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Abstract

Deformable shapes play a pivotal role in numerous image analysis tasks, such as im-
age registration for real-time image-guided navigation systems in tumor removal surgery,
image classification to detect neuro-degenerative diseases, and template-based image seg-
mentation for object tracking. In recent years, the advancements in deep learning-based
image analysis have resulted in remarkable performance by providing a universal mecha-
nism for extracting image features in the context of texture, intensity, or simple geometry
features that may be hidden behind raw data. Nevertheless, existing deep learning meth-
ods fail to recognize geometric deformable shape features that can capture complex and
detailed geometric information in images, resulting in a considerable limitation of the im-
age analysis models when the analysis and quantification of geometric shapes are crucial.

Learning and modeling deformable shapes is particularly challenging due to their high-
dimensional and non-linear nature of data, which inevitably cause expensive network
training and inference with high computational complexity. In addition, current related al-
gorithms suffer from time and labor-consuming parameter tuning and appearance change
(i.e., caused by missing data values, corrupted signals, or occurrence of objects). To ad-
dress these issues, the ultimate goal of my dissertation is to develop a deep learning
framework that learns and analyzes efficient and robust representations of shapes cen-
tral to image analysis tasks. This research naturally merges low-dimensional deformable
geometric shape features in various deep learning based image analysis tasks, including
but not limited to image registration, image classification, image segmentation, uncer-
tainty quantification, atlas building, and parameter estimation. The developed framework
has great impact on a variety of real-world clinical applications. For example, it allows
neurosurgeons to identify brain shifts (deformations) caused by multiple factors during
surgery (i.e., gravity, fluid drainage, or changes in intracranial pressure and swelling of
brain tissue), and modify surgical plans in real-time. Such a framework helps clinicians
better understand, interpret, and analyze the image registration results and further enables
precise diagnosis according to the patient’s clinical condition. This research also facil-
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itates more robust clinical diagnostic routines in neuro-degenerative disease prediction,
such as Alzheimer’s disease detection, and post-treatment for patient care.

In particular, I first develop efficient image analysis models based on low-dimensional
shape representations. The outcome of my research speeds up Bayesian uncertainty quan-
tification for image registration, enable fast atlas building with automatic parameter selec-
tion, and allow rapid training data generation for learning-based registration regularization
parameter estimation. I then develop deep neural networks to learn low-dimensional shape
representations through image registration with much lower computational complexity in
training. To further enhance the efficiency of the image analysis models, I further utilize
learned deformable shape representations for population-based image studies by devel-
oping joint image classification models with group mean estimation, also known as at-
las building, which improves model accuracy, robustness, and efficiency. Additionally, I
introduce a deep metamorphic neural network that effectively controls geometric shape
deformation and appearance changes (i.e., caused by tumor resection), leading to precise
image registration with lower model error. My dissertation has significant potential to im-
pact clinical applications, such as automated diagnosis for neuro-degenerative diseases
and image-guided navigation systems for neurosurgery. Overall, my research provides a
theoretical foundation in machine learning and computer vision, facilitating better image
analysis in unmet clinical needs and neuroscience studies.
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Chapter I

Introduction

Shape information is important to the field of image analysis, with applications in various
scientific research fields, such as machine learning, medical imaging, computer vision,
and biology [200, 20, 72, 103, 114, 197]. The representation of geometric shapes is one
of the fundamental features in images and play a pivotal role in a wide range of image
analysis models, including but not limited to image segmentation, recognition [164, 167],
classification [60, 11], registration [180, 177, 203, 206], and retrieval [128, 192, 29]. Vari-
ous geometrical shape representations, including landmarks [16, 23, 40], point clouds [1],
binary segmentation [25, 163], Fourier descriptors [131] and medial axes [132], have
been studied in bountiful literatures. For instance, recent works of learning skeleton-
based point clouds shape representations [82, 196] dynamically animate and reconstruct
3D human shapes from raw image data. Geometric deep learning methods [26, 139] ren-
der and reconstruct images via learning shape representations in the form of analytic
graphs or points. Shape-guided image generation techniques successfully synthesize re-
alistic images while combining shape and appearance representations with different input
queries [53].

The aforementioned shape representations capture simple geometric structure of objects
and have limited ability to characterize fine-detailed geometric shape information pre-
sented in images. Therefore, many important geometric shape features are oftentimes ne-
glected, or underutilized as an implicit knowledge in image analysis tasks. In contrast,
deformation-based shape descriptors (based on elastic deformations or diffeomorphic
flows) focus on highly detailed shape information from images [36, 149]; hence offering
more flexibility in describing changes and variability of shapes with complex structures.
Such deformable shape representations are valuable asset in a wide range of healthcare
systems, such as pathological disease progression monitoring [18, 60], efficient manage-
ment of clinical interventions [106, 179, 198], intraoperative quantitative functional anal-
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ysis [144, 122], and radiation therapy planning [87, 141, 151]. The use of deformable
shapes has also been successful in numerous neuroimaging tasks, for example, a real-
time image-guided neurosurgery navigation to evaluate brain shift [106, 178, 57], and
abnormality detection systems that analyze shape variations of anatomical structures (i.e.,
brain shrinkage or expansion caused by neurodegenerative disease [21, 77, 180, 204]).
Deformation-based shape descriptors can also be applied in other clinical scenarios, in-
cluding irregular placental shape detection [190], cardiac motion estimation via shape
variability analysis [184], and automated cardiac image segmentation with shape pri-
ors [30]. Injecting pre-learned ventricular shape priors into deep neural networks sig-
nificantly improves the performance of cardiac segmentation, providing more accurate
segmentation labels to assess cardiac morphology [30].

Deformable shape representations, despite their significant value, are not fully exploited
in current machine/deep learning paradigms for image analysis. On the other hand, com-
monly used deep learning models often struggle to effectively capture complex and intrin-
sic shape features. The existence of this gap motivates us to explore how incorporating
deformable shape learning into deep learning paradigms can impact performance. Exist-
ing deep learning-based models typically extract and learn image features hidden behind
the raw data through deep neural networks [41, 47, 55], and achieves great performance
in various image analysis tasks, e.g., image classification [71, 13], segmentation [90] and
reconstruction [82]. However, existing approaches lack the ability to learn and quantify
deformable shapes that are central to image analysis tasks [1, 82, 90]. An explicit deep
learning approach for deformable shape learning, which captures most of the detailed and
complex image features, has been missing. This greatly limits the power of deep learning
based models in image analysis where analyzing shapes is important. Learning sufficient
deformable geometric representations enables one to properly estimate the transforma-
tions between images and extract shape variability from population-based data, which
also holds a key to extracting critical diagnostic information and investigating effective
treatments in neuroimaging. In this dissertation, I will focus on merging deformable shape
representation learning into different deep learning-based tasks, including image classifi-
cation, registration, and atlas construction. Particularly, I use diffeomorphic transforma-
tions as desired geometric shape descriptors due to the nice properties of transformations,
including differentiable and bijective mappings with differentiable inverses, and the in-
vertibility of deformation fields [15, 116]. This guarantees the correctness of biological
information of objects, and no artifacts in deformed images.
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1 Problems and Challenges

A major challenge of learning deformable shape representations is the high-dimensional
and non-linear nature of medical image data (e.g., the dimension of a 3D magnetic res-
onance imaging (MRI) scan of a brain is 2563). This results in high computational com-
plexity of deformable shape modeling [15, 161] and inference algorithms [195]. Image
registration is one of the basic concepts to obtain geometric shape descriptors from one
image to another. To improve the efficiency of image registration, state-of-the-arts typ-
ically adopt convolutional neural networks (CNN) based models to extract associated
spatial transformations as mappings for pairwise images or population groups in training
dataset [194, 145, 14, 35, 28]. While the aforementioned deep learning approaches can
rapidly predict the deformation parameters in testing, the training process is slow and
memory intensive due to the high dimensionality of deformation parameters in the image
space.

The second challenge is that existing methods often need labor-consuming manual pa-
rameter tuning since the selection of registration parameters (e.g., smoothness level of
transformations) dramatically affects the quality of the deformable shape descriptor. Op-
timal parameter values can differ significantly across image anatomy of different subjects,
and even small changes can have a large impact on accuracy. Choosing appropriate hyper-
parameter values is therefore a crucial step and difficult task in developing, evaluating, and
deploying image registration-based models. Current models either exhaustively search for
an optimal regularization in the parameter space [81, 170, 150], or treat them as unknown
variables to be estimated from Bayesian models that sample in a high-dimensional trans-
formation space [159, 158, 207]. It inevitably results in expensive computational cost and
leads to a long execution time with high memory consumption.

The third challenge is that traditional image registration algorithms may fail due to the
appearance change caused by missing data issues, i.e., corrupted signals, or brain tumor
resection. This is because the similarity metric of diffeomorphic image registration is
often measured either by comparing image intensities directly or using intensity-based
measures like mutual information or cross-correlation [124]. However, for images with
pathologies (as geometric metamorphosis), assumptions of structural and intensity sim-
ilarity may fail. Previous methods of handling missing data issues are either utilizing
metamorphic image registration [124, 57, 110, 22] or adopting segmentation as indica-
tors to mask out the appearance changes. However, the transformed images still contain
artifacts, which hardly maintain the structural anatomical details.
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2 Dissertation Statements and Contributions

This dissertation outlines a comprehensive framework that utilizes low-dimensional de-

formable geometric shape analysis and learning to improve medical image analysis across

various tasks. The framework has been designed to be highly efficient, robust, and stable,

making it suitable for clinical interventions where tracking deformable shape changes is

crucial for accurate diagnoses and effective treatments. The framework’s ability to ef-

fectively analyze medical images has the potential to significantly enhance the diagnosis

and treatment of medical conditions, ultimately improving patient outcomes.. To achieve
this goal, I developed the following algorithms: i) fast predictive deformable image reg-
istration, reliable registration uncertainty quantification and predictive parameter estima-
tion with much lower computational complexity; ii) efficient and robust population-based
study algorithms such as atlas building and image classification with a better model in-
terpretability; iii) precise metamorphic image registration where images have appearance
change (caused by missing data values, pathologies and geometric object occurrence). To
test this thesis statement, I have made the following contributions:

1. A learning-based predictive image registration model, names as DeepFLASH, is pre-
sented. It substantially speeds up the training, testing and inference of current deep
learning based registration algorithms via low-dimensional Fourier representations.
The learned low-dimensional deformable shape representations enable various post-
registration algorithms, such as fast uncertainty quantification, rapid data generation
for regularization parameter estimation, and hierarchical Bayesian atlas building;

2. A classification model, named as Geo-SIC, which incorporates deformable shapes
learning is presented for population study. Geo-SIC simultaneously learns deformable
shapes from a deformation space and features from image space for an improved per-
formance of image classification. Accessing underlying geometric features also gains
increased model interpretability;

3. A predictive model, named as MetaMorph, for metamorphic registration of images
with appearance changes (i.e., caused by brain tumors) is presented. I develop a piece-
wise regularization on the tangent space of diffeomorphic transformations via learned
segmentation maps of abnormal regions. The geometric transformation and appear-
ance changes are treated as joint tasks that are mutually beneficial. MetaMorph has
great potential in various image-guided clinical interventions, e.g., real-time image-
guided navigation systems for tumor removal surgery.
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3 Outline

The remainder of this dissertation is organized as follows:

Chapter II introduces the background of deformable shape representations. The first sec-
tion briefly overviews common models to derive geometric shapes, including basic shape
representations (skeleton-based, point cloud, medial axis, Fourier basis and segmenta-
tion/landmarks) and deformation-based methods, e.g., deriving geometric features from
elastic/diffeomorphic image registration. The second section describes the concepts for
statistical shape modeling such as atlas-based geometric shape representation.

Chapter III presents a comprehensive analysis of low-dimensional shape representations
in multiple medical image analysis tasks, such as image registration, uncertainty quan-
tification, parameter estimation and atlas building. The first section introduces a low-
dimensional reduced-order image registration algorithm. The second section presents a
low-dimensional Bayesian model for registration uncertainty quantification. The third
section shows a hierarchical Bayesian model with automatic best parameter selection via
low-dimensional shape characterizations in atlas building.

Chapter IV presents the deep neural networks that I developed by low-dimensional geo-
metric deformable shape representations. The first section presents an efficient deep neu-
ral network, DeepFLASH, which are characterized by compact deformable shape repre-
sentations for diffeomorphic image registration. It fundamentally lowers the model com-
putational complexity of neural networks, thus resulting in fast model training, testing
inference. The second section presents a classification network, Geo-SIC, which incor-
porates deformable geometric shape learning into deep image classifiers with boosted
performance guaranteed. The third section presents an efficient predictive approach for
regularization parameter estimation that automatically produces regularization parameters
via deep neural networks. The developed low-dimensional Bayesian framework speeds up
the training data generation plus the parameter estimation while maintaining comparable
registration results.

Chapter V presents a accurate and robust predictive image registration model, Meta-
Morph, for metamorphic registration of images with appearance changes (i.e., caused
by brain tumors). A newly-derived piecewise regularization on the tangent space of dif-
feomorphic transformations is developed via learned segmentation maps of abnormal re-
gions. The geometric transformation and appearance changes are treated as joint learning
tasks that are mutually beneficial. MetaMorph has great potential in various image-guided
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clinical interventions, e.g., real-time image-guided navigation systems for tumor removal
surgery.

Chapter VI concludes the dissertation with a general discussion and future work.



Chapter II

Background

1 Geometric Shape Representations

In this chapter, I briefly review different types of geometric shape representations. I first
introduce commonly-used basic geometric shape representations, including medial axis,
segmentation and landmark based shape representations, point cloud and Fourier shape
descriptors. I then introduce deformable shape representations, including shape repre-
sentation modeling based on elastic, diffeomorphic deformations. I further review the
concepts of statistical shape representation modeling.

Medial axis. The medial axis ( also referred to as the ”topological skeleton”) is a math-
ematical concept, proposed by Blum [19], used to describe the center line or skeleton of
a shape. It is a set of points in a plane or 3D space that are equidistant to two or more
boundaries or edges of a shape. For instance, in a two-dimensional geometric shape, such
as a circle or a square, the medial axis is characterized as a single line that runs down
the middle of the shape. However, tiny change to an object‘‘s boundary can cause a large
change in the original medial axis algorithm. To improve the stability of medial axis trans-
form, Katz et. al [88] further propose a more stable and robust method for instrumenting
the Blum medial axis transform via performing perceptual part-decomposition of objects.
This method considers objects to be a collection of solid parts and a set of connections
among those parts. The medial axis based shape representations are considered as basic
shape descriptors that can be used for path planning, fundamental shape analysis, single
object recognition, and other areas where understanding the geometry and structure of
shapes is important [132].

Segmentation and landmarks. Segmentations and landmarks based shape representation
are methods for describing the shape of an object or structure by identifying and charac-
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terizing specific points, known as landmarks, on its surface or boundaries [25, 163]. These
landmarks are typically chosen based on their anatomical or functional significance and
are used as reference points for describing the shape and spatial relationships of the object.
Landmark-based shape representation has many applications in various fields, including
medical imaging, biology, anthropology, and computer graphics. For example, In anthro-
pology, landmarks are important to study the morphology of a certain structure, such as
leaves, bones and fossils [171]. In medical imaging, landmarks oftentimes are used to
analyze the shape and structure of organs and tissues and to track changes over time in
response to disease or treatment, e.g., Alzheimer‘‘s Disease diagnosis using landmark-
based features from longitudinal structural MRIs [99].

Point clouds. A point cloud is a collection of points in a 3D coordinate system that rep-
resent the surface of an object or a scene. Point clouds are used as a way to represent
the shape of an object without explicitly modeling its surface geometry [97]. One way to
represent a shape using point clouds is to sample points uniformly on its surface, which is
called surface reconstruction. Another way is to use depth sensors or Light Detection and
Ranging (LiDAR) to capture the 3D positions of points on the object’s surface [48]. These
points can then be organized into a point cloud, which can be used for shape analysis and
processing. Point cloud shape representation has shown to be a promising approach for
medical image analysis, especially in segmentation tasks. In medical imaging, segmenta-
tion is crucial for identifying different anatomical structures in an image, such as organs
or tumors, which can assist in diagnosis, treatment planning, and image-guided interven-
tions. Point cloud segmentation involves the labeling of each point in the point cloud as
belonging to a particular anatomical structure or background. One common approach is
to use clustering techniques [155], which group together similar points based on their
spatial and geometric properties. Another approach is graph-cut [152], which assigns la-
bels to the points by minimizing an energy function that models the cost of assigning
each point to a particular structure. Deep learning-based methods, such as convolutional
neural networks (CNNs), have also been applied to point cloud segmentation tasks with
impressive results. However, point clouds can be noisy and sparse, which can make shape
analysis and processing challenging. Various techniques such as point cloud denoising,
upsampling, and feature extraction have been developed to address these challenges [52].

Fourier descriptors. Fourier descriptors are a popular set of shape descriptors obtained
from the Fourier transformation of a shape’s boundary or contour [174]. They represent
the shape globally, capturing its geometric properties such as curvature, size, and orienta-
tion. Unlike other local descriptions of the contour such as polylines or splines, Fourier de-
scriptors provide a holistic representation where each descriptor component corresponds
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to a specific shape feature. Thus, modifying any component of the descriptor will af-
fect the entire shape, making Fourier descriptors particularly useful for capturing coarse
shape properties with just a few numeric values. One advantage of Fourier descriptors
is their ability to capture shape information at multiple scales [93]. Adding or removing
descriptor components can increase or decrease the level of detail captured in the repre-
sentation, making Fourier descriptors adaptable to various tasks. By using Fourier coeffi-
cients instead of raw curvature values [51], the descriptors become invariant to rotation,
translation, and scale. This is because rotation, translation, and scale operations do not
change the frequency content of the shape, but only its position and size in space. Since
the Fourier coefficients capture the frequency content of the shape, they remain the same
regardless of the object’s orientation, position, or size. Fourier descriptors can be used to
compare and identify different shapes based on their Fourier coefficients, enabling appli-
cations such as shape recognition, classification, object retrieval and tracking, as well as
robotics and automation for object manipulation and grasping.

1.1 Deformable Shape Representations via Image Registration

As addressed in Chapter I, aforementioned shape representations have limit ability to cap-
ture complex shape structures, therefore we introduce deformable shape modeling in this
section. Deformable shapes can be derived from deformable image registration, which is
a computational technique to align or match two or more images. The goal of deformable
image registration is to find a deformation field (deformable shape descriptor) that maps
each voxel in one image to its corresponding voxel in the other image, taking into account
any differences in position, orientation, or shape between the images.

Let S be the source image and T be the target image defined on a d-dimensional torus
domain Γ = Rd/Zd (S(x), T (x) : Γ → R). The optimization function for deformable
image registration is,

E(ϕ) = Dist[S ◦ ϕopt, T ] + Reg[ϕ], (1)

where ϕopt denotes the optimal deformation field. The distance function Dist(·, ·) mea-
sures the image dissimilarity between the source and the deformed image. Commonly
used distance functions include sum-of-squared difference of image intensities [15], nor-
malized cross correlation [9], and mutual information [185]. The regularization term
Reg(·) is a constraint that enforces the spatial smoothness of transformations. Various
algorithms with different regularizations exist for calculating the deformation field, in-
cluding optical flow, Demons algorithm, and B-spline-based registration.
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1.1.1 Deformable Shape Representations via Elastic Deformation Elastic image
registration formula adopts a regularity term that directly constrains on deformation fields
(or displacement field) to enforce the smoothness of transformations,

Reg(ϕ) =

∫
Ω

∥ϕ∥2 dΩ. (2)

The gradient of optical flow is typically computed using partial derivatives of the image
intensity with respect to different directions. The regularization results in Laplacian terms,
which has the smoothing effect while searching for the optimal transformation field[95].

1.1.2 Deformable Shape Representations with Diffeomorphisms In many applica-
tions, it is natural to require the deformation field to be a diffeomorphism, i.e., a differen-
tiable, bijective mapping with a differentiable inverse. Shape representations in the space
of diffeomorphic transformations highlight a set of desirable features: (i) they capture
large geometric variations within image groups; (ii) the topology of objects in the image
remains intact; and (iii) no non-differentiable artifacts, such as creases or sharp corners,
are introduced. Moreover, a theoretical framework of Large Deformation Diffeomorphic
Metric Mapping (LDDMM) defines a metric in the space of diffeomorphic transforma-
tions that in turn induces a distance metric on the shape space [15].

Given an open and bounded d-dimensional domain Ω ⊂ Rd, we use Diff(Ω) to denote
a space of diffeomorphisms (i.e., a one-to-one smooth and invertible smooth transfor-
mation) and its tangent space V = TDiff(Ω). The LDDMM algorithm [15] provides a
distance metric in the deformation-based shape space, which is used as a regularization of
atlas building in Eq (1). Such a distance metric is formulated as an integral of the Sobolev
norm of the time-dependent velocity field vn(t) ∈ V (t ∈ [0, 1]) in the tangent space, i.e.,

Reg(ϕn) =

∫ 1

0

(Lvn(t), vn(t)) dt, with
dϕ−1

n (t)

dt
= −Dϕ−1

n (t) · vn(t), (3)

where L : V → V ∗ is a symmetric, positive-definite differential operator that maps a
tangent vector v(t) ∈ V into its dual space as a momentum vector m(t) ∈ V ∗. We
typically write m(t) = Lv(t), or v(t) = Km(t), with K being an inverse operator of L.
In this paper, we adopt a commonly used Laplacian operator L = (−α∆ + Id)3, where
α is a weighting parameter that controls the smoothness of transformation fields and Id
is an identity matrix. The (·, ·) is a dual pairing, which is similar to an inner product
between vectors. The operator D denotes a Jacobian matrix and · represents an element-
wise matrix multiplication.

According to a well known geodesic shooting algorithm [173], the minimum of Eq (3) is
uniquely determined by solving a Euler-Poincaré differential equation (EPDiff) [5, 116]
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with a given initial condition. This nicely proves that the deformation-based shape de-
scriptor ϕn can be fully characterized by an initial velocity field vn(0), which lies in the
tangent space of diffeomorphisms.

