Wearable Assistive Technology: A Hat for the Visually Impaired

A Technical Report submitted to the Department of Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia * Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Gabriel Morales
Fall, 2021.
Technical Project Team Members
Mary DeSimone
LaDawna McEnhimer

Hafsah Shamsie

On my honor as a University Student, | have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Harry Powell, Department of Electrical and Computer Engineering

Table In The Back + 1 — Visual Assistant
Hat

Mary DeSimone, LaDawna McEnhimer, Gabriel Morales, and Hafsah Shamsie

12/17/2021
Capstone Design ECE 4440 / ECE4991

Signatures

Page 1

Statement of work:

Mary DeSimone

My primary role was co-handling the assembly of the hat with Hafsah and handling the
construction and angling of the sensors to ensure proper readings. This involved sewing
components, such as all sensors, motors, and piezo buzzers onto the hat. Additionally, a lot of
assembly testing was performed to test the functionality of the device, including full system tests
and motor and piezo buzzer tests. | also focused on testing the hat with the user in mind by
ensuring the everyday functionality of the hat in terms of user comfort. Hafsah and | also
codesigned the selection and calculations of the power system, in which I most specifically
focused on the energy consumption of the various components in our design.

Additionally, when the boards arrived, | took them to WWW Electronics Inc. (3W) to
have the components soldered on, and handled communication with them for the various
problems that arose. After receiving the boards back, | soldered on additional test points and
extended the wires from the motors, sensors, buzzers, battery wires, and button. Finally, |
assisted LaDawna in the construction of the button task.

LaDawna McEnhimer

My primary role in the project was programming pulse-width modulation (PWM)
interrupts for the piezo buzzers and vibration motors. In the first stages of the project, | designed
the preliminary expected layout of the hat, with considerations to anticipated risks, the user
experience, and space constraints. These specifications informed the possible battery sizes and
weights, as well as the type of hat required to have enough space to mount the sensors and house
the microcontroller unit (MCU) and battery. | also helped write the hardware test plan and
execute the software test plans.

Following the layout design, | programmed the piezo buzzers and vibration motors to
trigger using PWM interrupts through the driver library, and later using timer interrupts and
toggling the pins to reduce the number of interrupts occurring. | also co-created the button task
with Mary. | helped manage the GitHub repository and worked closely with Ricky to integrate
the code and later debug issues that arose within the entire codebase, including the PWM
interrupts, pin toggling, the finite state machine (FSM) timing, and inter-Integrated Circuit (1°C)
and universal asynchronous receiver-transmitter (UART) protocols. | helped with experimental
testing to determine required distance thresholds, sensor positioning, and debug the code.

Gabriel Morales

My main focus for this project was the computer-aided design (CAD) of the circuits,
printed circuit board (PCB), and getting communication working between the ultrasonic and
light detection and ranging (LiDAR) sensors. In the first part of the project, | researched
candidates for our sensors and MCU launchpad selection. After finding the correct LIDAR and
ultrasonic sensors, | chose an MSP430 that would have all the correct number of modules (1°C
and UART) to communicate with each sensor. While my team researched for an adequate power

Page 2

source, | designed the circuitry and PCB that would mount onto our MSP430FR2433 to provide
power to our sensors and allow communication between them [1]. Following the design, I also
tested the PCB with my teammates to ensure the correct voltages were created by our regulators,
metal oxide semiconductor field effect transistors (MOSFET), and that the correct connections
were made to our mixed signal processor (MSP) pins.

Following the hardware testing, | took the lead on programming the 1°C and UART
communications to send and receive data from our sensors. Once these communication protocols
were working, | collaborated with LaDawna on getting our task scheduler operating and timing
the communication with the other tasks such as PWM for our piezo buzzers and outputs for our
vibrating motors. Additionally, | made modifications to our wiring on the PCB or to our sensors
whenever we encountered issues mounting our PCB to the MSP. Lastly, | partnered with
LaDawna to modify and debug the code while adjusting the parameters for the entire system to
work.

Hafsah Shamsie

My primary role in the project was the physical construction of the hat, which was done
jointly with Mary. This involved making modifications to the hat to improve user experience and
comfort while wearing the hat, proper placing and mounting of the various components,
including all sensors, buzzers, motors, battery, PCB and microcontroller. In addition to this, |
worked a great deal on assembly testing in order to ensure that the alignment and angle of all
sensors was accurate, and all the components fit comfortably on the user’s head. Additionally,
the utility of the hat was tested by continuously trying on the hat throughout development. My
other main role in the project was the overall power system design, which was also done jointly
with Mary. | more closely focused on candidate chips and batteries for our PCB.

As a secondary role, | assisted Ricky with the development of the 1°C communication
protocol in order to setup data transfer between the microcontroller and LiDAR sensors through
peer programming efforts. This involved searching through existing documentation on 1C
protocol and its specific implementation on our microcontroller as well as assisting with
debugging errors with the code as they arose.

Page 3

Table of Contents

Contents
Capstone Design ECE 4440 / ECE4991 ..o 1
SIGNALUIES. ...ttt sttt se e s bt et e ese e s b e e be e s tesbeebeeneeebe e beenbeeneenbeeneenreenreentens 1
SEAEMENT OF WOTK: ...ttt sr e nteenaesreesteente s 2
TaDIE OF CONENTS ...ttt bbbttt nbesbe st b nre s 4
TADIE OF FIGUIES ...ttt ettt ettt e e s b e e teese e s beebeeseesteeneeneenreenten 6
AADSTIACT ...ttt ettt bbb eres 7
2T (0 (01U 4o SRS 7
CONSETAINTSveeveette ettt ettt e et esbe et e es e ste e teaseesseeteeseeeseenbeaneeaseenseannesreenseeneens 8
DESIGN CONSIIAINTS ...ttt b ettt bbb bbb 8
Economic and COSt CONSLIAINTSeiuveiiiiieieiie e eie ettt sreeeesreesreanee s 10
ENVIronmental IMPACT.........c.ooiiiiieieicee et 10
SUSTAINADITITY ... 11
Health and SAfEtYccoiiiiiie e 11
EXEErNal STANCAIASocveiveieiiieiciee e ettt ene s 12
L0 To] S =1 o] [0 /=T HS SRS 12
Ethical, Social, and ECONOMIC CONCEIMSeoiiiiviiie ittt e e baen e e 13
Intellectual Property ISSUEScouiiiieieieierie e 14
Detailed Technical DesCription Of PrOJECL.........ccoiiiiiiiiiiiieiee e 15
HAIAWATE ...ttt e st e e e st e s teesteeseesteenteaseesseeseenneenneanenas 16
10 11177 -SSR 19
o P ANt 01 o] Y USSP 23
PrOJECE TIME LLINE ..ottt sttt e et e et e e sre e et e e s beeenneesaeeanes 24
LIS o - U OO RRRRR TR 26
HAIAWATE ...ttt s e bt et b e b e et neesbe et e nreenbeanee s 26
10 11177 -SSR 28
LEIDAR 7 T2C .ottt ettt st e st s et ettt ettt et et et et et et et et et ereens 29
UIFASONIC / UART ..t bbb bbbttt bbb 30
PWIM ...ttt bRtk bRt R bt e Rt bt Ee et neere et 32
HAE ASSEMDIY ... ettt et sbe e e r e nbe et 33

A RESUILS. ... et e e oo ettt e e e e e e e e et e e e e e e e aeeeeeeeeens 34

LiDAR and Ultrasonic Sensor FUNCHIONAIILYccccoeiieiiiiiiie e 35
DC Vibrating Motor FUNCHONAIILYc.ooviiiiiciec e 36
Piez0 BUZZer FUNCLIONAIITYoviiiiiiieieee e 36
POWET SOUICE @N0 PCB ...ttt be et enneenns 36
RUDBIIC SUMMAIY ..o 37
(G0] KT TR O P PP PRPOPRTPP 37
FUBUIE WOTK ...ttt bbbt et ettt nbenbenbenre s 38
R BT ENICES ... ettt bbbt bbb R n bbb benreene s 39
AN o] 0100 3 OSSO USSSOSI 41
APPENTIX A ettt et et e e re et e areente et e e e e nae e reareenreereas 41
APPENAIX B ..ttt 43
APPENAIX C bbbttt bbb bbbttt bbb n e 64
APPENAIX D ettt 65

Page 5

Table of Figures

Figure 1: Image of Hat with Sensors and Buttons Attached..............ccocevvriiinieieienesc e 16
Figure 2: Hierarchical SChematiC OVEIVIBW............cccoiiiiiiiiiieieriesic e 17
Figure 3: TFmMIni-S LIDAR Power Cycling CIrCUILccoiiiiiiiieieiesesesee e 18
FIQUIE 42 BUTTON CIICUITcuiiiieiiecteste ittt bbbt 18
FIQUIE 5 PCB ..t b bttt b e bbbttt ettt b e 19
Figure 6: Original Gantt Chart.............cooiiiiiie e 25
Figure 7: Actual Gantt Chart...........cooiiiiiieee e 25
Figure 8: Tasks Divided Amongst Team MEMDENSccccviiiieiieiiieiese e 26
Figure 9: Hardware TSt PIANcooouiiiiiiciec ettt sre e 27
Figure 10: 3.3V Voltage Regulator QULPUL............cciieiiiieiicie e 27
Figure 11: 5V Voltage Regulator OUIPUL..........ccooiiiiiiicc e 28
Figure 12: SOftWare TSt PlAN.........cc.ciiiii et 29
Figure 13: 1°C Command and Read from LIDARccccoveiivieeeeeeeeeee e en s 30
Figure 14: UART Transmission VErifiCationcccccveiiiieiiiic i 30
Figure 15: UART Receive VEerifiCatioN..........ccoiiiiiiiiicc e 31
Figure 16: Broken UART_AO0 RX Pin (orange) compared to working UART_A1 RX Pin (red) 31
Figure 17: Output Difference Between the Broken P1.5 (RX pin) and a Working Pin 32
Figure 18: PWM Interrupts Varied Duty CYCle TeSt.......c.ccvveiieiiiiiieiiee e 33
Figure 19: Inside Hat With PCB CaSiNg........cccciiiiiiiieiiiie e ste e sre e sne s sre e 37
Figure 20: UIrasoniC SCNEMALIC.ciiiiiieieieiie it 41
Figure 21: Voltage Regulator SChEMALIC.........c.coviiiiiiiiiiiiee e 42
Figure 22: MOTOr SCREMALICoveieiitiiieiieeeee et 42
Figure 23: BUZZEI SCNEMALICcveiviiiitiiieiieie et 43
Figure 24: 12°C Command t0 LIDARc.ccoeiiveieeeieieeeteeeees e 64
Figure 25: 12C Read from LIDAR..........cccoooiueiiieeeieeeeieseeee e esae st 64

Page 6

Abstract

This project is focused on creating a hat that provides tactile and auditory feedback to
blind and visually impaired individuals based on obstruction detection. This was done by
embedding LiDAR sensors into the hat and connecting them to a central MSP430FR2433 board
to process current surroundings. The device will gather information regarding a user’s
surroundings from the front, sides, back, and any incline changes. Then, using the information
provided by the LIDAR sensors, vibrating direct current (DC) motors can be programmed to
vibrate whenever their respective sensor detects an object and increases the vibration frequency
as the object gets closer to the individual. Additionally, small piezo buzzers will be mounted to
the side of the cap and connected to the MCU to provide auditory feedback for users who may
prefer to have auditory feedback. Lastly, the cap will have a sensor that provides feedback
whenever the user is approaching steps or some type of change in surface elevation.

Background

Visual impairment, including blindness or simply any form of vision degradation, is an
extremely widespread issue. According to the Centers for Disease Control and Prevention
(CDC), in 2015 1.02 million people were blind and about 3.22 million people had some sort of
vision impairment in the United States. However, by 2050, it is projected for both numbers to
double to roughly 2.1 million and 6.95 million respectively as the population of the elderly
increases [2]. Additionally, a total of 16.4 million other Americans are anticipated to face issues
with seeing due to other degenerative eye diseases by this time [3]. Vision loss or impairment is
considered a major disability and it hinders the impacted population’s ability to carry out daily
life tasks, more notably tasks involving ambulation [4]. This project’s goal is to address the issue
of assisting the visually impaired with obstacle avoidance and wayfinding when it comes to
ambulatory-related tasks in their daily lives.

The design of sensor-based object detection systems for the visually impaired,
particularly electronic travel aids (ETA’s), devices that gather information about a user’s
surroundings through sensors, sonar, or lasers, then relay this information back to the user is not
a completely novel idea [5]. One notable device is the development of the GuideCane at the
University of Michigan. This technology mimics the typical blind cane, but instead is equipped
with ultrasonic sensors, servo motors, and wheels. As the cane detects obstructions in the user’s
path it uses the motors and wheels to guide the user in a path to avoid the obstruction [6].
Similarly, to the GuideCane is the Smart Cane, which also functions like typical blind canes, but
it uses ultrasonic sensors to detect obstacles and uses speakers to relay notifications to the user.
For user’s who may be auditorily impaired, the device makes use of special gloves that provide
different types of tactile feedback on each finger, each signifying a different message [7].
Another device is the Eye Substitution, which makes use of an MSP430 microcontroller and
ultrasonic sensors to create a hand-held obstacle detecting device. Another similar prototype is
the Path Force Feedback Belt, which uses video cameras placed around one’s waist to build 3D
images of the user’s surroundings [5]. Finally, one similar commercially available product is the
iGlasses Ultrasonic Mobility Aid, which use ultrasonic sensors and gentle vibrations, with
increasing frequencies as objects get nearer [8].

Although many existing devices currently exist, many of them have notable flaws. Both
the described cane devices and the iGlasses do not give the user any feedback on obstacles that
may be on either of their sides or coming up from behind. The Path Force Feedback Belt
attempts to give the user an idea of their surroundings from all sides, but the use of video
cameras results in the detection range for this system being too small [5]. The canes and the Eye
Substitution devices additionally require the user to always hold them in the correct orientation.

Page 7

Thus, the Eye Substitution device is not ideal as it is hand-mounted, and this may interfere with
other tasks. Regarding the GuideCane specifically, the fact the cane utilizes wheels poses a
greater threat to the user’s stability, especially when walking in an unfamiliar path. In terms of
the Smart Cane, the audio feedback is given too far from the user’s ear, as it comes from the cane
itself, which leads to the risk of the user potentially not hearing the warnings. Further, the use of
relaying a different vibration to each finger to specify different messages is overly complex and
may lead to confusion and issues with the user discerning the difference between each vibration.
Finally, the iGlasses also face the issue of not being able to detect drop-offs or inclines in paths

9.

Our project ultimately aimed to mitigate all these issues by creating a lightweight device
the user can place on their head and not worry about holding. Our design provides the user with a
fuller picture and awareness of their surroundings by monitoring obstructions from the user’s
side or behind. The combined use of LIDAR and ultrasonic sensors help create a more effective
and powerful obstacle detection system, as opposed to the use of video cameras or simply
ultrasonic sensors alone. Furthermore, the auditory and tactile feedback is straightforward to
comprehend and is administered near the ear, rather than right next to it or in it, to relay the
messages to the user in a way that will ensure they hear the message, without blocking out
sounds of their surroundings [10].

The project made use of a variety of our previous coursework completed throughout our
degrees. In order to program all software features, such as the task scheduler, communication
protocols, button tasks, motor tasks, and buzzer tasks, which were primarily handled by Ricky
and LaDawna, extensive knowledge of embedded programming and general computer
architecture was required. All team members had gained this experience through the embedded
course series (ECE 3501-3052) and were able to apply these skills in this domain. Furthermore,
Ricky, whose primary focus was developing the UART and 12C communication protocols
between the sensors and microcontroller, had also had previous extensive embedded
programming experience through work experience. Additionally, Mary and Hafsah completed
the advanced embedded course this past semester (ECE 4501), which proved helpful when it
came to understanding scheduling conflicts sues in the software.

