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Abstract

A complete picture of hadron spectroscopy is important for the understanding of the
degrees of freedom inside the hadron in the medium energy region. This study will bridge
the gap between the hadron/pion picture in the low-energy region and the quark/gluon
picture in the high-energy region. However, while only the low-energy resonances have
been well identified, the high-energy excited states are broad and overlapping, so can
only be disentangled with Partial Wave Analysis (PWA). The present PWA still has
ambiguities due to the lack of experimental data, especially data using a polarized neutron
target.

The G14 experiment in Hall B of Jefferson Lab was designed and conducted to measure
polarization observables from both polarized proton and neutron targets. The reaction
channels studied in this dissertation are the single pion (γn → pπ−) and double pion
(γp → pπ+π−, and γn → nπ+π−) photo-production. The E asymmetry in the single
pion channel shows good agreement at lower energy with the prediction from two PWA
groups: SAID from George Washington University and Bonn-Gatchina from University
of Bonn. At higher energy, there is a big discrepancy between the experimental result
and PWA prediction. This result is significant since the “missing resonances” are in this
higher energy region. The polarization observables(I�, Pz, P�z ) in the two-pion channel
with polarized neutron target are the first results that have been measured, and these
three observables(I�, Pz, P�z ) in the two-pion channel with polarized proton target are
compared with a previous CLAS experiment (G9a). The results are essential for the
study of high-energy excited states since this channel has a bigger cross section than the
single pion channel in the high-energy region.
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Chapter 1

Introduction

The science of Physics we know so far tells us there are four fundamental forces in
nature: gravitational, electromagnetic, strong and weak. Depending on the scale and
the speed of the system we are studying, there are four realms of mechanics: classical
mechanics, relativistic mechanics, quantum mechanics, and quantum field theory. The
hadron spectroscopy studies the system with quarks and gluons, which are small and fast,
thus it falls under the category of quantum field theory. The quarks carry color charges,
and interact with each other by the strong force. The strong interaction is mediated by
gluons; the theory for this mechanism is referred as quantum chromodynamics (QCD).
The classification of quarks, and how quarks bind into different hadrons are described by
the quark model.

1.1 The Quark Model
The quark model can be described in several levels: from the simple dynamics-free picture
of particles as bound states of quarks and anti-quarks, to models with dynamics described
by phenomenological theories, to models derived directly from QCD. For the simplest
case, the properties of hadrons are derived from the additive quantum numbers of quarks.
Table 1.1 shows the properties for the six flavors of quarks.

Flavor Down Up Strange Charm Bottom Top
Symbol d u s c b t

Charge (e) -1/3 +2/3 -1/3 +2/3 -1/3 +2/3
Mass (MeV/c2) 3 - 7 1.5 - 3.0 95 ± 25 1250 ± 90 4200 ± 70 1.725 ± 0.023 × 105

I (isospin) 1/2 1/2 0 0 0 0
Iz -1/2 1/2 0 0 0 0

S (strangeness) 0 0 -1 0 0 0
C (charm) 0 0 0 +1 0 0

B (bottomness) 0 0 0 0 -1 0
T (topness) 0 0 0 0 0 +1

Table 1.1: Properties for the six flavors of quarks.

Quarks are spin 1/2 fermions with positive parity, and each quark has a baryon number
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1/3. The Gell-Mann-Nishijima formula relates the quantum numbers for quarks:

Q = Iz + B + S + C +B + T

2 , (1.1)

where B is the baryon number. There is also a "hidden" color quantum number for
quarks, which has three values: red, green and blue. It is "hidden" in the sense that
all the particles or quark bound states are colorless (color singlets). Each quark has its
antiquark with the quantum numbers having the opposite sign. In the quark model,
the bound states of quarks are referred as hadrons, and there are two kinds of hadrons:
mesons and baryons, in which a meson has a two quark configuration with baryon number
B = 0 and a baryon has a three quark configuration with baryon number B = 1 [1].

Mesons

Mesons are bound states of quarks and antiquarks (qq̄′). They are classified using JPC
multiplets, where J = L + S is total angular momentum, P = (−1)l+1 is the parity,
C = (−1)l+s is the charge parity. Since quarks are spin 1/2 particles, 1/2⊗ 1/2 = 0⊕ 1
gives states with total spin S = 0 or S = 1. For orbital angular momentum l = 0, there
are two states: pseudo-scalars (0−+) and vectors(1−−) as in Figure 1.1. l = 1 has scalars
(0++), axial vectors (1++ and 1+−), and tensors (2++). Mesons with exotic quantum
numbers are predicted by QCD, which take into account gluon excitations. The "GlueX"
experiment conducted in Hall D at Jefferson Lab was designed to search for these states.

Figure 1.1: Spin states of mesons.

Considering only the three lightest quarks: up, down and strange, the three flavors
form an approximate SU(3) group. Mesons can be classified in the Eightfold Way using
the following decomposition:

3
⊗

3 = 8
⊕

1. (1.2)
The nine states (nonet) are made of a octet and a singlet, as shown in Figure 1.2.

Baryons

Baryons are bound states of three quarks. The total state functions should be antisym-
metric, since baryons are fermions:

|qqq >A= |color >A ×|space, spin, flavor >S, (1.3)
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(a) Pseudo-scalar mesons (JPC = 0−+). (b) Vector mesons (JPC = 1−−).

Figure 1.2: Nonets for pseudo-scalar and vector mesons. The y-axis is the strangeness,
the x-axis is z-component of isospin.

where the subscripts S and A are indicators for symmetric or antisymmetric functions.
The color part is an SU(3) singlet (antisymmetric); this makes the | space, spin, flavor >
part symmetric. When decomposing baryons in the Eightfold way, it’s more clear to use
the flavor-spin SU(6) group as below:

6
⊗

6
⊗

6 = 56S
⊕

70M
⊕

70M
⊕

20A, (1.4)

where subscripts S, M, A represent symmetric, mixed-symmetric, or antisymmetric func-
tions. For ground state particles (l = 0), the space part is symmetric, this makes the
| spin, flavor > part symmetric, so only 56S states in the above equation are allowed,
the 70M and 20A states require nonzero orbital angular momenta. 56S can be further
decomposed into flavor SU(3) multiplets as:

56 = 104
3/2
⊕

82
1/2, (1.5)

where 103/2 is a spin 3/2 baryon decuplet, 81/2 is a spin 1/2 baryon octet as in Figure
1.3.

So far, we only looked at the classification of the ground states of the hadrons (mesons
and baryons), there is no information about their excited states and the mass values for
these states in the simple quark model. This information can be obtained in the more
advanced quark models, which consider the dynamics between quarks. The quark model
considering the dynamics will be introduced in the next section, this model is often
referred as the constituent quark model (CQM).

1.2 Baryon Spectroscopy
Experimental results from deep inelastic scattering tell us that the nucleon has a more
complicated structure than the three quark configuration. Other than the three valence
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(a) S=1/2 baryon octet. (b) S = 3/2 baryon decuplet.

Figure 1.3: Octet and decuplet for baryons. The y-axis is the strangeness, the x-axis is
the z-component of isospin.

quarks, sea quarks (quark-antiquark pair) and gluon fields also play important roles. A
natural question to ask is: what are the effective degrees of freedom for this complicated
system? As in atomic physics, the degrees of freedom for the system can be revealed in
the spectrum of the excited states.

The spectrum of strongly-interacting particles is predicted by the QCD Lagrangian:

LQCD = ~φi[i(γµDµ)−mδij]φj −
1
4G

a
µνG

µν
a , (1.6)

where φi(x) is the quark field, and Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν is the gluon field

strength tensor, Aaν are the gluon fields, m and g are the quark mass and coupling constant.
In the renormalized theory, the QCD coupling decreases as energy increases as shown in
Figure 1.4. This phenomenon is referred as "asymptotic freedom".

The consequence of "asymptotic freedom" is that only at very high energy, the La-
grangian equation can be solved in a perturbative way. In the energy region of nucleon
resonances, there is no analytic solution using a first principle calculation. Two methods
have been developed to solve this problem. One method is to use phenomenological mod-
els, whose ingredients are abstracted from QCD, or from the low-energy limit of QCD
(chiral Lagrangians). The most successful phenomenological models in making predic-
tions of hadron properties are constituent quark models (CQMs). The other method is
to use a numerical method (Lattice QCD).

1.2.1 Constituent Quark Models
In constituent quark models, the three constituent quarks are the only relevant degrees of
freedom in the hadron. The constituent quark can be viewed as a low momentum "current
quark" dressed with a cloud of low momentum gluons. It has a effective mass of about
one third of the nucleon mass (350 - 400 MeV). Based on different models to describe the
effective interaction between the constituent quarks, several versions of the constituent
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Figure 1.4: QCD coupling constant as a function of gluon momentum transfer Q.

quark model have been proposed. An overview of different quark models for baryons can
be found in [1] and [2]. Most models include two kinds of interaction. The first interaction
is a spin-independent confining interaction, such as harmonic or linear confinement. The
second interaction is a spin-dependent force, the Isgur-Karl (IK) model uses a color-
magnetic flavor-independent interaction modeled in terms of the gluon exchange in QCD
[3], the instanton model uses a flavor-dependent short-range quark forces from instanton
effects [8], other models use quark dynamics, such as: algebraic [5], hyper-central [6],
Goldstone Boson Exchange [7].

In the Isgur-Karl (IK) model [3], the non-relativistic three valence quarks are dressed
quarks with effective mass of 200-300 MeV for u and d quarks, the gluon fields provide
a confining potential between quarks. The potential has a spin independent part V ij

and a spin dependent part V ij
hyp. V ij can be written as the sum of a harmonic oscillator

potential Kr2
ij/2, and an anharmonicity potential Uij, which is treated as a perturbation.

The spin dependent potential V ij
hyp is the sum of a contact term Si ·Sjδ3(rij) and a tensor

term. It is a hyperfine interaction, which causes the ∆ − N and Σ − Λ splittings. The
Hamiltonian is written as:

H =
∑
i

(mi + p2
i /(2mi)) +

∑
i<j

(V ij + V ij
hyp). (1.7)

The wave function is the product of a antisymmetric color wave function and a sum form of∑
ψχφ, in which ψ, χ, φ are the spatial, spin and flavor wave functions. The spatial wave

functions ψ are the harmonic-oscillator eigenfunctions ψNLM(ρ, λ) in the zeroth order of
the perturbation calculation, in which ρ = (r1 − r2)/

√
2 and λ = (r1 + r2 − 2r3)/

√
6,

N = 2(nρ + nλ) + lρ + lλ. The ground states (N = 0 band, N(938) and ∆(1232)) have
positive parity (lρ = lλ = 0). The N=1 excited resonances are "P waves" (lρ = 1 or lλ = 1)
with negative-parity. The N=2 band includes positive-parity excited states with radial
excitations in one of the two oscillators (nρ = 1, nλ = 0 or nρ = 0, nλ = 1) or lρ + lλ = 2.
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The Schrödinger equation is solved in first-order perturbation theory for the anharmonic
terms Uij and V ij

hyp. This model is quite successful in describing the low-lying baryon
resonances. However, the baryons are strongly bound systems, so the approximation of
non-relativistic kinematics and dynamics is not proper.

In the relativized model, the Hamiltonian is given by:

H =
∑
i

√
p2
i +m2

i + V, (1.8)

where V = Vstring + VCoul + Vhyp + Vso(cm) + Vso(Tp). Vstring is the potential generated
by adding the lengths of the gauge-invariant string configuration and multiplying by the
meson string tension. VCoul, Vhyp, Vso(cm), Vso(Tp) are color-Coulomb, color-hyperfine, color-
magnetic spin-orbit, and Thomas-precession spin-orbit potentials [4]. The spectroscopy
derived from the relativized model is comparable to that of the Isgur-Karl model. How-
ever, the relativized model is more tightly constrained with fewer fitting parameters than
in the Isgur-Karl model. The wave functions from the relativized model are also very
different from those of the Isgur-Karl model, due to the more realistic treatment of the
spin-independent potential and inclusion of the configuration mixings.

The most recent CQM predictions for hadron spectroscopy are three papers published
in 2001 [8], a relativistic quark model with instanton-induced quark forces was used in
these papers. The instantaneous force is flavor-dependent, and was originally designed to
solve the π − η − η′ puzzle, which exists in quark models of mesons based on one-gluon
exchange. An expansion of the Euclidean action around single-instanton solutions of the
gauge fields assuming zero-mode dominance in the fermion sector leads to an effective
contact interaction between quarks, which acts only if the quarks are in a flavor anti-
symmetric state.

In this model, quarks are confined by a linearly rising string potential, which is a
three-quark string potential V (3). In addition, ’t Hooft’s instanton-induced two quark
interaction is chosen as residual two-body force V (2). The non-strange baryon spectrum
is calculated on the basis of the three-fermion Bethe-Salpeter equation. Figure 1.5 shows
the comparison of calculated values with the experimental results for ∆ (isospin T=3/2)
and N∗ (isospin T=1/2) resonances.

Overall, the model predictions are in good agreement with the experimental results.
However, there are two problems: the assignment problem, and the missing resonance
problem.

The assignment problem refers to the discrepancy between the model predicted values
and experimentally identified states up to the fourth shell (0~ω, 1~ω, 2~ω and 3~ω) in
the harmonic oscillation basis. Most states in the first three shells predicted by the model
have been identified, but for some states, the predicted values are outside the error bars of
the experimental measurements, such as ∆3

2
−(1700), ∆3

2
+(1600), N 1

2
+(1440), N 1

2
−(1530)

(as seen in Figure 1.5 ). Moreover for the 3~ω shell in the ∆ spectrum, three states
∆1

2
−(1900), ∆3

2
−(1940) and ∆5

2
−(1930) from the experimental measurements have values

significant lower than the model predicted values. The assignment of experimentally
observed states is only complete and well established up to the N = 1 band, the assignment
for N = 2, N = 3 bands and beyond are still tentative.

The missing resonance problem refers to the situation that there are many more
excited states predicted by the modern quark models than experimentally observed. A
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detailed discussion of the missing resonance problem will be presented in the next section.

1.2.2 Missing resonances
The constituent quark models predict a large number of baryon resonances. However,
as shown in the previous subsection, in the mass region above 1.8 GeV, only a few have
been observed in experiment. The discrepancy between the theoretical predictions and
experimental results needs more work from both the theory side and the experiment side.

On the theory side, a possible explanation for the fewer observed resonance states is
the "quark-diquark" model [9]. This model assumes a tightly bound di-quark. Thus only
two degrees of freedom are relevant at low energies, and fewer resonances are predicted.
However, the Lattice QCD calculation of the hadron spectroscopy gives results in agree
with the traditional Constituent Quark Models, thus the "quark-diquark" model has not
been considered as the solution for the missing resonance problem.

On the experimental side, most data for the study of nucleon resonances are from the
πN elastic scattering. This biases the results for resonances coupling weakly to the πN
channel. Some quark models have predicted several unobserved resonances to have large
decay branching ratios for the emission of mesons other than pions. The use of a photon
beam provides a way to study the resonances which couple strongly to other branching
channels.

Moreover, as shown in figure 1.7, the nucleon resonances have broad widths in the
cross section plot, which makes the method of peak hunting impossible to identify all the
resonances. Thus using the right way to decode the experimental results is crucial for
the test of the theoretic models. The method used most often to identify the nucleon
resonances is partial wave analysis (PWA). In the framework of PWA, the cross section
and other experimentally measured quantities, such as polarization observables, are fitted
using minimal set of partial waves (resonances), the discovery of a new resonance requires
that the inclusion of the new state improves the fitting results in a significant way. The
next section will present an introduction to the partial wave analysis for photo-production
reactions, and introduce the methods from three PWA groups.

1.3 Partial Wave Analysis
The reaction between the photon beam and the nucleon involves two processes. One
process is the electro-magnetic excitation of the nucleon, the other process is the strong
decay in the s and u channels, or a meson exchange in the t channel. The tree level
Feynman diagrams for the single-pion photo-production for these processes are shown in
Figure 1.8.

The process of photo-production of a pseudo-scalar meson from a nucleon can be
described by four complex amplitudes, which are most commonly parameterized in terms
of the Chew-Goldberger-Low-Nambu (CGLN) amplitude[11]:

F = iF1 · ~σ · ~ε+ F2(~σ · ~q)(~σ · (~k × ~ε)) + iF3(~σ · ~k)(~q · ~ε) + iF4(~σ · ~q)(~q · ~ε), (1.9)

where ~k, ~q are unit vectors for the momentum of the photon and meson, ~ε is the polariza-
tion vector for a real photon, and ~σ are the nucleon’s spin matrices. The differential cross
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(a) ∆ resonances (isospin T = 3/2).

(b) N∗ resonances (isospin T=1/2).

Figure 1.5: Calculated hadron spectrum from the instanton-induced quark model (black
lines on the left side of each column), and the experimentally measured resonances (black
lines with shaded box on the right side of each column). The resonances in each column
are denoted by Jπ, where J is total spin and π is parity; a detailed description of how Jπ

is determined can be seen in Figure 1.6. Another way to denote the states is X2I+1,2J+1,
where X = S, P, D, ... is the orbital angular momentum l = 0, 1, 2, ... for the pion-nucleon
system (for the reason that most old experimental data are from pion nucleon scattering).
I is the total isospin, which can be 1/2 or 3/2, and J = |l± 1

2 |. For the experiment results,
the lines indicate the position of the resonance, the shaded boxes are the uncertainties,
and the stars under the lines indicate the status of the resonances, more stars correspond
to better establishment. Image source: [8]
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Figure 1.6: N and ∆ states for the N = 0,1,2 harmonic oscillator bands from PDG [1].
A denotes the states with antisymmetric spatial wave fuction, S is for symmetric states,
M is for mixed symmetric states. LP is for angular momentum and parity. S is the
three-quark spin.
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Figure 1.7: Total photonabsorption cross section with proton and neutron target. Points
are measured data, curves are fitting results of Breit-Wigner shapes for nucleon resonances
P33(1232), D13(1520), S11(1535), F15(1680) (only for proton), F37(1950) and a smooth
background. Image source: [10]

Figure 1.8: Tree level Feynman diagrams for single pion photoproduction.
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section expressed in terms of the CGLN-amplitudes in the center of momentum frame is:

k

q

dσ

dΩ =|F1|2 + |F2|2 + 1
2 |F3|2 + 1

2 |F4|2 +Re(F1F
∗
3 )

+ [Re(F3F
∗
4 )− 2Re(F1F

∗
2 )]cos(θcm)

− [12 |F3|2 + 1
2 |F4|2 +Re(F1F

∗
4 ) +Re(F2F

∗
3 )] cos2(θcm)

− [Re(F3F
∗
4 )] cos3(θcm),

(1.10)

where q, k are momenta for the meson and photon in center of momentum frame, θcm is
cm polar angle for the meson.

The four complex amplitudes can also be expressed in terms of helicity amplitudes.
There are 8 helicity amplitudes, which come from the combination of two helicity states
λγ = ±1 for real photon, two spin states νi = ±1/2, νf = ±1/2 for the initial and final
state nucleons respectively. The 8 matrix elements can be reduced into four by parity
conservation:

H1 = H+1/2,+3/2 = H−1/2,−3/2,

H2 = H+1/2,+1/2 = −H−1/2,−1/2,

H3 = H−1/2,+3/2 = −H+1/2,−3/2,

H4 = H+1/2,−1/2 = −H−1/2,+1/2,

(1.11)

The relationship between the CGLN and helicity amplitudes is given in [12]. The dif-
ferential cross section expressed in terms of the helicity amplitudes has a very simple
form:

k

q

dσ

dΩ = 1
2(H2

1 +H2
2 +H2

3 +H2
4 ) (1.12)

Using the selection rules and parity conservation, we can relate the intermediate
resonance to the initial states and final states of the reaction.

For the initial state, the photon has total angular momentum ~Lγ = ~l + ~sγ, where ~l is
the orbital angular momentum of photon relative to the target nucleon , and spin ~sγ (s=1)
is the spin of the photon, the photon has parity Pγ = (−1)L for EL- and Pγ = (−1)L+1

for ML- multipoles of the photon field. The initial nucleon has spin JN = 1/2, and parity
PN = 1. For a resonance with spin JN∗ and parity PN∗ , the selection rules and parity
conservation gives:

|Lγ − JN | = |Lγ − 1/2| ≤ JN∗ ≤ |Lγ + 1/2| = |Lγ + JN |,
PN∗ = PN · Pγ = Pγ.

(1.13)

For the strong decay process of the resonance, the intermediate and final states have
the following relations:

|Lmeson − JN | = |Lm − 1/2| ≤ JN∗ ≤ |Lmeson + 1/2| = |Lmeson + JN |,
PN∗ = PN · Pmeson · (−1)Lmeson = (−1)Lmeson+1.

(1.14)

From the above four equations, we can relate the initial photon field multipoles (EL-
and ML-) and the multipoles for meson photo-production (El± and Ml±) to the reso-
nance states (N∗), the results for several low order multipole amplitudes are shown in
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photon M-pole Initial state Final state Multipoles N∗ N∗

EL/ML (LPγ , JPN ) (JPN , LPmeson) (E/M)l± Jπ L2I,2J
E1 (1−, 1/2+) (1/2+, 0−) E0+ 1/2- S1,1 or S3,1
E1 (1−, 1/2+) (1/2+, 2−) E2− 3/2- D1,3 or D3,3
M1 (1+, 1/2+) (1/2+, 1+) M1− 1/2+ P1,1 or P3,1
M1 (1+, 1/2+) (1/2+, 1+) M1+ 3/2+ P1,3 or P3,3
E2 (2+, 1/2+) (1/2+, 1+) E1+ 3/2+ P1,3 or P3,3
E2 (2+, 1/2+) (1/2+, 3+) E3− 5/2+ F1,5 or F3,5
M2 (2−, 1/2+) (1/2+, 2−) M2− 3/2- D1,3 or D3,3
M2 (2−, 1/2+) (1/2+, 2−) M2+ 5/2- D1,5 or D3,5
E3 (3−, 1/2+) (1/2+, 2−) E2+ 5/2- D1,5 or D3,5
E3 (3−, 1/2+) (1/2+, 4−) E4− 7/2- G1,7 or G3,7
M3 (3+, 1/2+) (1/2+, 3+) M3− 5/2+ F1,5 or F3,5
M3 (3+, 1/2+) (1/2+, 3+) M3+ 7/2+ F1,7 or F3,7
... ... ... ... ... ...
... ... ... ... ... ...

Table 1.2: Relating the initial states and final states to the intermediate resonance states.
The resonances N∗ are shown in two different representations in the fifth and sixth
columns. The corresponding photon multipoles and photo-production multipoles are
shown in the first and fourth columns. For the photo-production multipoles (E/M)l±,
l is the relative angular momentum for the meson-nucleon system Lmeson, ± indicates
whether the spin 1/2 of the nucleon should be added to or subtracted from l to give the
total angular momentum JN∗ for the resonances.
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Table 1.2. From the table, we can see that if we can determine the components of the
photo-production multipoles in the reaction, we can identify the corresponding nucleon
resonances.

The CGLN amplitudes can be decomposed into the partial wave multipoles as 1.15:

F1 =
∞∑
l=0
{(lMl+ + El+)P ′l+1(θcm) + [(l + 1)Ml− + El−]P ′l−1(θcm)},

F2 =
∞∑
l=0

[(l + 1)Ml+ + lMl−]P ′l (θcm),

F3 =
∞∑
l=0

[(El+ −Ml+)P ′′l+1(θcm) + (El− +Ml−)P ′′l−1(θcm)],

F4 =
∞∑
l=0

(Ml+ − El+ −Ml− − El−)P ′′l (θcm),

(1.15)

where the P ′l , P ′′l are derivatives of Legendre polynomials. From these equations, we
know that if we can determine the partial wave multipoles in the reaction amplitude Fi
for the reaction channel, the resonances that couple to this channel can be determined.
The determination for the four complex amplitudes F1, F2, F3, F4 need eight indepen-
dent measurements. For the single and double meson photo-production, there are 64
polarization observables [24]:

ρfI =I0
{

(1 + ~Λi · ~P + ~σ · ~P ′ + Λα
i σ

β′Oαβ′)

+ δ�(I� + ~Λi · ~P� + ~σ · ~P ′
�

+ Λα
i σ

β′O�αβ′)
+ δl

[
sin 2β(Is + ~Λi · ~P s + ~σ · ~P ′

s
+ Λα

i σ
β′Os

αβ′)

+ cos 2β(Ic + ~Λi · ~P c + ~σ · ~P ′
c

+ Λα
i σ

β′Oc
αβ′)

]}
,

(1.16)

where I is the reaction rate, Λ is the degree of polarization for the target, ρf = (1+~σ· ~P ′)/2
is the density matrix of the recoil nucleon, δ� is the degree of circular polarization of the
photon beam, δl is the degree of linear polarization for the photon beam. There are
9 single polarization observables: ~P is the polarization observable related to the target
nucleon polarization (Px, Py, Pz give three observables for target asymmetries), ~P ′ is the
polarization observable relate to the recoil nucleon polarization (P ′x′ , P ′y′ , P ′z′ give three
observables for recoil asymmetries), I�, Is, Ic are photon beam asymmetries. There are 27
double polarization observables: ~P�, ~P s, ~P c are beam-target asymmetries, ~P ′

�
, ~P ′

s
, ~P ′

c

are beam-recoil asymmetries, Oαβ′ is the target-recoil asymmetry. There are 27 triple
polarization observables: O�αβ′ , Os

αβ′ , and Oc
αβ′ . Adding I0, which is the unpolarized

differential cross section, gives a total of 64 observables. There are 28 relations relating
their amplitudes, and 21 equations relating their phases, which give 15 independent
quantities. A complete set of experiments for the determination of the reaction amplitude
will need measurements of the differential cross section and the single, double and triple
polarization observables.

