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ABSTRACT

With the development of computational astrophysics, theoretical study and modeling of astronomical
objects has become a leading field in astronomy. An important advancement came with the ability
to study black holes and other compact objects by creating mock images and spectra that can be
compared to observations, facilitating the study of these bodies, most of which cannot be directly
imaged with the current technology. Athena++ is an astrophysical magnetohydrodynamics (MHD)
code written in C++, which coupled with a Monte Carlo radiation transfer, can be used to create and
postprocess snapshots of numerical simulations and generate spectra. For the simulation of accretion
disks around black holes, we need to account for the strong gravity generated by the massive central
object. We implemented a geodesic integration algorithm in the Athena++ code to solve the covariant
radiation algorithm. The method works for a general choice of coordinates and spacetime metric and
tests are presented for several choices of coordinates and spacetimes: Kerr-Schild, spherical-polar, and
cylindrical.

1. INTRODUCTION

Black holes are some of the most fascinating objects in
the universe. Resulting from the death of stars, they are
created by the gravitational collapse of the remains of
the dead stars. The pressure being unable to counteract
the gravitational force, matter falls on itself and creates
a point like singularity with a mass that can be up to
millions of time the mass of the Sun. This results in a
gravitational force powerful enough to prevent light from
escaping a region inside what is called the Schwarzschild
radius, which is given by:

R =
2GM

c2
(1)

This corresponds to a radius of approximately 3 km for a
black hole of 1 M�, making it impossible to resolve any
of the known black holes with today’s telescope, with
the only exception of M87 which was imaged recently
with the Event Horizon Telescope. However, we can still
obtain information about black holes by analyzing the
spectra emitted by accretion disks around them. Those
disks are thought to be geometrically thin but optically
thick and are often assumed to produce blackbody emis-
sion.

While spectra can be taken with observations, it is
important to be able to compare the data to theoreti-
cal models. We apply the Monte Carlo method to the
radiation in accretion disks, to determine for example
the initial position and direction of photons as well as
their scattering and absorption. This method uses ran-
dom sampling to solve deterministic problems and obtain
numerical results. Simulations based on radiative trans-
fer and using a Monte Carlo method then provide the
means to create models with adjustable physical param-
eters. Changing these initial conditions produce different
spectra which we can then compare to observations, giv-
ing information about the observed accretion disks and
their corresponding black holes when the models and the
observations match.

Simulations of accretion disks are therefore necessary
to understand black holes due to the difficulty of observ-
ing them directly. Spectra are created using radiative
transfer which calculates the path of photons in a grid
while taking into account different parameters such as
opacity, scattering, and absorption. This grid can be
made to fit various coordinate systems such as cartesian,
cylindrical, and spherical for a uniform sphere. We re-
cently added to the code an algorithm in spherical coor-
dinates for a non-uniform sphere. However, black holes
are the most exotic astronomical objects and create such
a strong gravity that a classical approximation for the
radiative transfer cannot always be used. These sets of
coordinates only work in flat spacetime, and while this
is a good approximation far from the black hole, it be-
comes unrealistic as the photons get closer to it where
spacetime is strongly curved.

Because of these extreme conditions, the use of general
relativity becomes essential. The path of photons around
a black hole cannot simply be calculated using classical
mechanics but needs to be computed as geodesics. Be-
ing the equivalent of straight line in curved spacetime,
geodesics represent the path of a particle. They are par-
ticularly important in general relativity because they are
computed using the four dimensions necessary to the def-
inition of curved spacetime: time along with the three
usual spatial dimensions. Those paths are calculated us-
ing the following equation:

d2xλ

dt2
+ Γλµν

dxµ

dt

dxν

dt
= 0 (2)

where Γ is the Christoffel symbols of the metric and λ,
µ, and ν are the coordinate numbers. This expression
follows the Einstein summation convention.

Geodesics provide a compact way to describe the tra-
jectory of a particle in a four dimensional space under
the influence of gravity. Moreover, these equations can
replace the previous algorithms used because geodesics,
when computed with the corresponding metrics, give the
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right result for flat spacetime too. This also provides a
way to check the veracity of the implemented algorithm
by comparing the results to previous ones obtained from
classical coordinate systems.

