
Comprehensive Analysis of Software Testing for Intrinsically Challenging Systems

A Technical Paper submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jassiel Mendoza

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Rosanne Vrugtman, Department of Computer Science

Comprehensive Analysis of Software Testing for Intrinsically Challenging Systems

CS4991 Capstone Report, 2024

Jassiel Mendoza
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
jjm5mh@virginia.edu

ABSTRACT

A piece of software can never be fully
tested, which already fogs the line of what is
considered “enough testing.” This problem is
exacerbated when considering software with
intrinsic properties that directly oppose the
feasibility of testing software across varying
contexts, such as mobile applications. An
industry-wide adoption of set standards for
these intrinsically challenging systems is
needed to address the issue, especially as this
type of software is increasingly being applied
to security- and safety-critical applications.
To thoroughly evaluate existing testing
methods, I conducted a meta-analysis to gain
a comprehensive understanding of the
shortcomings of current techniques and the
necessary improvements needed to create
effective and adaptable approaches that bring
us closer to establishing an industry standard.
The findings indicate that the testing
techniques that are currently in use lack the
necessary functionality and scalability that
could make them useful for companies. To
overcome these deficiencies, current research
is focused on leveraging new technologies to
develop cost-effective and practical solutions.
As software continues to evolve, testing must
also evolve to keep pace with the increasingly
sophisticated software being developed.

1. INTRODUCTION

Every product made available to the public
undergoes testing to ensure it adheres to
technical standards and functions within

specified parameters. Software differs in that,
unlike physical products which are tested
before reaching consumers and are often
accompanied by warranties, software
products are subject to continuous testing
through development and even after release,
known as maintenance, and can never be
entirely free of flaws.

This maintenance phase holds immense
importance with a significant portion of a
software product or service budget allocated
to post-release maintenance. This is due to the
cost of maintaining software increasing
exponentially the further into development it
is, particularly if critical defects are identified
in the later stages. Given the resource-
intensive demands of testing and maintaining
software, coupled with the fact that software
cannot and will not ever be “perfect,”
meaning it exhibits no flaws, vulnerabilities,
or errors, presents software companies with
the dilemma of determining what is “enough
testing.” This question is of crucial
importance in industries that employ software
for security- and safety-critical applications,
such as finance and aviation, as they must
adhere to strict regulatory guidelines.

In recent years, not only has software itself
become increasingly sophisticated, but it
continues to be applied in complex contexts
as well. The rise of mobile devices brought
with it the need for mobile applications which
presents new challenges in testing for
software developers. The intrinsic properties
of mobile applications add another layer of

complexity to the already difficult dilemma of
software testing. For instance, the inherent
non-deterministic nature of these applications
makes it difficult to define expected
behaviors and outputs during testing,
inhibiting the design of deterministic test
cases necessary for accurately evaluating the
application’s behavior; the primary objective
of software testing to begin with.

The biggest problem, however, is the issue
of device fragmentation. The wide variety of
mobile devices, each with their own screen
sizes, resolutions, operating systems, and
hardware capabilities, presents a daunting
testing landscape. Adapting and modeling a
single mobile application to work correctly on
all combinations of these in an ideal,
controlled environment is already a difficult
task, but software must also be tested against
the real-world conditions it will face,
including fluctuating network conditions like
poor connectivity or transitions between
different cell tower networks, or
unpredictable user interruptions like incoming
calls, notifications, and background
processes.

All of these consume device resources,
affect the performance of subsequent tasks,
and are handled differently by each device
and its operating system. The extensive input
space presented makes it impractical, if not
nearly impossible, to model and account for
every possible scenario, both technically and
financially, thereby limiting the ability to
identify inputs that reveal critical failures.
This highlights the importance of finding
cost-effective solutions to the software testing
problem, as software will only become more
intricate.

2. RELATED WORKS

An article by Linares-Vasquez, et al.
(2017), was the primary catalyst that
influenced this research. The article outlined
the problem mobile application testing faces
and shed light on the issue of device

fragmentation, particularly within the
Android ecosystem. Furthermore, it delves
into the challenge of non-deterministic
outcomes impacting assertions, a
phenomenon known as test flakiness, as well
as the issue of varying runtime device states
influenced by available resources during test
execution. The article underscores the
necessity for a mobile-specific fault model to
proficiently test mobile applications. The
authors advocate for a continuous,
evolutionary, and large-scale testing
methodology integrating crowd-based and
cloud-based testing, along with real user
feedback, to address the complexities inherent
in mobile application testing. Although the
paper is dated, it highlights the slow progress
made in the field and reinforces the need for
development.

Additionally, a frequently cited article by
Choudhary, et al. (2015), provided
foundational information on the topic of
automating mobile application software
testing, specifically on the Android platform.
It provides a comprehensive analysis of the
merits and limitations of the state of the art,
assessing the effectiveness of each tool and
technique according to four metrics: ease of
use, ability to work on multiple platforms,
code coverage, and ability to detect faults.
Comparing and using these tools and
techniques in combination, properly
leveraging their strengths, provided insight
into potential ways to make each more
effective and efficient overall.