∂vt
∂t

= −K
[
(Dvt)

T ·mt +Dmt · vt +mt · div vt
]
, (4)

A recent work has shown that the velocity fields generated by EPDiff Eq (4) can be effi-
ciently captured via a low-dimensional representation in Fourier space with bandlimited
signals [203, 206, 204]. The key idea behind is that the velocity fields do not develop high
frequencies and only a small amount of low frequencies contributes to the computation of
generating deformation fields (as shown in Fig. 1). Therefore, we are able to capture the
deformations in a bandlimited space as accurately as the original space.

0

128

0

128

128 128

Fig. 1: Left to right: an example of 2D velocity field visualized in image space vs. Fourier space. The white

dot centered in middle displays centered low frequencies.

∂ṽn(t)

∂t
= −K̃

[
(D̃ṽn(t))T ⋆ L̃ṽn(t) + ∇̃ · (L̃ṽn(t)⊗ ṽn(t))

]
, (5)

where ⋆ is the truncated matrix-vector field auto-correlation. Here K̃ is an inverse operator
of L̃, which is the Fourier transform of a Laplacian operator L. The operator D̃ represents
the Fourier frequencies of a Jacobian matrix with central difference approximation, and
∗ is a circular convolution with zero padding to avoid aliasing 1. The operator ∇̃· is the
discrete divergence of a vector field, and ⊗ represents a tensor product between Fourier
frequencies.

1 To prevent the domain from growing infinity, we truncate the output of the convolution in each dimension to a

suitable finite set.
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2 Statistics of Diffeomorphic Shapes

This section briefly reviews the concept of atlas building [85], which is commonly used
to derive deformation-based shape representations from images. With the underlying as-
sumption that the geometric information in the deformations conveys a shape, descriptors
in this class arise naturally by matching a template to an input image with smoothness
constraints on the deformation field.

Given a number ofN images {I1, · · · , IN}, the problem of atlas building is to find a mean
or template image I and deformation fields ϕ1, · · · , ϕN that minimize the energy function

E(I, ϕn) =
N∑
n=1

1

σ2
Dist[I ◦ ϕ−1

n , In] + Reg(ϕn), (6)

where σ2 is a noise variance and ◦ denotes an interpolation operator that deforms image I
with an estimated transformation ϕn. The Dist(·, ·) is a distance function that measures the
dissimilarity between images, i.e., sum-of-squared differences [15], normalized cross cor-
relation [9], and mutual information [185]. The Reg(·) is a regularization that guarantees
the smoothness of transformations.

2.1 Atlas-based Geometric Shape Representations

We are now ready to optimize the problem of atlas building ( Eq (6)) with reduced com-
putational complexity in a low-dimensional bandlimited space as

E(I, ϕn) =
N∑
n=1

1

σ2
Dist[I ◦ ϕ−1

n , In] + (Lṽn(0), ṽn(0)), s.t. Eq (3)& Eq (5). (7)

The deformation ϕ−1
n corresponds to ϕ̃−1

n in Fourier space via the Fourier transform
F(ϕ−1

n ) = ϕ̃−1
n , or its inverse ϕ−1

n = F−1(ϕ̃−1
n ). Note that we will drop the time index t,

i.e., ṽn(0)
∆
= ṽn, for simplified notations in next chapters.



Chapter III

Low-dimensional Geometric Deformable Shape

Analysis

In this chapter, an extensive analysis of low-dimensional shape representations is provided
on different medical image analysis tasks, including image registration, uncertainty quan-
tification, regularization parameter estimation and atlas building. The first section Sec. 1
of this chapter presents a reduced-order image registration algorithm that operates in low-
dimensional space that are parameterized by orthogonal basis. The second section Sec. 2
presents a low-dimensional Bayesian model that can be used for registration uncertainty
quantification, which efficiently offers a probabilistic confidence map on top of regis-
tration solution. The third section Sec. 3 demonstrates the use of hierarchical Bayesian
models for atlas building, where low-dimensional shape characterizations are employed
to automatically select the best regularization parameters.

1 Data-Driven Model Order Reduction for

Diffeomorphic Image Registration

1.1 Related Work

Diffeomorphic image registration has been successfully applied in the field of medical
image analysis, as it maximally maintains the biological correctness of deformation fields
in terms of object topology preservation. Examples of applications include alignment of
functional data to a reference coordinate system [36, 207], anatomical comparison across
individuals [169, 137], and atlas-based image segmentation [7, 86]. The problem of im-
age registration is often formulated as constrained optimization over the transformation
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that well aligns a source image and a target image. A plethora of transformation models
to today fit into various categories of parameterizations, e.g., stationary velocity fields
that remain constant over time [6], and time-varying velocity fields in the framework of
LDDMM [15]. We focus on the latter as it supports a distance metric in the space of dif-
feomorphisms that is critical for deformation-based statistical shape analysis, such as least
squares mean estimator [86], geodesic regression [125, 162], anatomical shape variability
quantification [137], and groupwise geometrical shape comparison [169].

Despite the aforementioned advantages, one major challenge that hinders the widespread
use of LDDMM is its high computational cost and large memory footprint [37, 15, 173].
The algorithm inference typically requires costly optimization, particularly on solving a
full-scale regularization term defined on a dense image grid (e.g., a brain MRI with size of
2563). Prior knowledge in the form of regularization is used to enforce the smoothness of
transformation fields, also known as geodesic constraints in the space of diffeomorphisms,
by solving a set of high-dimensional PDEs [116, 173]. This makes iterative optimization
approaches, such as gradient descent [15], BFGS [134], or the Gauss-Newton method [8],
computationally challenging. While improved computational capabilities have led to a
substantial run-time reduction, such solution of a single pairwise image registration still
takes tens of minutes to finish on dense 3D image grids [162].

We aim at an approximate inference method that significantly lowers the computational
complexity with little to no impact on the alignment accuracy. Our solution is motivated
by the observation that smooth vector fields in the tangent space of diffeomorphisms can
be characterized by a low-dimensional geometric descriptor, including a finite set of con-
trol points [50], or Fourier basis functions representing low frequencies [203, 206]. As
a consequence, we hypothesize that the solution to high-dimensional PDE systems can
be effectively approximated in a subspace with much lower dimensions. We develop a
data-driven model reduction algorithm that constructs a low-dimensional subspace to ap-
proximate the original high-dimensional dynamic system for diffeomorphic image regis-
tration. We employ proper orthogonal decomposition (POD), a widely used technique for
PDE systems, in which the approximating subspace is obtained from a discretized full-
order model at selected time instances. A reduced-order model can then be constructed
through Galerkin projection methods [39], where the PDEs are projected onto a compact
set of POD eigen-functions.

To the best of our knowledge, this method has not yet been applied to large systems
of PDEs such as the one employed in diffeomorphic registration. While we focus on the
context of LDDMM, the theoretical tools developed in this work are broadly applicable to
all PDE-constrained diffeomorphic registration models. To evaluate the proposed method,
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Fig. 2: An example eigenvalue plot of velocity fields generated from 2D synthetic data.

we perform image registration of real 3D MR images and show that the accuracy of our
estimated results is comparable to the state of the art, while with drastically lower runtime
and memory consumption. We also demonstrate this method in the context of brain atlas
building (mean template estimation) for efficient population studies.

1.2 Method: Model Order Reduction (ROM) For Diffeomorphic

Image Registration

We develop a POD-based model order reduction algorithm, particularly for the registra-
tion regularization term governed by high-dimensional PDEs (EPDiff), to approximate a
subspace via a given set of velocity fields in an optimal least-square sense. We then derive
a Galerkin projection (orthogonal projection) of EPDiff equations onto the subspace to
obtain a reduced-order model.

1.2.1 Low-dimensional Subspace of Velocity Fields Given a set of full-dimensional
velocity fields {vt} ∈ Vq, e.g., q = 3 × 1283 for a 3D discretized image grid with
the size of 1283, we are seeking an approximated subspace U r = span{u1, · · · ,ur} ⊂
Vq (r ≪ q), where ui is the basis, to best characterize our data. A projection from such
low-dimensional subspace to the original space can be effectively performed by vt = Uαααt,
where Uq×r = [u1, · · · ,ur] and αt is a r-dimensional vector representing factor coeffi-
cients. Here, we require the basis vectors to be orthonormal, i.e., UTU = I. The inverse
projection can thus be written as αααt = UTvt. Our objective is to minimize the projection
error defined in the tangent space of diffeomorphisms

argmin
U

∫
(L(vt − Uαααt), vt − Uαααt) dt. (8)
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where L is the discrete operator of L defined in Eq (3). The minimization problem of
Eq (8), is the classic problem known as Karhunen-Loève decomposition or principal com-
ponent analysis, and holds an equivalent solution to the following eigen decomposition
problem of a covariance matrix Cq×q [123, 154],

Cui = λiui, with C =

∫
L(vt − v̄)(vt − v̄)Tdt,

where v̄ =
∫

vtdt is the mean field, and the basis ui, i ∈ {1, · · · , r} corresponds to the i-th
eigenvector of C with associated eigenvalue λi. In practice, the covariance is empirically
computed by a finite set ofM observations (snapshots) over the full-scale dynamic system
of vt, i.e., C ≈ 1

M

∑M
t=1 L(vt − v̄)(vt − v̄)T .

Due to a key fact that the spectrum of eigenvalues decays incredibly fast (as shown in
Fig. 2), we propose to use an optimal set of eigen-functions to form the projected subspace
of velocity fields. An explicit way thus to formulate the projection error in Eq (8) is

q∑
i=r+1

λi, with λ1 > · · · > λr · · · > λq.

This closed-form solution provides an elegant way to measure the projection loss e =

1− (
∑r

i=1 λi/
∑q

i=1 λi), where r is typically chosen such as e < 0.01 [66, 123].

1.2.2 Reduced-order Regularization via Galerkin Projection As introduced in the
previous section, we developed a method to estimate a low-dimensional subspace of ve-
locity fields that uniquely determines the geodesics of diffeomorphisms. We are now
ready to construct a reduced-order model of image registration, subject to complex reg-
ularizations governed by high-dimensional PDEs (i.e., EPDiff). This procedure is known
as Galerkin projection and has been widely used to reduce the high computational com-
plexity of PDEs, or ODEs [75, 66, 123].

Consider the EPDiff in Eq (4), we characterize a velocity field vt by projecting it onto a
finite-dimensional subspace U r with much compact basis {u1, · · · ,ur}. To simplify the
notation, we drop the time index t of velocity fields in remaining sections. A discretized
formulation of EPDiff equation in terms of matrix multiplication is

∂v
∂t

= −K
(
diag(Lv)DTv + diag(v)D(Lv) + diag(Lv)div v

)
,

= −K
q∑
i=1

(
diag(li)viDTv + viDLv + diag(li)vi div v

)
,

= −K
q∑
i=1

(
diag(li)DT + DL + diag(li)div

)
viv, (9)
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where v is a q-dimensional vector, and diag(·) converts a vector to a diagonal matrix. The
matrices Lq×q, Kq×q, Dq×q, and divq×q denote discrete analogs of the differential operator
L with its inverse K, Jacobian matrix D, and divergence div obtained by finite difference
schemes respectively. Here, li is the i-th column of the matrix L and vi is the i-th element
of vector v.

By defining a composite operator Aq×q
i ≜ K(diag(li)DT + DL + diag(li)div), we write

Eq (9) as
∂v
∂t

=

q∑
i=1

Aiviv. (10)

Next, we derive a reduced-order model of EPDiff via Galerkin projection by plugging
v = Uq×rααα into Eq (10). We then have

∂Uααα
∂t

=

q∑
i=1

Ai(Uααα)iUααα,

∂ααα

∂t
= UT

q∑
i=1

Ai(
r∑
j=1

Uijαj)Uααα =
r∑
j=1

q∑
i=1

UTAiUUijαjααα ≜
r∑
j=1

Ãjαjααα, (11)

where Uij the element of U in the i-th row and j-th column. Here, we define Ã
r×r
j =∑q

i=1 UTAiUUij as a reduced-order model operator ofAj . It is worthy to mention that the
computation of Ãi is a one-time cost accomplished offline. No further update is needed
once a proper subspace is sought. Solution to this reduced-order model can be found
by employing commonly used temporal differential schemes, e.g., Euler or Runge-Kutta
Method, with an initial condition ααα0 = UTv0.

1.3 ROM for Diffeomorphic Image Registration

In this section, we present a reduced-order model of LDDMM algorithm with geodesic
shooting for diffeomorphic image registration. We run gradient descent on a projected
initial velocity, represented by the loading coefficient ααα0, entirely in a low-dimensional
subspace. A geodesic path consequently generates a flow of diffeomorphisms by Eq (3)
after constructing the time-dependent velocity fields back in its original space using vt =
Uαααt.

The redefined energy function of LDDMM in Eq (3) with sum-of-squared dissimilarity
between images is

E(ααα0) =
1

2σ2
∥S ◦ ψ1 − T∥22 + (Lααα0,ααα0), s.t. Eq (11). (12)
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Here, we adopt a commonly used Laplacian operator L = (−β∆ + I)c, where β is a
positive weight parameter, c controls the level of smoothness, and I is an identity matrix.

Analogous to solving the optimal control problems in [203], we compute the gradient
term by using a forward-backward sweep scheme. Below are the general steps for gradient
computation (please refer to Alg. 1 for more details):

(i) Compute the gradient ∇ααα1E of the energy Eq (12) at t = 1 by integrating both the
diffeomorphism ψt and the projected velocity field αt forward in time, i.e.,

∇ααα1E = K
(

1

σ2
(S ◦ ψ1 − T ) · ∇(S ◦ ψ1)

)
. (13)

(ii) Bring the gradient ∇ααα1E back to t = 0. We obtain ∇ααα0E by integrating reduced adjoint
Jacobi field equations [27] backward in time as

dα̂

dt
= −ad†

αĥ,
dĥ

dt
= −α̂− adαĥ+ ad†

ĥ
α, (14)

where ad† is an adjoint operator and ĥ, α̂ ∈ V are introduced adjoint variables with
an initial condition ĥ = 0, α̂ = ∇ααα1E at t = 1.

Algorithm 1 Optimization of Reduced order model for diffeomorphic image registration
Input: source image S, target image T

/* Online optimization */

1 Initialize ααα0 = 0 repeat

/* Forward shooting of ααα0 */

2 forward integrate the reduced-order model of EPDiff equation Eq (11) to generate {αααt} at discrete time points

/* Compute the diffeomorphic transformations ψt */

3 integrate the transformation fields ψ by using Eq (3) after constructing velocity fields back to the original space via

vt = UTαααt /* Compute gradient at time point t = 1 */

4 compute the gradient∇ααα1E by Eq (13) /* Propagate gradient back to time point t = 0 */

5 integrate the reduced adjoint Jacobi field equations Eq (14) backward in time to obtain∇ααα0E.

Update ααα0 ← ααα0 − ε∇ααα0E, where ε is the step size

6 until convergence;

1.4 Experimental Evaluation

To demonstrate the effectiveness of the proposed model, we compare its performance
with the state-of-the-art vector momentum LDDMM [162] in applications of pairwise
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image registration and atlas building. For fair comparison, we use β = 3, c = 6 for the
L operator, and σ = 0.01 with 10 time-steps for Euler integration across all baseline
algorithms.

Data. We applied the algorithm to 3D brain MRI scans from a public released resource
Open Access Series of Imaging Studies (OASIS) for Alzheimer’s disease [56]. The data
includes fifty healthy subjects as well as disease, aged 60 to 96. To better evaluate the
estimated transformations, we employed another fifty 3D brain MRI scans with manual
segmentations from Alzheimer’s Disease Neuroimaging Initiative(ADNI) [80]. All MRIs
are of dimension 128 × 128 × 128 with the voxel size of 1.25mm3. The images un-
derwent downsampling, skull-stripping, intensity normalization, bias field correction and
co-registration with affine transformation.

Experiments. We first tested our algorithm for pairwise image registration at different
levels of projected dimension r = 43, 83, 123, 203 and compared the total energy for-
mulated in Eq (12). In order to find an optimal basis, we ran parallel programs of the
full-scale EPDiff equation in Eq (4) and generated a collection of snapshots to perform
POD effectively. Since the learning process of basis functions were conducted offline
with one-time cost for all experiments, we only focused on the exact runtime, memory
consumption, and convergence rate of our model after the fact.

We validated registration results by examining the accuracy of propagated delineations for
cortex (Cor), caudate (Caud), and corpus collusum (CC). After aligning all volumes to a
reference image, we transformed the manual segmentation from the reference to other
volumes by using the estimated deformations. We evaluated dice similarity coefficient
(volume overlap) between the propagated segmentation and the manual segmentation for
each structure.

We also ran both our method and the baseline algorithm to build an atlas from a set of 3D
brain MRIs. We initialized the template image as an average of image intensities, and set
the projected dimension as r = 203 as that was shown to be optimal in our eigen plots.
In this experiment, we used a message passing interface (MPI) parallel programming
implementation for all methods, and distributed data on four processors in total.

Results. Fig. 3 reports the total energy in formulation Eq (12) averaged over 10 random
selected pairs of test images for different values of projected dimensions. Our method
arrives at the same solution at r = 123 and higher, which indicates that the estimated
subspace has fairly recovered the result of full-scale registration algorithms. Fig. 3 also
provides runtime and memory consumption across all three methods, including the base-
line algorithm vector momentum LDDMM. Our algorithm has substantially lower com-
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putational cost than vector momentum LDDMM performed in a full-dimensional space.

Fig. 3: Left: average total energy for different values of projected dimensions r = 43, 83, 123, 163, 203.

Right: exact runtime and memory consumption for all methods.

Fig. 20 reports segmentation volume overlap on different brain structures, estimated from
both our method and the baseline algorithm. It show that our algorithm is able to achieve
comparable results, while offering significant improvements in computational efficiency.
The right panel of Fig. 20 illustrates results for an example case from the study. We ob-
serve that the delineations achieved by transferring manual segmentations from the refer-
ence frame to the coordinate system of the target frame align fairly well with the manual
segmentations. The left panel of Fig. 5 shows the axial and coronal slices from 12 of the

Fig. 4: Left: volume overlap between manual segmentations and propagated segmentations of three im-

portant regions cortex (Cor), caudate (Caud), and corpus collusum (CC); Middle: example ground truth

segmentation; Right: propagated segmentation with three structures obtained by our method. 2D slices are

shown for visualization only, all computations are carried out fully in 3D.
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selected 3D MRI dataset. The right panel demonstrates the atlas image estimated by our
algorithm, followed by the atlas estimated by vector momenta LDDMM. The difference
image between the two atlas results shows that our algorithm generated a very similar atlas
to vector momenta LDDMM, but at a fraction of the time and memory cost (as illustrated
on the right bottom panel of Fig. 5).
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Fig. 5: Left: axial view and coronal view of twelve example brain MRIs selected from dataset. Right top:

atlas images estimated by our method and vector momentum LDDMM with difference map shown by side.

Right bottom: a comparison of exact runtime and memory consumption.

Fig. 6 shows the eigenvalue spectrum and convergence plot for both image registration
(top) and atlas building (bottom). It is clear to see that our method conducted in a low-
dimensional space is able to arrive at the same solution as the full dimensional scenario.
We outperform the baseline algorithm vector momentum LDDMM, i.e., lower energy at
the optimal solution.

1.5 Conclusion

In this section, I presented a data-driven model reduction algorithm for diffeomorphic
image registration in the context of LDDMM with geodesic shooting. Our method is
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Fig. 6: Top to bottom: results of pairwise image registration vs. atlas building. Left to right: eigenvalue

spectrum of velocity fields vs. total energy with an optimal projected dimension, a full dimension of our

method, and vector momemtum LDDMM.

the first to simulate the high-dimensional dynamic system of diffeomorphisms in an ap-
proximated subspace via proper orthogonal decomposition and Galerkin projection. This
approach substantially reduces the computational cost of diffeomorphic registration algo-
rithms governed by high-dimensional PDEs, while preserving comparative accuracy. The
theoretical tools developed in this work are broadly applicable to all PDE-constrained
diffeomorphic registration models with gradient-based optimization.

2 Low-dimensional Bayesian Registration Uncertainty

Quantification

2.1 Related Work

As addressed in Chapter I, diffeomorphic Image registration is a fundamental tool in im-
age analysis as it provides one-to-one smooth and invertible smooth spatial correspon-
dences (also known as diffeomorphisms) between pairwise images. Examples of appli-
cations include alignment of functional data to a reference coordinate system [37, 36],
anatomical comparisons across individuals [201, 202], and atlas-based image segmenta-
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tion [7, 86]. In general, image registration is an ill-posed problem since the image data
are usually contaminated by unknown noise. Therefore, developing efficient measures
to quantify the registration uncertainty or error is critical to fair assessments on estimated
transformations, as well as subsequent improvement on the accuracy of predictive models.
This also forms the basis for model-assisted decision making, for example, image-guided
navigation system for neurosurgery [142, 106]. An efficient uncertainty quantification can
provide important information on brain shifts (deformations) for neurosurgeons to iden-
tify residual tumor tissues during surgery; hence leading to a significant increase in the
extent of tumor removal while lowering the risk of collateral tissue damage.

Existing methods have been investigated to estimate the uncertainty by having a probabil-
ity distribution over the latent space of transformation parameters either in a small or large
deformation setting [143, 183, 105]. These approaches formulate Bayesian image regis-
tration as an image matching likelihood term regularized by a prior that guarantees the
smoothness of deformation fields. A posterior distribution is then generated as a measure
of the registration uncertainty estimation. Due to the fact that such posterior distributions
do not have closed-form formulations, stochastic and sampling methods typically have
been employed [94, 96, 142]. This makes the entire inference extremely challenging on
a dense image grid (e.g., a 3D brain MRI with the size of 1283). Large computational re-
sources and efforts are required to sample over a high-dimensional space with extremely
slow convergence. Also, none of the aforementioned algorithms is able to compute a full
posterior covariance. These disadvantages dramatically decrease the model usability in
important applications that require computational efficiency.