In terms of power design, Hafsah and Mary made much use of the power concepts
learned in the Fundamentals of Electrical and Computer Engineering I11. Concepts that were
taken from this class involved voltage regulator designs and applications as well as power
consumption. For the CAD work, which was primarily done in the form of PCB design, Ricky
relied heavily on the Fundamentals of Electrical and Computer Engineering course series (ECE
2630, ECE 2660, and ECE 3750). All team members gained experience with PCB design
through all these classes. However, since the purpose of the PCB was to relay the proper power
supplies to power all the sensors and associated hardware on the hat, Ricky made the most use of
ECE 3750 and ECE 2660, particularly in the application of MOSFET use within an integrated
circuit.

Constraints

Design Constraints
Since the Table in the Back +1 consisted entirely of computer engineers, the initial
project constraints implemented by the Capstone program included an embedded central

Page 8

processing unit (CPU), an interface to a device we had not used previously, and a component
with industrial quality interconnects such as a PCB.

CPU limitations

The Texas Instruments MSP430FR2433 microcontroller [1] was chosen as the embedded
CPU based on the required 1°C and UART modules required to communicate with each sensor. It
is also compact enough to fit in the hat, while still having enough pins to run the required
devices. A limitation of this CPU includes the inability to change the priority of the interrupts.
The sensor protocols have a fixed lower priority relative to the timer interrupts, which introduced
complications with the synchronous nature of 1°C communications.

Component Limitations

In choosing components within our budget, there were functionality tradeoffs. A
limitation in the processing power of the CPU made it impossible to generate words through
speakers, which is why piezo buzzers were chosen instead. This required sound-based warnings
to be generated by a series of tones that could be interpreted ambiguously. Furthermore,
experimentation showed that the LiDAR sensors being used are incapable of detecting glass
obstructions. The ultrasonic sensors cannot detect objects from a distance as far away as the
LiDAR sensors can. The ultrasonic sensors detect obstacles within a certain range of distance
while the LIDAR sensors rely on pinpoint accuracy and can only detect objects directly in their
path. Ultrasonic sensors generate interference with one another when they overlap, and as such it
was necessary to position them opposite one another [11].

Software Availability

PCB board design was completed using National Instruments’ Multisim [12] and
Ultiboard [13], with access facilitated by the University of Virginia’s (UVA) licenses. National
Instruments’ Virtual Bench [14] software was used to test code and generate power to the MSP
for testing. Code Composer Studio [15] was freely available and used for writing the embedded
code.

Manufacturing Limitations

The critical materials needed to complete our project include LiDAR sensors, ultrasonic
sensors, piezo buzzers, vibration motors, batteries, PCB, and waterproof casings. All were
available from Digi-Key or Mouser. Based on possible interference between sensors of the same
type, the usage and positioning of the ultrasonic and LiDAR sensors were not interchangeable. A
hat to mount the components on was purchased from Amazon.

Outside of the critical components of the board, supply chain issues required searching
for alternate components suitable to our PCB design. Most notably the chosen P-Channel surface
mount MOSFETSs had an unanticipated on resistance that prevented the gate voltage from going
high enough to trigger the LiDAR sensors to turn on. Suitable MOSFETS were not in stock, so
power cycling was not possible. The small sizing of the vibration motor wire leads to
complications in crimping and connecting the wires to the housings and required expert

Page 9

assistance from 3W. Following construction, manually connecting and disconnecting these wires
frequently led to the crimps loosening and breaking off within their housings and required repair
and replacement. Additionally, the current PCB design is intended for a 40-pin MSP. The
MSP430FR2433 only requires a 10-pin connector, and it was necessary to block off half of the
available pins on the PCB header pins when connecting to the MSP [1].

Economic and Cost Constraints

The project budget was $500 per team, which mandated compromises in part selection.
The largest expense to this project is the combined price of the sensors that need to be acquired
because of their specialized purposes. The costs associated with the PCB, including the costs of
printing the PCB, part acquisition, and populating the board, were our next highest individual
cost. The goal would be to keep the costs as low as possible to reduce sale price and economic
inequalities between users as products that improve quality of life should be widely available.
Based on the market cost of approximately $100 held by the iGlasses Ultrasonic Mobility Aid
[8], our initial price will be higher than other similar products. However, with scale it would be
possible to lower our price and remain competitive.

Environmental Impact

When designing this product, it is important to keep in mind the environmental impact
created by electrically powered devices. The primary environmental concerns come from the
device’s battery, and disposing of the electronics built into the sensors, piezo buzzers, and
vibration motors. Rechargeable batteries are the primary power source of the device in order to
extend its lifespan. Compared to standard batteries, these have a reduced impact on air and water
pollution, as well as overall global warming; however, recycling these batteries can still have a
negative impact on the battery. In cases where the energy being held is not fully depleted
recycling these batteries can have a greater negative impact on the environment, especially when
improperly disposed of [16]. Assuming proper disposal, further impact to the environment will
be dependent upon the methods used to recycle the batteries, with the greatest reduction in
impact caused by using low-temperature processes to maximize the amount of plastic recovered.
Other cases such as using hydrometallurgical processes in recycling can lead to accelerated
global warming, while simply throwing the batteries in the trash can result in higher levels of
toxicity [17]. Overall, there are many tradeoffs that must be made when dealing with batteries,
some of which will be offset by the use of rechargeable batteries.

Although it was difficult to find specific information about the individual electronic
components, there is information about the general recycling of electronic components. Overall,
the components were chosen for their functionality and durability, in the hopes that their small
size and lack of moving pieces makes them less prone to being damaged and needing
replacement. As a product with several parts, there is the risk of users being tempted to throw the
entire device into the trash for convenience. This would be highly dangerous, as the electronic
components would eventually begin to leak and release toxins into the environment. If the device
is properly recycled, there is the potential for the recovery of some of the valuable and finite raw
materials contained in the electronic materials. However, depending on the process being used to
recycle these components there is the potential for the release of dangerous chemicals into the

Page 10

environment, such as the emission of methane, which is known to damage the ozone, increasing

the perils of global warming [18]. There is also risk to those charged with recycling the materials
in their exposure to these toxins, particularly in less developed countries without stringent safety
standards [19].

Sustainability

This device is made primarily from parts purchased from Digi-Key and Mouser. As
these suppliers are well-established and there are no current discontinuation warnings on the
parts selected, we expect them to be available in the future. However, with current supply chain
issues as a result of the pandemic, this is subject to change. Alternative parts are available
though, as many of the parts selected can be easily substituted. As wearable technology, there is
a risk of rough use and dropping the device. As such, we attained components with fewer
delicate parts. Additionally, the most critical parts for continued functionality of the product such
as the PCB are going to be located within waterproof casings required by National Electrical
Manufacturers Association (NEMA) standards, increasing the safety and longevity of the device
[20].

We used a rechargeable power source for our product to extend the lifecycle of our
device. For this reason, we want the battery to be easily accessible. The prototype requires the
removal of the battery to charge using external alligator clips. As such, the current design allows
for easy access to both the battery, MSP, and PCB board as they are all located in a contiguous
space in the hat. However, it is most likely that damage would occur to the sensors or motors,
which are currently sewn into the hat design. Extended use of the motors running at a high
frequency can cause them to grow warm, and risk burning out. Future iterations would ideally
have components that would be more easily interchangeable and wires that are significantly
more durable, increasing repairability of the device. Based on the battery currently being used
and without the implementation of power cycling for the LiDAR sensors, we expect the device to
reliably last approximately six hours per use based on an experimental test. It takes
approximately four hours to recharge the battery. The next iteration of the device would include
MOSFETSs capable of performing power cycling, and so the device would last longer and easily
reach our predicted battery life of eight hours.

Health and Safety

As the intention of our project is to help someone overcome physical impairment,
reliability of information and availability of the product are a priority. Any failure of the device
could create a dangerous experience, especially if the failure is not immediately obvious and the
user becomes unaware regarding their surroundings. Additionally, it can be bad for your eyes to
have a lidar sensor pointed directly into them. As such, it will be necessary to acquire sensors
rated using the IEC 602825-1 standard Class 1M, which is safe for the human eye. [21]

Other identified safety risks include a learning curve for identifying the exact location of
the motor generating vibrations, as all are located on the same elastic band. As testing continued,
differentiation between motors became easier, making this an obstacle more feasible to
overcome by the user rather than redesign of layout. Other discovered safety risks include that
LiDAR is incapable of detecting clear obstacles such as those made of glass. This is mitigated

Page 11

slightly by the ultrasonic sensor’s capability to detect glass, as it relies on sound-based rather
than light-based obstacle detection. Finally, we were unable to acquire a chip that allows
incorporation of low battery notifications to our device, which introduces a significant safety risk
of the battery dying without warning while in use. As the user is fundamentally dependent on our
device for safety, future iterations would have to incorporate this warning and reduce risk of
failure. The possibility of the user angling the device correctly was also an initial concern.
However, the weight of the battery making specific orientations more convenient and the usage
of an elastic band to keep the hat secured on the head mitigates this issue.

External Standards

1.

IPC Standard for Electrical Safety - These define the standards [22] for PCBs, with the
part and track spacings defined as IPC-2221A and the solder mask, plating, material, and
board edges of an acceptable PCB listed in IPC-A-600F. For reasons listed in ‘Health and
Safety,” our PCB must adhere to the class 3 standard where continuous functionality is
critical, and these standards were incorporated into the PCB design.

NEMA Standards for Mechanical Casings — These standards [20] are defined for exposed
electrical components. The electrical components of our project are at risk of
encountering fabric, skin, or water. This requires the casing to meet a Type 4
weatherproof rating to protect against dirt, dust, and inclement weather.

IEC Laser Standards - These standards [21] are defined for devices including lasers, such
as the LiDAR sensors used in our device. This project adheres to the IEC 602825-1
standard with a Class 1M rating to be safe for the human eye assuming non-prolonged
exposure and was considered in selection and placement of LiDAR sensors.

Embedded C Coding Standard - The Michael Barr Embedded C Coding Standard [23]
defines programming standards intended to reduce bugs in code, including guidelines for
comments, whitespace, data types, procedures, variables, and statements. These were
considered throughout writing the code and used to facilitate shared programming
responsibilities and reducing bugs in code.

Inter-Integrated Circuit (1>C) Communications Protocol — The 12C communication
protocol is used for synchronous communication between a master driver and slave
peripheral device. This is the interface required to communicate with the LiDAR sensors,
and best practices were implemented in the configuration of these sensors.

Universal Asynchronous Reciever-Trasmitter (UART) - The UART protocol is used for
asynchronous communication between a transmitting and receiving device and is
required to power the ultrasonic sensors, and best practices were implemented in the
configuration of these sensors. The standard baud rate used is 9600 bits/second (?) for
both sending and receiving data.

Tools Employed

In order to complete this project, a multitude of design, testing and programming tools

were used. They are described below in their respective sections.

Hardware

Page 12

In terms of tools needed to develop the hardware of the project, Multisim [12] and
Ultiboard [13] were used. Multisim was used to design the schematics and overall circuitry
layout of the project, while Ultiboard was used to place items onto the PCB. While there was
previous knowledge on how to use both Multisim and Ultiboard from previous classes, a lot of
new tools needed to be learned and improved upon to be able to place the selected parts onto our
PCB board.

Firmware

The firmware for this project was produced in C using Texas Instruments’ integrated
development environment, Code Composer Studio [15]. To test and develop the firmware, the
existing library MSP430 driverlib were used [24]. To ensure the code was loaded onto our
MSP430FR2433 [1] the Texas Instruments’ Debugger [15] for MSP430 were used. For initial
testing of the sensors, the Arduino integrated development environment was used, including the
driver libraries provided by Arduino off of GitHub, from budryerson[30]. With the Arduino IDE,
this was a new tool that had not been utilized before, so coding with Arduino was a new skill that
needed to be learned. Finally, GitHub was used to share code between the members of the team,
as the whole code base was handled through it [25].

Demonstration

To test that the PCB and sensors were reading correctly, the National Instruments Virtual
Bench was used [14]. The multimeter functionality of the Virtual Bench was used for continuity
checks and voltage tests. Additionally, the ammeter functionality was used, as well as the
function generator and digital logic analyzer for signal processing. While this is a skill that had
already been learned through prior coursework, some improvement needed to be made to fully
test the board and sensors.

Ethical, Social, and Economic Concerns
Ethical Concerns

There are several ethical concerns that arise from our project. The first of which is that
this device would be utilized by people with visual impairments, and this could pose a threat to
their health and wellbeing if not used correctly. Due to the placement of the sensors, if the hat is
not worn at the correct angle (i.e. tilted too far upward or downward), this could affect the
accuracy of the sensors and not provide the responses that are needed. If this is the sole device in
use for detecting obstructions, if any of the sensors fail to read correctly this could put
individuals in danger. Additionally, if the reusable battery dies prematurely, then a user could be
left with zero information regarding their surroundings, and they would be unable to detect any
obstructions. This is obviously a huge ethical concern, as we would hope that this product would
be safe for everyone to use and put their trust into.

Social Concerns

While there are no concerns about privacy or security with this device because it stores
no information about the user and could not be hacked into or altered, however there are social
concerns prior to it being manufacturable. First, the product was never tested with someone who

Page 13

was visually impaired and/or auditorily impaired. With that, the hat was also not fully tested for
people with varying head sizes or hair types, which limits our ability to be confident that it would
work for everyone. Further, the current angle of the sensors introduces the risk that a shorter
person would not be detected by the sensors, with the exception of the forward-facing direction
that has the added benefit of the incline sensor. Finally, our hat design could not be everyone’s
style, so there are limitations in the fashion options.

Economic Concerns

Due to the costs of the sensors, MSP430 board, and other economic cost factors that went
into the production of this device, it would not be a very cheap product to purchase. Therefore,
there may be some economic disadvantages that come with this product. Those that are unable to
provide the costs to cover supplies and manual labor that went into the production of this device
would not be able to utilize it.

Intellectual Property Issues

The hand-held navigation aid described in [26] consists of “a processing unit, a
surrounding data collection unit, a front data collection unit”. The patent gets into more specifics
about each of the three units described above, breaking down each part. It details how the data
collection unit will consist of plurality of sensors will provide data to the microcontroller, where
the “metal tip 303 are process and take necessary action, such as blinking led signal light, red led
strobe light 107 etc.” [26] In addition to this, the battery used to power the microcontroller will
be rechargeable via solar power. This product and the project created by our team are similar in
that they both aim to allow blind or visually impaired individuals independence and the ability to
“walk, jog or even run without help of any second person” [26] however the Visually Assistive
Hat differs in that it is a hands-free device rather than having to constantly hold something.
Additionally, the Smart Sensor Cane does not have motors to provide feedback and offers no
feedback on obstructions from behind. Therefore, this patent would not get in the way of the
patentability of our system.

Furthermore, the patent described in [27] builds off the existing white cane but
incorporates the use of a time-of-flight (TOF) sensor to the top of the cane for obstacle detection.
The use of such “advanced imaging technology” [27] allows for a more precise pixel-based
image of the sensor’s surroundings. Based on the distance readings of the sensors, tactile
feedback is given to the user of the cane via a haptic interface, thus helping visually impaired
people better navigate their surroundings. The patent “provides a reliable warning if there is a
risk of collision” [27] within a limited distance from the obstruction. The design ideas in
patented design are quite similar to those present in our own project. The design of our system
also relies mainly on LiDAR time-of-flight sensors as these are the sensors used for obstacle
detection from the user’s front and back side, as well as incline detection. Furthermore, like the
patent, our design makes use of tactile feedback to alert the user of coming obstructions as well.
This Visually Assistive Hat varies from this patent as it is a hands-free system and makes use of
auditory feedback. Such differences, however, serve as potential improvements in our device that
can enhance user experience. Ultimately, due to the similarities in basic designs and goals

Page 14

between our system and this patent our device would require refinement before it can be
patented.

