: https://go.illinois.edu/cybergis-jupyter-water 

DataOne: https://www.dataone.org 

Docker: https://www.docker.com 

DockerHub: https://hub.docker.com 

DockerSpawner GitHub: https://github.com/jupyterhub/dockerspawner 

EcohydroLib: https://github.com/selimnairb/EcohydroLib 

Facebook API: https://developers.facebook.com/docs/apis-and-sdks 

FigShare: https://figshare.com 

Google API: https://developers.google.com/apis-explorer 

Harvard Dataverse: https://dataverse.harvard.edu 

HydroShare REST API: https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API 

NetCDF4 GitHub: https://github.com/Unidata/netcdf4-python 

Numpy: https://www.numpy.org 

Pandas: https://pandas.pydata.org 

Seaborn: https://seaborn.pydata.org 

Singularity: https://sylabs.io 

SUMMA on the UCAR: https://ral.ucar.edu/projects/summa 

xarray: http://xarray.pydata.org 

XSEDE: https://www.xsede.org 
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Chapter 3 

3 Comparing Containerization Approaches for 

Achieving Reproducible Environmental Modeling 

across Computing Environments 

 

3.1 Introduction 
The rapid advancement of computing has played an important role and offers both 

opportunities and challenges for reproducibility in computational research (de Lusignan & van 

Weel, 2006). On one hand, new tools and technologies have made possible complex modeling 

(Kerandi et al., 2018), deep learning (Shen, 2018), and interdisciplinary research (Laniak et al., 

2013; Vogel et al., 2015). Additionally, with the possible exception of stochastic modeling, there 

is some level of certainty that if the same input data and model software or code are used on 

identical machines, it should result in the same output, even when the modeling software is very 

complicated (Sacks et al., 1989). On the other hand, creating “identical machines” can be very 

difficult in practice. When these computational models are moved to a new machine, scientists can 

often experience difficulties in reproducing the same model results (Monya; Baker, 2016; Essawy 

et al., 2020; Hothorn & Leisch, 2011; Wilson et al., 2017). This is because the way software is 

packaged, installed, and executed to reproduce complete computational environments and 

workflows is often very complicated and challenging, even when these steps are well documented 

(Garijo et al., 2013). To make matters worse, the rapid evolution and changing versions of 

software, especially open source software commonly used in many scientific communities, make 

computational reproducibility even more difficult (Epskamp, 2019). Just minor differences in 

computational approaches can result in fatal errors in re-executing computational environments 

and can have major influences on the analytical outputs. As a result, researchers have been 

highlighting the difference between what might be thought of as reproducible work, such as simply 

sharing data and workflow documents, and what is actually required for reproducible work: 

sharing computational environments and automated workflows (Beaulieu-Jones & Greene, 2017; 

Essawy et al., 2020; Kim et al., 2018). 

To overcome this reproducibility gap, researchers have presented guidelines and principles 

(Choi et al., 2021; Essawy et al., 2020; Gil et al., 2016; Wilkinson et al., 2016) and developed 

various reproducible tools (e.g., Singularity, Kurtzer et al., 2017; Docker, Merkel, 2014; Sciunit, 

That et al., 2017) to increase the likelihood of reproducibility. For example, as online repositories 

that follow FAIR (Findable, Accessible, Interoperable, Reusable) guiding principles (Wilkinson 

et al., 2016) continue to mature, reproducibility research has led to a growing demand not only for 

data sharing with well-documented data, source code, software, and workflows, but also with tools 

for automatically encapsulating computational environments and workflows using 

containerization and literate programming (Kery et al., 2018; Knuth, 1984). For example, Bast 

(2019) suggested that source code management and containerization tools are needed to reproduce 
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computational environments while Goble et al. (2020) suggested the FAIR principles need end-to-

end workflows to describe the execution of a computational process such as data collection, data 

preparation, data analysis, and modeling simulation. In hydrology, Hutton et al. (2016) 

recommended an online repository to easily find data and source code with unique persistent 

identifiers and computational workflows to describe the precise procedure among data and 

modeling processes. In addition, Hut et al. (2017) suggested the use of containerization tools and 

open interfaces to complement the preservation of computational environments suggested by 

Hutton et al. (2016). 

Reproducibility of computational environments and automated workflows have been shown 

to be critical to filling the gaps of computational reproducibility in practice (Piccolo & Frampton, 

2016; Rosenberg et al., 2020; Sandve et al., 2013). In order to reproduce computational 

environmental models, it is important to consider the fact that computational modeling software is 

actually comprised of multiple interdependent components: 1) the core model software, 2) other 

secondary software needed to support the modeling application, and 3) modeling workflows that 

capture the end-to-end modeling application. The core model software is the main computational 

engine for the environmental model and is most often developed using a compiled programming 

language such as Fortran, C, or C++. Other secondary software needed to support the modeling 

application can include a Graphical User Interface (GUI) or an Application Programming Interface 

(API) often programmed using an interpreted language like Python (Choi et al., 2021; Lampert & 

Wu, 2015; B. McDonnell et al., 2020; Volk & Turner, 2019). Finally, modeling workflows are an 

important component to capture the entire end-to-end process required to reproduce published 

modeling results. Literate programming is an increasingly popular means for creating modeling 

workflows as a narrative that combines code, documentation, and model output directly within a 

single narrative (Kery et al., 2018; Knuth, 1984; Pimentel et al., 2019). For example, Jupyter (Avila 

et al., 2020; Pérez & Granger, 2007) and RMarkdown (Baumer et al., 2014; Rstudio Team, 2020) 

are becoming increasingly used to conduct and document computational experiments. 

Reproducing computational models is difficult in part because it requires a certain level of 

expertise in order to install and configure complete computational modeling setups. While most 

model developers may know the specific requirements to reproduce their environmental model on 

another computer, it is challenging to completely document this procedure for others to follow. To 

address this challenge, model developers have recently started using containerization tools such as 

Docker, Singularity, and Sciunit. Because these containerization tools can encapsulate complex 

software, developers and researchers can more easily and confidently create reproducible 

modeling studies that can be repeated across machines. While these containerization tools offer an 

important opportunity, it can be challenging for domain scientists to know how best to utilize these 

tools for different modeling use cases and computational experiments. Many containerization 

approaches exist, and these approaches can be executed in different computational environments 

that include both local compute resources (i.e., the researcher’s personal computer) and a growing 

number of remote computing resources (i.e., high performance computing (HPC) clusters or cloud-

computing environments) available for environmental modeling. 
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Thus, we focus in this paper on comparing different containerization approaches for 

advancing reproducible environmental modeling. In total, 11 approaches are considered, with each 

using a different combination of containerization software and computational environments. In the 

methodology section, we describe the characteristics and typical procedures for each approach. 

We also explain the methodology for evaluating and comparing the approaches. Then, in the 

results section we present the evaluation results generated from a hydrologic modeling case study 

that uses the Structure for Unifying Multiple Modeling Alternative (SUMMA) (Clark et al., 2015a) 

hydrological model. We then discuss the benefits and weaknesses of each of the 11 reproducible 

approaches and, in the conclusion section, summarize best practices for using the approaches to 

achieve different modeling objectives. Lastly, we list remaining knowledge gaps that require 

future research to develop more reliable and efficient containerization approaches for reproducible 

environmental modeling. 

 

3.2 Methodology 

3.2.1 Introducing the Reproducible Environmental Modeling Approaches 

When discussing reproducible environmental modeling, it is first necessary to define 

terminology and components of typical environmental modeling workflows. First, we consider a 

computational model as consisting of three primary software components, as introduced earlier: 

1) the core model software, 2) other secondary software needed to support the modeling 

application, and 3) a modeling workflow that links the core and secondary software. 

Reproducibility approaches may address one or more of these components and, therefore, may not 

necessarily address the entire end-to-end modeling workflow. This is described further as we 

introduce the 11 reproducible approaches compared in this study. Across these 11 reproducible 

approaches, we used different software tools to achieve reproducibility, namely GNU Make, 

Conda Virtual Environment (hereafter Conda VE), Docker, Singularity, Sciunit, and Jupyter 

notebooks. Through different combinations of these tools and using different computational 

environments, we arrived at the 11 representative reproducible approaches considered in this 

study. 

The 11 reproducible approaches consist of five strategies using local computing resources 

and six strategies using remote computing resources (Table 3.1). The first local approach compiles 

the model software using GNU Make and encapsulates other secondary software using Conda VE 

to support the modeling application. This can be thought of as a standard approach commonly used 

now by model developers that does not adopt containerization. The second approach introduces 

containerization for only the core model software component of the workflow using Docker as the 

containerization tool. The third approach uses containerization for not only the core model 

software, but also the secondary software supporting the model, again using Docker as the 

containerization tool. The fourth approach builds from the third by keeping the same 

containerization strategy, but using Singularity as the containerization tool rather than Docker. The 

fifth approach is like the third and fourth approaches, except Sciunit is used as the containerization 

tool. 
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The six remote approaches leverage either HPC clusters or cloud computing environments 

as the computational resource (Li, 2020; Prasad et al., 2020; Shuler & Mariner, 2020). The sixth 

approach uses the CUAHSI JupyterHub (hereafter CJH), which is a cloud computing environment 

on the Google Cloud Platform specifically designed to support research and education in the water 

sciences. The seventh approach uses CyberGIS-Jupyter for Water (hereafter CJW), which is a 

tailored CyberGISX instance to support data-intensive and reproducible research in the 

environmental modeling community built on the XSEDE Jetstream computational resource. The 

eighth and ninth approaches use CJH and CJW, respectively, with Sciunit as the containerization 

tool for capturing the workflow. The tenth approach uses a different computational environment 

and containerization approach: Binder. Binder is an online JupyterHub for building and sharing 

reproducible and interactive computational environments from online repositories. It uses Docker 

as a containerization technology, although it attempts to hide the user from the details of Docker 

containerization to lower the barrier to entry. The last approach uses a HPC cluster with Singularity 

to support the use of multiple cores for parallel computation. A common tool across the 11 

reproducible approaches is Jupyter, a literal programming approach for capturing modeling 

workflows. In the following subsection, we describe the specific procedures and characteristics of 

each approach in further detail. 

Table 3.1. The 11 representative reproducible approaches using different combinations of software tools and 

computational environments 

Approach  

No. 

Local and Remote 

Computational Environments   

Combination of Software Tools and Modeling Workflows 

1) Core Model  

Software 

2) Secondary  

Software 

3) Modeling  

Workflows 

1 L 

O 

C 

A 

L 

Virtual Box 

GNU Make Conda Virtual  

Environment Jupyter  

Notebook 

2 Docker 

3 Docker 

4 Singularity 

5 Sciunit 

6 R 

E 

M 

O 

T 

E 

CUAHSI JupyterHub Docker Jupyter  

Notebook 7 CyberGIS-Jupyter for water Docker 

8 CUAHSI JupyterHub Sciunit 

9 CyberGIS-Jupyter for water Sciunit 

10 Binder Docker Jupyter  

Notebook 11 HPC Singularity 
 

 

3.2.2 Local Reproducible Approaches 

In this subsection, we describe the five local reproducible approaches for sharing modeling 

environments and workflows. For all five local approaches, we used Virtual Box to create a Linux 

virtual environment (Ubuntu 20.04 LDT) on a Windows operating system (Table 3.2) with a 

single-core processor. Using this computer setup, we reproduced approaches 1-5 as shown in Table 

3.1. 
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Table 3.2. Specification of the base local computational environment 

Specification Descriptions 

Processor  Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz 

RAM  15.6GB 

Base Operating System  Window 10 

Linux Emulator  VirtualBox 5.2.12 

Linux Operating System  Ubuntu 20.04 LDT 

Number of CPU Core  1 

 

3.2.2.1 Approach 1: Compiling the Core Model Software 

The first approach compiles the core model software using GNU Make and encapsulates 

the other secondary software using Conda VE. This approach is a very common approach for 

reproducing hydrologic models (Peckham et al., 2013). GNU Make is used to create a core model 

software executable with a configuration file called Makefile. The Makefile provides the procedure 

for how to build the source code on a particular operating system. According to the technical 

specification of hydrologic models in Community Surface Dynamic Modeling System (CSDMS), 

most hydrologic models were developed by compiled programming languages (Fortran, C, and 

C++) (Table 3.3), perhaps because of computing speed and the use of legacy source codes. 

Therefore, we used GNU Make as the approach to reproducing hydrologic model software. 

Creating model executables using GNU Make requires a substantial time investment at first 

because it requires an understanding of the necessary dependencies, file paths, and environmental 

variables. 

Table 3.3. The programming languages in the popular hydrologic models 

(https://csdms.colorado.edu/wiki/Hydrological_Models) 

Models Programming Languages Models Programming Languages 

DHSVM C PRMS Fortran77, C 

Delft3D Fortran77, Fortran90, C, C++ ParFlow Fortran90, C 

GSFLOW Fortran90, C RHESSys C 

PIHM C, C++ SWAT Fortran 

VIC C SWMM C 

 

In addition, Conda VEs are used to encapsulate other secondary software needed to support 

the modeling application. While Python has a lot of advantages in that we are able to use a vast 

number of Python packages, it requires package and environment management to avoid version 

conflicts between each package. There are several package and environment managers to 

overcome version conflicts in Python. The most commonly used ones are pip, virtualenv, and 

Conda. Pip is a package manager and most Python users use pip to install Python packages, but 

pip does not support environment management. Virtualenv is an environment manager to create 

isolated virtual environments, but virtualenv does not support package management. Conda is a 

Python environment and package manager capable of providing isolated virtual environments, 



Chapter 4 

33 

 

installation of software packages, and a record of the exact versions of open source libraries used 

within a virtual environment. Therefore, we used Conda to encapsulate other software needed to 

support modeling applications, especially Python APIs. 

Figure 3.1 shows the general procedure of “Approach 1: Compiling the Core Model 

Software” using the GNU Make tool and Conda VE. To describe the approach, we divided Figure 

3.1 into two parts: developer work and user work. For the developer work, the first reproducible 

step for environmental model software has three substeps: 1) creating a Makefile, 2) compiling 

and building a core software executable, and 3) sharing the source code and Makefile on an online 

repository such as GitHub or HydroShare. The second step is for Python-based model APIs that 

require an environment.yml file, which is a configuration file containing a list of Python packages 

needed to create the Conda VE. These two steps encapsulate the computational environment for 

the environmental model. The final step encapsulates the modeling workflows by using Jupyter 

notebooks that document the end-to-end modeling steps. Once the model has been captured, 

developers need to share the model input files needed to reproduce the original study. 

After the developer’s work is complete, users can reproduce the modeling environment and 

workflows. The steps in this process are as follows: 1) download the source code and Makefile for 

building the environmental model, 2) edit the Makefile to set the paths to the configuration files 

and software dependencies for the environmental model software on the user’s computer, and 3) 

compile and build the executable of core model software. Next, users need to download the Jupyter 

notebooks that document every step in the workflow including installing Python-based model 

APIs, downloading model input data, and executing the environmental model. Compared to the 

developer work, the user work becomes simpler because Jupyter notebooks are able to document 

most of the workflow, except for the step of compiling the core model software. 

 

Figure 3.1. A general procedure of “Approach 1: Compiling the Core Model Software”  

 

3.2.2.2 Approach 2: Containerizing the Core Model Software only with Docker 

The second approach containerizes only the core model software using Docker. While 

Docker may be somewhat difficult for those without software development expertise, it is a 

revolutionary tool in that it allows for 1) ease of use to set up and apply computational 



Chapter 4 

34 

 

environments, 2) speed to execute applications, 3) ease of sharing via DockerHub, and 4) 

modularity and scalability to break, scale, and update Docker images (Boettiger, 2015). In 

environmental modeling, we can use Docker to containerize computational environments, 

software packages, libraries, model input, and model output into a Docker image. Python has 

become a popular language for environmental modelers and many modelers will be familiar with 

Conda VE to encapsulate Python-based environments without using containerization tools like 

Docker. In addition, Conda VE is more compatible than Docker to install new software to a VE, 

provided that the software is available through Conda. Thus, we use Docker to containerize the 

core model software to easily reproduce it but use Conda to encapsulate secondary software, which 

is Python-based and available through Conda.  

Figure 3.2 shows the general procedure of “Approach 2: Containerizing the Core Model 

Software only with Docker.” In developer work, the first reproducible step for the environmental 

model software has three substeps: 1) creating a Dockerfile, 2) creating a Docker image, and 3) 

sharing a Docker image on online repositories such as DockerHub. The next two steps for the 

Python-based model APIs and modeling workflows are the same as “Approach 1: Compiling the 

Core Model Software.” However, the user work is simpler than “Approach 1” because we used 

Docker to containerize the environmental model software. Therefore, users only need to install 

Docker using the simple command “sudo apt install docker.io,” then open and run the Jupyter 

notebooks including installing Python-based model APIs, downloading the model input and the 

Docker image, and executing the environmental model. 