In this section, I propose an efficient registration uncertainty quantification model that
employs a low-dimensional representation of diffeomorphic transformations [203, 206].
Based on the key fact that the tangent space of diffeomorphisms do not develop high fre-
quencies, we develop a Bayesian registration framework entirely in a bandlimited space
with low frequencies well preserved. A posterior distribution of transformation fields is
carefully designed in a truncated frequency domain, where all diffeomorphic properties
remain valid. Similar to [195], we derive a Laplace approximation of the log-posterior
distribution at an optimal solution to further avoid intensive computation cost of sampling
methods. More specifically, we assume a complex Gaussian distribution at the mode of
the posterior, with its covariance estimated by second-order information to describe un-
certainties in the registration model. This is effectively done by computing an inverse
Hessian of the log-posterior specifically defined in a low-dimensional bandlimited space.
Our model dramatically reduces the computational complexity of approximating posterior
marginals in the space of diffeomorphisms, which makes registration uncertainty analysis
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tractable in time. In practical, the efficiency of our method strengthens its feasibility in
prospective clinical applications under a tight time constraint. This seection includes (i)
in-depth derivations of the Hessian computation and inference procedure provided; and
(ii) comprehensive experiments to thoroughly validate the method included. We run tests
on both 2D synthetic data and real 3D brain MRI scans from OASIS dataset [113]. We
then compare estimated results with the state-of-the-art registration uncertainty quantifi-
cation method in the full image space [195]. Experimental results show that our method
is significantly faster than the baseline algorithm, while producing comparable results.

The rest of this section is structured as follows. Sec. 2.2 introduces our developed Bayesian
model with Sec. 2.3 presenting the inference. Sec. 2.4 presents a detailed step-by-step
derivation for first and second order derivative computation. Sec. 2.5 demonstrates our
experiments with detailed discussions.

2.2 Method: Uncertainty Quantification Via Low-dimensional

Geometric Deformations

We introduce a low-dimensional Bayesian model of diffeomorphic image registration rep-
resented in the bandlimited velocity space Ṽ , with registration uncertainty explicitly en-
coded as latent variables of the model.

Assuming independent and identically distributed (i.i.d.) Gaussian noise on image inten-
sities, we obtain the likelihood

p(T |S, σ2) =
1

(
√
2πσ2)M

exp

(
− 1

2σ2
||S ◦ ψ1 − T ||22

)
, (15)

where σ2 is the noise variance and M is the number of image voxels. The deformation ψ1

corresponds to ψ̃1 in Fourier space via the Fourier transform F(ψ1) = ψ̃1, or its inverse
ψ1 = F(ψ̃1).

We define a prior on the initial velocity field ṽ0 to be a complex multivariate Gaussian
distribution that ensures the smoothness of the geodesic path, i.e.,

p(ṽ0) =
1

(2π)
Md
2 |L̃−1| 12

exp

(
−1

2
(L̃ṽ0, ṽ0)

)
, (16)

where | · | is matrix determinant. We define L̃ as the Fourier coefficients of a commonly
used Laplacian operator L = (−α∆ + I)c with a positive weight parameter α and a
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smoothness parameter c. The Fourier transform of the Laplacian operator is given by

L̃(ξ) = (−2α
d∑
j=1

(cos(2πξj)− 1) + 1)c,

with K̃ = 1/L̃ being an inverse operator of L̃.

Combining the likelihood Eq (15) and prior Eq (16) together, we obtain the negative log
posterior distribution on the deformation parameter parameterized by ṽ0 as

− ln p(ṽ0 |S, T, σ2) =
1

2
(L̃ṽ0, ṽ0) +

∥S ◦ ψ1 − T∥22
2σ2

+M lnσ + const. (17)

In most probabilistic formulations of image-based registration, the likelihood Eq (15), as
a function of the transformation parameters, is highly non-Gaussian because of the com-
plex spatial structure of the images. This brings difficulties in the inference of such a
non-Gaussian posterior. While sampling methods have been investigated to empirically
approximate the distribution [207, 160], the computation tends to be extremely time-
consuming and expensive. To address this issue, we next introduce Laplace’s method [186]
to approximate the posterior distribution in a much more efficient manner.

2.2.1 Laplace approximation The basic idea is to find the mode of the posterior as
a MAP solution, and then apply a second-order Taylor series approximation for the log-
posterior function that corresponds to a complex Gaussian distribution. We first minimize
the negative log posterior in Eq (17) to the optimum ṽopt0 , which is considered to be the
mean of the Gaussian distribution (details of inference will be introduced in Sec. 2.3).
Estimation of covariance is not straightforward, as we will need to derive a quadratic
function of log-posterior by second-order approximation.

To simplify the notation, we use f(ṽ0) ≜ − ln p(ṽ0 |S, T, σ2) to represent the log-posterior.
The function f(ṽ0) is approximated to quadratic order by using second order Taylor series
expansion at the optimal solution ṽ0 as

f(ṽ0) = f(ṽopt0 + (ṽ0 − ṽopt0 ))

≈ f(ṽopt0 ) +∇fT (ṽopt0 )(ṽ0 − ṽopt0 ) +
1

2
(ṽ0 − ṽopt0 )THf(ṽopt0 )(ṽ0 − ṽopt0 ),

where ∇ denotes the first derivative and H is a second-order Hessian. Since the first
derivative of f vanishes at the optimal solution ṽopt0 , we have

f(ṽ0) ≈ f(ṽopt0 ) +
1

2
(ṽ0 − ṽopt0 )THf(ṽopt0 )(ṽ0 − ṽopt0 ). (18)

This indicates that the posterior is approximately a multivariate Gaussian distribution
N (ṽopt0 ,H−1f(ṽopt0 )). The optimal solution ṽopt and the inverse Hessian corresponds to
the mean velocity and covariance matrix of the registration parameters respectively.
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2.3 Inference

The algorithmic inference includes two major components: seeking for mean and covari-
ance of the approximated posterior distribution. For mean estimation, we develop a gra-
dient descent algorithm to minimize the negative log posterior distribution Eq (17) w.r.t.
the initial velocity ṽ0 and the image noise variance σ2. For covariance estimation, we de-
rive a second variation of Eq (17) to compute the Hessian-vector product via a linearized
forward-backward sweep. All computational steps will be introduced in the following
sections.

2.3.1 Mean Estimation Following optimal control theory [173], we add Lagrange

multipliers to constrain the diffeomorphism ψ̃t to be a geodesic path in the frequency
domain. This is done by introducing time-dependent adjoint variables, v̂t and ût, and
writing the augmented energy 2,

E(ṽ0) = − ln p(ṽ0 |S, T, σ2) +

∫ 1

0

⟨v̂t, ˙̃vt + ad†
ṽt
ṽt⟩+ ⟨ût, u̇t + ṽt + D̃ũt ∗ ṽt⟩ dt, (19)

where the last two terms correspond to Lagrange multipliers enforcing the geodesic con-
straint Eq (5) and the deformation transport equation Eq (3).

The optimality conditions for the adjoints v̂t, ût are given by the following time-dependent
system of ordinary differential equations, termed the adjoint equations (equivalent to
error-back propagation):

− ˙̂vt + adṽt v̂t − ad†
v̂t
ṽt + ût + (D̃ũt)T ⋆ ût = 0,

− ˙̂ut − D̃δût ∗ ṽt − δût ∗ (∇̃ · ṽt) = 0, (20)

subject to initial conditions v̂1 = 0 and û1 = − 1
σ2F [⟨∇S(1), S(1) − T ⟩], where S(1) =

S ◦ ψ1. Please refer to Appendix A for more details.

After integrating the geodesic equations (state equations) Eq (3)& Eq (5) forward in time
to t = 1 and then backward integrating the adjoint equations Eq (20) in time to t = 0, the
gradient of E w.r.t. ṽ0 is ∇ṽ0E = ṽ0 − v̂0.

Setting the gradient w.r.t. σ2 to zero, we have a closed form update

σ2 =
1

M
∥S(1) ◦ ψ1 − T∥22.

2 For notation simplification, we define the time derivative ˙̃vt ≜ dṽt/dt.
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2.3.2 Covariance Estimation To estimate the full covariance matrix as an inverse Hes-
sian, we develop a similar forward-backward approach to compute the Hessian-vector
products that involves the second variation of the augmented energy function Eq (19).
More specifically, we read off the Hessian-vector product after deriving the second varia-
tion in the direction δṽ0 as

∂2

∂ϵ2
E(ṽ0 + ϵ · δṽ0)|ϵ=0 = ⟨δṽ0,HE δṽ0⟩.

Given an initial condition δṽ0, we compute the Hessian-vector product as

HE δṽ0 = δṽ0 − δv̂0,

where δv̂0 is the adjoint variable of δṽ0.

The second variation can be accomplished by forward-sweeping the linearized geodesic
constraint around the optimal solution, followed by a backward sweep of the linearized
adjoint system. Introducing time-dependent adjoint variables δv̂t and δû0, the forward
linearized geodesic equations are

δ ˙̃vt = −ad†
δṽt
ṽt − ad†

ṽt
δṽt, δ ˙̃ut = −D̃δũt ∗ ṽt − D̃ũt ∗ δṽt − δṽt. (21)

The linearized adjoint system for the backward integration is

δ ˙̂vt = sym†
ṽt
δv̂t − sym†

δv̂t
v̂t + δût + (D̃ũt)T ⋆ δût + (D̃δũt)T ⋆ ût,

δ ˙̂ut = −D̃δût ∗ ṽt − D̃ût ∗ δṽt − ṽt ∗ ∇̃(δût)− ût ∗ ∇̃(ṽt), (22)

subject to initial conditions δû1 = − 2
σ2F [∇S(1) · ∇S(1) + (S(1) − T ) · ∇2S(1)] and

δv̂1 = 0, with sym†
ṽt
δv̂t = adδṽt v̂t − ad†

v̂t
δṽt.

We summarize the inference of our algorithm in Alg. 2. Following sections include the
detailed computational derivations for gradient term and second-order Hessian approxi-
mation.

2.4 Derivations of gradient and Hessian

As we derived in Sec. 2.2, the augmented energy with the adjoint variables v̂t, ût can be
formed as follows after adding geodesic constraints as Lagrangian multipliers,

E(ṽ0) = − ln p(ṽ0 |S, T, σ2) +

∫ 1

0

⟨v̂t, ˙̃vt + ad†
ṽt
ṽt⟩︸ ︷︷ ︸

1

+ ⟨ût, ˙̃ut + ṽt + D̃ũt ∗ ṽt⟩ dt︸ ︷︷ ︸
2

.

(23)
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Algorithm 2 Model inference.
Input : source image S and target image T , step size ϵ, iterations r

Output: optimal registration ṽopt0 , and covarianceH−1f(ṽopt0 )

/* Mean estimation */

7 for i = 1 to r do

8 1. Forward integrating the geodesic evolution equations Eq (5) with initial velocity ṽ0, then generates a collection

of time-dependent velocity fields ṽt;

2. Backward integrating adjoint equations Eq (20) to get gradient∇ṽ0E ;

3. ṽopt0 ← ṽopt0 − ϵ∇ṽ0E

/* Covariance estimation */

9 for i = 1 to M do

10 1. Forward shooting of δṽ0: forward-sweeping the linearized geodesic constraints Eq (21) to generate δṽt;

2. Backward shooting of δṽ1: backward integrating adjoint equation Eq (22) to generate H̃Eδṽ0;

11 3. Invert Hessian H̃−1Eδṽ0 = H̃−1f(ṽopt0 ) to generate covariance.

Next, we derive the variation of Ẽ w.r.t the variables ṽ0 and ũ0 for 1, 2 respectively. To
simplify the notation, we drop the subscript of time index t in the following sections.

Each part of the first derivative of ∂ṽE is,

1 :
∂

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨v̂, ∂t(ṽ + ϵδṽ) + ad†
ṽ+ϵδṽ(ṽ + ϵδṽ)⟩

2 :
∂

∂ϵ

∣∣∣∣
ϵ=0

(∫ 1

0

⟨û, ṽ + ϵδṽ + D̃ũ ∗ (ṽ + ϵδṽ)⟩
)

We combine these two terms,

1, 2 :

∫ 1

0

⟨v̂, δ ˙̃v + ad†
ṽδṽ + ad†

δṽṽ⟩+
∫ 1

0

⟨û, δṽ + D̃u ∗ δṽ⟩

= ⟨v̂, δṽ⟩
∣∣∣∣t=1

t=0

−
∫ 1

0

⟨ ˙̂v, δṽ⟩+
∫ 1

0

⟨adṽv̂ − ad†
v̂ṽ, δṽ⟩

+

∫ 1

0

⟨û+ (D̃ũ)T ⋆ û, δṽ⟩

= ⟨v̂, δṽ⟩
∣∣∣∣t=1

t=0

+

∫ 1

0

⟨− ˙̂v + adṽv̂ − ad†
v̂ṽ + û+ (D̃ũ)T ⋆ û, δṽ⟩. (24)
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Each part of the first derivative ∂ũE is

1, 2 : ∂ũE =
∂

∂ϵ

∣∣∣∣
ϵ=0

(∫ 1

0

⟨û, ∂t(ũ+ ϵδũ) + D̃(ũ+ ϵδũ) ∗ ṽ⟩
)

=

∫ 1

0

⟨û, δu̇+ D̃δũ ∗ ũ⟩

= ⟨û, δũ⟩
∣∣∣∣t=1

t=0

−
∫ 1

0

⟨ ˙̂u, δũ⟩ −
∫ 1

0

⟨δũ, D̃ũ ∗ ṽ + ũ ∗ ∇̃ · ṽ⟩

= ⟨û, δũ⟩
∣∣∣∣t=1

t=0

−
∫ 1

0

⟨δũ, ˙̂u+ D̃ũ ∗ ṽ + ũ ∗ ∇̃ · ṽ)⟩. (25)

By setting Eq (25) to zero, we have ˙̂ut = −D̃δût ∗ ṽt− δût ∗ (∇̃ · ṽt). Putting Eq (24) and
Eq (25) together, we obtain the adjoint equations of Eq (20),subject to initial conditions

v̂1 = 0,

û1 = − 1

σ2
⟨∇S1, S1 − T ⟩.

We develop a similar forward-backward approach to compute the second derivatives of ṽ
and ũ. We first derive the second-order forward shooting equation of by adding auxiliary
variables δv̂ and δû on the geodesic shooting EpDiff Eq (5) and deformation transport
equation Eq (3) respectively.
For δṽ,

∂2δṽE =
∂2

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨δv̂, ∂t(δṽ + ϵδv̂) + ad†
ṽ+ϵδv̂(ṽ + ϵδv̂)⟩

=
∂

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨δv̂, δ ˙̃v + ad†
ṽ+ϵδv̂δṽ + ad†

δṽ(ṽ + ϵδv̂)⟩

+

∫ 1

0

⟨δv̂, ∂t(δv̂ + ϵδv̂) + ad†
ṽ+ϵδv̂(ṽ + ϵδv̂)⟩

=

∫ 1

0

⟨δv̂, δ ˙̃v + ad†
ṽδṽ + ad†

δṽṽ⟩+ ⟨δṽ, ˙̃v + ad†
ṽṽ⟩. (26)

We then derive the forward shooting equation for δũ as follows,

∂δũE =
∂2

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨δû, ∂t(ũ+ ϵδû) + ṽ + ϵδv̂ + D̃(ũ+ ϵδû) ∗ (ṽ + ϵδv̂)⟩

=
∂

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨δû, ˙δũ+ δṽ + D̃δũ ∗ ṽ + D̃(ũ+ ϵδû) ∗ δṽ⟩

+ ⟨δû, ∂t(ũ+ ϵδû) + ṽ + ϵδv̂ + D̃(ũ+ ϵδû) ∗ (ṽ + ϵδv̂)⟩

=

∫ 1

0

⟨δû, δ ˙̃u+ δṽ + D̃δũ ∗ ṽ + D̃ũ ∗ δṽ⟩+
∫ 1

0

⟨δû, ˙̃u+ ṽ + D̃ũ ∗ ṽ⟩. (27)
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By setting Eq (26) and Eq (27) to zero, we obtain the second-order forward shooting for
δṽ and δũ as stated in Eq (21).

Next we construct the augmented energy by adding second-order forward shooting equa-
tions as Lagrangian multipliers.

E(δv̂0) = − ln p(v̂0 |S, T, σ2)

+

∫ 1

0

⟨δv̂, δ ˙̃v + ad†
δṽṽ + ad†

ṽδṽ⟩︸ ︷︷ ︸
1

+ ⟨δû, δ ˙̃u+ D̃δũ ∗ ṽ − D̃ũ ∗ δṽ − δṽ⟩︸ ︷︷ ︸
2

.

Similarly, we derive the second-order backward shooting equation by adding auxiliary
variables δv̂ and δû on part 1 and 2.
For δṽ,

∂2δṽE =
∂

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨δv̂, ∂t(δṽ + ϵδv̂) + adδṽ+ϵδv̂ṽ + adṽ(δṽ + ϵδv̂)⟩

+ ⟨δû, ∂(δṽ + ϵδv̂) + D̃δũ ∗ ṽ + D̃ũ ∗ (δṽ + ϵv̂) + (δṽ + ϵδv̂)⟩

= ⟨δv̂, δṽ⟩
∣∣∣∣t=1

t=0

+

∫ 1

0

⟨δv̂,−δ ˙̃v + adṽδṽ − ad†
δṽṽ + δũ+ (D̃ũ)T ⋆ δũ⟩

+

∫ 1

0

⟨δv̂,−δ ˙̃v + adδṽṽ − ad†
ṽδṽ + (D̃δũ)T ⋆ ũ⟩. (28)

For δũ,

∂2δũE =
∂

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨δû, ∂t(δũ+ ϵδû) + adδṽṽ + adṽ(δṽ)⟩

+ ⟨δû, ∂t(δũ+ ϵδû) + D̃(δũ+ ϵδû) ∗ ṽ + D̃ũ ∗ δṽ − δṽ⟩

=
∂

∂ϵ

∣∣∣∣
ϵ=0

∫ 1

0

⟨δû, ∂t(δũ+ ϵδû) + D̃(ũ+ ϵδû) ∗ ṽ⟩

+ ⟨δû, ∂t(δũ+ ϵδû) + D̃(ũ+ ϵδû) ∗ δṽ⟩

= ⟨δû, δũ⟩
∣∣∣∣t=1

t=0

+

∫ 1

0

⟨−δû, δ ˙̃u+ D̃δũ ∗ ṽ + δṽ ∗ ∇̃ · ṽ⟩

+

∫ 1

0

⟨−δû, ˙δũ+ D̃ũ ∗ δṽ + ũ ∗ ∇̃ · δṽ⟩. (29)

By setting Eq (28) and Eq (29) to 0, we arrive the second-order backward equations of
δṽ and δũ as Eq (22), subject to initial conditions δû1 = − 2

σ2F [∇S(1) ·∇S(1)+(S(1)−
T ) · ∇2S(1)] and δv̂1 = 0.
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2.5 Experimental Evaluation

To show the effectiveness of our model, we run experiments on both 2D synthetic data
and 3D real brain MRI scans. We estimate the covariance by using α = 3, c = 6 for
the operator L̃. We set band-limited dimension of the initial velocity field as 16, which is
similar to the settings used in the pairwise diffeomorphic image registration [206]. We run
both our model and baseline algorithms till convergence, with the number of time steps
for Euler integration in geodesic shooting being 10. Data We simulate a collection of 2D
synthetic dataset starting from a binary circle with resolution 100×100. We then generate
smooth initial velocity fields from the prior distribution p(ṽ0), defined in Eq (49). The
deformed binary circles (used as our target images) are constructed by deforming the
binary circle image with forward shooting the initial velocities.

The brain MRI scans of 60 subjects from the OASIS dataset [113], aged 60 to 90. All
MRIs have the same resolution 128 × 128 × 128 with the voxel size of 1.25 × 1.25 ×
1.25mm3. To further evaluate the accuracy of our mean estimation (registration solu-
tion), we use 10 pairs of 3D brain MRI scans with manual segmentation labels from
public released ADNI dataset [80]. All images underwent the preprocessing of skull-
stripping, downsampling, intensity normalization to [0, 1] interval, bias field correction,
and co-registration with affine transformations

Experiments We first evaluate the proposed approach on 2D synthetic data and compare
with the state-of-the-art diffeomorphic registration uncertainty quantification algorithm
defined in a full-dimensional image space [195]. This baseline algorithm is defined in
the original high-dimensional image space, where the full hessian is approximated via
low-rank basis obtained by principal component analysis. The authors then compute the
covariance matrix by inverting the approximated low-rank Hessian.

A visualization of uncertainty map estimated by the covariance matrix will be demon-
strated. We set the initialization of initial velocity fields as zero and σ = 0.01 for both
methods. We then validate our model on real 3D brain MRIs. Note that it is difficult to
measure the accuracy of uncertainty methods since there is no registration ground truth
exists. In order to demonstrate the effectiveness of our method in a statistical way, we
report the difference between the Hessian without low-dimensional approximation and
the Hessian estimated by our method both on 2D synthetic and 3D real data. In addition
to estimate the final uncertainty maps, we show the time and memory comparison of all
algorithms.
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Finally, we demonstrate that another benefit of our model is the improved performance of
mean estimation by standard image registration problem. Rather than finding an optimal
registration result (mean) in a high-dimensional image space by using gradient descent
algorithm, we instead perform an entire optimization in a low-dimensional bandlimited
space. This not only makes the algorithmic inference much faster, but also reduces the risk
of getting stuck in local minima. We compare our algorithm with the state-of-the-art fast
diffeomorphic registration schemes: Quicksilver [194] and Voxelmorph [14]. To evaluate
the estimated deformations, we perform registration-based segmentation and examine the
resulting segmentation accuracy. The volume overlap, also known as Dice Similarity Co-
efficient (DSC), between the propagated segmentation A and the manual segmentation B
for each structure is computed as (A,B) = 2(|A| ∩ |B|)/(|A|+ |B|) where ∩ denotes an
intersection of two regions.