We first present the Athena++ code and radiation
transfer in Section 2. We then give the method used
for the implementation in Section 3 and describe the im-
plementation for Kerr-Schild, spherical-polar, and cylin-
drical coordinates along with their accuracy checks in
Section 4. Finally, we conclude in Section 5.

2. RADIATION TRANSFER IN ATHENA++

2.1. Athena++

Athena++ is an astrophysical magnetohydrodynamics
(MHD) code written in C++. It is a state-of-the-art
code used for a multitude of applications and simula-
tions, from accretion disks around black holes to star
and planet formation. While it is very advancement re-
garding technicalities such as computational speed and
parallelization, it becomes incredibly useful for simula-
tions thanks to its grid options including adaptive mesh
refinement (AMR). AMR allows the user to assign a bet-
ter precision to specific areas in the grid while keeping
the computation optimal by also allowing the grid to be
non-uniform and therefore less precise in areas of lesser
interest. With this, we can focus on specific parts of the
simulation and use large dynamic range while keeping
the computational expense to a minimum. Athena++
also includes general relativistic MHD (GRMHD), fur-
ther expanding the range of application of the code.

However, the Athena++ treatment of radiation trans-
fer is frequency averaged meaning that no spectral in-
formation can be obtained directly from simulations ran
using this code. In order to create mock spectra that we
could compare with observations, we need to implement
a radiation transfer code which is frequency dependent.

2.2. Monte Carlo method for radiation transfer

This radiation transfer code uses the Monte Carlo
method, a method based on the use of random sampling
to compute numerical values. It propagates photons us-
ing probabilities and calculates the distance that a pho-
ton will do before being either absorbed or scattered us-
ing a probability distribution function as follow:

ψ(x0) =

∫ x0

a
P (x)dx∫ b

a
P (x)dx

(3)

where ψ(x0) ranges from 0 to 1 as x0 goes from a to b.
We can first find a “uniform random deviate” called ξ,
with values ranging from 0 to 1, and solve equation (3)
to find x0.

For example, this calculation is used to generate an
optical depth τ for the photon which has for probability:

P (τ)dτ = e−τdτ (4)

Plugging this function in equation (3) gives

ψ(x0) =

∫ τ0
0
e−τdτ∫∞

0
e−τdτ

(5)

which, solving for τ0, gives

τ0 = −log(1− ξ). (6)

The same approach also gives a way of sampling scat-
tering angles of an isotropic distribution:

µ0 = 2ξ1 − 1 (7)

φ0 = 2πξ2 (8)

with µ0 the cosine of θ and φ0 the azimuthal angle in
spherical coordinates. ξ1 and ξ2 are two other uniform
random deviates.

With the optical depth and the angles for the direction
of propagation, the photons can be moved step by step,
computing random values for ξ, ξ2, and ξ3 at each one.
The photons follow a “random walk” until they leave
the chosen domain or get absorbed, with a probability
depending on the initial conditions of the domain. We
can therefore use the Monte Carlo method to perform
radiation transfer by using the method presented above
and its derivatives for the initialization, the propagation,
the scattering, and the absorption of the photons. The
radiation transfer equation and its coefficients obtained
with the Monte Carlo method are:

1

c

∂

∂t
Iν + Ω̂ · ∇Iν + (kν,s + kν,a)Iν = jν +

1

4π
kν,s

∫
Ω

IνdΩ

(9)
with jν the emission coefficient, knu,s the scattering opac-
ity, and kν,a the absorption opacity. We model scattering
with a similar approach by using distribution functions to
obtain scattering angles, polarization angles, and changes
in energy.

We usually propagate photons along straight paths in
flat space, using grids which have discontinuities only at
uniform cells’ boundaries. As part of a previous project,
we implemented a code which calculates the closest cell
boundary along a photon’s path in spherical coordinates.
As the photon moves in the grid, calculating the closest
boundary tells us which cell the photon will be in at the
next scattering or absorbing event. Since the cells all
have specific parameters, such as temperature or opac-
ity, updating the cell in which the photon is present when
it scatters or gets absorbed is important since these con-
ditions influence the probabilities used in the determina-
tion of the event. However, in Athena++, we want to
include the effect of strong gravity near the central mas-
sive object and therefore cannot simply move the photons
in straight paths from one scattering/absorption event to
the other. Spacetime is not flat in these regions and the
paths followed by the photons are curved which is why
a simple Monte Carlo method cannot be implemented.
This thesis focuses on how to move the photons in these
simulations along curved spacetime using geodesics equa-
tions.