Finally, the Venucane described in [28] is a patented design that builds upon the classic
white cane. This device also improves upon the basic cane design through the addition of various
sensors as it is “directed [as] an electronic travel aid” [28]. The Venucane uses eight ultrasonic
sensors, along with other a variety of other sensors — such as smoke detection sensors, liquid
detection sensors, and metal detection sensors. Furthermore, this device uses pre-recorded audio
messages to relay obstruction feedback back to the user. The device is advertised to have a
“minimal physical interface,” which is like our own design as it was designed with the goal of
being intuitive [28]. However, the fact the device makes use of so many ultrasonic sensors, and
numerous other types of sensors, makes the device more robust in comparison the Visually
Assistive Hat. Our design, however, does differ in the fact that it is hands-free and, therefore, has
more everyday utility. Our design also makes use of tactile feedback in addition to auditory cues.
Based off the design of the VVenucane, it may be more difficult for our design to be patented as is
since it contains a subset of their more robust sensor system. With the addition of a more
powerful sensor system for obstacle detection, however, our design can face patenting.
Ultimately, based on the three patents we have observed, with more careful considerations to
distinguishing factors the Visually Assistive Hat has the potential to be patented.

Detailed Technical Description of Project

The proposed project is a visually assistive wearable that would allow for the visually
impaired to navigate their environment independently. The combination of LiDAR and
ultrasonic sensors are used to provide the user tactile feedback in the form of motor vibrations
and buzzer tones to notify them if they have objects approaching from a certain direction or if
they are approaching a change in incline. Additionally, the project allows the user to toggle the
settings of the system to turn off the buzzers, calibrate the incline sensor, switch between outdoor
and indoor mode, or to turn off the system entirely.

One of the main goals for this project was to provide a sleek design to conceal the
electronic system so that users feel comfortable wearing the device in a public setting. The team
decided to use the following hat shown in Figure 1 to provide enough space to store the circuitry
while also providing a stylish design for the user. In addition to this, other craft supplies (thread,
hot glue, foam, etc.) were used to mount the sensors, buzzers, and motors to the hat in a
professional and clean fashion.

Page 15

ERSITY | & APPUEDSCIENCE
A [SO S S ——
Elremicat s Compurme ¥ impnoering

Figure 1: Image of Hat with Sensors and Buttons Attached

Two TFmini-S LiDAR sensors are used to determine if any objects are in the front or
back of the user and the remaining LIDAR sensor is used to detect changes in incline. Then the
US-100 ultrasonic sensors are used to determine if any objects are either on the left or the right
of the user. If they do detect an object, each of their respective motors will vibrate with
increasing intensity as the object moves closer. As for the incline sensor, there is a motor that is
attached to the top of the separator between the user and the component storage section of the hat
which vibrates whenever there is a change in incline. In addition to the motors, piezo buzzers are
mounted on the left and right side of the hat’s brim to allow for auditory feedback as well.
Lastly, there is a button on the front right side of the brim which allows for the user to toggle the
piezo buzzers on and off, calibrate the incline sensor to account for their height, switch between
the indoor and outdoor setting, and to put the system into idle mode.

The piezo buzzer functionality can be toggled by pressing the button once quickly, which
will trigger the motors on the left and right to toggle three times to indicate the piezo buzzers
have been turned off. The indoor and outdoor setting can be toggled when the button is held for
one second, which will cause the motors to all toggle at once. Then, the calibration operation is
activated by holding the button for two seconds, which will cause the motors to toggle once in a
circle starting with the front and moving counterclockwise. Lastly, the button can be held for
three seconds to put the hat into idle mode, meaning that the motors and piezo buzzers are not
providing feedback. This is indicated by all the motors toggling three times. The hat can be put
back into active mode by pressing the button once after entering the idle mode, causing it to enter
back into its normal functionality. Images of the hat can be found in Appendix D.

Hardware

The hardware for the Visually Assistive Hat was placed on a PCB designed as a 20-pin
booster-pack for the MSP430FR2433 Launchpad [1]. The PCB contains the voltage regulators to
supply power to sensors and MSP, communication module pin connections to the respective
sensor connectors, pin connections to our buzzers, and MOSFETS to toggle the voltage supply to
both our motors and LiDAR sensors. Additionally, the PCB contains the corresponding pin

Page 16

headers, connector housing for each of the peripheral devices (sensors, motors, buttons, battery,
etc.), and passive components that are needed for the functionality of the other regulators and
buttons. Below in Figure 2 the general overview of the schematic is depicted along with some
further explanation following the figure.

P1.0_MOSFET3
P1.5_UCAGRXD Vcc:i.ﬂv uze u47 Batle;_GND o z;.;_speater
- Speaker
P1.4_UCAOTXD e SRY nacti s a” ° =
P1.6_MOSFET f_._||: o B — <© P3.2_motor
P1.7_MOSFET2 ¥ 2. gme F—————————p26 UCAITXD
P2.4_motor B i E— X
- o— , P2.5_UCATRXD
P2.7_SettingCTRL 0—,—c A %Paﬂ_momr
:':-27:[‘;‘: MSP430G26563-20PIN-DR-1-10 MSP430G2663-20PIN-DR-11-20 P2.1_motor
2 & < P2.0_motor
Battery_gV
P2.6_UCA1TXD HB4 HB5 _2 -
P1.4_UCAOTXD e Vee 33V o Vee 33V Battery GND HB3 e2.2_ speaker
e 2 o EI T — — G— o L T
— o g — % R L ! P1.1_speaker
P2.5_UCAIRXD ¢—— — 0 Battery_GND o/ Battery_GND o
o o -
P1.5_UCAORXD Ultrasonic Sensors Regulators " Speakers
peakers
P1.6_MOSFET1 ¢ T P2.4_mot
L .4_motor
- P1.7_MOSFET2 B Battery_GND
Vee_5V P il P1.2 SDA Battery_GND u7 Battery &V P2.0_motor <>—‘ sate - o -
] e s - ¢, p— s v P2.1_moter &—— — #F
Battery_GND — P3.1_motor —————— :
; - Battery Connector -~ GRIES
P1.0_ MOSFET3 LiDAR Sensors i P3.2_motor o—— — %
1 Vee_3.3V 0_‘7 Motors

Figure 2: Hierarchical Schematic Overview

To start, some design decisions were necessary to optimize the use of power by the MSP
and peripheral devices. The voltage regulators were selected to supply 5V and 3.3V to the
respective devices connected to the booster-pack. To reduce the power dissipated in the form of
heat by the voltage regulators dropping the voltages to the required levels, we decided to choose
a 6V battery and voltage regulators that were rated to handle this input. A two-pin connector was
also installed to allow the 6V batter to be connected securely and traced to the regulators.
Another power design decision was the inclusion of P-Channel MOSFETSs connected to the
power sources of each of the LIiDAR sensors as shown in Figure 3. This was done to incorporate
power-cycling on these sensors since they pulled such a large amount of current when turned on,
causing a reduction in battery life.

Page 17

GND

scL
O sbA
U4 [m]

HT |

1k ue . ‘
ﬂ%})msuma-c uar TFMini-S
fre

us3

RS
| pra———.
1kQ Uda S
TPWIL ute TFMini-s
Wh

%) TP2502N8-G | y3p

i

us
") TNOG04N3-G

R4
1k U40
TTF WH 17 vz
wF)TP2502N8-G y3g i e
e wh | TFMini-s

var
r—)TNOGNNJ-G

1]
&

T
@

Figure 3: TFmini-S LIDAR Power Cycling Circuit

Another significant part of the PCB design was creating a button with static protection to
ensure we could toggle the settings of the hat without potentially damaging the MSP430. A
transient voltage suppressor (TVS) diode was used with some additional circuitry shown in
Figure 4 to create an active low button.

u2s
; TPwh R3
P2.7_SettingCTRL & T AN
10kQ
+|U10
; Button Connector ——C01 - 23
TV _ |UCLAMP3301H.TCT

Battery_GND

Figure 4: Button Circuit

The last of the circuitry on the PCB was standard with just providing traces to connect the
power supplies to each of the sensor connectors and connecting pins to the necessary outputs or
inputs. The piezo buzzers operated with ImA of current and could be directly traced to their
respective pins for power. The motors were directly sourced from the 3.3V output of the voltage

Page 18

regulator since they required a larger amount of current and were toggled using an N-Channel
MOSFET. The remaining parts of the schematic can be examined in Appendix A. Additionally,
the PCB design is depicted below in Figure 5 with the traces, connectors, passive elements,
active elements, and various test points.

PR S S S S —y
 /

(ﬂ

Figure 5: PCB

Software

All this software was developed in Code Composer [15] and loaded onto the
MSP430FR2433 using the debugging software. The Barr C Standard [23] was used for all the
code we included, which can be found in detail in Appendix B.

Task Scheduler

The task scheduler was designed as a round-robin scheduler to cycle through each of the
tasks we must perform for our software. A task structure was defined in the code to hold a
pointer to the function to be executed, cycle counter, task execution period, and fsm_type t
pointer respectively. The table, which is just an array of these class structures, cycles through
each of them and increments the cycle counter variable until it is equal to the execution period.
When this point is reached, the fsm_type_t pointer is passed into the task function for execution
and the counter is then reset to zero. It should be noted that each of the FSM structures are other
structure types (lidar_type_t, ultrasonic_type _t, etc.), but they contain an fsm_type_t as their first
parameter and can therefore be casted to this fsm_type_t pointer to be passed into each task
function. This allows the scheduler to run through the table without having to be concerned with

Page 19

what type should be passed in. Then when inside the task function, each of the fsm_type t
pointers can be casted back into the respective structure pointer for the task so that the proper
data can be accessed for execution.

There are twelve tasks loaded into the table which are as follows: the button checking
task, UART communication with the left and right sensor, 1°C communication for all three
sensors, five motor tasks, and a piezo buzzer task. Each of these has their own respective
description in the sections to follow. It should also be noted that this scheduler runs in main and
does not run on its own independent timer interrupt. The reasoning for this is because our
MSP430 was discovered to not allow the priorities in the interrupt vector table to be changed.
This made it so that the task scheduler timer would interrupt the 1°C, UART, and PWM functions
because they relied on interrupts which were of lower priority. Therefore, we chose to let the
scheduler run in main so that it would not only allow for the other interruptions to occur, but to
also run as fast as possible to ensure there is no delay in the data collection.

Inter-Integrated Circuit (1°C) Communication

The 1°C communications software we created follows professional standards [29]
required by the technical industry and was used to communicate with our LiDAR sensors. The
initialization function sets the clock source, data rate, disables the automatic stop bit, clears the
receive and transmit interrupts, enables the interrupts, sets the pins to the correct peripheral
mode, and sets the default slave address to the front sensor, and then enables the entire module.
This is only called once in the main function since there is only one 1°C module to initialize.

Additionally, a task was designed and added to the task scheduler to collect data from
each of the LIDAR sensors. This task was designed to be universally used with the lidar_type_t
structures to appropriately access the correct slave addresses for each sensor and store the
distance data inside of a buffer so that it could be averaged for reference later by the motors and
piezo buzzers. A custom function called get_lidar_data_cm() is used inside this task to send the
command to request the current distance in centimeters and then read the value from the sensor.
This get_lidar_data_cm() function relies on interrupts that trigger the 1°C interrupt service
routine (ISR) to perform the communication process of sending the start bit, the address, and the
corresponding data to the sensor. The 1°C module ISR also handles sending the receive
command, which expects a 9-byte frame from the sensor which contains the lower and upper
bytes for the distance data in bytes 3 and 2 of the frame respectively [29]. The returned value is
then stored in the lidar_type_t structure’s distance buffer and the newest data average is
computed. Additionally in this task, the TimerAO used for PWM by the buzzers is disabled at the
beginning of the task so that the 12C communication is not interrupted. Then at the end of the
function, the timer is enabled again to allow for the PWM to resume. This task is executed for
each sensor individually, as shown in the task table.

Universal Asynchronous Receiver-Transmitter (UART) Communication

The UART communications between our ultrasonic sensors follow the industry standards
for communication. The initialization functions for the UART modules are called independently
for the left and right ultrasonic sensor since they are independent of each other. However, both

Page 20

modules are configured with the same initialization parameters such as 9600 baud rate, no parity
bit, least significant bit first, one stop bit, and oversampling baud rate generation. Additionally,
the necessary transmit and receive interrupts are enabled in the initialization function as well as
configuring the RX and TX pins to the correct peripheral mode.

A task was created for the task scheduler that takes in the ultrasonic_type_t structure and
requests data from the ultrasonic sensor. This is the only operation performed by this task since
the rest of the communication is handled by the UART ISRs. Since each of the UART modules
have their own ISR, the data is requested by the task and directly stored in the respective
uart_type_t structures when collecting the distance data. Similar to the lidar_type_t structure,
this data is stored in a buffer and the average is computed each time a new data value is received.
This buffer serves as an averaging filter to prevent abrupt changes to the motors or piezo buzzers
since the ultrasonic sensors are not very precise.

Pulse Width Modulation (PWM)

PWM was initially used to run both the piezo buzzers and the motors. Due to restrictions
in the number of specialized pins available, both piezo buzzers operate on TimerAO.1. The built-
in PWM functionality is not used as a result, and rather the device is run through two ISR
interrupts and toggling the piezo buzzer pins as general-purpose input output (GPIO).
TimerAO0.1 is initialized in up mode and counts up to the value initialized in the capture compare
register 0 (CCRO) register.

In order to generate different tones for the different directions it was necessary to
implement a universal speaker_manager_type_t structure to manage the tones executed by the
piezo buzzers as well as preventing the duty cycle of the CCR registers from changing when the
piezo buzzers are disabled. To further differentiate between the different directions, the piezo
buzzers operate with a pause in between. If an obstacle is detected, indicated by a value in the
speaker_manager’s speaker_frequencies array, the buzzer pins are set high on overflow. An
interrupt occurs when the value in the CCR1 register is reached, which sets the piezo buzzer pins
as low. Both CCR registers are set during the motor task, which is explained in the motor
section, with CCR1 as half the value of CCRO in order to generate a 50% duty cycle. Then to
change the tone of the piezo buzzers, the period of the PWM signal is varied by increasing or
decreasing the CCRO value. This changes the frequency of the tone generated by the buzzers
because the period in which the buzzers are high is varied.

Due to the inability to adjust the priority of interrupts and the synchronous nature of the

I2C communication, it was later decided to toggle the motors independently to reduce the number
of necessary interrupts. This is a necessary tradeoff to enable functionality of our LIDAR sensors
but comes at the cost of lowered precision and difficulty varying the duty cycle of the motors.
Due to the sensitivity of the piezo buzzers relying on timing to generate accurate tones they were
required to remain as PWM interrupts. To prevent interruptions of the LIiDAR task, the timers
are disabled at the start of the LIDAR communications and the button task to prevent accidental
interference, since TimerAOQ.1 runs at a higher priority on the MSP430FR2433 [1]. This tradeoff

Page 21

results in slightly distorted tones from the piezo buzzers but allows for the successful execution
of our LIDAR task.