Results Fig. 7 visualizes the uncertainty information estimated from both our method and
the baseline algorithm performed in high-dimensional space on 2D data. We extract the
local covariance matrix of each voxel and visualize it as an ellipse on the source image,
with the color representing the matrix determinant. The smaller determinants are closer to
the non-isotropic area (e.g., circle boundaries), which indicate more confident registration
results.

Fig. 7: Left to right: source image, target image, covariance matrix determinant estimated by the baseline

algorithm and our method.

Fig. 8 visualizes an example of 3D brain registration uncertainty. Note that due to the
difficulty of computing a full covariance matrix by inverse Hessian in a high-dimensional
image space, we need to use an approximated low-rank Hessian with a number of dom-
inant eigenmodes [195]. Based on our key observation that the eigenvalues of Hessian
matrix decay fast (as shown on the left panel of Fig. 9), we calculated the variances with
various numbers of eigenmodes and noticed that the difference between covariances goes
to zero beyond 2600 eigenmodes. Following [195], we then choose the first 2600 eigen-
modes to approximate the full covariance accordingly. Both two methods show that the
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high uncertainty (with less confidence) appear isotropic areas (e.g., inside the ventricle),
while the low uncertainty (with high confidence) appears around non-isotropic areas (e.g.
ventricle boundaries). The right panel of Fig. 9 reports the comparison of time and mem-
ory consumption. Our algorithm offers significant improvements in computational effi-
ciency. It is worth mentioning that while we adopted FLASH [206] for fast registration,
the proposed Bayesian framework can be generalized to other registration models with the
same level of efficiency, e.g., stationary velocity fields that remain constant over time [6],
or projected subspace of velocity fields that characterizes deformations in a much lower
dimensional space [179].

Fig. 8: Left to right: source image, target image, and uncertainty (visualized as the trace of covariance)

estimated by baseline algorithm and our method.

Fig. 10 reports the absolute value of difference between the Hessian estimated by our
method and the full Hessian on ten pairs of 2D synthetic data and twenty pairs of 3D MRI
scans. The low errors on both 2D and 3D experiments indicate that our estimation is fairly
close to the optimal uncertainty result.

Fig. 11 displays example error maps between deformed source images by the estimated
mean (an optimal of registration) from all methods and target images. It shows that our
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Fig. 9: Left panel: eigenvalues of the Hessian matrix estimated by the baseline algorithm; Right panel:
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Fig. 10: Difference between the Hessian matrices estimated by our method and the full Hessian on both 2D

and 3D data.

method achieves better registration results (a.k.a, smaller errors) than the two baseline
algorithm [194, 14].

Fig. 12 reports the dice evaluations on brain cortex over 10 pairs of images for all methods.
Our algorithm produces better dice score than the other two baseline algorithms.

2.6 Conclusion

In this section, I presented a novel Bayesian model for registration uncertainty quantifica-
tion in the space of diffeomorphic transformations. In contrast to previous approaches, our
method significantly reduced the computational cost of the registration posterior inference
effectively via (i) a low-dimensional representation of velocity fields that are associated
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Fig. 11: Left to right: source image, target image, difference map of deformed image by estimated mean of

our model, Quicksilver [194], and Voxelmorph [14].

Fig. 12: Dice score evaluated on the brain structure, cortex, caudate and corpus collusum of our method,

Quicksilver, and Voxelmorph.
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with deformation fields; and (ii) an efficient Laplace’s approximation to the posterior dis-
tribution, where the covariance was fully estimated by second-order methods. This work
is the first step toward efficient probabilistic models of registration uncertainty quantifi-
cation based on high-dimensional geometric transformations. Our future work will be
investigating sampling methods to thoroughly assess our developed model uncertainty,
and further extending its application to real clinical settings, e.g., real-time image-guided
navigation system for neurosurgery. While in this work we focused on the representation
of time-dependent velocity fields in the context of LDDMM, our method is general to
other transformation parameterizations such as stationary velocity fields [6].

3 Bayesian Atlas Building & Regularization Parameter

Estimation with Hierarchical Priors

3.1 Related Work

Deformable atlas building is to create a ‘‘mean‘‘ or averaged image and register all sub-
jects to a common space. The resulting atlas and group transformations are powerful
tools for statistical shape analysis of images [76, 107, 208], template-based segmenta-
tion [133, 146, 79], or object tracking [104, 102], just to name a few. A good quality of
altas heavily relies on the registration process, which is typically formulated as a regular-
ized optimization to solve [8, 15, 173, 203]. An issue in the current process of registration-
based atlas construction is how to regularize model parameters. Having an appropriate
regularization is critical to the ”sharpness” of the atlas, as well as ensuring a set of desir-
able properties of transformations, i.e., a smooth and invertible smooth mapping between
images, also known as diffeomorphisms, to preserve the topology of original images.

Current atlas building models either exhaustively search an optimal regularization in the
parameter space, or treat it as unknown variables to estimate from Bayesian models. While
ad hoc parameter-tuning by users may yield satisfactory results, it requires expert domain
knowledge to guide the tuning process [86, 172, 107]. Inspired by probabilistic models,
several works have proposed Bayesian models of atlas building with automatically esti-
mated regularizations [2, 3, 207]. These approaches define a posterior distribution that
consists of an image matching term between a deformed atlas and each individual as a
likelihood, and a regularization as a prior to support the smoothness of transformation
fields. The regularization parameter is then jointly estimated with atlas after carefully
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integrating out the image deformations by using Monte Carlo sampling. However, sam-
pling in a high-dimensional transformation space (i.e., on a dense 3D image grid 1283)
is computationally expensive and often leads to a long execution time along with high
memory consumption. More importantly, all aforementioned methods are limited to reg-
ularizations with single-penalty function for population studies. This greatly prohibits the
model’s ability to adaptively search for the best regularization parameter associated with
each individual, which is critical to images with various degrees of geometric transforma-
tions.

We propose a hierarchical Bayesian model of atlas building with multi-penalty regular-
ization in the context of Large Deformation Diffeomorphic Metric Mapping (LDDMM)
algorithm [15]. In contrast to previous approaches treating the regularization of individual
subjects as a single-penalty function with adhoc parameters, we develop a data-adaptive
algorithm to automatically adjust the model parameters accordingly. To achieve this, we
introduce a novel hierarchical prior that features (i) prior distributions with multiple reg-
ularization parameters on the group transformations in a low-dimensional bandlimited
space; and (ii) a hyperprior to model the regularization parameters as latent variables
generated from Gamma distribution. We then develop a Monte Carlo Expectation Max-
imization (MCEM) algorithm, where the expectation step integrates over the regulariza-
tion parameters using Hamiltonian Monte Carlo (HMC) sampling. The joint estimation of
model parameters including atlas, registration, and hyperparameters in the maximization
step successfully eliminates a massive burden of multi-parameters tuning. We demon-
strate the effectiveness of our algorithm on both 2D synthetic images and 3D real brain
MRIs.

To the best of our knowledge, we are the first to extend the atlas building to a data-adaptive
and parameter-tuning-free framework via hierarchical Bayesian learning. Experimental
results show that our model provides an efficient atlas construction of population images,
particularly with large variations of geometric transformations. This paves a way for an
improved quality of clinical studies where atlas building is required, for example, sta-
tistical shape analysis of brain changes for neurodegenerative disease diagnosis [76], or
atlas-based segmentation for in-utero placental disease monitoring [102].

3.2 Method: Bayesian Atlas Building with Hierarchical Priors

This section presents a hierarchical Bayesian model for atlas building that allows subject-
specific regularization with no manual effort of parameter-tuning. We introduce a hierar-
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chical prior distribution on the initial velocity fields with adaptive smoothing parameters
followed by a likelihood distribution on images.

Likelihood. Assuming an independent and identically distributed (i.i.d.) Gaussian noise
on image intensities, we formulate the likelihood of each observed image In as

p(In | I, ṽn, σ2) =
1

(
√
2πσ2)M

exp

(
− 1

2σ2
∥I ◦ ϕn − In∥22

)
. (30)

Here σ2 denotes a noise variance, M is the number of image voxels, and ϕn is an inverse
Fourier transform of ϕ̃n at time point t = 1. It is worth mentioning that other noise models
such as spatially varying noises [159] can also be applied.

Prior. To ensure the smoothness of transformation fields, we define a prior on each initial
velocity field ṽn as a complex multivariate Gaussian distribution

p(ṽn |αn) =
1

(2π)
M
2 |L̃−1

n (αn)|
exp

(
−1

2
⟨L̃n(αn)ṽn, L̃(αn)ṽn⟩

)
, (31)

where | · | is matrix determinant. The Fourier coefficients of a discrete Laplacian operator

is L̃n(ξ1, . . . , ξd) =
(
−2αn

∑d
j=1 (cos(2πξj)− 1) + 1

)3

, with (ξ1, . . . , ξd) being a d-
dimensional frequency vector.

Hyperprior. We treat the subject-specific regularization parameter αn of the prior dis-
tribution Eq (31) as a random variable generated from Gamma distribution, which is a
commonly used prior to model positive real numbers [158]. Other prior such as inverse
Wishart distribution [63] can also be applied. The hyperprior of our model is formulated
as

p(αn | k, β) =
αk−1
n exp(−αn/β)

Γ (k)βk
, (32)

with k and β being positive numbers for shape and scale parameters respectively. The
Gamma function Γ (k) = (k − 1)! for all positive integers of k. We finally arrive at the

αn ṽn In
I
σ

Nk
β

Fig. 13: Graphic model of hierarchical Bayesian atlas building.
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log posterior of the diffeomorphic transformation and regularization parameters as

E(ṽn, αn, I, σ, k, β) ≜ ln
N∏
n=1

p(In | I, ṽn, σ2) · p(ṽn |αn) · p(αn | k, β)

=
N∑
n=1

1

2
ln|Ln| −M lnσ − ∥I ◦ ϕn − In∥22

2σ2
− 1

2
(L̃ṽn, L̃ṽn)

(k − 1) lnαn −
αn
β

− k ln β − lnΓ (k) + const. (33)

3.2.1 Model Inference We develop an MCEM algorithm to infer the model parameter
Θ, which includes the image atlas I , the noise variance of image intensities σ2, the initial
velocities of diffeomorphic transformations ṽn, and the hyperparameters k and β. We treat
the regularization parameter αn as latent random variables and integrate them out from the
log posterior in Eq (33). Computations of two main steps (expectation and maximization)
are illustrated below.

Expectation: HMC. Since the E-step does not yield a closed-form solution, we employ
a powerful Hamiltonian Monte Carlo (HMC) sampling method [49] to approximate the
expectation function Q with respect to the latent variables αn. For each αn, we draw a
number of S samples from the log posterior Eq (33) by using HMC from the current
estimated parameters Θ̂. The Monte Carlo approximation of the expectation Q is

Q(Θ|Θ̂) ≈ 1

S

N∑
n=1

S∑
j=1

ln p(αnj | In; Θ̂). (34)

To produce samples of αn, we first define the potential energy of the Hamiltonian system
H(αn, γ) = U(αn) +W (γ) as U(αn) = − ln p(αn|In;Θ). The kinetic energy W (γ) is a
typical normal distribution on an auxiliary variable γ. This gives us Hamilton’s equations
to integrate

αn
dt

=
∂H

∂γ
= γ,

dγ

dt
= − ∂H

∂αn
= −∇αnU. (35)

Since αn is a Euclidean variable, we use a standard “leap-frog” numerical integration
scheme, which approximately conserves the Hamiltonian and results in high acceptance
rates. The gradient of U with respect to αn is

∇αnU =
3

2S

S∑
j=1

[
d∑
i=1

Ãi

αnjÃi + 1
− ⟨2(αnjÃ+ 1)5Ãṽnj, ṽnj⟩], (36)
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where Ã = −2
∑d

i=1 (cos(2πξi)− 1). Here Ã denotes a discrete Fourier Laplacian oper-
ator with a d-dimensional frequency vector.

Starting from the current point αn and initial random auxiliary variable γ, the Hamiltonian
system is integrated forward in time by Eq (35) to produce a candidate point (α̂n, γ̂). The
candidate point α̂n is accepted as a new point in the sample with probability p(accept) =
min(1,−U(α̂n)−W (γ̂) + U(αn) +W (γ)).

Maximization: Gradient Ascent. We derive the maximization step to update the param-
eters Θ = {I, ṽn, σ2, k, β} by maximizing the HMC approximation of the expectation Q
in Eq (34).

For updating the atlas image I , we set the derivative of the Q function with respect to I to
zero. The solution for I gives a closed-form update

I =

∑S
j=1

∑N
n=1(In ◦ ϕ

−1
nj ) · |Dϕ−1

nj |∑S
j=1

∑N
n=1|Dϕ

−1
nj |

. (37)

Similarly, we obtain the closed-form solution for the noise variance σ2 after setting the
gradient of Q w.r.t. σ2 to zero

σ2 =
1

MNS

N∑
n=1

S∑
j=1

∥I ◦ ϕnj − In∥22. (38)

The closed-form solutions for hyperparameters k and β are

k = ψ−1(
1

NS

N∑
i=1

S∑
j=1

lnαnj − ln β), β =
1

NSk

N∑
n=1

S∑
j=1

αnj. (39)

Here ψ is a digamma function, which is the logarithmic derivative of the gamma function
Γ (·). The inverse of digamma function ψ−1 is computed by using a fixed-point iteration
algorithm [117].

As there is no closed-form update for initial velocities, we employ a gradient ascent al-
gorithm to estimate ṽnj . The gradient ∇ṽnjQ is computed by a forward-backward sweep
approach. Details are introduced in the FLASH algorithm [204].

3.3 Experimental Evaluation

We compare the proposed model with LDDMM atlas building algorithm that employs
single-penalty regularization with manually tuned parameters on 3D brain images [204].
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In HMC sampling, we draw 300 samples for each subject, with initialized value of α = 10,
k = 9.0, σ = 0.05, and β = 0.1. An averaged image of all image intensities is used for
atlas initialization.

Data. We include 100 3D brain MRI scans with segmentation maps from OASIS [56]. The
dataset covers both healthy and diseased subjects, aged from 55 to 90. The MRI scans are
resampled to 1283 with the voxel size of 1.25mm3. All MRIs are carefully prepossessed
by skull-stripping, intensity normalization, bias field correction, and co-registration with
affine transformation.

Experiments. We estimate the atlas of all deformed images by using our method and
compare its performance with LDDMM atlas building [204]. Final results of atlases esti-
mated from both our model and the baseline algorithm are reported. We also compare the
time and memory consumption of proposed model with the baseline that performs HMC
sampling in a full spatial domain [207]. To measure the sharpness of estimated atlas I , we
adopt a metric of normalized standard deviation computed from randomly selected 3000
image patches [98]. Given N(i), a patch around a voxel i of an atlas I , the local measure
of the sharpness at voxel i is defined as sharpness(I(i)) = sdN(i)(I)/avgN(i)(I), where sd
and avg denote the standard deviation and the mean of Ni.

To further evaluate the quality of estimated transformations, we perform atlas-based seg-
mentation after obtaining transformations from our model. For a fair comparison, we fix
the atlas for both methods and examine the registration accuracy by computing the dice
similarity coefficient (DSC) [46] between the propagated segmentation and the manual
segmentation on six anatomical brain structures, including cerebellum white matter, tha-
lamus, brain stem, lateral ventricle, putamen, caudate. The significance tests on both dice
and sharpness between our method and the baseline are performed.

Results. Fig. 14 visualizes a comparison of 3D atlas on real brain MRI scans. The top
panel shows that our model substantially improves the quality of atlas with sharper and
better details than the baseline with different values of manually set regularization param-
eters, e.g., α = 0.1, 3.0, 6.0, 9.0. Despite the observation of a smaller value of α = 0.1

produces sharper atlas, it breaks the smoothness constraints on the transformation fields
hence introducing artifacts on anatomical structures (outlined in purple boxes). The mean
and standard deviation of our estimated hyperprior parameters k and β in Eq (32) over 30
pairwise image registrations are 47.40/7.22, and 0.036/0.005. The bottom panel quanti-
tatively reports the sharpness metric of all methods. It indicates that our algorithm outper-
forms the baseline by offering a higher sharpness score while preserving the topological
structure of brain anatomy.
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Fig. 14: Top: atlases estimated by baseline with different α and our model (artifacts introduced by small

regularization are outlined in purple boxes). Bottom: sharpness measurement of atlas for all methods with

different patch size w. The mean of the sharpness metric of our method vs. the best performance of baseline

without artifacts (α = 3) is 0.290/0.264, 0.362/0.323, 0.405/0.360.

Fig. 15 reports results of fixed-atlas-based segmentation by performing the baseline with
various regularization parameters and our algorithm. It shows the dice comparison on
six anatomical brain structures of all image pairs. Our algorithm produces better dice
coefficients without the need of parameter tuning.

The runtime of our atlas building on 100 3D brain MR images are 4.4 hours with 0.89GB
memory consumption. The p-values of significance differences test on both dice (p =

0.002) and sharpness (p = 0.0034) reject the null hypothesis that there’s no differences
between our model estimation and baseline algorithms.

3.4 Conclusion

In this section, I present a novel hierarchical Bayesian model for unbiased diffeomorphic
atlas building with subject-specific regularization. We design a new parameter choice rule
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Fig. 15: A comparison of dice evaluation for fixed-atlas-based segmentation on six brain structures (cere-

bellum white matter (WM), thalamus (Th), brain stem (BS), lateral ventricle (LV), putamen(Pu), caudate

(Ca)).

that allows adaptive regularization to control the smoothness of image transformations.
We introduce a hierarchical prior that provides prior information of regularization param-
eters at multiple levels. The developed MCEM inference algorithm eliminates the need of
manual parameter tuning, which can be tedious and infeasible in multi-parameter settings.
Experimental results show that our proposed algorithm yields a better registration model
as well as an improved quality of atlas. While our algorithm is presented in the setting
of LDDMM, the theoretical development is generic to other deformation models, e.g.,
stationary velocity fields [6]. In addition, this model can be easily extended to multi-atlas
building where a much higher degree of variations exist in the population studies. Our
future work will focus on conducting subsequent statistical shape analysis in the resulting
atlas space.



Chapter IV

Deep Neural Networks that Learn Deformable

Shapes from Images

In this chapter, I introduce the developed deep neural networks that learn low-dimensional
geometric deformable shape representations. Sec. 1 presents DeepFLASH, an efficient
deep neural network designed for diffeomorphic image registration. It utilizes compact
deformable shape representations, resulting in a significant reduction in computational
complexity. This makes the model faster to perform training, testing and inferefence.
Sec. 2 presents Geo-SIC, a classification network that incorporates deformable geomet-
ric shape learning into deep image classifiers. This integration leads to improved per-
formance. Sec. 3 presents an efficient predictive approach for regularization parameter
estimation. This method automatically produces regularization parameters through deep
neural networks, allowing for faster training data generation and parameter estimation.
The developed low-dimensional Bayesian framework maintains comparable registration
results while significantly reducing computation time.

1 An Efficient Predictive Network for Learning-based

Medical Image Registration

1.1 Related Work

We recall the basics of deformable image registration in Chapter II. The problem of
deformable image registration is typically formulated as an optimization, seeking for a
nonlinear and dense (voxelwise) spatial transformation between images. In many appli-
cations, it is desirable that such transformations be diffeomorphisms, i.e., differentiable,
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bijective mappings with differentiable inverses. In this section, we focus on diffeomorphic
image registration highlighting with a set of critical features: (i) it captures large defor-
mations that often occur in brain shape variations, lung motions, or fetal movements; (ii)
the topology of objects in the image remain intact; and (iii) no non-differentiable arti-
facts, such as creases or sharp corners, are introduced. However, achieving an optimal
solution of diffeomorphic image registration, especially for large-scale or high-resolution
images (e.g., a 3D brain MRI scan with the size of 2563), is computationally intensive and
time-consuming.

Attempts at speeding up diffeomorphic image registration have been made in recent
works by improving numerical approximation schemes. For example, Ashburner and Fris-
ton [8] employ a Gauss-Newton method to accelerate the convergence of large deforma-
tion diffeomorphic metric mapping (LDDMM) algorithm [15]. Zhang et al. propose a
low-dimensional approximation of diffeomorphic transformations, resulting in fast com-
putation of the gradients for iterative optimization [206, 179]. While these methods have
led to substantial reductions in running time, such gradient-based optimization still takes
minutes to finish. Instead of minimizing a complex registration energy function [15, 204],
an alternative approach has leveraged deep learning techniques to improve registration
speed by building prediction models of transformation parameters. Such algorithms typ-
ically adopt convolutional neural networks (CNNs) to learn a mapping between pairwise
images and associated spatial transformations in training dataset [194, 145, 14, 35, 28].
Registration of new testing images is then achieved rapidly by evaluating the learned
mapping on given volumes. While the aforementioned deep learning approaches are able
to fast predict the deformation parameters in testing, the training process is extremely
slow and memory intensive due to the high dimensionality of deformation parameters in
imaging space. In addition, enforcing the smoothness constraints of transformations when
large deformation occurs is challenging in neural networks.

To address this issue, we propose a novel learning-based registration framework Deep-
FLASH in a low-dimensional bandlimited space, where the diffeomorphic transforma-
tions are fully characterized with much fewer dimensions. Our work is inspired by a recent
registration algorithm FLASH (Fourier-approximated Lie Algebras for Shooting) [204]
with the novelty of (i) developing a learning-based predictive model that further speeds
up the current registration algorithms; (ii) defining a set of complex-valued operations
(e.g., complex convolution, complex-valued rectifier, etc.) and complex-valued loss func-
tion of transformations entirely in a bandlimited space; and (iii) proving that our model
can be easily implemented by a dual-network in the space of real-valued functions with
a careful design of the network architecture. To the best of our knowledge, we are the
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first to introduce the low-dimensional Fourier representations of diffeomorphic trans-
formations to learning-based registration algorithms. In contrast to traditional methods
that learn spatial transformations in a high-dimensional imaging space, our method dra-
matically reduces the computational complexity of the training process where iterative
computation of gradient terms are required. This greatly alleviates the problem of time-
consuming and expensive training for deep learning based registration networks. Another
major benefit of DeepFLASH is that the smoothness of diffeomorphic transformations is
naturally preserved in the bandlimited space with low frequency components. Note that
while we implement DeepFLASH in the context of convolutional neural network (CNN),
it can be easily adapted to a variety of other neural networks, such as fully connected
network (FCN), or recurrent neural network (RNN). We demonstrate the effectiveness of
our model in both 2D synthetic and 3D real brain MRI data.