 

Figure 3.2. A general procedure of “Approach 2: Containerizing the Core Model Software only with Docker”  

 

3.2.2.3 Approach 3: Containerizing All Software with Docker 

The third approach containerizes all software in the end-to-end workflow in Docker: the core 

model software, other secondary software, and workflows for running the experiment. After 

creating a Dockerfile, it is easy to share and recreate a Docker image from it on different machines. 

While there are some benefits in “Approach 3” compared to earlier approaches, there are some 

inconveniences as well. First, to install additional software or Python packages permanently to the 

secondary software requires changes to the Docker image, which can be time consuming to 

rebuild. Also, if users install new Python packages in the Docker image without rebuilding the 
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Docker image, Docker requires Python packages to be reinstalled when the container is started, 

which can also be time consuming. Finally, researchers need to save their modeling results outside 

of the Docker image before stopping the Docker container, or else the results will be lost as the 

Docker container is temporary. 

Figure 3.3 shows the general procedure of “Approach 3: Containerizing All Software with 

Docker.” In the developer’s work, the first step is creating Jupyter notebooks to containerize 

workflows into the Docker container. Next, developers must create a Dockerfile that includes each 

command needed to containerize the environmental model software, Python-based model APIs, 

and modeling workflows. In this approach, users only need to install the Docker tool and run the 

Docker image because the Docker image has all of the required dependencies. Then users can open 

and run Jupyter notebooks to reproduce the environmental model software, Python-based model 

APIs, and the modeling workflows. 

 

Figure 3.3. A general procedure of “Approach 3: Containerizing All Software with Docker”  

 

3.2.2.4 Approach 4: Containerizing All Software with Singularity 

The fourth approach containerizes all software using Singularity, which is another 

containerization tool to support computational environments. Singularity is more popular to use in 

HPC environments over Docker for avoiding security concerns, and we will describe the 

characteristics of Singularity in detail later in “Approach 11: using a HPC Cluster.” A Singularity 

image can be created using a Definition file, similar to Dockerfile, which defines an operating 

system and various software requirements. Recently, many HPC environments, such as XSEDE 

(an HPC resource on the Extreme Science and Engineering Discovery Environment), Rivanna 

(HPC at University of Virginia), and NCAR (National Center for Atmospheric Research) HPC 

support Jupyter and Singularity. Thus, it is possible to utilize a Singularity image through the 

Jupyter user interface by linking the Singularity image and Jupyter notebooks through the Jupyter 

kernel. In addition, the docker2singularity library can support automatically converting a Docker 

image to a Singularity image. 

Figure 3.4 shows the general procedure of “Approach 4: Containerizing All Software with 

Singularity.” In the developer work, the first step is creating a Definition file to create a Singularity 
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image that includes a dependency list. Next, developers need to make a “kernel.json” file to link a 

Jupyter kernel with the Singularity image and Jupyter notebooks. Next, developers can share the 

Singularity image through online repositories or Singularity Hub. Also, developers have to create 

and share Jupyter notebooks and the model input for the modeling workflows. After the 

developer’s work is complete, users need to first download the Jupyter notebooks, then open and 

run the Jupyter notebooks. For automated workflows, Jupyter notebooks handle the rest of the 

workflows such as downloading the Singularity image of the core model software, creating the 

Jupyter kernel to create a link between the Singularity image and Jupyter notebooks, downloading 

the model input data, and executing the environmental model. 

 

Figure 3.4. A general procedure of “Approach 4: Containerizing All Software with Singularity”  

 

3.2.2.5 Approach 5: Containerizing All Software and Modeling Workflows with Sciunit 

The fifth approach is similar to the third and fourth approaches, except Sciunit is used as 

the containerization tool. Sciunit was developed by the Geotrust project funded through the US 

National Science Foundation (NSF) EarthCube program and is a tool to ease the process of 

containerizing, sharing and tracking scientific applications, lowering the barrier to entry for 

researchers. While Docker and Singularity require document scripts for creating container images, 

Sciunit (That et al., 2017) can capture every dependency by monitoring software usage  during 

execution of the analysis workflow. Sciunit then generates container-like packages called sciunits 

that contain all software used during the analysis workflow and that are portable across machines 

and different computational environments. These sciunit packages are also more lightweight than 

other containerization tools because Sciunit is able to trace the program execution and captures 

only those software dependencies that the model run used. Therefore, Sciunit is helpful for 

researchers who are non-experts to reproduce model run, but also experts can benefit from Sciunit 

by creating minimal containers to reproduce computational experiments. 

Figure 3.5 shows the general procedure of “Approach 5: Containerizing All Software and 

Modeling Workflows with Sciunit.” Developers first need to create a Jupyter notebook to 

encapsulate Sciunit workflows. Next, developers need to create a Sciunit image using the created 

programming code and the Jupyter notebook. After that, developers can share the Sciunit image 

and the Jupyter notebook. Users can then download a Sciunit image and a Jupyter notebook and 
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only need to open and run a Jupyter notebook. Unlike other approaches, users do not need to 

download the model input as the Sciunit image includes the model input and all the software 

dependencies. 

 

Figure 3.5. A general procedure of “Approach 5: Containerizing All Software and Modeling Workflows with 

Sciunit”  

 

3.2.3 Remote Reproducible Approaches 

Many science gateways and virtual research environments (Prasad et al., 2020) and many 

large companies (Google: Google Colab, Microsoft: Azure Notebooks, and Amazon: SageMaker) 

have created advanced remote computing environments to support computational research and 

education (Prasad et al., 2020). In this study, we considered four remote environments (CJH, CJW, 

HPC, and Binder) and six approaches for reproducible modeling across these remote environments 

using different containerization tools. 

 

3.2.3.1 Approaches 6 and 7: Using CUAHSI JupyterHub and CyberGIS Jupyter for water 

The sixth and seventh approaches use CJH and CJW, respectively, which are Docker-based 

remote environments. Docker-based remote environments can provide consistent preconfigured 

modeling environments and there has been a rapid adoption of Docker-based  remote environments 

in industry and academic fields (Prasad et al., 2020). CJH and CJW are two examples of such 

remote environments. To add new Docker images into CJH and CJW, model developers need to 

share Dockerfiles that have lists of the core model software and other secondary software with 

CJH and CJW development teams. Then the CJH and CJW development team can review and 

deploy the new Docker images into CJH and CJW. After deploying the new Docker images, users 

can easily use the preconfigured environments for their modeling work. Also, CJH supports the 

installation of a custom Conda VE, so users can easily apply new Python or other packages in a 

consistent environment (Choi et al., 2021). 

Figure 3.6 shows the general procedure of deploying environmental models and Python-

based APIs on CJH and CJW from the developer’s perspective and how to execute model software 

using preconfigured modeling environments from the user’s perspective. The developer must 

create a Dockerfile similar to “Approach 2” or “Approach 3” and may use GitHub to add a new 
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Dockerfile as a pull request to the CJH or CJW GitHub. After sending a pull request to the GitHub 

repository of CJH or CJW, the Dockerfile needs to be reviewed by CJH or CJW development team 

to deploy a new Docker image. After finishing the developer’s work, users only need to log into 

CJH or CJW and run Jupyter notebooks because modeling environments are preconfigured and 

shared through environmental profiles of CJH or Jupyter kernels of CJW. 

 

Figure 3.6. A general procedure to create “Approach 6 and 7: Using CUAHSI JupyterHub and CyberGIS Jupyter 

for water” 

 

3.2.3.2 Approach 8 and 9: Using Sciunit in CJH and CJW 

The eighth and ninth approaches use Sciunit in CJH and CJW, respectively. Unlike Docker 

and Singularity, Sciunit is an installable package in both local and remote Linux operating systems 

without administrative privileges. Therefore, even without deploying preconfigured computational 

environments in remote environments, researchers can containerize the core model software, other 

secondary software, and modeling workflows after simply installing Sciunit. The general 

procedure of Sciunit is the same with “Approach 5: Containerizing All Software and Modeling 

Workflows with Sciunit.” Therefore, we have omitted additional explanation of the approach 

including a general procedure figure since it repeats what is shown in Figure 3.5. 

 

3.2.3.3 Approach 10: Using Binder 

The tenth approach uses Binder, which is an open source web service to allow creating 

sharable, interactive, and reproducible environments (Jupyter Project et al., 2018). Binder was 

developed by integrating three tools: 1) JupyterHub deployed using Kubernetes, 2) Online open 

source repositories (GitHub, Figshare, Zenodo, and HydroShare) combined with a Repo2Docker 

library (Forde et al., 2018), and 3) BinderHub, a web-interface to bind JupyterHub and 

Repo2docker using user-defined kernels and interactive sessions. JupyterHub and Kubernetes 

support scalable interactive user sessions to handle many user sessions and sustainable user work. 

Repo2Docker is a lightweight tool to convert online open-source repositories into a Docker image 

that can be run with JupyterHub using various configuration files such as enivironment.yml, 
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setup.py, install.R, postBuild, and Dockerfile. By combining these tools, Binder can create 

containers to encapsulate the core model software and other secondary software, and generate user 

sessions to run the computational workflows expressed as Jupyter notebooks. Also, Binder can 

provide a URL to share with others that allows them to interact with the remote Binder 

environment. However, currently Binder implementations like MyBinder.org do not support 

persistent user sessions because sessions are ephemeral.  

Figure 3.7 shows the general procedure of “Approach 10: Using Binder.” First, the 

developer must create a configuration file that is supported by Binder to encapsulate the 

environmental model software and Python-based model APIs used by the model. Next, the 

developer must create Jupyter notebooks to document the modeling workflows. Then, the 

developer needs to share configuration files and the Jupyter notebooks through an online repository 

such as GitHub, Figshare, Zenodo, or HydroShare. After that, the developer uses the MyBinder 

website (https://mybinder.org) to create a remote modeling environment for the modeling setup. 

Finally, the developer can share the Binder URL pointing to the remote modeling environment 

with end users.  

 

Figure 3.7. A general procedure to create “Approach 10: Using Binder” 

 

3.2.3.4 Approach 11: Using a HPC Cluster 

The final approach uses a HPC cluster with Singularity to perform the model computation 

in parallel. While Docker is the standard containerization tool, it does not meet the needs for 

scientific computing in HPC environments (Kurtzer et al., 2017). A major limitation is security 

concerns with using Docker in HPC environments because Docker requires root access to create 

and execute Docker containers. To overcome these problems, Singularity was developed to 

support portable and flexible computational environments without security risks, particularly for 

the use case of HPC modeling (Kurtzer et al., 2017).  

Figure 3.8 shows the general procedure of “Approach 11: Using a HPC Cluster.” Most steps 

are the same as Approach 4 but there are two important differences. First, developers need to 

upload a Singularity image into the HPC environment to use the containerized modeling 

environment. Second, users only need to create a Jupyter kernel to establish a link between Jupyter 
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notebooks of the modeling workflow and the Singularity image that the developer uploaded into 

the HPC that includes the model code. 

 

Figure 3.8. A general procedure to create “Approach 11: Using a HPC Cluster” 

 

3.2.4 Evaluation 

To evaluate each of the 11 approaches, we first selected an example modeling case study 

including three components: SUMMA (Clark et al., 2015a) as the core model software, 

pySUMMA (Choi et al., 2021) and other Python packages as other secondary software, and Jupyter 

notebooks as modeling workflows. Each of these three components is described in further detail 

in the coming subsections. Then, we defined quantitative and qualitative criteria to evaluate the 11 

reproducible approaches. These evaluation criteria are also described in the subsections below.  

3.2.4.1 The Example Modeling Case Study 

SUMMA was selected as the case study model for this study because it is a general 

environmental model that enables the controlled and systematic evaluation of multiple model 

representations of hydrologic processes and scaling behavior through a flexible hierarchical spatial 

structure. SUMMA was developed in the Fortran programming language; therefore, we need a 

Fortran compiler (i.e., gfortran) to compile SUMMA source code. Also, SUMMA requires the 

NetCDF (Network Common Data Form) and LAPACK (Linear Algebra PACKage) libraries. The 

NetCDF library (libnetcdff.*) supports creating, accessing, and sharing data stored in a NetCDF 

format. The LAPACK library provides a series of routines for linear algebra operations, including 

matrix solvers. These libraries are considered core software for the model because they are 

required for the model to run. SUMMA Makefile and Dockerfiles are shared through the SUMMA 

GitHub repository (SUMMA GitHub, 2021) to support compiling SUMMA source code and 

creating a SUMMA Docker image. Also, the created SUMMA Docker image is shared via 

DockerHub (SUMMA DockerHub, 2021). 

Other secondary software, not required to run SUMMA but convenient for working with 

SUMMA models, includes pySUMMA: a Python-based SUMMA model API. pySUMMA allows 

for programmatic control of the model configuration, execution, and visualization of SUMMA 

models. Currently, pySUMMA can be installed from either a conda command (e.g., “conda install 
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–c conda-forge pysumma”) or a pip command (e.g., “pip install pysumma”). Users can also 

download the pySUMMA source code from the pySUMMA GitHub and install it manually using 

“environment.yml” for conda install or “setup.py” for pip install. The “environment.yml” and 

“setup.py” files have the lists of pySUMMA dependencies for each installation method, thus 

making it possible to reproduce the pySUMMA environment with dependencies on a new 

machine. 

Finally, for modeling workflows we used Jupyter notebooks to document SUMMA and 

pySUMMA modeling workflows through a mix of formatted text, mathematical equations, and 

executable code with in-line visualizations. We created Jupyter notebooks for each reproducible 

approach to encapsulate reproducible artifacts and modeling workflows for SUMMA and 

pySUMMA. These notebooks are available as described in the Data and Software Availability 

section.  

 

3.2.4.2 Quantitative Performance  

The following quantitative measures were used to evaluate each of the 11 approaches. (1) 

Complexity considers the total number of steps weighted by the difficulty in reproducing each step 

and is an important metric for lessening the burden of reproducibility work for researchers 

(Atmanspacher et al., 2014). (2) The size of computational artifacts takes into account storage 

requirements for storing and sharing each approach (Craig & Victoria., 2020; Kovács, 2017). (3) 

The computational time measures the wall time required to execute the model and can vary 

significantly across approaches (Kozhirbayev & Sinnott, 2017).  

In the complexity metric, we measured the number of steps and the level of difficulty to 

evaluate the complexity of each approach considering both developer work and user work. We 

used the general procedures for the 11 reproducible approaches shown in Figures 3.1 through 3.8 

to count the steps. We defined the level of difficulty for each step using three levels: Easy, Medium, 

and Difficult. Considering the time and expertise required for completing a medium task, we set 

the score to be five times that of an easy task. Likewise, we estimated that a difficult task was 

twice the score of a medium task. Therefore, we set an Easy task to a score of 1, Medium to a score 

of 5, and Difficult to a score of 10. 

In the size metric, we measured how much space is used to store all components of the 

reproducible environment. We only considered the size metric for the five local approaches 

because the size of the preconfigured computational artifacts in remote environment will be 

determined by the specific technical implementation in that remote environment. 

Finally, in the computational time metric, we measured the execution time across all 11 

reproducible approaches. In this performance metric, we measure time considering the capabilities 

of the reproducible tools themselves in a local environment and extensible capabilities to connect 

with remote environments such as using Dask (Rocklin, 2015) for parallel computing. As model 

software is rapidly becoming complicated with the use of large datasets (Addor et al., 2017; 

Boulmaiz et al., 2020; Kerandi et al., 2018), this computational time performance is critical. For 
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example, many environmental models require multiple runs for calibration, sensitivity and 

uncertainty analysis. 

We measured these three metrics using a SUMMA modeling case study. Clark et al. 

(2015b) created a set of thirteen SUMMA modeling datasets exploring various hydrologic 

modeling scenarios. Based on these datasets, we created four scenarios (Table 3.4) using two 

datasets to reproduce Figures 7, 8, and 9 in Clark et al. (2015b) and to measure computational time 

across our eleven approaches. These four scenarios include additional model simulations based on 

Clark et al. (2015b) to compare computational time across different simulation periods (15 vs 75 

months) and intensity (3 vs 9 ensemble simulations). The first scenario is a single simulation 

during 15 months for analyzing the impact on ET using the Simple Resistance method, which is 

one of stomatal resistance parameterizations in SUMMA. The second scenario is nine ensemble 

simulations for analyzing the impact on ET using 1) three different stomatal resistance 

parameterizations which are Simple Resistance, Ball-Berry (Ball et al., 1987), and Jarvis (Jarvis, 

1976) and 2) three different values (1.0, 0.5, 0.25) of the root exponential distribution parameter. 

From the first and second scenarios, we reproduced Appendix Figure A.1 from Figures 7 and 8 in 

Clark et al. (2015b) to verify the reproducible approach in this study. The third scenario is a single 

simulation for a 75 month period for analyzing the impact on runoff using the 1d Richards method 

(Celia et al., 1990), which is one of the lateral flow parameterizations in SUMMA. The last 

scenario is three ensemble simulations for analyzing the impact on runoff using three different 

lateral flow parameterizations: 1d Richards, Lumped Topmodel, and Distributed Topmodel (J. 