However, the complete set of experiments is often out of reach for most reaction
channels. The extraction of the multipoles will have to rely on model dependent analysis.
There are three groups updating their solutions for multipoles regularly with the inclusion
of the most recent experiment results: Bonn-Gatchina [13], MAID [14], and SAID [15].
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The three groups are using different phenomenological models to parametrize the mul-
tipoles. In the Bonn-Gatchina method, a combined analysis is used to analyze large num-
ber of reactions at the same time, which include the interference between different states.
In the MAID method, the unitary isobar model contains both a common background,
which is unitarized according to the K-matrix prescription, and 13 resonance terms,
which are assumed to have the Breit-Wigner forms for the resonance shape. In the SAID
method, the multipoles are parametrized in the form: M = (Born+A)(1+iTπN)+BTπN ,
where TπN is the associated elastic pion-nucleon T matrix, A and B are purely phenomeno-
logical polynomials with correct threshold properties. Figure 1.9 shows the comparison of
the multipoles calculated from these three models. The positions of the poles of the curve
indicate the resonance energy of the multipoles. For example, for the M+

1 multipole, the
curve peaks at around 1232 MeV, which is the prominent P33(1232) peak as shown in
Figure 1.7 for the cross section for single pion production reaction.

Figure 1.9: The multipoles for single pion production. Red curves are real part of the
multipoles, Blue curves are imaginary part of the multipoles. Solid curves are BoGa
solutions, dashed curves are SAID solutions, dotted curves are MAID 2009 solutions.
Image Source: [25]

1.4 Previous Measurements
For the last two decades, with the advent of the high duty accelerator and advances in
nearly 4π detectors (CLAS at JLab, Crystal Ball and TAPS at MAMI and ELSA), a lot of
data have been collected for the reactions of single and double meson photo-production.
Table 1.3 shows the observables and number of kinematic data points that have been
included in the Bonn-Gatchina PWA model. For the reaction of double pion photo-
production: γp → pπ+π−, three more data sets have been acquired recently in CLAS
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at Jefferson lab. The first is the circular beam helicity asymmetry I� measurement [20]
using a circularly polarized photon beam and unpolarized proton target (CLAS g1c).
The second is the linear beam helicity asymmetries Is and Ic using a linearly polarized
photon beam and unpolarized proton target (CLAS g8b). The third is the beam helicity
asymmetry I�, target asymmetry Pz, and beam target asymmetry P�z using a circularly
polarized photon beam and longitudinally polarized proton target (CLAS g9a). From
table 1.3, we notice that most of the data are taken on a proton target, and the data
from the double meson reaction are much less than those from the single meson reaction.

In this study, we will report the first measurement of the beam target asymmetry E
for the reaction: γn → pπ− with a circularly polarized photon beam and longitudinally
polarized neutron target. Moreover, we will compare the asymmetries I�, Pz and P�z
with the result from CLAS g1c and g9a for the reaction γp → pπ+π−, and then report
the first measurement of I�, Pz and P�z for the reaction γn→ pπ+π−.

15



Observable Ndata (Institute)
dσ/dΩ(γp→ pπ0) 1106 (CB-ELSA), 861 (GRAAL), 592 (CLAS), 1692 (TAPS@MAMI)

Σ(γp→ pπ0) 540 (CB-ELSA), 1492 (SAID db)
E(γp→ pπ0) 140 (A2-GDH)
P (γp→ pπ0) 607 (SAID db)
T (γp→ pπ0) 389 (SAID db)
H(γp→ pπ0) 71 (SAID db)
G(γp→ pπ0) 75 (SAID db)
Ox(γp→ pπ0) 7 (SAID db)
Oz(γp→ pπ0) 7 (SAID db)

dσ/dΩ(γp→ nπ+) 484 (CLAS), 1583 (SAID db), 408 (A2-GDH)
Σ(γp→ nπ+) 899 (SAID db)
E(γp→ nπ+) 231 (A2-GDH)
P (γp→ nπ+) 252 (SAID db)
T (γp→ nπ+) 661 (SAID db)
H(γp→ nπ+) 71 (SAID db)
G(γp→ nπ+) 86 (SAID db)

dσ/dΩ(γp→ pη) 680 (CB-ELSA), 100 (TAPS)
Σ(γp→ pη) 51 (GRAAL 98), 100 (GRAAL 07)
T (γp→ pη) 50 (Phoenics)

dσ/dΩ(γp→ ΛK+) 1320 (CLAS 09)
P (γp→ ΛK+) 1270 (CLAS 09), 84 (GRAAL)
Cx(γp→ ΛK+) 160 (CLAS)
Cz(γp→ ΛK+) 160 (CLAS)
Σ(γp→ ΛK+) 66 (GRAAL), 45 (LEP)
T (γp→ ΛK+) 66 (GRAAL 09)
Ox(γp→ ΛK+) 66 (GRAAL 09)
Oz(γp→ ΛK+) 66 (GRAAL 09)

dσ/dΩ(γp→ Σ0K+) 1590 (CLAS)
P (γp→ Σ0K+) 344 (CLAS)
Cx(γp→ Σ0K+) 94 (CLAS)
Cz(γp→ Σ0K+) 94 (CLAS)
Σ(γp→ Σ0K+) 42 (GRAAL), 45 (LEP)

dσ/dΩ(γp→ Σ+K0) 48 (CLAS), 72 (CB-ELSA 10)
P (γp→ Σ+K0) 24 (CB-ELSA 10)
Σ(γp→ Σ+K0) 15 (CB-ELSA 10)

dσ/dΩ(γp→ pπ0π0) 1.4 GeV, 3.2 GeV (CB-ELSA)
E(γp→ pπ0π0) 16 (MAMI)
Σ(γp→ pπ0π0) 128 (GRAAL)

dσ/dΩ(γp→ pπ0η) 3.2 GeV (CB-ELSA)
Σ(γp→ pπ0η) 180 (GRAAL)

Ic, Is(γp→ pπ0η) 3.2 GeV (CB-ELSA)

Table 1.3: Polarization observables in the photo-production of mesons used in Bonn-
Gatchina PWA model. Image Source: [26]
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Chapter 2

Experiment Setup: CEBAF, Hall B
and HD-ice Target

The data in this study were taken in the G14 run period from Nov. 19, 2011 to May. 17,
2012 at the Thomas Jefferson National Accelerator Facility (Figure 2.1), also called Jef-
ferson Lab in Newport News, Virginia. This experiment used a tagged photon beam
to hit an HD-ice target, and the final state particles were detected by the Hall B
CLAS(CEBAF Large Acceptance Spectrometer) detector. The photon beam was pro-
duced by bremsstrahlung from polarized electrons from the CEBAF accelerator using
a radiator with the Hall B photon tagging system. Either circularly or linearly photon
beams could be produced by using different radiators. The HD-ice target was composed
of solid hydrogen deuteride, with one hydrogen atom and one deuterium atom in each
molecule. The HD was polarized longitudinally along the beam direction. The CLAS
has quasi 4π solid angle coverage(∼ 3π), and was optimized to study exclusive channels
with multiple final state particles.

Figure 2.1: Jefferson Lab: The racetrack shape is the CEBAF accelerator, and the three
mounds on the right are the three experiemntal halls A, B and C. Image Source: [27]
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2.1 CEBAF: Continuous Electron Beam Accelerator
Facility

Figure 2.2: The Continuous Electron Beam Accelerator Facility (CEBAF): The polarized
electron beam is generated in the Injector, it gains 1.2 GeV in the two LINACs in each
pass, and reaches 6 GeV after 5 passes. Image Source: [28]

CEBAF is an electron accelerator that is able to deliver up to 6 GeV electron beams
to the three experimental halls simultaneously. Superconducting radio frequency(SRF)
cavities are used for electron acceleration. The SRF cavities allow the accelerator to
reach a full-time duty factor without down-time for cooling the conduction elements of
the accelerator. The nearly zero energy lost of the SRF cavities provides three times
higher efficiency in terms of RF power than non-superconducting RF cavities . As shown
in Figure 2.2, the accelerator consists of an injector and a pair of superconducting RF
linear accelerators (LINACs). The two LINACs are connected by two arc sections, which
have four circulating arcs at the west end and five at the east end. The electrons gain
1.2 GeV for each pass. After five successive passes, their energy reaches 6 GeV. Beams
from different passes can be extracted for different experimental halls, which gives each
hall the ability to choose different beam energies.

2.1.1 Injector
The injector has a polarized photo-emission electron gun with three pulsed lasers. The
three lasers, one for each experimental hall, are pulsed independently and differ by 120◦
in phase. The three lasers are synchronized and combined to strike a strained GaAs
photocathode at the third subharmonic (499 MHz) of the accelerating cavity frequency
(1497 MHz) [30]. The electron gun produces a polarized 100 KeV electron beam. This
beam then passes through three-hole chopper to cleanly separate the bunches for the
different halls. Electrons are then accelerated to 67 MeV in 2 1/4 cryomodules(18 SRF
cavities) before sending them to the CEBAF recirculating LINACs. This arrangement
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allows each hall to receive electron bunches every 2 ns and to control its current and
beam polarization independently.

Figure 2.3: Injector. Image Source: [31]

2.1.2 Linear accelerators(LINACs)
Each of the two LINACs contains 20 cryomodules (Figure 2.4). Inside each cryomodule,
there are eight SRF cavities. Figure 2.5 shows a pair of 5 cell SRF cavities. During
the run, these SRF cavities are cooled down to 2K with liquid Helium to become super-
conducting. An RF standing wave in the cavities is locked in phase with the electron
bunches, as shown in Figure 2.6, so that the electrons always experience an accelerating
electrical field. Each LINAC can increase the electron energy up to 600 MeV. After five
passes, the energy of the electron beam can reach up to 6 GeV.
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Figure 2.4: Cryomodules. Image Source: [28]

Figure 2.5: A pair of CEBAF’s 5 cell SRF cavities. Image Source: [28]

Figure 2.6: Accelerating RF field inside the SRF cavities. Image Source: [28]
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2.1.3 Recirculation Arcs and RF Separators

Figure 2.7: Eastern recirculation arc. Image Source: [28]

Since the electron beams need to recirculate in the accelerator and pass the two
LINACs 5 times in order to reach the maximum energy of 6 GeV, electron beams from
different passes coexist in the accelerator. In order to bend them around to recirculate
in the LINACs, a configuration as shown in Figure 2.7 is used. Figure 2.7 is a photo
of the eastern recirculation area, where electron beams with five different energies enter
from the north LINAC, and are separated by a group of dipole magnets. The beams
pass through the five arcs with different magnetic fields to be bent to the south LINAC.
In the western recirculation area, a similar arrangement is used, but only four arcs are
needed for the first four pass beams, since the fifth pass will go to the RF separators and
be directed to the halls.

The RF separators are used to extract the electron beams for different halls. As
shown in Figure 2.8, there are two working modes for the separator, a 2-way and a 3-way
beam split. For the 2-way beam split, the phase of RF wave is tuned with the electron
bunches so that a transverse force is applied to the electron bunch to deflect the beam
to the experiment hall. Meanwhile, another transverse force in the opposite direction is
applied to the other two electron bunches, forcing them back to the recirculating loops.
The 2-way beam split is used for the pass 1-4 beams. For the pass 5 beam, the RF wave
exerts a transverse force on the first electron bunch, leaves the second electron bunch
alone, and exerts an opposite transverse force on the third electron bunch. The 3-way
beam split separates the electron beam into three beams. From the description above,
we notice that the pass 1-4 beams can be used in one experimental hall at a time, while
the pass 5 beam can be used in all three experimental halls simultaneously as needed.
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Figure 2.8: RF Separators. Image Source: [32]
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2.2 Hall B
Hall B in Jefferson Lab can run experiments using either electron or photon beams.
This hall uses a nearly 4π detector, the CEBAF Large Acceptance Spectrometer(CLAS),
which is ideal for the study of exclusive reactions with multiple particles in the final state
detected. Figure 2.9 shows the beam-line layout in Hall B, which includes the photon
tagging system, the CLAS detector, and some beam-line devices for diagnostic studies.

2.2.1 Photon Tagging System
Photon beams are produced by the electron bremsstrahlung reaction, where an electron
with energy E0 is scattered by the electromagnetic field of a nucleus, and emits a photon
with energy Eγ. By detecting the energy of the scattered electron Ee′ , the photon energy
Eγ is "tagged" by energy conservation: Eγ = E0 − Ee′ . The Hall B system can tag
photon energies ranging from 20% to 95 % of the incident electron energy. As shown in
Figure 2.10, the tagging system has five main parts: the radiator, the tagger magnet, the
hodoscope, the readout, and the collimation system. Three modes of photon beams can
be generated: a non-polarized mode, a circularly polarized mode, and a linearly polarized
mode, as determined by the polarization of the electron beam and the type of photon
radiator in use[33].

The Radiator

There are two kinds of photon radiators used in Hall B: amorphous or diamond crystals.
The amorphous radiator is a thin Gold/Carbon foil, which is 5×10−5 to 3×10−4 radiation
lengths of gold plated on a thin carbon support foil. The bremsstrahlung process for the
amorphous radiator is incoherent and the generated photon beam has a 1/Eγ energy
spectrum. Non-polarized or circularly polarized photon beams are generated with this
radiator depending on the electron beam polarization. The circular polarization of the
photon beam comes from polarization transfer from the longitudinally polarized electron
beam. The polarization transfer relation is given by Eq. 2.1[34].

Pcirc = Pel
4x− x2

4− 4x+ 3x2 (2.1)

where x = Eγ/E0 is the ratio of the photon energy (Eγ) over the electron energy (E0),
Pcirc and Pel are the degree of polarization for the circularly polarized photon beam and
the longitudinally polarized electron beam. For high energy photons, x ≈ 1, Pcirc ≈ Pel,
the polarization transfer is almost 100%. For low energy photons, such as x = 0.5,
Pcirc ≈ 0.6Pel.

The other kind of radiator is a thin diamond crystal, which is 20-50 µm thick. Linearly
polarized photon beams are produced via coherent bremsstrahlung from the well-ordered
crystal lattice. The photon beam produced by the diamond crystal radiator contains
both the coherent linearly polarized photons and the incoherent background, in which
the incoherent part is due to the lattice vibrations. The angular cone of incoherent
bremsstrahlung varies slowly with photon energy, while the emission angle of coherent
bremsstrahlung is sharply peaked[35]. By passing the photon beam through a tight
collimator, the relative contribution of coherent bremsstrahlung can be enhanced. Figure
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Figure 2.9: Hall B beamline. Image Source: [29]
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Figure 2.10: Hall B photon tagging system. Image Source: [33]

Figure 2.11: Calculated photon spectrum and polarization for a photon beam produced
by an incident electron beam of 5.8 GeV on a 20 µm diamond crystal. Image Source: [35]
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2.11 shows simulated results for the photon spectrum and its polarization before and after
using a collimator. The blue dashed lines show that by using a collimator, the polarization
of the photon beam is enhanced in a window of 200 MeV near 2.0 GeV. (We refer to this
window as the coherent peak.) Since the energy of the coherent bremsstrahlung is related
to the crystal orientation, by rotating the crystal, the position of the coherent peak can
be changed gradually to cover all of the desired energy region. The polarization of the
linearly polarized beam is determined by fitting the photon spectrum from the diamond
radiator with respect to the photon spectrum from an amorphous radiator to a model that
takes into account all known contributions of coherent and incoherent bremsstrahlung,
multiple scattering, mosaic spread and beam divergence[36].

The Tagger Magnet

The tagger magnet is a single uniform dipole. It has a full-energy radius of curvature
of 11.80 meters and deflection angle of 30◦. It’s length is 6.06 m along the open chord,
and there is a gap of 5.7 cm wide in the middle for the electron beam to pass through
(Figure 2.12). The magnet bends the electron beam out of the beamline, which bends the
energy-degraded electrons to the hodoscope, and the full-energy electrons to the beam
dump. The requirement of 10−3E0 in energy resolution requires good field uniformity.
For the original upper limit of the CEBAF beam of 4 GeV, the required magnetic filed of
1.13T has good uniformity. For the upgraded 6 GeV beam, the tagger magnet needs to
provide a magnetic field of 1.75T to bend the full-energy beam to the beam dump. This
high field has some degraded field uniformity, but by modifying the shape of the return
yoke, the field could achieve a satisfactory uniformity.

Figure 2.12: The transverse section of the tagger magnet. The laminar structure of the
yoke is completely open in the middle for the electron beam passage. Image Source: [33]
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The Hodoscope

The focal-plane hodoscope is used to measure the momentum and timing of the recoiling
electrons. It consists of two separate planes of scintillator detectors, the E-plane and
T-plane. Since electron trajectories cross the focal plane at different angles ranging from
9.5◦ for high momentum electrons to 25◦ for low momentum electrons, each detector
needs to be arranged with its working surface normal to the electron trajectory(Figure
2.13),

Figure 2.13: A section of the hodoscope showing the arrangement of the scintillator
detectors in E-plane and T-plane. The parallel lines indicate the direction of the electron
trajectories. Image Source: [33]

Figure 2.14: The relative positons for the E-plane and T-plane. Image Source: [33]

The E-plane lies on the optical focal plane of the magnet(Figure 2.15). This plane
is used for the momentum definition of the recoiling electrons. The momentum of the
recoiling electron is then used to determine the energy of the bremsstrahlung photon.
The requirement of an energy resolution of 10−3E0 results in a plane with a high degree
of segmentation. For a focal plane of around 9 m in length, there are 384 scintillators.
These scintillators are 20 cm long and 4 mm thick. Their widths (along the dispersion
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direction) vary from 6 to 18 mm, which covers approximately equal size momentum
intervals of 0.003 E0. The scintillators are arranged to optically overlaps their neighbors
by one-third of their width, this arrangement increases the effective number of photon
energy bins to 767 and gives an energy resolution of 0.001 E0.

The T-plane lies 20 cm downstream of the E-plane. This plane is used to make
accurate timing measurements for the recoiling electrons. It contains 61 counters, each
counter is 2 cm thick, and can provide a timing resolution of 110 ps. The T-counters
are separated into two groups. The first group has 19 narrower counters, and covers
the photon energy from 75% to 95% of the incident electron energy. The second group
of 42 counters covers the range from 20% to 75%. The widths of the T-counters vary
to compensate for the 1/Eγ distribution of the bremsstrahlung cross section, and make
the counting rate approximately the same within each group. Because the widths of
the counters in first group are narrower, the counting rate in the first group is about
1/3 of the second group. (This design is for the experiments that are only interested
in high energy photons, the relatively low counting rate allows for operation at higher
tagged-photon rates for the high energy photons.) The lengths of the T-counters also
vary from 20 cm at the high-momentum end to 9 cm at the low-momentum end in order
to compensate for the the bremsstrahlung characteristic angle distribution. The timing
information extracted from the T-counter is used to associate photons with events in the
CLAS detectors.

The Readout

Figure 2.15: Schematic of the tagger readout setup. Image Source: [33]

The signals produced by the scintillators are read out by photomultiplier tubes (PMTs).
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Each E-counter has one phototube attached at one end by an optical fiber light guide,
each T-counter has two phototubes attached by solid light guides at both ends. T-counter
signals are fed to constant-fraction discriminators(CFDs) first, and are then used in two
ways. First, the signals from the discriminator are sent to the FASTBUS TDCs (LRS
1872), operating in the common-start mode with a timing resolution of 50 ps/channel.
The TDCs are used to extract the timing information from the T-counters and to count
the total number of hits recorded in the tagger. The other CFD output establishes a
coincidence with a fast AND logic unit between the two PMTs from the same T-counter.
Then the output of the AND gate is sent to a Master OR, which sets the trigger for CLAS
events. The output of each E-counter PMT is sent to a signal-amplifier, discriminator,
multiplexer and logic module (ADML). The outputs from the ADMLs are fed to the
FASTBUS TDCs (LRS 1877), running in the common-stop mode with a timing resolu-
tion of 500 ps/channel. The TDCs are used to determine which of the E-counters were
hit during the time bucket of the trigger. The rest of the signals from the discriminator
are used to establish a hardware coincidence between each T-counter and the group of E-
counters. The output of the E-T logic unit is fed to one of the inputs of the AND gate for
each T-counter for the MASTER OR trigger. However, the output gate width of the E-T
logic unit is set to be much longer than the outputs from the T-counter discriminators,
so the timing of the event is still determined by the T-counter signal.

During the offline analysis, the timing information from both the E- and T- counters
is used to establish the hit pattern and to make tight timing coincidences between the
counters to remove background events. The timing information is also used to determine
the event start time. The time resolution of the tagger is sufficient to identify the RF
beam bucket associated with each photon. By calculating the propagating time of the
photon from the radiator to the event interaction vertex, the event vertex time can be
determined.

The Collimation System

The collimator downstream the tagger magnet is used to remove the halos of the photon
beam, and restricts the size of the photon beam on target. A magnet is placed just
downstream from the collimator(a 25 cm long nickel block) to clean up any charged
particles created in the collimator walls. The collimator is placed about 14 m downstream
the radiator, and trims the diameter of the photon beam so that it is entirely within the
target. In the G14 experiment, for the circularly polarized beam, a collimator with a
2.6 mm diameter hole was used. For the linearly polarized beam, a 2.0 mm diameter
collimator was used.

2.2.2 The CLAS Detectors
The CEBAF Large Acceptance Spectrometer (CLAS) is used to detect the final state
particles in the G14 experiment. It is composed of a toroidal magnet and several layers
of sub-detectors. The main CLAS subsystems are the start counter for event trigger-
ing and start time measurement for time-of-flight measurement, drift chambers to track
the trajectories of charged particles, Cherenkov counters for electron identification, TOF
scintillators for time-of-flight measurement, and electromagnetic calorimeters for neutral
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particle detection. The Cherenkov counters are only used in electro-production exper-
iments for recoil electron triggering and identification, and will not be discussed here.
The polar angle coverage of CLAS for charged particles is 8◦ < θ < 142◦, and for neutral
particles, it is 8◦ < θ < 45◦. The azimuthal angles are mostly covered except for the 6
gaps where the torus magnets are. Figure 2.16 is a schematic diagram showing all the
sub-detectors of CLAS, and a photo of it in real life.

Figure 2.16: Left plot is a schematic diagram for the CLAS detector, right plot is a photo
of the CLAS in Hall B during a maintenance period. Image Source: [28]

Torus Magnet

The Torus Magnet is the heart of the CLAS detectors. Its magnetic field gives good
momentum resolution for charged particles, provides large angle coverage, and keeps
the target region magnetic field free for the use of polarized targets. It consists of six
kidney-shaped superconducting coils arranged in a toroidal way around the beam-line,
each separated in the azimuthal direction by 60◦. This arrangement generates a field
mainly pointing in the φ direction around the beam-line. Figure 2.17 shows the magnetic
field in the middle plane between two coils, and in a plane transverse to the beam and
centered on the target. The maximum design current of the torus coils is 3860A. During
G14 runs, two torus currents were used, +1918A and -1495A.

Start Counter

The Start Counter is a six sector scintillator detector (Figure 2.18) [37]. Each sector
has four scintillator paddles. Each paddle is a single piece scintillator with a straight
section 502 mm long, 29 mm wide and 2.15 mm thick with a bend at each end. The
upstream bend couples to an acrylic light guide and then to the PMTs; the downstream
bend couples to a tapered end to form the "nose".

The Start Counter is used for two purposes. One is for particle identification, this is
done by measuring the time-of-flight of the scattered particles from the interaction vertex
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Figure 2.17: (A) Magetic field of the CLAS torus magnet in the middle plane between
two coils; (B) Magnetic field vectors of the CLAS torus magnet in the plane transverse
to the beam and centered on the target. Image Source: [29]

Figure 2.18: Start Counter. Image source: [37]
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to the TOF or EC. The interaction time is determined from identification of the photon
beam bucket that produced the hadronic interaction. Since the photon beam buckets
have 2 ns intervals, a sub-nanosecond coincidence of the Start Counter with the Tagger
T-counter is required for this purpose. For a confidence interval of 99% and a Gaussian
time distribution, the Start Counter needs to have resolution less than 388 ps. With good
identification of the photon bucket, the RF time gives the start time of the scattering
particle trajectory with a resolution of less than 25 ps.

The other use of the Start Counter is to define the trigger for photon runs. As shown
in Figure 2.19, the Start Counter signals are used in two parts of the Level 1 trigger:
the synchronous leg, and the asynchronous leg. In the synchronous leg, for each of the
six sectors, 4 discriminated PMT signals and the corresponding TOF, EC PMT signals
are fed into a synchronous memory lookup unit. If the required topology is found, a
trigger signal is generated. In the asynchronous leg, the 24 Start Counter signals from
the CAMAC C207 discriminators are combined in an OR circuit, the output of the OR
circuit and the MOR signal from the tagger are ANDed to form the fast asynchronous
(ASYNC) signals. The trigger signals from the synchronous leg and the ASYNC signals
from the asynchronous leg are fed into a final memory lookup unit. If the desired logic is
met, the trigger supervisor will generate a signal to initiate the digitization and readout
of the event.