1.2 Method: DeepFLASH

1.2.1 Computational Operations We introduce a learning-based registration network

DeepFLASH in a low-dimensional bandlimited space Ṽ , with newly defined operators
and functions in a complex vector space Cn. Since the spatial transformations can be
uniquely determined by an initial velocity ṽ0 (as introduced in Eq (5)), we naturally in-
tegrate this new parameterization in the architecture of DeepFLASH. To simplify the
notation, we drop the time index of ṽ0 in remaining sections.

Analogous to [194], we use optimal registration results, denoted as ṽopt, estimated by
numerical optimization of the LDDMM algorithm as part of the training data. Our goal is
then to predict an initial velocity ṽpre from image patches of the moving and target images.
Before introducing DeepFLASH, we first define a set of complex-valued operations and
functions that provide key components of the neural architecture.

Consider a Q-dimensional complex-valued vector of input signal X̃ and a real-valued
kernel H , we have a complex-valued convolution as

H ∗ X̃ = H ∗R(X̃) + iH ∗ I(X̃), (40)

where R(·) denotes the real part of a complex-valued vector, and I(·) denotes an imagi-
nary part.

Following a recent work on complex networks [168], we define a complex-valued ac-
tivation function based on Rectified Linear Unit (ReLU). We apply real-valued ReLU



48

separately on both of the real and imaginary part of a neuron Ỹ in the output layer, i.e.,

CReLU(Ỹ ) = ReLU(R(Ỹ )) + iReLU(I(Ỹ )). (41)

Loss function Let a labeled training dataset including pairwise images and their associated
optimal initial velocity fields be {Sn, Tn, ṽoptn }Nn=1, where N is the number of pairwise
images. We model a prediction function f(Sn, Tn;W ) by using a convolutional neural
network (CNN), with W being a real-valued weight matrix for convolutional layers. We
then define a loss function ℓ as

ℓ(W ) =
N∑
n=0

∥ṽoptn − f(Sn, Tn;W )∥2L2
+ λ · Reg(W ), (42)

where λ is a positive parameter balancing between function f and a regularity term Reg(·)
on the weight matrix W . While we use L2 norm as regularity, it is generic to other com-
monly used operators such as L1, or L0 norm.

The optimization problem of Eq (42) is typically solved by using gradient-based methods.
The weight matrixW is updated by moving in the direction of the loss function‘‘s steepest
descent, found by its gradient ∇W ℓ.

1.2.2 Network Design While we are ready to design a complex-valued registration net-
work based on CNN, the implementation of such network is not straightforward. Trabelsi
et al. developed deep complex networks to specifically handle complex-valued inputs at
the cost of computational efficiency [168]. In this section, we present an efficient way to
decouple the proposed complex-valued registration network into a combination of regular
real-valued networks. More specifically, we construct a dual-net that separates the real
and imaginary part of complex-valued network in an equivalent manner.

Given the fact that the computation of real and imaginary parts in the convolution ( Eq (40))
and the activation function ( Eq (41)) are separable, we next show that the loss defined
in Eq (42) can be equivalently constructed by the real and imaginary part individually.
To simplify the notation, we define the predicted initial velocity ṽpren

∆
= f(Sn, Tn;W ) and

rewrite Eq (42) as

ℓ(W ) =
N∑
n=0

∥ṽoptn − ṽpren ∥2L2
+ λ · Reg(W ). (43)
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Let ṽoptn = βn + iµn and ṽpren = δn + iηn in Eq (43), we then obtain

ℓ(W ) =
N∑
n=0

∥(βn + iµn)− (δn + iηn)∥2L2
+ λ · Reg(W ),

=
N∑
n=0

∥(βn − δn) + i(µn − ηn)∥2L2
+ λ · Reg(W ),

=
N∑
n=0

∥βn − δn∥2L2
+ ∥µn − δn∥2L2

+ λ · Reg(W ),

=
N∑
n=0

∥R(ṽoptn )−R(ṽpren )∥2L2

+ ∥I(ṽoptn )− I(ṽpren )∥2L2
+ λ · Reg(W ). (44)
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Fig. 16: Architecture of DeepFLASH with dual net: S and T denote the source and target image from high-

dimensional spatial domain. R(S̃) and I(S̃) are the real and imaginary frequency spectrum convert from S.

R(T̃ ) and I(T̃ ) are the real and imaginary frequency convert from T. ṽpre is the low-dimensional prediction

optimized from our model. vpre0 and ϕ are the velocity and transformation field we recovered from our low-

dimensional prediction.

Fig. 16 visualizes the architecture of our proposed model DeepFLASH. The input source
and target images are defined in the Fourier space with the real part of frequencies as
R(S̃) and R(T̃ ) vs. the imaginary parts as I(S̃) and I(T̃ ). We train real and imaginary
parts in two individual neural networks Rnet and Inet. The optimization stays in a low-
dimensional bandlimited space without converting the coefficients (R(ṽpre), I(ṽpre)) to
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high-dimensional imaging domain back and forth. It is worthy to mention that our decou-
pled network is not constrained by any specific architecture. The CNN network in Fig. 16
can be easily replaced by a variety of the state-of-the-art models, e.g., U-net [147], or
fully connected neural network.

1.2.3 Computational Complexity It has been previously shown that the time com-
plexity of convolutional layers [69] is O(

∑P
p=1 bp−1 ·h2p · bp ·Z2

p), where p is the index of a
convolutional layer and P denotes the number of convolutional layers. The bp−1, bp hp are
defined as the number of input channels, output channels and the kernel size of the p-th
layer respectively. Here Zp is the output dimension of the p-th layer, i.e., Zp = 1283 when
the last layer predicts transformation fields for 3D images with the dimension of 1283.

Current learning approaches for image registration have been performed in the original
high-dimensional image space [14, 194]. In contrast, our proposed model DeepFLASH
significantly reduces the dimension of Zp into a low-dimensional bandlimited space zp
(where zp ≪ Zp). This makes the training of traditional registration networks much more
efficient in terms of both time and memory consumption.

1.3 Experimental Evaluation

We demonstrate the effectiveness of our model by training and testing on both 2D syn-
thetic data and 3D real brain MRI scans.

2D synthetic data. We first simulate 3000 “bull-eye” synthetic data (as shown in Fig 17)
by manipulating the width a and height b of an ellipse equation, formulated as (x−50)2

a2
+

(y−50)2

b2
= 1. We draw the parameter a, b randomly from a Gaussian distribution N (4, 22)

for inner ellipse, and a, b ∼ N (13, 42) for outer ellipse.

3D brain MRI. We include 3200 public T1-weighted 3D brain MRI scans from ADNI [80],
OASIS [56], Autism Brain Imaging Data Exchange (ABIDE) [45], and LONI Probabilis-
tic Brain Atlas Individual Subject Data (LPBA40) [156] with 1000 subjects. Due to the
difficulty of preserving the diffeomorphic property across individual subjects particularly
with large age variations, we carefully evaluate images from subjects aged from 60 to
90. All MRIs were all pre-processed as 128× 128× 128, 1.25mm3 isotropic voxels, and
underwent skull-stripped, intensity normalized, bias field corrected and pre-aligned with
affine transformation.

To further validate our model accuracy through segmentation labels, we use manually
delineated anatomical structures in LPBA40 dataset. We randomly select 100 pairs of



51

MR images with segmentation labels from LPBA40. We then carefully down-sampled all
images and labels from the dimension of 181× 217× 181 to 128× 128× 128.

Experiments To validate the registration performance of DeepFLASH on both 2D and 3D
data, we run a recent state-of-the-art image registration algorithm FLASH [203, 206] on
1000 2D synthetic data and 2000 pairs of 3D MR images to optimal solutions, which are
used as ground truth. We then randomly choose 500 pairs of 2D data and 1000 pairs of 3D
MRIs from the rest of the data as testing cases. We set registration parameter α = 3, c = 6

for the operator L̃, the number of time steps for Euler integration in geodesic shooting as
10. We adopt the band-limited dimension of the initial velocity field ṽopt as 16, which
has been shown to produce comparable registration accuracy [203]. We set the batch size
as 64 with learning rate η = 1e − 4 for network training, then run 2000 epochs for 2D
synthetic training and 5000 epochs for 3D brain training.

Next, we compare our 2D prediction with registration performed in full-spatial domain.
For 3D testing, we compare our method with three baseline algorithms, including FLASH
[204] (a fast optimization-based image registration method), Voxelmorph [14] (an unsu-
pervised registration in image space) and Quicksilver [194] (a supervised method that
predicts transformations in a momentum space). We also compare the registration time
of DeepFLASH with traditional optimization-based methods, such as vector momenta
LDDMM (VM-LDDMM) [161], and symmetric diffeomorphic image registration with
cross-correlation (SyN) from ANTs [10]. For fair comparison, we train all baseline al-
gorithms on the same dataset and report their best performance from published source
codes.

To better validate the transformations generated by DeepFLASH, we perform registration
based segmentation and examine the resulting segmentation accuracy over eight brain
structures, including Putamen (Puta), Cerebellum (Cer), Caudate (Caud), Hippocampus
(Hipp), Insular cortex (Cor), Cuneus (Cune), brain stem (Stem) and superior frontal gyrus
(Gyrus). We evaluate a volume-overlapping similarity measurement, also known as Dice
coefficient, between the propagated segmentation and the manual segmentation [46].

We demonstrate the efficiency of our model by comparing quantitative time and GPU
memory consumption across all methods. All optimal solutions for training data are gen-
erated on an i7, 9700K CPU with 32 GB internal memory. The training and prediction
procedure of all learning-based methods are performed on Nvidia GTX 1080Ti GPUs.

Results Fig. 17 visualizes the deformed images, transformation fields, and the determi-
nant of Jacobian (DetJac) of transformations estimated by DeepFLASH and a registration
method that performed in full-spatial image domain. Note that the value of DetJac indi-
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Source Target

Full-spatial DeepFLASH

Deformed Images Transformations Determinant of Jacobian

Full-spatial DeepFLASH Full-spatial DeepFLASH

0.4

1.6

Fig. 17: Example of 2D registration results. Left to right: 2D synthetic source, target image, deformed image

computed in the full-spatial domain, transformation grids overlaid with source image, and determinant of

Jacobian (DetJac) of transformations.

cates how volume changes, for instance, there is no volume change when DetJac = 1,
while volume shrinks when DetJac < 1 and expands when DetJac > 1. The value of De-
tJac smaller than zero indicates an artifact or singularity in the transformation field, i.e.,
a failure to preserve the diffeomorphic property when the effect of folding occurs. Both
methods show similar patterns of volume changes over transformation fields. Our pre-
dicted results are fairly close to the estimates from registration algorithms in full spatial
domain.

Fig. 18 visualizes the deformed images and the determinant of Jacobian with pairwise
registration on 3D brain MRIs for all methods. It demonstrates that our method Deep-
FLASH is able to produce comparable registration results with little to no loss of the
accuracy. In addition, our method gracefully guarantees the smoothness of transformation
fields without artifacts and singularities.

The left panel of Fig. 19 displays an example of the comparison between the manually
labeled segmentation and propagated segmentation deformed by transformation field es-
timated from our algorithm. It clearly shows that our generated segmentations align fairly
well with the manual delineations. The right panel of Fig. 19 compares quantitative re-
sults of the average dice for all methods, with the observations that our method slightly
outperforms the baseline algorithms.

Fig. 20 reports the statistics of dice scores (mean and variance) of all methods over eight
brain structures from 100 registration pairs. Our method DeepFLASH produces compa-
rable dice scores with significantly fast training of the neural networks.
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Fig. 18: Example of 3D image registration on OASIS dataset. Left panel: axial, coronal, and sagittal view of

source and target images. Right panel: deformed images and determinant of Jacobian of the transformations

by FLASH, Quicksilver, Voxelmorph, and DeepFLASH.

Source Target Propagated

Methods Average Dice

VM-LDDMM 0.760

ANTs(SyN) 0.770

FLASH 0.788

Quicksilver 0.762

Voxelmorph 0.774

DeepFLASH 0.780

Fig. 19: Left: source and target segmentations with manually annotated eight anatomical structures (on

LPBA40 dataset), propagated segmentation label deformed by our method. Right: quantitative result of

average dice for all methods.

Table.1 reports the time consumption of optimization-based registration methods, as well
as the training and testing time of learning-based registration algorithms. Our method
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Fig. 20: Dice score evaluation by propagating the deformation field to the segmentation labels for four meth-

ods on eight brain structures (Putamen(Puta), Cerebellum (Cer), Caudate (Caud), Hippocampus (Hipp), In-

sular cortex (Cor), Cuneus (Cune), brain stem (Stem), and superior frontal gyrus (Gyrus)).
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DeepFLASH VoxelMorph Quicksilver

Fig. 21: Comparison of average GPU memory usage on our method and learning-based baselines for both

training and testing processes.

can predict the transformation fields between images approximately 100 times faster than
optimization-based registration methods. In addition, DeepFLASH outperforms learning-
based registration approaches in testing, while with significantly reduced computational
time in training.

Fig. 21 provides the average training and testing GPU memory usage across all meth-
ods. It has been shown that our proposed method dramatically lowers the GPU footprint
compared to other learning-based methods in both training and testing.

1.4 Conclusion

In this section, I present a novel diffeomorphic image registration network with efficient
training process and inference. In contrast to traditional learning-based registration meth-
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Table 1: Top: quantitative results of time consumption on both CPU and GPU for optimization-based regis-

tration methods (there is no GPU-version of ANTs). Bottom: computational time of training and prediction

for our method DeepFLASH and current deep learning registration approaches.

Methods
Training Time

(GPU hours)

Registration time

(sec)

CPU GPU

VM-LDDMM - 1210 262

ANTs(SyN) - 6840 -

FLASH - 286 53.4

Quicksilver 31.4 122 0.760

Voxelmorph 29.7 52 0.571

DeepFLASH 14.1 41 0.273

ods that are defined in the high-dimensional imaging space, our model is fully developed
in a low-dimensional bandlimited space with the diffeomorphic property of transforma-
tion fields well preserved. Based on the fact that current networks are majorly designed in
real-valued spaces, we are the first to develop a decoupled-network to solve the complex-
valued optimization with the support of rigorous math foundations. Our model substan-
tially lowers the computational complexity of the neural network and significantly reduces
the time consumption on both training and testing, while preserving a comparable regis-
tration accuracy. The theoretical tools developed in our work is flexible/generic to a wide
variety of the state-of-the-art networks, e.g., FCN, or RNN. To the best of our knowledge,
we are the first to characterize the diffeomorphic deformations in Fourier space via net-
work learning. This work also paves a way for further speeding up unsupervised learning
for registration models.

2 Learning Deformable Geometric Shapes in Deep

Image Classifiers

2.1 Related Work

For image classification, deformable shapes have been recognized as powerful tool [13,
61, 118] since they capture geometric features that describe changes of objects with com-
plex structures in images, making them a reliable cue for image analysis tasks [127, 118,



56

193]. Bountiful literature demonstrates that the robustness of shapes to variations in im-
age intensity and texture (e.g., noisy or corrupted data) makes it a reliable cue for image
analysis tasks [127, 118, 193]. Existing methods have studied various representations of
geometric shapes, including landmarks [16, 23, 40], point clouds [1], binary segmenta-
tions [25, 163], and medial axes [132]. A very recent research area in geometric deep
learning [26, 139] has investigated mathematical representations of shapes in the form of
analytic graphs or points and then uses them to synthesize shapes. These aforementioned
techniques often ignore objects’ interior structures; hence do not capture the intricacies of
complex objects in images. In contrast, deformation-based shape representations (based
on elastic deformations or fluid flows) focus on highly detailed shape information from
images [36, 149]. With the underlying assumption that objects in many generic classes
can be described as deformed versions of an ideal template, descriptors in this class arise
naturally by matching the template to an input image. This procedure is also known as
atlas building [85, 181, 207]. The resulting transformation is then considered a shape that
reflects geometric changes. We will feature deformation-based shape representations that
offer more flexibility in describing shape changes and variability of complex structures.
However, our developed framework can be easily adapted to other types of represen-
tations, including those characterized by landmarks, binary segmentations, curves, and
surfaces.

Inspired by the advantages of incorporating shape information in image analysis tasks,
current deep learning-based classification networks have been mostly successful in using
pre-extracted shapes from images [199, 121, 16]. However, these methods require pre-
processed shape data and oftentimes achieve a suboptimal solution in identifying shape
features that are most representative to differentiate different classes of images. An ex-
plicit learning of deformable shapes in deep image classifiers has been missing. This lim-
its the power of classification models where quantifying and analyzing geometric shapes
is critical.

In this work, we introduce a novel deep learning image classification model, named as
Geo-SIC, that jointly learns deformable shapes in a multi-template deformation space.
More specifically, Geo-SIC provides an unsupervised learning of deformation-based shape
representations via a newly designed sub-network of atlas building. Different from pre-
vious deep learning based atlas building approaches [42, 73], we employ an efficient
parameterization of deformations in a low-dimensional Fourier space [204] to speed up
the training inference. The major contribution of Geo-SIC is three folds:

(i) In contrast to previous approaches treating shapes as preprocessed objects from im-
ages, Geo-SIC provides a more fundamental approach by merging shape features nat-
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urally in the learning process of classification. To the best of our knowledge, Geo-SIC
was the first to learn deformation-based shape descriptors within an image classifier.
It provides an image distance function of both intensity and geometric changes that
are most relevant to classify different groups.

(ii) Geo-SIC performs a simultaneous feature extraction from both image and learned
shape spaces. With these integrated features, Geo-SIC achieves an improved accuracy
and robustness of image classification. An additional benefit of Geo-SIC is increased
model interpretability because of its access to the underlying geometric features of
image data.

(iii) Geo-SIC provides an efficient geometric learning network via atlas building in a com-
pact and low-dimensional shape space. This reduces the computational complexity of
model training in atlas building, especially for high-dimensional image data (i.e., 3D
brain MRIs).

We demonstrate the effectiveness of Geo-SIC on both synthetic 2D images and real 3D
brain MR images. Experimental results show that our model substantially improves the
classification accuracy compared to a wide variety of models without jointly learned ge-
ometric features. We then visualize the class activation maps by using gradient-weighted
class activation mapping (Grad-CAM) [153]. The highlighted regions show that Geo-SIC
attracts more attention to geometric shape features that positively contribute to the accu-
racy of classifiers.

2.2 Method: Geo-SIC

In this section, we present a novel deep image classifier (Geo-SIC) that explicitly learns
geometric shape representations for an improved performance of accuracy, as well as in-
creased model interpretability. Geo-SIC consists of two modules: an unsupervised learn-
ing of geometric shapes via an atlas building network, and a boosted classification net-
work that integrates features from both images and learned shape spaces. Details of our
network architecture are introduced as follows.

Geometric shape learning based on an atlas building network. Let (θEg , θ
D
g ) be the

parameters of an encoder-decoder in our geometric learning network. Consider a number
of J image classes, there exists a number of Nj, j ∈ {1, . . . , J} images in each class. Our
atlas building network will learn the shape representations, also known as initial velocity
fields ṽn(θEg , θ

D
g ), n ∈ {1, · · · , Nj}, with an updated atlas Ij . We adopt the architecture of

UNet [147] in this work, however, other network structures such as UNet++ [210] and
TransUNet [33] can be easily applied.
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Boosted image classification network. Let θEc be the parameters of an encoder that ex-
tracts features from image spaces. We develop a feature fusion module that integrates
geometric shape and image features in a latent space parameterized by θgc(θEg , θ

E
c ). This

boosted classification network will predict a class label ynj(θgc) for each input image.

2.2.1 Network loss. The loss function of Geo-SIC includes the loss from both geomet-
ric learning and classification network. Given a set of image class labels ŷnj , we define
Θ = (θEg , θ

D
g , θ

E
c , θgc) for all network parameters and formulate the total loss of Geo-SIC

as

l(Θ) =

Nj∑
n=1

J∑
j=1

[
1

σ2
j

∥Ij ◦ ϕ−1
nj

(
ṽnj(θ

E
g , θ

D
g )

)
− Inj∥2 + (L̃j ṽnj(θEg , θDg ), ṽnj(θEg , θDg ))

− λŷnj · log ynj(θgc)] + reg(Θ), s.t. Eq (3)& Eq (5), (45)

where reg(·) is a regularity term on the network parameters. Geo-SIC conducts a joint
training for a geometric learning network, an image classifier backbone plus a feature
fusion module. The entire model is optimized by the total loss Eq (45) with geodesic
constraints. Testing can be efficiently performed by using the boosted classifier, which
includes the well-trained boosted backbone with a feature fusion module.

An overview of our proposed Geo-SIC network is shown in Fig. 22.

Network loss

�  vn j(θE
g , θD

g )

Geometric shape learning via atlas building network

�yn j(θgc)

Boosted classifier 

Atlas �Ij
Velocity  

fileds

Feature fusion

Class labelInput data

Fig. 22: An overview of our proposed Geo-SIC network.

While Geo-SIC enables the neural network to capture the geometric shape variation in
the tangent space of diffeomorphisms in Fourier domain, other deformable-based shape
approaches, such as image registration using piecewise functions [148], variants of LD-
DMM in spatial domain [161], and stationary velocity fields [6] can be easily plugged
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into our proposed method. Now we are ready to introduce the network architecture of
Geo-SIC. representations then present the joint learning model for image classification.

We optimize the network loss by an alternating optimization scheme, where the original
loss is effectively decomposed into two subfunctions. Details of our developed network
architecture of Geo-SIC and its optimization will be introduced in the following sections.