Duan & Miller, 1997). From the third and fourth scenarios, we reproduced Appendix Figure A.2 

from Figure 9 in Clark et al. (2015b). 

Table 3.4. SUMMA simulation scenarios for comparison of computational time on eleven reproducible approaches 

Scenario Descriptions 

(d) Scenario -1 
□ A single simulation (simple resistance method) 

□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months) 

(e) Scenario -2 

□ Ensemble simulations (9 simulations) 

- 3 different parameterizations (Simple Resistance, Ball-Berry, and Jarvis)  

  × 3 different parameters (Root Exponential values 1.0, 0.5, 0.25)  

□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months) 

(f) Scenario -3 
□ A single simulation (1d Richards) 

□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months) 

(d)  Scenario -4 

□ Ensemble simulations (3 simulations) 

  - 3 different parameterizations (1d Richards, Lumped Topmodel, and Distributed Topmodel)  

□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months) 

 

3.2.4.3 Qualitative Performance  

Qualitative performance was analyzed to complement limitations of using quantitative 

performance measures alone. In evaluating qualitative performance, we describe the strengths and 

weaknesses of each approach through experiences learned from applications of the 11 different 

reproducible approaches from both the developer and user perspectives. We then classified various 
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environmental modeling objectives into two broad categories: 1) education and 2) research 

because the purpose of reproducibility is to practice and extend previous knowledge based on 

confirmation of published results (Craig & Victoria., 2020; Prasad et al., 2020). Finally, based on 

these strengths and weaknesses and the two broad categories, we present recommendations for 

best practices when using the containerization approaches. 

 

3.3 Results 

3.3.1 Quantitative Performance  

3.3.1.1 Complexity 

Table 3.5 is an example of the complexity metric output for “Approach 2: Containerizing 

the Core Model Software only with Docker.” In the developer work, we divided three categories 

considering three primary components for this study. In the “1. Create a Reproducible Approach 

for SUMMA” step for the core model software, we measured “1.1 Create SUMMA Dockerfile” 

as a “Difficult” because creating the Dockerfile requires understanding the required dependencies, 

executable locations of software, and Docker commands. “1.2 Create SUMMA Docker Image” 

and “1.3 Share SUMMA Docker Image” were measured as “Easy” because this procedure can be 

completed using simple Docker commands. In the “2 Create a Reproducible Approach for 

pySUMMA” step for the secondary software, we measured “1.2 Create pySUMMA 

environment.yml” as “Medium” because often users can simply install pySUMMA using pip or 

Conda, but other times users have to install the software manually because of version conflicts 

with Python or other Python packages. In the final step of the developer work, we measured “3.1 

Create Jupyter Notebooks” as a “Difficult” because this process requires significant effort to 

encapsulate SUMMA modeling workflows considering the interaction with online repositories and 

software. In the user work, every step was measured as “Easy” because every reproducible 

component is shared online, allowing users to complete each step using simple commands and 

Jupyter notebooks. Similar tables to Table 3.5 for the other approaches are included in the 

Appendix. 
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Table 3.5. An example of reproducible approaches for “Approach 2: Containerizing the Core Model Software only 

with Docker” (Tables for other approaches are in Appendix) 

Developer Work  User Work 

Steps 
Level of 

Difficulty 
Scores  Steps 

Level of 

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA  12  1.Reproduce SUMMA, pySUMMA, and Modeling 

Workflows 
3 

1.1 Create SUMMA Dockerfile Difficult 10  

1.2 Create SUMMA Docker Image Easy 1  1.1 Install Docker Easy 1 

1.3 Share SUMMA Docker Image Easy 1  1.2 Download Jupyter Notebooks Easy 1 

2. Create a Reproducible Approach for pySUMMA 6  

1.3 Open and Run Jupyter Notebooks 

- Install pySUMMA 

- Download SUMMA input 

- Download SUMMA Docker Image 

- Execute SUMMA 

 

 

 

Easy 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

2.1 Create pySUMMA environment.yml  Medium 5  

2.2 Share Source Code and environment.yml Easy 1  

3.Create a Reproducible Approach of Modeling Workflows 12  

3.1 Create Jupyter Notebooks Difficult 10  

3.2 Share Jupyter Notebooks Easy 1  

3.3 Share SUMMA Input Easy 1  

       

Total Score 30  Total Score 3 

 

Figure 3.9 compares the total scores of complexity for the nine reproducible approaches 

considered in this metric except for two Sciunit approaches “Approach-8 and 9” because of the 

same complexity with “Approach-5.” Overall, user work is much simpler than developer work, as 

expected, and we can see that creating appropriate reproducible approaches is important and 

helpful for the reproducibility of other researchers (Piccolo & Frampton, 2016). In terms of 

developer work, “Approach-1: Compiling the Core Model Software” is the most complicated 

approach because it does not use containerization tools, so in this approach the developer needs to 

reproduce every step individually. Compared to this, “Approach-5, 8 and 9: Using Sciunit” are the 

simplest approaches. In terms of user work, most approaches are simple except for “Approach-1: 

Compiling the Core Model Software.” “Approach-6 and 7: CJH and CJW”, “Approach 10: Using 

Binder”, and “Approach-5, 8 and 9: Using Sciunit” are the simplest approaches because every 

dependency for environmental modeling is preconfigured into containers. Sciunit is the simplest 

and most straightforward from both the developer and user perspectives, because Sciunit can 

containerize every modeling environment and workflow into a Sciunit container using model 

execution code that was created for the original study, with no additional work. Users can 

reproduce published results using Sciunit containers easily using simple Sciunit commands in a 

Jupyter notebook. 
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Figure 3.9. The total scores of complexity on reproducible approaches for developer and user work 

 

3.3.1.2 Size of Reproducible Artifacts 

 

Figure 3.10 shows the comparison of sizes for the five local reproducible approaches. 

“Approach-5: Containerizing All Software and Modeling Workflows with Sciunit” is the most 

lightweight and it is ten times smaller than “Approach-4: Containerizing All Software with 

Singularity,” which is the second most lightweight. The reason for this is that Sciunit only 

encapsulates dependencies when dependencies are used during modeling workflows, compared to 

other containerization tools that containerize additional software and Python libraries perhaps not 

directly used in the workflow. In addition, “Approach-4: Containerizing All Software with 

Singularity” is more lightweight than approaches 1-3 (“Approach-1: Compiling the Core Model 

Software”, “Approach 2: Containerizing the Core Model Software only with Docker”, and 

“Approach 3: Containerizing All Software with Docker”) because Singularity utilizes a flatter 

structure, meaning every dependency is included in only one image. In contrast, Docker has a layer 

structure concept for multiple images; therefore, dependencies in each image can separately be 

used. This concept used in Docker is not helpful for a single model software run, but it is important 

when researchers want to use multiple commands with layered images such as web development 

and operation. Finally, container tools have a compression function, so “Approach 3: 

Containerizing All Software with Docker” is more lightweight than “Approach-1: Compiling the 

Core Model Software” and “Approach 2: Containerizing the Core Model Software only with 

Docker.”   
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Figure 3.10. Comparison of the size for reproducible artifacts in five local reproducible approaches 

 

3.3.1.3 Computational Time 

Figure 3.11 shows the results of computational time for the five approaches using a local 

computer. It shows that “Approach 2: Containerizing the Core Model Software only with Docker” 

and “Approach-5: Containerizing All Software and Modeling Workflows with Sciunit” are slightly 

slower than the other approaches. However, overall computational time is similar across the five 

local reproducible approaches. For the remote approaches (Figure 3.12), “Approach 11: Using a 

HPC Cluster” was the fastest approach, followed by “Approach-7: Using CJW.” Because CJW 

and XSEDE are on separated machines connected by the Internet, unlike “Approach 11: Using a 

HPC Cluster”, “Approach-7: Using CJW” requires additional time to submit jobs between CJW 

to XSEDE and retrieve model output from XSEDE to CJW. Although there are variations 

according to the status of memory use, the rest of the remote reproducible approaches are similar 

to the local reproducible approaches. Also, Sciunit can currently use only one core. Because Dask 

(Rocklin, 2015) automatically allocates multiple cores for ensemble simulations, Sciunit cannot 

encapsulate ensemble simulations (Scenario 2 and 4). Therefore, when Sciunit reproduced 

modeling workflows, it could not find cores that were used when a Sciunit container was created. 

Hence, we could not measure its computational time for scenarios 2 and 4. From the performance 

test of computational time, for data intensive modeling such as the simulation of fully distributed 

models and Contiguous United States (CONUS) scale models, we can see that it is invaluable to 

use remote environments, especially HPC clusters. 
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Figure 3.11. Comparison of computational time in five local reproducible approaches 

 

Figure 3.12. Comparison of computational time in six remote reproducible approaches 

 

3.3.2 Qualitative Performance  

Table 3.6 presents results from the qualitative performance tests for “Approach 1: Compiling 

the Core Model Software.” As the GNU Make tool is a traditional method to reproduce model 

software, GNU Make itself is important because, even though we use containerization tools, this 

tool has to be used across the 11 reproducible approaches by the developer to build the SUMMA 

executable. However, this approach is still difficult for model users. Therefore, programming 

experts or model developers should use GNU Make to efficiently review and apply their new and 

modified source code in model software. Consequently, we recommend this approach to 

researchers who want to participate in model software development and management. 
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Table 3.6. Qualitative evaluation and recommended uses for “Approach-1: Compiling the Core Model Software” 

Scenario Descriptions [D: Developer, U: User] 

Strengths 
□ [D, U] GNU Make itself is important because this tool has to use in 11 reproducible approaches 

□ [D] Efficient for model software developers to review and apply their new and modified source code 

Weaknesses □ [U] Difficult to apply Makefile configuration setting for compiling model software 

Recommended 

usages 
□ [Research] model software development and management 

 

Table 3.7 presents the results of the qualitative performance evaluation for “Approach 2: 

Containerizing the Core Model Software only with Docker.” This approach uses Docker to 

containerize only the core model software; therefore, users can easily reproduce SUMMA using 

Docker from DockerHub. In addition, because users can install and apply new Python libraries as 

model APIs without any limitations, this approach has become popular. After downloading the 

SUMMA Docker image and installing pySUMMA within a Conda VE, users can execute 

SUMMA using the “docker” option in pySUMMA “run” method. Even if users have not 

downloaded the SUMMA Docker image in local computer, pySUMMA can automatically 

download it from DockerHub. However, sometimes when users create the Conda VE, unexpected 

errors may occur causing the user to have to create the Conda VE manually. Therefore, we 

recommend this approach for model applications where the user requires flexibility in what Python 

packages and other libraries are needed to complete the application.  

Table 3.7. Qualitative evaluation and recommended uses for “Approach 2: Containerizing the Core Model Software 

only with Docker” 

Scenario Descriptions [D: Developer, U: User] 

Strengths 
□ [U] Easy to download and use Docker images for model software via DockerHub 

□ [U] Efficient to install new Python packages or other libraries for various application research 

Weaknesses □ [U] Unexpected errors may occur when users create Conda VE manually 

Recommended 

usages 
□ [Research] Model application with flexible application of various Python packages and other libraries 

 

Table 3.8 presents the results for the qualitative performance evaluation for “Approach 3: 

Containerizing All Software with Docker.”  This approach containerizes every dependency into a 

Docker image; therefore, the procedure is stable and consistent in that it is very unlikely that errors 

will occur across users. However, there is a limitation for installing new software or dependencies. 

Because users have to work inside a Docker image, even if users can install new dependencies, 

they are temporary. Therefore, this approach is helpful for the purpose of offline education for 

practicing and reproducing published results in local computers (public or personal computers), 

but is less well suited for use cases that require extension of past work. 
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Table 3.8. Qualitative evaluation and recommended uses for “Approach 3: Containerizing All Software with 

Docker” 

Scenario Descriptions [D: Developer, U: User] 

Strengths 

□ [U] Easy to download and use Docker images for environmental modeling via DockerHub 

□ [U] Possible to use all required model software and other software from a Docker image  

□ [U] Stable steps to use environmental models 

Weaknesses □ [U] Limitation to install new model software or other software 

Recommended 

usages 
□ [Education] Offline education requiring stable and consistent reproducibility  

 

Table 3.9 presents the qualitative performance evaluation results for “Approach-5, 8 and 9: 

Using Sciunit.” Sciunit has many advantages such as being the most simple and lightweight of the 

11 reproducible approaches considered in this study. However, Sciunit sometimes struggles to 

encapsulate not only every dependency, but also all workflows for complicated applications. Due 

to the lightweight containers and easy installation of the Sciunit tool, this approach is helpful for 

education use cases where instructors can share educational reproducible computational materials 

and students are asked to containerize their own analyses. In addition, Sciunit is efficient in terms 

of memory use for encapsulating all modeling environments, workflows, and data into one 

container. Thus, it is also a powerful tool for reliable reproducible research without continuous 

version control.  

Table 3.9. Qualitative evaluation and recommended uses for Approach-5, 8 and 9: Using Sciunit 

Scenario Descriptions [D: Developer, U: User] 

Strengths 

□ [D, U] The simplest complexity for reproducibility in both developer and user perspective 

□ [U] The most lightweight in 11 reproducible approaches 

□ [D, U] Easy to share Sciunit containers as a file format 

□ [D, U] Possible to use Sciunit on local and remote environments after installing it using pip install 

Weaknesses 
□ [U] Niche usage comparing to Docker and Singularity, sometimes unstable to create containers 

□ [U] Impossible to encapsulate automatic allocation of parallel computing such as Dask 

Recommended 

usages 

□ [Education] Offline education 

□ [Research] Reliable reproducibility because Sciunit can containerize all reproducible artifacts into a  

                       Container without significant memory use 

 

Table 3.10 presents the qualitative performance evaluation results for “Approach-6 and 7: 

Using CJH and CJW.”  This approach allows for users to use preconfigured modeling 

environments; therefore, users can use environmental models in a straightforward way without any 

additional software installation. In addition, CJW supports HPC (XSEDE) use for parallel 

computing. Also, CJH supports a custom Conda VE to install Python or other libraries 

permanently, like the “Approach 2: Containerizing the Core Model Software only with Docker.” 

However, there is a limitation to install a new model software into CJH and CJW by users because 

both are developed by Docker, so there is a security issue when users install the new software. 

Therefore, it takes time to deploy new software into CJH and CJW because the CJH and CJW 
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development teams need a certain amount of time to review and deploy the new software on CJH 

and CJW. Consequently, we recommend this approach for online education and data-intensive 

computing research (CJW). 

Table 3.10. Qualitative evaluation and recommended uses for “Approach-6 and 7: Using CJH and CJW” 

Scenario Descriptions [D: Developer, U: User] 

Strengths 

□ [U] The simplest complexity for users, possible to use preconfigured modeling environments 

□ [U] Possible to use HPC (XSEDE) for parallel computing (CyberGIS-Jupyter for water) 

□ [U] Possible to install custom Conda VE (CUAHSI JupyterHub) 

Weaknesses 

□ [U] Impossible to install particular model software or packages that uses ‘sudo’ command 

□ [D] Requires a certain amount of time to review and deploy a new software by CJH and CJW  

           development team 

Recommended 

usages 

□ [Education] Online education (CJH and CJW) 

□ [Research] Data-intensive computing (CJW) 

 

Table 3.11 presents the qualitative performance test results for “Approach 10: Using 

Binder.”  This approach allows developers to share modeling environments online with users 

through a single click. Also, users can add new software or libraries, though users need to 

understand how to edit Binder configuration files to do so. Despite these conveniences, MyBinder 

has a limitation in persistent sessions because it supports these online modeling environments for 

free. Therefore, if there is no activity by users for 10 minutes, the Jupyter modeling environment 

is automatically shut down without saving into a persistent data storage. Therefore, we recommend 

this approach for online education use cases, but not for more sophisticated research applications 

unless Binder can be implemented with persistent data storage. That said, this approach is useful 

as a preliminary auditing procedure for research applications to deploy new software or libraries 

into Docker-based virtual research environments (Prasad et al., 2020) such as CJH and CJW 

because both Binder and these cyberinfrastructure are developed by Docker. 

Table 3.11. Qualitative evaluation and recommended uses for “Approach 10: Using Binder” 

Scenario Descriptions [D: Developer, U: User] 

Strengths □ [U] Easy to share modeling environments online 

Weaknesses □ [U] Non-persistent sessions (automatically shut down if there is no activity for 10 min) 

Recommended 

usages 
□ [Education] Online education 

 

Table 3.12 presents the qualitative performance evaluation results for “Approach 11: Using 

a HPC Cluster.”  Comparing to “Approach-6 and 7: Using CJH and CJW”, “Approach 11: Using 

a HPC Cluster” can add new model software or libraries by users without security issues. 