3. META STUDY

There are various, ever-evolving industry
standards in place today with the primary
objective of outlining an agreed set of
standards for software testing, the most
widely accepted being the ISO/IEC/IEEE
International Standard. In sensitive industries
such as finance and aviation, there also exist
governing bodies whose sole purpose is to
regulate certification and ensure software

involving their respective industries meets
defined standards. However, most mobile
applications do not fall under this umbrella
and do not adhere to these strict software
testing standards, as they are not mandatory
unless legal or contractual obligations are
involved.

This is concerning as mobile applications
continue to be integrated into daily life
affecting users’ privacy and security of
personal information. According to a
publication by NowSecure (n.d.), recognized
experts in mobile security, “95% of ~6500
popular mobile applications fail to meet the
world’s most recognized [minimum] industry
standard for mobile app security.” The areas
with the highest rates of failure include the
exposure and theft of critical user
information, and improper coding practices
such as failure to properly validate
information and the use of insecure libraries.
Although companies are not bound to follow
a set of defined guidelines, the high rate of
failure to even meet the minimum industry
standard is unacceptable and highlights the
importance of providing a cost-effective and
flexible way of testing mobile applications.

The current state-of-the-art software
testing script automation currently remains a
flawed process, as emphasis remains on
significant manual testing. Whether due to the
financial barrier of testing on a large and agile
scale or because of the existing inefficiencies
of testing automation that fail in “accurately
capturing and reproducing test scripts across
diverse devices” (Yu, et al., 2023). This
defeats the primary objective of automating
the testing process as “extensive
modifications are often necessary to ensure
the test scripts accurately reflect the
interactions and behaviors” (Yu, et al., 2023).

Consequently, the industry continues to
rely on manual testing as mobile applications
are dynamic pieces of software, that
constantly change due to feature additions
and updates. It is not only impractical but

expensive to automate a testing script that
ultimately requires manual modification to
port to differing device configurations.
Additionally, this process is not scalable as by
the time it is completed, the cycle restarts as a
new update or feature is developed and
released, trapping software test designers in a
perpetual uphill battle and forcing companies
to utilize other tools, each with their
limitations.

By far the next most popular technique
used in industry today is graphical user
interface (GUI) tests. This approach simulates
and captures user interactions on a target app,
compiling it into a test script that can be
reproduced and tested at scale. It leverages
the fact that mobile applications typically
share “identical or nearly identical
functionalities and consistent appearances
across platforms” (Ji, et al., 2023).

This similarity across devices ideally
facilitates the migration of GUI tests.
However, this testing methodology abstracts
the fact that mobile applications across
varying platforms are implemented in
different languages, causing the underlying
codebase to differ significantly. Therefore,
while porting GUI tests across platforms may
prove to be successful in testing the graphical
interface and front-end functionality across
platforms, “the recorded test scripts, which
capture interactions specific to one app’s
architecture, may not align with the design
patterns and structure” of an application on a
different platform (Yu, et al., 2023). The
difference in the underlying codebase can
cause the same GUI elements and sequence
of events to behave and operate differently.
This limitation again calls for the need for
manual intervention as the testing scripts need
to be adjusted to reproduce the user
interactions. This once again hinders the
scalability of such an approach as it suffers
from the same pitfalls as the use of automated
test scripts.

It is common practice in software
engineering to distribute a process among a
large network to ease the load of having to
perform the same task independently. In
software testing, this is seen in the approach
of crowd-sourced testing. This largely
eliminates the device fragmentation problem
as mobile applications are tested with “in the
wild” conditions across varying devices. This
said, though, the current state-of-the-art
crowd-sourcing techniques all share the
limitation of involving “human intervention,
which is time-consuming and error-prone”
(Sun, et al., 2023).

This is problematic as crowd-sourcing
testing, as the name suggests, is outsourced,
meaning that “crowd-workers tend to submit
low-quality bug reports” as they have limited
to no knowledge of the underlying
functionality of the mobile application (Sun,
et al., 2023). Additionally, software testing is
a resource-intensive process already, but
crowd-sourcing testing puts an additional
financial burden on the company. To larger
companies, the additional cost might be
manageable and ultimately a worthy
investment, but smaller companies with
limited resources would be unable to leverage
this type of testing at a scale that would make
it advantageous.

The current state-of-the-art techniques
and approaches to software testing all exhibit
unwanted limitations. It is no surprise that
most mobile applications fail to pass even the
minimum standards, as there is simply no
efficient and effective way for companies to
comprehensibly test their application across
platforms and devices. Fortunately, software
testing is a hot topic in research, and
developers are constantly looking for new
approaches and techniques to mitigate the
issue.