2.2.2 Alternating Optimization For Network Training We develop an alternating
optimization scheme [126] to minimize the network loss defined in Eq (45). All parame-
ters are optimized jointly by alternating between the training of geometric shape learning
and image classification networks.

Training of geometric shape learning via atlas building. In contrast to current ap-
proaches that parameterize deformation-based shapes in a high-dimensional image space
[73, 42], our model employs an efficient reparameterization in a low-dimensional ban-
dlimited space [204]. This makes the computation of geodesic constraints ( Eq (3) and
Eq (5)) required in the loss function substantially faster in each forward/backward propa-
gation during the training process. The loss of training in the sub-module of atlas building
network is

lGeo(θ
E
g , θ

D
g , Ij) =

Nj∑
n=1

J∑
j=1

[
1

σ2
j

∥Ij ◦ ϕ−1
nj

(
ṽnj(θ

E
g , θ

D
g )

)
− Inj∥2 + (L̃j ṽnj(θEg , θDg ), ṽnj(θEg , θDg ))

+ reg(θEg , θ
D
g ), s.t. Eq (3)& Eq (5), (46)

Similar to [73, 42], we treat atlas Ij as a network parameter and update it accordingly. To
guarantee the network optimization stays in the tangent space of diffeomorphisms, we pull
back the network gradient with regard to initial velocity fields by backward integrating
adjoint jacobi fields [204] each time after the forward pass. More details are included in
the supplementary materials.

Training of boosted image classifier. As highlighted in the red box in Fig. 22, Geo-SIC
extracts both images and geometric features and then integrates them into a feature fusion
block. This boosted classifier is optimized over the loss defined as

lSIC(θgc) = −λ
Nj∑
n=1

J∑
j=1

ŷnj · log ynj
(
θgc(θ

E
g , θ

E
c )

)
+ reg

(
θgc(θ

E
g , θ

E
c )

)
. (47)

A summary of our joint learning of Geo-SIC through an alternating optimization is in
Alg. 3.
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Algorithm 3 Joint learning of Geo-SIC.
Input : A set of images {Inj} with class labels {ŷnj} and a number of iterations r.

Output: Predicted class label, atlas, and initial velocity fields.

12 for i = 1 to r do

/* Train geometric learning network */

13 Minimize the atlas building loss in Eq (46);

14 Output the atlases {Ij} and predicted initial velocity fields {vnj} for all image classes;

/* Train the boosted image classifier */

15 With learned shape features, Minimizing the boosted classification loss in Eq (47);

16 Output the predicted class labels {ŷnj};

17 end

18 Until convergence

2.3 Experimental Evaluation

2D data set. We choose 50000 images (including five classes, circle, cloud, envelope,
square, and triangle are shown in Fig 24) of Google Quickdraw dataset [83], a collection
of categorized drawings contributed by online players in a drawing game. We run affine
transformation within each class as prepossessing and upsample each image from 28×28

to 100× 100.

3D brain MRI. For brain data, we include 373 public T1-weighted brain MRI scans from
the OASIS dataset [56]. All 150 subjects are aged from 60 to 96 with Alzheimer‘‘s disease
diagnosis (79 cases for dementia and 71 cases for non-demented). All MRIs were all pre-
processed as 256× 256× 256, 1.25mm3 isotropic voxels, and underwent skull-stripped,
intensity normalized, bias field corrected, and pre-aligned with affine transformation.

Classification evaluation. We demonstrate the effectiveness of our model on both 2D
synthetic data and 3D brain MRI scans. We select four classification backbones (AlexNet
[92], a five-block 3D CNN, ResNet18 [71], and VGG19 [157]) as baseline methods. For
CNN, we use a 3D convolutional layer with a 5× 5× 5 convolutional kernel size, a batch
normalization (BN) layer with activation functions (PReLU or ReLU), and a 2 × 2 × 2

3D max-pooling in each CNN block. For a fair comparison, we show the results of Geo-
SIC by replacing the backbone in our model with all baselines (named as Geo-SIC:Alex,
Geo-SIC:CNN, Geo-SIC:Res, and Geo-SIC:VGG).

To further investigate the advantages of our joint learning, we compare with two-step ap-
proaches (Two-step Alex, Two-step CNN, Two-step Res, and Two-step VGG), where the
geometric learning network is treated as a preprocessing step for geometric feature ex-
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traction. We report the average accuracy, F1-score, AUC, sensitivity, and specificity for
all methods. We also show the receiver operating characteristic (ROC) curves by plot-
ting the true positive rate (TPR) against the false positive rate (FPR) at various threshold
settings.

Robustness and interpretability. We demonstrate the robustness of Geo-SIC to varia-
tions in image intensity by adding different scales of universal adversarial noises [120,
119] in both 2D and 3D images. We adopt an iterative algorithm [119] that computes the
universal perturbations to send perturbed images outside of the decision boundary of the
classifier while fooling most images without visibly changing image data. We then com-
pare the image classification accuracy for the baseline (selected from the best performance
in backbones) and our model.

To better understand the model interpretability in terms of network attention of all models,
we visualize the Grad-CAM [153] of the last neural network layer.

Atlas evaluation. We also evaluate the performance of our newly designed atlas building
network, which serves as a core part of Geo-SIC. We compare the estimated atlas of Geo-
SIC that achieves the highest AUC with three atlas-building methods: a diffeomorphic
autoencoder [73] (LagoMorph), a deep learning based conditional template estimation
method [42] (Con-Temp) and a Bayesian atlas building framework with hyper priors [181]
(Hier-Baye).

We report the total computational time and memory consumption on 3D real brain images.
To measure the sharpness of estimated atlas I , we adopt a metric of normalized standard
deviation computed from randomly selected 4000 image patches [98]. Given M(i), a
patch around a voxel i of an atlas I , the local measure of the sharpness at voxel i is
defined as sharpness(I(i)) = sdM(i)(I)/avgM(i)(I), where sd and avg denote the standard
deviation and the mean of Mi.

Parameter Setting. We set an optimal dimension of the low-dimensional shape repre-
sentation as 162 for 2D dataset and 323 for 3D dataset. We set parameter α = 3 for the
operator L̃, the number of time steps for Euler integration in EPDiff ( Eq (5)) as 10. We
set the noise variance σ = 0.02. We set the batch size as 16 and use the cosine annealing
learning rate schedule that starts from a learning rate η = 1e − 3 for network training.
We run 1000 epochs with the Adam optimizer and save networks with the best validation
performance for all models. All networks are trained with an i7, 9700K CPU with 32 GB
internal memory. The training and prediction procedure of all learning-based methods are
performed on four Nvidia GTX 2080Ti GPUs. For both 2D and 3D datasets, we split the
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images by using 70% as training images, 15% as validation images, and 15% as testing
images.

Classification on 2D synthetic images Table. 2 reports the classification performance
across all methods over model accuracy and five micro-averaged evaluation metrics. Our
method achieves the highest model accuracy with comparable micro-averaged AUC, F-1
score, precision, sensitivity, and specificity. Compare to all baselines including two-step
approaches, Geo-SIC achieves the best classification performance.

Table 2: Classification performance comparison on 2D synthetic data over six metrics (micro-average).

Models Accuracy AUC F-1 score Precision Sensitivity Specificity

AlexNet 0.880 0.931 0.876 0.914 0.880 0.920

Two-step AlexNet 0.891 0.955 0.891 0.906 0.891 0.905

Geo-SIC: Alex 0.928 0.977 0.927 0.950 0.928 0.952

CNN 0.861 0.928 0.857 0.874 0.861 0.881

Two-step CNN 0.869 0.931 0.866 0.914 0.869 0.918

Geo-SIC: CNN 0.897 0.954 0.898 0.911 0.897 0.910

ResNet18 0.875 0.941 0.877 0.885 0.875 0.883

Two-step Res 0.911 0.972 0.912 0.935 0.911 0.883

Geo-SIC: Res 0.935 0.983 0.928 0.948 0.935 0.956

VGG19 0.883 0.946 0.882 0.904 0.883 0.905

Two-step VGG 0.895 0.951 0.888 0.909 0.895 0.919

Geo-SIC: VGG 0.927 0.980 0.924 0.957 0.927 0.960

Fig. 23 visualizes the micro-averages ROC curve for baselines and our proposed Geo-SIC.
For four sets of comparisons, all curves produced by our classifiers are with a larger AUC
and are closer to the top-left corner, which indicates a better classification performance.
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Fig. 23: ROC curves of multi-class classification comparison between baselines and the proposed method.
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Fig. 24 (left) displays the heat maps overlaid with 2D QuickDraw data for all methods.
Geo-SIC produces more explainable heat maps that are geometrically aligned with the
original shapes. It indicates that the latent shape space attracts more attention to geo-
metric features that positively contribute to the performance of classifiers. Fig. 24 (right)
visualizes a comparison of atlases generated by baselines and Geo-SIC. It shows that Geo-
SIC produces image atlases with the best visual quality, e.g., clearer circle/cloud edges,
and sharper triangle/square corners.

AlexNet Geo-SIC: 
Alex

CNN VGG19 ResNet18Geo-SIC: 
CNN

Geo-SIC: 
VGG

Geo-SIC: 
Res Hier-BayeCon-tempLagoMorph Geo-SIC

Fig. 24: Left: visualization of Grad-CAMs on mutil-atlas building task of five different geometric shapes.;

Right: atlas comparison between state-of-the-arts and Geo-SIC.

Classification on 3D real brain MRIs Table. 3 reports the model performance for brain
images. Our method Geo-SIC outperforms all baselines with comparable accuracy, AUC,
F1-score, precision, sensitivity, and specificity. It shows that Geo-SIC substantially im-
proves the classification performance with a reduced misclassification rate.

Fig. 25 visualizes the ROC curves for all algorithms. For four sets of comparisons, our
boosted classifiers offer curves closer to the top-left corner with higher AUC values. It
shows that Geo-SIC has better performance in distinguishing between healthy control
and Alzheimer’s disease groups.

Robustness and interpretability Fig. 26 shows that Geo-SIC consistently achieves better
classification accuracy (∼ 10% higher in average ) than baseline algorithms (i.e., VGG19)
across different levels of adversarial attacks (i.e., ϵ = 5e−3, 5e−2, 5e−1) on image inten-
sity. This indicates that our model is able to improve the classification model robustness
by providing jointly learned geometric features.
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Table 3: Classification performance comparison on 3D brain images over six metrics.

Models Accuracy AUC F-1 score Precision Sensitivity Specificity

AlexNet 0.791 0.861 0.796 0.787 0.806 0.775

Two-step AlexNet 0.800 0.887 0.809 0.822 0.796 0.804

Geo-SIC: Alex 0.835 0.917 0.827 0.823 0.831 0.839

CNN 0.779 0.860 0.773 0.804 0.744 0.814

Two-step CNN 0.788 0.883 0.791 0.794 0.787 0.789

Geo-SIC: CNN 0.824 0.902 0.828 0.833 0.822 0.825

ResNet18 0.805 0.887 0.811 0.813 0.809 0.800

Two-step Res 0.833 0.917 0.836 0.804 0.870 0.797

Geo-SIC: Res 0.873 0.933 0.874 0.874 0.874 0.872

VGG19 0.805 0.871 0.813 0.807 0.818 0.790

Two-step VGG 0.865 0.880 0.838 0.822 0.854 0.826

Geo-SIC: VGG 0.852 0.930 0.850 0.820 0.881 0.825
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Fig. 25: ROC curves of binary classification comparison for baselines, two-step approaches, and Geo-SIC.

Fig. 27 displays the heat maps (produced by Grad-CAM) overlaid with brain MRIs. Our
generated heat maps are fairly aligned with brain structures (e.g., ventricle), which are
critical to Alzheimer’s disease diagnosis. Our model highlights how latent geometric fea-
tures guide neural networks to identify the most anatomically meaningful brain regions
for distinguishing between healthy and disease groups. Specifically, the heat maps gen-
erated by Geo-SIC for both dementia and non-dementia cases are more explainable than
those produced by other models. This increased interpretability demonstrates the potential
for our model to improve the analysis of Alzheimer’s disease in a clinical setting.

Atlas of 3D images Fig. 28 (top) visualizes a comparison of the atlas on real brain MRI
scans. With the benefits of reparameterizing the deformation fields in a low-dimensional
bandlimited space [204], our model obtains better quality of the atlas with sharper details.
More specifically, Geo-SIC offers a better brain atlas with clearer anatomical structures,
e.g., ventricle, grey and white matter.
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Fig. 26: Classification accuracy comparison between baseline and Geo-SIC under different scales of adver-

sarial noise attack for 2D and 3D image classification.
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Fig. 27: Visualization of Grad-CAMs on single-atlas building of dementia and non-dementia. Left to

right: Grad-CAM heatmaps generated by AlexNet, Geo-SIC:Alex, CNN, Geo-SIC:CNN, ResNet18, Geo-

SIC:Res, VGG19 and Geo-SIC:VGG.

Fig. 28 (bottom left) quantitatively reports the sharpness metric of all methods. Fig. 28
(bottom right) shows the comparison of computational time and memory consumption
across all methods. Although Con-Temp is slightly faster than Geo-SCI due to a very
different parameterization of velocity fields (stationary velocity rather than the time-
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dependent velocity in other methods), it achieves a less sharp atlas and still requires
larger memory consumption than our model. Compared with the other methods (Lago-
morph and Hier-Baye) that employ time-dependent velocity fields, Geo-SIC substantially
reduces time consumption and memory consumption.
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Fig. 28: Top: atlas comparison between state-of-the-arts and Geo-SIC. Bottom left: sharpness metric evalua-

tion of atlas (the higher the better).The mean values of the sharpness metric of three baselines and Geo-SIC

are, 0.259, 0.235, 0.218, and 0.2867; bottom left: average time and memory consumption comparison for

atlas building.

2.4 Conclusion

In this section, I present a novel deep learning model, named as Geo-SIC, that for the
first time incorporates deformable geometric shape learning into deep image classifiers.
We jointly learn a boosted classifier with an unsupervised shape learning network via
atlas building. To achieve this goal, we define a new joint loss function with an alternat-
ing optimization scheme. An additional benefit is that Geo-SIC provides efficient shape
representations in a low-dimensional bandlimited space. Experimental results on both 2D
synthetic data and 3D brain MRI scans show that our model gains an improved classifi-
cation performance while producing a sharper atlas with better visual quality. In addition,
compared with the state-of-the-arts, our model is more explainable in terms of interpret-
ing the network attention on geometric features. The theoretical tools developed in this
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work are generic to a wide variety of combinations of shape representations and clas-
sification backbones. Geo-SIC not only has a great potential to impact clinically diag-
nostic routines, such as Alzheimer’s disease detection, or post-treatment for patient care,
but also bridges the gap between the developed deformable shape learning theories and
classification-based applications. Future work to extend our Geo-SIC can be (i) modeling
multiple templates within each class to capture multimodal image distributions, and (ii)
incorporating images with missing data values that are caused by occlusions, or appear-
ance changes such as tumor growth.

3 Deep Learning for Regularization Parameter

Estimation

3.1 Related Work

The nice properties of diffeomorphisms keep topological structures of objects intact in
images. Artifacts (i.e., tearing, folding, or crossing) that generate biologically meaning-
less images can be effectively avoided, especially when large deformation occurs. As
we addressed in Chapter II, the problem of diffeomorphic image registration is typically
formulated as an optimization over transformation fields, such as a free-form deforma-
tion using B-splines [148], a LogDemons algorithm based on stationary velocity fields
(SVF) [6], and a large diffeomorphic deformation metric mapping (LDDMM) method
utilizing time-varying velocity fields [15].

To ensure the smoothness of transformation fields, a regularization term defined on the
tangent space of diffeomorphisms (called velocity fields) is often introduced in registra-
tion models. Having such a regularity with proper model parameters is critical to regis-
tration performance because they greatly affect the estimated transformations. Either too
large or small-valued regularity can not achieve satisfying registration results (as shown
in Fig .29). Models of handling the regularity parameter mainly include (i) direct opti-
mizing a Bayesian model or treating it as a latent variable to integrate out via Expectation
Maximization (EM) algorithm [2, 3, 207, 181], (ii) exhaustive search in the parameter
space [81, 170, 150], and (iii) utilizing parameter continuation methods [64, 65, 111, 112].
Direct optimization approaches define a posterior of transformation fields that includes an
image matching term as a likelihood and a regularization as a prior to support the smooth-
ness of transformations [211, 3, 166]. Estimating regularization parameters of these mod-
els using direct optimization is not straightforward due to the complex structure of the
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posterior distribution. Simpson et al. infer the level of regularization in small deformation
registration model by mean-field VB inference [84], which allows tractable approxima-
tion of full Bayesian inference in a hierarchical probabilistic model [159, 158]. However,
these aforementioned algorithms are heavily dependent on initializations, and are prone
to getting stuck in the local minima of high-dimensional and non-linear functions in the
transformation space. A stochastic approximative expectation maximization (SAEM) al-
gorithm [3] was developed to marginalize over the posterior distribution of unknown pa-
rameters using a Markov Chain Monte Carlo (MCMC) sampling method. Later, Zhang et
al. estimate the model parameters of regularization via a Monte Carlo Expectation Max-
imization (MCEM) algorithm for unbiased atlas building problem [207]. A recent model
of Hierarchical Bayesian registration [181] further characterizes the regularization param-
eters as latent variables generated from Gamma distribution, and integrates them out by
an MCEM method.

Despite the achievement of the aforementioned methods, estimating the regularization
parameter in a high-dimensional and nonlinear space of 3D MRIs (i.e., dimension is typ-
ically 1283 or higher) inevitably leads to expensive computational cost through iterative
optimizations. To address this issue, we present a deep learning approach to fast predict
registration parameters. While there exist learning-based registration models for transfor-
mations [91, 14, 17], we are particularly interested in learning the relationship between
pairwise images and optimal regularizations of transformations via regression. In order to
produce ”ground truth” regularization parameters, we first introduce a low-dimensional
Bayesian model of image registration to estimate the best regularity from the data itself.
Following a recent work of [177], we construct a posterior distribution of diffeomorphic
transformations entirely in a bandlimited space with much lower dimensions. This greatly
reduces the computational cost of data generation in training. The theoretical tools devel-
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Fig. 29: Left to right: examples of transformation fields overlaid with deformed images with under-

regularized and over-regularized registration models. A small regularization introduces crossing artifacts

on the transformations vs. a large regularization discourages sufficient transformations between images.
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oped in this work are generic to various deformable registration models, e.g, stationary ve-
locity fields that remain constant over time [6]. The model recommends optimal registra-
tion parameters for registration in real-time and has great potential in clinical applications
(i.e., image-guided navigation system for brain shift compensation during surgery [106]).
To summarize, our main contributions are three folds:

– To the best of our knowledge, we are the first to present a predictive regularization
estimation method for diffeomorphic image registration through deep learning.

– We develop a low-dimensional Bayesian framework in a bandlimited Fourier space to
speed up the training data generation.

– Our model significantly speeds up the parameter estimation, while maintaining com-
parable registration results.

The section is organized as follows. In sec. 3.2.1, we first develop a low-dimensional
posterior distribution that is parametrized by bandlimited velocity fields. We then estimate
the regularization parameter by maximizing the posterior. In sec. 3.2.2, we design a deep
convolutional neural network that takes an image pair as input and adaptively predicts the
optimal smoothness level for registration. In sec. 3.3, we validate our model on both 2D
synthetic data and 3D brain MRI scans.

3.2 Method: Efficient Predictive Approach for Regularization

Parameter Estimation

In this section, we present a supervised learning model based on CNN to predict the
regularity of image registration for a given image pair. Analogous to [194], we run
optimization-based image registration to obtain training data. We introduce an efficient
Bayesian model of image registration to produce appropriate regularization parameters
for training.

3.2.1 Low-dimensional Bayesian Model of Registration In contrast to previous ap-

proaches, our proposed model is parameterized in a bandlimited velocity space Ṽ , with
parameter α enforcing the smoothness of transformations.

Assuming an independent and identically distributed (i.i.d.) Gaussian noise on image in-
tensities, we obtain the likelihood

p(T |S ◦ ϕ−1
1 , σ2) =

1

(
√
2πσ2)M

exp

(
− 1

2σ2
||S ◦ ϕ−1

1 − T ||22
)
, (48)
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where σ2 is the noise variance and M is the number of image voxels. The deformation
ϕ−1
1 corresponds to ϕ̃−1

1 in Fourier space via the Fourier transform F(ϕ−1
1 ) = ϕ̃−1

1 , or
its inverse ϕ−1

1 = F−1(ϕ̃−1
1 ). The likelihood is defined by the residual error between a

target image and a deformed source at time point t = 1. We assume the definition of
this distribution is after the fact that the transformation field is observed through geodesic
shooting; hence is not dependent on the regularization parameters.

Analogous to [176], we define a prior on the initial velocity field ṽ0 as a complex multi-
variate Gaussian distribution, i.e.,

p(ṽ0|α) =
1

(2π)
M
2 |L̃−1(α)| 12

exp

(
−1

2
(L̃(α)ṽ0, ṽ0)

)
, (49)

where | · | is matrix determinant. The Fourier coefficients of L̃ is, i.e., L̃ =
(
αÃ+ 1

)3

,

Ã(ξ1, . . . , ξd) = −2
∑d

j=1 (cos(2πξj)− 1). Here Ã denotes a negative discrete Fourier
Laplacian operator with a d-dimensional frequency vector (ξ1, . . . , ξd), where d is the
dimension of the bandlimited Fourier space.

Combining the likelihood in Eq (48) and prior in Eq (49) together, we obtain the negative
log posterior distribution on the deformation parameter parameterized by ṽ0 as

− ln p(ṽ0 |S, T, σ2, α) =
1

2
(L̃ṽ0, ṽ0) +

∥S ◦ ϕ−1
1 − T∥22
2σ2

− 1

2
ln |L̃|+ 2M lnσ +M ln(2π).

(50)

Next, we optimize Eq (50) over the regularization parameter α and the registration pa-
rameter ṽ0 by maximum a posterior (MAP) estimation using gradient descent algorithm.
Other optimization schemes, such as BFGS [134], or the Gauss-Newton method [8] can
also be applied.