Therefore, if researchers want to add new software by themselves and use HPC clusters for parallel 

computing, “Approach 11” is the most appropriate approach. Therefore, we recommend this 

approach for data intensive computing research. Currently, Singularity is less popular than Docker, 

so sometimes researchers need to create Singularity definition files by themselves. In this scenario, 
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we recommend researchers try to find a Dockerfile first and then use the docker2singularity library 

to automatically convert the Dockerfile into a Singularity definition file.  

Table 3.12. Qualitative evaluation and recommended use for “Approach 11: Using a HPC Cluster” 

Scenario Descriptions [D: Developer, U: User] 

Strengths 

□ [D] Possible to add new software or libraries in HPC without other’s help 

□ [D] Easy to convert Docker images to Singularity images using docker2singularity library 

□ [U] The fastest computational time (Possible to use multiple cores for parallel computing in HPC) 

□ [U] Lightweight than other reproducible approaches except Sciunit 

Weaknesses 
□ [U] Niche usage comparing to Docker 

□ [U] Requires preinstalled JupyterHub environment in HPC for a user-friendly interface 

Recommended 

usages 
□ [Research] Data and compute intensive modeling 

 

3.4 Discussion 

3.4.1 Guidance and Recommended Uses 

Across the quantitative and qualitative results presented in this study, it is possible to draw 

out best practices for leveraging containerization and computing environments to achieve 

reproducible environmental modeling objectives. We can classify various environmental modeling 

objectives into two broad categories: 1) education and 2) research. Traditionally, we practice 

environmental modeling through classes and workshops in an “offline” manner that requires 

installing software on local computers. However, recently many educational institutions are 

transitioning to remote or “online” compute environments (Prasad et al., 2020). Therefore, we 

divide the objectives of education into 1) online and 2) offline. For environmental modeling 

research, we can generally divide the objectives of research into 1) model installation as 

developers, 2) model application as users, and 3) data-intensive computing for complex modeling 

using large datasets (Addor et al., 2020).  

For education purposes, especially online education, “Approach-6 and 7: Using CJH and 

CJW” and “Approach 10: Using Binder” are the best approaches because they offer the lowest 

complexity for users (complexity score of users: 2, Figure 3.9). In addition, these remote 

reproducible approaches offer more flexibly than HPC because, in general, HPC requires more 

rigid account permissions (like YubiKey for NCAR HPC) than CJH and CJW. Moreover, these 

environments support easy sharing via HydroShare and preconfigured modeling environments. 

Sciunit also has the lowest complexity; however, because Sciunit needs to encapsulate 

dependencies and workflows together, sometimes creating Sciunit containers can be more unstable 

than other approaches. Next, for offline education, “Approach 3: Containerizing All Software with 

Docker” and “Approach-5: Containerizing All Software and Modeling Workflows with Sciunit” 

are the best approaches because of the first and second lowest complexity scores for users (2 for 

Approach-5 and 3 for Approach 3). Among these reproducible approaches, if users want a more 

reliable approach, “Approach 3: Containerizing All Software with Docker” is better because 

Docker containerizes every dependency into Docker images. In addition, if users want a more 

lightweight approach (Figure 3.10) to distribute containerized images and a reliable approach 
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without considering version control for offline education, “Approach-5: Containerizing All 

Software and Modeling Workflows with Sciunit” is better. 

For the purpose of model development in research, “Approach-1: Compiling the Core Model 

Software” is the only approach that can build new or modified model software source code 

efficiently. Other approaches can only create a container image using existing model software 

source code for reproducibility. For the purpose of model application in research, “Approach 2: 

Containerizing the Core Model Software only with Docker” and “Approach-6: Using CJH” are 

the best because these approaches have the flexibility to install and apply new Python libraries for 

various analyses and visualizations. For the research purpose of data-intensive computing, 

“Approach- 7: Using CJW” and “Approach 11: Using a HPC Cluster” are the best approaches 

because both remote approaches are able to use multiple cores for parallel computing; therefore, 

these two approaches have the first and second fastest computational time (Figure 3.12). 

Table 3.13. Best practices for reproducible approaches on local and remote environments to achieve environmental 

modeling objectives  

Objectives Best Practices 

(a) Education 
(1) Online 
      (Class or Workshop) 

□ CUAHSI JupyterHub and CyberGIS-Jupyter for water (AP-6 and 7) and  

     Binder (AP-10) 

→ The lowest complexity for users (score:2), a flexible approach, and easy sharing  

(2) Offline 
      (Class or Workshop) 

□ Containerizing Model Software and Other Software (AP-3) and Sciunit (AP-5) 

→ The first (AP-5, score:2) and second (AP-3, score:3) lowest complexity for  

     users, a more stable approach (AP-3), and the most lightweight artifacts (AP-5) 

(b) Research (3) Model 

     Development 

□ Compiling Model Software (AP-1)  

→ The only approach to build new or modified model software source code 

(4) Model 

     Application 

□ Containerizing Model Software (AP-2) and CUAHSI JupyterHub (AP-6) 

→ Lower complexity than others (score:3), flexibility to install and apply new  

     Python libraries for various analysis and visualization 

(5) Data-Intensive  

     Computing 

□ CyberGIS-Jupyter for water (AP-7) and HPC Cluster (AP-11) 

→ The first and second fastest computational time, possible to use multiple cores  
     for parallel computing 

 

3.4.2 Limitations of Current Sciunit Software 

“Approach-5, 8 and 9: Using Sciunit” is the simplest and most lightweight reproducible 

approach. However, because Sciunit is still in active development, there are limitations to 

reproduce modeling environments and workflows together in Sciunit. As Sciunit containerizes 

both modeling environments and workflows, Sciunit has to interact with the same workflow that 

was applied to create the Sciunit container. Other approaches such as Docker and Singularity 

separate the computational modeling environments and workflows, so they are more flexible than 

Sciunit and can apply different workflows based on containerized computational environments. 

Therefore, Sciunit is developing a functionality to convert a Sciunit container to a Docker image 

for more flexible workflow applications. In addition, Sciunit only containerizes dependencies that 

were used in workflows; therefore, users cannot employ functions that were not originally part of 

workflows that created the Sciunit container even though these functions exist in model software 

or Python-based model APIs. Therefore, Sciunit is in active development to develop a way to 



Chapter 4 

53 

 

import new libraries into Sciunit containers. Moreover, as Sciunit encapsulates modeling 

environments and workflows simultaneously, Sciunit can cause unpredictable errors during 

tracking and self-containerizing. Therefore, Sciunit needs more experiments and evaluations in 

various modeling environments and workflows. 

3.4.3 Limitations of Currently Available Virtual Environments for Environmental 

Modeling 

“Approach-6 and 7: Using CJH and CJW” use a Jupyter interface and have been widely 

used because of easy access and preconfigured modeling environments (Prasad et al., 2020). 

However, these virtual research environments still have limitations for users installing new 

software. Therefore, to foster remote environmental modeling, we need more compatible 

computational modeling environments to allow users to install new software on virtual research 

environments. The “udocker” tool, which is a tool for using Docker without privileges (Gomes et 

al., 2018), would allow users to add new model software to a Docker image. In addition, we need 

official and standard procedures for adding new software on CJH and CJW because the CJH and 

CJW development team cannot control every deployment of new software. Using compatible 

capabilities to install new software, users could verify modeling environments in their own user 

sessions. Then, once tested, they could request their successful modeling environments be made 

public for other researchers to use on the CJH and CJW. 

“Approach 10: Using Binder” is also a powerful remote modeling environment. But there 

are limitations such as if users have no activity for 10 min, the MyBinder user session is 

automatically shut down. This is because creating MyBinder sessions on BinderHub is open to 

anybody, anywhere, and anytime for free. Therefore, some time limits for BinderHub user session 

resources are inevitable. As a short term solution, the current Binder supports an automatic save 

function when the user session is shut down if users are setting the local directory to save files in 

the user session. A potential solution would be creating online JupyterHub environments with a 

Binder-ready repository such as GESIS Notebook (https://notebooks.gesis.org). 

 

3.5 Conclusions 
Reproducibility is the cornerstone of science because it allows for the accumulation of 

knowledge by building on prior work (Pauliuk, 2020). While recent research has highlighted the 

difficulties in achieving reproducible computational work (Monya Baker, 2016) such as sharing 

modeling environments and automated workflows, gaps remain in understanding how to 

effectively use modern software tools and practices to achieve more reproducible computational 

analyses (Kim et al., 2018). To this aim, we explored 11 approaches for achieving reproducible 

modeling goals using a combination of different containerization tools and virtual environments. 

We assessed the approaches using both quantitative (complexity, size of reproducible 

environments, and computational time) and qualitative (strengths, weaknesses, and recommended 

usages) measures in order to offer perspectives on the best practices for different use cases 

commonly in the environmental modeling community. We used SUMMA, pySUMMA, and 

Jupyter notebooks to represent a common environmental modeling use case to assess the 11 

methods.  
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From this study, we showed how no single approach is the best for all reproducibility use 

cases. We need to understand the specific modeling reproducibility objectives and find the best 

approach for those objectives. For educational use cases, we considered low complexity for users 

as the most important factor. Thus, the best methods for online education are CUAHSI JupyterHub, 

CyberGIS Jupyter for Water, and Binder (Approaches 6, 7, and 10) and the best method for offline 

education is Sciunit (Approach 5). For research use cases, we considered three possible objectives: 

model development, model application, and data-intensive modeling. For model development, it 

is important to be able to recompile after editing and updating model source code; therefore, the 

best method for model development is compiling the core model software (Approach 1). For model 

application, flexibility is important to deploy new software and to apply new methods; therefore, 

the best methods for model application are containerizing the core model software only with 

Docker and using an online JuypyterHub environment like CUAHSI JupyterHub (Approaches 2 

and 6) for deploying the software. For data-intensive computing, it is important to be able to use 

multiple cores to improve computational time; therefore, the best methods for data-intensive 

computing are using Singularity for containerization with either the CyberGIS Jupyter for Water 

environment, which interfaces with XSEDE, or a HPC cluster with a Jupyter instance as the 

computational environment (Approaches 7 and 11).  

Future research to further advance reliable and efficient reproducible approaches for 

environmental modeling should improve weaknesses in reproducible approaches we identified in 

this study. For education purposes, the trend of environmental modeling is moving to remote or 

online computational environments, so we need to focus on deployment flexibility for virtual 

research environments and persistent sessions and storage for solutions like Binder. While Sciunit 

has the strongest capabilities compared to other approaches for environmental modeling, it can 

benefit from adding flexibility to apply different modeling workflows and new software 

dependencies. This continued research and virtual environment enhancement will improve the 

software ecosystem needed to make computational research more reproducible, open, transparent, 

ultimately fostering a “culture of reproducibility” (Rosenberg et al., 2020) within environmental 

modeling. 

Data and Software Availability 

All data and computational environments used in this study are ten HydroShare resources 

and three GitHub repositories. We published all data and computational environments with 

persistent digital object identifiers (DOI’s) on HydroShare and shared them by a collection 

resource in HydroShare (Choi Y. J., 2021). This collection resource provides the links for all 

HydroShare resources as “Collection Contents” and three GitHub repositories as “Related 

Resource Reference.” Ten HydroShare resources consist of one collection resource, two model 

instance resources for SUMMA model input, one model program resource for Singularity image, 

one composite resource for Virtual Box image of five local approaches, four composite resources 

for Jupyter notebooks of four remote approaches (AP-6, 7, 8, and 9), and one composite resource 

for a Jupyter notebook to create Figure 3.9-3.12 using performance results. Three GitHub 

repositories created to share Jupyter notebooks and configuration files for AP-3, AP-4, AP-10, and 

AP-11.  
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List of Relevant URLs 

Binder: https://mybinder.org 

Binder Configuration: https://mybinder.readthedocs.io/en/latest/using/config_files.html 

CSDMS: https://csdms.colorado.edu/wiki/Hydrological_Models 

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org 

Docker recipes of CUAHSI JupyterHub: https://github.com/CUAHSI/cuahsi-stacks 

CyberGISX: https://cybergisxhub.cigi.illinois.edu 

CyberGIS-Jupyter for water: http://go.illinois.edu/cybergis-jupyter-water 

Docker recipes of CyberGIS-Jupyter for water: https://github.com/cybergis/Jupyter-

xsede/tree/master/singularity_def 

docker2singularity: https://github.com/singularityhub/docker2singularity 

Figshare: https://figshare.com 

GESIS Notebook: https://notebooks.gesis.org/binder 

GitHub: https://github.com 

Google Colab: https://colab.research.google.com 

GNU compilers (gfortran):  https://gcc.gnu.org/fortran 

GNU compilers (GCC):  https://gcc.gnu.org 

GNU builders (Make): https://www. gnu.org/software/make 

HydroShare: https://www.hydroshare.org 

Jupyter notebooks for pySUMMA tutorial: https://github.com/arbennett/pysumma-tutorial 

Microsoft Azure: https://note books.azure.com 

NCAR, National Center for Atmospheric Research, HPC: https://jupyterhub.ucar.edu 

Pip: https://pip.pypa.io 

pySUMMA: https://github.com/UW-Hydro/pysumma 

Python: https://www.python.org 

R: https://www.r-project.org 

Rivanna, HPC at University of Virginia HPC: https://www.rc.virginia.edu 

SUMMA GitHub: https://github.com/NCAR/summa 

SUMMA DockerHub: https://hub.docker.com/r/uwhydro/summa 
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Virtual Box: https://www.virtualbox.org 

Virtualenv: https://virtualenv.pypa.io 

XSEDE, an HPC resource on the Extreme Science and Engineering Discovery Environment, 

https://www.xsede.org 

Zenodo: https://zenodo.org 
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Chapter 4 

4 Toward Seamless Environmental Modeling: 

Integration of HydroShare with Server-side 

Methods for Exposing Large Datasets to Models 

 

4.1 Introduction 
Reproducibility is a fundamental requirement to accumulate knowledge and advance science 

(Monya; Baker, 2016; National Academies of Sciences, 2019; Stagge et al., 2019; Wilkinson et 

al., 2016). In Nature’s survey of reproducibility, however, about 70% of researchers had failed to 

reproduce another researcher’s results and 50% of researchers failed to reproduce their own 

research results (Monya; Baker, 2016). To improve reproducibility, data management and 

stewardship are the basic elements (Wilkinson et al., 2016). However, a data science survey 

reported that data scientists spent 19% of their time collecting data (finding and accessing) and 

60% of their time cleaning and organizing data (CrowdFlower, 2016). That leaves 21% of their 

time for core analysis. To overcome these problems, the FAIR principles have been presented as 

high level guidelines to improve scientific data management and access by making them Findable, 

Accessible, Interoperable, and Reusable (Wilkinson et al., 2016). The FAIR principles emphasize 

the necessities of both human and machine applicable data management environments. Ongoing 

efforts on FAIR guiding principles have advanced data repositories with identifier mechanisms, 

data management plans, policies and standards (Hodson et al., 2018). Based on the use of unique 

identifiers, such as the Digital Object Identifier (DOI) or other persistent identifiers, data can 

become “Findable.” Public machine-accessible interfaces allow datasets and metadata to become 

“Accessible,” and the use of standard terms, metadata, and wide range of datatypes allows data to 

become “Interoperable.” Finally, detailed documents together with metadata can allow data to 

become “Reusable.” 

Recently, numerous online repositories have accepted FAIR principles and enhanced their 

functionalities to be more Findable, Accessible, Interoperable, and Reusable (Crosas, 2020; 

Wilkinson et al., 2017). For example, Dataverse (https://dataverse.org) provides the functionalities 

to create Digital Object Identifiers (DOI), share metadata and data files, and access data with public 

licenses on their data landing pages. Similar to Dataverse, FigShare (https://figshare.com), 

Mendeley (https://mendeley.com), and Zenodo (https://zenodo.org/) are other online repository 

examples that support these capabilities to follow FAIR principles. However, these online 

repositories have been developed for general purposes and have focused on data publication using 

metadata at the file level.  This means the data are preconfigured for particular purposes, such as 

understanding published research and practicing data analysis in workshops. Therefore, there are 

limitations regarding reusability for multiple applications across different case studies and 

interoperability for programmatic access to multiple data collections using complementary tools. 
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In the hydrologic science community, the types of data and models, and thus the data and 

file sharing needs of the modeling community, are diverse (Horsburgh et al., 2016). HydroShare 

(https://www.hydroshare.org) helps to meet these needs by providing an online repository to 

support sharing these multiple types of data and models (Morsy et al., 2017). Data types include 

time series, geographic features (Shapefile), geographic rasters (GeoTIFF), and multidimensional 

space-time datasets (NetCDF). In addition, HydroShare supports model sharing using model 

programming (source code or compiled software with related metadata such as version, 

programming language, and release date) and model instance resources (model input and output 

with related metadata such as application methods and a relationship to a model program resource). 