Figure 2.19: Start Counter trigger logic.

Drift Chambers

The Drift Chambers are used to reconstruct the trajectories of the charged particles
emerging from the target with momenta greater than 200 MeV/c. When the charged
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particles pass through the gas inside the drift chamber, they ionize the gas and produce
free electrons and ions, the static electric field in the detector drifts the electron cloud
to the anode, and produces a signal. The goals for the track resolution for 1 GeV/c
charged particles are δp/p ≤ 0.5%, and δθ, δφ ≤ 2 mrad. In order to achieve these goals,
the tracks are measured at three locations in the three "Regions" (R1, R2, R3) of the
Drift Chambers. Since the Torus Magnet coils separate the detector into six independent
sectors, in total there are 18 separate drift chambers located at three radial locations
in the six sectors. The six "Region One" chambers are inside the torus coils, where the
magnetic fields are low. The six "Regions Two" chambers are placed between the torus
coils in an area of high magnetic field, where the maximal curvature of the particle’s
trajectory is. The six "Region Three" chambers are situated outside the torus coils. This
setup provides a polar angle coverage from 8◦ to 142◦, and an azimuthal angle coverage
up to 80%. A schematic view of the three regions of the Drift Chambers is shown in
Figure 2.20.

Figure 2.20: Horizontal cut and Vertical cut of the Drift Chambers. Image Source: [29]

In each of the 18 Drifter Chambers, the wire layers are grouped into two "super-
layers". In one group, the wires are aligned along the magnetic field, and in the other
group, the wires are tilted at a 6◦ stereo angle around the radius to provide azimuthal
information. Inside each super-layer, the wire positions are shifted by half the nominal
spacing in successive layers with the repeating pattern of two field-wire layers and one
sense-wire layer. This arrangement results in a quasi-hexagonal cell as shown in Figure
2.21. Each cell has one sense wire in the middle, surrounded by six field wires. The
distance between the field and sense wires increases uniformly with increasing distance
from the target. The average distance between the field and sense wires is 0.7 cm in R1,
1.5 cm in R2, and 2.0 cm in R3. Each R2 and R3 sector consists of 12 layers of sense
wires; the 6 axial layers are at smaller radius, and 6 stereo layers are at larger radius. For
R1 sectors, there are only 10 layers because of the limited space, and the arrangement of
stereo and axial layers is opposite to R2 and R3, with the 4 stereo layers at smaller radius
and 6 axial layers at larger radius. A 88% argon and 10% CO2 mixture gas was chosen
for the chamber gas. This mixture is non-flammable, and has reasonably low multiple
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scattering, good efficiency, and short collection times. To keep constant pressure in the
chamber, an active feedback system is used to make small adjustments to the out-flow.

Figure 2.21: Schematic representation of portion of an R3 drift chamber. There are two
superlayers with 6 layer of drift cell in each superlayer. The sense wires are at the center
of each hexagon and the field wires are at the vertices. Image Source: [29]

Time-of-flight counters

The TOF system is used for particle identification, CLAS Level 1 trigger, and energy-
loss measurements. It covers an area of 206 m2, which fills all 6 sectors of the CLAS in
the azimuthal direction, and from 8◦ to 142◦ in the polar direction. The scintillators are
positioned between the Cherenkov detectors and the forward electromagnetic calorimeter,
as shown in Figure 2.16. The system is composed of 342 scintillation counters with
nominal thickness of 2 in. (5.08 cm), the forward-angle system has 15-cm wide and 32
to 376 cm long scintillators, the large-angle system has 22-cm wide and 371 to 445 cm
long scintillators. As shown in Figure 2.22, the 57 scintillators are grouped in four panels
in each of the six CLAS sectors. Counters 1-22 in panel 1 are called the forward-angle
system, they cover the polar angle up to 45◦. Counters 23-57 in panel 2,3,4 are refereed as
large-angle system. The high segmentation of the TOF system is for achieving excellent
timing resolution, the time resolution of the system determined by cosmic-rays is shown
in Figure 2.23.

Forward Electromagnetic Calorimeter

The forward electromagnetic calorimeter (EC) is used in G14 experiment for detection
of photons with energies above 0.2 GeV and neutrons. The detected photons are used
to reconstruct π◦ and η from the 2γ decays. The discrimination between photons and
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Figure 2.22: Four panels of the TOF scintillatros in one CLAS sector. The forward-angle
scintillators have short stubby light guides and 2 inch PMTs. The large-angle scintillators,
except for the last four, have bent light guides and 3 inch PMTs. Image Source: [38]

Figure 2.23: The timing resolution as determined from cosmic-ray tests for all counters.
Image Source: [38]
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neutrons is from the β value from the time of flight measurement. The mass separation of
π◦ and η requires the detection of photons has an energy resolution σ/E ≤ 0.1/

√
E(GeV )

and a position resolution δr ≈ 2 cm at 1 GeV. To distinguish photons from neutrons
requires the time resolution ≈ 1 ns.

The EC covers the θ range up to 45◦. This system uses a sampling calorimeter made
of alternating layers of scintillator strips and lead sheets. The ratio of the thickness of
the lead to scintillator is 0.24, with 39 cm thickness of scintillator and 8.4 cm thickness
of lead.

There are six EC modules to match the hexagonal shape of the CLAS. Each module
is contained in a volume with the shape of an equilateral triangle. There are 39 layers
in each module, which consist of a 10 mm thick scintillator followed by a 2.2 mm thick
lead sheet. Along the direction pointing away from the CLAS target, the area of each
successive layer increases, this "projective" geometry minimizes the shower leakage at the
edges of the active volume. Each scintillator layer is made of 36 strips parallel to one
side of the triangle, with the orientation of the strips rotated by 120◦ in each successive
layer as shown in Figure 2.24. This arrangement results in three views (labeled U, V and
W), and provides stereo information of the location of energy deposition. Each stereo
view contains 13 layers, which are further subdivided into an inner (5 layers) and outer
(8 layers) set. Each set is connected to an PMT as shown in Figure 2.25. Thus, each
module needs 36 (strips) × 3 (views) × 2 (sets) =216 PMTs, and all six modules need
1296 PMTs.

Figure 2.24: The U-, V- and W-plane of the electromagnetic calorimeter. Image Source:
[39]

The reconstruction of an EM shower event requires a peak in all three views U, V and
W. An algorithm is used to check the peak position, and the peak energy to confirm a
hit of a particle in the EC. A reconstructed EM shower event is shown in Figure 2.26.
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Figure 2.25: EC light readout system. PMT-photomultiplier, LG-light guide, FOBIN-
fiber optic bundle inner, FOBOU-fiber optic bundle outer, SC-scintillators, Pb-2.2 mm
lead sheets, IP -inner plate(closest to target). Image Source: [39]

Figure 2.26: The diagram of an event reconstruction in EC. Image Source: [39]
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2.2.3 Beam-line Devices
Beam Position Monitors: BPMs

The Beam Position Monitors (BPMs) are used to measure continuously the position of
the electron beam entering Hall B. The BPM is composed of three RF cavities. For the
G14 experiment, two BPMs were used at two different positions. The 2C21A BPM is
placed 36 m upstream of the target, the 2C24C is placed 24.6 m upstream of the target.
The BPMs provide the electron beam position (x,y) and intensity, this information is used
continuously in the feedback loops to keep the electron beam centered, and the position
and current information is also written in the data stream every 20 seconds.

Beam Profile Monitors: Harps

The Beam Profile Monitors measure the electron beam profile by moving thin wires
through the beam. As the crossed wires (horizontal and vertical) move across the beam-
line along the 45◦ angle with respect to the horizontal axis, the scattered electrons are
measured by the Cherenkov light in the glass windows of the PMTs. Figure 2.27 shows
the results of a harp scan during the G14 experiment. The harp scan intercepts the beam,
so this procedure occurs when CLAS is not taking data and is performed after any major
change to the electron beam.

Figure 2.27: The electron beam profile from a harp scan during the G14 experiment.
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Beam Polarization: Møller polarimeter

The polarization of the electron beam used in Hall B is measured by a Møller polarimeter.
The polarimeter is located in the beam-line upstream of the bremsstrahlung tagging
system (Figure 2.9). The schematic diagram of the system is shown in Figure 2.28. The
asymmetry in the elastic electron-electron (Møller) scattering is measured by the two
detectors, which gives the polarization of the electron beam.

Figure 2.28: The schematic diagram of the Hall B Møller polarimeter. Image Source:
[33]

Photon Flux: Total Absorption Shower Counter and Pair Spectrometer

The Total Absorption Shower Counter (TASC) at the end of the beam-line is used for
measuring the photon flux. The TASC is a lead glass scintillator array, with close to
100% photon detection efficiency at low photon flux. The reason the TASC is placed at
the end of the beam-line is that not all the tagged photons arrive at the target; some of
them are lost due to the collimation and dispersion. The tagging ratio ε = NT

⊗
TASC

NT

is used to calculate the number of photons reaching the target, in which NT ⊗TASC
is the number of "good" hits in the tagger in coincidence with the photons measured by
the TASC, and NT is the total number of "good" hits in the tagger. The tagging ratio is
only calculated in the normalization runs, which have very low fluxes (beam currents up
to 100 pA).

The TASC must be retracted from the beam-line during the production runs. Thus,
secondary monitors, with absolute efficiency of only a few percent but linear in flux over
a wide range, are cross-calibrated against the TASC at low rates and used to determine
the flux at higher rates. Two devices are used as the secondary monitors, the Pair Spec-
trometer(PS) and the Pair Counter(PC). They are placed in front of the TASC as shown
in Figure 2.29. The Pair Spectrometer consists of a thin conversion foil, a large aper-
ture dipole magnet and eight scintillator counters. A photon hitting the thin converter
produces e+e− pairs, which are dispersed by the magnetic field and then detected in the
eight scintillator counters. The pair counter is a much simpler device, and is used as a
backup intensity monitor.
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Figure 2.29: Layout of the flux monitoring devices. Image Source: [29]

2.2.4 Trigger and Data Acquisition System
Trigger System

Each of the CLAS subsystems is actively run and generates signals, but not all signals are
worth recording. Background signals such as the signals from cosmic rays or electronic
noise should be rejected. The CLAS uses a two-level hierarchical trigger system to acquire
events of interest. This system consists of three parts: Level 1 trigger, Level 2 trigger
and Trigger supervisor.

The Level 1 trigger is deadtime-less, and uses any or all available information from
PMT channels to select the desired events. The information used in the Level 1 trigger
includes the signals from the Start Counters, the TOF Counters and the tagger Master
OR output. Preloaded trigger definitions are programmed in the hardware memory, and
the signals are processed through a 3-stage memory lookup to generate an event trigger.

The Level 2 trigger uses the track information from the Drift Chambers. It is designed
to reject events from cosmic-rays that can set the Level 1 trigger but lack matching tracks
in the Drift Chambers. If no track candidates are found, a fast-clear signal is issued.

The Trigger supervisor (TS) takes the Level 1 and Level 2 triggers as inputs and
produces the common signals, busy gates, and resets for the detector electronics. The TS
can be programmed in two configurations. The first configuration (CLASS 1) requires
that the event passes only the Level 1 trigger, the second configuration (CLASS 2) requires
both Level 1 and Level 2 confirmations. After the event passes the TS requirement, it is
placed on the readout queue for asynchronous readout.

Data Acquisition System

The Data Acquisition System (DAQ) is used to manipulate and record data from various
CLAS subsystems. The data flow is shown in Figure 2.30. Firstly the data are digitized
in 24 FASTBUS and VME crates in the experiment hall and collected by the Readout
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Controllers (ROC1 to ROC24). Then the data arrays are buffered and transferred to the
CLAS online acquisition computer (CLON10) in the control room via fast Ethernet cables.
The CLON10 computer carries out three primary processes, the Event Builder(EB), Event
Transport (ET), and Event Recorder (ER). The EB assembles the data arrays, or event
fragments, into complete events, which are labeled by a run and event number, and event
type, and trigger bits that are all contained in a header bank. The completed events
from the EB is then passed to shared memory (ET1). ET1 can be accessed by several
processes, the ER takes all events for permanent storage, part of the events from ET1
are transferred to remote ET systems (ET2 and ET3) for raw data checks and online
reconstruction. The ER writes the data in a single stream to an array of local magnetic
media (RAID disks), the data files are then transferred to the remote tape silo by a fiber
link from the local RAID in the control room to the computer center a kilometer away.

Figure 2.30: The data flow diagram for CLAS DAQ. Image Source: [29]

2.3 HD-ice Target
HD-ice is a frozen spin target of solid hydrogen deuteride. It has many attractive features,
such as low Z, high dilution factor (all protons and neutrons in HD are polarizable),
long spin-relaxation time, and freedom of transferring polarization between H and D.
Figure 2.31 shows what the target looks like. The cell walls are made from C2ClF3(poly-
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chloro-tri-fluor-enthylene), which is a hydrogen-free polymer that minimizes the NMR
backgrounds for H. Aluminum wires are put in the target to extract the heat from HD.
The aluminum wires are soldered to a copper ring, which is thermally anchored to a cold
bath. The target has 0.4 moles of HD, which at 1K occupies a cylindrical volume 1.5cm
in diameter and 5.0cm in length. The composition of a standard HD target is: 77% HD,
17% Al(750 × 50µ Al wires) and 6% C2ClF3.

Figure 2.31: HD-ice target cell used in G14 experiment. Image source: [41].

2.3.1 Basic HD physics
Polarized targets are essential in nuclear physics, since they can provide access to the spin
structure of the nucleon. One often measured observable is the double spin asymmetry:

Aexp = N(→⇒)−N(←⇒)
N(→⇒) +N(←⇒) = PBPTfA

phys

δAexp

Aexp
= 1√

2NPBPTfAphys
,

(2.2)

where → is the direction of beam polarization, ⇒ is the direction of target polarization,
PB is beam polarization, PT is target polarization, f is dilution factor, N is number of
events. In order to get big signal for Aexp and small δAexp

Aexp
, we need big PB, PT and

f. HD has the highest content of polarizable nucleons(f), compared with other solid
polarized targets such as the butanol(C4H9OH), ammonia(NH3, ND3), and Lithium
deuteride(6LiD). The HD molecule has no limitation of symmetry, both its proton and
deuteron can be polarized by aligning their spins with a magnetic field.

At its lowest energy state with no phonon coupling in solid HD crystal, it’s spin-
relaxation time is very long(years). But it also means that to polarize pure HD would
need a long time. This problem can be solved by adding a small amount of H2 and
D2(∼ 10−4) in the target. The H2 and D2 molecules have two spin isomers with spins
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either parallel (ortho-H2, para-D2) with total molecular nuclear spin Imolecular = 1 or
antiparallel (para-H2, ortho-D2) with total molecular nuclear spin Imolecule = 0, 2. The
name para or ortho is determined by spin degeneracy(gI) of the species, the one with
larger spin degeneracy is named ortho as in Table 2.1.

Molecule(IN) Imol(Φ(Imol)) J(Φ(J)) Φ(r) Φtotal gI Isomer

Hydrogen (1/2) 0 (AS) Even (S) S AS 1 para
1 (S) J=Odd (AS) S AS 3 ortho

Deuterium (1) 1 (AS) Odd (AS) S S 3 para
0, 2 (S) Even (S) S S 6 ortho

Table 2.1: Nuclear spin states and rotational states for hydrogen and deuterium. IN is
spin of nucleon, Imol is molecular nuclear spin, J is rotational state, gI is nuclear weight.
AS(S) is abbreviation for antisymmetric (symmetric). Φ(r),Φ(J),Φ(Imol) are the vibra-
tional, rotational and nuclear wave functions. Φtotal is the total wave function, which is a
product of vibrational, rotational and nuclear wave functions. Since the nucleons inside
H2 (D2) are identical particles, their wave functions are restricted by special symmetries.
Since the proton(deuteron) is a fermion (boson), the total wave function of H2(D2) is
AS(S). Table source [44].

The polarization of H in HD uses both species of H2. At room temperature, the
normal-H2 has both para and ortho species. The thermal equilibrium between para- and
ortho-H2 is governed by Boltzmann’s law. From Table 2.1, we know that para-H2 has
even and ortho-H2 has odd rotational quantum numbers, the ratio (β) can be expressed
by Equation 2.3 [45].

β = [p−H2]
[o−H2] =

∑
J=even

(2J + 1)e−EJ/kT

3 ∑
J=odd

(2J + 1)e−EJ/kT
(2.3)

At high temperatures limit (EJ << kT ), β = 1/3. Since the transition from the
ortho state to the para state is forbidden, if the H2 is cooled down to the solid state,
almost all the para-H2 falls into the J = 0 state and the ortho-H2 falls into the J = 1
state, and these two rotational states have an energy gap of 172 K (EJ=1−EJ=0

kB
) in the

temperature units. In the solid state (T = 4 K), the interactions between molecules can
cause conversion from ortho-H2 to para-H2 with a decay constant of 151 hours.

The process of polarization can be described in four steps as in the Figure 2.32.

1. HD is cooled down to the solid state (T = 4 K), almost all H2 falls to the molecular
states I = 1, J = 1(ortho-H2, 75%) and I = 0, J = 0(para-H2, 25%), in which
ortho-H2 has a very short T1 and can be polarized by an external field very fast.

2. The protons in the ortho-H2 are cross-relaxed with the protons in the HD. The H
polarization in ortho-H2 is transferred to the HD through spin-exchange [40].

3. Since HD is a quantum solid, the wave function of adjacent HD molecules overlap
each other, spin of H will diffuse inside HD. In this way, the HD molecules far away
from the ortho-H2 also get polarized.
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Figure 2.32: Polarization mechanism for HD-ice target. Image source: [41].

4. Since the nuclear spin interaction between the nucleons in two different atoms is
weak, the decay of ortho-H2 to para-H2 is forbidden, which provide enough time
for ortho-H2 to polarize the HD. After several half times, most ortho-H2 molecules
decay to para-H2. Para-H2 is J = 0 state, which is symmetric and generates no
external field. There is no dipole interaction between para-H2 and HD, leaving the
HD target in a frozen-spin state.

TheH2 impurity plays a role of "switch" for the frozen spin state of HD. Ortho-H2 shortens
TH1 for HD, which speeds up ("turns on") the polarization of H in HD. As ortho-H2 decays
to para-H2, TH1 grows longer for HD, which slows down ("stops") the polarization process,
and HD becomes a frozen spin state. In practice, the commercial HD gas already contains
about 1.5% of H2 and 0.5% of D2, the HD gas must be purified to the desired level of
10−4.

The D in HD can be polarized in a similar way. The equilibrium H and vector-D
polarization is described by the Brillouin function (Eq. 2.4):

PTE(x, I) = 2I + 1
2I coth(2I + 1

2I x)− 1
2I coth( x2J ), (2.4)

where x = µB
kBT

, I is nuclear spin(1/2 for H, 1 for D). Since ID = 1, deuteron has both
vector polarization (PV (D)) and tensor polarization (PT (D)) (Eq. 2.5):

PV (D) = N(Iz = 1)−N(Iz = −1)
N(Iz = 1) +N(Iz = −1) +N(Iz = 0) ,

PT (D) = N(Iz = 1) +N(Iz = −1)− 2N(Iz = 0)
N(Iz = 1) +N(Iz = −1) +N(Iz = 0) .

(2.5)

In thermal equilibrium, the population of Iz = 0 is the geometric mean of ±1 states,
which gives PT (D) = 2 −

√
(4− 3(PV (D))2). The current setup can reach B = 15T

and T = 12mK, which can produce ∼ 90% polarized H and ∼ 30% polarized vector
D. However, the decay of ortho-H2 to para-H2 generates heat, which makes temperature
higher than 12mK during polarization, and TH1 becomes very long as most of ortho-H2
decay, ideal thermal equilibrium will not be achieved, so the final polarizations of H and
D are lower than the above values. Polarization of ∼ 60% for H and ∼ 15% for D) have
been achieved in HD-ice lab as shown in Figure 2.33.
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Figure 2.33: HD polarization in theory and in reality. For a magnetic field of 15 T and
temperature of 12 mK, polarizations of ∼ 90% for H and ∼ 30% for D are expected in
theory; ∼ 60% for H and ∼ 15% for D are achieved in reality.

The polarization of D can be further increased by transferring polarization from H
to D via RF transition [46, 47]. The transferring mechanism is shown in Figure 2.34.
The transitions between the mixed state |mH ,mD > are referred as Forbidden Adiabatic
Fast Passage (FAFP). It is "Forbidden", because the transitions move polarization from
H in one molecule to D in a neighboring molecule via the inter-molecular dipole-dipole
coupling, and it is a two-photon process with RF frequency equal to the difference of
the H and D Larmor frequencies ν(H-D) = 36.0416 MHz/Tesla. The intra-molecular
dipolar coupling of H and D in the same HD molecule averages to zero, because at
this low temperature, almost all HD molecules are in the J=0 rotational state. The
term "Adiabatic" refers to the fact that the time scale for the process is relative long with
respect to the Larmor frequencies, and "Fast" is with respect to the spin-relaxation times.
The "Forbidden" transitions require very high power to flip the spins. This would raise
the temperature of the dewar and result in a loss of frozen-spin polarization. The method
the HD-ice group uses is to saturate the RF transition over a long period of time (∼ 15
min) with low-power RF, which equalizes, instead of reverses, the populations of the
mH = +1/2;mD = −1, 0 and mH = −1/2;mD = 0, 1 states. This method has boosted
the deuteron vector polarization (PV (D)) from 15% to 27%.

2.3.2 Cryostats for HD target
The production and use of the polarized HD target is more complicated than that of the
conventional polarized nuclear targets. In the lifetime of a HD target, it goes through
5 different cryogenic systems: production dewar (PD), transfer cryostat (TC), dilution
refrigerator (DF), storage dewar (SD), in-beam cryostat (IBC).
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Figure 2.34: Magnetic energy levels for dipole-dipople coupled mixed state |mH ,mD >
between neighboring HD molecules. The two photon transitions with the difference of
the H and D Larmor frequencies are shown as dashed lines.

Production dewar

The PD (production dewar) is a stock Janis cryostat, which has a pumpable vari-temp
system in a liquid helium bath with a liquid nitrogen space and shield (Figure 2.38).
Within the varitemp space is a custom-built insert holding the HD target and NMR
coils. The PD is used as the crystat for condensing the HD and calibrating the NMR
signals for polarization calculations. It has a 2 T magnet and the varitemp space can be
cooled below 2 K. After the condensation and NMR calibration, the HD target is moved
to the dilution refrigerator using the transfer cryostat.

Transter cryostat

The TC (transfer cryostat) is a tool to relocate the target from one cryostat to another.
It has a left-hand threaded coldhead on the end of a liquid helium tube, which can be
extended into the cryostat, and be used to capture the HD target with the matching
threads between the TC and the target cell (Figure 2.36). The liquid helium volume
of the TC can be pumped to cool the coldhead below 2 K. The cylindrical LHe tube is
separated by vacuum from the surrounding LN2 toroidal volume, and then surrounded
by an insulating vacuum space formed from highly compressible bellows (Figure 2.37).
A cylindrical permanent magnet array (Halbach magnet) produces a magnetic field of
0.1 T to keep the target polarization. Since the HD target has the shortest T1 in the
TC compared with the other 4 cyrostats (the smallest B/T), minimizing the time for
the target inside TC is preferred. With the failure rate of less that 5% per transfer, the
overall success rate exceeds 75% for using the HD target, which requires 5 transfers.
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Figure 2.35: Schematic plot of the production dewar. Image source: [49].

Figure 2.36: Threads on the copper target ring for relocating the target. The interior
lef-handed threads match the threads on coldhead of the TC, the exterior right-handed
threads match the theads of the cryostats, such as PD, DF, SD, IBC. Image source: [48].
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Figure 2.37: A schematic plot (left) and a photo (right) of the TC (transfer cryostat).
Image source: [48].

Dilution refrigerator

The DF system consists of an Oxford Instruments dilution refrigerator and a large mag-
net system. The dilution refrigerator has a base temperature of about 8 mK without
energizing the magnet, and a base temperature below 10 mK with the magnetic field
energized up to 15 T. The DF is able to polarize up to 3 targets at the same time.

Storage dewar

The SD (storage dewar) is also a stock Janis cryostat, which has a bigger magnetic field (7
T), and lower temperature (1.6 K) than the PD. The sample space has thread positions
for holding up to 3 targets. The SD has a longer liquid helium holding time and is
portable, to allow moving the polarized target from the HD-ice lab to the experiment
hall.

In-beam cryostat

The IBC (In-beam cryostat) is a dilution refrigerator and magnet system for holding
the polarized HD target during the experiment. The base temperature of the dilution
refrigerator is 50 mK. It has two magnet systems. The solenoid magnet creates a field
of 1 T along the beamline, which is also the polarization direction of the longitudinally
polarized target. The saddle coil magnet creates a field of 0.075 T perpendicular to the
beamline, which is used during the spin rotation to change the polarization direction of
the longitudinally polarized HD target. A backup coil with a field of 0.01 T is used during
the run, in case there is a quench of the main solenoid magnet.
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Figure 2.38: Schematic plot of the dilution refrigerator. Image source: [49].
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The HD target life cycle

The life of the HD target starts with the condensation of HD gas into the PD, where
an NMR measurement is done for calibrating the thermal equilibrium polarization of the
target. Then the solid HD target is transferred to the DF for polarization. After 3-6
months of polarizing and aging of the target, it is relocated from the DF to the PD for
another NMR measurement to determine the polarization of the target. This step can
be bypassed if a good cross-calibration between the PD and the IBC NMR systems is
known. After the NMR measurement, the HD is transferred from the PD to the SD for
storage and then it is transported to the experiment hall. In the experiment hall, the HD
is transferred from the SD to the IBC for the experiment. Inside the IBC, periodic NMR
measurements are performed to monitor the target polarization during the experiment.
Moreover, several spin manipulations for H and D are conducted, which includes using
SFP (saturated forbidden adiabatic fast passage) to transfer polarization from H to D,
reversing the z-direction of the polarization of H or D. After the experiment is finished,
the HD is transferred from the IBC to the PD for another NMR measurement in the
PD for cross-calibration between the PD and the IBC NMR circuits. Then the HD is
warmed up to be collected for gas chromatography measurements and Raman scattering
measurements to determine theH2 andD2 levels in the HD gas. Figure 2.39 is a schematic
plot of the life cycle of an HD target. Figure 2.40 is a schematic plot of the HD target
transfer process.

