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Abstract
Hypertrophic cardiomyopathy (HCM) is the hypertrophy, or cell growth, of cardiomyocytes (CMCs), or heart muscle cells, in
response to damage and cell death within the heart. The hypertrophy of CMCs, while strengthening the heart contractions to
compensate for the lower number of present CMCs, alters the heart’s architecture and leads to other health complications, such as
diastolic dysfunction, obstructions, and arrhythmias. The Wolf Lab at the University of Virginia is currently developing drugs to
treat HCM by both ameliorating CMC hypertrophy and promoting CMC proliferation to replenish the cells that died over the
course of the injury. To test the efficacy of drug candidates, the Wolf Lab performs in vivo testing on mice which have been
genetically modified to have HCM. They then take tissue slices from the mouse hearts, stain them, and examine the cardiac tissue
under a microscope. The current method for quantifying hypertrophy employed by the Wolf Lab is to select 30 cells at random
and measure them by hand. This process is time consuming and is vulnerable to bias and human error. Our capstone project
developed a machine learning algorithm approach to objectively segment and quantify hypertrophy and nuclear content of CMCs
in the tissue slice images. The algorithm will save researchers time by allowing for high throughput testing of HCM drugs while
also providing more data points and greater objectivity to the measurements taken.
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Introduction
Hypertrophic Cardiomyopathy (HCM) is a cardiovascular

condition characterized by abnormal thickening (hypertrophy) of the
heart muscle, particularly the left ventricle. This thickening makes it
harder for the heart to pump blood effectively, leading to symptoms
such as shortness of breath, chest pain, fatigue, and in some cases,
fainting or sudden cardiac arrest. HCM is often inherited, although it
can also develop due to other factors. Diagnosis typically involves a
combination of medical history, physical examination, imaging tests
such as echocardiography, and genetic testing. Management of HCM
aims to alleviate symptoms, prevent complications, and reduce the risk
of sudden cardiac death through medications, lifestyle modifications,
and in some cases, surgical interventions like septal myectomy or
alcohol septal ablation. Long-term monitoring and regular follow-ups
are essential for individuals with HCM to manage their condition
effectively and minimize its impact on their quality of life1.

Quantifying Hypertrophic Cardiomyopathy (HCM) in cells
involves measuring and assessing various cellular characteristics, such
as structural changes, gene expression profiles, or protein levels, that
are associated with the presence or progression of HCM2. This process
aims to systematically analyze and quantify the cellular features
relevant to HCM, providing insights into the underlying molecular
mechanisms of the disease. Quantification may involve techniques such
as microscopy, genetic analysis, or proteomic profiling to examine
cellular morphology, gene expression patterns, or protein abundance in
cardiac cells. By quantifying these cellular aspects, researchers can gain
a deeper understanding of HCM pathophysiology, identify potential
biomarkers for diagnosis or prognosis, and develop targeted therapies to
treat the condition effectively.

Various machine learning algorithms are employed for cell
identification tasks across biology, medicine, and microscopy. Support
Vector Machines (SVM) offer robust performance in classifying cells

by learning to distinguish between different types based on extracted
features. Random Forest, an ensemble learning method, is adept at
handling large datasets and mitigating overfitting, making it a suitable
choice for cell identification. Convolutional Neural Networks (CNN)
excel in processing image data, automatically learning hierarchical
features from raw pixels, thus proving effective for cell classification in
microscopy images. K-Nearest Neighbors (KNN) assigns cells to
classes based on the majority class among its nearest neighbors, while
Decision Trees provide interpretable results by learning simple decision
rules from data. Deep learning architectures like Recurrent Neural
Networks (RNNs) and Transformers are also applicable, particularly in
handling sequential or time-series cell data.

These algorithms can be utilized individually or in
combination, depending on factors such as data complexity, dataset size,
computational resources, and interpretability requirements. The choice
of algorithm is crucial and often tailored to suit specific characteristics
and demands of the cell identification task at hand, contributing to
advancements in various fields through accurate and efficient cell
analysis. The softwares we used in order to quantify HCM are
CellProfiler and Ilastik3.