4. ANTICIPATED SOLUTIONS

With extensive, ongoing research on new
approaches and ways to leverage

technologies, the limitations outlined
previously, may be improved. Yu, et al.
(2023), define the promising potential of
using large language models (LLM) in the
test script generation and migration. Their
research demonstrates an advantage of
utilizing LLMs as they “can delve deeper into
the intricacies of the app’s
functionality…generating meaningful input
strings that facilitate comprehensive testing”
(Yu, et al., 2023). Additionally, research
conducted by Ji, et al. (2023), focuses on
improving “vision-based widget mapping” to
facilitate GUI test migration and although
their research did not outright solve the GUI
tests limitation, it presents a step in the right
direction as the first empirical study on the
topic. Sun, et. al. (2023) also investigated
ways of improving crowd-sourcing
techniques in hopes of providing a
“lightweight” solution that eliminated the
need for human intervention in the testing
process. As each approach continues to be
refined, new avenues are also being explored.
With new developments and by leveraging
each approach’s strengths, a cost-effective
and practical solution will exist.

5. CONCLUSION

Testing is a vital stage that assures the
integrity of any product, and software must
not be treated any differently. Not only does
it provide reassurance to developers that the
functionality of their software is correct, but it
also protects customers’ privacy and security
by ensuring that the software does not contain
harmful bugs or defects. Testing software is
especially difficult due to the impossibility of
comprehensive testing, which is only
compounded by the complexities of mobile.
Therefore, there is a strong need for
improvements in the way testing in general is
conducted, much less for mobile application
testing.

The first step towards this goal is
understanding the current state of the art’s

weaknesses and strengths to then knowing
and improving on the shortcomings, while
simultaneously reinforcing the capabilities.
Ultimately, working towards incrementally
providing effective and efficient tools to
developers and companies; is crucial for the
objective of making software more reliable.

6. FUTURE WORK

Research must continue to assess the
efficacy of current tools and techniques used
for software testing. As new technologies
continue to emerge and evolve, along with
our understanding of them, finding ways to
leverage these technologies will result in the
improvement of the field. Much like the way
software will never be perfect, software
testing techniques will always have room for
improvement and will need to adapt to the
increasing complexities of the digital age.

REFERENCES
Choudhary, S. R., Gorla, A., & Orso, A.

(2015, November). Automated test input
generation for android: Are we there yet?
(E). 2015 30th IEEE/ACM International
Conference on Automated Software
Engineering (ASE). Presented at the 2015
30th IEEE/ACM International Conference
on Automated Software Engineering
(ASE), Lincoln, NE, USA.
doi:10.1109/ase.2015.89

ISO/IEC/IEEE International Standard -
Software and systems engineering --
Software testing --Part 1:General
concepts. (2022). ISO/IEC/IEEE 29119-
1:2022(E), 1–60.
doi:10.1109/IEEESTD.2022.9698145

Ji, R., Zhu, T., Zhu, X., Chen, C., Pan, M., &
Zhang, T. (2023). Vision-Based Widget
Mapping for Test Migration Across
Mobile Platforms: Are We There
Yet? 2023 38th IEEE/ACM International
Conference on Automated Software
Engineering (ASE), 1416–1428.
doi:10.1109/ASE56229.2023.00068

Linares-Vásquez, M., Moran, K., &
Poshyvanyk, D. (2017). Continuous,
Evolutionary and Large-Scale: A New
Perspective for Automated Mobile App
Testing. 2017 IEEE International
Conference on Software Maintenance and
Evolution (ICSME), 399–410.
doi:10.1109/ICSME.2017.27

NowSecure. (n.d.). 95% of Mobile Apps Fail
the OWASP MASVS Industry Standard
for Mobile Security, Finds NowSecure
Industry Benchmark. Retrieved from
https://www.nowsecure.com/press-
releases/95-of-mobile-apps-fail-the-
owasp-masvs-industry-standard-for-
mobile-security-finds-nowsecure-
industry-
benchmark/#:~:text=Established%20by%
20industry%20experts%20and,standard%
20for%20mobile%20application%20secur
ity.

Sun, X., Chen, X., Liu, Y., Grundy, J., & Li,
L. (2023). Taming android fragmentation
through lightweight crowdsourced
testing. IEEE Transactions on Software
Engineering, 1–17.
doi:10.1109/tse.2023.3266324

Yu, S., Fang, C., Ling, Y., Wu, C., & Chen,
Z. (2023, October 22). LLM for test script
generation and migration: Challenges,
capabilities, and opportunities. 2023 IEEE
23rd International Conference on
Software Quality, Reliability, and Security
(QRS). Presented at the 2023 IEEE 23rd
International Conference on Software
Quality, Reliability, and Security (QRS),
Chiang Mai, Thailand.
doi:10.1109/qrs60937.2023.00029