After creating a HydroShare resource, users can share it using a unique URL (public sharing status) 

or DOI (published sharing status). Moreover, HydroShare supports RDF (Resource Description 

Framework) HydroShare Python Client, hsclient (https://github.com/hydroshare/hsclient) to 

interact with HydroShare resources and JupyterHub computational environments (CUAHSI 

JupyterHub and CyberGIS-Jupyter for Water) for various analyses such as modeling and big data 

analysis using Jupyter notebooks (Choi et al., 2021). Therefore, we can say HydroShare supports 

FAIR principles, using unique identifiers (Findable), metadata of multiple resource types 

(Accessible), hsclient (Interoperable), and JupyterHub (Reusable). HydroShare is mainly utilized 

for spatial data publication at the file level and is not commonly used to distributed large, national-

scale datasets. However, HydroShare does serve as a shortcut to the CUAHSI HIS HydroClient 

(https://data.cuahsi.org), an external web application to support national-scale time series data 

distribution. However, there is no similar support for national-scale spatial data distribution within 

HydroShare. 

For national-scale spatial data sharing, there are a number of government-sponsored 

organizations and research centers with open-web data distribution systems. For example, USDA 

(United States Department of Agriculture) NRCS (National Resources Conservation Service) 

provides over 100 high resolution raster and vector data such as Census, Digital Elevation Model 

(DEM), Hydrography, Land Cover, Soil, and Transportation in the Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov). USGS 3D Elevation Program (3DEP, 

https://www.usgs.gov/core-science-systems/ngp/3dep) provides various elevation maps such as 

DEMs and Lidar point clouds. MRLC (Multi-Resolution Land Characteristics Consortium, 

https://www.mrlc.gov) currently provides land cover, tree canopy, urban imperviousness and other 

related data from 2001 to 2016. In addition, some open-web distributed systems support 

application programming interfaces (APIs) to programmatically interoperate between users and 

open-web distributed system. However, the use of spatial data APIs is difficult and has a steep 

learning curve. Therefore, usually researchers collect spatial data manually, meaning downloaded 

needed data from these open-web distributed systems, for their modeling needs. 

Service-Oriented Architecture (SOA) and open web-based data sharing technologies have 

been put forth as more convenient data access approaches, as well as approaches for integration of 

certain environmental models (Chen et al., 2020). However, these advanced approaches care 

difficult to design, build, and sustain, especially for the complex and heterogeneous data required 

in environmental modeling. Miles and Band (2015) put further one solution to the problem: the 

Ecohydrolib Python library for managing spatial data acquisition and preparation workflows for 
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ecohydrology modeling. The idea was to access data from data providers and to use data processing 

software to map these data into specific environmental model needs. HydroTerre (L. N. Leonard, 

2015) offered a different approach to solving the problem by created a database of essential 

terrestrial variables built from multiple national-scale spatial datasets and processed to create input 

to the PIHM (The Penn State Integrated Hydrologic Modeling System) (M. Kumar et al., 2010) 

model. The EcoLib approach relied on having consistent and reliable APIs from data providers, 

which can change and create vulnerabilities within the system. The HydroTerre approach removed 

the reliance on data providers by creating copies of the data, but doing so for the national creates 

a major data management and storage problem due to the scale of the data required.  

There are a growing number of scientific datasets that are national and international in scope, 

and that could benefit from ways to easily share them online in a machine readable way. Large 

sample hydrology studies (Addor et al., 2020) have become popular to cover large areas with 

consistent and robust high-quality datasets to “balance depth with breadth” (Gupta et al., 2014). 

For example, Model Parameter Estimation Experiment project (MOPEX) provided 

hydrometeorological observation and attribute data for 438 catchments across the USA (Q. Duan 

et al., 2006). Another example is the European catchments of Hydrological Predictions for the 

Environment model (E-HYPE), providing streamflow data and catchment attributes in 35,215 

catchments and 1,366 river gauges in Europe (Kuentz et al., 2017). In an recent effort, Catchment 

Attributes and Meteorology for Large sample Studies (CAMELS, 671 catchments in the USA) 

(Addor et al., 2017; Newman et al., 2015) and CAMELS-Chile (516 catchments in the Chile) 

(Alvarez-Garreton et al., 2018) were created to provide climate data and catchment attribute data. 

Computational platforms are being developed to support big data in geosciences. For example, 

PANGEO (https://pangeo.io) supports a community platform with big data in climate, hydrologic, 

and ocean field (Hamman et al., 2018). However, outside of such systems, MOPEX, E-HYPE, 

CAMELS, and CAMELS-Chile data need to be downloaded manually and processed to be used 

in particular environmental models.  

Recent research has made strides to overcome the limitations of spatial data sharing. In 

HydroShare, for example, two server-side methods are used to distribute spatial data in a machine-

readable form: GeoServer (http://geoserver.org) (Crawley et al., 2017) and Thematic Real-time 

Environmental Distributed Data Services (THREDDS) Data Server (TDS) (Gan et al., 2020). 

GeoServer supports data access, display, and processing of geographic raster and feature data using 

the Open Geospatial Consortium (OGC) web service (OWS) (Wenjue et al., 2004). TDS is an 

advanced client/server software that provides remote access to data and metadata stored in various 

geo-temporal datasets. Using these services, HydroShare users can easily share, access, retrieve, 

and subset geographical data via GeoServer and various types of scientific data such as NetCDF 

via TDS. Automatic metadata harvesting and data transfer functionalities in HydroShare enable 

user uploaded NetCDF, geographic rasters, and feature data to be available through its connected 

GeoServer and TDS instances. This allows functionalities provided by GeoServer and TDS to be 

leveraged to not only visualize but also analyze spatial data stored in HydroShare. Despite the 

availability of these capabilities of GeoServer and TDS, both are being underutlized in 

HydroShare. For example, GeoServer is mainly being used for visualizing geographic raster and 

feature data online. TDS is mainly being used for sharing and visualizing grid-based 
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multidimensional climate data (Gan et al., 2020). The goal of this research is, therefore, to explore 

how these services can be used to support more complex use cases required in environmental 

modeling.  

With this goal in mind, we aim to answer the following research questions. 1) Can the 

GeoServer and TDS implementations with HydroShare be used to enable more seamless 

environmental modeling? 2) Can HydroShare along with GeoServer and TDS provide a more 

sustainable and scalable solution for sharing machine-readable large-extent spatial datasets? The 

remainder of the paper is organized as follows. In the methodology section, we first present the 

procedures for creating large-extent spatial (LES) datasets and sharing them on GeoServer and 

TDS in HydroShare. Second, we describe how to subset LES datasets from GeoServer and TDS. 

Third, we present application workflows of these datasets for seamless environmental modeling 

using the Regional Hydro-Ecologic Simulation System (RHESSys) (Tague & Band, 2004a) as an 

example modeling system. In the results section, we present examples for three different 

watersheds: 1) Coweeta Subbasin18 in North Carolina, 2) Scotts Level Branch in Maryland, and 

3) Spout Run in Virginia. In the discussion section, we review the advantages and limitations of 

using LES datasets on GeoServer and TDS. Finally, we conclude with a summary of the 

contributions of this research and suggest pathways for future research to further advance spatial 

data analysis in end-to-end environmental modeling. 

 

4.2 Background 

4.2.1 GeoServer 

GeoServer is a Java-based open-source software that has been developed for publishing and 

visualizing spatial data online. Open Geospatial Consortium (OGC), a non-profit organization, has 

released standards for sharing spatial data online including the Web Map Service (WMS), Web 

Feature Service (WFS), and Web Coverage Service (WCS). WMS provides geo-registered spatial 

images either as a jpeg or png using a simple HTTP interface. WFS provides the direct 

interoperability to discover, retrieve, and subset feature geographic data rather than sharing 

geographic data at the file level. WCS is similar to WFS except that WCS provides direct 

interoperability to the raster geographic data. In addition, there are many client libraries that use 

OGC web service interface standards. In this study, we used OWSLib to visualize, retrieve, and 

subset spatial data using various formats such as through OGC web services, Shapefiles, 

ArcGRID, and GeoTIFF. In the past, GeoServer has been used within Hydroshare to support 

spatial data visualization. Initially it served as the spatial backend for the Hydroshare GIS Web 

App that was based on the Tethys framework (Crawley et al., 2017). This app has been deprecated 

in favor of an implementation that uses GeoServer natively to provide direct access to the data 

through built-in standardized OGC compliant web services. This feature allows sharing and 

visualizing public resources in HydroShare that contain spatial data. Every resource that becomes 

public and contains geographic raster or feature content is automatically registered with GeoServer 

using a customized middleware. 
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4.2.2 THREDDS Data Server (TDS) 

The Thematic Real-time Environmental Distributed Data Services (THREDDS) Data 

Server (TDS) is open-source software distributed by the Unidata community program of the 

University Corporation for Atmospheric Research (UCAR). TDS provides web services that 

publish remote access to data and metadata stored in a variety of well-known geo-temporal dataset 

formats used for environmental research such as GRIB (Gridded Binary), HDF5 (Hierarchical 

Data Format version 5), and, most commonly, NetCDF (Network Common Data Form) as viewed 

through a Common Data Model (CDM) (Nativi et al., 2008). TDS presents gridded, point, and 

time series datasets organized into thematic catalogs and provides access to data through suites of 

web services such as TDS and OGC. 

The Open-source Project for Network Data Access Protocols (OPeNDAP) specifies two 

suites of web service requests and responses, DAP2 and DAP4, for remotely accessing CDM 

datasets. Remote access of TDS-hosted datasets through DAP2 client software allows the 

advantage of placing dimensional constraints on the CDM variable arrays transported in a 

response. The DAP2 request contains the constraints and effectively creates a subset of the TDS-

hosted dataset for transport. The requesting client, therefore, need not concern itself with the size 

of the TDS-hosted dataset, but only with the size of the data response. 

As an additional advantage, DAP2 clients, such as Unidata’s NetCDF libraries or higher-

level software utilizing those libraries such as xarray, initially make requests for only the metadata 

contained in the CDM header via a DAP2 Data Descriptor Structure (DDS) request and do not 

further request data until the variable array data is instantiated in the client via a DAP2 Distributed 

Oceanographic Data Systems (DODS) request. This “lazy-loading” behavior allows remotely 

opening the entire dataset but only transports portions of the dataset as needed programmatically, 

thereby reducing network load, transmission time, and memory consumption. 

In contrast, due to dimensional constraints in DAP2 requests and DAP2 client lazy-loading, 

tools which assemble and manage Network Common Data Form (NetCDF) datasets have more 

influence on the size of TDS-hosted datasets. When only subsets of the datasets require transport, 

practicalities concerning dataset construction and server-side dataset management become the 

principles determining how to best partition large collections of data. Often the tools and computer 

stations which remotely access CDM datasets through TDS are the same or similar tools and 

stations constructing and managing the datasets prior to hosting. When collection-wide views of 

data are desirable, TDS supports NetCDF Markup Language (NCML) facilities to aggregate many 

datasets into one virtual dataset. 

CDM is a general model for dataset, dimensional, and variable attribute instantiation. Many 

TDS services depend on the recognition of dataset feature types (i.e., point, trajectory, station, 

profile, radial, grid, swath, etc.) for optimal operation. NetCDF, which configures metadata in 

compliance with Climate Forecast (CF) conventions, also enables both TDS and DAP2 clients to 

intelligently recognize feature types beyond what the general model would otherwise convey, 

particularly for geo-referencing and projection. 
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4.3 Methodology 
Figure 4.1 presents the overall modeling workflow used as a demonstration case study in the 

study. The figure shows how datasets can be shared through HydroShare with different data 

management and distribution systems underneath. All files in HydroShare are stored in iRODS, 

which is a distributed data storage and management system that also allows for the transfer of large 

datasets (Yi et al., 2018). Public spatial datasets are also replicated into GeoServer and TDS in 

HydroShare. We describe how to retrieve spatial datasets from GeoServer and TDS for supporting 

seamless end-to-end environmental modeling. To do this, we present an example application 

showing how to use LES datasets within RHESSys on CyberGIS-Jupyter for Water platform, 

which is a well-tailored CyberGISX instance to support data-intensive and reproducible research 

in environmental modeling community. Further detail on these steps is provided in the following 

subsections.  

 

Figure 4.1. The workflows to create, share, subset, apply, and evaluate LES datasets for seamless environmental 

modeling workflows 

 

4.3.1 Create and Share Large Spatial Sample Datasets 

4.3.1.1 Collect Spatial Data 

Environmental models often require spatial datasets including digital elevation models 

(DEMs), land cover, and soil maps to generate model inputs (DeVantier & Feldman, 1993). DEMs 

are used to delineate a watershed and extract spatial attributes such as flow direction, slope, aspect, 

and flow accumulation. The land cover is used to calculate surface roughness, evaporation, and 

transpiration according to the different land cover types such as urban, agricultural, and forest 

areas. The soil map is used to calculate water movement through soil including infiltration. 

Currently, there are many web-based spatial data distribution systems that provide spatial data 

from low to high resolution. They provide low resolution data services such as the 90 meter 

resolution Shuttle Radar Topography Mission (SRTM) (https://srtm.csi.cgiar.org) and the Google 

Earth Engine Datasets (https://earthengine.google.com) for various earth science data and analysis. 

National scale data is supported by federal government organizations such as USGS and USDA 
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as mentioned earlier. High resolution data services, most often hosted by particular research 

centers or state government organizations such as Chesapeake Conservancy Conservation 

Innovation Center, provide 1 meter resolution or higher DEM and land cover data. 

Hydrologists most often use 10 or 30 meters resolutions of GeoTIFF data in environmental 

models considering the size of watersheds. For collecting DEM, we tested different data 

distribution interfaces and selected the Geospatial Data Gateway (GDG), which is operated by 

inter-government cooperation between the three service center agencies: Natural Resources 

Conservation (NRCS), Farm Service Agency (FSA), and Rural Development (RD). We selected 

GDG because it distributes data by various selection interfaces including by states, counties, 

bounding box, and custom area of interest. For collecting land cover, we emphasized data 

continuity for various applications such as land cover change. Therefore, we selected MRLC, 

which is a group of federal agencies, because this product provides consistent and reliable land 

cover information from 2001 to 2016 at the national scale. Finally, for collecting soil data, we 

selected GDG. There are three soil datasets in GDG: 1) the National Soil Geographic Database 

(NATSGO), which is a very general soil map of the entire U.S., 2) the State Soil Geographic 

Database (STATSGO), which is less detailed state-wide map, and 3) Soil Survey Geographic 

Database (SSURGO), which is the most detailed county level data. To support watershed modeling 

use cases, we obtained the most detailed soil data from SSURGO. In addition, we collected 

attributes data of SSURGO for environmental models. GeoTIFF datasets have Mukey (Map unit 

key which is the index to link different soil metadata table) values in each cell. Therefore, we 

selected five SSURGO attribute tables that RHESSys required to link with the Mukey in the 

GeoTIFF: 1) mapunit (mukey table), 2) chorizon (horizon table), 3) chtexgrp (horizon texture 

group table), 4) chtextur (horizon texture table), and 5) comp (component table). These tables are 

distributed at the county level though the Web Soil Survey web distributed system, which is linked 

by GDG. Therefore, we downloaded county-level SSURGO metadata for each state and merge 

them into a single SSURGO attribute table that can be joined to the GeoTIFF through the Mukey 

attribute. 

After selecting a source for obtaining the spatial datasets, we next decided the best scale 

(National, State, or Local) for storing the datasets in HydroShare. In making this decision, we 

considered 1) the file size of spatial datasets, 2) the capabilities of GeoServer and TDS at handling 

different sized datasets, and 3) the reusability of applications across different watersheds. 

Ultimately, we decided that aggregating the spatial data at the state-scale would be best for the 

following reasons. First, we considered the feasibility of using national-scale spatial data within 

GeoServer and TDS because this would allow for truly seamless environmental modeling. The 

size of national-scale 30 meter resolution DEM, land cover dataset, and SSURGO dataset at the 

national scale are 44.6GB, 20GB, and 3.7GB, respectively. We were unable to find specific 

guidelines for the maximum size of datasets distributed using GeoServer and TDS. However, in 

our experience if a GeoTIFF is over 5~10 GB, it is difficult to manipulate them on most personal 

computers, therefore while a national-scale dataset may be feasible, it would be difficult to work 

with and maintain. Next, we considered state-scale data aggregations. In this case and using 

Virginia as an example, the DEM is 951MB, land cover is 342MB, and SSURGO is 157MB. At 

this file size, the process of uploading and subsetting the data on GeoServer and TDS went 
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smoothly. If datasets are smaller than state scale, it will be hard to support seamless modeling 

because many watersheds cross county boundaries. Therefore, in this study, we chose state scale 

as the optimal aggregation for distributing LES datasets. Finally, based on this decision, we 

obtained 10 or 30 m DEM and 30 m SSURGO spatial data from GDG. Also, we collected 30 m 

land cover spatial data in 2001, 2003, 2006, 2008, 2011, 2013, and 2016 from MRLC to create 

state scale LES datasets (Figure 4.2). The following subsections describe how these data were 

processed to have a consistent spatial reference system and then uploaded and shared through 

HydroShare.  