In the Wolf lab, researchers embarked on a crucial
investigation aimed at evaluating the impact of galunisertib, a potential
therapeutic agent, on animals afflicted with cardiac hypertrophy. To
conduct this study, they employed a meticulously designed
experimental protocol utilizing mice as the model organism. The mice
were subjected to Transverse Aortic Constriction (TAC), a widely
recognized method for inducing cardiac hypertrophy, thereby simulating
the pathological conditions observed in human patients. Following TAC
surgery, the mice were divided into distinct groups: one group received
treatment with galunisertib, while the other served as the control group,
remaining untreated throughout the study period.
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This experimental setup enabled the Wolf lab to
systematically investigate the efficacy of galunisertib in ameliorating
cardiac hypertrophy. By comparing the physiological and molecular
characteristics of the treated mice with those of the untreated controls,
the researchers sought to elucidate the drug's potential therapeutic
effects on hypertrophic cardiac remodeling. Parameters such as cardiac
function, hypertrophic marker expression, tissue morphology, and
overall survival were meticulously assessed to comprehensively
evaluate the therapeutic efficacy and safety profile of galunisertib in
mitigating the pathological consequences of cardiac hypertrophy4.

Results

Hypertrophy Measurements
Cross sectional area of the CMCs was used to quantify the hypertrophy
within a tissue sample. Using 12 images from control group mice and
16 images from the drug treated mice, the average cross sectional area
was 497 ± 44 px2 and 547 ± 44 px2 for control and treatment groups
respectively. The average number of cells counted per image was 650 ±
85 cells. A p-value of 0.0082 was determined from conducting a
two-tailed t-test. An experiment was conducted which drew from six
images (three control and three treatment), with 10 cells being manually
measured from each image and compared to the automated
measurements. The manual method produced an average cell area of
499 ± 59 px2 and 654 ± 188 px2 for control and treatment groups
respectively, while the automated method generated area values of 483
± 32 px2 and 546 ± 44 px2 for the control and treatment groups for those
same images (Figure 1).

Fig. 1. Manual and Automated Cell Area. Comparison of automated cell
segmentation area with manually segmented drug and control sample averages.
Manual segmentation provides a control to compare the automated results to.
Automated measurements were acquired using the hypertrophy pipeline. It was
determined that the pipeline has minimal discrepancies when calculating area.

To further validate the results generated by the automated
pipeline, 40 cells were manually segmented to be compared to the
automated area values for those same cells using an indexing system.
The manual measurements from both researchers and the automated
measurements from the algorithm were plotted as a scatter plot in
Figure 2. The algorithm was able to accurately recreate the manual
measurements taken, giving R2 values of 0.9707 and 0.9651 when
plotted with each of the researcher’s measurements.

Fig. 2. Scatterplot comparing area measurement methods. Automated and
manual measurements of cell area are plotted on the x and y axes, respectively.
Two researchers conducted manual analysis, which validated the automated results.

After filtering cells which had eccentricity values greater than
0.85, which allowed for the isolation of cells aligned directly with the
field of view to obtain a more accurate measurement of cross sectional
area, the average number of cells counted per image was 365 ± 59 cells
(Figure 3). The average cell area for the control group cells was 440 ±
46 px2, and the average cell area for the drug treatment group was 487 ±
34 px2. Figure 4 shows a comparison of the filtered and unfiltered
measurements for CMC cross sectional area. A two-tailed t-test gave a
p-value of 0.0087. The difference between the treatment groups was
preserved after filtering while providing greater reliability and
consistency in the measurements, and the average number of cells
counter per image continued to give an adequate sample size.

Fig. 3. Demonstration of the filtering process to exclude cells with >0.85
eccentricity. From left to right: (a) the raw tissue slice image, (b) cell segmentation
without a filter for eccentricity, (c) cell segmentation after filtering.

Fig. 4. Comparison of automated nuclei segmentation area with manually
segmented drug and control sample averages. Manual segmentation provides a
control to compare the automated results to. Automated measurements were
acquired using the nuclear segmentation pipeline. It was determined that the
pipeline has minimal discrepancies when calculating area.

3
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Nuclear Segmentation Measurements

Fig. 5. Comparison of automated nuclei segmentation area with manually
segmented drug and control sample averages. Manual segmentation provides a
control to compare the automated results to. Automated measurements were
acquired using the nuclear segmentation pipeline. It was determined that the
pipeline has minimal discrepancies when calculating area.

Fig. 6. Scatterplot comparing manual and automated nuclei area
measurements. This figure illustrates the correlation between points plotted with
the x-axis representing the automated counts retrieved by Cell Profiler and the
y-axis representing the manual counts. Two separate researchers conducted
manual analysis to validate the automated results. A linear regression of the data is
plotted to demonstrate the discrepancies, accuracy, and the trend line. Determined
that the pipeline has a high level of accuracy when generating automated
quantification.