3. METHOD

We implemented an algorithm in the Athena++ radi-
ation MHD code(5) in order to calculate the geodesics of
photons while taking general relativity into account.

The equations for a photon trajectory, obtained from
the grmonty paper(4), are:
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dxα

dλ
= kα (10)

dkα

dλ
= −Γαµνk

µkν (11)

Γαµν =
1

2
gαγ(

∂gγµ
∂xν

+
gγν
∂xµ

− gµν
∂xγ

) (12)

with x the position of the photon, k the unit vector of
its trajectory, λ the affine parameter, gαβ the metric and
Γαµν the Christoffel symbols of the metric. λ corresponds
to the step size between each iteration of the algorithm
and can therefore be set depending on the accuracy and
the computational expense wanted.

Γαµν , the Christoffel symbols, are matrices which serve
as metric connections and depend on the coordinate sys-
tem chosen. As shown in equation (12), they are derived
directly from the metric gαβ , also a matrix, which itself
depends on the coordinate system in which the calcula-
tions are performed. The metric is the primary tool used
in the study of general relativity because it contains all
the information about the geometry of spacetime and
thus allows us to perform accurate calculations in flat
or curved spacetime. It is a 4 × 4 matrix, one row and
column for each dimension, usually denoted x, y, and z
for space and t for time. Combined with the components
of an infinitesimal coordinate displacement four-vectors
dxµ, the metric gives the invariant square of an infinites-
imal line element or interval:

ds2 = gµνdx
µdxν (13)

This interval gives information on the nature of the ge-
ometry of spacetime. ds2 < 0 means that the interval is
timelike, ds2 > 0 means that it is spacelike and ds2 = 0
means that it is lightlike.

By choosing a coordinate system and its correspond-
ing metric, using equation (12) to obtain the Christoffel
symbols, and setting the desired stepsize λ, it is there-
fore possible to calculate the trajectory of a photon using
equations (10) and (11) in any type of geometry or cur-
vature.

3.1. Verlet algorithm

We based the implementation of the algorithm on the
grmonty code(4) and the velocity Verlet algorithm given
in the descriptive paper:

xαn+1 = xαn + kαn∆λ+
1

2

(
dkα

dλ

)
n

(∆λ)2 (14)

kαn+1,p = kαn +

(
dkα

dλ

)
n

∆λ (15)

(
dkα

dλ

)
n+1

= −Γαµν(xn+1)kµn+1,pk
ν
n+1,p (16)

kαn+1 = kαn +
1

2

((
dkα

dλ

)
n

+

(
dkα

dλ

)
n+1

)
(∆λ) (17)

This algorithm uses these four equations to calculate
the geodesics step by step. We chose to use the Verlet
algorithm because calculating the Christoffel symbols is
computationally expensive and this algorithm only re-
quires them to be calculated once per step. For each
step, the new position and the new directional vector of
the photon are computed with the Verlet algorithm. We
then use these new values as initial conditions for the
next iteration of the loop in the algorithm which will
then give the next step of the photon. With α being the
index of the coordinate for which the calculation is being
performed, this algorithm is therefore executed a total of
four times, one per coordinate, for each step.

In this algorithm, kn+1,p is used as a temporary value
to compute equation (16) until a final value, kn+1, is
calculated in equation (17). kn+1,p and kn+1 are then
compared and step 2 to 4 are repeated until the difference
between the two is below a chosen tolerance.

For the coordinate systems spherical-polar and cylin-
drical, a difficulty arises from the directional vector k.
While it has the simple unit vector definition k2

x + k2
y +

k2
x = 1 in cartesian coordinates, this does not hold in

other systems where x, y, and z are replaced by other co-
ordinates such as r, θ, and φ. For example, for spherical-
polar we have:

(−kt)2 + (kr)2 + r2(kθ)2 + r2 sin2 θ(kφ)2 = 0 (18)

Moreover, the code initializes k′ while the implemented
integration uses k. While this does not matter for kt and
kr, kθ and kφ had to be corrected before being used in
the algorithm with the following relations:

kθ =
kθ ′

r

kφ =
kφ′

r sin θ

(19)

With these corrections, the integration gives the right
results for the calculations of the directional vectors.