Motors

The vibration motors are run by conditionally toggling the GPIO pins. This is triggered in
the task scheduler for each GPIO pin first through a wrapper function, one for the group of
LiDAR sensors and one for each of the ultrasonic sensors. This is facilitated using the global
motor_type_t structure, which contains a fsm_type_t pointer to the sensor. The wrapper function
dereferences the different sensors to access the data, then passes it through to an external
function to be decoded. This function groups the sensor distances into categories indicating
whether the objects are within close, moderate, or far range from the user. The range of these
buckets were defined through experimentally assessing how soon the user would require
notification of an obstacle depending on whether the hat is in indoor or outdoor mode. The
identifier of close, medium and far distances is defined in the defines.h file and relates to
different tones produced by the piezo buzzers. These identifiers are loaded into the related index
of the speaker_manager’s speaker_frequencies array to reduce the number of accesses to the
piezo buzzers and the time required to execute each cycle of the task. Finally, there is a
generalized vibration function that toggles the motors at a variable speed based on the decoded
data in conjunction with a counter variable. High frequency runs every cycle, medium frequency
runs twice every eight cycles, and low frequency runs once every eight cycles.

Button

The button has four settings triggered by the length of time the button is pressed, with
user feedback provided through differing patterns in motor vibrations. They were chosen because
they were more distinctive than the piezo buzzers, and a full second was left between each
pattern to ensure the user notices the distinction and has time to release the button.

The first setting in the cycle turns on or off the piezo buzzers and is indicated by toggling
the left and right vibration motors three times. The second setting in the cycle toggles the
threshold of object detection between indoor and outdoor mode and is indicated by toggling
every vibration motor. The third setting is to calibrate the incline sensor to the user’s height and
is indicated by the pins being toggled high and then low in a circular pattern around the hat. The
fourth setting turns off the feedback of the motors and piezo buzzers entirely and is indicated by
toggling every vibration motor three times.

Functionality was built to turn off the piezo buzzers and not the vibration motors because
the motors provide less ambiguous and more immediate information about obstacles. The
potential safety tradeoff in turning off auditory warnings was deemed necessary as a result of
experimentation discovering always having both piezo buzzers and vibration to be
overwhelming. Indoor mode has a reduced distance threshold for object detection by the front
and back LiDAR based on the values written in defines.h which were determined based on
experimentation. The left and right sensors remained constant as we anticipated similar needs for
detecting obstacles next to the user. The incline sensor also remained constant, as the user’s
height would not change. The calibration is done based on the information being collected by the

Page 22

incline LIiDAR sensor in the background, storing the user’s height to be used as comparisons.
Prior to calibration the incline vibration motor is disabled. Turning off the device ceases
execution of the task scheduler and disables the PWM interrupts until user next presses the
button again. Calibration data is saved after the hat is put into idle mode, as a normal use case for
the device would be the same user wearing the hat, and as such the height stored for the incline
sensor would not need to change.

Hat Assembly

The specifics for the hat assembly, which involved the placement of the three LIDAR
sensors, the two ultrasonic sensors, two piezo buzzers, five vibrating motors, the microcontroller,
PCB, and battery in the hat can be seen in the following sections. The directions associated with
each component (front, left, right, and back) are in respect to the user’s directions when wearing
the hat.

General Fit

The first portion of hat assembly was dedicated to creating a more secure fit of the hat on
top of a user’s head since many hardware components had to be mounted on the inside of the hat.
To ensure a secure fit, elastic was sewn into the black lining as well as to the border of the black
lining.

Microcontroller and Battery Placement

Both the microcontroller-PCB combination and the battery were placed on the inside of
the hat. First, a plastic encasing was placed on top of the PCB, which was mounted to the
microcontroller. This configuration was then placed inside the hat, towards the front. The battery
was then placed next to the PCB-microcontroller combination and secured to the inside of the
hat, towards the back, using Velcro. Foam inserts were then cut and placed around the PCB-
microcontroller combination and the edge of the hat, between the PCB-microcontroller and
battery, and around the battery against the back of the hat. By doing so, it was ensured that the
components inside the hat would not move around while the user was wearing the hat. Finally,
after plugging in all the necessary wires into the PCB-microcontroller combination to power all
the sensors, motors, and buzzers, a circular foam insert was placed on the inside of the hat, on
top of the PCB-microcontroller and battery configuration so that the wearer would not feel the
components on the inside of the hat.

Sensor Placement

The first sensors mounted to the hat were the left and right ultrasonic sensors. In order to
mount these to the hat, two circular holes were cut on the middle of the left side of the hat and on
the middle of the right side of the hat. These holes were made so that the transmitter and receiver
on the ultrasonic sensor could be pushed through the holes, from the inside of the hat, so they
would be facing the user’s surroundings, while the rest of the hardware of the sensor would be
protected on the inside of the hat. Next, the placement for the three LIDAR sensors was
finalized. The LiDAR sensor for the user’s backside was sewn into the back of the hat with a
rectangular piece of foam placed behind it to ensure that the sensor had the correct angle. The

Page 23

same was done for the front sensor and incline sensor. The front sensor was sewn into the brim
of the hat at the front center of the hat and the incline sensor was sewn to the left of the front
LiDAR sensor. Unlike the front and back LiDAR sensors, the incline sensor’s foam insert was
much thinner so the sensor would face the ground more directly. This helped to ensure that the
incline sensor detected inclines by the user’s feet.

Piezo Buzzers/Motor/Button Placement

Since only two buzzers were used in the design, each was sewn into the underside of the
hat’s brim near the user’s ears. Next, in order to mount the motors to the hat, the four motors
associated with the front, left, right, and back sides of the hat were sewn into the black lining of
the hat. Each motor was sewn into the position of the hat that corresponded with the direction it
was associated with. Thus, the front motor was sewn into the lining at the front of the hat, the left
motor was sewn into the left side of the lining, the right motor was sewn into the right side of the
lining, and finally the back motor was sewn into the back side of the hat’s lining. The fifth
motor, which was associated with the incline LIDAR sensor, was mounted to the bottom of the
circular foam insert placed on top of the PCB-microcontroller combination and battery on the
inside of the hat. Thus, the tactile feedback for incline detection is given on top of the user’s
head. Finally, since the most common dominant hand is the right hand, the button was secured to
the underside of the hat’s brim on the right side for user ease.

Project Time Line

The original proposed Gantt chart can be seen in Figure 6. The original timeline thought that
we’d be able to begin programming and testing immediately upon the start of the semester,
however this was infeasible because we hadn’t received our parts to be able to set it up until
more than a month in. Additionally, the attachment of all the parts into the hat was planned to
take place at the end of October, however due to the setbacks and delays in getting our software
up and running this was also pushed back to much later than originally planned. We had hoped to
be testing and making final adjustments on the entire system for the last month of capstone, but
once again this deadline was not met due to unforeseen circumstances regarding issues with 12C,
the MSP430, and multiple PCB submissions and send outs to 3W.

Page 24

. &S 3
AMTT: L - 2021
S o 52

Hame | Begin date End date i, brownd oy
o MSPaIZ Programming we e B
© Program Distance Sensors e 1015721
“ Program DC Motors 941 025721
“ Program Taggle Buttons a2 0728721
o Program Speakers LI 10725721
= Adjust Code and Debug for Hat 1025721 1262 e — |
[® Testing LG e 0
o Test Sensors, Motors, ete. e w1
° TestPCB1 Connections 101721 w0
© Test Power supply with PCB1 101721 W
© Test Power supply with PCB.2 10221 w22
@ Test PCB 2 Connections w2 w2m
o Test Entire System s e ______________________________ 1
1 Obtain Resources wa2l sl
© Order Sensors, Powes Supply, Speaker... 9/6/21 s
© Order PCB1 94 a4
© Order Hat a4 a2
© Order PCB 2 101521 101821
= # Hardware Design we21 102221
“ Design PCB 1 Layout w2 wan | | [| | | [| [| | | | | [| 1
© Populate PCR1 (shipped out) P e
© Design PCB2 Layout i frst faiks) 1041 108721
= Populate PCB 2 {shipped out] 101821 102221
=1 & Assemble Hat 02 e i N
* Attach Sensors 10725721 s e —
© Attach Motors 102521 s e
© Attach Speakers 1072521 s 1 B R R e 1
© Attach Power Supply 1072521 nsa -_
o Final Adjustments 18 120621 —
© Project Proposal 9621 LT L]
“ Poster Session 101521 s Ll
© Reading Day 10122 W a
© Final Demenstrations 1201621 g2 L
= Thanksgiving Break Qe e -
© Mid Term Design Reviews Start 10714721 e u

Figure 6: Original Gantt Chart

(@ANTT: N < 59— 2021
LR -!‘ I I I T | I I I I T I I
kST Wkt Wk Wk dh ekas Rewed kit Vet ok s Wk d] ko) B kS Bt ks 4
Hame Begindotz | End dote | [& P R e e o e T
BT R —— W 1216021 E
@ program Distance Sensars W s e —
& Brogrem BC Motors v v [m——0
@ Program Toggle Autions 1521 120w e —
@ Program Sk 117921 120021 I —
@ Adjust Code and Debug System 1521 12016021 e
& Testing W 121621 F — — — — — ——]
@ TestSensors. Mators. etc 0 1022021 I
& e Power Supphy with PCE 1 T A0y []
@ lest Power Suppiywith PCB 2 T e =
& Test PCE 1 Connections Wi o []
@ Test PO Z Connectians NI nana]
e s
= © Obtain Resources 107821 nazz T ————
 Order Sensars, Pever Supely, Speokers, ard Mators 10821 1105721 | ——
@ OrderCB 2221 1022021 a
o Order 2082 AEn A []
@ Order st WAL s 5]
= 0 Harvare Design wes e
@ Design PCR 1 1yt st t0sea [
& Bopulato B0 1 fari or i 1o ariv; A Ase [
@ Design PCB 2 Layout (i naeded) Tmel]
* Pogulate MCB 2 (i nesclect] LT R ETE] [
S o asemole ot s 12621
© Attzch Sersors ez 1262 []
o nttzeh Mctars T PR []
© Attach Speskers IR P
 Altach Poer Supply et e [
o Fl Aduntrons e EEm [
@ Project Proposs! w2l e 1]
© Pester Session R R IR T e
127521 12/16/21 5]
| s—

Figure 7: Actual Gantt Chart

To make all these tasks more manageable, the team completed a lot of peer programming,
as well as collaborating on tasks to streamline the process. Figure 8 shows how the tasks were
distributed and serialized.

Page 25

Primary Responsibilities:
- Sensor Communication
-PCB Design

-Hardware Testing
-Software Testing

Primary Responsibilities:

Primary Responsibilities:
-PWM Coding -Physical Layout and Assembly
-Task Scheduling -Power Supply
Secor Responsibilities:
-Software Testing
-Repo Management

Secon

Res abilities:
-I2C Communication
-Assembly Testing

P R ibilities:
-Physical Layout and Assembly
-Energy Consumption

Seconc Responsibilities:
-Button Task

-Assembly Testing

Figure 8: Tasks Divided Amongst Team members

Test Plan

The Visually Assistive Hat was divided into a hardware and software systems for

individual testing prior to group integration. Each of the sections below describe the processes
involved in testing each of the components of the project.

Hardware

The overall test plan for hardware is laid out in the flow chart for Figure 9 and described
in detail following the figure.

Page 26

Does it
generate the
correct current
and 6V voltage?

IS it within
component |« - No
tolerances?

Do they output
the correct
current and

voltage?

Is it within
component |«—No
tolerances?

Figure 9: Hardware Test Plan

Referring to Figure 9, the first part was to perform a test on the power supply to ensure
the correct voltages were generated by both the 5V and 3.3V regulator. These are shown in
Figure 10 and Figure 11 below. Additionally, a continuity test was conducted on all of the
connections to ensure the PCB design accurately connected our MSP430 to the correct outputs
and inputs.

DIGITAL MULTIMETER

Range

03.2981Vv e

Figure 10: 3.3V Voltage Regulator Output

Page 27

DIGITAL MULTIMETER

Range

04.9964Vv

Figure 11: 5V Voltage Regulator Output

The next step was to verify that each of the test points generated the correct voltages for
each of the outputs to the peripheral sensors. This was tested for the voltage outputs of the P-
Channel MOSFETS for power cycling the LiDAR sensors, outputs for the motors, and power
supplies for the UART sensor. This was done and it was concluded that each of the expected
voltages were created for all the test points except for the output from the P-Channel MOSFETS.
We were getting voltage values ranging from 4.62V to 4.85V when the expected voltage for the
LiDAR sensors was 4.9V to 5.1V. This meant that the correct voltage supply was not being
generated to power the sensors and was determined to be because the on resistance for the P-
Channel MOSFET was too high, causing a voltage drop of about 0.2V-0.4V. To fix this problem,
the test points connected to the LIiDAR 5V pins were directly connected to the 5V output of the
voltage regulator. This bypassed the P-Channel MOSFETS and just provided constant power to
the sensors, which meant a shorter battery life for our device but power to the sensors had a
higher priority over the power-cycling functionality.

After all these testing and modifications to the final PCB, the design was ready to mount
to the MSP430 to test the software and ensure that communication was able to be established
with the sensors. One final note is that right before the final submission, it was realized that the
PCB did not include pullup resistors on the 12C lines. To fix this issue, our team sent external
pull up resistors to the 3W manufacturer for them to attach these resistors to the 1°C pins and the
3.3V voltage regulator output.

Software
The software was tested based on the flow chart shown in Figure 12.

Page 28

fof power and data lines pins, and data
No { .Mf M
Have initlalizations > Yas
Are registers
been made comectly?]
M CEEE
—_—m—
Is the task P You

being executed by | .
sen Al :’m_ oy F data being colectea?

——
connections and
Tequest signals

Are outputs .
o changing?
No
2
Has output hargware At the Ragsistiuctures
boen checked? vou | foT SuPuts changing?
as

\ - Hao | o !
\>-]
\ funetion
Figure 12: Software Test Plan

The software was programmed in isolation first, with the ultrasonic and LiDAR sensors,
PWM interrupts, motor toggling, and button functionality tested independently prior to their
integration into the main codebase. Once each of these components was working as expected,
then they were integrated into the task scheduler and merged into our main branch on Github and
tested with the rest of the system [25]. Testing of the individual software components is outlined
below.

LiDAR/ I?C

The LIiDAR communication was tested by comparing the response of the sensor to an
Arduino using an open-source library [30] to communicate with the TFmini-S sensors via I°C.
Once communication was established, the logic of the start and stop bits along with the bytes of
data were replicated on the MSP through the initialization function and I2C interrupts. Once
these modifications were made to the code, then the SDA and SCL pins were monitored when
connected to the TFmini-S sensors and the data was capture as shown in Figure 13. Additional
communication verification for 1°C is shown in Appendix C.

Page 29

o
2 C
o
o
(=]

&

N TN = N
o T T
3.300V 3.300 4,995V 5.000 0.000V- 0.000 R
0.000A 0.200 0.055A 0.200 0.000A 0.500 0196.62 mv

Figure 13: 12C Command and Read from LiDAR

Ultrasonic / UART

To test UART communications, the first step was to write transmission software to send
the request to the ultrasonic sensor for the distance data. This was tested using a digital logic
analyzer on the Virtual Bench [14] to see if data was being correctly sent, which is shown below
in Figure 14 below.

<J
&
|
|
dooov
= Ampl(T) === 1f N = Curl 59.0 V AY 5.97 V
= Pk-Pk(1) ---V = Curz 53.1 V
Mo = DC POWER SUPPLY =

Figure 14: UART Transmission Verification

Page 30

After getting transmit data sent, the next step was to test that there could be actual data
that could be sent to the ultrasonic sensor and then received. The UART ISR in the code was
modified to handle data received on the RX pin and was tested by using the register window in
Code Composer [15] to see if data was being sent, as shown below in Figure 15.

ittt UCATRXBUF 0x00B7
it UCATTXBUF 0x0055

Figure 15: UART Receive Verification

Once this data was collected, then final adjustments were made to the ISR to store the
low and high bytes of the distance data in the ultrasonic_type_t structure so that the actual
distance could be determined and stored within the buffer.