Nuclear segmentation was analyzed by quantifying
hypertrophy of the CMCs. Twelve images of control mice and 16 of
drug treated mice were quantified. The average area of nuclear areas
were 26.7 ± 5.37 px2 and 21.65 ± 1.90 px2 for control and treatment
groups respectively. In this study, we examined six images, dividing
them evenly between the control and treatment groups, with three
images in each. We conducted manual measurements on 10 cells from
each image and contrasted them with automated measurements. The
manual technique revealed an average nuclear area of 26.7 ± 5.37 px2
for the control group and 21.65 ± 1.90 px2 for the treatment group.
Conversely, the automated method provided area values of 24.3 ± 4.47
px2 for the control group and 19.75 ± 1.79 px2 for the treatment group
(Figure 5). A p-value of 0.0063 was determined from a two-sided t-test.
To further validate the results obtained from the automated pipeline, we
manually segmented 40 cell nuclei and compared them with the
automated area values using an indexing system. The scatter plot in

Figure 6 illustrates both the manual measurements conducted by
researchers and the automated measurements generated by the
algorithm. The algorithm accurately mirrored the manual
measurements, achieving R2 values of 0.9638 and 0.9538 when
compared against the measurements of each researcher.

DNA Content Analysis
DNA Content analysis was performed on segmented internal

nuclei that were embodied in a cell membrane. Simultaneously, this
analysis was performed on cell membranes nuclei. Using 10 images
from the control group of mice and 10 from the drug treated mice,
intensity of DAPI stains and channels could be determined. Though
images were hyper stacked, there was inaccuracy in determining the
level of intensity of individual channels in the cells. As a result, nuclear
area was measured which quantifies the size of nuclei and the amount of
DNA there could be by approximation. The average nuclear area of
internal nuclei was 37 ± 12 px2 and the average nuclear area of cell
membrane nuclei was 20.5 ± 5 px2. Though the mean intensity, which is
a representation of the amount of pixels per area, was 6.5 ± 0.5 px2 for
the internal nuclei and for the cell membrane nuclei it was 7.5 ± 0.4 px2
(Figure 7).

Fig. 7. Graph of nuclear area and mean intensity. Intensity refers to the intensity
of fluorescence signals within defined regions of interest (ROIs). These metrics
provide insight into signal distribution and consistency across analyzed images. This
quantifies the amount of DNA content in the cell membrane and the internal nuclei.
As expected, internal nuclei have a higher nuclear area and mean intensity.

Discussion

Through machine learning algorithms and image analysis,
variations in cell cross-sectional area and DNA content can be
effectively discerned. This technological approach enables the precise
filtering of cell populations based on their distinctive characteristics,
facilitating an in-depth analysis of cardiomyocyte hypertrophy. With
batch processing capabilities, researchers can swiftly analyze vast
datasets, accelerating the pace at which results are obtained and
enhancing the iterative nature of experiments. DNA content analysis
can be quantified by determining proliferation and growth of cells
through treatment of drugs. Moreover, the shift from manual
segmentation to machine learning methods significantly diminishes the
risk of bias and variation stemming from human error and sampling
bias, ensuring more robust and reliable findings in cellular research.

Our algorithm not only accelerates the quantification of
images and pixels, thereby saving time, but it also ensures a consistent
level of objectivity across all quantification metrics. By streamlining
this process, it minimizes variability and enhances the reliability of
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results. Uniformity is achieved through our algorithm which translates
into greater precision and reproducibility, crucial for scientific research
and analysis. Researchers can rely on consistent measurements,
reducing the likelihood of erroneous conclusions and facilitating robust
data interpretation.

As a result, the application of our algorithm holds significant
promise in drug screening endeavors. By expediting the assessment
process, it empowers drug developers to swiftly evaluate the efficacy of
their compounds. This rapid feedback loop enables timely
decision-making, potentially accelerating the pace of drug discovery
and development. Ultimately, our algorithm serves as a valuable tool in
the pharmaceutical industry, facilitating the identification of promising
candidates and expediting the journey from bench to bedside.