 

Figure 4.2. The selection of data distribution systems and spatial data to create LES datasets 

 

4.3.1.2 Create Consistent State-Scale Spatial Datasets 

In this step, we considered the following factors to create consistent state-scale spatial 

datasets for use in GeoServer and TDS: 1) using data types optimal for GeoServer and TDS, 2) 

adopting a consistent coordinate system across all spatial data, 3) applying georeferencing 

transformations to adjust shifted locations in the merged state-scale DEM, and 4) having complete 

and meaningful metadata compatible with HydroShare for each datasets. 

We adopted the GeoTIFF as the spatial data type for LES datasets. GeoTIFF is an OGC 

implementation standard for raster data that is commonly used to store grid-based spatial data with 

geographic metadata that describes the spatial location including spatial extent, coordinate 

reference system, and resolution. Most data providers serve DEM and land cover data as GeoTIFF, 

which is also one of the main data types supported by GeoServer. For SSURGO data, the 

information is typically served at county-scale using a shapefile format with soil attribute 

metadata. We explored merging the county-scale SSURGO shapefiles into a state-scale shapefile 

and serving the data though GeoServer. However, doing so resulted in a large dataset that is 

difficult to manage and feed into environmental models. Fortunately, since Feb 2021, USDA 

NRCS National Soil Survey Center has started to service National scale SSURGO data as a 30 

meter resolution GeoTIFF. In addition, GeoTIFF can store a collection of 2D arrays, so GeoTIFFs 

can be easily transferred into a NetCDF multidimensional array as well. Given that TDS supports 

the NetCDF format, we decided to use GeoTIFF in GeoServer and NetCDF in TDS as the data 

types of distributing replicated copies of the DEM, land cover, and soils spatial datasets at a state-

scale. 

Adopting a consistent coordinate system is important to create a unified LES dataset to 

support environmental modeling. Each dataset was distributed in a different spatial coordinate 
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system. We adopted the UTM geographic coordinate system for consistency at the state-scale. 

Resampling is required when transforming coordinate systems. For resampling of the LES 

datasets, we used a bilinear interpolation resampling method for the DEM because it is continuous 

data and used a nearest neighbor resampling method in land cover and soils data because they are 

categorical data. 

When multiple DEMs are merged into one DEM, there is often overlapping areas at the 

edges of the each original DEMs. These areas made the merged DEM (GeoServer and TDS LES 

DEM) shift about 0.3-1.0m compared to the original raw DEM. If users delineate a watershed 

using the merged LES datasets without recognizing these changes, they will get a different 

watershed compared to using the original data products. Therefore, we needed to apply a 

georeferencing tool in ArcGIS to shift linearly the merged DEM to the original location using 

control points. 

 Figure 4.3 shows the complete workflow using these three steps to create the state-scale 

LES datasets in both GeoTIFF and NetCDF formats. First, the data is projected using the 

appropriate UTM Zone coordinate system for each state. We use a projected coordinate system 

because environmental models use length units such as meter, instead of degrees used in the 

geographic coordinate system. After creating the state-scale merged DEM, we applied the 

georeferencing tool to adjust the locations of the merged DEM to the original location. Land cover 

data are distributed at the national scale; therefore, we extracted state-scale land cover datasets and 

projected the data to the same coordinate system as state-scale DEM. Finally, SSURGO data, 

which is also distributed by the national scale using a USA Contiguous Albers Equal-Area Conic 

USGS version, was clipped to the state-scale and projected to the same coordinate system as the 

DEM and land cover data. 
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Figure 4.3. The workflows to create the state-scale large spatial sample datasets as GeoTIFF and NetCDF format 

 

After creating the state-scale LES datasets, we added metadata directly within the NetCDF 

datasets to share key information in the original information distributed by GDG as a text file. 

There was a lot of metadata in the metadata text file and we selected and added 16 useful pieces 

of information such as data title, bounding coordinates, grid coordinate system name, UTM zone 

number, scale factor at central meridian, and horizontal datum name.  

 

4.3.1.3 Share Datasets in HydroShare 

For this step, we reviewed and used the three tools to share the state-scale LES datasets 

through HydroShare: 1) iRODS (Integrated Rule-Oriented Data System) to transfer large datasets 

(over 1 GB) into HydroShare, 2) OWSLib (https://github.com/geopython/OWSLib) and 3) xarray 

(http://xarray.pydata.org) Python libraries to make the LES datasets interoperable via GeoServer 

and TDS.  

The first step was to upload the datasets into a new HydroShare resource. This step is trivial 

if the size of datasets is under 1 GB as datasets can then directly be upload through the HydroShare 
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user interface. However, for datasets over 1GB, users need to use iRODS for the transfer into 

HydroShare. There are multiple iRODS client including icommands and Cyberduck that can be 

used to upload large datasets into the HydroShare iRODS user space. After uploading the state-

scale LES datasets into the HydroShare resource, datasets were automatically recognized with the 

proper aggregation type of geographic raster (GeoTIFF) or multidimensional contents (NetCDF). 

The content type metadata, such as title, keywords, spatial/temporal coverage, and spatial 

reference, and variable metadata, were automatically extracted by HydroShare as part of the upload 

process. When the HydorShare resource is made public, it automatically makes the spatial datasets 

available through GeoServer and TDS.  

After the LES datasets are available on HydroShare and through the linked GeoServer and 

TDS access points, users can easily discover and programmatically interact with the LES datasets 

from GeoServer and TDS using the newly created HydroShare resource ID. In the GeoServer, 

users can use OWSLib to request subsets of data from GeoServer. In TDS, users can use xarray to 

subset particular data of interest. Then users can convert NetCDF output from TDS into GeoTIFF 

using the rioxarray (https://github.com/corteva/rioxarray) package for using the data as input to 

environmental models that expect GeoTIFF raster inputs. 
 

4.3.2 Example Application for an Environmental Model Use Case 

We used an example application to demonstrate the data service and how it supports 

seamless, end-to-end environmental modeling workflows. Figure 4.4 shows the workflow steps 

from seamlessly applying state scale LES datasets as model input for environmental modeling 

using the DEM, extracted land cover and soil texture maps after creating model inputs. We also 

used streamflow outputs from the environmental model as part of the evaluation of data 

consistency between the LES datasets compared to raw datasets provided by federal data 

providers. We used RHESSys (Tague & Band, 2004b) as the example model. RHESSys is a GIS-

based, hydro-ecological modeling framework designed to simulate carbon, water, and nutrient 

fluxes. The newly developed pyRHESSys (https://github.com/uva-hydroinformatics/pyRHESSys) 

is an API for RHESSys providing programmatic control of model input creation and manipulation, 

model execution, and model output visualization and analysis.  

We compared three approaches for accessing the spatial data required to parameterize the 

RHESSys model. 1) The original spatial data provided by federal agencies, 2) the data processed 

and distributed through GeoServer in the GeoTIFF format, and 3) the same data processed and 

distributed through TDS in a NetCDF format. We compared the watershed DEM, extracted land 

cover, and SSURGO data to evaluate data consistency across the three approaches. Then, after 

executing RHESSys using data from these three approaches as input, we compared streamflow 

outputs to evaluate the effect of the three data access approaches on model output. 
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Figure 4.4. Workflows for seamless RHESSys modeling and evaluation of data consistency using LES datasets 

 

4.4 Results 
In this section, we present results from the example application where the methodology is 

applied for three different watersheds for end-to-end modeling using RHESSys. We present the 

resulting workflows as Jupyter notebooks that show how to create and subset state-scale LES 

datasets based on Figure 4.1 in the methodology section. Finally, we present results from the 

evaluation methodology described in Figure 4.4 that aims to measure data consistency across three 

approaches for distributing spatial data and how each method impacts the results of an end-to-end 

RHESSys model run. 

 

4.4.1 Example Watersheds 

The three watersheds used in this study are 1) Coweeta subbasin18, NC (A=0.126 km2, 

resolution: 10m), 2) Scotts Level Branch, MD (A=8.36 km2, resolution: 30m), 3) Spout Run, VA 

(A=55.42 km2, resolution: 60m). The Coweeta Long Term Ecological Research (LTER) station 

has been measuring hydrologic and ecologic variables from 1980 to 2020, and subbasin 18 is a 

forest-dominated Coweeta subbasin with moderate topographic relief that is often used in 

hydrologic studies. Scotts Level Branch is located near Baltimore Maryland and has a USGS 

streamflow observation station (USGS 01589290) and represents an agricultural watershed. Spout 

Run is located in Northern Virginia and has a USGS streamflow observation station (USGS 

01636316). In addition, there is a neighboring site that is a part of the National Science 
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Foundation’s National Ecological Observatory Network (NEON). Using these three different sized 

watersheds, we evaluate the applicability of the LES dataset distribution method as part of an end-

to-end modeling workflow.  

 

Figure 4.5 Three different scale watersheds to evaluate data consistency in different resolutions using state scale 

LES datasets: 1) Coweeta subbasin18, NC (A=0.126 km2, resolution: 10m), 2) Scotts Level Branch, MD (A=8.36 

km2, resolution: 30m), 3) Spout Run, VA (A=55.42 km2, resolution: 60m) 

4.4.2 Creating the State-Scale LES Datasets 

We created a Jupyter notebook for each state to automate the data processing workflow 

required to create the LES datasets (Choi., 2021) (HS 17). “HS number” used to distinguish each 

HS resource in the collection HS resource that includes 18 HS resources lists (Choi., 2021) and 18 

HS resources are explained in Data availability section. In these workflows, GIS processing was 

done first to merge, extract and project GeoTIFF data was the most important process. For this 

process, we used ArcPy which is a python package to perform geographic data analysis, data 

conversion, and data management in ArcGIS (Toms, 2015). After creating state scale LES datasets 

in GeoTIFF format, we converted GeoTIFF to NetCDF using xarray and rioxarray Python 

packages. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is 

rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster 

formats. We used xarray to manipulate data type and add metadata in NetCDF file and rioxarray 
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to save GeoTIFF to NetCDF format. Through these procedures, we created three composite 

HydroShare resources to share state scale LES datasets (Choi., 2021) (HS 2-4). 

The automated workflows consist of three parts (DEM, land cover, and SSURGO) as we 

mentioned in Figure 4.3 in subsection 4.3. In this section, we demonstrated an example to create 

Virginia LES DEM as a GeoTIFF format (Figure 4.6). Before starting this procedure, we created 

Arcpy Conda virtual environments from ArcGIS Pro 2.1. Then we created Jupyter notebooks to 

capture these automated workflows (Figure 4.6). We imported required libraries such as Arcpy, 

xarray, and numpy. Then, after collecting 30m resolution DEM from GDG, we unified the multiple 

projected coordinate systems of the original DEMs into one projected coordinate system using 

ProjectRaster_management module in Arcpy. In the case of Virginia, DEM has UTM Zone 17N 

and 18N projected coordinate system, so we unified them to UTM Zone 17N. After that, we 

merged each DEM into one state scale DEM as GeoTIFF format using 

MosaicToNewRaster_management module in Arcpy. After that, we read the created Virginia 

GeoTIFF file and created xarray data format using rasterio Python library. Then we added 

metadata of original DEM, such as spatial domain, UTM detail information, and geodetic model 

information, into NetCDF. Finally, we saved a xarray format data to NetCDF. Following similar 

procedures, we created state scale LES land cover and SSURGO using this Jupyter notebook. Due 

to the limitation of ArcGIS Pro license which is a commercial GIS software, we developed these 

Jupyter notebooks in the Windows OS. Therefore, researchers cannot use these notebooks in 

CyberGIS Jupyter for Water. To create state scale LES datasets to different states, researchers can 

create state scale LES datasets using these Jupyter notebooks. 
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Figure 4.6. An automated workflow to create Virginia LES DEM as a GeoTIFF and NetCDF format 

Using these automated workflows, we created GeoTIFF and NetCDF LES datasets for the 

DEM, land cover, and SSURGO in North Carolina, Maryland, and Virginia. In this study, 

considering drainage areas of Coweeta Subbasin18 and the evaluation of higher resolution data 

consistency, we created 10 m resolution DEM as GeoTIFF in North Carolina. However, we could 

not create NetCDF LES datasets due to memory limitation in both a local computer and CyberGIS 

Jupyter for water. In Maryland and Virginia, we created 30 m resolution LES DEM in GeoTIFF 

format. We applied 30 m resolution DEM to Scotts Level Branch as an example for general 

resolution application. Considering drainage areas of Spout Run and the evaluation of lower 
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resolution data consistency, we resampled 30 m to 60 m resolution DEM. Land cover from MLRC 

and SSURO from GDG only have 30 meter resolution GeoTIFF; therefore, we created 30 m 

resolution land cover and SSURGO state scale LES datasets. After creating GeoTIFF LES datasets 

for DEM, land cover, and SSURGO, we converted them to NetCDF LES datasets. Since NetCDF 

is easy to create time or variable stacked NetCDF in the same domain using dimension and 

coordinate structures, we created a stacked land cover NetCDF LES dataset using seven GeoTIFF 

LES datasets from 2011 to 2016. 

Table 4.1 shows the file sizes and resolutions of GeoTIFF and NetCDF LES datasets in the 

three states. In general, the original LES datasets which is not the compressed file are very big to 

control. To minimize the file sizes, we used a compressed format of GeoTIFF and NetCDF. We 

used a LZW compression algorithm (Akoguz et al., 2016) for GeoTIFF in ArcGIS. The nccopy 

tool, which is a command-line utility to compress NetCDF files, supports to specify the level of 

compression (level 0-9, a high value supports high compression and requires more time) for 

variable data in NetCDF. We used the level 1 compression command “nccop –d1 input.nc 

output.nc” to create compressed NetCDF. For example, the original size of Virginia GeoTIFF 

DEM (30m) was 1.53 GB, and the compressed size was 0.95 GB. The original size of Virginia 

NetCDF DEM (30m) was 1.60 GB and the compressed size was 0.78 GB. Therefore, for the 

convenience of creating and transferring data according to the file size, we recommend using the 

compressed format. In the case of North Carolina GeoTIFF DEM (10m), the file size was 5.66 GB 

which is very big; however, there was no problem to create GeoTIFF DEM. Yet converting 

GeoTIFF to NetCDF LES datasets had a problem of memory limitation in both the local computer 

and CyberGIS Jupyter for water, we could not create NetCDF LES datasets. To create, upload and 

interoperate large datasets, the capacity of local computer and server is important. However, it is 

difficult to give an exact guideline for the size of large datasets. Especially, the server of GeoServer 

and TDS requires a significant amount of testing considering how many and what size of transfers 

are occurring simultaneously using various combinations. Therefore, based on these experiences, 

we recommend using 1~2 GB for the size of large datasets on GeoServer and TDS in HydroShare.   

Table 4.1. Compressed file sizes and resolutions of GeoTIFF and NetCDF in the three states 

States 
DEM Land Cover (7 Years) SSURGO 

GeoTIFF NetCDF GeoTIFF NetCDF GeoTIFF NetCDF 

North Carolina 
File Size 

(MB) 

5,659 - 257 304 112 80 

Maryland 358 294 134 165 52 44 

Virginia 951 783 342 422 157 121 

North Carolina 
Resolution 

(m) 

10 - 30 30 30 30 

Maryland 30 30 30 30 30 30 

Virginia 60 60 30 30 30 30 
 

 

4.4.3 Subset State Scale Large Spatial Sample Datasets 

After creating three states’ LES datasets and sharing them on the HydroShare GeoServer 

and TDS, we subsetted these datasets to collect spatial model input in specific watersheds for 

RHESSys preprocessing. In Figures 4.7 and 4.8, we presented Scotts Level Branch, MD to 
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demonstrate how to subset LES datasets on GeoServer and TDS in HydroShare. This subsetting 

procedure is shared with RHESSys workflow notebooks in HydroShare (Choi., 2021) (HS 5-13). 

  

4.4.3.1 Subset LES Datasets from GeoServer 

We used OWSLib to subset GeoTIFF DEM from GeoServer using the Jupyter notebook in 

CyberGIS-Jupyter for Water. Figure 4.7 shows the procedure to subset from the Maryland LES 

Datasets (GeoTIFF) from GeoSever in HydroShare, as an example. First, we imported the required 

Python libraries to use WCS service in GeoServer. Second, we requested GeoTIFF as an object 

using a WebCoverageService module in OWSLib. Then we subsetted certain areas using a 

getCoverage method with a bounding box. Finally, we saved the subsetted object to GeoTIFF 

format. 

 

Figure 4.7. Example of subsetting LES Datasets (GeoTIFF) from GeoServer using OWSLib 

 

4.4.3.2 Subset Large Spatial Sample Datasets from TDS 

This procedure to subset land cover LES Datasets in TDS (NetCDF) is simpler than the 

procedure for subsetting in GeoTIFF because users can access directly TDS using xarray. 