One issue we did find in our MSP is that the left module (UART_AQ) was not receiving
data properly. Upon further inspection, it was seen that the voltage levels on the RX pin were
never pulled entirely low when the ultrasonic was connected to the MSP, as shown in Figure 16.

)
y
| x

[l & b s oottt VirABIh =7 -8
" HLUY SIGRAL D52 > INC TN GLMLEAIOR

e LA ey —
seup ” OV~ Bt AS @ Tulg;
afa | 200 ust [0 -
L = B W 2500 Vs Stopped \] 200 s [Single Auo Normal | Sop - Frequency

=
G

— 1
o
ting
e
W -
- 1o g
a tore o » 9‘ ‘l' -
,,, . [migh o —
N oo et Rraartetar vl et ¥ ~Svmealr == . S =t e e TR i T el e Rt Reedeetoy b= 11 -
- wrd — - =
litude DC Offsel
3.30 |we | 0.00
Symmeiry
50 %
‘f = Ampl(7) 1.77 V AT " Curl 85.7 mVv AY 241 mV
= Pk-Pk{T) 2.22 v N = Curz 326 mv N (A=
e 0 PCANER: SUPPLY = DIGITAL WULTIMETER =
oW s -.---V 3.300 -.===-V | 3.300 -.-==V 0.000 Range
b - ---A 1.000 - -—- A 0.005 - --- A 0.005 000.010 mv xe
i o § A K n b o)

Figure 16: Broken UART_AO RX Pin (orange) compared to working UART_A1 RX Pin (red)

The first thought was that the ultrasonic sensor was broken, however when testing both
sensors on the working right module (UART _A1), both sensors were able to send data back to
the MSP. Therefore, we decided to test the voltage of the RX pin when configured as an output
just to see if the pin was potentially blown from earlier connection tests with an Arduino. Figure
17 shows the comparison of P1.5 (RX pin; suspected broken pin) output in red to the actual
output to of P1.7 in yellow. This figure shows that the voltage difference between these two pins
IS quite significant and made the team suspect that the pin was damaged. A new MSP was

Page 31

ordered, but this same issue still appeared even for a new MSP. Even after modifying code and
ensuring no other modules were trying to control the pin, the team concluded that this module
was broken and would make it so the left sensor could not be used during the demonstration.
However, since UART communication was still successful on the left port and the code was
identical for both ports, it was assumed that by ordering a new MSP430 in the future with this
code should produce the correct results.

; Ve
Setup Time/Div =4 =

Auto Default = 20 ms/

W 31250 MS/s W 250.00 MS/s Auto Triggered Single Auto Normal Stop

9 <

» sus 1l
o1l
o] |
[br] |
03] |

 [EESsScSamcmmcEzSzScSzEcEzEcEzies
eleffefekefaiagfatafsfaiaflets

T s
j Ampl() 1.97 V N (C:r” fgzx Ygitzo68Y

Figure 17: Output Difference Between the Broken P1.5 (RX pin) and a Working Pin

PWM

The PWM interrupts were tested by inserting default alternating values into the
speaker_manager to test wave generation and the ability to alternate the duty cycle, shown in
Figure 18. After testing that the pulses are being generated in the virtual bench, the piezo buzzers
were connected in order to test the tones being generated and discover a variety of tones that
would be sufficiently differentiable to the user. The motors were tested in a similar fashion, first
using PWM interrupts and later using the simple conditional toggling method to correct the issue
of invariable interrupt priorities. Both were tested individually with PCB prior to integration,
using hardcoded values to ensure the components themselves were functional.

Page 32

Figure 18: PWM Interrupts Varied Duty Cycle Test

The button code was first tested by flashing a different LED depending on how long the
button was pressed to trigger the interrupt. The code was then integrated with the rest of the
system and tested experimentally. During these experimental tests, we identified the need to
implement stronger feedback to the user and differentiate between the various settings. Further
refinements were to the time delay between each setting and the type of feedback produced to
make this more intuitive based on experimental tests.

Hat Assembly

The hat assembly required testing for every step along the process, to ensure that the
locations of each sensor were correct and would be angled well for use. For the ultrasonic
sensors, they were originally taped onto the sides of the hat and then moved up and down the
sides of the hat to ensure they are in an appropriate position before being sewn down. They were
tested while taped on to make sure that they were not reading information off the bridge of the
hat and were genuinely reading from the surroundings. The same was performed for the LIDAR
sensors, to ensure everything had an appropriate placement before being sewn down.

To test the motors during assembly, they were taped to the inside of the hat first and had
the software run on them, before being sewn into place. They were then routinely tested to
ensure that they were vibrating against the user's head in a manner that allowed the user to feel
what was happening. The incline sensor motor required the most testing, as it was too weak to
feel in the original location (the brim of the hat). Modifications were made and it was tested in
numerous locations, including dangling off the hat, secured into the top of the hat, and hidden
under felt. The piezo buzzers were tested in the same manner, ensuring that their location on the
hat was easy to hear and not too overpowering.

Page 33

Finally, the button placement was tested by having numerous individuals wear the hat,
reach up, and grab the brim in a location that felt most natural to them. During each of these
tests, the location of where the individual had grabbed was marked with chalk, and after these
experimental tests were completed the location for the button was selected.

Final Results

The final device includes a hat with five mounted sensors, two ultrasonic sensors pointing
in the left and right directions, and three lidar pointing towards the front, back, and one angled
towards the ground as the incline sensor. All five sensors can return data relaying the distance
from the next nearest obstruction; however, due to a blown pin on the microcontroller only four
of the sensors are capable of transmitting data to the microcontroller, with the left ultrasonic
sensor receiving pin unable to pull down to a low enough voltage to function correctly. This
discovery is outlined in the Ultrasonic / UART Testing Section. This raw sensor distance data is
converted to different frequencies and the vibration motor associated with the sensor detecting
the obstruction vibrates at a more intense frequency as the obstruction gets closer to the user. The
buzzers change in tone as the objects get closer to the user, with a higher tone produced the
closer the object is. The buzzers are generalized to every sensor, and as such alternate through
each direction when generating tones. The button associated with the project contains four
different settings, toggled by holding the button down for different lengths of time. These
settings are differentiated between different patterns of vibrations from each of the perimeter
vibration motors. The first setting turns on and off the buzzers, as experimentation showed
having both going at all times can be overwhelming. The second setting toggles between indoor
and outdoor mode, which is an adjustment of the distances set for obstacle detection for the front
and back sensors, with outdoor mode having a longer distance as we anticipate a greater need to
see farther while outside. The third setting triggers the calibration setting for the incline motor to
adjust the incline sensors for variations in the user’s height. Prior to calibration, the incline
sensor is inactive. The final setting places the device in idle mode and stops execution of the task
scheduler. If a height value had been retrieved prior to putting the device in idle mode, it remains
saved in the system upon resuming the tasks in the scheduler. This is because we assume the
same user will be returning to use the hat during normal functions.

Based on the results of the capstone and using the grading rubric, the team is evaluated to
have a score of 9 which would result in a grade of a C. However, upon reflection and seeing the
error with a blown communication pin to our ultrasonic sensor impacted a lot of the scores for
each column, we believe that our team should receive a score of a B+ or low A to be more
reflective of the effort our team put forth this semester. The individual section breakdowns are
shown below and assertions as to why the team believes they should receive a higher grade than
aC.

Table 1: Grading Rubric and Breakdown

Points [LIDAR and Ultrasonic DC Vibrating Piezo Buzzer Power Source
Sensor Motor Functionality and PCB
Functionality Functionality

Page 34

4 |All 5 sensors are able to All 5 motors Both piezo buzzers
collect object distance and |vibrate with their work and indicate

incline respective objects on left, right, X
Sensors front, back, and
incline change
3 {4 perimeter sensors collect 4 perimeter Both piezo buzzers |Power Source
correct data, but incline motors vibrate |work and indicate works with PCB
sensor does not with their left, right, front, backjand is in a
respective and not incline casing and
Sensors change mounted to the
hat
2 [2+ sensors collect data 2+ motors Both piezo buzzers |Power Source
vibrate work and works with PCB

indicate objects in jand is NOT ina
vicinity from two casing and

directions mounted to the
hat
1 |Only 1 sensor collects data |Only 1 motor Both piezo buzzers |Power Source
vibrates work and indicate works with PCB
when object is and isNOT ina
around casing and NOT
mounted to the
hat
0 |No sensors work No motors work |None of the piezo [Power Source
buzzers work and PCB do not
work

Grading Breakdown:
A+ 14-15 points

A 13 points

B 12 points

C 8-11 points

D 4-8 points

F less than 4 points

LiDAR and Ultrasonic Sensor Functionality

The LiDAR sensors were proven to work and return data to the MSP for the front, back,
and incline sensor. In our rubric, there was a large emphasis on getting just the incline sensor
working rather than just the number of sensors that are operational, making the rubric very
narrowly focused. However, considering the blown pin discussed above, this made it very
difficult to get a value above a 3 in the sensor column since the rubric relied on having the
incline sensor failure being one of the main issues to deduct points from. Additionally, since the
team was able to successfully establish connection on the right UART module, receive data with
both ultrasonic sensors to prove they work, and provide evidence that the pin on the

Page 35

MPS430FR2433 was faulty, then we feel as though we should not be penalized 2 points for this
error and should receive at least 3 points for this column.

DC Vibrating Motor Functionality

The DC vibrating motors were proven to vibrate individually, both based on output wave
to the virtual bench and by toggling all pin outputs alternating high and low on the PCB with the
vibration motors connected and testing them by hardcoding the categorized frequencies into the
program. All vibration motors were capable of being triggered by the individual values, and
since identical functions are running on each motor, we expect that if the ultrasonic sensor were
working all vibration motors would be functional. Therefore, we feel as though we should not be
penalized for this error and should receive 4 points for this column.

Piezo Buzzer Functionality

The buzzers were proven to be successful in indicating the object distances. This was
done by attaching each sensor (both LiDAR and ultrasonic) to the MSP and having the task
scheduler generate tones as we moved objects closer to each sensor. Three different tones were
generated, the lowest being played when the object passes the first tolerance distance, then a
medium pitched tone on the next threshold, and the highest pitch tone when inside the closest
tolerance distance. Having all these various tones generated for all the sensors in our task
scheduler gives us a score of 4 for the buzzer functionality.

Power Source and PCB

For this section, we were able to correctly construct a power source and PCB with a
protective casing as shown below in Figure 19. However, this does not provide a casing around
the battery, which would have been difficult to obtain since the battery is so unique and did not
have any casings provided that would adhere to the NEMA waterproof standard when looking on
Digi-Key and other product providers [20]. Despite this, we still attempted to provide protection
around the PCB and separation of the battery from direct contact to the user’s head, which we
believe would give us a score of potentially 2.5 instead of 2 since there were no waterproof
casings that we would be able to find and develop on our own with 3D printing.

Page 36

Figure 19: Inside Hat with PCB Casing

Rubric Summary

Based on these assessments, we hope our grade would be adjusted to 13.5/15, which is a
low A on our scale. The LIDAR and Ultrasonic Sensor Functionality section shifted from a score
of 2 to 3 because singling out the incline sensor functionality was an overly narrow specification.
The DC Vibrating Motor Functionality section shifted from a score of 3 to 4 because all five
vibration motors would function correctly without the broken sensor. The Piezo Buzzer
Functionality section would have a score of 4 since three different tones were created to indicate
the object’s distance from the user from all directions. The Power Source and PCB section
shifted from a score of 2 to 2.5 because of the attempts to include sufficient casing made
impossible by other constraints.

Costs

The cost to produce the Visually Assistive Hat was quite high, but we did manage to stay
within the set budget. The overall cost breakdown for the project can be seen in Table 2. In
addition to showing the cost breakdown for our project development, the table depicts the
predicted costs if the device were to be manufactured in 10,000-unit quantities.

Table 2: Summary of Costs for Visually Assistive Hat

Price for 1 Price for 10000
Item Unit Qty Our Cost Units
MSP-EXP430FR2433 $11.99 3 $35.97 $119,900.00
PCB $33 2 $66 $330,000

Page 37

PCB Components +
Assembly $64.63 2 $129.26 $646,300.00
Sensors/Buzzers/Motors $159.22 N/A $159.22 $1,592,200.00
General Wire Assembly $10 N/A $10 $100,000
Hat $20 1 $20 $200,000.00
Total $298.84 N/A $420.45 $2,988,400.00

As seen above, it can be noted that the development of the hat stayed within the set
budget of $500. Additionally, if errors were not made throughout development, specifically
considering the microcontrollers and PCBs, more than one quantity of these items would not
have been required, thus further driving down costs.

Furthermore, based on the data in the table above the device was to be manufactured in
10,000-unit quantities, the total cost would be very expensive. However, the case depicted above
does not take any discounts into account, so the total depicted is the absolute worst case that can
be anticipated. Realistically, since the components will be bulk ordered, discounts for mass
production and manufacturing would likely be applied, thus it is realistic to say that the cost of
manufacturing in 10,000-unit quantities would be significantly less than the total depicted. A
more detailed breakdown of the total costs spent throughout the development of the Visually
Assistive Hat can be seen in Appendix D.

Future Work

One unforeseen difficulty of the project included the effectiveness of the buzzers. As
mentioned previously, the buzzers can currently detect that there is an obstruction in the user's
path (and chirp to let them know), however it cannot provide information on where the
obstruction is coming from. This was due to the lack of additional timers that could be used on
the current MSP, which does not allow for the separation of the two piezo buzzers to provide
different feedback. For future work, the future team should investigate getting buzzers that can
speak aloud and verbally communicate if there are obstructions i.e., by saying “Obstruction on
your left.”

Another additional feature would include power cycling on all five sensors. The original
design included MOSFETS s for all three LIDAR sensors that would allow the power to each of
them to be cut to conserve battery power, however upon implementation it was discovered that
while the five-volt voltage regulator was indeed outputting the correct voltage, after this passed
through the MOSFETSs there was a voltage drop of about 0.2 volts due to internal resistance. This
meant that each sensor would only be supplied with 4.8 volts, which is outside of the safe
operation range for them. In future designs, this would be something that should be fixed to
ensure that each sensor is receiving the correct voltage and could be turned on and off as needed.

Another place that future teams should improve upon is the battery. While we were
happy with the amount of time the battery could run for, it was too heavy and clunky.
Additionally, it was difficult to charge and required removal from the device to be recharged.
Also, there is currently no indication for when the battery reaches low power, which could pose

Page 38

as a danger for the user. To fix this, we would recommend future teams add some sort of
indication for whether the battery is low on power. For future work, a different battery would be
recommended to conserve space, allow the user to charge while it is still inside the hat, notify
them of low battery, and make the design lighter and sleeker overall.

It was also noticed that the sensors, at times, would fail to pick up on obstructions that
were shorter than the user. For example, if a shorter person were to walk past the user while they
are wearing the hat, at times, the sensors would fail to pick up this obstruction and alert the user.
This is with the exception of the incline sensor, which can work in tandem to notify the user of
shorter obstructions in front of them. Therefore, in future work, the team should reevaluate the
sensors layout in a manner that will detect shorter obstructions.

In addition to the other recommendations for future work, our final recommendation is to
pay more attention to the professionalism of the design. This includes having a better system for
the wires, including threading them under the fabric of the hat to hide them better, adding more
buttons for user friendliness, and a darker colored hat in order to hide some of the sensors better.