Future Directions
All of the images used in this project were from healthy mice,

meaning none of the samples had HCM when they were being treated.
Testing the algorithm on a study that includes both healthy and HCM
mice, control and treatment groups, would provide a better
understanding of the effectiveness and applicability of the pipeline.
Analyzing HCM mice would verify the algorithm’s ability to detect and
quantify changes in hypertrophy, and this would also allow for an
analysis of the effectiveness of galunisertib and other drugs being used
to ameliorate hypertrophy in vivo. Additionally, understanding the
algorithm’s ability to measure hypertrophy would allow for the
refinement of the pipeline to make it more efficient. Knowing whether
more or less training is required to generate the desired results will
ensure researchers are only spending the necessary time and resources
in training the program. Lastly, the pipeline currently utilizes multiple
open source softwares in sequence to produce the results for
hypertrophy, nuclear segmentation, and DNA content analysis. A
potential advancement to be made would be to connect these separate
programs into a single software to eliminate unnecessary complexity
and expedite the analysis process.

Materials and Methods

Fig. 8. Workflow Schematic. Schematic of the workflow and outputs for each of the
pipelines developed.

The materials used in this project were images of murine heart
tissue cross sections in tiff file format from the Wolf Lab at UVA. The
tissue samples were stained with DAPI and WGA to identify the tissue
and cellular structure of the samples. All mice used in the study were
healthy (i.e., none had HCM), but half of the mice were treated with
galunisertib, a drug used to ameliorate hypertrophy in HCM, while the
other half served as a control. The softwares used to create the protocol
were Ilastik for the training and machine learning aspect of the project,
FIJI to convert the file format to be compatible with CellProfiler, and
CellProfiler for size and eccentricity thresholding, segmentation, and
measurements. Excel was used for downstream analysis and plotting
figures. Figure 8 shows a schematic of the analysis pipeline for each
aspect of the project.

Hypertrophy
Six images were selected (three from the control group and

three from the drug treated group) were inputted into Ilastik to serve as
the training data. Color/intensity, edge, and texture were selected at
various sigma values during feature selection, as shown in Figure 9. For
label one, which are the objects to be identified for the analysis, five cell
cytoplasms were selected along with five cell nuclei (so the algorithm
would not identify the nuclei as a separate structure for the purpose of
this pipeline). For label two, five cell membranes were selected to
contrast with the cell cytoplasms. Also in this label, vacant space or scale
bars were marked to help prevent them from being falsely identified as
cells. This process was repeated for each of the six images, and an
example of the training is shown in Figure 10. After the initial training, with
the probability map live update activated, adjustments to the training were
made until the predictions from Ilastik appeared satisfactory. The rest of
the images from the data set were loaded into Ilastik, and the probability
maps were batch processed and exported as tiff files for further analysis.

Fig. 9. Feature Selection. This figure shows the sigma value options during feature
selection in Ilastik. These options tell the software how to discriminate between
different types of pixels in the image to classify them properly.

Fig. 10. Demonstration of the image analysis pipeline. Moving from right to left
and top to bottom: (a) raw image, (b) Ilastik probability map, (c) Fiji filtering output,
and (d) CellProfiler cell outlines.

5
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The probability maps from Ilastik were not initially in a proper
format to be compatible with CellProfiler, so an intermediate step to
convert the file format in FIJI was added. The images from Ilastik were
converted to a 16-bit grayscale format tiff file using the batch processing
feature in FIJI, which allowed them to be effectively processed by
CellProfiler.

After conversion, the grayscale probability maps were loaded
into CellProfiler. An IdentifyPrimaryObjects module allowed for the size
thresholding of cells to assist the algorithm in eliminating small particles
or large vacant areas as being cells. It also incorporated smoothing
scales, correction factors, and was set to declump groups of cells based
on intensity. The MeasureObjectSizeShape module gave measurements
for the objects identified in the previous module. A FilterObjects module
allowed for thresholding based on eccentricity to eliminate elongated and
unaligned cells whose true cross sectional diameters could not be
determined. The eccentricity cutoff for this module was set to 0.85 as the
maximum value, which was determined based on manual sampling of
both circular and elongated cells from the training images. A second
MeasureObjectShapeSize module was included to measure only the
remaining cells after the eccentricity filtering. Another module was added
to display cell numbers onto each cell within each image, which allowed
manual comparisons to the automated values generated retroactively.
CellProfiler outputted csv files of measures for both filtered and unfiltered
images as well as images of the segmentation performed by CellProfiler.
The CellProfiler pipeline is available within the Supplementary Materials.

The data from CellProfiler was exported as a csv, which was
then converted into an Excel file for the final steps of analysis. All graphs,
plots, and data analysis were performed in Excel.

