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Dissertation Abstract

Major Histocompatibility Complex (MHC) molecules play a crucial role in the
immune system by presenting peptides to T-cells, allowing for the recognition of infected or
abnormal cells. This dissertation presents three projects focused on the identification of
peptides presented through the MHC class | and/or class Il pathways, contributing to a

better understanding of immune recognition and potential therapeutic applications.

The first project focuses on the verification of peptide presentation using a
combination of chromatographic and tandem mass spectrometry (MS2) data. This project
involved ensuring that the correct synthetic peptides—either the wild-type ovalbumin
peptide (OvaWT) or its trimethylated lysine variant (OvaK7m3)—were bound to MHC
molecules. By applying rigorous analytical techniques, including the RMA-S stabilization
assay, this study confirmed that the expected peptides were presented on MHC molecules.
This validation is critical for ensuring the reliability of MHC-peptide interaction studies,
paving the way for further exploration of post-translational modifications and their effects

on immune responses.

The second project aimed to characterize the MHC class | peptide binding motifs of
Golden Syrian hamsters, an emerging model organism for COVID-19 research. This study
was essential for identifying viral epitopes, particularly from the spike protein of SARS-CoV-
2, that could be presented by hamster MHC molecules. By elucidating these binding

motifs, the project provides a foundation for developing predictive algorithms to identify

XV



immunogenic peptides from viral proteins in this species. This work enhances the use of
hamsters in immunological studies, especially for infectious disease research and vaccine

development.

The third project investigates the presentation of phosphopeptides on MHC class |
molecules in head and neck squamous cell carcinoma (HNSCC) cells. Phosphorylation is
a key regulator of cellular processes, and in cancerous cells, phosphopeptides can be
presented on MHC molecules due to disruptions in normal phosphatase activity,
particularly by SET and CIP2A proteins. Using advanced sample preparation techniques,
including hydrophilic interaction chromatography (HILIC) and immobilized metal affinity
chromatography (IMAC), along with LC-MS/MS analysis, 27 phosphopeptides were
identified in HNSCC cells. Many of these phosphopeptides were also found in other
cancerous and infected cells, suggesting their potential as universal vaccine candidates for

both cancer and infectious diseases.

Together, these three projects provide significant insights into MHC peptide
presentation, with applications ranging from the study of post-translational modifications
in model systems to the identification of viral epitopes and cancer-specific antigens. These

findings have broad implications for the development of immunotherapies and vaccines.

XV



Chapter 1: Introduction

1.1 Introduction to Major Histocompatibility Complex (MHC)

1.1.1 Major Histocompatibility Complex (MHC) Antigen Processing and

Presentation Pathway

The MHC peptide presentation pathway is a critical component of the immune
system, responsible for the processing and presentation of foreign and self-antigensto T
cells. This process enables the immune system to distinguish between normal, healthy

cells and those that are infected or abnormal, such as cancerous cells. "2
There are two primary classes of MHC molecules: MHC class | and MHC class Il.

MHC Class | Pathway is primarily involved in presenting intracellular peptide
antigens, such as those derived from a virus or other intracellular pathogen proteins. The
proteins in the cell are degraded into small peptides by the proteasome, and these
peptides are then transported into the endoplasmic reticulum (ER) via the transporter
associated with antigen processing (TAP). Within the ER, the peptides bind to MHC class |
molecules, which are then transported to the cell surface, where they are presented to
cytotoxic CD8+ T cells, which can recognize and kill infected or abnormal cells through an

interaction between the T-cell receptor and the MHC-peptide complex.



In contrast, the MHC class Il pathway is involved in presenting extracellular
antigens. These antigens are typically derived from pathogens that have been endocytosed
by antigen-presenting cells (APCs) such as macrophages, dendritic cells, or B cells. The
endocytosed proteins are processed in endosomes and lysosomes, where they are broken
down into peptides. These peptides are then loaded onto MHC class Il molecules within
the endosomal compartments. The MHC class lI-peptide complexes are subsequently
transported to the cell surface, where they are presented to helper CD4+ T cells, which play

a crucial role in activating B cells to produce antibodies. 4

Both pathways are essential for the immune system's ability to monitor and respond
to a wide range of pathogens, ensuring that the body can effectively target and eliminate

infected or abnormal cells while maintaining tolerance to self-antigens (proteins/peptides).