Figure 2.39: Schematic plot of the life cycle of an HD target. The labels from 1 to 5 for
the arrows represents the 5 times use of the TC is used for transferring the HD target.

2.3.3 NMR analysis for target polarization
Definition of target polarization

A nuclus with non-zero spin I has 2I+1 spin states for its ground state. These states are
degenerate in the absence of a magnetic field, but will be separated into different energy
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Figure 2.40: The schematic plot of the HD target transfer process. Image source: [41].

levels in a magnetic field (Zeeman effect). The energy levels for the spin states relative
to the ground state are: E = −µ · B = −γIzB = −γ(m~)B, where m = -I, ... I, µ = γI
is the magnetic moment for the nucleon, γ = gq/2m is the gyromagnetic ratio, g is the
g-factor.

The vector polarization of a target is the normalized difference between the number
of spins parallel to the magnetic filed and those anti-parallel to the magnetic field, as in
Equation 2.6.

P = Nm=I −Nm=−I
I∑

m=−I
Nm

(2.6)

In thermal equilibrium, the spin state population follows the Boltzmann distribution.
The thermal equilibrium polarization for spin I = 1/2 (proton) and spin I = 1 (deuteron)
is shown in Equations 2.7 and 2.8. These two equations are equivalent to Equation 2.4
in the previous section.

PTE(H) = e
γ~B
2kT − e− γ~B2kT

e
γ~B
2kT + e−

γ~B
2kT

= tanh(γ~B2kT ), (2.7)

PTE(D) = e
γ~B
kT − e− γ~BkT

e
γ~B
kT + 1 + e−

γ~B
kT

=
4 tanh(γ~B2kT )

3 + tanh2(γ~B2kT )
, (2.8)
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Principles for NMR measurement

The polarizations of H and D in the target are measured by NMR polarimetry. Figure
2.41 is a cartoon of a NMR setup. In the figure, the main static magnetic field B0 is
along the z-axis, the transmitter (RF drive coils) generates an oscillating magnetic field
B1 along the x-axis, the receiver (pick-up coils) measures the induced oscillation of the
target magnetism along the y-axis. The induced RF signals in the receiver is proportional
to the polarization of the target.

Figure 2.41: A cartoon for the NMR setup [42].

The principle of the NMR measurement can be described in the following way. Take
the spin half proton (I = ~/2) as an example. In an external magnetic field B0, the
nucleons’ spin states are separated into different energy levels, which follow the Boltzmann
distribution. More spins are aligned parallel to B0 (Iz = −~/2) than anti-parallel (Iz =
+~/2), resulting a net magnetization M0 along B0 (z-axis). The RF drive coils produce
an oscillating RF field B1 along the x-axis. When the frequency of RF satisfies the
resonance condition: ~ω = ∆E = γ~B0, the magnetization M0 will be tipped away from
the z-axis and obtains a component in the x-y plane. The oscillation of My will induce a
current in the pick-up coils, which is the NMR signal. ∆E is the difference of the energy
levels for the two spin states of the proton in a magnetic field, ω = γB0 is referred as
Larmor frequency. There is a proportional relationship between the NMR signal SNMR

and the polarization of the target Pt as in Equation 2.9, in which My and SNMR are the
magnitude of the oscillating signals.

Pt ∝M0 ∝My ∝ SNMR. (2.9)

There are two methods to reach the resonance condition ω = γB0. One is to vary the
RF frequency with fixed magnetic field B0, another is to vary B0 with fixed RF frequency.
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The G14 experiment uses the second method. Figure 2.42 shows the down-sweep and
up-sweep of the magnetic field to search for the NMR resonance peak for the deuteron.
The sweep range of the magnetic field is 300 Gauss, which is from 3004 G to 2704 G in
31 seconds, then staying at the low field for 1 second, back to 3004 G in 31 seconds, then
waiting in the high field for 1 second. The RF frequency is fixed to 1774.00 kHz. The
finite width of the peak is caused by the fact that nucleons experience slightly different
magnetic field in solid state environment.

Figure 2.42: Magnetic field sweeps (black line) through B0 twice searching for the NMR
resonance (blue line) for deuteron.

The polarization of the target is proportional to the integrated area under the NMR
peak: Pt = c INMR, where INMR is the integration of SNMR over time. It is noted
that there is a linear relationship between the magnetic field and time, thus the inte-
gration has more physical meaning if it is integrated over the changing magnetic field:
INMR =

∫
SNMRdB. The determination of the constant overall factor(c) is done by a

cross calibration between the target in frozen spin mode (FS) and in thermal equilibrium
(TE). In these two conditions, we have PFS = cFS IFS, PTE = cTE ITE, combining the
two equations gives

PFS = cFS
cTE

PTE
ITE

IFS = coverallIFS, (2.10)

in which PTE can be calculated using the Equation 2.4. The ratio cFS
cTE

relates to the
conditions of NMR measurements as in Equation 2.11.

cFS
cTE

= fTE
fFS

10
pwrTE
20dBm

10
pwrFS
20dBm

GainTE
GainFS

, (2.11)
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in which fTE, fFS are the RF frequencies used in the two measurements, pwrTE, pwrFS
are the RF power in the units of dBm, GainTE, GainFS are the gains of the RF circuit.
Table 2.2 gives the overall factor coverall for different frozen spin HD targets used in G14
experiment.

Target 21a 19b 22b
coverall(H) [%/(µV ·Gauss)] 14.9/240 29.61/230 46.45/230
coverall(D) [%/(µV ·Gauss)] 27.7/267 14.97/152 5.994/152

Table 2.2: Overall factors for different frozen spin HD target in G14 experiment. Values
are from Alexdrander Deur [43].

NMR signal analysis

During the G14 experiment, periodic NMR measurements were conducted to monitor the
target polarization. For each NMR measurement, four independent signals were collected
for the NMR peaks, as in Figure 2.43, two signals from the X-channel for sweeping up and
down of the magnetic field, another two from the Y-channel. The dispersion signals from
Y-channel can be transformed to absorption signals using the Kramers-Kronig relations.

Figure 2.43: X-channel and Y-channel for the NMR resonance for deuteron.

We know from the previous discussion that the NMR signal is proportional to the
magnetization of the material M0, which is proportional to the magnetic susceptibility
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χ(ω), SNMR ∝ M0 ∝ χ(ω). The magnetic susceptibility has both real and imaginary
parts: χ(ω) = χ1(ω) + iχ2(ω), which are measured by the X-channel and Y-channel
respectively. χ1(ω), χ2(ω) are related by the Kramers-Kronig relations as in Equation
2.12.

χ1(ω) = 1
π
P
∫ ∞
−∞

χ2(ω′)
ω′ − ω

dω′,

χ2(ω) = − 1
π
P
∫ ∞
−∞

χ1(ω′)
ω′ − ω

dω′,

(2.12)

where P is the Cauchy principal integral. These relations convert the two dispersion
signals from the Y-channel to absorption signals, and give two more measurements for
the polarization. Before applying the Kramers-Kronig transformation, a phase rotation
may be needed for some measurements. As in Figure 2.43, the X-channel signal is not
flat around the absorption peaks. This is caused by the mix of the absorption signal and
the dispersion signal. A phase rotation (Eq. 2.13) can be used to solve this problem.

x′ = cos(θ)x+ sin(θ)y,
y′ = − sin(θ)x+ cos(θ)y.

(2.13)

Figure 2.44: X-channel and Y-channel after phase rotation and Kramers Kroning trans-
formation for the NMR resonance for deuteron.

Figure 2.44 gives the transformed signals for the same NMR measurement, both the
X and Y channel signals have had the phase rotation applied. Afterwards the Y-channel
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signal also had the Kramers Kronig transformation applied. Finally, if the background
noise level is not at zero, a background level adjustment has to be applied.

Figures 2.43 and 2.44 have different y values. They are different by the multiplier
106× 300/(31× 128). The reason for this conversion is that the x-axis does not have the
unit of Gauss for magnetic field. The x values are the data points stored in the register,
and the DAQ rate is 128 Hz, the sweeping rate for the magnetic field is 300 G/31 seconds.
To convert the x value from data point number to Gauss, we need to multiply it by
300/(31 × 128). On the other hand, the y values are multiplied by 106 to convert from
volts to micro-volts. Furthermore, the area under the peak is the integration of y∆x, so
the multiplier applied to the x-value can be transferred to the y-value without changing
the result for y∆x. This gives the final adjustment for the y-value of 106×300/(31×128)
with the x-value staying unchanged. After the conversion of the y values, the unit for the
integrated peak area is Gauss · µV .

Since the background around the NMR peak is fluctuating, a technique referred to as
"scanning window" is used. Figure 2.45 shows how this technique works. Firstly, a window

Figure 2.45: "Scanning window" is used for the calculation of NMR peak area. 1000 data
points around the first NMR peak in the top plot is zoomed into the bottom plot.

of 300 data point is chosen in order to include the entire NMR peak for integration.
Secondly, 36 integrations are conducted with an integration window that scans through
the NMR peak with a step of 20 data points. Finally, the results for the integrations are
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plotted vs the integration starting point as in Figure 2.46. The plateau in Figure 2.46 is
the region where the scanning window covers the whole NMR peak. The weighted mean
is used to estimate the average of the peak area, and the error is the sample standard
deviation of the 10 points.

I =
∑10
i=1

Ii
σ2
i∑10

i=1
1
σ2
i

,

σ =

√√√√1
9 ·

10∑
i=1

(Ii − Ī)2

(2.14)

Figure 2.46: Results for integration with the range of a window scanning through the
NMR peak.

In [49], the error is estimated using the flat noisy background and is related to the
size of the integration range. The uncertainty on one data point in the background region
can be computed as:

σ =

√√√√ 1
N − 1 ·

N∑
i=1

(xi − x̄)2, (2.15)

where N is the number of sweeps for this background data point. With the assumption
that the error on each points is the same, the statistical error on the peak integral can
be computed by summing in quadrature: ε =

√
n · σ, where n is the number of points

in the integration range. It is noted that a larger integration range(larger
√
n) gives a

bigger error ε. The error estimation used in the "scanning window" procedure does not
have this problem.

The same procedure is then applied to the other 3 peaks for the same NMR mea-
surement. Then the 4 values are averaged using a weighted mean, and their standard
deviation is the error for the peak area.
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To convert the integral of the peak area to the polarization value, an overall factor from
Table 2.2 is used. These values are obtained from comparing the results from an NMR
measurement of the HD target in thermal equilibrium state and an NMR measurement
of the target in frozen spin state, in which the frozen spin target NMR measurement
is referred as a reference measurement. Because the NMR measurements of the frozen
spin target have been taken with different settings (RF power, RF frequency, Gain), the
signals need to be normalized to the reference measurement in order to be compared to
each other. The normalization is shown in Equation 2.16, since SNMR is proportional to
RF power, RF frequency and the circuit gain, all the signals should be normalized back
to values with the reference settings.

I ′ = fref
f

10
Pref−P

20
Gainref
Gain

I. (2.16)

The polarization of target is equal to the overall factor (coverall) times the normalized
peak area integral (I ′).

Pt = coverallI
′ = coverall

fref
f

10
Pref−P

20
Gainref
Gain

I. (2.17)

The results of the polarization for the three HD targets used in the G14 experiment
are shown in the following figures.

Figure 2.47: Deuteron polarization for the 21a target (silver runs).

The target polarization for each run period and its statistical uncertainty are shown
in Table 2.3, the weighted mean of the NMR polarization values during the period gives
the average value, and the sample standard deviation is used as its statistical error. The
systematic errors associated with the target polarization are summarized in Section 4.3.4,
Table 4.8.
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Figure 2.48: Deuteron polarization for the 19b target (gold runs).

Figure 2.49: Deuteron polarization for the 22b target (last target runs).

Figure 2.50: Hydrogen polarization for the 21a target (silver runs).
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Figure 2.51: Hydrogen polarization for the 19b target (gold runs).

Figure 2.52: Hydrogen polarization for the 22b target (last target runs).

Run period D polarization (stat. error) H polarization (stat. error)
Silver 1 +25.6(±0.7)% +14.7(±0.2)%
Silver 2 +23.0(±0.6)% −14.3(±1.2)%
Silver 3 +20.9(±0.5)%
Silver 4 −17.2(±0.5)%
Silver 5 −15.5(±0.7)%
Gold 1 +26.0(±0.8)% +27.2(±0.1)%
Gold 2 +26.8(±0.9)% +26.9(±0.4)%

Gold 3&4 +15.8(±0.2)% +18.3(±0.2)%
Last 1&2a +25.8(±0.8)% +25.5(±0.4)%
Last 2b&3 +24.0(±1.5)% +22.6(±0.2)%
Last 4&5&6 −16.2(±1.1)% +17.7(±0.3)%

Table 2.3: Polarization of the HD target from NMR signal analysis. Compared with the
figures above, a 2% TC transfer loss has been applied to the values in the table.
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Chapter 3

Event Selection

Three channels are studied: γn → pπ−, γp → pπ+π− and γn → nπ+π−. The charged
particles are detected using the CLAS drift chambers, start counters and time-of-flight
counters. The drift chambers measure the particle tracks, which are used to determine
the particle momentum (p) and flight path, while the start counters and time-of-flight
counters give the particle TOF, which, when combined with the flight path, gives the
particle velocity (β). The momentum and velocity are combined to give the particle
mass: m = p/βγ.

The neutrons are detected by the forward electromagnetic calorimeter. The run con-
ditions and procedures for selecting events for the three channels are described in the
following sections.

3.1 Run Conditions
According to different targets and photon beam conditions, the G14 data is divided into
different run periods. Table 3.1 shows the run periods with a circularly polarized photon
beam, table 3.2 shows the run periods with a linearly polarized photon beam.

3.2 CLAS Banks
The reconstructed particle information is stored in the CLAS banks [50]. For historical
reasons, there are two systems of banks: the "PID" banks and "SEB" banks. These
two systems use different algorithms to reconstruct events. The "PID" banks include
HEAD, TGBI, GPID, TBID, ECHB, SCRC, STRE, TAGR, MVRT, VERT, TBER,
EPIC. The "SEB" banks include HEVT, EVNT, DCPB, TRPB, ECPB, SCPB, STPB,
TGPB. The banks used in this study are the "PID" banks. GPID is the main bank used
in the G14 analysis. It contains all the information for the charged particles, and the
information for the tagger photons. The GPID bank is a combination of the PART and
TBID banks. MVRT gives the vertex information for an event. The ECHB bank contains
the information from the forward electromagnetic calorimeter, and gives the information
for neutral particles. The HEAD bank contains the helicity information when a electron
polarized beam was used. The TAGR bank stores the tagger information, which gives the
energy, time, T counter ID, and E counter ID for the tagged photons. The TBER bank
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Period Ebeam (MeV) Beam Polarization Events Torus Curr. Target Target Pol.

Silver1 2280.96 -81.7% 830 M +1920 A 21a +D(25.6%)
+H(14.7%)

Silver2a 2280.96 -81.7% 300 M +1920 A 21a +D(23.0%)
-H(14.3%)

Silver2b 2280.96 -76.2% 870 M +1920 A 21a +D(23.0%)
-H(14.3%)

Silver3 2280.96 -76.2% 250 M -1500 A 21a +D(20.9%)
-H(N/A)

Silver4 2280.96 -76.2% 820 M -1500 A 21a -D(17.2%)
-H(N/A)

Silver5 2257.75 88.8% 5210 M -1500 A 21a -D(15.5%)
-H(N/A)

Gold2a 2541.31 88.2% 440 M -1500 A 19b +D(26.8%)
+H(26.9%)

Gold2b 2541.31 -83.4% 1660 M -1500 A 19b +D(26.8%)
+H(26.9%)

Table 3.1: Run periods for runs with a circularly polarized photon beam. The first column
is the name of the period, silver runs use the "21a" target, gold runs use the "19b" target.
The second column is the energy of the electron beam. The third column is the electron
beam polarization, which has an error of 1.4%(stat.) ± 3.0%(sys.). The fourth column
is the number of events. The fifth column is the Torus Current, which determines the
direction of the torus magnetic field. The sixth column is the target used. The seventh
column is the degree of polarization for the HD target, where "±" indicate the direction
of deuterons polarization along "z" direction in lab coordinate. A 2% transfer loss of
polarization from TC has been applied to the numbers in the table.
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Period Coherent
Edge

Perp
Events

Para
Events

Amo.
Events Target Target Pol.

Last tgt3 1800 MeV 506.6 M 483.0 M 86.0 M 22b +D(24.0%), +H(22.6%)
Last tgt4 1800 MeV 307.6 M 304.2 M 52.4 M 22b -D(16.2%), +H(17.7%)
Last tgt2a
Last tgt2b 2000 MeV 461.3 M 464.9 M 106.7 M 22b +D(25.77%), +H(25.5%)

+D(24.0%), +H(22.6%)
Last tgt5 2000 MeV 184.7 M 208.8 M 40.8 M 22b -D(16.2%), +H(17.7%)
gold1 2200 MeV 220.5 M 181.1 M 109.3 M 19b +D(26.0%), +H(27.2%)
gold4 2200 MeV 20 M 20 M 0 M 19b +D(15.8%), +H(18.3%)

last tgt1 2200 MeV 110.2 M 93.6 M 54.7 M 22b +D(25.8%), +H(25.5%)
last tgt6 2200 MeV 93.6 M 148.3 M 10.2 M 22b -D(16.2%), +H(17.7%)

Table 3.2: Run periods for runs with a linearly polarized photon beam, a 30 µm diamond
is used as the radiator, the electron beam energy for all these runs is 5551.77 MeV, the
Torus field setting is -1500 A. The first column is the name of the period. The second
column is the coherent edge energy. The third column is the number of events with
the E-plane of the linearly polarized photon beam perpendicular to the lab floor. The
fourth column is the number of events with the E-plane of the linearly polarized photon
beam parallel to the lab floor. The fifth column is the number of events for runs with an
amorphous radiator. The sixth column is the target name. The seventh column is the
target polarization. A 2% transfer loss of polarization from TC has been applied to the
numbers in the table.

gives the covariance matrix for the CLAS detectors. SCRC bank contains information
from the TOF counters.

3.3 Channel selection
The G14 experiment is designed to study several pseudo-scalar meson channels as listed
in Table 3.3. To select the channel of interest, several particle ID filters, geometric cuts,
and kinematic cuts are applied to the data.

Reaction Observables
γ + n→ π−p σ0,Σ, E,G

γ + n→ π+π−n σ0, I
c(Σ), Is, I�, Pz, P�z (E), P s

z (G), P c
z

γ + p→ π+π−p σ0, I
c(Σ), Is, I�, Pz, P�z (E), P s

z (G), P c
z

γ + n→ K0Λ
σ0,Σ, E,G

Ox′ , Oz′ , Cx′ , Cz′ , P, T (−Oy′)
Lx′ , Lz′ , Tx′ , Tz′

γ + n→ K0Σ0 σ0,Σ, P, E,G
γ + n→ K+Σ− σ0,Σ, E,G

Table 3.3: Pseudoscalar meson reactions and observables measured in the G14 experi-
ment.
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3.3.1 Particle ID Filters
The first filter requires the event to have the right number of final state particles. In the
GPID bank, each event has a list of the final state particles, which contains each particle’s
PID number: proton(14), neutron(no PID in GPID bank, need ECPB bank for neutron
identification), π+(8), π−(9). The numbers in the parenthesis are the PID number in the
GPID bank. For the reaction γn → pπ−, the first filter requires the final state to have
one proton and one π−.

The second filter requires the proton and π− to have the same "targid", which indicates
that the proton and π− are from the event caused by the same tagged photon.

The third filter is "ngrf ==1", which requires the number of photons in an RF bucket
to be one, this remove the ambiguity for events that relate to several tagged photons.

The fourth filter is the "∆β" filter. This filter compares the β value of the particle from
two methods to remove mis-identified particles. The first β value is calculated from the
timing information(δt) from the start counter and the TOF counter, and the distance(δl)
from the start counter to the TOF counter, β1 = v

c
= δl

cδt
. The second β value comes from

the momentum of the particle, which is calculated from the track information measured by
the drift chamber. Using the definition for relativistic momentum p = m0v/

√
1− v2/c2 =

m0βc/
√

1− β2, we get β2 = p√
p2+m2

0c
2
, where m0 is the PDG mass for the particle. The

definition of this filter is ∆β = β1 − β2. A filter with abs(∆β)<0.06 for protons and
abs(∆β)<0.03 for pions is used, as shown in Figure 6.4. Figure 3.2 shows the effect of
this filter on the event selection.

(a) Proton: abs(∆β)<0.06. (b) π+: abs(∆β)<0.03.

(c) π−: abs(∆β)<0.03.

Figure 3.1: ∆β filter for proton, π+ and π−, the x-axis is |p| (particle momentum).

After the four filters, the selected channel is ready for next step analysis.
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Figure 3.2: The β vs mometum plots for proton, π+ and π− before(left plots) and af-
ter(right plots) the ∆β cut. Most mis-identified particles are removed with this filter.
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3.3.2 Geometric Cuts
There are two geometric cuts used in this study: the fiducial cut and the vertex cut. The
fiducial cut takes into account the acceptance of the CLAS detectors, and the vertex cut
removes events from regions outside the HD target.

Fiducial Cut

The fiducial cut removes the angular region where there are known obstructions to the
acceptance of the detectors and near the torus coils where the torus field is not well known
for good track reconstruction. The fiducial cut can be defined by a relation between the
polar angle θ and azimuthal angle φ as in Equation 3.1 [53].

θ > 4.0 + 510.58
(30− φ)1.5518 (3.1)

The resulting plot of θ vs. φ is shown in Figure 3.3.

Figure 3.3: Fiducial cuts for proton, π+ and π−.
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Vertex Cut

The HD target has a cylindrical shape with dimensions 5 cm in length and 1.5 cm in
diameter. The reconstruction code can determine where the event happens in the target
region (the vertex information: x, y, z). This information can be used to remove the
events that do not come from the HD target. Two cuts are applied to the data, one is
along the z direction: -10.5 cm < z < -5.5 cm (Figure 3.4), the other is along the radial
direction: r =

√
x2 + y2 < 1 cm (Figure 3.5).

Figure 3.4: Vertex z cut: -10.5 cm < z < -5.5 cm. The top plot is a schematic diagram of
the HD target in the IBC (In-Beam-Cryostat). The bottom plot is the vertex plot using
the z coordinate from the MVRT bank. The blue line is for a HD target run, the red line
is for an empty cell target run, the red curve is scaled to match the downstream Kel-F
peak.

3.3.3 Kinematic Cuts
Kinematic cuts use the conservation of 4 momentum in the reaction to make cuts on the
missing mass, missing momentum, and reaction angles to select the channel of interest.
For example, the reaction of a photon scattering on a neutron target resulting in a recoiling
proton and a recoiling π− can be written in this form: γ+(n)→ p+π−. The neutron (n)
is in parenthese, because the neutron is in the deuteron with unknown initial momentum,
and we view neutron as a missing particle in this reaction. The missing mass and missing
momentum for the neutron target can be calculated using the 4 momentum of the detected
proton, π−, and incoming photon. Three kinematic cuts are used to remove background
events: missing mass cut, missing momentum cut, and coplanarity cut (Figure 3.6). The
coplanarity cut uses the fact that there are only two final state particles, the recoiling
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Figure 3.5: Vertex xy cut: r < 1 cm. The left plot is vertex xy before the cut, the six
bands correspond to the gaps in CLAS detector. The right plot is vertex xy after the cut.

proton and the π−. In the center of momentum frame, the difference of the φ angles for
these two particles should be 180◦.

A problem with the cuts in Figure 3.6 is that some background events under the main
peak cannot be removed.

A procedure using kinematic fitting to remove background events has been applied in
this study. The results for the same reaction γ + (n)→ p+ π− are shown in Figure 3.7.
From the plots we can see that the blue curves, which represent the events passing the cut,
are restricted automatically to the kinematic cuts used in Figure 3.6, and the background
events are mostly removed. In the next section, this kinematic fitting procedure will be
described in detail.

After all the filters and cuts have been applied to the data, the desired channel is
selected, and it is now ready to extract the cross section and polarization observables for
this channel.

3.4 Kinematic Fitting
Kinematic Fitting is a technique that uses the least squares fit with physical constraints
to improve measured quantities and to estimate unmeasured quantities.[51]. Take the
reaction γ + (n)→ p + π− as an example. The kinematic fitting procedure can improve
the measured tagged photon energy and the 4 momentum for the recoiling proton and π−,
and can estimate the 4 momentum for the bound neutron target. The constraints used
in this procedure are the conservation of the 4 momentum before and after the reaction.