4. APPLICATION

4.1. Kerr-Schild coordinates

In order to test our implementation in the Athena++
code, we conducted a comparison with another code,
geokerr (6), which calculates geodesics for photons in the
Kerr metric:

ds2 = −
(

1− 2r

Σ

)
dt2 +

(
4r

Σ

)
dr dt+

(
1 +

2r

Σ

)
dr2

+ Σdθ2 + sin2 θ

[
Σ + a2

(
1 +

2r

Σ

)
sin2 θ

]
dφ2

−
(

4ar sin2 θ

Σ

)
dφ dt− 2a

(
1 +

2r

Σ

)
sin2 θ dφ dr

(20)

The metric components and the Christoffel symbols are
given in Radiation hydrodynamics in Kerr space–time:
equations without coordinate singularity at the event
horizon (Takahashi, R., 2008)(7) in Appenix A.
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Along with the same metric, the Athena++ code was
setup with a uniform grid composed of only one cell
made bigger than the maximum radius the photon could
achieved before escaping. In this cell, the opacity, the
absorption, and the scattering coefficients were set to
0 in order to allow the photons to only be affected by
the gravity of the black hole and therefore follow the
geodesics. This way, the comparison with the geokerr
code was made easier since the results from both codes
would come purely from the computation of the geodesics
using the Kerr metric. We set the black hole to have ra-
dius 2 and be non-rotating.

For the initialization of the photons in Athena++, we
set the initial position to be at r = 3.1, θ = π

2 , and
φ = 0. With 20 photons used in the simulation, the
initial directions were chosen to be kr = cos Φ, kθ = 0,
and kφ = sin Φ with Φ defined as a variable to which

2π
nphoton

is added for every photon initialization, where

nphoton is the number of photons used in the simulation.

Figure 1. Comparison between Athena++ and geokerr with a
black hole of radius of 2rg centered at the origin. The photons
are launched at a radius of 3.1rg with different initial azimuthal
directions kφ. They all have kθ = 0 as part of their initial direction
and therefore stay in the plane θ = π

2
along their trajectories.

Athena++’s output is plotted with black dots while geokerr ’s is
plotted with colored lines. Because they match closely and the
step-size for Athena++ was small for better accuracy, the colored
lines are hidden by the dots.

In order to test the accuracy of our implementation in
Athena++, we ran the same problem on geokerr which
uses an analytic solution for rapid and accurate calcula-
tion of null geodesics in the Kerr metric. The equations of
motion from the Hamilton–Jacobi equation are reduced
directly to Carlson’s elliptic integrals to simplify alge-
braic manipulations and allow all coordinates to be com-
puted semianalytically. In order to compare the outputs
of geokerr and Athena++, we recorded the final position
of each photon in the Athena++ code and used them as
the initial position of the photons in the geokerr code.
Starting at these positions, we took the initial direction
of each photon in geokerr to be the negative value of

the final direction of the photons in the Athena++ code.
The integration was therefore done inward for geokerr.
We then recorded the outputs from geokerr and plot-
ted the results from the two codes on the same plot for
comparison as shown in Figure 1.

Figure 2. Figure 1 at a different scale. The effect of curved space-
time on the photons’ trajectories close to the black hole appear
more clearly in this figure.

Figure 3. Figure 1 at a different scale. The colored lines showing
the output from geokerr are visible since the scale is closer to the
stepsize used in the Athena++ code.

Figures 2 and 3 present zoom-in parts of this plot,
with the most zoom-in one showing the colored lines from
geokerr.

As seen on figure 1, the photons were moved up to
a maximum radius of 40 and a minimum radius of 2
which is the radius of the black hole. The step size for
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Athena++ was chosen to be λ = 10−3 and for geokerr
the number of steps was set to 5000. The convergence
of the two algorithm confirms the accuracy of our imple-
mentation of the geodesics integration in Athena++.