Nuclear Segmentation and DNA Content Analysis
Six images were selected (three from the control group and

three from the drug treated group) were inputted into Ilastik to serve as
the training data. In the context of label one, representing the objects
slated for identification in the analysis, five cell nuclei were specifically
chosen, accompanied by five cell membranes. This selection ensured
that the algorithm refrained from recognizing the nuclei as distinct
structures within the pipeline's framework. In label two, the focus shifted
to selecting five cell membranes to serve as a point of contrast with the
cell cytoplasms. This procedure was replicated for each of the six images.
Following the initial training phase, adjustments were iteratively made
while utilizing the live update feature of the probability map in Ilastik,
ensuring the predictions reached a satisfactory level. Subsequently, the
remaining images from the dataset were imported into Ilastik, and the
probability maps were subjected to batch processing, yielding exported
tiff files for subsequent analysis (Figure 11).

Initially, the probability maps generated by Ilastik were
incompatible with CellProfiler. To address this, an intermediary step
involving the conversion of file formats using FIJI was introduced5,6.
Through batch processing in FIJI, the images from Ilastik were converted
into 16-bit grayscale format tiff files, facilitating seamless integration with
CellProfiler for efficient processing7,8. After conversion, the grayscale
probability maps were loaded into CellProfiler (Figure 12).

Fig. 11. Nuclear Segmentation Probability Mask. The figure above depicts a
probability mask that is rendered after segmentation is completed from the
cross-sectioned cell images. The mask indicates the likelihood of where a nuclei can
be based on the intensity of the nuclei and the training given.

Fig. 12. CellProfiler Pipeline for
Nuclear Segmentation and DNA
Content Analysis. This figure shows
the total selection for the process of
analysis. It details the steps taken to
analyze a cell image into the
quantification of internal nuclei, cell
membrane nuclei, and DNA nuclear
content.

The CellProfiler analysis process began with the utilization of
Primary Objects identification to effectively sift through nuclei based on
their pixel sizes, ensuring the elimination of those that were either too
large or too small. Additionally, a size filter was integrated to guarantee
the selection of nuclei with an optimal eccentricity, maximizing accuracy.
These meticulously chosen nuclei represented internal components
within cells, characterized by distinct membrane boundaries. The Identify
Secondary Objects function was employed to generate a comprehensive
map of cell membranes. This step specifically targeted cells lacking a
nucleus within their confines. Leveraging the primary image input
alongside the probability map of primary objects, this phase meticulously
outlined the boundaries of cell membranes. Quantitative analysis ensued
through the Measure Image Area Occupied tool, facilitating the precise
determination of the areas occupied by both nuclei and cell membranes.
Furthermore, employing the Measure Object Size Shape module allowed
for the calculation of diameter and perimeter metrics for both nuclei and
cell membranes, utilizing Zernike features for enhanced accuracy. Masks
representing these objects were then generated, visually depicting the
extent of mapping achieved and color-coded to indicate size variations
(Figure 13, 14). Moreover, the Measure Object Intensity function was
instrumental in quantifying DNA content within both nuclei and cell
membranes. Utilizing merged DAPI channels, this method provided a
robust measurement, with a preference for Nuclear Area measurements
due to their superior representation of nuclear content9. The pipeline is
within supplementary objects. The data from CellProfiler was exported as
a csv, which was then converted into an Excel file for the final steps of
analysis. All graphs, plots, and data analysis were performed in Excel.

Fig. 13. Cardiomyocyte Nuclear Segmentation in CellProfiler. This figure above
depicts a mask created of the internal nuclei based on size and color. The size and
color are assorted on the right of the map and the nuclei are highlighted across the
mask.
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Fig. 14. Membrane Nuclear Segmentation in CellProfiler. This figure above
depicts a mask created of the cell membrane nuclei based on size and color. The
size and color are assorted on the right of the map and the nuclei are highlighted
across the mask.

Conclusion

The development of a machine learning algorithm for the
automated analysis of tissue sections will permit the more rapid
screening of drugs during in vivo testing. Manual quantification
methods are slow and do not offer the same level of consistency and
objectivity as can be offered by our pipeline. In the development of
drugs to treat HCM, the ability to quantify changes in hypertrophy and
DNA content enable high throughput testing and the processing of
larger datasets. The continued application and development of our
algorithm within the Saucerman and Wolf Labs will expand our
understanding of HCM and accelerate the discovery of new treatment
methods to improve the quality of life for patients.
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