An iterative procedure is used to minimize χ2 = (y− η̂)TVy
−1(y− η̂) + 2λTf(η̂, ξ̂),

where y are measured quantities, η are fitted value for the measured quantities, ξ are
the unmeasured values, Vy

−1 is the covariance matrix. The minimized χ2
min follows a

chi-square distribution with (K-J) degree of freedom, where K is the number of constraint
functions, J is the number of unmeasured variables. Based on this chi-square distribution,
the confidence level and pull distributions will be calculated to measure the goodness-of-fit
and to evaluate the error estimation.

Previous studies[52, 54] have shown that the correct error estimation is crucial for
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(a) Missing mass cut: 940±60 MeV. (b) Missing momentum cut: < 100 MeV.

(c) Coplanarity cut: 3.14 ± 0.24.

Figure 3.6: Kinematic Cuts for the missing neutron in the reaction: γ + (n)→ p+ π−.

kinematic fitting. In CLAS, the covariance matrix is stored in the TBER bank, in which
the diagonal and off-diagonal elements give the resolution errors and correlation coeffi-
cients of the tracking parameters for each track respectively. Before the kinematic fitting,
the covariance matrix needs to be corrected for energy loss, multiple scattering effects
and different experiment settings. The confidence level and pull distributions can also
help to fine tune the covariance matrix.

The results of the kinematic fitting can be used in two ways, one is to use the con-
fidence level to remove the background events, the other is to use the fitted values to
construct the new four momentum for the particles.

3.4.1 Least Squares Fitting
Suppose we have N independent experimental values y1, y2, ..., yN at the points x1, x2, ..., xN .
The true values of yi are unknown, but we assume there are some theoretical functions
that will predict the true value at each xi, fi = fi(θ1, θ2, ..., θL;xi), where θ1, θ2, ..., θL is
a set of parameters, L ≤ N .

Since each yi has measurement error σi, the equations fi = fi(θ1, θ2, ..., θL;xi) cannot
all be satisfied if L < N . For example, if we have three points not in the same line, a
linear fitting function with only two parameters cannot go though all three points. But,
we can require that the equation be satisfied "as closely as possible" if we define a statistic
X2 = ∑N

i=1((yi − fi)/σi)2, and demand that the values of θi be chosen so as to minimize
X2. Here we have assumed the measurement yi is independent, X2 can be written in
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(a) Missing mass. (b) Missing momentum.

(c) Coplanarity relation.

Figure 3.7: Kinematic fitting procedure for selectiong the channel: γ + (n)→ p+ π−. In
each subplot, the black line is for all the events before using kinematic fitting, the blue
line is for the good events that pass the cut, and the red line is for the background events
that don’t pass the cut.
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matrix form:

X2 = (y− f)TVy
−1(y− f), (3.2)

where y =



y1
y2
.
.
.
yN


, f =



f1
f2
.
.
.
fN


, Vy =



σ2
1 0 . . . 0

0 σ2
2 . . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . σ2

N


.

The Linear Least Square Model

If the functions fi are linear functions of the parameters θi, then an exact solution for
the parameters can be solved.

fi = fi(θ1, θ2, ..., θL;xi) =
L∑
l=1

ailθl, i = 1, 2, ..., N ; L < N (3.3)

In matrix notation f = Aθ, A =



a11 a12 . . . a1L
a21 a22 . . . a2L
. . . . . .
. . . . . .
. . . . . .
aN1 aN2 . . . aNL


, θ =



θ1
θ2
.
.
.
θL


.

X2 = (y−Aθ)TVy
−1(y−Aθ) (3.4)

Minimizing X2 by taking the derivatives of X2 with respect to θ, we have,

5θX
2 = −2(ATVy

−1y−ATVy
−1Aθ) = 0 (3.5)

If the matrix (ATVy
−1A) is non-singular and can be inverted, the solution for θ is:

θ̂ = (ATVy
−1A)−1ATVy

−1y. (3.6)

Substitute θ̂ back to Eq. (3.4), we get the minimized X2
min:

X2
min = (y−Aθ̂)TVy

−1(y−Aθ̂) (3.7)

The uncertainties for θ can also be solved by using the formula for error propagation,

V(θ̂) =
(

(ATVy
−1A)−1ATVy

−1
)
y
(

(ATVy
−1A)−1ATVy

−1
)T
.

= (ATVy
−1A)−1

(3.8)

From some algebra calculations we have:

X2 = X2
min + (θ − θ̂)TATV−1

y A(θ − θ̂) = X2
min + (θ − θ̂)TV−1(θ̂)(θ − θ̂) (3.9)
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If the N measurements yi are normally distributed, by definition X2 would be a chi-square
distribution with N degree of freedom. Since θ̂ is linearly related to yi, it is also normally
distributed. All the three terms in Eq.(3.9) will be chi-square distributed, in which X2

has N degree of freedom, X2
min has (N-L) degree of freedom, (θ − θ̂)TV−1(θ̂)(θ − θ̂) has

L degree of freedom.
Eq.(3.6) and (3.8) give the solution to the linear LS problem for unknown parameters

θ. This result also holds when Vy is a matrix with non-zero covariance terms. In this
case, the N measurements yi are not independent.

The Nonlinear Least Squares Model

If fi are nonlinear functions of the parameters θi, there are no exact solutions for θi as in
the linear case. We need to use an iterative procedure to perform the minimization.

As discussed earlier, we want to minimize the quantity X2 = (y− f)TVy
−1(y− f),

where y is the vector of measurements with covariance matrix Vy, and f = f(θ; x) is the
vector of predicted values, which is nonlinear function of θ. Suppose we have found of
a set of approximate parameters θν = {θν1 , θν2 , ..., θνL} in the ν-th iteration. To make the
calculation simple, we assume independent measurements, Vyii = σ2

i , the derivative of X2

with respect to θ at θ = θν is,

gl(θν) = gνl = ∂X2

∂θl
=

N∑
i=1

(
− 2
σ2
i

)
(yi − f νi )

[
∂fi
∂θl

]
θν

, l = 1, 2, ..., L (3.10)

We want to find an increment ∆θν to θν which make g(θν + ∆θν) = 0. To find ∆θν , we
expand gl around θν to first order,

gνl + ∂gνl
∂θ1

∆θν1 + ∂gνl
∂θ2

∆θν2 + ...+ ∂gνl
∂θL

∆θνL = 0, l = 1, 2, ..., L (3.11)

Write

Gν
kl = ∂gνl

∂θk
= ∂2X2

∂θk∂θl
=

N∑
i=1

(
− 2
σ2
i

)[
− ∂fi
∂θk

∂fi
∂θl

+ (yi − f νi ) ∂2f 2
i

∂θk∂θl

]
(3.12)

Eq.(3.11) can be written in matrix form gν + Gν∆θν = 0,

where gν =



gν1
gν2
.
.
.
gνL


, ∆θν =



∆θν1
∆θν2
.
.
.

∆θνL


, Gν =



∂g1
∂θ1

∂g1
∂θ2

. . . ∂g1
∂θL

∂g2
∂θ1

∂g2
∂θ2

. . . ∂g2
∂θL

. . . . . .

. . . . . .

. . . . . .
∂gL
∂θ1

∂gL
∂θ2

. . . ∂gL
∂θL


θ=θν

. Then

∆θν = −(Gν)−1gν . The new parameters θν+1 = θν + ∆θν are used to find (X2)ν+1,
if (X2)ν+1 < (X2)ν , the new parameters are a better estimation, and the procedure is
repeated until the improvement between two consecutive iterations is smaller than the
preset value. If it is found that one iteration gives (X2)ν+1 > (X2)ν , one can redefine the
ν-th step by taking a smaller value, such as ∆θν = 1

2∆θν to do the procedure.
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Improved Measurements

In the previous sections, the least squares method is used to find the best values for the
unknown parameters θ, which are used in some theoretical functions f(θ;x) to predict
the true observable η. However, in many situations, the unknowns are the observables
η themselves, such as in the kinematic fitting. In this case, we will use the observations
y and the covariance matrix Vy as the initial estimates and use the principle of least
squares to find the best estimates of η which will minimize the quantity X2 = εTV−1

y ε,
where ε = y− η. The final estimates η̂ of the true value η are called the "improved
measurements".

Least Squares Model with Constraints

As before, we first consider the linear LS problem with linear constraint functions:

X2 = (y−Aθ)TVy
−1(y−Aθ),

Bθ − b = 0,
(3.13)

where the L parameters θ are related through K constraint functions, B is a matrix with
dimension K × L, b is a component vector. We introduce a K-component Lagrangian
multiplier λ and rewrite the problem in the unconstrained form with L+K unknowns.

X2 = (y−Aθ)TVy
−1(y−Aθ) + 2λT(Bθ − b). (3.14)

Eq.(3.14) can be solved exactly if we equate to zero the derivatives of X2 with respect to
θl and λk[51]. In the most general situation, both the fi and the constraint functions are
nonlinear of θ, the iterative procedure using the method of Lagrangian multipliers will
be used to minimize X2. In the following, we give an example to show how to use least
squares estimation with constraints to "improve measurements" and estimate unmeasured
quantities.

Suppose we have a process γ+p→ p+π+ +π−, where the momenta and angles of the
two pions are measured, but the recoiling proton is not measured, the momentum and
energy conservation give four constraint functions. For convenience, we use a vector η =
{η1, η2, ...ηN} to represent the true values for the N measured quantities y = {y1, y2, ...yN},
the vector ξ = {ξ1, ξ2, ...ξJ} to represent the true values for the J unmeasured quantities.
The total unknowns are N+J for η and ξ, there are K constraint equations which relate
the unknowns:

fk(η1, η2, ...ηN , ξ1, ξ2, ...ξJ) = 0, k = 1, 2, ..., K. (3.15)

The Least Squares Principle requires that the best estimates of the unknowns η and
ξ are the values making the following equations true:

X2 = (y− η̂)TVy
−1(y− η̂) = minimum,

f(η̂, ξ̂) = 0,
(3.16)

As before, we introduce K additional unknowns λ = {λ1, λ2, ...λK}, and rewrite the
problem by requiring:

X2 = (y− η̂)TVy
−1(y− η̂) + 2λTf(η̂, ξ̂) = minimum, (3.17)
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Equating the derivatives ofX2 with respect to all N+J+K unknowns to zero gives N+J+K
equations:

OηX
2 = −2Vy

−1(y− η) + 2F T
η λ = 0,

OξX
2 = 2F T

ξ λ = 0,
OλX

2 = 2f(η, ξ) = 0,
(3.18)

where the matrices Fη(dimension : K ×N) and Fξ(dimension : K × J) are:

(Fη)ki = ∂fk
∂ηi

, (Fξ)kj = ∂fk
∂ξj

. (3.19)

Since f(η, ξ) are nonlinear functions of η, ξ, the N+J+K functions cannot solve the
N+J+K unknowns exactly, the solution must be found by iteration.

Let us suppose that solution ην , ξν , λν are found in the ν-th iteration, which gives
(X2)ν . We want to find the next ην+1, ξν+1, λν+1, which gives (X2)ν+1 smaller than
(X2)ν . Equations in (3.18) are used to relate the values in two iteration steps. First, we
make a Taylor expansion of the third equation in (3.18) around ην , ξν and neglect the
second and higher orders,

f νk +
N∑
i=1

(F ν
η )ki(ην+1

i − ην) +
J∑
j=1

(F ν
ξ )kj(ξν+1

i − ξν) = 0. (3.20)

Then we write the other two equations in (3.18) at the (ν + 1)-th iteration values:

ην+1 = y −Vy(F T
η )νλν+1,

(F T
ξ )νλν+1 = 0,

(3.21)

Substituting ην+1 in Eq.(3.21) to Eq.(3.20), and introducing r = f ν + Fν
η(y− ην),S = Fν

ηVy(FT
η )ν ,

yields:

f ν + Fν
η

[
(y−Vy(FT

η )νλν+1)− ην
]

+ (Fν
ξ )(ξν+1 − ξν) = 0

⇒ r + (Fν
ξ )(ξν+1 − ξν) = Sλν+1

⇒ λν+1 = S−1
[
r + (Fν

ξ )(ξν+1 − ξν)
]
.

(3.22)

Using λν+1 from Eq.(3.22) in the first equation in Eq.(3.21), we can solve ξν+1, λν+1, ην+1:

ξν+1 = ξν −
[
(FT

ξ )νS−1Fν
ξ

]−1
(FT

ξ )νS−1r

λν+1 = S−1
[
r + (Fν

ξ )(ξν+1 − ξν)
]

ην+1 = y −Vy(F T
η )νλν+1.

(3.23)

By keeping the Taylor expansion of f(η, ξ) to first order, we linearize the equation set,
and the completely unknown ξν+1 are solved at first, next the Lagrangian multipliers
λν+1 and lastly the improved measurements ην+1 are solved. These new values will be
used to calculate the new (X2)ν+1, which will be compared with (X2)ν to decide when to
stop the iteration process. The convergence of ∆η,∆ξ may also need to be checked. For
the starting values, we can choose η0 = y, the measured value, and ξ0 can be calculated
from the constraint equations by inserting η0. The covariance matrix for η, ξ can also be
calculated[51].
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Confidence Level and Pull Distributions

From section 2.1, we know that the residuals X2
min, which are obtained from the mini-

mization process, have a chi-square distribution. This distribution can be used to define
a measure for the goodness-of-fit, which is,

Pχ2 =
∫ ∞
χ2
min

f(χ2; ν)dχ2 = 1− F (χ2
min; ν), (3.24)

where f(χ2; ν) is the PDF (probability distribution function), and F (χ2
min; ν) is the CDF

(cumulative distribution function) for the chi-square distribution with ν degrees of free-
dom. In Root, Pχ2 is calculated using the function TMath::Prob(chisq,ndf), which denotes
the probability that an observed chi-square exceeds the value "chisq". Since CDF is uni-
formly distributed within [0,1](see Figure 3.8), Pχ2(often called p-value) is also uniformly
distributed. If the minimization process gives Pχ2 non-uniform, this means either the hy-
pothesis is not satisfied or the measurements are bad. An example is when Pχ2 is strongly
peaked near zero, this indicates a contamination of the data from the background events,
since background events gives bigger χ2, which means fatter tail in the PDF f(χ2; ν),
and a peak in Pχ2 at low probabilities. By cutting the small Pχ2 , we can remove the
background events, as shown in Figure 3.9.

Figure 3.8: f(x) is PDF, F(x) is CDF for a lorentz distribution, the pobability for
x<x0 is P(f(x<x0))=P(F(x)<F(x0))=F(x0). The distribution which has the property
P(r<r0)=r0 is the uniform distribution over the region [0,1].

Quite often, a big χ2
min is not due to the wrong hypothesis or background events, but

because either the measured values are altered by Energy loss or multi-scattering, or a
wrong error estimate is used. It is helpful to define the Pull Distribution to look at each
measured value,

zi = εi
σ(εi)

= yi − η̂i√
σ2(yi)− σ2(η̂i)

, i = 1, 2, ..., N, (3.25)

where εi = yi− η̂i measures the deviations between the observations and the fitted values,
εi is normalized relative to its uncertainty σ(εi) to allow for comparison of different
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(a) monte carlo χ2(4) (b) real data χ2(4)

(c) monte carlo cofident level (d) real data cofident level

Figure 3.9: χ2 distribution with degrees of freedom n = 4 and its confidence level from
monte carlo and real data. Right two plots are those from real data, background events
give a fatter tail for f(χ2; ν) at large χ2 and sharp peak for Pχ2 around 0.
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measurements. The minus sign in the calculation for σ(εi) comes from the fact that yi, η̂i
are completely correlated,

σ2(εi) = Vii(y − η̂) = Vii(y)− 2cov(y, η̂)ii + Vii(η̂) = Vii(y)− Vii(η̂). (3.26)

The pull should be normally distributed about zero with σ = 1. If zi is shifted away
from zero, this indicates a systematic error in the i-th observation. If the observed zi
is too broad(narrow) compared to the normal distribution N(0,1), the error in the i-th
observation is consistently too small(large). Before the kinematic fitting, the effect of
Energy loss, multi-scattering and other factors should be corrected for the observations
and the covariance matrix. The pull distribution provides a way to test how well the
corrections work.

Degrees of Freedom

The function TMath::Prob(chisq,ndf) for the calculation of the confidence level requires
the degree of freedom for the distribution χ2

min. From Eq.(3.9) in section 2.1, we know
that if we have N measured values and L unknown fitted values, χ2

min has (N-L) degree of
freedom. If there are K constraint functions relating the L unknowns, only (L-K) of them
are independent, giving (N-(L-K)) independent terms in χ2

min, so χ2
min is distributed as

χ2(N − L+K).
For the process γ + p → (p) + π+ + π−, with recoiling proton not measured. N =

7, in which 1 is for incoming photon energy, 6 are for 2 sets of pion tracking variables.
L = N+J =10, where J=3 is for the fitting values for the missing proton. K = 4 from
the 4 constraint equations of the conservation of energy and momentum. This is a (N-
L+K)=1C fit. If all the initial and final states are known, then it is a 4C fit.

3.4.2 Covariance Matrix in CLAS
From section 2.4.1, we know that an accurate covariance matrix is important for good
kinematic fitting. Instead of using the 4-vector momentum to describe the status of a
particle, CLAS uses the tracking parameters q/p, λ, φ. This section will introduce how
the tracking parameters are defined, the covariance matrix for these parameters, and
corrections need to be done for the covariance matrix to make it more accurate.

Track Reconstruction

The track reconstruction for charged particles in the drift chambers in CLAS is done
in a sector dependent system. As shown in Figure 3.10, the xtrack-axis is along the zlab
direction, the ytrack-axis goes through the center of the sector, and the zaxis is along the
average magnetic field in the given sector. The relations between the tracking coordinates
and lab coordinates are: xtrack

ytrack
ztrack

 =

 zlab
cos(α)xlab + sin(α)ylab
− sin(α)xlab + cos(α)ylab

 (3.27)

where α = π
3 (Nsector − 1) is sector dependent.
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Figure 3.10: Scheme for tracking coordinates and lab coordinates

The tracking parameters for the particles in the TBER bank include: q/p, λ, φ, d0, z0,
in which d0 and z0 are used in vertex reconstruction; we only discuss the first three
parameters here. q is the charge of the particle, p is its momentum in the lab frame,
λ ∈ (−π/6, π/6) is the angle between the track and the (xtrack, ytrack) plane, φ is the
angle in the (xtrack, ytrack) plane relative to xtrack-axis. Using the tracking parameters,
we can write the momentum of the particles in the lab frame as: pxlab

pylab
pzlab

 =

 p(cos(λ) sin(φ) cos(α)− sin(λ) sin(α))
p(cos(λ) sin(φ) sin(α) + sin(λ) cos(α))

p cos(λ) cos(φ)

 , (3.28)

The covariance matrix for the tracking parameters are also given in the TBER bank:
cov( q

p
, q
p
) = c11 cov( q

p
, λ) = c12 cov( q

p
, φ) = c13

cov(λ, q
p
) = c12 cov(λ, λ) = c22 cov(λ, φ) = c23

cov(φ, q
p
) = c13 cov(φ, λ) = c23 cov(φ, φ) = c33

 . (3.29)

These covariance matrix elements are determined from the tracking information only
without any corrections. The resolution error for φ is approximately σφres ≈ σs/R, where
σs ≈ 200µm is the resolution of detector in the plane of φ. R ≈ 75cm is the distance
from the vertex to the drift chamber, so σφres is about 0.27 mrad. The resolution of the
detector in the plane of λ is one order of magnitude worse than that for φ, σλres is about
2.7 mrad. These two errors can be calculated from the TBER bank, σφres = √c33 and
σλres = √c22. Figure 3.11 gives the errors for the two tracking angles for proton, π+

and π−, respectively. The correlation coefficients between the tracking parameters are
defined as ρij = cij/

√
ciicjj. From Figure 3.12, we see a strong correlation between q/p

and φ. This is because q/p = 1/(Br sin θ), where B is the magnetic field, r is the radius
of curvature of the track; on the other hand, the CLAS toroidal filed B has a strong
φ(which is the polar angle θ in lab coordinates) dependence, B is smaller for bigger φ as
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shown in Fig.5 in [29], so the two tracking parameters q/p and φ are strongly correlated.

(a) σλres for proton (b) σλres for π+ (c) σλres for π−

(d) σφres for proton (e) σφres for π+ (f) σφres for π−

Figure 3.11: σλres and σφres for proton, π+ and π−
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Figure 3.12: Correlation coefficiences between tracking parameters. ρ(q/p, φ) ≈ 0.85,
ρ(q/p, λ) ≈ 0.15, ρ(λ, φ) ≈ −0.27.

Effect of Energy Loss and Multiple Scattering on Covariance Matrix

It’s easier to study the energy loss effect using the parameter p instead of q/p, so we write
the new covariance matrix in terms of p as:

Cpp =
(

∂p

∂(q/p)

)2

C
q
p
q
p = p4

q2C
q
p
q
p ,

Cpφ =
(

∂p

∂(q/p)

)(
∂φ

∂φ

)
C

q
p
φ = −p

2

q
C

q
p
φ,

Cpλ =
(

∂p

∂(q/p)

)(
∂λ

∂λ

)
C

q
p
λ = −p

2

q
C

q
p
λ,

(3.30)

It was found in previous studies that some corrections for the covariance matrix need
to be done before the energy loss and multiple scattering corrections. For the two angle
parameters, the values were found to be off by a factor of 1.5:

σφres = 1.5σφTBER ,
σλres = 1.5σλTBER .

(3.31)

For the momentum, the TBER bank does not account for the torus current, which makes
the value off by a factor of Imax/I:

σpres = Imax
I

σp = Imax
I

p2

q
σ(q/p)TBER , (3.32)

During the experiment, before reaching the detectors, the final state particles need to
pass through some material first, such as the target, the in-beam cryostat and the start
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counter. This material will change both the values of the tracking parameters and its
covariance matrix. These corrections are not included in the TBER bank, and need to
be added separately.

The corrections for energy loss and multiple scattering to the tracking errors are as
follows:

σ2
p = σ2

pres + σ2
el,

σ2
φ = σ2

φres + σ2
ms,

σ2
λ = σ2

λres + σ2
ms.

(3.33)

where σpres , σφres and σλres are resolution errors before the correction, σel is the energy
loss correction to the momentum error, σms is the multiple scattering correction to the
tracking angle errors. The method to calculate σel and σms can be found in section 3.1
of [54].

The Corrected Covariance Matrix

We can now write down the corrected covariance matrix for the kinematic fitting taking
into account all the corrections in the previous section. Consider a reaction with L charged
particles in the final state. There are (3L+1) fit parameters,

Cη =



σ2
Eγ

p1
λ1
φ1
.
.
.
pL
λL
φL



, (3.34)

where Eγ is the incident photon energy and pi, λi, φi are the tracking parameters for the
ith charged particle.

Since the measurements of different particles are uncorrelated, the covariance between
different particles is zero. The covariance matrix is,

η =



σ2
Eγ 0 0 0 · · · 0 0 0
0 Cpp

1 Cpλ
1 Cpφ

1 · · · 0 0 0
0 Cλp

1 Cλλ
1 Cλφ

1 · · · 0 0 0
0 Cφp

1 Cφλ
1 Cφφ

1 · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · Cpp

L Cpλ
L Cpφ

L

0 0 0 0 · · · Cλp
L Cλλ

L Cλφ
L

0 0 0 0 · · · Cφp
L Cφλ

L Cφφ
L


, (3.35)

where σ2
Eγ is the error of measuring the tagged photon. σ2

Eγ is calculated using the energy
resolution of E-plane paddles in the tagger, which is 0.001E0, E0 is the electron beam
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energy. For a photon with energy Ē, the energy of the photon is uniformly distributed
within [Ē− 0.001E0, Ē + 0.001E0] because of the resolution of the detector. The error of
Ē is,

σ2
Eγ =

∫ Ē+0.001E0

Ē−0.001E0

(E − Ē)2

0.002E0
dE =

∫ 0.001E0

−0.001E0

E ′2

0.002E0
dE ′ = (0.001E0)2

3 . (3.36)

Other covariance matrix elements are calculated using the information from the TBER
bank:

Cpp
i =

(
Imaxp

2
i

Iqi

)2

C
qi
pi

qi
pi

TBER + σ2
peloss

,

Cλλ
i = 2.25Cλiλi

TBER + σ2
ms,

Cφφ
i = 2.25Cφiφi

TBER + σ2
ms,

Cpλ
i = −

(
1.5Imaxp2

i

Iqi

)
C

qi
pi
λ

TBER,

Cpφ
i = −

(
1.5Imaxp2

i

Iqi

)
C

qi
pi
φ

TBER,

Cλφ
i = 2.25Cλφ

TBER.

(3.37)

To check if the covariance matrix has been corrected, we can look at the pull distribution
of the tracking parameters, an iterative process will help determine the best estimation
for the error correction.

3.4.3 Preparation for Kinematic Fitting
Before the kinematic fitting, we should do the following three corrections to get the four
momentum of the particles as accurate as possible: energy loss correction, momentum
correction and tagger sag correction. The kinematic fitting can be used to test how good
the correction is by looking at the pull distributions.