References

[1]“MSP430G2553 | MSP430G2x/i2x | MSP430 ultra-low-power MCUs | Description &
parametrics.” [Online]. Available: http://www.ti.com/product/MSP430G2553. [Accessed: 06-
Dec-2016].

[2] “Burden of Vision Loss | CDC,” Jun. 17, 2020.
https://www.cdc.gov/visionhealth/risk/burden.htm (accessed Sep. 09, 2021).

[3] “Visual impairment, blindness cases in U.S. expected to double by 2050,” National Institutes
of Health (NIH), May 19, 2016. https://www.nih.gov/news-events/news-releases/visual-
impairment-blindness-cases-us-expected-double-2050 (accessed Sep. 09, 2021).

[4] E. National Academies of Sciences et al., The Impact of Vision Loss. National Academies
Press (US), 2016. Accessed: Sep. 09, 2021. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK402367/

[5] W. Elmannai and K. Elleithy, “Sensor-Based Assistive Devices for Visually-Impaired

People: Current Status, Challenges, and Future Directions,” Sensors (Basel), vol. 17, no. 3, p.
565, Mar. 2017, doi: 10.3390/s17030565.

[6] I. Ulrich and J. Borenstein, “The GuideCane-applying mobile robot technologies to assist the
visually impaired,” IEEE Trans. Syst., Man, Cybern. A, vol. 31, no. 2, pp. 131-136, Mar. 2001,
doi: 10.1109/3468.911370.

[71 M. H. A. Wahab et al., “Smart Cane: Assistive Cane for Visually-impaired People,”
arXiv:1110.5156 [cs], Oct. 2011, Accessed: Sep. 09, 2021. [Online]. Available:
http://arxiv.org/abs/1110.5156

[8] “iGlassesTM Ultrasonic Mobility Aid,” Ambutech.
https://ambutech.com/products/iglasses%e2%84%a2-ultrasonic-mobility-aid (accessed Sep. 09,
2021).

Page 39

https://www.cdc.gov/visionhealth/risk/burden.htm
https://www.nih.gov/news-events/news-releases/visual-impairment-blindness-cases-us-expected-double-2050
https://www.nih.gov/news-events/news-releases/visual-impairment-blindness-cases-us-expected-double-2050
https://www.ncbi.nlm.nih.gov/books/NBK402367/
http://arxiv.org/abs/1110.5156
https://ambutech.com/products/iglasses%e2%84%a2-ultrasonic-mobility-aid

[9]J. B. F. van Erp, L. C. M. Kroon, T. Mioch, and K. I. Paul, “Obstacle Detection Display for
Visually Impaired: Coding of Direction, Distance, and Height on a Vibrotactile Waist Band,”
Frontiers in ICT, vol. 4, p. 23, 2017, doi: 10.3389/fict.2017.00023.

[10] “Salus Health - How Do Bone Conduction Headphones Work?”
https://www.salusuhealth.com/Pennsylvania-Ear-Institute/Events/News-Stories/How-Do-Bone-
Conduction-Headphones-Work.aspx (accessed Sep. 09, 2021).

[11] “How to Use Multiple Ultrasonic Sensors | MaxBotix Inc.”
https://www.maxbotix.com/tutorials1/031-using-multiple-ultrasonic-sensors.htm (accessed Dec.
16, 2021).

[12] “Multisim,” National Instruments.
https://www.ni.com/enus/shop/software/products/multisim.html (accessed Sep. 13, 2020).

[13] “Ultiboard,” National Instruments.
https://www.ni.com/enus/shop/software/products/ultiboard.html (accessed Sep. 13, 2020).

[14] “VirtualBench,” National Instruments.
https://www.ni.com/enus/shop/hardware/products/virtualbench-all-in-one-instrument.html
(accessed Dec. 08, 2020).

[15] “CCSTUDIO IDE, configuration, compiler or debugger | TI.com.”
https://www.ti.com/tool/CCSTUDIO?utm_source=google&utm medium=cpc&utm campaign=
epd-der-null-code composer-cpc-evm-google-

wwe&utm content=code composer&ds k=code+composer&DCM=yes&gclid=CjwKCAjw-
ZCKBhBKEiwAM4agfF6nQVfg 7j2MKkDIRgFLKRG7fooUPcRIgWolljQQjICNAV5Asa0-
sIhoCNEsQAvVD_ BwE&agclsrc=aw.ds (accessed Sep. 17, 2021).

[16] D. Walker, “The Pros and Cons Of Using a Rechargeable Battery,” The Battery Specialists,
Sep. 24, 2020. https://batteryspecialists.com.au/blogs/news/pros-and-cons-of-using-a-
rechargeable-battery (accessed Sep. 17, 2021).

[17] A. Boyden, V. K. Soo, and M. Doolan, “The Environmental Impacts of Recycling Portable
Lithium-Ion Batteries,” presented at the 23rd CIRP Conference on Life Cycle Engineering, 2016,
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212827116300701.

[18] “Waste Management on Earth - The Pros and Cons of E Waste Recycling,” Excess Logic,
Jul. 29, 2015. https://excesslogic.com/waste-management-on-earth-pros-and-cons-of-e-waste-
recycling (accessed Sep. 17, 2021).

[19] M. Avakian, “E-Waste: An Emerging Health Risk,” National Institute of Environmental
Health Sciences, Feb. 2014.

https://www.niehs.nih.gov/research/programs/geh/geh newsletter/2014/2/spotlight/ewaste an e
merging_health_risk .cfm (accessed Sep. 17, 2021).

[20] “NEMA and IEC Enclosure Classifications.” https://www.engineeringtoolbox.com/nema-
iec-enclosure-standards-d_920.html.

[21] “Laser Standards and Classifications,” Rockwell Laser Industries.
https://www.rli.com/resources/articles/classification.aspx.

Page 40

https://www.salusuhealth.com/Pennsylvania-Ear-Institute/Events/News-Stories/How-Do-Bone-Conduction-Headphones-Work.aspx
https://www.salusuhealth.com/Pennsylvania-Ear-Institute/Events/News-Stories/How-Do-Bone-Conduction-Headphones-Work.aspx
https://www.maxbotix.com/tutorials1/031-using-multiple-ultrasonic-sensors.htm
https://www.ti.com/tool/CCSTUDIO?utm_source=google&utm_medium=cpc&utm_campaign=epd-der-null-code_composer-cpc-evm-google-wwe&utm_content=code_composer&ds_k=code+composer&DCM=yes&gclid=CjwKCAjw-ZCKBhBkEiwAM4qfF6nQVfq_7j2MkDIRgFLKRG7fooUPcRIqWo1IjQQjlCNAV5AsaQ-slhoCNEsQAvD_BwE&gclsrc=aw.ds
https://www.ti.com/tool/CCSTUDIO?utm_source=google&utm_medium=cpc&utm_campaign=epd-der-null-code_composer-cpc-evm-google-wwe&utm_content=code_composer&ds_k=code+composer&DCM=yes&gclid=CjwKCAjw-ZCKBhBkEiwAM4qfF6nQVfq_7j2MkDIRgFLKRG7fooUPcRIqWo1IjQQjlCNAV5AsaQ-slhoCNEsQAvD_BwE&gclsrc=aw.ds
https://www.ti.com/tool/CCSTUDIO?utm_source=google&utm_medium=cpc&utm_campaign=epd-der-null-code_composer-cpc-evm-google-wwe&utm_content=code_composer&ds_k=code+composer&DCM=yes&gclid=CjwKCAjw-ZCKBhBkEiwAM4qfF6nQVfq_7j2MkDIRgFLKRG7fooUPcRIqWo1IjQQjlCNAV5AsaQ-slhoCNEsQAvD_BwE&gclsrc=aw.ds
https://www.ti.com/tool/CCSTUDIO?utm_source=google&utm_medium=cpc&utm_campaign=epd-der-null-code_composer-cpc-evm-google-wwe&utm_content=code_composer&ds_k=code+composer&DCM=yes&gclid=CjwKCAjw-ZCKBhBkEiwAM4qfF6nQVfq_7j2MkDIRgFLKRG7fooUPcRIqWo1IjQQjlCNAV5AsaQ-slhoCNEsQAvD_BwE&gclsrc=aw.ds
https://www.ti.com/tool/CCSTUDIO?utm_source=google&utm_medium=cpc&utm_campaign=epd-der-null-code_composer-cpc-evm-google-wwe&utm_content=code_composer&ds_k=code+composer&DCM=yes&gclid=CjwKCAjw-ZCKBhBkEiwAM4qfF6nQVfq_7j2MkDIRgFLKRG7fooUPcRIqWo1IjQQjlCNAV5AsaQ-slhoCNEsQAvD_BwE&gclsrc=aw.ds
https://batteryspecialists.com.au/blogs/news/pros-and-cons-of-using-a-rechargeable-battery
https://batteryspecialists.com.au/blogs/news/pros-and-cons-of-using-a-rechargeable-battery
https://www.sciencedirect.com/science/article/pii/S2212827116300701
https://excesslogic.com/waste-management-on-earth-pros-and-cons-of-e-waste-recycling
https://excesslogic.com/waste-management-on-earth-pros-and-cons-of-e-waste-recycling
https://www.niehs.nih.gov/research/programs/geh/geh_newsletter/2014/2/spotlight/ewaste_an_emerging_health_risk_.cfm
https://www.niehs.nih.gov/research/programs/geh/geh_newsletter/2014/2/spotlight/ewaste_an_emerging_health_risk_.cfm
https://www.engineeringtoolbox.com/nema-iec-enclosure-standards-d_920.html
https://www.engineeringtoolbox.com/nema-iec-enclosure-standards-d_920.html
https://www.rli.com/resources/articles/classification.aspx

[22] “The History and Basics of IPC Standards: The Official Standards for PCBs,” All About
Circuits, Oct. 20, 2017. https://www.allaboutcircuits.com/news/ipc-standards-the-official-
standards-for-pcbs/.

[23] M. Barr, “Embedded C Coding Standard.” Barr Group, 2018.

[24] Texas Instruments. “MSP driver library.” ti.com. http://www.ti.com/tool /MSPDRIVERLIB
(accessed Dec. 16, 2019).

[25] “GitHub Documentation.” https://docs.github.com/en (accessed Dec. 10, 2020).
[26] C. ROMAN, “SMART SENSOR CANE”

[27] R. Gassert et al., “White cane with integrated electronic travel aid using 3D TOF sensor,”
US8922759B2, Dec. 30, 2014 Accessed: Dec. 15, 2021. [Online]. Available:
https://patents.google.com/patent/US8922759B2/en?g=electronic+travel+aids&og=electronic+tr
avel+aids

[28] M. MAHADEVAPPA, J. MUKHOPADHYAY, and B. S. SUBHASHRAO, “Venucane: an
electronic travel aid for visually impaired and blind people,” AU2012317177B2, May 04, 2017
Accessed: Dec. 16, 2021. [Online]. Available:
https://patents.google.com/patent/AU2012317177B2/en?g=electronic+travel+aid&og=electronic
+travel+aid

[29] “UM10204 12C-bus specification and user manual,” vol. 2014, p. 64, 2014.

[30] B. Ryerson, TFMini-Plus-12C. 2021. Accessed: Dec. 16, 2021. [Online]. Available:
https://github.com/budryerson/TEMini-Plus-12C

Appendix

Appendix A
Schematics for Hardware Design

3-5v

™1 | u1
D——l_l— =

RX1 iy .

! N

Ultrasonic 4019
TX0 us

D—
RXO ———F—vee |
O

l— s v
Ultrasonic 4019

GND

Figure 20: Ultrasonic Schematic

Page 41

https://www.allaboutcircuits.com/news/ipc-standards-the-official-standards-for-pcbs/
https://www.allaboutcircuits.com/news/ipc-standards-the-official-standards-for-pcbs/
https://patents.google.com/patent/US8922759B2/en?q=electronic+travel+aids&oq=electronic+travel+aids
https://patents.google.com/patent/US8922759B2/en?q=electronic+travel+aids&oq=electronic+travel+aids
https://patents.google.com/patent/AU2012317177B2/en?q=electronic+travel+aid&oq=electronic+travel+aid
https://patents.google.com/patent/AU2012317177B2/en?q=electronic+travel+aid&oq=electronic+travel+aid
https://github.com/budryerson/TFMini-Plus-I2C

BV_IN

GND

u3e
{TP wWh

u1s
e

c2
==0.1pF

R7

250kQ U2

{TP Wh

TPS77533DR

c4
==10pF

c3

=.22yF
|

uz22

LF50ABV Imp,:

Cc5

3.3v_out
0

uso 5V_OUT

Figure 21: Voltage Regulator Schematic

u31

GATE_4

Motor 316040001
D1
1N4149

U3z

3.3v

1
Motor 316040001

D2
(]

Lgl
1N4149

us3
[

Motor 3&040001
[\

Lal
1N4149

u11

Motor 316040001
D4

[

Lgl
1N4149

150 V|
Motor 316040001

D5
o

Lyl
1N4149

Figure 22: Motor Schematic

Page 42

LEFT_IN

u42

Appendix B

/!

O [3v |
Piezo Speaker
GND
RIGHT_IN uas —O
0 [3v e |
Piezo Speaker
Figure 23: Buzzer Schematic
Software for the Visually Assistive Hat
Task Scheduler
// Task table layout:
task function counter period FSM object
TaskType tasks[] = {
{&button_task, e, 1, (fsm_type_t *) &button},
{&uart_task, e, 4, (fsm_type_t *) &right_sensor},
{&uart_task, e, 4, (fsm_type_t *) &left_sensor},
{&lidar_task, e, 2, (fsm_type_t *) &front_sensor},
{&lidar_task, e, 2, (fsm_type_t *) &incline_sensor},
{&lidar_task, e, 2, (fsm_type_t *) &back_sensor},
{&motor_task_lidar, e, 3, (fsm_type_t *) &front_motor},
{&motor_task_lidar, e, 3, (fsm_type_t *) &back_motor},
{&motor_task_ultrasonic, e, 3, (fsm_type_t *) &right_motor},
{&motor_task_ultrasonic, e, 3, (fsm_type_t *) &left_motor},
{&motor_task_lidar, e, 3, (fsm_type_t *) &top_motor},
{&speaker_task, %] 7 (fsm_type_t *) &speaker_manager}

};

-
-

Page 43

// Task table that is being cycled through (see main.c)
extern TaskType tasks[NUMOFTASKS];

/*
* Description:
* This function cycles through each of the tasks defined in the main.c file.
* Each of these tasks either checks the sensor data, triggers the motors or
* the speakers. These tasks are executed at various frequencies based on the
* counter that is placed in the task table (see main.c)
*
* Called In:
* main.c
*
* Parameters:
* None
*
* Return Value:
* None
*/
void task_scheduler_isr(void){
#if DEBUG
uint8_t counter,period;
#endif
int i;
for(i = @;i < NUMOFTASKS; i++)
{
#if DEBUG

// used for testing
counter = tasks[i].cycle_ counter;
period = tasks[i].task execution period;

#endif
tasks[i].cycle_counter++;
// Update counter and execute task if applicable
if(tasks[i].cycle counter »>= tasks[i].task_execution_period)
{
(*tasks[i].task) (tasks[i].fsm);
tasks[i].cycle counter = ©;
¥
}
}

Page 44

receive_buffer: Buffer used to receive data in the ISR
rx_byte_ctr: Number of bytes left to receive
rx_index: The index of the next byte to be received in receive_buffer
transmit_buffer: Buffer used to transmit data in the ISR
tx_byte_ctr: Number of bytes left to transfer
tx_index: The index of the next byte to be transmitted in transmit_buffer
cmd_flag: Indicates whether data being sent is a command to the LiDAR sensor
cmd_flag = 1 means writing data to sensor
cmd_flag = © means reading data from sensor
rx_done: Indicates when the recieving of data is done

rx_done = 1 means all data recieved (9 bytes)
rx_done = © means not all the data has been recieved