Therefore, users can easily create xarray array format (xarray.DataArray) using a xarray 

open_dataset module. Then users can subset the land cover data in the Scotts Level Branch 

watershed for the year 2006 using slicing range for x and y coordinate and years (Figure 4.8). 

Finally, users can convert xarray data array to GeoTIFF format using the rioxarry library. 
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Figure 4.8. Example of subsetting LES Datasets (NetCDF) from TDS using xarray 

 

4.4.4 Evaluation of Data Consistency 

In this section, we created RHESSys input from state-scale LES datasets and executed 

RHESSys using an end-to-end RHESSys Jupyter notebook (Choi., 2021) (HS 5-13) to evaluate 

the data consistency in three different watersheds with different spatial data resolutions: 10, 30, 

and 60 m. In these procedures, we created nine case studies using three different datasets (Original 

data, GeoServer, and TDS) and three watersheds (Coweeta subbasin18, Scotts Level Branch, and 

Spout Run). For evaluation of the original datasets, the spatial datasets were manually collected to 

represent the traditional approach, we created three model instance resources for each watershed 

in HydroShare (Choi., 2021) (HS 14-16). We then presented the evaluation results of data 

consistency in three different watersheds using Jupyter notebooks (Choi., 2021) (HS 18). For 

evaluation, we used difference maps between original data and LES datasets (GeoServer and TDS) 

for model inputs (watershed DEMs, extracted land covers, and SSURGO maps) (Figure 4.9-4.12) 

and regression plots for model outputs (RHESSys streamflow outputs) (Figure 4.13-4.16). 

 

4.4.4.1 Evaluation of Spatial Model Input 

 Results of the data consistency analysis where RHESSys ouputs were compared before and 

after applying georeferencing to the LES datasets. As we explained earlier, when we create LES 

datasets, the application of appropriate coordinate systems and the georeferencing tool is 

important. Researchers often consider the appropriate coordinate systems because improper 

coordinate systems can cause errors. However, if researchers do not apply the georeferencing steps 

described in this paper, in some cases, environmental models can be executed without any errors 

depending on the watershed. In other cases, the shape of delineated watershed is changed, so users 

can recognize the problem. In the first cases, users can not reproduce the same results if there is a 

prior study. However, if users do not have the prior result, they may think the LES datasets are the 

same as the original data. They set up the models and tune the model parameters. Therefore, 

Figures 4.9, 4.10, and 4.11 demonstrate how much with or without the application of 

georeferencing affects spatial model input between original data (HydroShare) and LES datasets 

(GeoServer or TDS).    
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Figure 4.9 shows the differences in the DEM elevation between the original data 

(HydroShare) and the LES datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18 (10 m), NC, 

(b) Scott Level Branch (30 m), MD, and (c) Spout Run (60 m), VA before applying georeferencing. 

Coweeta Subbasin18 (Figure 4.9 (a)) is forest dominant watershed and others are urban 

watersheds. Therefore, Coweeta Subbasin18 shows the biggest elevation differences compared to 

other two watersheds. In addition, the cell values (elevation) of the raw DEM are float data type, 

thus the values of most cells are changed by resampling and merging multiple DEMs, it is not 

meaningful to present the ratio of changed DEM cells. We present the ratio of land cover and soil 

maps because these used land cover classification code and soil texture code as discrete integer 

values. 

 

Figure 4.9. Difference maps of DEM elevation between original data (HydroShare) and LES datasets (GeoServer or 

TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before applying 

georeferencing 

Figure 4.10 shows the differences of extracted land cover classification code between 

original data (HydroShare) and LES datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18, 

NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before applying georeferencing. The original 

land covers were extracted from national scale land cover maps, therefore, theoretically, the value 

of original data and LES data in the same location are the same. However, in the model 

preprocessing, watershed DEMs are used to extract land cover and soil maps. So watershed DEMs 

affect the difference of land cover classification codes. In Figure 4.10, the red color indicates a 

negative difference (= original cell values – GeoServer cell values) and the blue color indicates a 

positive difference (= original cell values – TDS cell values). Figure 4.10 (a), Figure 4.10 (b), and 

Figure 4.10 (c) show 4.2%, 9.1%, and 9.4% (= the count of the changed cells/the count of the total 

cells) of land cover were changed by creating LES datasets and RHESSys preprocessing. 
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Figure 4.10. Difference maps of extracted Land Cover classification code between original data  and LES datasets 

(GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, before 

applying georeferencing 

Figure 4.11 shows the differences of extracted SSURGO soil texture between the original 

data and the LES datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level 

Branch, MD, (c) Spout Run, VA before applying georeferencing. The reason for the difference in 

the land cover is the same as the DEM data discussed earlier. Figure 4.11 (a), Figure 4.11 (b), and 

Figure 4.11 (c) show 18.0%, 4.9%, and 5.3% (= the count of the changed cells/the count of the 

total cells) of soil maps were changed by creating LES datasets and RHESSys preprocessing. 

 

Figure 4.11. Difference maps of extracted SSURGO soil texture between original data (HydroShare) and LES 

datasets (GeoServer or TDS) at (a) Coweeta Subbbasin18, NC, (b) Scott Level Branch, MD, (c) Spout Run, VA, 

before applying georeferencing 

Figure 4.12 shows the differences of (a) the watershed DEM elevation, extracted Land 

Cover classification code, and extracted SSURGO soil texture at Coweeta Subbbasin18, NC, (b)  

the watershed DEM elevation, extracted Land Cover classification code, and extracted SSURGO 

soil textures at Scott Level Branch, MD, (c) the watershed DEM elevation between original data 

(HydroShare) and LES datasets (GeoServer or TDS) after applying georeferencing. From the 

recognition of differences between the original data and LES datasets (GeoServer or TDS), we 

applied a georeferencing tool in ArcGIS. In general, georeferenced method use at least three points 
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to transform a raster or shapefile; however, resampling and merging multiple GeoTiff files only 

changed the cell values and shifted the cell location without distortion Therefore, we only used 

one control point to shift linearly the merged DEM to the original location. As a result, we can 

eliminate the DEM differences except for the DEM of Spout Run (60 m resolution) because 

Coweeta Subbasin 18 (30 m resolution) and Scott Level Branch (30 m resolution) have the same 

DEM resolution as the original DEM and LES DEM. However, in the case of Spout Run (60 m 

resolution), we resampled the 30 m to 60 m resolution to evaluate the applicability of large 

resolution. Therefore, every difference map of the DEMs, land cover, and soil in Coweeta 

Subbasin18 and Scott Level Branch is the same.  

Coweeta subbasin18 and Scott Level Branch used the same resolution of DEM as the 

original data. However, Spout Run resampled the original DEM (30 m) to 60 m resolution to 

evaluate the applicability of different resolutions for the large watershed. This is the reason why 

there are still slight differences between original data (HydroShare) and LES datasets (GeoServer 

or TDS). However, the range of difference in elevation is below 5 cm.  

 

Figure 4.12. Difference maps of (a) DEM elevation (in meters), extracted Land Cover classification code, and 

extracted SSURGO soil texture at Coweeta Subbbasin18, NC, (b) DEM elevation, extracted Land Cover 

classification code, and extracted SSURGO soil texture at Scott Level Branch, MD, (c) DEM between the original 

data (HydroShare) and LES datasets (GeoServer or TDS), after applying georeferencing 

 

4.4.4.2 Evaluation of Model Output 

Figures 4.13-4.16 show three regression analyses, each comparing two RHESSys outputs 

from the three different data input approaches: original, GeoServer, and TDS. The results are 

provided for the three watersheds: Coweeta subbasin18 in North Carolina, Scott Level Branch in 

Maryland, and Spout Run in Virginia. At first, to emphasize the importance of georeferencing, we 

presented Figure 4.13 to explain the performance results of RHESSys outputs without appling the 

georeferencing tool (Original vs GeoServer: NSE 0.684, Original vs TDS: NSE 0.647). As 

explained earlier, after applying the georeferencing tool we significantly improved the results and 

the RHESSys outputs from the original data compared to the LES data. Figure 4.14 (a) and Figure 

4.14 (b) showed perfect agreement (Original vs GeoServer: NSE 1.0, Original vs TDS: NSE 1.0). 

Also, Figures 4.15 and 4.16 showed perfect agreement after applying the georeferencing tool. As 
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result, the application of georeferencing is important for data consistency so that spatial data input 

results in the expected modeled streamflow output.  

   

Figure 4.13. Three regression analyses, each comparing two RHESSys outputs out of the three different 

approaches: (a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Coweeta subbasin18 in 

North Carolina, before applying georeferencing 

 

Figure 4.14 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches: 

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Coweeta subbasin18 in North Carolina, 

after applying georeferencing 

 

Figure 4.15 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches: 

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Scotts Level Branch in Maryland, after 

applying georeferencing 
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Figure 4.16 Three regression analyses, each comparing two RHESSys outputs out of the three different approaches: 

(a) original vs GeoServer, (b) original vs TDS, and (c) Geoserver vs TDS at Spout Run in Virginia, after applying 

georeferencing 

 

 

4.5 Discussion 
This research focuses on integrating HydroShare with GeoServer and TDS for exposing LES 

datasets to environmental models for open and reproducible seamless environmental modeling. 

This approach improved limitations of previous spatial data sharing for hydrologic research. 

However, there are still limitations to use various types of geographic datasets. We mainly used 

GeoTIFF format with GeoServer, though shapefile is also a popular geographic format to share 

spatial data. However, subsetting the SSURGO shapefile requires more memory because it is very 

complicated to support the heterogenous details of soil attributes in a shapefile format, unlike grid-

based geographic data. Therefore, to effectively use state-scale LES datasets in the future, 

additional approaches or capabilities to leverage shapefiles with attributes (dbf table) that are well 

suited for environmental modeling and that require a similar amount of memory as grids would be 

valuable. 

In this study, we used state-scale as the spatial unit for distributing LES datasets. However, 

other spatial aggregations may also be used. For example, for hydrology applications alone the 

Hydrologic Unit Code (HUC) (Seaber et al., 1987) may make more sense than administrative maps 

such as states. The advantage for using states as the spatial unit is current federal web-based 

distribution systems easily provide the data with this aggregation, but it requires minimal 

processing to prepare the data for GeoServer and TDS distribution. However, the general methods 

of the approach are agnostic to the specific spatial aggregation unit used. Therefore, if researchers 

want to set up datasets for inter-state boundary watersheds, they can follow the same steps for 

creating and sharing the datasets presented in this study.  

In the introduction we compared our approach to two other approaches for supporting 

seamless environmental modeling in the literature: EcoHydroLib and HydroTerre. A third 

approach that is important to consider is the Google Earth Engine (GEE) (Gorelick et al., 2017). 

GEE is a cloud-based platform for planetary-scale geospatial analysis supporting such applications 

as climate change, disease, environmental protection, and water management. Over  450 journal 

articles published in 150 journals have used GEE datasets (L. Kumar & Mutanga, 2018), and the 

datasets available through GEE are continuously updated at a rate of nearly 6000 scenes per day 

(Gorelick et al., 2017). However, while GEE does allow users to upload their own data, datasets 
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like SSURGO are not natively included in GEE. More importantly, it is valuable to have an open 

and fully transparent alternative to GEE to support scientific modeling where users have control 

over the spatial data used as model input and the data can be easily shared with appropriate 

metadata from HydroShare. 

In addition, containerizing proprietary software such as ArcPy, which is part of ArcGIS, is 

an issue for reproducibility because not everyone may have access to this software. In this study, 

we used ArcPy to create the LES datasets. ArcPy currently only supports Windows operating 

system, owever Docker Containers on Windows is experimental and only available on Window 

Server 2019. This said, it is possible to containerize proprietary software like ArcPy that operate 

only on Windows operating systems. Thus, if we can install the proprietary software with 

containerization tools in the same operating system and if there is no problem to recognize the 

license for the software, it is possible to containerize proprietary software. The issue remains as to 

access to the software license so that anyone, and not only those with access to the software, can 

reproduce the work.  

The availability of data to support environmental modeling is increasing rapidly and the 

replication of this data across data distribution systems can present problems. For one, there may 

be issues of copyright for some data because these data represent important intellectual property 

(Abubahia & Cocea, 2017). Even if data can be freely used and copied, like the data used in this 

study, it will become increasingly difficult to understand if verified data are being used to support 

a study. In this study, we had to manipulate the raw data provided by the federal agencies in order 

to give the data a consistent and accurate spatial coordinate system. For reproducibility, it is 

important to document these changes and associate the procedure for making the changes with the 

new data product. As a result, geographic data ownership and provenance are important concepts 

(Licens. Geogr. Data Serv., 2004). In the broader technology landscape, similar challenges are 

being addressed through blockchain technology where a distributed digital ledger can be used to 

track changes to a digital object. Related to blockchain technology, the concept of Non-Fungible 

Tokens (NFTs) (Farnaghi & Mansourian, 2020; Franke et al., 2020) where digital objects are 

uniquely identified within the blockchain could prove valuable for identifying digital objects used 

in environmental modeling (e.g., both data and processing scripts) and tracking the provenance of 

these objects in a consistent, globally assessable, and secure way. Therefore, an extension of this 

work would be to consider spatial datasets as NFTs with ownership and provenance, thereby 

adding blockchain to the existing HydroShare data management capabilities, to clarify the specific 

attributes and provenance of the growing number of raw and processed datasets required in 

reproducible, open environmental modeling.   

  

4.6 Conclusions   
Spatial data is an important component for open and reproducible seamless environmental 

modeling. Recently, there have been many efforts to improve the use of spatial data as model 

input. HydroShare provides a means for easily sharing datasets including spatial datasets. It also 

provides the ability to expose spatial data stored in HydroShare through APIs for programmatic 

data access within environmental modeling. Currently, HydroShare provides the capability for 
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spatial datasets to be distributed using GeoServer and TDS, which each can be accessed using 

APIs. However, these capabilities have been underutilized to data, serving mainly data 

visualization use cases. This research demonstrates how these capabilities can be used to support 

seamless, end-to-end environmental modeling workflows.  

Therefore, the primary contribution of this research is methodologies for integrating 

HydroShare with GeoServer and TDS for exposing LES datasets to models for open and 

reproducible seamless environmental modeling. We demonstrate how to create, share and subset 

large datasets as input to environmental model, thereby advancing the concept of seamless 

modeling where model inputs can be constructed using end-to-end workflows driven using 

common base datasets. Through three different watershed applications in three different states at 

three different spatial scales, we show the applicability of methodologies. We show, using the 

RHESSys model for each watershed, that no significant error is introduced when using the new 

data distribution system compared to traditional approaches. We offer discussion on ways the 

proposed approach can be further advanced by, for example, using other spatial aggregation of 

large data, beyond the state-scale aggregation used in this paper. Finally, we offer discussion on 

the challenge of data tracking and provenance, especially across systems and in the context of 

environmental modeling where data from multiple sources is needed and each dataset requires 

extensive preprocessing. We suggest that blockchain technology and the concept of NFTs could 

offer assistances to this problem by identifying universally unique digital assets in data processing 

and modeling workflows common in environmental modeling. Using these novel technologies 

could offer a way to improve reproducibility in complex digital workflows where the management 

of data and provenance tracking across various data providers and processing steps remains a 

challenge in achieving the vision of open science. 

Beyond sharing large, national-scale datasets maintained by federal agencies, the methods 

used in this work can also be deployed by individual scientists. Current data sharing through online 

repositories allows for data publication at the file level, which is an important step toward 

reproducibility. The proposed approach builds on this step to show how technologies like 

GeoServer and TDS, when integrated with an online repository, provides a means for scientists to 

create and share file-based scientific data in a way that provides programmatic access, without the 

need to deploy their own web-based data distribution systems. Scientists can easily share, update, 

and extend their data through such systems, including HydroShare as demonstrated in this 

research, to support reproducibility and replicability through robust API-based access to their data. 

Creating and sharing datasets online using this approach offer a powerful means for scientists to 

achieve FAIR guiding principles including reusability of data for multiple applications in different 

case studies and interoperability for programmatic access to multiple data collections using a 

consistent access protocol.  

 

Data Availability 

All data used in this study are available through eighteen HydroShare resources. We 

published all data with persistent digital object identifiers (DOI’s) on HydroShare and shared all 
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data in a collection resource in HydroShare (Choi., 2021). This collection resource provides the 

links for all HydroShare resources as “Collection Contents.” Eighteen HydroShare resources 

consist of the following: one collection resource (HS 1), three composite resources for three state 

scale LES datasets (HS 2-4), nine composite resources with Jupyter notebooks for three different 

approaches and three different watersheds (HS 5-13), three model instance resources for RHESSys 

input of the original approaches in three different watersheds (HS 14-16), one composite resource 

with Jupyter notebooks for automate workflows to create LES datasets (HS 17), and one composite 

resource with Jupyter notebooks for evaluation of data consistency (HS 18). 