Energy Loss Correction

As the charged particles pass through the material in the CLAS detector, they will lose
some of their energy, thus a systematic adjustment to the particles’ energy is required.
The ELOSS package [55] is used for the corrections. This package uses a first principle
method to calculate the energy loss by considering all the material that the particles
go through. The differences ∆E = Eafter − Ebefore for proton, π+, π− are shown in
Figure 3.13. As seen in the plots, the high momentum protons have small energy loss of
around 15 MeV, and for low momentum protons, the correction is about 50 MeV. This is
reasonable from the relation dE/dx ∼ 1/β2. The lighter particles π+, π− lose less energy
than the heavier particles such as the proton.

In order to check if the Eloss correction package works, we can plot the pull distri-
butions before and after Eloss correction. Figure 3.14 gives this comparison for the pull
distribution for Ppro (proton’s momentum). We can see that after the Eloss correction,
the pull distribution becomes more like a standard normal distribution, except that the
mean value is still not zero, the reason will be explained in the next section.
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Figure 3.13: Eloss correction vs. momentum for proton (top left), π+ (top right), π−
(bottom)

Figure 3.14: Pull distribution before(left plots) and after(right plots) the energy loss
correction for proton momentum.
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Momentum Correction and Photon Energy Correction

After the energy loss correction, the pull distributions have improved a lot, but their
means are still not close to zero. The reason for this problem can be seen in Figure 3.15.
We can see that the missing mass for the missing particle depends on the φ angle of

Figure 3.15: Missing Mass vs. φpro for the reaction γ(n) → pπ− (left plot) and γ(p) →
pπ+π− (right plot), the particle in the parenthesis is the missing particle. The red points
are before momentum and photon energy correction, the blue points are after momentum
and photon energy correction.

the recoiling proton. This is caused by the misalignment of the drift chamber with the
magnetic field. Thus we need to correct the momentum of the final state particles for
each θ and φ bin, and to correct the incoming photon energy in terms of the tagger’s 767
energy bins. The way to do these two corrections is to use kinematic fitting to get the
fitted value for the particles’ momenta for each θ and φ bin and photon energy for each
E-counter energy bin, then take the difference between the fitted values and the measured
values to get the correction equations, ∆p = pkfit − pmeas, ∆Eγ = Ekfit

γ − Emeas
γ .

The momentum correction is done for 9 (θ) × 36 (φ) bins. θ and φ are for angles in
the lab frame for recoiled protons. The nine θ bins are 0◦ < θ ≤ 20◦, 20◦ < θ ≤ 30◦,
30◦ < θ ≤ 40◦, 40◦ < θ ≤ 50◦, 50◦ < θ ≤ 60◦, 60◦ < θ ≤ 70◦, 70◦ < θ ≤ 80◦,
80◦ < θ ≤ 100◦, 100◦ < θ ≤ 180◦. The 36 bins come from binning each of the six CLAS
sectors into six bins. The schematic plots for θ and φ bins can be seen in Figure 3.16.
The use of both the single pion channel and double pion channel extends the dynamic
range of applicability of these corrections, since pion momentum is relatively high in the
single pion channel, and pion momenta in the double pion channel are relatively low.

The momentum correction is done for protons, π+, π− respectively. The correction
for the bin 20◦ < θ ≤ 30◦, −164◦ < φ ≤ −152◦ for protons is shown in Figure 3.17.
For protons and π−, the correction combines the kinematic fitted values from both the
two pion channel γ(p) → pπ+π− and the one pion channel γ(n) → pπ−. For π+, the
correction only uses the two pion channel γ(p)→ pπ+π−. The corrections for π+ and π−
for the bin 20◦ < θ ≤ 30◦, −164◦ < φ ≤ −152◦ are shown in Figure 3.18.

Photon energy correction ∆Eγ = Ekfit
γ − Emeas

γ is calculated in terms of the 767 E-
counter energy bins, and the result is also a combination of the correction from both
channels: γ(p) → pπ+π− and γ(n) → pπ−. Figure 3.19 gives the result for the photon
energy correction.

After the momentum and photon energy corrections, the same pull distribution as in
Figure 3.14 is plotted again in Figure 3.20. From the figure, we can see that the mean of
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Figure 3.16: θ bins (left plot) and φ bins (right plot) for momentum correction. The
different sizes of the θ bins are chosen by considering that the CLAS acceptance is small
in the forward angle and backward angle. In the plot for φ bins, the gaps enclosed by
black lines correspond to the gaps between the six CLAS sectors. The bin size near the
gap is bigger because of a smaller acceptance in this region.

Figure 3.17: Momentum correction ∆p vs p for protons in the bin 20◦ < θ ≤ 30◦,
−164◦ < φ ≤ −152◦. Top left: ∆p vs p for the reaction γ(p) → pπ+π−. Top right: ∆p
vs p for the reaction γ(n) → pπ−. Bottom: The Gaussian fit for ∆p by binning p, blue
triangle markers are for the two pion channel, red square markers are for the single pion
channel, black circle markers are the combination of the two channel.
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Figure 3.18: Momentum correction ∆p vs p for π+ and π− in the bin 20◦ < θ ≤ 30◦,
−164◦ < φ ≤ −152◦. Left: correction for π+ using the channel γ(p) → pπ+π−. Right:
correction for π− using both γ(p) → pπ+π− and γ(n) → pπ−, blue triangle markers are
for the two pion channel, red square markers are for the single pion channel, black circle
markers are for the combination of the two channels.

Figure 3.19: Photon energy correction ∆Eγ = Ekfit
γ − Emeas

γ vs. Tagger E-counter bins.
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the pull distribution moves from 0.3079 to -0.01356, and the sigma changes from 1.043 to
1.007. The momentum and photon energy corrections makes the pull distribution more
like the standard gaussian distribution.

Figure 3.20: Pull distribution before(left plots) and after(right plots) Momentum and
Photon Energy corrections for proton momentum. The mean value has moved from 0.31
to -0.01

It should be noted that the G14 experiment uses different targets and different Torus
currents. The data collected is divided into different periods as shown in Table 3.1. The
momentum and photon energy corrections are done for 4 different run periods: Silver 1
and 2, Silver 3 and 4, Silver 5, Gold 2.

3.4.4 Kinematic Fitting for γn→ pπ−

In order to select the channel of interest, the kinematic fitting is used again. The four
momenta of the final state particles have had the energy loss correction, momentum cor-
rection, and photon energy correction applied. For this channel, we could apply two
equivalent hypothese. One is γ(n) → pπ−, which assumes an unknown moving neutron
target, the other is γD → p(p)π−, which assumes a deuteron target and a missing spec-
tator proton in the final state. We choose the first hypothesis, since this method removes
the events from the high momentum neutron in the deuteron target automatically, and
the polarization observables in this study require a target with minimal initial momen-
tum (ideally zero momentum). The confidence level cut is used to remove the background
events, and the quality of the selected channel will be checked with the missing mass plot,
missing momentum plot, coplanarity plot, and the pull distributions for all the final state
particles’ tracking parameters. These results will be shown for the gold2a period at first
(Figure 3.21 and Figure 3.22). Then the confidence level plots (Figure 3.23), missing
mass vs. φ plots (Figure 3.24), and the mean and sigma values of the pull distributions
(Table 3.4) will be shown for all the run periods with circularly polarized beam.

Since the neutron used in this channel is a quasi-free particle, in the kinematic fitting,
an effective mass for the neutron is used in the procedure, and the value is estimated as
following. For a free particle, the invariant mass of the particle relates to its energy and
momentum as E2− p2 = m2. For a quasi-free particle, this relation becomes (E − V )2 =
k2 +m2, with an extra potential term V. If the potential term is much smaller than the
mass of the particle, we can still view the particle as a free particle but with an off-shell
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Figure 3.21: Effect of the kinematic fitting’s confidence level cut on event selection for
the channel γ(n)→ pπ− using the data from gold2a. Top left: confidence cut at 5%. top
right: missing mass plot, bottom left: missing momentum, bottom right: coplanarity.
For all the plots, the blue region is for good events that pass the cut, the red region is
the background events that are removed by the cut.
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Figure 3.22: Pull distribution for gold2a data for channel γ(n) → pπ−. The mean and
sigma values for the gaussian fit of the pull distribution are inserted at the bottom right
corner, the values are very close to a standard gaussian distribution.
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Figure 3.23: 5% confidence level cut for all circular photon polarization periods for the
reaction γ(n)→ pπ−.
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Figure 3.24: Missing Mass vs. φpro for the reaction γ(n) → pπ− for all circular photon
polarization periods.
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effective mass m∗ : E2 − k2 = (m∗)2 = m2 + 2EV − V 2. Since V << m, m∗ ≈ m + V .
For deuteron, the binding energy is 0.00223 GeV, m∗ ≈ m − C × 0.00223, where C is a
constant, which is estimated to be 4.3 as studied in Appendix. This gives m∗ ≈ 0.930
GeV.

Period Pull Dist. Pp λp φp Pπ− λπ− φπ− Eγ

Silver1 Mean 0.02 0.06 -0.01 0.01 -0.03 0.02 -0.01
Sigma 1.11 1.04 1.11 1.12 1.07 1.11 1.11

Silver2a Mean 0.02 0.06 -0.02 0.02 -0.04 0.03 -0.02
Sigma 1.10 1.02 1.10 1.10 1.05 1.10 1.10

Silver2b Mean 0.05 0.04 -0.05 0.05 -0.01 0.06 -0.04
Sigma 1.12 1.03 1.11 1.12 1.07 1.12 1.12

Silver3 Mean 0.04 -0.03 0.06 0.03 0.02 -0.03 -0.03
Sigma 1.03 0.94 1.02 1.04 1.00 1.04 1.04

Silver4 Mean 0.09 -0.02 0.10 0.09 -0.03 -0.08 -0.08
Sigma 1.02 0.95 1.02 1.03 1.00 1.03 1.03

Silver5 Mean 0.01 -0.08 0.02 -0.00 0.02 0.00 0.00
Sigma 0.97 0.91 0.97 0.98 0.95 0.98 0.98

Gold2a Mean -0.03 -0.03 -0.02 -0.04 0.05 0.04 0.04
Sigma 1.04 0.98 1.03 1.04 1.03 1.04 1.04

Gold2b Mean -0.02 -0.03 -0.01 -0.03 0.04 0.03 0.03
Sigma 1.05 0.98 1.04 1.04 1.03 1.05 1.04

Table 3.4: Mean and sigma values of the pull distributions for all the circular photon
polarization periods for channel γ(n)→ pπ−.

3.4.5 Kinematic Fitting for γp→ pπ+π−

For the reaction of two charged pion photo-production from a proton target, since the
HD molecule has one free proton and one bound proton in the deuteron, we cannot
separate the events in these two cases. Thus it’s not proper to assume either H or D
as the target in the kinematic fitting. The only hypothesis for the kinematic fitting
we can make is to assume the proton target’s momentum is unknown, and all the final
state particles are detected. This makes the kinematic fitting a 1-C fit. The same set
of plots as the single pion channel are shown in the following. Figure 3.25 shows the
confidence cut of 5% for the gold2a period, and the effect of this cut on the missing mass,
missing momentum, and coplanarity plots. Figure 3.26 shows the pull distributions for
all 10 kinematic variables after energy loss correction, photon energy correction and
momentum correction for gold2a period. The results are very close to the standard
normal distribution as expected. Figure 3.27 shows the confidence level distribution for
all circular photon polarization runs, and figure 3.28 shows their missing mass vs φ plots.
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Figure 3.25: Effect of the kinematic fitting’s confidence level cut on event selection for
channel γ(p)→ pπ+π− using the data from gold2a. Top left: confidence cut at 5%. top
right: missing mass plot, bottom left: missing momentum, bottom right: coplanarity.
For all the plots, the blue region is for good events that pass the cut, the red region is
the background events that are removed by the cut.

Period Pull Dist. Pp λp φp Pπ+ λπ+ φπ+ Pπ− λπ− φπ− Eγ

Silver1 Mean -0.02 0.07 0.03 -0.01 -0.04 -0.00 -0.01 -0.03 0.00 0.01
Sigma 1.04 0.98 1.04 1.04 0.97 1.04 1.04 0.99 1.04 1.04

Silver2a Mean -0.03 0.07 0.06 -0.03 -0.06 -0.01 -0.02 -0.07 -0.02 0.03
Sigma 1.03 0.98 1.02 1.03 0.96 1.04 1.03 0.99 1.03 1.03

Silver2b Mean -0.01 0.06 0.02 -0.00 -0.07 0.01 -0.00 -0.03 0.01 0.00
Sigma 1.06 0.99 1.06 1.06 0.96 1.06 1.06 1.01 1.06 1.06

Silver3 Mean 0.02 -0.05 0.04 0.02 0.01 -0.01 0.02 0.03 -0.02 -0.02
Sigma 1.06 0.97 1.06 1.06 1.01 1.06 1.06 1.01 1.06 1.06

Silver4 Mean 0.07 -0.01 0.09 0.08 -0.01 -0.07 0.08 -0.02 -0.07 0.07
Sigma 1.05 0.99 1.05 1.05 1.01 1.05 1.05 1.03 1.05 1.06

Silver5 Mean 0.02 -0.04 0.04 0.03 0.01 -0.01 0.02 0.01 -0.01 -0.02
Sigma 1.03 0.96 1.04 1.03 0.99 1.03 1.03 1.00 1.02 1.03

Gold2a Mean 0.02 -0.02 0.03 0.02 0.02 -0.01 0.02 0.04 -0.01 -0.01
Sigma 1.06 0.94 1.06 1.06 1.00 1.05 1.05 0.98 1.05 1.05

Gold2b Mean 0.02 -0.02 0.04 0.03 0.01 -0.02 0.02 0.02 -0.02 -0.02
Sigma 1.04 0.94 1.04 1.04 1.00 1.04 1.04 0.98 1.04 1.04

Table 3.5: Mean and sigma values of the pull distributions for all the circularly run
periods for channel γ(p)→ pπ+π−.
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Figure 3.26: Pull distribution for gold2a for channel γ(p)→ pπ+π−. The mean and sigma
values for the gaussian fit of the pull distribution are inserted at the bottom right corner.
The values are very close to a standard gaussian distribution.
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Figure 3.27: 5% confidence level cut for all circular photon polarization periods for the
reaction γ(p)→ pπ+π−.
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Figure 3.28: Missing Mass vs. φpro for the reaction γ(p)→ pπ+π− for all circular photon
polarization periods.
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Chapter 4

E asymmetry for γn→ pπ−

An accurate evaluation of the electromagnetic couplings in meson photo-production re-
mains unknown due to the lack of experiment data on the neutron targets. Moreover,
the existing data on neutron target are mainly differential cross sections, only 15% are
from polarization observable measurements [16]. Our measurement of the E asymmetry
for γn→ pπ− is the first for this polarization observable on the neutron target.

4.1 Formalism

Figure 4.1: Kinematics diagram for π− photoproduction off a neutron target in the
center of momentum frame. k, p1, q, p2 are the momenta for the incident photon, target
neutron, and final state π− and recoiling proton, θCM(π−) is the polar angle of the π− in
center of momentum frame.

For the reaction of a photon scattering off a nucleon, the four-momenta of the incident
photon, the outgoing pion, the initial nucleon and final nucleon are denoted by k =
(k, k), q = (q, ω), p1 = (p1, E1), p2 = (p2, E2). The photo-production amplitude A relates
to the S matrix by the following equation:

S = 1 + (2π)4iδ4(Pf − Pi)(8πWN)A, (4.1)

where Pi = k+p1, Pf = q+p2,W 2 = s = (k+p1)2, N = (16kωE1E2)1/2 is a normalization
factor.

Since the electromagnetic interaction violates isospin conservation, the transition op-
erator can be decomposed into an isoscalar part Ŝ and an isovector part V̂ , the pion
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photo-production amplitude A has three independent matrix elements with the notation
< If , If3|Â|Ii, Ii3 >[10, 17]:

AIS =< 1
2 ,±

1
2 |Ŝ|

1
2 ,±

1
2 >,

∓ AIV =< 1
2 ,±

1
2 |V̂ |

1
2 ,±

1
2 >,

AV 3 =< 3
2 ,±

1
2 |V̂ |

1
2 ,±

1
2 > .

(4.2)

The determination of the three isospin amplitudes can be obtained from the following
four photoproduction reactions.

A(γp→ π+n) = −
√

1
3A

V 3 +
√

2
3(AIV − AIS),

A(γp→ π0p) = +
√

2
3A

V 3 +
√

1
3(AIV − AIS),

A(γn→ π−p) = +
√

1
3A

V 3 −
√

2
3(AIV + AIS),

A(γn→ π0n) = +
√

2
3A

V 3 +
√

1
3(AIV + AIS),

(4.3)

The way to get the above expressions can be found in [10], an example for γn→ π−p is
shown in the following. The isospin part of the wave function for the nucleon and pion
could be written as:

|p >= |12 ,+
1
2 >, |n >= |12 ,−

1
2 >,

|π+ >= −|1,+1 >, |π0 >= |1, 0 >, |π− >= |1,−1 >
(4.4)

For the reaction γn → π−p, the initial state isospin wave function is |γn >= |12 ,−
1
2 >.

The final state isospin wave function is |π−p >= |1,−1 > |12 ,+
1
2 >=

√
1
3 |

3
2 ,−

1
2 >

−
√

2
3 |

1
2 ,−

1
2 >. The transition amplitude A for this reaction is:

A(γn→ π−p) =< π−p|Â|γn >

= (
√

1
3 <

3
2 ,−

1
2 | −

√
2
3 <

1
2 ,−

1
2 |)Ŝ + V̂ |12 ,−

1
2 >

= +
√

1
3A

V 3 −
√

2
3(AIV + AIS).

(4.5)

Equation 4.3 shows that AV 3 can be obtained from only the reaction using a proton
target, the other two component can only be separated using both the proton data and
the neutron data. For each reaction in Equation 4.3, the amplitude can be decomposed
into helicity amplitudes or CGLN amplitudes. Helicity is the projection of spin onto the
direction of momentum: λk = ±1 for incident photon, λ1 = ±1/2 for initial nucleon,
λ2 = ±1/2 for final nucleon, λk = 0 for pion. The initial and final state helicities
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λ = λk − λ1 = ±1/2,±3/2 and µ = λq − λ2 = ±1/2 give eight helicity amplitudes Aµλ.
The eight helicity amplitudes are not independent, parity conservation relates the four
amplitudes with λk = 1 to λk = −1 by A−µ,−λ(θ, φ) = −ei(λ−µ)(π−2φ)Aµ,λ(θ, φ) [18].

The four independent amplitudes are all complex numbers, and eight independent
measurements are required to determine the production amplitude A without ambiguities.

There are 16 nonzero observables for single pseudo-scalar meson photo-production as
below [19]:

dσ

dΩ(~P γ, ~P T , ~PR)

=1
2{dσ0[1− P γ

LP
T
y P

R
y′ cos(2φγ)] + Σ̂[−P γ
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y P
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y′ ]
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(4.6)

In Eq. 4.6, P γ
L and P γ

c are the degrees of polarization for circular and linear polarized
photon beams. P T

i and PR
i′ are the degrees of polarization of target and recoil nucleons.

dσ0 is the unpolarized differential cross section. Three asymmetries which to leading order
scale by a single polarization of either beam, target or recoil(Σ, T, P) are single polariza-
tion asymmetries. Three sets of four asymmetries whose leading polarization dependence
involves two polarizations of either beam–target (E, F, G, H), beam–recoil (Cx′ , Cz′ , Ox′ ,
Oz′), or target–recoil (Lx′ , Lz′ , Tx′ , Tz′) are double polarization asymmetries. Each of the
double polarization asymmetries has two ways to be measured in experiment. Take the
beam-target asymmetry E as an example, 2Ê = σ(+1,−z, 0) − σ(+1,+z, 0) (target po-
larization is flipped) or 2Ê = σ(+1,−z, 0)− σ(−1,−z, 0) (beam polarization is flipped).
The 16 observables are not independent, their are 37 relations between them as shown in
appendix C of [19].

Figure 4.2 shows the list of observables that can be measured for single pseudo-scalar
meson photo-production. The cross section σ0 is an un-polarization measurement; Σ, T, P
are single-polarization asymmetries; and E,F,G,H,Cx,Cz,Ox,Oz, Lx, Lz, Tx, Tz are
double polarization asymmetries. The complete experiment that eliminates ambiguities
requires a minimum of eight observables, which can be chosen to be σ0,Σ, T, P and four
double-polarization asymmetries with at least one involving recoil polarization. For the
channel γn → pπ−, there are 1381 cross section points between 0.4 and 2.0 GeV, only
326 single-polarization(Σ, T, P ) points, and none for the double polarization asymmetries.
The G14 experiment has measured two more new asymmetries for this reaction: E with
circular polarized beam, and G with linear polarized beam. This Chapter will show the
result for the E asymmetry.

This reaction needs two independent variables to determine the kinematics, which can
be chosen to be the total energy W and the polar angle of the π−, θCM(π−) in the c.m

99



Figure 4.2: Polarization observables in the reaction of pseudoscalar meson photo-
production. Each observalve can be measured in two different methods as shown in
the table. The observables in blue cells were measured in previous experiments, the ones
in yellow cells are new observables that are measured in G14 experiment. Image source:
[19]

frame. W is divided into 21 bins from 1500 MeV to 2300 MeV with the bin size of 40 MeV.
θCM(π−) is divided into 13 bins from cos(θCM(π−)) = −0.975 to cos(θCM(π−)) = 0.975
with the bin size of 0.15. The E asymmetry will be calculated for each 21 × 13 bins.

4.2 Extraction of E asymmetry
The E asymmetry is a beam target double polarization asymmetry as shown in Figure
4.2. The normalized E is defined as:

E = σ(+1,−z, 0)− σ(−1,−z, 0)
σ(+1,−z, 0) + σ(−1,−z, 0) , (4.7)

where the first value in the parenthesis represents the helicity of the circularly polarized
photon beam, the second value represents the direction of polarization for the longitu-
dinally polarized target, and the third value represents the recoil nucleon polarization.
Taking into account of the degree of polarization for the photon beam and target, and
relating the cross section to the yields of events, we can write the beam target asymmetry
E and its statistical error as:

E = 1
PγPt

N1/2 −N3/2

N1/2 +N3/2

σE = 1
PγPt

2(N1/2N3/2)1/2

(N1/2 +N3/2)3/2

(4.8)

where Pγ, Pt are degrees of polarization when the photon beam and target. N1/2 is the
total number of events for beam polarization and target polarization are anti parallel and
N3/2 is the total number of events when the beam polarization and target polarization
are parallel.

Since the HD target has aluminum wires and KelF in the target region. We need to
make corrections to the E asymmetry caused by the aluminum background.

Eraw = 1
PγPt

N1/2 −N3/2

N1/2 +N3/2 +Nempty

= 1
PγPt

N1/2 −N3/2

(N1/2 +N3/2)(1 + Nempty
N1/2+N3/2

)
, (4.9)

100



E = (1 + Nempty

N1/2 +N3/2
)Eraw, (4.10)

where Nempty is the scaled total number of events from the empty target run, Eraw is the
E asymmetry before empty target correction, E is the E asymmetry after empty target
correction.

For the 8 data sets in circular photon polarization runs, corrections for E asymmetry
from background are done for each data set separately. Figure 4.3 shows two examples
from Gold2b and Silver 1 for the comparison of z vertex between full target and empty
target runs. Since the empty target run and the full target run have different beam times,
the empty run events have to be scaled by a constant number. This number is calculated
by comparing the events from the KelF peak between z = 0 cm to z = 2 cm as in Figure
4.3. This scale constant is 0.80 for Gold2a and 0.91 for Silver1. Moreover, the empty
run and all the Silver runs use the same target cell (21a), the Gold2 runs used a different
target cell (19b). The amount of aluminum wires is different in these two cells, the 19b
target only has 70% of the aluminum wires used in 21a. Within the target region: -10.5

(a) Comparison of z vertex between
Gold2b(blue line) and Empty-a(red line)
periods.

(b) Comparison of z vertex between Sil-
ver1(blue line) and Empty-a(red line) pe-
riods.

Figure 4.3: Empty target correction for E asymmetry.

cm < z < -5.5 cm, the ratio of events between the empty target run and the full target
run can be calculated using the above information. For the Gold 2a run period, the ratio
is (10978*0.80*0.70)/251974 = 0.024, where 0.80 is the scale factor for the empty run,
0.70 is the ratio of aluminum wires between the Gold2a target cell and Empty-a target
cell. For the Silver 1 run period, the ratio is (16796*0.91)/428213 = 0.036.

The correction values of the E asymmetry for these two periods are given as: E =
1.024Eraw for Gold2a period and E = 1.036Eraw for Silver1 period. It is found that the
correction values depend on the c.m. energy W; a detailed study of this dependence is
shown in Appendix C.

The results for the E asymmetry for each run period (Silver1, Silver2a, Silver2b,
Gold2a, Gold2b) are shown in Figure 4.4-4.8. The comparison of the E asymmetry for
different run periods is shown in Figure 4.9. The results combining all periods with
the method of weighted mean are shown in Figure 4.10. In each figure, the two blue
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lines are from Bonn-Gatchina 2011-2 predictions for the E asymmetry [13], the two lines
correspond to the upper and lower energy boundary for each energy bin. The two red
lines are from SAID CM12 predictions [15].