In the context of peptide presentation, MHC class | and class Il molecules function
differently to achieve this immune surveillance. Unlike MHC class | molecules, which
typically bind shorter peptides with defined termini, MHC class Il molecules have an open
binding groove that can accommodate peptides of varying lengths, with a central core
region anchoring the peptide to the MHC (Figure 1-1). This structural feature leads to the
formation of overlapping sequences, where different peptides can share a common core

but vary at the end. ®
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Figure 1- 1: MHC Class | and Class Il Binding Groove®

1.1.2 MHC Polymorphism

MHC molecules are highly polymorphic, making it difficult to generate pan-
antibodies that could enrich for all MHC molecules, and make it hard to distinguish

different alleles for each MHC gene.

For MHC class | molecules, HLA-A, HLA-B, and HLA-C are composed of an a chain
and a beta-2 microglobulin (B2m). Since f2m is shared across different HLA types, the
antibody W6/32 is highly effective as a pan-MHC antibody for enriching all HLA class |

molecules.

However, MHC class Il molecules do not have B2m, making it much more
challenging to generate a pan-MHC antibody for class Il molecules. Among the individual
MHC class Il proteins, HLA-DR has an a chain that is nearly invariant, with significant
polymorphism occurring only in the B chain (shown in Figure 1-2). In contrast, both the a

and B chains of HLA-DQ and HLA-DP exhibit significant polymorphism. &’
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Figure 1- 2: Polymorphism of MHC class | and class Il molecules®



a. The variability plots of the amino acid sequences of MHC molecules are shown. For the
MHC class Il molecule, the variability of the HLA-DR alleles is shown. b. The height of the
bars in this figure represents the number of different alleles. These numbers correspond to
the HLA alleles officially designated by the WHO Nomenclature Committee for Factors of
the HLA System as of August 2000.

1.2 MHC-peptide Enrichment by Immunoprecipitation

Immunoprecipitation (IP) is a widely used laboratory technique that enables
isolation of MHC molecules from cell lysate. The principle behind immunoprecipitation is
based on the specific interaction between an MHC-specific antibody and its targeted MHC

molecules.

An antibody specific to the MHC molecules of interest is introduced into a sample
containing a complex mixture of cell lysate. The antibody binds to MHC molecules, forming

an antibody-antigen complex.

To isolate this complex, the antibody-antigen pairs are then captured using a solid
support, such as agarose or magnetic beads that are coated with protein A, protein G, or an
antibody that recognizes the primary antibody. In this research, agarose beads were used.
The beads allow for the antibody-protein complexes to be separated from the cell lysate

protein mixture by centrifugation or a magnetic field.

The bead-bound complexes are washed multiple times to remove non-specifically
bound proteins and other contaminants, ensuring that only the MHC-peptide complexes

remain attached to the beads.



The MHC associated peptides are then eluted from the beads, usually by acid
elution that disrupts the antibody-antigen interaction. The isolated MHC-associated
peptides then can be analyzed using mass spectrometry to identify the peptides, including

their modifications and abundances. &%1°

1.3 Reverse Phase Liquid Chromatography (RPLC)

Reverse-phase liquid chromatography (RPLC) is a widely used technique in
proteomics, particularly when coupled with mass spectrometry (MS) for the analysis of
complex protein mixtures. In this technique, the stationary phase is nonpolar, while the

mobile phase is more polar. "2

One of the most common stationary phases used in RPLC is C18 media, which
consists of octadecylsilane (ODS) bonded silica particles with 18-carbon alkyl chains,

making it highly hydrophobic.

The mobile phase solvents typically consist of a combination of water (with 0.1%
acetic acid for better ionization, separation and sensitivity) and an organic solvent such as
acetonitrile (ACN). Other acids, such as TFA, yield improved separation but are not

compatible with ESI-MS.

When a peptide sample is introduced into the column, the peptides interact with

the hydrophobic C18 chains.



A gradient is employed where the proportion of the organic solvent is gradually
increased. Hydrophilic peptides elute earlier when the mobile phase is aqueous, and

hydrophobic peptides elute later as the mobile phase organic content increases.