* K X X X X X X X X X X X X X K K K ¥ ¥ X X

*/

uint8_t receive_buffer[MAX_BUFFER_SIZE] = {@};
uint8_t rx_byte_ctr = 0;

uint8_t rx_index = ©;

uint8_t transmit_buffer[MAX_BUFFER_SIZE] = {0};
uint8_t tx_byte ctr = 9;

uint8_t tx_index = 9;

uint8 t cmd_flag = ©;

uint8_t rx_done = 9;

// Command defined in LiDAR datasheet that requests data in cm
uint8_t get_lidar_cm_cmd[] = {©x5A,0x05,0x00,0x01,0x60};

Page 45

/*
* NOTE FOR RETURNED DATA FROM SENSOR:
*
* LiDAR 9-byte frame returned when requesting distance
*
* byte © - 0x59, frame header, same for each frame
* byte 1 - ©x59, frame header, same for each frame
* byte 2 - Dist_L distance value low 8 bits
* byte 3 - Dist_H distance value high 8 bits
* byte 4 - Strength L low 8 bits
* byte 5 - Strength_H high 8 bits
* byte 6 - Temp_L low 8 bits
* byte 7 - Temp_H high 8 bits
* byte 8 - Checksum is the lower 8 bits of the cummulative sum of the numbers of
* the first 8 bytes
*
*/
/*
* Description:
* Copies over the contents of a uint8_t array to another.
*
* Parameters:
* source - pointer to the array which we want to copy from
* dest - pointer to the array we want to copy to
* count - number of bytes to copy over
*
* Return:
* None
*/

void copy_array(uint8_t *source, uint8_t *dest, uint8_t count)

{
uint8_t copyIndex = 9;
for (copyIndex = @; copyIndex < count; copyIndex++)

{

dest[copyIndex] = source[copyIndex];

Page 46

Description:

Initializes the I2C module on the MSP. This function connects the module to
the SMCLK and sets the data rate to 400 kbps. There is no automatic stop
sent and there is not byte count threshold set. The I2C operates using the
interrupts associated with the module (ISR located at the bottom of this
file)

Called In:
main.c

Parameters:
None

Return:
None

¥ OK K K X K K X K X ¥ K K K ¥ X

*/
void init_i2c()

{

// disable the I2C to begin
EUSCI_B_I2C_disable(EUSCI_B@ _BASE);

// Declaring Settings for I2C Using Driver Library structure
EUSCI_B_I2C_initMasterParam param = {0};

param.selectClockSource = EUSCI_B_I2C_CLOCKSOURCE_SMCLK;
param.i2cClk = CS_getSMCLK();

param.dataRate = EUSCI_B_I2C_SET_DATA_RATE_400KBPS;
param.byteCounterThreshold = 0;

param.autoSTOPGeneration = EUSCI_B_I2C_NO_AUTO_STOP;

// Initialize using the param structure
EUSCI_B_I2C_initMaster(EUSCI_B® BASE, ¶m);

// setting the initial slave address (default is front sensor for now,
// changed later)
EUSCI_B_I2C_setSlaveAddress(EUSCI_B®_BASE, LIDAR_FRONT_ADDR);

//Set Master in transmit mode (changes throughout code)
EUSCI_B_I2C_setMode(EUSCI_B®_BASE, EUSCI_B_I2C_TRANSMIT MODE);

Page 47

*OOX XK XK XK XK K X X ¥ K K K x

//Enable I2C Module to start operations
EUSCI_B_I2C_enable(EUSCI_B@ BASE);

// Clear all possible interrupts for I2C
EUSCI_B_I2C_clearInterrupt(EUSCI_BO_BASE,
EUSCI_B_TI2C_RECEIVE_INTERRUPTE +
EUSCI_B_T2C_TRANSMIT_INTERRUPTO +
EUSCI_B_I2C_NAK_INTERRUPT

);

//Enable master Transmit, Receive, and NAK interrupt

EUSCI_B_I2C_enableInterrupt(EUSCI_B®O_BASE,
EUSCI_B_I2C_RECEIVE_INTERRUPTO +
EUSCI_B_T2C_TRANSMIT_INTERRUPT® +
EUSCI_B_I2C_NAK_INTERRUPT

)3

// Set I2C pins to correct peripheral mode
GPIO_setAsPeripheralModuleFunctionInputPin(
GPIO_PORT_P1,
GPIO_PIN2 + GPIO_PIN3,
GPIO_PRIMARY_MODULE_FUNCTION

);

Description:

Sends the get_lidar_cm_cmd over the I2C bus to the LiDAR sensor and then
requests the data from the sensor. This function includes other functions
from the TI Driver Library (MSP430 Ware) for the MSP430FR2433 to set the
slave address, set the mode, and then starting the data transmission
sequence.

Called In:
main.c (lidar_task)

Parameters:
slave_addr - the salve address for the desired sensor to collect data from

Page 48

* Return:
* unsigned 16-bit value of the distance in centimeters

*/

uintle_t get_lidar_data_cm(uint8_t salve_addr)

{

// variables that track the number of receive attempts made by the MSP
// (limited to 5 max send receive attempts before quitting)

uint8_t rx_attempts = 9;

uint8_t rx_max_attempts = 5;

uintlé_t dist = @;

// Setting the slave address for transmission
EUSCI_B_I2C_setSlaveAddress(EUSCI_B®_BASE, salve_addr);

// Set Master in transmit mode
EUSCI_B_I2C_setMode(EUSCI_B® BASE, EUSCI_B_I2C_TRANSMIT_MODE);

// Load TX byte counter (5 bytes sent for command)
tx_byte_ctr = 5;

// This is a command so set flag to 1
cmd_flag = 1;

// Reset TX buffer index to @
tx_index = ©;

// Load command into the transmit buffer
copy_array((uint8_t *)&get_lidar_cm_cmd, (uint8_t *) &transmit_buffer,
sizeof(get_lidar_cm_cmd));
// Wait for stop bit to be set before sending next data
while (EUSCI_B_I2C_SENDING STOP == EUSCI_B_I2C_masterIsStopSent
(EUSCI_B@_BASE));

// Send Start bit for command transmission
EUSCI_B_I2C_masterSendStart(EUSCI_B@_BASE);

__delay_cycles(100);

// Expecting 9 bytes back from get_dist_cm command
rx_byte_ctr= 9;

Page 49

// This is a read, not a command
cmd_flag = ©;

// Reset Index to start of buffer
rx_index = @;

// RX is just starting so it is not done
rx_done = 0;

//Set Master in receive mode
EUSCI_B_I2C_setMode(EUSCI_B@_BASE,
EUSCI_B_I2C_RECEIVE_MODE

)5

// wait for stop bit to be set before sending next data
while (EUSCI_B_I2C_SENDING_STOP == EUSCI_B_I2C_masterIsStopSent
(EUSCI_B®_BASE));

// Send Recieve Start bit
EUSCI_B_I2C_masterReceiveStart(EUSCI_B®@_BASE);

// wait for the RX to be done

while((!rx_done) && (rx_attempts < rx_max_attempts)){
rx_attempts++;
__delay_cycles(50);

// If max rx attempts reached, just send @ as retrieved value
if(rx_attempts >= rx_max_attempts)

{
return ©;

}else

{
dist = ((uintl6_t)(receive buffer[3]<<8) |

(uintl6_t)(receive_buffer[2]));

return dist;

¥

Page 50

Description:

This is the ISR that conducts the I2C transmission for both sending and
receiving data. This is normally initialized whenever the

EUSCI_B_I2C masterReceiveStart() or EUSCI_B_I2C masterSendStart() function
is used.

EE S S

*/
#if defined(__TI_COMPILER VERSION_) || defined(__IAR_SYSTEMS_ICC_)
#pragma vector=USCI_B@ VECTOR
__interrupt
#elif defined(__GNUC_)
__attribute__ ((interrupt(USCI_B®_VECTOR)))
#endif
void USCIB@_ISR(void)
{
uint8_t rx_data;
switch(__even_in_range(UCBOIV, USCI_I2C_UCBIT9IFG))

{
case USCI_NONE: // No interrupts break;
break;
case USCI_I2C_UCALIFG: // Arbitration lost
break;
case USCI_I2C_UCNACKIFG: // NAK received (master only)

// Resend START if NAK'd
if(emd _flag == 1)

{
EUSCI_B_I2C_masterSendStart(EUSCI_B®@_BASE);
¥
else if(cmd_flag == 0)
{
EUSCI_B_I2C_masterReceiveStart(EUSCI_B®_BASE);
¥
break;
case USCI I2C UCSTTIFG: // START condition detected with own

// address (slave mode only)

Page 51

break;
case USCI_I2C_UCSTPIFG: // STOP condition detected (master &
// slave mode)

break;

case USCI_TI2C_UCRXIFG3: // RXIFG3
break;

case USCI_I2C_ UCTXIFG3: // TXIFG3
break;

case USCI_TI2C_UCRXIFG2: // RXIFG2
break;

case USCI_TI2C_UCTXIFG2: // TXIFG2
break;

case USCI_I2C_UCRXIFG1: // RXIFG1
break;

case USCI_I2C_UCTXIFGL1: // TXIFG1
break;

case USCI_TI2C_UCRXIFG@: // RXIFG@

// Get RX Data and load into buffer
rx_data = EUSCI_B_I2C masterReceiveSingle(EUSCI_B®@ BASE);

receive buffer[rx_index] = rx_data;

// Check to see if byte read limit is reached
if(rx_index »>= rx_byte ctr)

{
rx_index = ©;
EUSCI_B_I2C_masterReceiveMultiByteStop(EUSCI_B@_BASE);
rx_done = 1;

}else

{
// Increment index to store next value in empty buffer space
rx_index++;

¥

break;

case USCI_T2C_UCTXIFGO: // TXIFGe

Page 52

// Check TX byte counter

if (tx_byte_ctr)
{

// Send next byte

EUSCI_B_I2C_masterSendMultiByteNext(EUSCI_B@_BASE,
transmit_buffer[tx_index]);

// Decrement TX byte counter

tx_byte_ctr--;

// Increment index to send next byte in buffer next time around

tx_index++;

}

else

{

EUSCI_B_I2C_masterSendMultiByteStop(EUSCI_B@_BASE);

tx_index = @;
}

break;

case USCI_I2C_UCBCNTIFG:

break;

case USCI_I2C_UCCLTOIFG:

break;

case USCI_I2C_UCBIT9IFG:

break;
default:
break;

// Byte count limit reached (UCBXTBCNT)
// Clock low timeout - clock held low too long

// Generated on 9th bit of a transmit
// (for debugging)

Page 53

UART

//
/*

*

*OOX X X X X X X X X K K X X X X ¥

vo

Initializes UART modules to run at 968@ baud rate

Description:

This function initializes the corresponding UART module to a baud rate of

9600 with no parity bit, LSB first, and one stop bit. Total of 1@ bits sent (start,
8-bits of data, stop). This function assumes that the SMCLK is running at 1MHz for
baud rate calculations and set up.

Called In:

ultrasonic_init()

Parameters:

rx_pin - bit mask for the rx pin

tx_pin - bit mask for the tx pin

port_num - port number where the rx/tx pins are (used for pin initialization)
uart_base - module base value to initialize the UART module

Return Value:

None
/

id init_uart(uint8_t rx_pin, uint8_t tx_pin, uint8_t port_num,
uintlé_t uart_base)

// Setting TX on UART Module
GPIO_setAsPeripheralModuleFunctionOutputPin(
port_num,
tx_pin,
GPIO_PRIMARY_MODULE_FUNCTION
)

// Setting RX on UART Module
GPIO_setAsPeripheralModuleFunctionInputPin(
port_num,
rx_pin,
GPIO_PRIMARY_MODULE_FUNCTION
)

Page 54

//Configure UART

//SMCLK = 1MHz, Baudrate = 9600

//UCBRx = 8, UCBRFx = ©, UCBRSx = @xD6, UCOS16 = ©
EUSCI_A_UART_initParam param = {0};
param.selectClockSource = EUSCI_A_UART_CLOCKSOURCE_SMCLK;
param.clockPrescalar = 6;

param.firstModReg = 8&;

param.secondModReg = ©x20;

param.parity = EUSCI_A_UART_NO_PARITY;
param.msborLsbFirst = EUSCI_A_UART_LSB_FIRST;
param.numberofStopBits = EUSCI_A_UART_ONE_STOP_BIT;
param.uartMode = EUSCI_A_UART_MODE;

param.overSampling = EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION;

// Initialize UART
if (STATUS_FAIL == EUSCI_A UART_init(uart_base, ¶m))
{

return;

// Enable UART communication
EUSCI_A_UART_enable(uart_base);

// Clear the RX interrupt
EUSCI_A_UART_clearInterrupt(uart_base,
EUSCI_A_UART_RECEIVE_INTERRUPT);

// Clear TX interrupts
EUSCI_A_UART_clearInterrupt(uart_base,
EUSCI_A_UART_TRANSMIT INTERRUPT);

// Enable RX interrupts
EUSCI_A_UART_enableInterrupt(uart_base,
EUSCI_A_UART_RECEIVE_INTERRUPT);

// Enable TX interrupts

EUSCI_A_UART_enableInterrupt(uart_base,
EUSCI_A_UART_TRANSMIT_INTERRUPT);

Page 55

Description:

This is the IRQ Handler for any RX interrupts triggered on the UART®
module (P1.5). This handles the interrupt by updating the structure
right_sensor defined in main() by adding in the most recent distance value
to it's cumulative sum and distance readigns buffer. Then it computes

the new average in addition to this for the output function to handle.

EEE R S S G G

*/
#if defined(__TI_COMPILER_VERSION_) || defined(__IAR_SYSTEMS_ICC_)
#pragma vector=USCI_AO VECTOR
__interrupt
#elif defined(___GNUC_)
__attribute__ ((interrupt(USCI_A®_VECTOR)))
#endif
void EUSCI_A®_ISR(void)
{
switch(__even_in_range (UCA@IV,USCI_UART_UCTXCPTIFG))
{
uintl6e_t dist;
case USCI_NONE: break;
case USCI_UART_UCRXIFG:

left_sensor.bytes_received++;
if(left_sensor.bytes_received == 1)
{
left_sensor.dist_high_byte = EUSCI_A UART_receiveData(
EUSCI_A1_BASE);

}else if(left_sensor.bytes_received == 2)
{
// reset the bits recieved
left_sensor.bytes_received = ©;

// read the next byte available (lower byte)
left_sensor.dist_low_byte = EUSCI_A_UART_receiveData(
EUSCI_A1_BASE);

//compute the distance value to add to the buffer

dist = ((uintl6_t) left_sensor.dist_high byte << 8) |
(uinti16_t)left_sensor.dist_low_byte;

Page 56

// Update the cumulative sum
left_sensor.cumulative_sum = left_sensor.cumulative_sum -
left_sensor.dist_buffer[left_sensor.buff_idx] + dist;

// Now update the buffer with the new value
left_sensor.dist_buffer[left_sensor.buff_idx] = dist;

// Update the average now
left_sensor.average = left_sensor.cumulative_sum

>> SENSOR_AVERAGING_SHIFT_AMNT;

// Now update the index
left_sensor.buff_idx++;

if(left_sensor.buff_idx >= SENSOR_BUFFER_LENGTH)

{
left_sensor.buff_idx = @;
}
}
break;

case USCI_UART_UCTXIFG:
left_sensor.bytes_received = 0;
break;

case USCI_UART_UCSTTIFG: break;

case USCI_UART_UCTXCPTIFG: break;

Page 57

Description:

This is the IRQ Handler for any RX interrupts triggered on the UART1
module (P2.5). This handles the interrupt by updating the structure
right_sensor defined in main() by adding in the most recent distance value
to it's cumulative sum and distance readigns buffer. Then it computes

the new average in addition to this for the output function to handle.