 

 

List of Relevant URLs 

Chesapeake Conservancy conservation innovation center:  

                                       https://www.chesapeakeconservancy.org/conservation-innovation-center 

Creating Python Conda virtual environment (arcpy) in ArcGIS Pro:  

    https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/work-with-python-environments.htm 

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org 

CyberGIS-Jupyter for water: http://go.illinois.edu/cybergis-jupyter-water 

CyberDuck: https://cyberduck.io 

Cyberduck application: https://help.hydroshare.org/creating-and-managing-resources/accessing-

hydroshare-irods-from-a-windows-pc-or-mac 

icommands: https://help.hydroshare.org/creating-and-managing-resources/accessing-hydroshare-

irods-from-linux 

MRLC (Multi-Resolution Land Characteristics Consortium): https://www.mrlc.gov 

National scale SSURGO 30 meter resolution GeoTIFF data:   

                                                                     https://nrcs.app.box.com/v/soils/folder/132131296196 

nccopy: https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Nccopy.html 

OGC implementation standard: http://docs.opengeospatial.org/is/19-008r4/19-008r4.html 

OWSLib: https://github.com/geopython/OWSLib 

pyRHESSys: https://github.com/uva-hydroinformatics/pyRHESSys 

rioxarray: https://github.com/corteva/rioxarray 

SSUGRO Mukey Grids (GeoTIFF): https://nrcs.app.box.com/v/soils/folder/132131296196 
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USDA NRCS Geospatial Data Gateway: https://datagateway.nrcs.usda.gov 

USGS 3D Elevation Program (3DEP): https://www.usgs.gov/core-science-systems/ngp/3dep 

Web Soil Survey web distributed system:  

                                                  https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 

xarray: http://xarray.pydata.org
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Chapter 5 

5 Conclusions 

 

 This dissertation presents research that advances approaches for improving openness, 

reproducibility, and replicability in computational environmental modeling. These approaches can 

supplement the current reproducibility research that individually focuses on sharing online data, 

containerizing computational environments, and encapsulating computational workflows. In 

addition, each advanced approach for each component (computational environments and modeling 

workflows) can strengthen reproducibility for computational environmental modeling. The 

contributions are 1) the development of an approach for integrating online data repositories, 

computational environments, and model APIs to enable more open and reproducible 

environmental modeling, 2) suggestion of best practices and guidance for which approach is most 

appropriate to achieve modeling objectives, specifically for simulating environmental systems, and 

3) the integration of HydroShare with server-side methods (GeoServer and TDS) using large-

extent spatial datasets for open and reproducible seamless environmental modeling. 

 

 This research also highlights the selection and integration of key components for 

reproducibility in computational environmental modeling. Chapter 2 presents an example 

implementation of this approach by leveraging 1) HydroShare as a data sharing repository, 2) 

CUAHSI JupyterHub and CyberGIS Jupyter for water as a notebook-based, containerized, and 

cloud-based computational environment, and 3) pySUMMA as an example model API able to 

abstract lower-level details for model configuration, execution, and visualization from end users. 

Using the example implementation, I demonstrate how modeling analyses can be completed in a 

more open and reproducible way using a prior study presenting a series of modeling experiments 

applying SUMMA at the Reynolds Mountain East Area in the Reynolds Creek Experimental 

Watershed in Idaho, USA (Clark et al., 2015b). As part of the research, I created a prototype 

version of pySUMMA, which is a Python based model API for manipulating, executing, and 

analyzing the SUMMA hydrological model. 

 

 The research in this dissertation also presents best practices and guidance to reproduce 

computational environments for achieving various modeling objectives. In Chapter 3, the example 

application was evaluated using 1) HydroShare as an online repository, 2) SUMMA as the core 

software and other secondary software, and 3) pySUMMA and Jupyter notebooks for a model API 

and workflows. These example results show that each method had its own strengths and 

weaknesses from the developer and user’s perspectives. With regard to educational purposes, the 

best methods for online education were using CUAHSI JupyterHub, CyberGIS Jupyter for Water, 

and Binder (Approaches 6, 7, and 10) and the best method for offline education was using Sciunit 

(Approach 5). With regard to research purposes, the only method for model development was 
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compiling the core model software (Approach 1), the best methods for model application were 

containrizing the core model software only with Docker and using CUAHSI JupyterHub 

(Approaches 2 and 6), and the best methods for data-intensive computing were using CyberGIS 

Jupyter for Water and a HPC cluster (Approaches 7 and 11).  

 

 Finally, the research in this dissertation advances methods for the preprocessing of data to 

serve as input to environmental modeling. This was done by integrating HydroShare with 

GeoServer and TDS for exposing LES datasets to models for seamless environmental modeling. 

Chapter 4 presented three example watersheds were this method was evaluated: 1) Coweeta 

subbasin18, NC, 2) Scotts Level Branch, MD, and 3) Spout Run, VA. The results show data 

consistency in RHESSys model input and output after running the RHESSys end-to-end modeling 

workflows. This approach can save significant time to collect, clean, and apply large-extent spatial 

data for environmental models. Finally, this approach can inspire scientists to share their data 

without the need to deploy their own web-based data distribution system.  

 

 Although this dissertation focuses on the computational environmental modeling, it could 

be applied to broader areas of computational research to enhance reproducibility and replicability. 

For example, the integration of three key components (i.e., online repositories, computational 

environments, and model APIs) will be helpful for reproducibility in computational geospatial 

science, bioinformatics, and many other research areas. Researchers can use best practices and 

guidance for containerization of scientific modeling workflows from the second study for other 

computational research in addition to environmental modeling. Lastly, integrating 

cyberinfrastructures with server-side methods for exposing large datasets for various analyses can 

be helpful for researchers in other fields as well. In particular, these approaches can be a specific 

guidance for achieving FAIRer guiding principles in open science. Lastly, the hope of this research 

is for these approaches to aid in fostering a “culture of reproducibility” within scientific 

communities that rely on computational research to advancement of science.
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Appendix 

Appendix-1 Total scores of complexity (Table A.1-7), size of reproducible artifacts (Table 

A.8-12), and reproduced figures (Figure A.1 and A.2) 

  

Table A.1. An example of reproducible approach for Approach-1: Compiling Model Software 

Developer Work  User Work 

Steps 
Level of  

Difficulty 
Scores  Steps 

Level of  

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA  16  1.Reproduce SUMMA 7 

1.1 Create SUMMA Makefile Difficult 10  1.1 Download Source Code and Makefile Easy 1 

1.2 Compile and Create Binary Executable Medium 5  1.2 Edit Makefile Medium 5 

1.3 Share Source Code and Makefile Easy 1  1.3 Compile and Create Binary Executable Easy 1 

2. Create a Reproducible Approach for pySUMMA 6  2. Reproduce pySUMMA and Modeling Workflows  2 

2.1 Create pySUMMA environment.yml  Medium 5  2.1 Download Jupyter Notebooks Easy 1 

2.2 Share Source Code and environment.yml Easy 1  2.2 Open and Run Jupyter Notebooks 

- Install pySUMMA 

- Download SUMMA input 

- Execute SUMMA 

 

 

Easy 

 

 

 

 

 

1 

 

 

 

 

 

3.Create a Reproducible Approach of Modeling Workflows 12  

3.1 Create Jupyter Notebooks Difficult 10  

3.2 Share Jupyter Notebooks Easy 1  

3.3 Share SUMMA Input Easy 1  

       

Total Score 34  Total Score 9 

 

Table A.2. An example of reproducible approach for Approach 3: Containerizing All Software 

with Docker 

Developer Work  User Work 

Steps 
Level of  

Difficulty 
Scores  Steps 

Level of  

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA, 

pySUMMA, and Modeling Workflows  
23  

1.Reproduce SUMMA, pySUMMA, and Modeling 

Workflows 
3 

1.1 Create Jupyter Notebooks Difficult 10  1.1 Install Docker Easy 1 

1.2 Create SUMMA and pySUMMA 

Dockerfile 
Difficult 10  1.2 Download and Run Docker Image Easy 1 

1.3 Create SUMMA and pySUMMA Docker 

Image 
Easy 1  

1.3 Open and Run Jupyter Notebooks 

- Download SUMMA Input 

- Execute SUMMA 

Easy 

 

 

1 

 

 

1.4 Share SUMMA and pySUMMA Docker 

Image 
Easy 1  

1.5 Share SUMMA Input Easy 1  

       

Total Score 23  Total Score 3 
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Table A.3. An example of reproducible approach for Approach-4: Using Singularity 

Developer Work  User Work 

Steps 
Level of 

Difficulty 
Scores  Steps 

Level of 

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA, 

pySUMMA, and Modeling Workflows  
13 

 1.Reproduce SUMMA, pySUMMA, and Modeling 

Workflows 
5 

 

1.1 Create SUMMA and pySUMMA 

Definition file 
Difficult 10 

 1.1 Install Singularity Easy 1 

 1.2 Install Anaconda and Jupyter Easy 1 

1.2 Create SUMMA and pySUMMA 

Singularity Image 
Easy 1  1.3 Download Jupyter Notebooks Easy 1 

1.3 Create Jupyter Kernel file Easy 1  1.4 Create Jupyter Kernel Easy 1 

1.4 Upload SUMMA and pySUMMA 

Singularity image on HPC 
Easy 1  

1.5 Open and Run Jupyter Notebooks 

- Download Singularity image 

- Create Jupyter Kernel 

- Download SUMMA input 

- Execute SUMMA 

 

 

Easy 

 

 

 

 

 

 

1 

 

 

 

 

 

 

2.Create a Reproducible Approach of Modeling Workflows 12  

2.1 Create Jupyter Notebooks Difficult 10  

2.2 Share Jupyter Notebooks Easy 1  

2.3 Share SUMMA Input Easy 1  

       

Total Score 25  Total Score 5 

 

Table A.4. An example of reproducible approach for Approach-5, 8 and 9: Using Sciunit 

Developer Work  User Work 

Steps 
Level of 

Difficulty 
Scores  Steps 

Level of 

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA, 

pySUMMA, and Modeling Workflows  
17  

1.Reproduce SUMMA, pySUMMA, and Modeling 

Workflows 
2 

1.1 Create Python or Shell Script to Execute 

SUMMA 
Difficult 10  

1.2 Create Jupyter Notebook to encapsulate 

Sciunit Workflow 
Medium 5  

1.1 Download Sciunit Container and Jupyter 

Notebooks 
Easy 1 

1.3 Create SUMMA Sciunit Container Easy 1  1.2 Open and Run Jupyter Notebooks 

- Install Sciunit 

- Execute Sciunit 

Easy 

 

 

1 

 

 
1.4 Share SUMMA Sciunit Container and 

Jupyter Notebooks 
Easy 1  

       

Total Score 17  Total Score 2 
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Table A.5. An example of reproducible approach for Approach-6 and 7: Using CJH and CJW 

Developer Work  User Work 

Steps 
Level of 

Difficulty 
Scores  Steps 

Level of 

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA and 

pySUMMA 
18  

1.Reproduce Modeling Workflows 2 
1.1 Git Clone CJH or CJW Dockerfile 

Repository 
Easy 1  

1.2 Create Dockerfile for SUMMA and 

pySUMMA 
Difficult 10  1.1 Log in CJH or CJW Easy 1 

1.3 Pull Request to add Dockerfile into CJH 

or CJW 
Easy 1  

1.2 Open and Run Jupyter Notebooks 

- Download SUMMA input 

- Execute SUMMA 

 

 

* To use XSEDE from CJW, we need  

additional work 

 - Create Singularity image to upload into 

XSEDE 

 - Create Python code to interact between CJW 

and XSEDE for SUMMA modeling 

 

 

Easy 

 

 

 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

 

 

 

1.4 Review Dockerfile by CJH or CJW 

Development Team 
Medium 5  

1.5 Share the SUMMA and pySUMMA 

Docker image on CJH or CJW 
Easy 1 

 

 

2.Create a Reproducible Approach of Modeling Workflows 12  

2.1 Create Jupyter Notebooks Difficult 10  

2.2 Share Jupyter Notebooks Easy 1  

2.3 Share SUMMA Input Easy 1  

       

Total Score 30  Total Score 2 

 

Table A.6. An example of reproducible approach for Approach 10: Using Binder  

Developer Work  User Work 

Steps 
Level of 

Difficulty 
Scores  Steps 

Level of 

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA, 

pySUMMA, and Modeling Workflows  
24  

1.Reproduce SUMMA, pySUMMA, and Modeling 

Workflows 
2 

1.1 Create SUMMA and pySUMMA 

Configuration file for Binder 
Difficult 10  

1.2 Create Jupyter Notebooks Difficult 10  1.1 Click Binder Link Easy 1 

1.3 Share SUMMA and pySUMMA 

Configuration file and Jupyter Notebooks on 

Online Repositories 

Easy 1  1.2 Open and Run Jupyter Notebooks 

- Download SUMMA input 

- Execute SUMMA 
 

 

 

Easy 

 

 

 

 

 

1 

 

 

 

 

 

1.4 Create Binder for SUMMA and 

pySUMMA 
Easy 1  

1.5 Share Binder Link Easy 1  

1.6 Share SUMMA input Easy 1  

       

Total Score 24  Total Score 2 
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Table A.7. An example of reproducible approach for Approach 11: Using a HPC Cluster 

Developer Work  User Work 

Steps 
Level of 

Difficulty 
Scores  Steps 

Level of 

Difficulty 
Scores 

1. Create a Reproducible Approach for SUMMA, 

pySUMMA, and Modeling Workflows  
13 

 1.Reproduce SUMMA, pySUMMA, and Modeling 

Workflows 
4 

 

1.1 Create SUMMA and pySUMMA 

Definition file 
Difficult 10  1.1 Log in HPC Easy 1 

1.2 Create SUMMA and pySUMMA 

Singularity Image 
Easy 1  1.2 Download Jupyter Notebooks Easy 1 

1.3 Create Jupyter Kernel file Easy 1  1.3 Create Jupyter Kernel Easy 1 

1.4 Upload SUMMA and pySUMMA 

Singularity image on HPC 
Easy 1  

1.4 Open and Run Jupyter Notebooks 

- Download Singularity image 

- Create Jupyter Kernel 

- Download SUMMA input 

- Execute SUMMA 
* Don’t need to install Singularity in HPC because 

generally Singularity is preconfigured. 

Easy 

 

 

 

 

 

 

1 

 

 

 

 

 

 

2. Create a Reproducible Approach of Modeling Workflows 12  

2.1 Create Jupyter Notebooks Difficult 10  

2.2 Share Jupyter Notebooks Easy 1  

2.3 Share SUMMA Input Easy 1  

       

Total Score 25  Total Score 4 

 

Table A.8. The size of reproducible artifacts for Approach-1: Compiling Model Software 

Dependencies Size (MB) 

Ubuntu 8,870 

Anaconda 6,382 

SUMMA 28 

pySUMMA 3,169 

Subtotal (w/o Ubuntu) 9,578 

Total 18,448 

 

 

Table A.9. The size of reproducible artifacts for Approach 2: Containerizing Model Software 

only with Docker 

Dependencies Size (MB) 

Ubuntu 8,870 

Anaconda 6,382 

Docker tool 386 

Docker image (SUMMA) 615 

pySUMMA 3,169 

Subtotal (w/o Ubuntu) 10,551 

Total 19,421 
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Table A.10. The size of reproducible artifacts for Approach 3: Containerizing All Software with 

Docker 

Dependencies Size (MB) 

Ubuntu 8,870 

Docker tool 386 

Docker image (SUMMA, Anaconda, pySUMMA) 5,770 

Subtotal (w/o Ubuntu) 6,156 

Total 15,026 

 

Table A.11. The size of reproducible artifacts for Approach-4: Using Singularity 

Dependencies Size (MB) 

Ubuntu 8,870 

Singularity tool 1,005 

Singularity image (SUMMA, Anaconda, pySUMMA) 2,900 

Subtotal (w/o Ubuntu) 3,905 

Total 12,775 

 

Table A.12. The size of reproducible artifacts for Approach-5, 8 and 9: Using Sciunit 

Dependencies Size (MB) 

Ubuntu 8,870 

Sciunit tool 6 

Sciunit image (SUMMA, Anaconda, pySUMMA) 306 

Subtotal (w/o Ubuntu) 312 

Total 9,182 
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Figure A.1 Reproduced and additional figures of figure 7 and 8 from Clark et al. (2015b) showing the 

impact of the three different stomatal resistance parameterizations on total evapotranspiration based on 

Scenario 1 and 2 

https://www.sciencedirect.com/science/article/pii/S1364815220309452#fig7
https://www.sciencedirect.com/science/article/pii/S1364815220309452#bib15


Appendix 

103 

 

 

 

 

Figure A.2 Reproduced and additional figures of figure 9 from Clark et al. (2015b) showing the impact of 

the different lateral flux parameterizations on simulations of runoff based on Scenario 3 and 4 

 

 

 