Peptides are separated based on their differential partitioning between the mobile
and stationary phases, which is influenced by their hydrophobicity. As peptides pass
through the C18 column, peptides with greater hydrophobicity are retained longer, resulting

in their separation from less hydrophobic peptides.

This separation is crucialin proteomics because it enables the mass spectrometer
analysis of a smaller number of peptides per elution time, rather than as a complex
mixture, leading to higher sensitivity and resolution, hence more accurate peptide

identification and quantification.

1.4 Introduction to Mass Spectrometry

1.4.1 Overview of Mass Spectrometry

Mass spectrometry is an analytical technique used to analyze a wide range of
molecules, including small molecules, peptides, proteins, inorganic ions, organic
compounds, biomolecules, and large macromolecules like nucleic acids and polymers.
The basic components of a mass spectrometer include the ion source, mass analyzer, and
detector. The ion source ionizes analytes to make them charged, and a common
peptide/protein ionization technique is electrospray ionization (ESI). The mass analyzer

sorts ions based on their mass-to-charge ratio (m/z) and can induce fragmentation in



tandem mass spectrometry instrument configurations. Quadrupoles, Orbitraps, and

quadrupole ion traps are examples of mass analyzers.

lons are separated in the mass analyzer according to their m/z ratios, following
distinct trajectories within the electric field. They are then detected either with an electron
multiplier (quadrupole ion trap) or through ion-induced image current (Orbitrap), producing

a mass spectrum that displays ion abundance and m/z ratios.

Additional components like lenses and quadrupoles focus and transport ions, often

using voltage ramps.

Quadrupoles can also induce fragmentation via Collision-Induced Dissociation
(CID) or High-Energy Collision Dissociation (HCD). In Orbitrap mass spectrometry, a C-trap
accumulates ions and injects them into the Orbitrap for high-resolution analysis. An ion
routing multiple is used as an HCD collision cell for HCD fragmentation, and it can be used
to transport ions for CID fragmentation in the ion trap. For tandem MS, ions can be
fragmented in anion trap and then analyzed by the Orbitrap to achieve detailed spectral

data 13,14

1.4.2 Significance of m/z

Mass spectrometry (MS) is used to measure the masses of molecules ranging from
low (<100 Da) to very high (mega Da) molecular weights, requiring only minimal quantities
of analyte. To be analyzed, the molecules must be ionized in the gas phase, as MS relies on

electric fields to manipulate, focus, and separate ions. The masses are measured relative



to their charge, represented by the mass-to-charge ratio (m/z). The presence of charge is
essential, as only charged species can be manipulated and detected by the mass

spectrometer, while neutral species do not generate a signal.

The m/z value is significant because it allows for the differentiation of ions. Different
ions have unique compositions and isotopic patterns, leading to distinct m/z values in the
mass spectrum. By analyzing these m/z values, one can distinguish between different ions

and, in some cases, infer structural or compositional details.

Additionally, the charge state of an ion can be determined by examining the spacing
between peaks corresponding to different isotopes of the same ion. This information,
combined with m/z, is critical for identifying and characterizing the analyte, providing

insights into its molecular weight and structure.

1.4.3 Electrospray lonization

Figure 1- 3: Mechanism of Electrospray lonization "



Electrospray lonization (ESI) is a widely used ionization technique in mass
spectrometry, particularly effective for analyzing large biomolecules like proteins,
peptides, and nucleic acids, as well as smaller organic compounds. ESl is known for its
ability to gently ionize complex molecules without causing significant fragmentation,

making it ideal for studying proteomics.

ESlis considered a "soft" ionization technique because it ionizes molecules without
causing extensive fragmentation, preserving the integrity of large and complex

biomolecules by imparting low internal energy.'®

The sample is dissolved in a liquid solvent and is introduced into the mass

spectrometer by liquid chromatography (LC) through a narrow, fused silica capillary.

A high voltage is applied to the capillary to create a strong electric field between the
capillary tip and the MS ion source. As the liquid exits the capillary, it forms a fine spray of
highly charged droplets. This process can be aided by a counterflow of gas, which helps to

desolvate the droplets.

As the solvent evaporates from the droplets, they become smaller and more
concentrated in charge (Figure 1-3). Eventually, the Coulombic repulsion bet