4.2. Spherical-polar coordinates implementation

After verifying the covariant integration in Athena++
by comparing it to geokerr, spherical-polar coordinates
were implemented with their corresponding metric and
Christoffel symbols. The metric is:

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 (21)

and the Christoffel symbols are:

Γrθθ = −r
Γrφφ = −r sin θ sin θ

Γθrθ = Γθθr =
1

r

Γθφφ = − sin θ cos θ

Γφrφ = Γφφr =
1

r

Γφθφ = Γφφθ =
cos θ

sin θ

(22)

with the other elements 0.
For testing purposes, we set the spherical grid to have

4 cells in r, 1 cell in θ, and 1 cell in φ. While θ went from
0 to π and φ went from 0 to 2π, r was set to go from
5 × 10−11 to 50. Athena++ requires the minimal value
of r to be different than 0 and we therefore had to set it
to a very small value. The increment for the cells’ size in
r was 1000, meaning that the last cell was taking much
of the space and the calculation was therefore performed
in only one cell. The requirement on the number of cells
in r comes from the code and could not be set to 1.

We compared the results of the code with the final posi-
tions as calculated from the initial position and direction
using the equation of a straight line in spherical-polar
coordinates. We then obtained the mean errors between
the simple calculation and the outputs of the algorithm
using the following set of equations:

∆x = xc − xm, ∆y = yc − ym, ∆z = zc − zm
∆l =

√
(∆x)2 + (y)2 + (∆z)2

(23)

with xc, yc, and zc the calculated final position coordi-
nates, xm, ym, and zm the final position coordinates inte-
grated using the metric, and ∆l the error. We performed
the calculation using 1000 photons and then averaged the
errors to verify the theoretical increase in accuracy as the
stepsize decreases. We present the results of this test in
Figure 4.

As the step size used for the integration decreases,
the difference between the final positions given by the
two techniques also decreased. This is expected since
the accuracy of the integration gets better as the dis-
tance between two points and their calculated positions
is minimized. With a step size of λ = 10−3, the aver-
age difference obtained is on the order of 10−4, therefore
promising a great precision with smaller step size. Fig-

Figure 4. Mean error between the output position from the inte-
gration using the spherical-polar coordinates metric and the final
position calculated versus the stepsize used.

ure 4 presents the trend for the mean error depending on
the input stepzise.

4.3. Cylindrical coordinates implementation

The last implementation was in cylindrical coordi-
nates. We used the following metric for this coordinate
system:

ds2 = −dt2 + dr2 + r2dφ2 + dz2 (24)

along with these Christoffel symbols:

Γrφφ = −r

Γφrφ = Γφφr =
1

r

(25)

with the other elements 0.
Along with the corresponding Christoffel symbols, we

used this metric to write a similar integration to the pre-
vious two in this new coordinate system.

We used a cylindrical grid with 4 cells in r, and 1 cell
in both φ and z. The azimuth angle φ went from 0 to
2π, z went from 0 to 50, and r from 5×10−11 to 50. The
number of cells in r and its minimal value were again set
to respect the requirements of Athena++.

As for the spherical-polar coordinates case, we verified
the accuracy of the implementation by comparing the
final positions of 1000 photons as calculated by the newly
implemented integration and as given by the equation
of a straight line in cylindrical coordinates, both gotten
when a photon would escape the grid at r = 50, z =
50 or z = 0. We recorded the error between these for
each photon and averaged them, using Equations (23),
to then plot them against the stepsize and thus show
the accuracy improving as the stepsize decreases. This
is shown in Figure 5.

Similar to the spherical-polar case, the accuracy de-
creases as the stepsize increases which is expected. With
an error on the order of 10−4 for a stepsize of 10−3,
the integration promises again great accuracy for smaller
stepizes.
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Figure 5. Mean error between the output position from the inte-
gration using the cylindrical coordinates metric and the final posi-
tion calculated versus the stepsize used.

5. CONCLUSION

We implemented a covariant radiation transfer code in
Athena++ which provides a way to propagate photons
in curved spacetime. Using geodesics, this new code al-
low us to produce mock spectra while taking general rel-
ativity into account and therefore the effects of strong
gravity near the black hole. This new part of the code
which was implemented in Kerr-Schild, spherical-polar,
and cylindrical coordinates gives us the opportunity to
apply the state-of-the-art code which is Athena++ on
astrophysical problems while having a radiation transfer

code which is both frequency dependent and covariant.
We also proved the accuracy of the implementation by
comparing it to simple flat space cases for spherical-polar
and cylindrical coordinates and by comparing the results
for Kerr-Schild to another referenced code, geokerr. The
next step is now for us to test more cases such as, for
example, the redshifting of photons’ energy as they prop-
agate away from the black hole.
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