Gradient of ααα. To simplify the notation, first we define f(ṽ0) ≜ − ln p(ṽ0 |S, T, σ2, α).
Since the discrete Laplacian operator L̃ is a diagonal matrix in Fourier space, its deter-

minant can be computed as
d∏
j=1

(αÃj + 1)3. Therefore, the log determinant of L̃ operator

is

ln |L̃| = 3
d∑
j=1

(αÃj + 1).

We then derive the gradient term ∇αf(ṽ0) as

∇αf(ṽ0) = −3

2
[
d∑
j=1

Ãj

αÃj + 1
− ⟨(αÃ+ 1)5Ãṽ0, ṽ0⟩]. (51)



71

Gradient of ṽ0̃v0̃v0. We compute the gradient with respect to ṽ0 by using a forward-backward
sweep approach developed in [206]. Steps for obtaining the gradient ∇ṽ0f(ṽ0) are as
follows:

(i) Forward integrating the geodesic shooting equation Eq (5) to compute ṽ1,
(ii) Compute the gradient of the energy function Eq (1) with respect to ṽ1 at t = 1,

∇ṽ1f(ṽ0) = L̃−1(α)

(
1

σ2
(S ◦ ϕ−1

1 − T ) · ∇(S ◦ ϕ−1
1 )

)
. (52)

(iii) Bring the gradient ∇ṽ1f(ṽ0) back to t = 0 by integrating adjoint Jacobi fields back-
ward in time [206],

dv̂

dt
= −ad†

ṽĥ,
dĥ

dt
= −v̂ − adṽĥ+ ad†

ĥ
ṽ, (53)

where v̂ ∈ V are introduced adjoint variables with an initial condition ĥ = 0, v̂ =

∇ṽ1f(ṽ0) at t = 1.

A summary of the optimization is in Alg. 4. It is worthy to mention that our Bayesian
framework developed in the low-dimensional bandlimited space dramatically speeds up
the computational time of generating training regularity parameters by approximately ten
times comparing with high-dimensional frameworks.

3.2.2 Network Architecture Now we are ready to introduce our network architecture
by using the estimated α and given image pairs as input training data. Fig. 30 shows an
overview flowchart of our proposed learning model. With the optimal registration regu-
larization parameter αopt obtained from an image pair (as described in Sec. 3.2.1), a two-
stream CNN-based regression network takes source images, target images as training data
to produce a predictive regularization parameter. We optimize the network H(S, T ;W )

with the followed objective function,

Eloss = Err[H(S, T ;W ), αopt] + Reg(W ),

where Reg(W ) denotes the regularization on convolution kernel weights W . Err[·, ·] de-
notes the data fitting term between the ground truth and the network output. In our model,
we use L2 norm for both terms. Other network architectures, e.g. 3D Residual Networks
(3D-ResNet) [67] and Very Deep Convolutional Networks (3D-VGGNet) [157, 191] can
be easily applied as well.

In our network, we input the 3D source and target images into separate channels that
include four convolutional blocks. Each 3D convolutional block is composed of a 3D
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Algorithm 4 MAP of low-dimensional Bayesian registration model for training data generation.
Input : source image S and target image T , step size ϵ, step size τ , iterations r, algorithm stop criterion rate u, counter

q, minimal convergence iteration qmin

Output: optimal smoothness level αopt, and registration solution ṽ0

/* Low-dimensional MAP Estimation for α */

19 for i = 1 to r do

20 1. Compute gradient∇αf(ṽ0) by Eq (51);

/* Update α when its gradient is greater than zero; */

21 2. if ∥∇αf(ṽ0)∥2 > 1e− 6 then

22 αopt ← αopt − τ∇αf(ṽ0);

23 else

24 break;

25 3. Forward integrating the geodesic evolution equation in Eq (5) with initial velocity ṽ0;

4. Compute gradient ∇ṽ1f(ṽ0) by Eq (52) then backward integrating adjoint equations Eq (53) to generate

∇ṽ0f(ṽ0) at t = 0;

/* Update ṽ0 when its gradient is greater than zero; */

26 5. if ∥∇ṽ0f(ṽ0)∥
2 > 1e− 6 then

27 ṽ0 ← ṽ0 − ϵ∇ṽ0f(ṽ0);

28 else

29 break;

/* Compute algorithm stop rate */

30 6. Compute total energy Eq (50) for i−th iteration as Obji;

7. if Obji−Obji−1

Obji
< u then

31 q = q + 1 ;

32 else

33 continue;

/* Convergence check */

34 8. if q ≥ qmin then

35 break ;

36 else

37 continue;

38 End

convolutional layer, a batch normalization (BN) layer with activation functions (PReLU or
ReLU), and a 3D max-pooling layer. Specifically, we apply 5×5×5 convolutional kernel
and 2×2×2 max-pooling layer to encode a batch (size as B) of source and target images
(1283) to feature maps (163). After extracting the deep features from source and target
channels, we combine them into a fusion channel, which includes three convolutional
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Fig. 30: Illustration of our proposed network. From left to right: training data includes pairwise images, a

CNN-based neural network, and a loss computed between the network output and the optimal parameter

αopt, which is estimated from Alg. 4.

blocks, a fully connected layer, and an average pooling layer to produce the network
output.

3.3 Experimental Evaluation

To demonstrate the effectiveness of the proposed low-dimensional Bayesian registration
model, we validate it through three sets of experiments. For 2D synthetic data registration,
we deform a binary source image with velocity fields sampled from the prior distribution
in Eq (49) with known regularization parameters to simulate target images. We show
three convergence graphs of our MAP estimation and compare them with the ground
truth parameters.

Similarly, we synthesize 900 image pairs using regularization parameters at different
scales respectively, i.e., α = {0.1, 1.0, 10.0}, to test the performance of our predictive
model. We then use the predicted parameter α to run registration model and show the
error maps between target and deformed images.

For 3D brain MRI registration, we show results on both MAP and our network prediction.
We first show the numerical difference between the MAP estimation and our prediction
(i.e. predicted regularization parameter), and then report the mean error of deformed im-
ages between both methods across all datasets. We visualize the transformation grids and
report the value of regularization parameters for both methods. To further investigate the
accuracy of parameters generated by our model, we perform registration-based segmen-
tation and examine the resulting segmentation accuracy over nine brain structures, in-
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cluding cortex, putamen, cerebellum, caudate, gyrus, brain stem, precuneus, cuneus, and
hippocampus. We evaluate a volume-overlapping similarity measurement, also known as
Sørensen−Dice coefficient [46], between the propagated segmentation and the manual
segmentation. The statistics of dice evaluation over 150 registration pairs are reported.

We last compare the computational efficiency on both time and memory consumption of
the proposed method with a baseline model that performs Bayesian estimation of regular-
ization parameter in the full spatial domain [207].

To generate the training data of initial velocities, we run the proposed low-dimensional
Bayesian registration algorithms until convergence. We use the Euler integrator in geodesic
shooting and set the of integration steps as 10. We set algorithm stop rate u as 1e− 6 and
minimal convergence iteration qmin as 30. We use optimal truncated dimension for ṽ0 as
16 and σ = 0.03 according to [206]. For the network setting, We initialize the convolu-
tion kernel weights using the He normal initializer [70] and use the Adam optimizer with
a learning rate of 5e−4 until convergence. We set 16 and 1.0e−4 as batch size and weight
decay. The maximum epoch for 2D and 3D network training is 1000.

2D synthetic data. We generate synthetic bull-eye images with the size of 100 × 100

(as shown in Fig. 31). We manipulate the width a and height b of two ellipses by using
equation (x−50)2

a2
+ (y−50)2

b2
= 1.

3D brain MRIs. We include 1500 public T1-weighted brain MRI scans from ADNI
dataset [80], OASIS [56], and LPBA40 [156], among which 260 subjects have manual de-
lineated segmentation labels. All 3D data were carefully pre-processed as 128×128×128,
1.25mm3 isotropic voxels, and underwent skull-stripped, intensity normalized, bias field
corrected, and pre-aligned with affine transformation.

For both 2D and 3D datasets, we split the images by using 70% as training images, 15%
as validation images, and 15% as testing images such that no subjects are shared across
the training, validation, and testing stage. We evaluate the hyperparameters of models and
generate preliminary experiments on the validation dataset. The testing set is only used
for computing the final results.

Results Fig. 31 displays our MAP estimation of registration results including appropri-
ate regularity parameters on 2D synthetic images. The middle panel of Fig. 31 reports
the convergence of α estimation vs. ground truth. It indicates that our low-dimensional
Bayesian model provides trustworthy regularization parameters that are fairly close to
ground truth for network training. The bottom panel of Fig. 31 shows the convergence
graph of the total energy for our MAP approach.
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Fig. 31: Top panel: source image, velocity fields generated from prior distribution and transformation fields

(with known regularization parameter α = 3, 6, 11), and target images produced by deformed source im-

ages; Middle panel: convergence graphs of estimated α by MAP for training data; Bottom panel: conver-

gence graphs of total energy Eq (50).

Fig. 32 further investigates the consistency of our network prediction. The left panel
shows estimates of regularization parameter at multiple scales, i.e., α = 0.1, 1.0, 10.0,
over 900 2D synthetic image pairs respectively. The right panel shows the mean error of
image differences between deformed source images by transformations with predicted α
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and target images. While there are small variations on estimated regularization parame-
ters, the registration results are very close (with averaged error at the level of 10−5).
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Fig. 32: Left: our prediction of regularization parameters over 900 image pairs synthesized with different

ground truth parameters α = 0.1, 1.0, 10.0; Right: error maps of image differences between deformed and

target images.

Fig. 33 shows examples of 2D pairwise image registration with regularization estimated
by MAP and our predictive deep learning model. We obtain the regularization parameter
α = 11.34 (MAP) vs. α = 13.20 (network prediction), and α = 5.44 (MAP) vs. α = 6.70

(network prediction). The error map of deformed images indicates that both estimations
obtain fairly close registration results.

Source Target MAP Our prediction Initial velocity  
difference

0

0.015

0.01

0.005

Fig. 33: Left to right: two examples of 2D synthetic source, target, deformed images by MAP and predictive

deep learning method, and error maps of deformed image intensity differences.
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Fig. 34 displays deformed 3D brain images overlaid with transformation grids for both
methods. The parameter estimated from our model produces a comparable registration
result. From our observation, a critical pattern between the optimal αopt and its associate
image pairs is that the value of α is relatively smaller when large deformation occurs. This
is because the image matching term (encoded in the likelihood) requires a higher weight
to deform the source image.

Fig. 35 investigates the consistency of our network prediction over three different datasets
of 3D brain MRI. The left panel shows the absolute value of numerical differences be-
tween predicted regularization parameters and MAP estimations. The right panel shows
the voxel-wise mean error of image differences between deformed images by transforma-
tions with predicted α and deformed images by MAP. While slight numerical difference
on estimated regularization parameters exists, the 3D deformed images are fairly close
(with averaged voxel-wise error at the level of 10−6).

Fig. 36 visualizes three views of the deformed brain images (overlay with propagated
segmentation label) that are registered by MAP and our prediction. Our method produces
a registration solution, which is highly close to the one estimated by MAP. The propagated
segmentation label fairly aligns with the target delineation for each anatomical structure.
While we show different views of 2D slices of brains, all computations are carried out
fully in 3D.

Fig. 37 reports the volume overlapping of nine anatomical structures for both methods,
including Cor(cortex), Puta (putamen), Cere (cerebellum), Caud (caudate), gyrus, Stem
(brain stem), Precun (precuneus), Cun (cuneus), and Hippo (hippocampus). Our method
produces comparable dice scores comparing with MAP estimations. This indicates that
the segmentation-based registration by using our estimation achieves comparable regis-
tration performance with little to no loss of accuracy.

Table. 4 quantitatively reports the averaged time and memory consumption of MAP es-
timation in full spatial image domain and our method. The proposed predictive model
provides appropriate regularization parameters approximately 1000 times faster than the
conventional optimization-based registration method with a much lower memory foot-
print.

3.4 Conclusion

In this section, I proposed a deep learning-based approach to model the relationship be-
tween the regularization of image registration and the input image data. We first developed
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Source Target MAP Our prediction

Fig. 34: Left to right: source, target, deformed images overlaid with the transformation grids generated by

both methods. The optimal and predicted value of α for two showcases are (8.90, 9.20) and (3.44, 2.60).

a low-dimensional Bayesian model that defines image registration entirely in a bandlim-
ited space. We then learned the mapping between regularization parameters and spatial
images through a CNN-based neural network. To the best of our knowledge, we are the
first to predict the optimal regularization parameter of diffeomorphic image registration
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Fig. 35: Left: statistics of the difference between our prediction and MAP estimation over 300 image pairs

from three data sets, ADNI, LPBA40, and OASIS; Right: error maps of image differences between de-

formed image by our prediction and MAP estimation.

Source Target MAP Our prediction

Fig. 36: Axial, coronal and sagittal view of 3D segmentation labels with nine anatomical structures overlaid

with source, target, deformed images by our low-dimensional MAP (α = 8.91) and our network prediction

(α = 6.80).

Table 4: Time and memory consumption of MAP estimation of regularization in full-dimensional image

space vs. our proposed low-dimensional Bayesian model, as well as network prediction.

Methods Full-spatial MAP Low-dimensional MAP Network Prediction

Runtime (Sec) 1901 257 2.16

Memory (MB) 450 119 34.4
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Fig. 37: Dice scores of propagated manual segmentations for both methods for 150 registration pairs. Evalu-

ations are performed over nine anatomical brain structures, Cor (cortex), Puta (putamen), Cere (cerebellum),

Caud (caudate), gyrus, Stem (brain stem), Precun (precuneus), Cun (cuneus) and Hippo (hippocampus).

by deep learning approaches. In contrast to existing methods, our developed model sub-
stantially improves the efficiency and the robustness of image registration. Our work has
great potential in a variety of clinical applications, e.g. image-guided navigation system
for neurosurgery in real-time. Potential future work may include: i) extending the current
model to further consider adversarial examples, i.e., image outliers with significant differ-
ences; and ii) developing an unsupervised learning of registration parameter estimation to
eliminate the need of training data generation (ground truth labels).



Chapter V

Learning Metamorphic Image Transformation

In this chapter, a reliable model for predictive metamorphic image registration called
MetaMorph is introduced. This model is designed for the metamorphic registration of
images that have undergone appearance changes due to factors such as brain tumors. The
MetaMorph model incorporates a novel piecewise regularization technique on the tangent
space of diffeomorphic transformations, which is developed using segmentation maps of
abnormal regions obtained through learning. The model is capable of jointly learning
both the geometric transformation and appearance changes, resulting in mutually benefi-
cial outcomes. MetaMorph has the potential to be applied in various image-guided clin-
ical interventions, such as real-time image-guided navigation systems for tumor removal
surgery.

1 Learning Metamorphic Image Transformation With

Appearance Change

1.1 Related Work

Deformable image registration is an important tool in a variety of medical image analy-
sis tasks, such as multi-modality image alignment [109, 38, 136], statistical analysis for
population image studies [205, 138, 181], atlas-guided image segmentation [140, 175],
and object tracking with anomaly detection [34, 135]. In many clinical applications, it is
desirable that the estimated transformations are diffeomorphisms (i.e., bijective, smooth,
and inverse smooth mappings) because they produce anatomically plausible images [15].
Despite recent achievements in treating the problem of diffeomorphic image registration
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as a fast learning task, current approaches oftentimes have an assumption that the topol-
ogy of objects presented in images is intact [14, 180, 89, 32]. Existing algorithms fail
badly in cases where appearance changes occur (e.g., missing data caused by pathology,
such as tumors, myocardial scars, multiple sclerosis, and etc.) because they have little to
no control over these unknown variables.

To address this issue, a few algorithms of image metamorphosis have been developed
to incorporate the modeling of appearance changes in registration functions [130, 74,
57, 124, 22, 59]. Existing metamorphic image registration methods mainly fall into two
categories: (i) exclude appearance changes via manually delineated segmentations of ab-
normal regions [130, 124], and (ii) treat the appearance changes as unknown variables
estimated out from images [57, 22]. These approaches either heavily depend on manu-
ally segmented labels of 3D volumetric data that are time and labor-consuming, or strug-
gle with balancing between the effects of appearance vs. geometric changes. A recent
work [22] has developed a metamorphic autoencoder that estimates the deformation and
appearance variations by decoupling the geometric and appearance representations in la-
tent spaces. However, such a model is highly sensitive to parameter-tuning due to its dif-
ficulty in differentiating changes caused by geometric transformations vs. appearances.

In this section, we develop a novel learning-based model of metamorphic image registra-
tion, named as MetaMorph, that provides more robust and accurate registration results in
images with appearance changes. In contrast to previous approaches [130, 57, 124, 22],
we incorporate a new appearance-aware regularization in the network loss function that
enforces a piecewise constraint on geometric transformation fields. Such a constraint will
be learned simultaneously from a jointly optimized segmentation task. In addition, we
effectively augment the segmentation labels by utilizing the learned transformations in
the training process. This not only substantially improves the segmentation performance,
but also reduces the requirement of massive groundtruth segmentation labels. The main
contributions of our proposed MetaMorph are summarized as three folds:

– To the best of our knowledge, MetaMorph is the first predictive registration algorithm
that utilizes jointly learned segmentation maps to model appearance changes.

– MetaMorph learns a new appearance-aware regularization that piecewisely constrains
the variations of image intensities caused by geometric transformations separately
from appearance changes.

– The joint learning scheme of MetaMorph maximizes the mutual benefits of metamor-
phic image registration and segmentation.
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To demonstrate the effectiveness of our model, we validate MetaMorph on real 3D human
brain tumor MRIs. Experimental results show that MetaMorph outperforms the state-of-
the-art learning-based registration models [14, 22] with substantially increased accuracy.
The developed MetaMorph has great potential in various image-guided clinical interven-
tions, e.g., real-time image-guided navigation systems for tumor removal surgery.

1.2 Method: MetaMorph

1.2.1 Metamorphic Image Registration with Appearance-aware regularization The
objective function of diffeomorphic image registration in Eq (??) works well under the
condition that images are ideally of good quality with preserved topology. This assump-
tion breaks when corruptions such as appearance changes or occlusions occur. In this
section, we first define an objective function of the metamorphic image registration that
considers the modeling of appearance changes. An appearance-aware regularization is de-
veloped to effectively suppress the negative influences of appearance changes in typical
diffeomorphic image registration algorithms. We then develop a joint learning framework
that includes i) a segmentation network for appearance change detection, and ii) a meta-
morphic registration network incorporating the newly formulated objective function as
part of the network loss.

Appearance-aware regularization. The purpose of metamorphic image registration is
to find an optimal transformation ψ(v0, δ) that is composed of two variables: the opti-
mal initial velocity field v0, and the appearance change δ. A recent work proposed to
learn these variables via disentangled latent representations in an encoder-decoder neu-
ral network [22]. However, it is extremely challenging for this algorithm to differentiate
the variations of image intensities caused by geometric transformations from appearance
changes since they unavoidably compensate each other. The ambiguity introduced by op-
timizing two compensating variables without any guidance fails to search for accurate
registration solutions. In addition, this makes the algorithm highly sensitive to network
parameters and with much-increased risk of poor convergence. To alleviate this issue, we
introduce an appearance-aware regularization in the registration framework, guided by
learned segmentations of the appearance changing areas.

Assume U is a union of the learned segmentations of appearance changing areas from the
source image S and the target image T . Analogous to Eq (3), we define the appearance-
aware regularization Reg∗(·) in the space of initial velocity fields. To suppress the effects
of appearance variations, we piecewisely constrain the initial velocity fields through a
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segmentation indicator, i.e.,

Reg∗(v0) = (L(v0 ⊙ (1− U)), v0 ⊙ (1− U)) , s.t. Eq (4), (54)

where ⊙ represents an element-wise multiplication between a vector field and a scalar
field. For the purpose of notation simplicity, we define v̂0

∆
= v0⊙ (1−U) in the following

sections.

With the newly defined regularization in Eq (54), we arrive at the objective function of
metamorphic image registration as

E∗[ψ̂(v̂0)] = Dist∗[Ŝ ◦ ψ̂1(v̂0), T̂ ] + Reg∗(v̂0), (55)

where Ŝ and T̂ denotes the source and target images with appearance changes masked
out, i.e., Ŝ = S ⊙ (1 − U), and T̂ = T ⊙ (1 − U). Here, the Dist∗[·, ·] is the image
dissimilarity term that measures the dissimilarity between the consistent area between the
deformed image and target.

1.2.2 Predictive Metamorphic Image Registration We develop a deep learning frame-
work to jointly learn the segmentation for appearance change and the masked-out velocity
field v̂0. An overview of our proposed MetaMorph architecture is shown in Fig. 38.

Appearance change can be masked by a fixed foreground segmentation via pre-running
image segmentation algorithms [124, 130]. However, performing manual annotations of
segmentation labels is time and labor-consuming. In this work, instead of using a fixed
mask, we treat the appearance change as a variable from the segmentation network and
jointly optimize it with the optimal registration solution. We utilize an encoder-decoder
based neural network to learn the segmentation masks and then apply them to the asso-
ciate image pairs for masking out the appearance change. Although we adopt UNet-based
architecture for segmentation in this work [147], other networks such as recurrent residual
neural networks [4], transformer-based networks [33, 68] can also be easily plugged into
the proposed method.

With the developed segmentation network, now we are ready to formulate the loss func-
tion of MetaMorph,

ℓ = Dist∗[Ŝ ◦ ψ̂1(v̂0), T̂ ] + Reg∗(v̂0) + γ · ℓseg, s.t. Eq (54). (56)

Here γ is a weighting parameter that balances segmentation and registration loss. ℓseg is
the segmentation loss that maximizes the Sørensen−Dice coefficient [46] between ground
truth y and the predicted ŷ,

ℓseg = 1− Dice(y, ŷ), (57)
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Fig. 38: An illustration of the network architecture for MetaMorph. Top left to right: input a pair of images

into a segmentation network, and apply predicted labels onto images to mask out the appearance change.