Figure 4.4: Silver 1 run period: E asymmetry vs cos(θCM) for different center of momen-
tum energy W.
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Figure 4.5: Silver 2a run period: E asymmetry vs cos(θCM) for different center of mo-
mentum energy W.
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Figure 4.6: Silver 2b run period: E asymmetry vs cos(θCM) for different center of mo-
mentum energy W.
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Figure 4.7: Gold 2a run period: E asymmetry vs cos(θCM) for different center of momen-
tum energy W.

105



Figure 4.8: Gold 2b run period: E asymmetry vs cos(θCM) for different center of momen-
tum energy W.
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Figure 4.9: Comparison of E asymmetry from 5 different run periods for 3 different center
of momentum energies.
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Figure 4.10: Combined result: E asymmetry vs cos(θCM) for different center of momen-
tum energy W.
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4.3 Systematic Studies
Different values of the cuts used in the channel selection procedure will affect the final
results for the E asymmetry. This section studies the systematic errors induced by using
different "vertex z" cuts, "confidence level" cuts, and "missing momentum" cuts. The
systematic error is defined in the following way:

1. The E asymmetry is calculated for each cos(θCM) and energy W bin for cut 1 and
cut 2, respectively. There are 13 cos(θCM) bins and 21 W bins, which give a total of
13× 21 = 273 bins.

2. The relative difference of the E asymmetry is calculated using the two different
cuts: δE/Ecut2 = (Ecut1 − Ecut2)/Ecut2 (a condition of |Ecut2| > 0.2 is imposed to avoid
the case of zero denominator), and the results are used to fill a 1-D histogram, which
will be fitted with a Gaussian distribution. The mean (µδ) of the Gaussian is the relative
systematic error caused by using these two different cuts.

3. Calculate the mean (µδ) and width (σδ) of the Gaussian distribution of δE/Ecut2
for all the circularly polarized beam run periods, and use the weighted mean to obtain
the overall systematic error.

σsystematic =

√
µ2
Silver1

σ2
µSilver1

+ µ2
Silver2a

σ2
µSilver2a

+ µ2
Silver2b

σ2
µSilver2b

+ µ2
Gold2a

σ2
µGold2a

+ µ2
Gold2b

σ2
µGold2b√

1
σ2
µSilver1

+ 1
σ2
µSilver2a

+ 1
σ2
µSilver2b

+ 1
σ2
µGold2a

+ 1
σ2
µGold2b

, (4.11)

where σµ = σδ/
√
N is the standard error of the mean value, N is the size of the sample.

4.3.1 Systematic Study of Vertex Z cuts
As shown in Chapter 3, section 3.3.2, there is a cut along the z-axis of the target: -10.5cm
< z < -5.5 cm. This cut removes most of the events from the KelF target cell that enclose
the HD target. A variation of ±0.2 cm of the vertex z cut is used to study the systematic
effect of vertex z cut on the E asymmetry.

Tightening the vertex z cut by 0.2 cm: -10.3 cm < z < -5.7 cm, the 1-D histogram of
the difference between the E asymmetry calculated from the new vertex cut and standard
vertex cut (-10.5 cm < z < -5.5 cm) for circular runs silver1, silver 2, and gold2 are shown
in Figure 4.11. The systematic error caused by the change of vertex z cut is calculated
using Equation 4.11, and result is shown in Table 4.1. The results for loosening the vertex
z cut by 0.2 cm: -10.7cm < z < -5.3 cm are shown in Figure 4.12 and Table 4.2. The total
systematic error caused by tightening and loosening the vertex z cut is the quadrature
sum of the two errors, which is: σsystematic(vertex z) =

√
0.0062 + 0.0102 = 1.2%

4.3.2 Systematic Study of Confidence level cuts
To separate the events for a channel of interest from the background events, a confidence
level cut of "CL > 5%" is used. The systematic effect of this cut can be studied by varying
the value for the cut. The E asymmetry will be calculated with the confidence level cuts
of 2% and 10%, and the results will be compared with the E asymmetry with the 5%
confidence level cut. The difference between the two E asymmetry values for all bins (21
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Figure 4.11: Difference between the E asymmetry calculated from the tight vertex cut
(-10.3 cm < z < -5.7 cm) and standard vertex cut (-10.5 cm < z < -5.5 cm).

Period µδ σδ N σµ
Silver1 1.0 % 16.8% 208 1.2 %
Silver2a 0.2% 24.2% 185 1.8%
Silver2b 1.0% 12.3% 197 0.9%
Gold2a 0.5% 10.6% 227 0.7%
Gold2b 0.5% 4.3% 208 0.3%
σsystematic 0.6%

Table 4.1: Mean and error for the Gaussian distribution in Figure 4.11. Equation 4.11 is
used to calculate the systematic error between the vertex z cut: -10.3 cm < z < -5.7 cm
and -10.5 cm < z < -5.5 cm.
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Figure 4.12: Difference between the E asymmetry calculated from the loose vertex cut
(-10.7 cm < z < -5.3 cm) and standard vertex cut (-10.5 cm < z < -5.5 cm).

Period µδ σδ N σµ
Silver1 0.0% 7.4% 208 0.5%
Silver2a -3.0% 22.8% 185 1.7%
Silver2b 0.4% 13.5% 197 1.0%
Gold2a -0.4% 11.6% 228 0.8%
Gold2b -1.3% 6.2% 209 0.4%
σsystematic 1.0%

Table 4.2: Mean and error for the Gaussian distribution in Figure 4.12. Equation 4.11 is
used to calculate the systematic error between the vertex z cut: -10.7 cm < z < -5.3 cm
and -10.5 cm < z < -5.5 cm.

111



energy bins × 13 θ bins) will be used to fill a 1-D histogram, and the mean and error of
the fitted Gaussian distribution will be used to estimate the systematic error.

The results of comparing the 2% and 5% confidence level cuts are shown in Figure
4.13 and Table 4.3.

Figure 4.13: Difference between the E asymmetry calculated from confidence level cut
(CL > 2%) and standard confidence level cut (CL > 5%).

The results of comparing the 10% and 5% confidence level cuts are shown in Figure
4.14 and Table 4.4. The total systematic error caused by tightening and loosening the con-
fidence level cut is the quadrature sum of the two errors, which is: σsystematic(confidence
level) =

√
0.0082 + 0.0112 = 1.3%.

4.3.3 Systematic Study of Missing Momentum cuts
After the vertex z cut of −10.5 < z < −5.5 cm and confidence level cut of CL> 5%,
most of the events are from the channel of interest: γ + n → p + π−, as shown in the
missing momentum plot (Figure 4.15) for gold2a data set. The missing momentum of
the target neutron shows the quasi free feature of the neutron target. Figure 4.16 shows
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Period µδ σδ N σµ
Silver1 -1.0% 11.1% 208 0.8%
Silver2a -1.9% 24.9% 186 1.8%
Silver2b 0.3% 13.0% 197 0.9%
Gold2a -1.6% 11.0% 227 0.7%
Gold2b -0.1% 5.8% 209 0.4%
σsystematic 0.8%

Table 4.3: Mean and error for the Gaussian distribution in Figure 4.13. Equation 4.11
is used to calculate the systematic error between the confidence level cut: CL > 2% and
CL > 5%.

Figure 4.14: Difference between the E asymmetry calculated from confidence level cut
(CL > 10%) and standard confidence level cut (CL > 5%).
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Period µδ σδ N σµ
Silver1 -0.1% 8.7% 207 0.6%
Silver2a 1.1% 22.4% 186 1.6%
Silver2b 3.5% 19.1% 197 1.4%
Gold2a -1.1% 20.0% 225 1.3%
Gold2b 0.2% 8.7% 208 0.6%
σsystematic 1.1%

Table 4.4: Mean and error for the Gaussian distribution in Figure 4.14. Equation 4.11 is
used to calculate the systematic error between the confidence level cut: CL > 10% and
CL > 5%.

that the E asymmetry depends on the missing momentum of the target neutron, the
magnitude of the E asymmetry decrease as the missing momentum increases. A cut of
missing momentum: mP < 0.1 GeV is chosen for the standard cut, since the E asymmetry
is relatively flat for the region: 0 < mP < 0.1 GeV. Another two missing momentum cuts:
mP < 0.12 GeV and mP < 0.08 GeV are used for calculating the E asymmetry, which
will give the systematic error on the missing momentum cut.

Figure 4.15: Missing momentum plot for the channel: γ(n)→ pπ−. The blue region is for
good events that pass the cuts, the red region is the background events that are removed
by the cuts.

The results of comparing the mP < 0.12 GeV and mP < 0.1 GeV missing momen-
tum cuts are shown in Figure 4.17 and Table 4.5. The results of comparing the mP
< 0.08 GeV and mP < 0.1 GeV missing momentum cuts are shown in Figure 4.18 and
Table 4.6. The total systematic error caused by tightening and loosening the missing
momentum cut is the quadrature sum of the two errors: σsystematic(missing momentum)
=
√

0.0322 + 0.01282 = 4.2%.
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Figure 4.16: E asymmetry vs missing momentum of target neutron for the channel:
γ + (n)→ p+ π− .

Period µδ σδ N σµ
Silver1 -4.0% 16.5% 207 1.1%
Silver2a -6.0% 27.0% 185 2.0%
Silver2b -1.8% 18.3% 196 1.3%
Gold2a -2.0% 18.2% 225 1.2%
Gold2b -3.1% 7.6% 208 0.5%
σsystematic 3.2%

Table 4.5: Mean and error for the Gaussian distribution in Figure 4.17. Equation 4.11 is
used to calculate the systematic error between the missing momentum cut: mP < 0.12
GeV and mP < 0.1 GeV.

Period µδ σδ N σµ
Silver1 4.7 % 18.3 % 206 1.3 %
Silver2a -2.2% 36.3 % 184 2.7 %
Silver2b 2.6 % 30.5 % 197 2.2 %
Gold2a 0.1% 28.9% 219 2.0 %
Gold2b 1.1% 14.7% 208 1.0%
σsystematic 2.8%

Table 4.6: Mean and error for the Gaussian distribution in Figure 4.18. Equation 4.11 is
used to calculate the systematic error between the missing momentum cut: mP < 0.08
GeV and mP < 0.1 GeV.
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Figure 4.17: Difference between the E asymmetry calculated from missing momentum
cut (mP < 0.12 GeV) and standard missing momentum cut (mP < 0.1 GeV).
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Figure 4.18: Difference between the E asymmetry calculated from missing momentum
cut (mP < 0.08 GeV) and standard missing momentum cut (mP < 0.1 GeV).
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4.3.4 Other Systematic Errors
Other than the systematic errors caused by the choice of different cut values, the system-
atic errors of the photon beam polarization and target polarization will also introduce
uncertainty in the E asymmetry. Table 4.7 gives the photon beam polarization and its
error from the Møller measurement. An estimation of the systematic error for the HD
target polarization is shown in table 4.8.

Period Beam polarization Error
Silver1 −81.7% 3.5%
Silver2a −81.7% 3.5%
Silver2b −76.2% 3.5%
Gold2a 88.2% 3.5%
Gold2b −83.4% 3.5%

Table 4.7: Photon beam polarization and its error for circular polarized beam run periods.

Uncertainties in reference Thermal Equilibrium (TE) measurement:
PD noise 0.3% white noise in PD NMR while in HDice Lab

Temperature 0.2% drift, thermal gradients in HD from radiant heat load
H background 0.4% H bkg with no target.
Stoichiometry 0.1% deviation of H:D of 1:1, due to H2 and D2 impurities
Bkg subtraction 0.6% Err in signal integral from imperfect separation of bkg

Incomplete relaxation 0.5% T1 for TE measurement can be comparable to sweep time
Uncertainties in measurement of frozen-spin(FS) signal:

IBC noise 0.6% residual effect of white noise in IBC NMR and PD
Hall-B noise jumps 0.5% Variations in signal area after correction for signal jumps
Circuit non-linearity 4.0% From the quadratic dependence of the circuit transducer gain
RF inhomogeneity 1.4% Field inhomogeneity
RF depolarization 0.1% Residual uncorrected decrement from repeated rf sweeps

Uncertainties in relating FS signal to TE measurement:
Circuit drift 1.8% Variation from connecting FS signal to TE reference

Lock-in gain error 2.9% SRS 844 manufacturer’s gain error
Differential ramp-rate 1.0% Actual ramp rate differs from nominal
TC transfer losses 2.0% Variation in polarization loss during a TC transfer

Total systematic error 6.0% For both H and D polarization

Table 4.8: Systematic errors for HD polarization measurement. [57]

From the formula of calculating E asymmetry: E = 1
PγPt

N1/2−N3/2
N1/2+N3/2

,, the relative errors
for photon beam polarization (Pγ) and target polarization (Pt) will be propagated to the
final result of the E asymmetry. The systematic errors are 3.5% from the photon beam
polarization, and 6.30% from the target polarization.
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4.3.5 Total Systematic Errors
We have considered two kinds of systematic errors, one is caused by the choice of different
cuts in the event selection, another is from the systematic errors in the measurement of
the photon beam polarization and HD target polarization. The total error for each kind
is combined using a quadratic sum and a summery of the systematic errors is shown in
Table 4.9.

Sources Systematic error for E aysmmetry
Vertex z cut (± 0.2 cm) 1.2%

Confidence level cut (+0.05, -0.03) 1.3%
Missing momentum cut (±0.02 GeV) 4.2%

σsys(cuts) 4.6%
Photon beam polarization 3.5%

Target polarization 6.0%
σsys(polarization) 6.2%

σtotal 7.7%

Table 4.9: Combined systematic error. The main source of systematic error from using
different cuts is from the missing momentum cut. The main source of systematic error
from polarization measurement is from the target polarization.

4.4 Conclusion
The first measurement of E asymmetry for the reaction of γ + n → p + π− is reported.
The E asymmetry is plotted vs. the polar angle of the final state π− in the center of
momentum frame. The c.m. energy (wc.m.) ranging from 1500 MeV to 2300 MeV has been
divided into 21 bins with the bin size of 40 MeV. The results have been compared with
two the predictions from two partial wave analysis group: Bonn-Gatchina and SAID.
The agreement between the experiment results and the predictions from partial wave
analyse is good for wc.m. < 1820 MeV. For wc.m. > 1820 MeV, the experiment results are
different from the two predictions, and also the two partial wave analysis methods give
different predictions. The result of the E asymmetry from this experiment will help the
two partial wave analysis to improve their models, and give more accurate predictions
for the energy wc.m. > 1820 MeV, this energy range is also the place where most of the
missing resonances are.
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Chapter 5

Polarization Observables for
γp→ pπ+π−

Double pion photo-production is an important channel for the study of the missing reso-
nance problem, because the cross section for this reaction is much higher than the single
pion photo-production for c.m. total energies above 2 GeV, where the missing resonances
are predicted to be.

5.1 Formalism

Figure 5.1: Kinematics for the reaction of γp→ pπ+π− in c.m. frame. k, p1, p2, q1, q2
are the momenta for the incident photon, proton target, recoiling proton, and the two
pions. θππ is the polar angle of the sum vector of the momenta of the two pions in the
center of momentum frame. θπ+ is the angle between q1 and pππ. φ′ is the angle between
the plane formed by the two pion momenta and the reaction plane.

The kinematics for this process are more complicated than in the single pion process.
The differential cross section is described by 5 kinematic variables, which can be chosen
as: W, Mπ+π− , θππ, θπ+ and φ′, in which W is the c.m. total energy, Mπ+π− is invariant
mass of the two final state pions, θππ, θπ+ , φ′; these angles are shown in Figure 5.1. φ′
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can be obtained in the following equation:

cosφ′ = (~p1 × ~p2) · (~q1 × ~q2)
|~p1 × ~p2||~q1 × ~q2|

. (5.1)

If the photon beam and target are polarized, the differential cross section can be
written as:

dσ

dxi
= σ0{(1 + ~Λ · ~P ) + δ�(I� + ~Λ · ~P�)

+ δl[sin 2β(Is + ~Λ · ~P s + cos 2β(Ic + ~Λ · ~P c)]},
(5.2)

where xi are the kinematic variables, σ0 is the unpolarized cross section, β is the angle
between the direction of the linear polarized photon beam with the x-axis in lab frame,
δ� and δl are the degree of polarization for circularly and linearly polarized photon beam.
Since there are protons in both hydrogen and deuterium in the HD target, the effective
polarization of the proton is (PH+PD)/2. Λ is the target polarization. I� and Is,c are the
beam helicity asymmetries with the use of circularly and linearly polarized photon beams.
~P is the target asymmetry. ~P� is the double asymmetry obtained using a circularly
polarized beam and polarized target. ~P s,c are the double asymmetries obtained using a
linear polarized beam and polarized target.

For a circularly polarized beam and longitudinal polarized target, the above formula
becomes:

dσ

dxi
= σ0{(1 + Λz · Pz) + δ�(I� + Λz · P�z )}. (5.3)

The three polarization observables Pz, I�, P�z can be calculated using the following
equations:

Pz = 1
Λz

[N(→⇒) +N(←⇒)]− [N(→⇐) +N(←⇐)]
[N(→⇒) +N(←⇒)] + [N(→⇐) +N(←⇐)] ,

I� = 1
δ�

[N(→⇒) +N(→⇐)]− [N(←⇒) +N(←⇐)]
[N(→⇒) +N(→⇐)] + [N(←⇒) +N(←⇐)] ,

P�z = 1
Λzδ�

[N(→⇒) +N(←⇐)]− [N(→⇐) +N(←⇒)]
[N(→⇒) +N(←⇐)] + [N(→⇐) +N(←⇒)] ,

(5.4)

where → and ← denote whether the circular beam polarization is parallel or antiparallel
to the beam axis, ⇒ and ⇐ denote whether the direction of the target polarization is
parallel or antiparallel to the beam axis. N(→⇒) is the number of events for the photon
beam with +1 helicity and target polarization along +z direction. N is related to the
differential cross section of the reaction in the following way:

dσ

dxi
= N

A · F · ρ ·∆xi
, (5.5)

where A is the acceptance, F is the photon flux, ρ is the target density, ∆xi is the size of
the kinematic bin. Using this relation, we can relate the experimentally measured event
number N to the polarization observable as:

N = σ0(A · F · ρ ·∆xi){(1 + Λz · Pz) + δ�(I� + Λz · P�z )}. (5.6)
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The extraction of the three observables requires 4 different sets of measurements with
different beam helicity and target polarization: N(→⇒), N(←⇒), N(→⇐), N(←⇐).
Moreover the simple form of equation 5.4 uses the assumption that the target polarization(Λz),
beam polarization (δ�), and photon flux (F) are the same for all run periods. This as-
sumption is not valid in a real experiment. In terms of target polarization, the run
periods in the G14 experiment can be divided into two groups. Group 1 has the target
polarization along the +z direction of the lab frame, this group includes Silver1, Silver2a,
Silver2b, Silver3, Gold2. Group 2 has the target polarization along the -z direction, this
group includes Silver4 and Silver5.

In Equation 5.6, we use a single letter C to represent the constant in the equation:
C = σ0 · A · F · ρ ·∆xi. Four equations can be written for the two periods: Silver5 and
Gold2 for different beam helicity and target polarization:

N+
g2 = C+

g2{(1 + Λg2
z Pz) + δg2� (I� + Λg2

z P
�
z )}

N−g2 = C−g2{(1 + Λg2
z Pz)− δ

g2
� (I� + Λg2

z P
�
z )}

N+
s5 = C+

s5{(1 + Λs5
z Pz) + δs5� (I� + Λs5

z P
�
z )}

N−s5 = C−s5{(1 + Λs5
z Pz)− δs5� (I� + Λs5

z P
�
z )}

(5.7)

where N± is the number of events when the beam helicity equals ±1. The total events
for each run period can be defined as: Ng2 = N+

g2 +N−g2, Ns5 = N+
s5 +N−s5. The difference

between the events from the two beam helicity states for each run period can be defined
as: ∆Ng2 = N+

g2−N−g2, ∆Ns5 = N+
s5−N−s5. In the G14 experiment, the beam helicity flip

frequency is 960.015 Hz, thus the flux for the two beam helicity states can be viewed as
the same, C+

g2 = C−g2 = Cg2, C+
s5 = C−s5 = Cs5. The three polarization observables can be

deduced using Eq. 5.7 as follows:

I� =
∆Ng2
δg2
�
− αβ∆Ns5

δs5
�

Ng2 − αβNs5

P�z =
∆Ng2
δg2
� Λs5

z
− αβ ∆Ns5

δs5
� Λg2

z

αβNs5 −Ng2

Pz = αNs5 −Ng2

Λs5
z (Ng2 − αβNs5)

(5.8)

where α = Cg2
Cs5
, β = Λg2

z

Λs5
z
. If Cg2 = Cs5, Λs5

z = −Λg2
z , and δg2� = δs5� . Eq. 5.8 goes back to

Eq. 5.4. For an asymmetry A = (N1 −N2)/(N1 +N2), the error is calculated as:

σ2
A =

(
∂A

∂N1

)2

σ2
N1 +

(
∂A

∂N2

)2

σ2
N2 + 2

(
∂A

∂N1

)(
∂A

∂N2

)
cov(N1, N2), (5.9)

where σ2
N1 = N1, σ2

N2 = N2, and the covariance cov(N1, N2) = 0 for independent mea-
surement of N1, N2. Using this relation, the statistical errors for these three observables
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can be calculated to be:

σI� =

√√√√√√√√√√√√√√√√√√√√√√

(
2N−g2
δg2�
− αβ

(
1
δg2�
− 1
δs5�

)
N+
s5 − αβ

(
1
δg2�

+ 1
δs5�

)
N−s5

)2

N+
g2

+
(

2N+
g2

δg2�
− αβ

(
1
δg2�

+ 1
δs5�

)
N+
s5 − αβ

(
1
δg2�
− 1
δs5�

)
N−s5

)2

N−g2

+
(
−2αβN

−
s5
δs5�

+
(

1
δs5�
− 1
δg2�

)
N+
g2 +

(
1
δs5�

+ 1
δg2�

)
N−g2

)2

(αβ)2N+
s5

+
(
−2αβN

+
s5
δs5�

+
(

1
δs5�

+ 1
δg2�

)
N+
g2 +

(
1
δs5�
− 1
δg2�

)
N−g2

)2

(αβ)2N−s5

(Ng2 − αβNs5)2 (5.10)

σP�z =

√√√√√√√√√√√√√√√√√√√√√√

(
−

2N−g2
δg2� Λs5

z

+ αβ

(
1

δg2� Λs5
z

+ 1
δs5� Λg2

z

)
N+
s5 − αβ

(
− 1
δg2� Λs5

z

+ 1
δs5� Λg2

z

)
N−s5

)2

N+
g2

+
(
−

2N+
g2

δg2� Λs5
z

− αβ
(
− 1
δg2� Λs5

z

+ 1
δs5� Λg2

z

)
N+
s5 + αβ

(
1

δg2� Λs5
z

+ 1
δs5� Λg2

z

)
N−s5

)2

N−g2

+
(
−2αβ N−s5

δs5� Λg2
z

+
(

1
δs5� Λg2

z

− 1
δg2� Λs5

z

)
N+
g2 +

(
1

δs5� Λg2
z

+ 1
δg2� Λs5

z

)
N−g2

)2

(αβ)2N+
s5

+
(
−2αβ N+

s5

δs5� Λg2
z

+
(

1
δs5� Λg2

z

+ 1
δg2� Λs5

z

)
N+
g2 +

(
1

δs5� Λg2
z

− 1
δg2� Λs5

z

)
N−g2

)2

(αβ)2N−s5

(Ng2 − αβNs5)2

(5.11)

σPz =
[α(Λg2

z − Λs5
z )]

√
Ng2Ns5(Ng2 +Ns5)(

Λs5
z Ng2 − αΛg2

z Ns5
)2 (5.12)

The ratio of the constant C between Gold2 and Silver5 period α = Cg2
Cs5

can be obtained
from comparing the downstream KelF peak as in Figure 5.2, since the Silver5 target lost
some HD in the target region, an overall coefficient of 1.435 (silver target is 70% of the
the length of a full target) is multiplied by the ratio: α = Cg2

Cs5
= 1.435× KelFg2

KelFs5
. The ratio

of the yields under the KelF peak at 0cm < z < 2cm between Gold2 and Silver5 periods
for the six center of momentum total energy bins is shown in Figure 5.3.

5.2 Determination of the target polarization for Sil-
ver5 period

From Table 3.1, we see that the polarization for the deuteron in the HD target is 15.79%
along the -z direction. However, from the study of the E asymmetry in the single pion
channel: γ+n→ p+π−, Silver5 data set gives a significant smaller value for E asymmetry
if the deuteron polarization is PD = −15.79%, as shown in Figure 5.4, this result implies
that the actual deuteron polarization is much smaller than the value measured by the
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Figure 5.2: Vertex z distribution for the channel γp → pπ+π− for Gold2 (left) and
Silver5(right) periods.

Figure 5.3: The ratio of the yields under the KelF peak at 0cm < z < 2cm between Gold2
and Silver5 periods for the six center of momentum energy bins.
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NMR. This is the reason why in the previous chapter, the data set of the Silver 5 is
not included in the calculation for the E asymmetry. However, in the calculation of

Figure 5.4: E asymmetry vs cos(θCM) for different center of momentum energy W for
γ + n→ p+ π− for the silver5 data set.