L R SRR K S K

*/
#if defined(__TI_COMPILER_VERSION_) || defined(_ _IAR_SYSTEMS_ICC_)
#pragma vector=USCI_A1_VECTOR
__interrupt
#elif defined(__GNUC_)
__attribute__ ((interrupt(USCI_A®@_VECTOR)))
#endif
void EUSCI_A1_ISR(void)
{
uintl6_t dist;
switch(__even_in_range(UCA1IV,USCI_UART_UCTXCPTIFG))
{
case USCI_NONE: break;
case USCI_UART_UCRXIFG:

right_sensor.bytes_received++;
if(right_sensor.bytes_received == 1)
{
right_sensor.dist_high_byte = EUSCI_A UART_receiveData(
EUSCI_A1l BASE);

}else if(right_sensor.bytes_received == 2)
{
// reset the bits recieved
right_sensor.bytes_received = 0;

// read the next byte available (lower byte)
right_sensor.dist_low_byte = EUSCI_A UART_receiveData(
EUSCI_A1_BASE);

//compute the distance value to add to the buffer

dist = ((uintl6_t) right sensor.dist_high byte << 8) |
(uintle_t)right_sensor.dist_low_byte;

Page 58

// Update the cumulative sum
right_sensor.cumulative sum = right_sensor.cumulative_sum -
right_sensor.dist_buffer[right_sensor.buff_idx] + dist;

// Now update the buffer with the new value
right_sensor.dist_buffer[right_sensor.buff_idx] = dist;

// Update the average now
right_sensor.average = right_sensor.cumulative_sum

>> SENSOR_AVERAGING_SHIFT_AMNT;

// Now update the index
right sensor.buff_ idx++;

if(right_sensor.buff _idx >= SENSOR_BUFFER_LENGTH)

{
right sensor.buff_idx = @;
}
}
break;

case USCI_UART_UCTXIFG:
right_sensor.bytes received = 9;
break;

case USCI_UART_UCSTTIFG: break;

case USCI_UART_UCTXCPTIFG: break;

Page 59

Motors

/* Description:
* Toggles the motor at intervals, with faster pulses happening at closer distances.
* Turns off the motor if no data is detected.
*
* Called In:
* motor_task_ultrasonic(fsm_type_t* fsm), main.c
* motor_task_lidar(fsm_type_t* {fsm), main.c
*
* Parameters:
* motor - the motor being vibrated
* data - the data received from the sensors.
*
* Return Value:
* none
ES

void vibrate_task(motor type t* motor, uintl6 t data)

{
if (data == NO_FREQ)
{
// Turns off the pin if nothing is detected
GPI0_setOutputLowOnPin{motor->port, motor->pin);
motor->counter = @;
motor-»is_off = 1;
}
else if ((data == SLOW_FREQ && motor->counter == @) |
(data == MED_FREQ &3 motor->counter%4 == @) ||
(data == FAST_FREQ))
{
// An obstacle has been detected & the pins need to be toggled
if (motor-»is_otf)
{
// Turns the pin on & sets is off to false
GPIO_setOutputHighOnPin(motor->port, motor->pin);
motor-»is_off = @;
}
else
{
// Turns the pin off & sets is_off to true. Increments the counter
GPIO_setOutputLowOnPin(motor-»>port, motor->pin);
motor-»is off = 1;
motor->counter = (motor->counter+ 1)%8;
¥
}
else
{
// An obstacle has been detected & the pins do not need to be toggled
motor->counter = (motor->counter + 1)%8;
}
b

Page 60

.
*

* Description:

* Converts the given fsm value to the subclass of motor, and retrieves the
* data from the related lidar sensor.

¥

* Called In:

* task_scheduler_isr(), main.c

*

* Parameters:

* fsm - contains a motor variable, passed through by the fsm.
¥

* Return Value:

* None

*/

void motor_task_lidar(fsm_type_t* fsm){
// WARNING: The fsm variable passed through must be of type motor_type_t
motor_type_ t *motor = (motor_type t*) fsm;

// WARNING: The sensor_ref variable associated with the motor must be of
// type ultrasonic_type_t

uintl6_t data = ((lidar_type t*)motor-»sensor_ref)->average;

uintl6_t frequency;

// WARNING: The sensor_ref variable associated with the motor must be of
/[type ultrasonic_type_t
if(((lidar_type_t*)motor-»sensor_ref)->address == LIDAR_INCLINE_ADDR){
// Decodes the data using adjusted values for the incline sensor
frequency = data_decoder_incline(motor->index, data);
} else {
/[Performs the standard data decoding
frequency = data_decoder(motor->index, data, 1);

}

vibrate_task(motor, frequency);

Page 61

~
*

* Description:

* Simplifies the data into buckets based on detected obstruction distance.
* Updates the speaker manager's proximity array.

¥

* Called In:

* motor_task_ultrasonic(fsm_type_t* fsm), main.c

* motor_task_lidar(fsm_type t* fsm), main.c

*

* Parameters:

* index - the sensor's index in the speaker_manager array

* data - the data received from the sensors.

* is lidar - 1 if the data comes from a lidar sensor, @ if not

k3

* Return Value:

* uintl6 t frequency - the decoded frequency relative to the data
*/

uintl6_t data_decoder(uint8_t index, uintl6_t data, uint8_t is_lidar)
uintl6_t frequency = NO_FREQ;

if(setting == Inside)

{
// Compares the distances for close range obstacles for lidar or uart
if (is_lidar)
{
/{ Compares the returned sensor distance with pre-defined distances and
// returns a frequency indicative of nothing, close, medium, or far
if (data < INSIDE_LIDAR_IGMNORE_LOW) { }
else if (data < INSIDE_LIDAR_LOW) { frequency = FAST_FREQ; }
else if (data < INSIDE_LIDAR_MID) { frequency = MED_FREQ; }
else if (data < INSIDE_LIDAR_HIGH) { frequency = SLOW_FREQ; }
}
else
{
// Compares the returned sensor distance with pre-defined distances and
J// returns a frequency indicative of nothing, close, medium, or far
if (data < INSIDE_UART_IGNORE_LOW) { }
else if (data < INSIDE_UART_LOW) { frequency = FAST_FREQ; }
else if (data < INSIDE_UART_MID) { frequency = MED_FREQ; }
else if (data < INSIDE_UART_HIGH) { frequency = SLOW_FREQ; }
}
}
else
{
// Compares the distances for long range obstacles for lidar or uart
if(is_lidar)
{
// Compares the returned sensor distance with pre-defined distances and
// returns a frequency indicative of nothing, close, medium, or far
if (data < OUTSIDE LIDAR IGMORE_LOW) { 1}
else if (data < OUTSIDE_LIDAR_LOW) { frequency = FAST_FREQ; }
else if (data < OUTSIDE_LIDAR_MID) { frequency = MED_FREQ; }
else if (data < OUTSIDE_LIDAR HIGH) { frequency = SLOW FREQ; }
h
else
{
// Compares the returned sensor distance with pre-defined distances and
// returns a frequency indicative of nothing, close, medium, or far
if (data < OUTSIDE_UART IGNORE_LOW) { 1}
else if (data < OUTSIDE_UART_LOW) { frequency = FAST_FREQ; }
else if (data < OUTSIDE_UART MID) { frequency = MED FREQ; }
else if (data < OUTSIDE_UART_HIGH) { frequency = SLOW_FREQ; }
¥
H

/fupdates the speaker management array
speaker_manager.speaker_frequencies[index] = frequency;
return freguency;

Page 62

S
#*

Description:

Called In:

Parameters:

Return Value:

* oK K K K K K K K K K K ¥

*/

Simplifies the data into two buckets based on detected obstruction distance.
Updates the speaker manager's proximity array for the lidar task.

motor_task_lidar(fsm_type_t* fsm), main.c

index - the sensor's index in the speaker_manager array
data - the data received from the sensors.

uintl6e_t frequency - the decoded frequency relative to the data

uintle_t data_decoder_incline(uint8_t index, uintl6_t data){
uintl6_t frequency = NO_FREQ;

if(is_calibrated)
{

// execute frequencies only once user height is ascertained
if (user_height + HIGH_TOLERANCE <= data) { freguency = MED_FREQ; }

else if (user_height - HIGH_TOLERANCE >= data) { frequency = MED_FREQ;
else if (user_height + LOW_TOLERANCE <= data) { frequency = SLOW_FREQ;
else if (user_height - LOW _TOLERANCE »>= data) { frequency = SLOW_FREQ;

¥

! et et

//updates the speaker management array
speaker_manager.speaker_frequencies[index] = frequency;

return frequency;

Speakers

—~
*

Description:

Called In:
fsm, main.c

Parameters:

Return Value:
None

HOK K K K K O K K K K K

=/

Cycles through the frequency output for each sensor, as stored in the
speaker_manager struct. The CCR register for the PWM wave is updated.

fsm - the speaker_manager struct passed through by the fsm

void speaker_task(fsm_type_t* fsm){
speaker_manager_type_t *speaker_manager = (speaker_manager_type_t*) fsm;

if(speaker_manager->speaker_is_on)

// update the index for the next speaker to be evaluated
speaker_manager->speaker_frequencies_index =
(((speaker_manager->speaker_frequencies_index)+1)%SPEAKER_BUFFER_LENGTH);

// update the duty cycle to the tone of the direction being evaluated, with CCR1
// as half the duty cycle of CCR®
change_duty_cycle((speaker_manager->speaker_frequencies[speaker_manager->

} else {

speaker frequencies index]),
speaker_manager->ccrl_index, speaker_manager->ccr@_index);

change_duty_cycle(@, speaker_manager-»>ccrl_index, speaker_manager->ccrd_index);

Page 63

Appendix C
I2C Verification

sep

Ao Default

Wik virtialBench

oL

Stopped

Time/Div

N 50 pss

~ o AN @ T

Single

= Dox
Aue Normal Stop Frequency

230 [_
§=
w0y |

M Cigital

3.300V

0,000 A

iy

/O Type here to search

Gefaul:

3.300

0.200

4,995V

0.102 A

4

T

N Cur
= Curd

L

3.8V
4.86 V

aY 1.28 ¥

Amplitute
3.30 Vee

Dty Cycle

DE Gifset

1.65 W

50 %

R SUPPLY

5.000 0.000V- 0.000

0.200 0,000 A 0.500

m ¢ @ B

Figure 24: 12C Command to LiDAR

aiias virtualBench

Time/Div

oot A @

W 5000 bS5

3.300V

0.000 A

iy

M | O Type heretosearch

.300

0.200

0.054 A

=
&

Stopped Y00 ps/ P e Ao Nomall| Siop

AT Curt 3.76 V AY 1.48 W
N =Curz 2.27 V

D POWER SUPPL

4,996V

5.000 0.000V- 0.000

0.200 0.000 A 0.500

(<]

m ¢ @ B v

Figure 25: 12C Read from LiDAR

& 40F

L P

2IGITAL MULTIMETER

Range

0162.87 mv e

¥y ¥ R K o b o)

Q@ur ~FRBWmB g P

Trigger
- pox
Frequency

Mare

M Digital

312 M
12/7/2021

s0v
8= -
000V L

— -2

Amplitude
3.30 Vpo

Duty Cycle

50

DC Offsel

1.85

W

N LN = W

DIGITAL MULTIMETER

Range

0197.10mv we

¥ ¥ & K 0 B o)

~ D0 B P

6:35 PM

12/7/2021

B

W

B

Appendix D
Cost Breakdown

Team: Table In The Back + 1
Budget $500.00
Current Spent $427.71
Remaining Balance $72.29
Item Price Count Total
Speaker - TP304003-2 $1.56 2 $3.12
LIDAR Distance Sensor - TFmini-S $43.90 3 $131.70
Vibration Motors - 316040001 $1.20 5 $6.00
Ultrasonic Sensor - US-100 Ultrasonic $6.95 2 $13.90
LiDAR Distance Sensor Cable $1.50 3 $4.50
MSP-EXP430FR2433 $11.99 2 $23.98
5V Regulator $1.49 1 $1.49
MOSFET transistor (N-Channel) $1.00 5 $5.00
MOSFET transistor (P-Channel) $0.57 3 $1.71
Diodes (for motors) $0.13 5 $0.65
button 2 (adjustable hieght and cheaper) $1.79 1 $1.79
3.3V REGULATOR $3.09 1 $3.09
Booster Pack Connectors $1.26 2 $2.52
5V NMOS for P-channel MOSFET $1.32 3 $3.96
UClamp for static Protection $0.27 1 $0.27
12C LiDAR Connectors $0.75 3 $2.25
Ultrasonic Connectors $0.70 2 $1.40
test points $0.34 13 $4.42
10k Ohm Resistors $0.10 2 $0.20
1k Ohm Resistors $0.10 3 $0.30
250k Resistor $0.75 1 $0.75
.1uF Capacitor (Ceramic) $0.23 1 $0.23
10uF Capacitor (Ceramic) $0.50 1 $0.50
1uF Capacitor (Ceramic) $0.32 2 $0.64
O1uF (10000pF - Ceramic) $0.21 1 $0.21
Battery and 2-Wire Connectors $0.19 10 $1.90
2 Wire Housing $0.10 10 $1.00
22 Gauge Wire Contacts $0.10 42 $4.20
i2¢ - lidar - Housing $0.19 3 $0.57
22 awg wire 25' $2.95 2 $5.90
uart - ultrasonic - Housing $0.20 2 $0.40
6V Rechargeble Battery $8.72 1 $8.72
6V Battery Recharger $13.36 1 $13.36
10uF Capacitor $0.50 3 $1.50
IC REG 5V TO220AB $1.19 3 $3.57
.33uF Capacitor $0.33 3 $0.99
.10uF Capacitor $0.50 2 $1.00
IC REG 5V TO220AB $1.19 1 $1.19

Page 65

.22uF Capacitor $0.33 1 $0.33

MOSTFET P-Ch TO243A A $1.61 3 $4.83

1k Resistor $0.10 3 $0.30

VIOSTFET N-Ch TNO604N3-G (motors $1.32 3 $3.96
Slotted Test points $0.26 13 $3.38

4POS Connector (LIDAR) $0.75 3 $2.25

IC REG 3.3V 8S0IC $3.09 1 $3.09

uF Capacitor $0.23 1 $0.23

250k Resistor $0.75 1 $0.75

SPOS Connector (Ultrasonic) $0.77 2 $1.54

IPOS Connector (Battery, Motors, Buttor $0.15 10 $1.48
MOSFET N-CH TNO606N3-G (LiDAR $1.00 5 $5.00
Diode I1N4149 $0.13 5 $0.65

10,000 pF (.01uF) Capacitor $0.21 1 $0.21

10k Resistor $0.10 1 $0.10

UCLAMP $0.70 1 $0.70

CONN HDR 20POS PCB $1.26 2 $2.52
UART and LiDAR Clamps $0.10 22 $2.20
MSP-EXP430FR2433 $11.99 1 $11.99

Black Wire $6.98 1 $6.98

Red Wire $5.27 1 $5.27

White Wire $5.27 1 $5.27

Green Wire $5.27 1 $5.27
Board Submission Fees $33.00 2 $66.00
Board Population Fees $6.00 2 $12.00
Hat $20.00 1 $20.00

2 pin crimp connectors (part 1735801-1) $0.10 50 $0.79
Extra crimps for 4 and 5 POS connectory $0.10 25 1.74
Wire Assembly $10.00 N/A N/A

Page 66

Appendix D: Hat Pictures

Page 67

Page 68

Page 69

Page 70

Page 71