Bottom right to left: input a pair of images (with masked-out appearance change) to the registration network

and predict a piecewise velocity field, integrate geodesic constraints, and produce a deformed image and

transformation-propagated segmentation. The deformed images and labels are circulated into the segmen-

tation network as augmented data.

where Dice(y, ŷ) = 2(|y| ∩ |ŷ|)/(|y|+ |ŷ|).

We adopt an approximated region-based mutual information (RMI) term [209], which is a
broadly-used metric that can be applied to measure the dissimilarity term for images from
different domains. For simplicity, we let Ŝψ denote the deformed image. Let f(Ŝψ) and
f(T̂ ) denote the probability density functions for the deformed image and target respec-
tively, and their joint probability density function is f(Ŝψ, T̂ ). The image dissimilarity
with an RMI formula is,

Dist∗[Ŝψ, T̂ ] = RMI(Ŝψ, T̂ ) =
∫
Ŝψ

∫
T̂

f(Ŝψ, T̂ ) log
f(Ŝψ, T̂ )

f(Ŝψ)f(T̂ )

≈ lce(Ŝψ, T̂ )−
1

B

B∑
b=1

Ib(T̂ ; Ŝψ), (58)

where Lce(·, ·) is a cross entropy loss between two images. Ib(·; ·) is a batch-wise lower-
bound that Ib(T̂ ; Ŝψ) = 1

2
log[det(ΣT̂ |Ŝψ)], whereΣT̂ |Ŝψ is the posterior covariance matrix
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of T̂ , given Ŝψ. It is a symmetric positive semi-definite matrix. B denotes the number of
images in a mini-batch b. Please refer to [209] for more derivation details.

We develop an alternating optimization scheme [126] to minimize the network loss de-
fined in Eq (56). All network parameters are optimized jointly by alternating between
the training of segmentation and image registration. A summary of our joint learning of
MetaMorph is in Alg. 5.

Algorithm 5 Joint learning of MetaMorph.
Input : Source and target images, the number of iterations q.

Output: Segmentation labels, the deformed image, and the transformation.

39 for i = 1 to q do

/* Train image segmentation network */

40 Minimize the segmentation loss in Eq (57);

41 Output the predicted segmentations and adopt both labels to mask appearance change in images;

/* Train appearance-aware registration network */

42 Minimizing the metamorphic loss in Eq (55) with appearance-aware geodesic constraints;

43 Output the predicted velocity field and the deformed image;

44 end

45 Until convergence

1.3 Experimental Evaluation

To demonstrate the effectiveness of the proposed model, we compare both segmentation
and registration tasks with state-of-the-arts.

Data. For 3D brain tumor MRI scans with tumor segmemtation labels, we include 100

public T1-weighted brain scans of different subjects from Brain Tumor Segmentation
(BraTS) [12, 115] challenge 2021. We also include 28 bio-markers (16 for brain ventricle
and 12 for corpus callosum) that are annotated by clinicians to better evaluate the image
registration performance. All MRIs are 155 × 240 × 240, 1.25mm3 isotropic voxels. As
a preprocessing step, we run affine registration, intensity normalization, and bias field
correction on all images.

Experiments. We compare our metamorphic image registration method with two regis-
tration baselines, an unsupervised predictive diffeomorphic registration method (Voxel-
Morph as VM) [14], and a metamorphic autoencoder (MAE) [22] via learning disentan-
gled appearance and shape representations. To better visualize the deformations, we show
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predicted transformation grids and deformed images with transformation-propagated bio-
markers for all methods. Quantitatively, we compute the L2 distance as registration error
between propagated bio-markers and bio-markers on target images for 60 pairs.

We evaluate the brain tumor segmentation via computing Dice similarity [46] for our
model with three segmentation backbones, U-Net architecture [147], U-Net based on re-
current residual convolutional neural network (R2-Unet) [4], and transformer-based Unet
(UnetR) [68]. For a fair comparison, we show the results of MetaMorph by replacing
the segmentation module in our model with all backbones (named MetaMorph:Unet,
MetaMorph:R2-Unet, and MetaMorph:UnetR). We visualize the predicted segmentation
labels with testing images across all methods.

Parameter Settings. We set parameter α = 3 for the operator L, the number of time
steps for Euler integration in EPDiff ( Eq (4)) as 10. We set the weight parameter γ = 0.5

and the batch size as 4. We use an adaptive cosine annealing learning rate scheduler that
starts from an initial value at η = 5e− 4 for network training. We run all models for 100
epochs with Adam optimizer and save the networks with the best validation performance.
The training and prediction procedure of all learning-based methods are performed on
two Nvidia GTX 2070Ti GPUs. We run five-fold cross validation and split the images by
using 70% as training images, 20% as validation images, and 10% as testing images.

Results. Fig. 39 visualizes the image registration prediction of two 3D brain MRIs of
study across all methods. It shows our method MetaMorph significantly outperforms both
VM and MAE. General diffeomorphic registration model (e.g., VM) without appearance-
control mechanism may fail and produces less satisfied deformed images without suffi-
cient deformations. MAE offers accurate deformations to a certain level while it produces
artifacts. By excluding the appearance change, MetaMorph is able to more accurately de-
form the regions without tumors (e.g., ventricles and corpus callosum). It shows that our
propagated bio-markers align best with the target frame.

Fig. 40 shows two examples of image segmentation performance comparison for all meth-
ods. It indicates that MetaMorph-based models predict better segmentation labels (closer
to ground truth) than original backbones. Note that the predicted label by MetaMorph
has a slightly better segmentation of the brain tumor boundary. This is because we use
deformed images and labels that are produced by a joint registration framework as aug-
mented data for each subject; thus learning a broader spectrum for appearance variation
in data and offering more detailed prediction when testing data arrives.

Fig. 41 (left panel) statistical reports the Dice coefficient comparison. It indicates that
MetaMorph consistently achieves a higher segmentation accuracy than backbones. Trans-
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VM MAE MetaMorph

Source Target

Fig. 39: Image registration performance comparison for all methods. From left to right, source, target, de-

formed images by VoxelMorph (VM), metamorphic autoencoder (MAE), and our method. All images are

overlaid with annotated landmarks (red circle for ventricle and blue cross for corpus callosum).
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Fig. 40: Image segmentation comparison for all methods. Left to right: segmentation map difference (red)

between the predicted label and the ground truth (green) for Unet, MetaMorph: Unet, R2-Unet, MetaMorph:

R2-Unet, UnetR and MetaMorph: UnetR.

former based methods (UnetR-based) produce the highest Dice for all methods. Fig. 41
(right panel) reports the quantitative registration error between landmarks in the target
image and landmarks in the deformed image. MetaMorph outperforms other methods
with the lowest error, indicating our proposed method finishes the metamorphic image
registration task with higher accuracy.
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Fig. 41: Left: Dice comparison on brain tumor segmentation across all methods over images. The means of

baseline vs. our method are 0.815/0.834, 0.835/0.856, 0.861/0.874; Right: registration error (computed on

L2 distance) of two anatomical landmarks for 60 brain pairs. The means of errors for VM vs. MAE vs. our

method are 15.02/10.53/4.64, 16.48/13.59/4.10.
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1.4 Conclusion

We present a predictive metamorphic image registration model, MetaMorph, via deep
neural networks. Different from existing models that have limited control over appearance
change, we develop a joint learning framework that adopts a segmentation module to ac-
curately guide the registration network to learn diffeomorphic transformation fields. The
developed segmentation module maximally excludes the disadvantageous effect caused
by appearance change for learned deformations; thus enabling more precise correspon-
dence alignment between deformed and target frames. Experimental results on 3D brain
MRIs with real tumors show that our proposed framework yields a better registration as
well as a segmentation model. While our algorithm is presented in the setting of LD-
DMM with geodesic shooting, the theoretical development is generic to other deforma-
tion models, e.g., stationary velocity fields [6] and a deformation method using piecewise
polynomials (B-splines) [148]. Our model has great clinical potential on solving one of
the most challenging registration problems, e.g., real-time brain shift estimation between
preoperative and intraoperative MRI scans with missing data values. Interesting future
works of MetaMorph will be i) building a probabilistic model to quantify the registration
uncertainty along the boundary of tumor areas and ii) extending the proposed method to
more challenging clinical scenarios that appearance changes are difficult to track, e.g.,
real-time automated image registration on ultrasound images.



Chapter VI

Conclusion and Future Work

In this dissertation, my research bridges the gap between the developed algorithmic foun-
dations of deformable shape learning models and deep learning-based applications by
presenting predictive diffeomorphic and metamorphic image registration, registration reg-
ularization estimation, atlas building, image segmentation, and image classification. In
Chapter III, I show that the developed low-dimensional shape representation learning can
be effectively applied in multiple medical image analysis tasks, such as image registra-
tion [180, 179], uncertainty quantification [176, 177], parameter estimation [182] and
atlas building [181]. In Chapter IV, the learned deformation-based geometric descrip-
tors allow us efficiently perform deep neural network training, testing, inference, and
population studies. In chapter V, I show the developed predictive metamorphic regis-
tration is able to precisely predict transformations for images with appearance changes
(i.e., caused by brain tumors). Such a method has great potential in various image-guided
clinical interventions, e.g., real-time image-guided navigation systems for tumor removal
surgery [106, 178, 57]. Except for the image analysis tasks mentioned in this research, the
theoretical tools developed from all methods are generic to various other deep-learning
based image analysis models, for instance, image reconstruction [82] and object track-
ing [58]. The final outputs of this research include a number of novel algorithms with
publicly released codes online. The following section summarizes the contributions of
this dissertation and discusses possible future works that are extended from this research.

1 Summary of contributions

This section reviews the dissertation presented in Chapter III to Chapter V. Each contri-
bution is revisited with a summary of how it was fulfilled.
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(a) Bayesian models that enable efficient uncertainty quantification, hierarchical atlas

building, and regularization parameter estimation.

According to the Statement 1 in Chapter I, Chapter III presents an efficient Bayesian
approach to quantifying image registration uncertainty based on a low-dimensional
representation of geometric deformations. In contrast to previous methods, I develop
a Bayesian diffeomorphic registration framework in a bandlimited space, rather than a
high-dimensional image space. It shows that a dense posterior distribution on deforma-
tion fields can be fully characterized by much fewer parameters, which dramatically
reduces the computational complexity of model inferences. I also develop a novel hi-
erarchical Bayesian model for unbiased atlas building with adaptive regularizations
of image registration. It automatically enables model to select parameters to control
the smoothness of diffeomorphic transformations. A hierarchical prior distribution on
the regularization parameters is developed, and it further allows multiple penalties on
images with various degrees of geometric transformations. I treat the regularization
parameters as latent variables and integrate them out from the model by using the
Monte Carlo Expectation Maximization (MCEM) algorithm. Another advantage of
this model is that it eliminates the need for manual parameter tuning, which can be te-
dious and infeasible. Experimental results on both 2D synthetic data and real 3D brain
MRI scans demonstrate that the proposed Bayesian models are significantly efficient
than the state-of-the-art, and provides improve quality atlas.

(b) A predictive approach for fast image registration with low-dimensional network train-

ing and inference.

We recall the Statement 1 in Chapter I, Chapter IV first presents DeepFLASH, a novel
network with efficient training and inference for learning-based medical image reg-
istration. Different from existing approaches that learn spatial transformations from
training data in the high dimensional imaging space, a new registration network is en-
tirely developed in a low dimensional bandlimited space. This dramatically reduces
the computational cost and memory footprint of an expensive training and inference.
To achieve this goal, I first introduce complex-valued operations and representations
of neural architectures that provide key components for learning-based registration
models. DeepFLASH employed an explicit loss function of transformation fields fully
characterized in a bandlimited space with much fewer parameterizations. Experimen-
tal results on both 2D and 3D data show that our method is significantly faster than
the state-of-the-art deep learning based image registration methods, while producing
equally accurate alignment.

(c) A classification model that explicitly learns geometric deformable shape information.

We then revisit the Statement 2 in Chapter I, Chapter IV also presents Geo-SIC, the
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first deep learning model to learn deformable shapes in a deformation space for an im-
proved performance of image classification. I introduce a newly designed framework
that (i) simultaneously derives features from both image and latent shape spaces with
large intra-class variations; and (ii) gains increased model interpretability by allow-
ing direct access to the underlying geometric features of image data. In particular, a
boosted classification network is presented with an unsupervised learning of geomet-
ric shape representations characterized by diffeomorphic transformations within each
class. Geo-SIC provides a more fundamental approach by naturally learning the most
relevant shape features jointly with an image classifier. Experiments on both simu-
lated 2D images and real MRIs show that this model substantially improves the image
classification accuracy with an additional benefit of increased model interpretability.

(d) A predictive approach for metamrophic image registration with appearance changes.

We revisit the Statement 3 in Chapter I, Chapter V presents a novel predictive model,
MetaMorph, for metamorphic registration of images with appearance changes (i.e.,
caused by brain tumors). In contrast to previous learning-based registration methods
that have little or no control over appearance-changes, MetaMorph introduces a new
regularization that can effectively suppress the negative effects of appearance chang-
ing areas. In particular, I develop a piecewise regularization on the tangent space of
diffeomorphic transformations (also known as initial velocity fields) via learned seg-
mentation maps of abnormal regions. The geometric transformation and appearance
changes are treated as joint tasks that are mutually beneficial. MetaMorph is more
robust and accurate when searching for an optimal registration solution under the
guidance of segmentation, which in turn improves the segmentation performance by
providing appropriately augmented training labels. Experimental results on 3D human
brain tumor MRI scans show that this model outperforms the state-of-the-art learning-
based registration models. MetaMorph has great potential in various image-guided
clinical interventions, e.g., real-time image-guided navigation systems for tumor re-
moval surgery.

2 Future work

In this section, I will discuss potential future works that can be extended from this disserta-
tion. The main research directions include i) the robustness of deformable shape learning
models and ii) the deformation estimation in clinical scenarios where have severe motion
artifacts occur, e.g., real-time fetal brain monitoring system.

(a) Robustness of Deformable Shape Learning Models.
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Adversarial attacks can be a potential concern in medical imaging because incorrect
diagnoses or treatment decisions have severe consequences for patients’ health [54,
24, 108]. Attackers may try to subvert medical image analysis systems by introducing
subtle changes to the images, such as adding noise, altering the contrast or bright-
ness, or making small modifications to the image’s pixels [24, 129]. Such changes can
lead to incorrect diagnoses or treatment recommendations, potentially causing harm
to patients. Adversarial attacks can be especially concerning in situations where the
model is used to make critical decisions, such as in the diagnosis of cancer or other
life-threatening conditions.

To address this issue, a variety of methods haven been developed to make medical
image analysis models more robust against adversarial attacks [100, 43] . These tech-
niques include adversarial training, which involves trains the model on both clean and
adversarial examples and utilizes data augmentation and model regularization to im-
prove robustness [31]. While learning-based deformable shape modeling have shown
promising results in improving the robustness of networks, there is still a lack of for-
mal research on their robustness. In order to assess the robustness of the proposed
research, a simple approach is to produce a series of adversarial examples, and sub-
sequently gauge the effectiveness of models by their capacity to correctly classify
these instances. If the model’s accuracy significantly drops on the adversarial exam-
ples, it is considered to be less robust. For adversarial robustness testing, the ultimate
goal is to evaluate the ability of models to resist attacks from adversarial examples.
In Chapter IV, experimental results show that Geo-SIC consistently achieves better
classification accuracy (∼ 10% higher in average ) than baseline algorithms across
different levels of adversarial attacks on image intensity. This is due to the superior
capability of Geo-SIC in recognizing shape features that are relatively immune to a
certain degree of noise, as the geometric shape features are ensured to remain smooth
within the tangent space of diffeomorphisms. However, the classification accuracy of
Geo-SIC still drops dramatically when adding a high level of universal adversarial
perturbations.

A possible solution for addressing adversarial attacks in deformable shape learning
networks is to introduce a discriminator module based on the Generative Adversar-
ial Network (GAN) framework [62]. The discriminator module takes in an input de-
formed image (either a real target or a deformed image generated from a sample under
adversarial attack) and produces an output indicating whether the input is real or fake.
The goal of the discriminator is to correctly classify the input data as either real or
fake with high accuracy. On the other hand, the deformable shape learning network
can be treated as a geometric shape generator that generates indistinguishable data
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from real data. This algorithm aims to fool the discriminator by generating data that is
classified as real. The geometric shape generator will be improved by minimizing the
discriminator’s ability to differentiate between the real and fake data, while the dis-
criminator will be improved by maximizing its ability to differentiate between the two.
By iterating between the geometric shape generator and the discriminator, the GAN
learns to generate increasingly realistic deformed image and atlas that is difficult for
the discriminator to distinguish from real data [44].

This approach can be effective in detecting adversarial attacks in deformable shape
learning networks, as the discriminator is able to identify if the deformed image (or
atlas) is under adversarial attack. By training the GAN on large datasets of both real
and adversarial examples, the model will learn to accurately classify and distinguish
between the two, thereby improving the robustness and reliability of the deformable
shape learning network.

(b) Joint Learning for Motion Correction via Deformable Shape Learning and Image Re-

construction in Real-time Clinical Settings Where Have Severe Motion Artifacts.

The motion artifacts in fetal brain MRI can be problematic because of the need for
high spatial resolution to visualize the small, developing structures in the fetal brain.
The fetal brain is constantly growing and developing, which makes it particularly sus-
ceptible to motion artifacts during MRI scans. The motion artifacts are majorly caused
by i) fetal movement, ii) maternal breathing, iii) long scan times, and iv) limitations
in spatial resolution. Fetal movement during MRI scans causes the fetal brain to shift
within the MRI volume, resulting in blurred or distorted images. Similarly, maternal
breathing introduces motion artifacts due to the subtle shifts in fetal position caused
by diaphragm and chest wall movement. Longer scan times also increase the chance
of motion artifacts as small fetal movements can result in image blurring or distor-
tion. The impact of motion artifacts is exacerbated by limitations in spatial resolution,
which is often necessary to visualize small and developing structures in the fetal brain.
Higher spatial resolution images are more susceptible to motion artifacts as even sub-
tle movements have a larger impact on image quality. To properly handle the mo-
tion artifacts in fetal brain MRI, motion correction and image reconstruction methods
based on rigid/affine transformation are presented to minimize artifacts in fetal brain
MRI [165, 189, 78, 151]. These techniques aim to correct the motions during scans
and improve the quality of images produced.

Sui et al. [165] developed a real-time slice-to-volume image registration algorithm,
named SLIMM, with a parallelized patch-based approach to enable a fetal brain mon-
itoring system that offers improved online model accuracy. Xu et al. [188] further pro-
posed a slice-to-volume registration transformer (SVoRT) to map multiple stacks of fe-
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tal MR slices into a canonical 3D space and achieved comparable model performance
for slice-to-volume registration and 3D reconstruction. However, due to fetal motion
is highly non-rigid, aforementioned methods have limitations in handling challeng-
ing scenarios where the brain contains large deformable shape variations, occlusions,
and local image distortions. The anatomical structures of the brain exhibit varying
degrees of local deformations, which means that the image voxels move in different
directions. Affine transformations assume that the image is undergoing a rigid trans-
formation, in which all structures of the image move globally. As a result, learning
affine transformations to correct for motion artifacts in fetal MRI scans may lead to
misalignment with inaccurate registration. In addition, fetal MRI scans are oftentimes
acquired in multiple planes, which result in image distortion due to differences in slice
thickness and orientation, making it more challenging to apply affine transformations
consistently across all planes.

To address these limitations, a comprehensive framework that includes a deformable
motion correction method and image reconstruction is needed. A deformable motion
correction method will nicely handle the non-rigid movement of the fetal brain and im-
prove the accuracy of registration. Meanwhile, image reconstruction techniques help
to reduce image distortion and improve the quality of images produced. The use of
such a comprehensive framework can be more appropriate for accurately aligning fetal
MRI scans, especially in challenging scenarios where large deformations and severe
image distortions are present.

In this future work, my goal is to develop a joint learning framework that optimizes
both deformable geometric motion correction and image reconstruction tasks, in order
to improve the accuracy and speed of the overall process. The major components of
this model are:

(i) A joint objective function that combines the metrics used for motion correction
and image reconstruction. The objective function includes a similarity between
the motion-corrected and reconstructed images, a dissimilarity between motion-
corrected and ground truth images, and a regularity term that measures the smooth-
ness of the deformation field. To ensure the preservation of anatomical informa-
tion, I will employ the same regularization (geodesic constraints Eq (3)& Eq (5) in
the tangent space of diffeomorphisms), which is developed in this research.

(ii) An optimization scheme that efficiently optimizes over the entire model. To ac-
complish this, I will employ an alternative optimization strategy that iteratively
updates the deformation field and the reconstructed image until convergence, sim-
ilar to the optimization schemes in Geo-SIC and MetaMorph described in Chap-
ter. IV and Chapter. V, respectively.
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(iii) An efficient deformable registration algorithm to perform deformable motion cor-
rection and guarantees the high efficiency for real-time clinical applications. I will
utilize a recent work based on the Fourier Neuron Operator [101, 187], which pa-
rameterized computation of EPDiff ( Eq (5)) via deep neural networks. This will
be efficient in testing, as it completely eliminates the need to integrate PDEs with
high computational cost.

(iv) An iterative reconstruction algorithm will be required to reconstruct the image
from the motion-corrected data. The choice of algorithm will depend on the imag-
ing modality and acquisition parameters. Analogous to the iterative image recon-
struction technique employed in SVoRT [188], I will commence this work by im-
plementing the same scheme.

By jointly optimizing image registration and image reconstruction, this algorithm
takes advantage of the additional information provided by the registration process to
guide the reconstruction process. For example, by aligning the images before recon-
struction, the amount of artifacts and noise in the resulting images can be reduced.
In return, image reconstruction improves the accuracy and robustness of the registra-
tion process by incorporating more accurate image information from the reconstructed
data. Overall, joint optimization for image registration and image reconstruction will
lead to significant improvements in both tasks, particularly in challenging scenarios
where data has severe motion artifacts; hence making it a promising future direction
based on this research.
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