Pz, I
�, P�z for the two pion photo-production, Silver5 data set is required to be used in

the calculation, since this data set has the deuteron polarization along the -z direction.
Thus we need to get the right value for the deuteron polarization for the Silver5 data
set. The method we are using is to vary the value of the deuteron polarization for the
Silver5 data set, until we get the closest value for the E asymmetry in the single pion
channel between the Silver5 and the combined results from previous chapter. A χ2 value
is defined in the following equation:

σχ2 =
∑
i

(Es5 − Ecombine)2

σ2(Es5 − Ecombine)
(5.13)
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Figure 5.5 plots the χ2 vs. the deuteron polarization of Silver5 target. χ2 is minimized
at 5.1%. The error on the polarization was determined to be 0.2% by varying the χ2 by
1 near its minimal. The result for the deuteron polarization: Dpol = (−5.1 ± 0.2)% is
significantly smaller than the polarization measured by the NMR, which is (−15.5±0.7)%.

Figure 5.5: χ2 vs. the deuteron polarization for Silver5 target.

From Eq 5.8, we can see that the small value of deuteron polarization for Silver5 target
won’t affect the calculation for I�, but will affect the other two observables Pz, P�z .

5.3 Beam Helicity Asymmetry I�

The results for beam helicity asymmetry are shown in Figure 5.6. The results are com-
pared with previous CLAS experiments g1c [20] and g9a [21], and they are in overall
agreement. The prediction of the theory by A.Fix [23] is also shown for the first two
energy bins.

We notice that for lower energy bins the amplitudes of the curves from G14 experiment
are bigger that the results from G1c and G9a. For higher energy bins the amplitudes of
the curves from G14 experiment are smaller than the results from G1c and G9a. These
differences are caused by the use of different ways to integrate the polar angle θππ. In this
study, we integrate I� over θππ by dividing cos(θππ) into 5 bins from -1 to 1, calculate Ic
for each cos θππ bin, and then add them together as:

I�(φ′) =
∫ 1
−1 I

�(θππ, φ′)d(cos θππ)∫ 1
−1 d(cos θππ)

= 1
2
∑

I�(θππ, φ′)∆(cos θππ) (5.14)
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Figure 5.6: Beam helicity asymmetry vs. φ′ for different center of momentum energy w.
The results from previous CLAS measurements g1c [20] and g9a [21], and the prediction
from [23] are also shown in the plots.
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the 1/2 in the equation is the normalization number from the inverse of the cos(θππ)
integration range of 2 from -1 to 1.

On the other hand, the method of integration used in the other experiments views
cos θππ as one bin, and calculates I�(φ′) by summing all the events from all cos θππ bins
for each φ′ bin. We also used the second way of cos θππ integration, Figure 5.7 shows that
the results from three different experiments are very close to each other when the same
method for cos θππ integration is used.

Figure 5.7: Beam helicity asymmetry vs. φ′ for different center of momentum energy
W, calculated under the assuption that I�(φ′) is independent of θππ. The results from
previous CLAS measurements g1c [20] and g9a [21], and the prediction from [23] are also
shown in the plots.

However, the second way of integration makes an assumption that the observable
I�(φ′) is uniformly distributed along cos θππ for a fixed φ′ bin. Figure 5.8 shows that this
assumption is not true, since I�(φ′) fluctuates along cos θππ direction for fixed φ′ bins.
Based on this observation, we believe that the first method introduced earlier is the right
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way for cos θππ integration. Since these two methods give different values for I�(φ′), we
suggest the data in g1c and g9b should be replotted using the right way for the cos θππ
integration. While the differences in the approach to θππ integration account for most of
the variations between these results and those of g1c and g9a, we note that at the highest
energies the present experiment sees significantly less beam helicity asymmetry near the
extreme φ′ angles of −π and +π.

Figure 5.8: Beam helicity asymmetry I�(φ′) vs. φ′ and cos θππ for center of momentum
energy W = 1750 MeV.

5.4 Target Asymmetry Pz

The results for target asymmetry are shown in Figure 5.9, the results using the θππ
integration with the assumption that Pz is independent of θππ are shown in Figure 5.10.

5.5 Beam Target Double Asymmetry P�z

The results for beam target double asymmetry are shown in Figure 5.11, the results
using the θππ integration with the assumption that P�z is independent of θππ are shown
in Figure 5.12.

5.6 Conclusion
The three polarization observables for γp → pπ+π− using a circularly polarized photon
beam and longitudinally polarized target are compared with previous experiments [20]
[21]. I� values are in overall agreement between the G14 measurement and the G9a
measurement [21], but Pz and P�z have big discrepancies between these two experiments.
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Figure 5.9: Target asymmetry vs. φ′ for different center of momentum energy w.
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Figure 5.10: Target asymmetry vs. φ′ for different center of momentum energy w, calcu-
lated under the assuption that Pz(φ′) is independent of θππ.
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Figure 5.11: Beam target double asymmetry vs. φ′ for different center of momentum
energy w.
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Figure 5.12: Beam target double asymmetry vs. φ′ for different center of momentum
energy w, calculated under the assuption that P�z (φ′) is independent of θππ.
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Chapter 6

Polarization Observables for
γn→ nπ+π−

The reaction of double pion photo-production from the neutron target has the same
kinematics and polarization observables as the reaction using the proton target. The
diagram for the reaction kinematics is shown in Figure 6.1.

Figure 6.1: Kinemactics for the reaction of γn→ nπ+π− in c.m. frame. k, p1, p2, q1, q2
are the momenta of the incident photon, neutron target, recoiling neutron, and the two
pions. θππ is the polar angle of the sum vector of the momenta of the two pions in center
of momentum frame. θπ+ is the angle between q1 and pππ. φ′ is then angle between the
plane formed by the two pion momenta and the reaction plane.

6.1 Event selection
Similar filters are used in the neutron target channel as in the proton target channel.
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6.1.1 Particle ID filters
The first set of filters are particle ID filters: PID = 8 for π+, PID = 9 for π−. For the
identification of neutrons, CLAS uses the Electromagnetic Calorimeter to detect neutral
particles. In the G14 experiment, there are two neutral particles involved: photons and
neutrons. These two neutral particles are separated by a β cut at 0.9. The neutrons are
identified with β < 0.9. (Figure 6.2).

Figure 6.2: β value for neutral particles detected by the EC detectors, a cut of β < 0.9
is used to separate neutrons from photons.

Moreover, "targid" and "ngrf == 1" are used to better define the reaction channels.
The "targid" filters require all the final state particles to come from the same tagged
photon; and the "ngrf == 1" filter require the number of photons in the same RF bucket
to be one.

6.1.2 ∆β cuts
Since the EC module of the CLAS detectors does not have high efficiency for detecting
neutrons (Figure 6.3), we loosen the the ∆β cuts to increase statistics: ∆β cut for π+

and π− is chosen to be |∆β| < 0.5 instead of <0.3. Figure 6.5 gives the β vs momentum
plot for π+ and π− particles after the |∆β| cut.

6.1.3 Fiducial cuts
The same fiducial cuts are used for π+ and π− using the Equation 6.1, the angular
distributions before and after the fiducial cuts for π+ and π− are shown in Figure 6.6.

θ > 4.0 + 510.58
(30− φ)1.5518 (6.1)

For neutrons, extra cuts need to be used in order to remove some of the events that
mis-identify protons as neutrons [58]. As shown in Figure 6.7, there are two peaks in the
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Figure 6.3: Measured neutron detection efficiency vs. neutron momentum in the EC
detectors. Image Source: [39]

(a) π+: abs(∆β)<0.05. (b) π−: abs(∆β)<0.05.

Figure 6.4: ∆β filter for π+ and π−

Figure 6.5: The β vs momemtum plots for π+ and π− after the ∆β cut.
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Figure 6.6: Fiducial cuts for π+ and π−. The top two plots are the angular distributions
of π+, π− before fiducial cuts, the bottom two plots are the distributions after fiducial
cuts

top right plot (b) for the θ collinear distribution, the peak on the right side indicates that
there are some protons mis-identified as neutrons. In the center of momentum frame, the
sum of the polar angles for the sum vector of π+, π− and the neutron should be 180o in
the reaction: γ+n→ n+π+ +π−. However, since the DC(drift chamber) detectors have
some bad regions, which cannot identify protons, these protons will hit the EC detectors
and induce electromagnetic showers the same as neutrons. The method for CLAS to
separate protons from neutrons detected by the EC detectors is to use the particle charge
information from the DC. If part of the DC does not work, the protons that go through
this part will be mis-identified as neutrons. Moreover, since protons will be bent in the
torus magnetic field, the sum of θ for proton and π+π− will not be 180o, which gives the
right peak in Figure 6.7(b). The bottom two plots in Figure 6.7 show the regions of the
EC detectors where the mis-identified protons are. Plot (c) uses a cut of θπ+π− + θneu−π
> 0.1, two regions of the angular distribution plot have more events than other regions.
On the other hand, plot (d) with a cut of θπ+π− + θneu − π < 0.1 (good neutron events)
does not show the two enhanced regions. In order to remove the events with the mis-
identified protons, we will make an extra fiducial cuts to remove the three regions with
mis-identified protons in Figure 6.6(c). As shown in Figure 6.8, after the extra fiducial
cuts for the mis-identified protons, the right peak in the θ collinear plot disappears. Since
the protons bend in the torus magnetic field, the regions for mis-identified protons in the
EC detectors should change position if the torus field changes direction, Figure 6.9 gives
the change of the regions for positive and negative torus field. For the other magnetic field
setting, the collinear θ plots before and after the extra fiducial cut for the mis-identified
protons are shown in Figure 6.10.

137



(a) Neutron angular distribution after nor-
mal fidicial cuts.

(b) θπ+π−+θneu−π in center of momentum
frame

(c) Neutron angular distribution with cut
of θπ+π− + θneu − π > 0.1

(d) Neutron angular distribution with cut
of θπ+π− + θneu − π < 0.1

Figure 6.7: The problem of mis-identification of protons as neutrons.

(a) The three regions where the mis-
identified protons are are removed with ex-
tra cuts.

(b) θπ+π−+θneu−π in center of momentum
frame after the extra fiducial cuts

Figure 6.8: Effect of the extra fiducial cuts on the removal of mis-identified protons.
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(a) Neutron angular distribution for posi-
tive torus magnetic field.

(b) Neutron angular distribution for neg-
tive torus magnetic field.

Figure 6.9: The regions for mis-identified protons change positions for different torus
field.

(a) θπ+π−+θneu−π in center of momentum
frame before mis-identified protons region
cut for negative torus field runs.

(b) θπ+π− + θneu − π in center of momen-
tum frame after mis-identified protons re-
gion cut for negative torus field runs.

Figure 6.10: Effect of the extra fiducial cuts for negative torus field runs.
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6.2 Kinematic Fitting for γn→ nπ+π−

For the kinematic fitting of this channel, since there is no information of the covariance
matrix for the final state neutrons, we cannot apply the same kinematic fitting procedures
as we did for γn→ pπ−, γp→ pπ+π−, in which all the final state particles are detected
with the information of the covariance matrix. We will use an approximate kinematic
fitting for this channel, in which we assume the neutron target is a free neutron. The
fitting is a "1C fit" as: γn→ (n)π+π−, with the final state neutron missing (its 3 momen-
tum are free parameters in the fitting). Even though the final state neutron is viewed as
"missing", we have required that a neutron is detected in EC for the reaction in the event
selection process. The pull distribution and confidence level are shown in Figure 6.11 and
Figure 6.12. The cut of confidence level CL > 2%, its effect on the missing mass, missing
momentum and coplanairty plots are shown in Figure 6.13. The subplots in Figure 6.13
indicate that some background events are not removed by the confidence level cut, thus
extra cuts for missing mass (0.8GeV < mm < 1.1 GeV) , coplanarity (2.7<|δ(φ)|<3.5)
and vertex-z(-10.5 cm < z < -5.5 cm) are used after the confidence level cut.

Figure 6.11: Pull distribution for γn→ (n)π+π−.
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Figure 6.12: Confidence level for γn → (n)π+π−, a cut of CL > 2% are used to remove
the background events.

(a) Missing mass: γn→ (n)π+π−. (b) Missing momentum: γn→ (n)π+π−.

(c) Coplanarity: |φ(n)− φ(π+π−)|. (d) Vertex z cut.

Figure 6.13: Effect of the kinematic fitting’s confidence level cut on event selection for
channel γn→ (n)π+π−. For all the plots, the blue region is for good events that pass the
cut, the red region is the background events that are removed by the confidence level cut.
Extra cuts for missing mass (0.8GeV < mm < 1.1GeV ), coplanarity (2.7 < |δ(φ)| < 3.5)
and vertex-z(-10.5 cm < z < -5.5 cm) are used after the confidence level cut.
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6.3 Results and discussion
The polarization observables for the channel γn→ nπ+π− that can be extracted from the
G14 data set are the same as the channel of γp→ pπ+π− in Chapter 5. The observables
are the beam helicity asymmetry I�, target polarization asymmetry Pz, and beam-target
double polarization asymmetry P�z . The data from two run periods of G14 experiment
are used in this study: gold2 and silver5. The gold2 data set has a deuteron polarization
PD = 26.9%, the silver5 data set has a deuteron polarization of PD = −5.1%.

6.3.1 Beam Helicity Asymmetry I�

The results for beam helicity asymmetry are shown in Figure 6.14. The results are
compared with I� with the proton target. From the plots, it is noticed that the beam
helicity asymmetries are very close for higher c.m. energies of 1850 MeV, 1950 MeV, 2050
MeV, and 2150 MeV, but for lower c.m. energies of 1650 MeV, 1750 MeV, the differences
is significant. This observation indicates that at lower c.m. energies, the resonances
are different between the double pion reaction using the proton target and the neutron
target. From Figure 1.7 in the first Chapter, we notice that F15(1680) is missing for the
single pion photon-production with a neutron target. This situation could happen in the
double pion photo-production, and our observation of the difference of I� between the
proton target and neutron target provides useful information for groups using PWA to
check the model for double pion photo-production.

6.3.2 Pz and P�z

The results for beam helicity asymmetries are shown in Figure 6.15, and the results for
beam target double asymmetries are shown in Figure 6.16. These two sets of plots show
the comparison for Pz and P�z for the reaction of double pion photo-production using
a polarized proton target and a polarized neutron target respectively. For both targets,
since the run period (silver5) for target polarization along -z direction has a very small
target polarization: −5.1% for neutron, and −2.55% for proton, there are big error bars
on the measurement of Pz and P�z , which make it hard for us to extract useful information
from the measurement of these two observables.
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Figure 6.14: Beam helicity asymmetry I� vs. φ′ for different center of momentum energy
w.
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Figure 6.15: Target asymmetry Pz vs. φ′ for different center of momentum energy w.
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Figure 6.16: Beam target double asymmetry P�z vs. φ′ for different center of momentum
energy w.
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Chapter 7

Summary and Outlook

In this dissertation, we have introduced the first experiment using a polarized HD target
at Jefferson Lab: the G14 experiment. In the experiment, a highly polarized photon beam
and longitudinally polarized HD target were used. Both circularly polarized and linearly
polarized photon beams were used in the experiment. Only the data set with circularly
polarized beam has been analyzed in this study. The polarization of the photon beam
was in a range from 76.2% to 88.8% depending on different run periods, the energy of the
photon beam covers a range from 0.5 GeV to 2.2 GeV. During the circularly polarized
photon beam runs, two polarized targets were used. The first target (target 21a) was
operated in both "+z" direction and "-z" direction, the deuteron was polarized as high as
25.60% for "+z" mode. However, in the "-z" mode, the polarization is only −5.1%. The
second target (target gold2) was operated only in the "+z" direction, and it had a higher
deuteron polarization of 26.78%. The final state particles of the reaction were detected
by the nearly 3π CLAS detectors located in Hall B.

Polarization observables from three reaction channels have been analyzed. They are:
γ + n→ p+ π−, γ + p→ p+ π+ + π−, γ + n→ n+ π+ + π−. In the analysis procedure,
a new method to remove the background events has been developed based on kinematic
fitting. And the confidence level cut has proved to be a powerful tool to select separate
events of interest from background events.

In the single pion channel (γ+n→ p+π−), the beam target double asymmetry E has
been analyzed, this is the first measurement for this observable on the polarized neutron
target, and will be used to solve the discrepancy between different PWA models in the
high center of momentum energy region.

For the double pion channels, three polarizations are measured: I�, Pz, P
�
z . The

beam helicity asymmetry I� using a proton target has been compared with two earlier
measurements (G1c and G9a), and the results are agree. However, it was found that
I� is not uniform along cos θππ. Thus the integration along cos θππ should be done in
a different way than the previous two experiments have done. Using the new way of
integration, some discrepancies have been found between the new results from G14 and
the results from G1c and G9a. Thus we suggest that the results in G1c and G9a should
be checked again using the new way of integration of I� along cos θππ.

The beam helicity asymmetry I� using a neutron target has also been measured.
This is the first measurement of this observable. The results from proton and neutron
targets for I� have been compared, and a big difference has been found for two center
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of momentum energy bins: 1650 MeV and 1750 MeV. It is possible that the difference
comes from the missing of F15(1680) resonance in the reaction on the neutron target.
Confirmation will await a detailed coupled channel partial wave analysis. For the other
two observables Pz, P�z , since an unexpected small target polarization was found for the
data set of target polarization along "-z" direction, the results have big error bars and we
could not extract useful information from these two observables.

For the study of hadron spectroscopy, significant progress in experiments habe been
made over the last decade, especially for reactions using photon beams. The new ex-
perimental results have helped us get a better understanding of the hadron system in
the medium energy region. However, many more experimental measurements need to be
done in order to get the complete picture for hadron spectroscopy. Especially for reac-
tions with more than one final state pion, there are very few data available. The reaction
channels with more than one final state pion have bigger cross sections than the single
pion reactions in the energy region where most of the "missing resonances" are (above 2
GeV). This fact gives this reaction a higher priority in the study of the "missing reso-
nance problem". The double pion channel is very promising for us to find those missing
resonances, thus more experiments addressing this reaction are necessary.
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Appendix A

NMR signal analysis

A.1 Steps to prepare the four signals
Step1: Phase rotation. Figure A.1 and A.2 show that x and y signals mix the absorp-
tion signal and dispersion signal; a phase rotation is needed to get pure absorption and
dispersion signals.
Step2: Background subtraction. Figure A.4 shows that if the background signal of the y
channel is not zero, the Kramer Kronig transformed signal will have a slope.
Step3: Kramer-Kronig transformation. After the phase rotation and background sub-
traction(Figure A.4) , 4 clean absorption signals (Figure A.5) are ready to deduce the
polarization value.

A.2 Background subtraction
While most of the NMR measurements have very clean and flat background signals,
there are some measurements which have irregular background signals due to electrical
or mechanical noises. There are four types of background that need to be corrected. The
first type is as shown in the previous section, in which the X and Y signals are shifted
away from zero by a constant value.

The second type of background is that the background line is linear with a slope
(Figure A.6), then the Kramer-Kronig transformed signal will have an exponential tail
(Figure A.7). The corrected signals are shown in Figures A.8, A.9.

The third type of background is the background with a step function (Figure A.10),
the background subtracted signal is shown in Figure A.11.

The fourth type of background is the background with sharp peaks (Figure A.12), the
background subtracted signal is shown in Figure A.13.
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Figure A.1: Original signals from x- and y- channels of the NMR system.
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Figure A.2: Signals from x- and y- channels after phase roation.
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Figure A.3: Signals from x- and y- channels after phase rotation. y-channel signal has
had the Kramer-Kronig transformation applied. There is a slope in the background,
which is due to the nozero background of the y-channel signal before Kramer-Kronig
transformation.
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Figure A.4: Signals from x- and y- channels after phase rotation, the two signals have
had background subtraction applied.
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Figure A.5: Signals from x- and y- channels after phase rotation and background sub-
traction, the background of the Kramer-Kronig transformed y-channel signal becomes
flat.
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Figure A.6: Signals from x- and y- channels after phase rotation.
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Figure A.7: Signals from x- and y- channels after phase rotation. The y-channel signal
has had the Kramer-Kronig transformation applied. There is an exponential tail in the
background, which is due to the linear background of the y-channel signal before the
Kramer-Kronig transformation.
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Figure A.8: Signals from x- and y- channels after phase rotation, the two signals have
had background subtraction applied.
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Figure A.9: Signals from x- and y- channels after phase rotation and background sub-
traction. The background of the Kramer-Kronig transformed y-channel signal becomes
flat.
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Figure A.10: Signal from x- and y- channels after phase rotation.
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Figure A.11: Signals from x- and y- channels after phase rotation and background sub-
traction.
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Figure A.12: Signals from x- and y- channels after phase rotation.
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Figure A.13: Signals from x- and y- channels after phase rotation and background sub-
traction.
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Appendix B

The effective mass of a nucleon
inside the deuteron

The technique of reaction channel selection used in this study is 1-C kinematic fitting.
One of the most important parameters used in this procedure is the effective mass of the
nucleon inside deuteron. In the channel γ(n)→ pπ−, there are four constraint equations
from the conservation of energy and momentum, and three unknown values for the target
neutron’s initial 3 momentum. A key component for the kinematic fitting to work is an
accurate estimate of the effective mass for the quasi free neutron.

A straightforward solution to this problem is to use a Gaussian fit to find the centroid
of the missing mass plot for this reaction, as in Figure B.1. However, as shown in the
figure, the central values for the peaks from two different run periods are different. This
difference is caused by an offset of the photon beam energy.

Figure B.1: Missing mass plot for the reaction of γ(n) → pπ− before the photon beam
energy correction. The left plot is for the Silver1 period, the right plot is for the Gold2a
period.

In order to correct the photon beam energy, the missing mass is plotted for the same
reaction, but in a different way. Using the spectator model, the same reaction can be
written as γD → p(p)π−, with the p in parenthesis representing the spectator proton,
which is not involved in the reaction. The spectator proton should have an on-shell mass
of 0.9383 GeV. The missing mass plot for this reaction is shown in Figure B.2. Both of
the central values for the missing mass peaks are not at 0.9383 GeV. This indicate the
photon beam energy is not very accurate. For the Silver1 period, the photon beam energy
should increase by 0.0030 GeV, and for the Gold2a period, the photon beam energy should
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increase by 0.0082 GeV. The new missing mass plots for the reaction γD → p(p)π− after
the photon beam correction are shown in Figure B.3.

Figure B.2: Missing mass plot for the reaction of γD → p(p)π− before the photon beam
energy correction. The left plot is for the Silver1 period, the right plot is for the Gold2a
period.

Figure B.3: Missing mass plot for the reaction of γD → p(p)π− after the photon beam
energy correction. The left plot is for the Silver1 period, the right plot is for the Gold2a
period.

The missing mass plots for the reaction after the photon beam energy correction is:
The energy correction for the photon beam and the calculated effective mass for quasi-

free neutron for all circularly photon polarization run periods are shown in Table B.1.
The average and statistical error for the effective mass is: m∗ = 0.9303± 0.0003 GeV.
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Figure B.4: Missing mass plot for the reaction of γ(n)→ pπ− after photon beam energy
correction. The left plot is for Silver1 period, the right plot is for Gold2a period.

Period ∆ E (GeV) m∗(neutron) (GeV)
Silver1 0.003 0.9307
Silver2a 0.0015 0.9305
Silver2b 0.0015 0.9303
Silver3 0.0015 0.9303
Silver4 0.0015 0.9300
Silver5 -0.0015 0.9305
Gold2a 0.0082 0.9299
Gold2b 0.0082 0.9302

Table B.1: The photon beam energy offset and the effective mass of quasi free neutron
for all circularly photon polarization run periods.
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Appendix C

Empty target correction

As shown in Figure 2.31 in Chapter 2, there are aluminum wires inside the HD target cell.
The channel selection procedures, especially the kinematic fitting will remove most of the
events from the target cell, but there are still some background events that will pass the
cuts. During the experiment, an empty target run was conducted for the study of the
empty target subtraction. Figure C.1 gives the z vertex distribution for the Gold2a period
and the Emptya period, the blue line in the target region on the right plot indicates that
a small number of events from aluminum wires have passed the kinematic fitting cut.

Figure C.1: Z vertex distribution for Gold2a(left) and Emptya(right). The black line is
for all the events before the kinematic fitting cut, the blue line is for events that pass the
cut, and the red line is for events fail the cut.

These background events will dilute the events from the HD target, and make the
polarization observables smaller. And, this effect can be corrected using the following
equation:

E = (1 + Nempty

NHD

)Eraw, (C.1)

where Nempty is for the events-normalized background events from the empty target run,
and NHD is for the events from the HD target.

A comparison of the z vertex distributions for the full target and empty target runs
for different c.m. energy is shown in Figure C.2. It is noticed that the the ratios of events
for the downstream Kel-F peak are different for different c.m. energies. Thus, an energy
dependent background correction for the E asymmetry is needed.
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Figure C.2: Comparison of the z vertex between Gold2a(blue line) and Empty-a(red line)
periods for different c.m. energies.

Figure C.3 shows the ratios of events from the full target run periods and the empty
target run period for all circularly photon polarization runs.

The ratio of events from the empty target run and full target runs in the target region
(-10.5 cm < z < -5.5 cm) can be obtained by using the scale constant from Figure C.3.
For Gold2a and Gold2b periods, the fact that the target contained only 70% as many
aluminum wires must be included in the calculation. The results are shown in Figure
C.4.
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Figure C.3: Ratio vs. W(c.m.) for different run periods. Ratio = KelF(full target
runs)/KelF(empty target runs)
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Figure C.4: Ratio vs. W(c.m.) for different run periods. Ratio = Ncell
(NHD+Ncell)

, where Ncell

is the scaled number of events from the empty target, NHD is the number of events from
the HD.
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