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ABSTRACT 
 

This study addresses a systems-based approach for healthcare delivery to patients 

with hepatocellular carcinoma (HCC), the most common type of liver cancer, who are 

awaiting orthotopic liver transplantation (OLT).  Often waiting as long as a year for OLT, 

these patients undergo many intermediary treatments, the sequence of which uniquely 

changes over time for each patient.  These combinations of therapies are too many in 

number for a physician to evaluate accurately in his mind, as he must administer the most 

effective therapy at each checkup.  To overcome these limitations, this study describes a 

dynamic multiobjective decision tree (D-MODT) designed by the author to provide 

medical decisionmakers with Pareto-optimal treatment strategies for patients suffering 

from HCC.  A multistage decision tree framework is developed, allowing the model to be 

customized for each patient in terms of state of health and geographic location by 

updating via Bayes’ Theorem a patient’s probabilities of survival, progression, etc. as 

every piece of new information arrives to the physician.  This level of refinement has not 

achieved, to the author’s knowledge, in any study employing the traditional Markovian 

approach, where only transitions from the most recent state of health are considered.  The 

model’s framework and mathematics are described herein, along with a case study that 

details how a 1-month case of the model would be solved and analyzed.  The model is 

populated with data from UNOS and the relevant literature, although data collection and 

better population of the model are large future directions for this research.  Although this 

methodological approach is herein applied to HCC treatment, its success should 

encourage its application in other areas of medicine where complex sequential 

decisionmaking confounds physicians in disease management scenarios.
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1 INTRODUCTION 
 

Hepatocellular carcinoma is the most common form of liver cancer, the fifth 

most-common type of cancer, and the third most-common cause of cancer-related death 

worldwide (Llovet, Fuster, & Bruix, 2004).  In the early 2000s, there were between 

8,500-11,500 new U.S. cases of HCC annually, and these cases carried 1 and 3-year 

survival rates of 36% and 17%, respectively (El-Serag, 2004).  This already-major 

problem will only continue to rise in incidence in the next decade due to the future 

prevalence of Hepatitis C (Davis, Alter, El-Serag, Poynard, & Jennings, 2010).  

When possible, liver transplantation or resection are the firstline treatment options for 

HCC patients, as “optimal candidates” have a 5-year survival rate of over 70% post-

transplant (Llovet, Fuster, & Bruix, 2004).  Resection, however, is only a viable option in 

5% of cases in the West.  Optimal candidates for transplantation are termed as such by 

their meeting the so-called “Milan criteria,” which states that they must have either one 

tumor not exceeding 5cm or 3 tumors not exceeding 3cm (Llovet, Fuster, & Bruix, 2004).  

Clearly, liver transplantation has marked effects on survival rates, as this 5-year survival 

rate of over 70% is much preferred to the 3-year untreated survival rate of only 28% 

(Llovet, Burroughs, & Bruix, 2003).  Yet, the disequilibrium between the demand for 

transplantable organs and the supply of available livers has resulted in the waiting period 

for transplantation to often exceed 12 months (Llovet, et al., 2002).  These lengthy wait 

times also increase the number of patients whose declining health causes them to be 

removed from transplant consideration (23% will drop out within six months), thus 

further hurting their chances for survival (Llovet, et al., 2002).   
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Given that liver transplantation is the primary treatment option for HCC patients, 

there has been much time and energy devoted to devising a system that appropriates 

organs to patients in need.  Since 2002, the Model for End-Stage Liver Disease (MELD) 

system has been utilized to allocate deceased donor livers in the United States (Kamath & 

Kim, 2007).  MELD assigns a score to patients awaiting liver transplantation based on 

various factors that determine the risk of patient death from liver disease within 90 days 

of their arrival on the wait list for transplantation.  This model was not designed 

exclusively for HCC, as it determines the risk of death from intrinsic liver disease rather 

than from liver cancer.  Subsequently, some argued that MELD assigned low scores to 

HCC patients (who had lesser risk of dying from liver disease) who otherwise had a high 

risk of death from liver cancer; that is, MELD may have underestimated the risk of death 

for HCC patients (Volk, 2010).   As a result, HCC patients are assigned a priority score of 

22 and given an additional 3 points every 3 months until they die, they are transplanted, 

or their tumor becomes too large. 

Lengthy wait times for transplantation have caused physicians to administer 

“bridging” therapies, with the goal of maintaining a patient’s health so that he does not 

dropout from consideration while he awaits transplantation.  The set of these therapies 

includes trans-arterial chemoembolization (TACE), radiofrequency ablation (RFA), 

percutaneous ethanol injection (PEI), and internal radiation via Yttrium90 microspheres 

(Llovet, et al., 2002; Naugler & Sonnenberg, 2010; Salem, et al., 2009).   In addition, 

many physicians treat with sorafenib after a patient has dropped out from transplant 

consideration (Llovet, et al., 2008).  These therapies have been extensively studied and 

compared in the aforementioned papers.  In the literature, most treatment studies were 
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simulated in three-month cycles, which is akin to UVA’s practice of a patient being 

scanned (via CT/MRI) one month after the introduction of any therapy, and every three 

months as he remains on the same therapy (Naugler & Sonnenberg, 2010).   

  This combination of multiple competing therapeutic options that are available for 

administration to the patient every one or three months throughout his (often) lengthy 

treatment quickly spans into a large combinatorial network of decisions.  With the 

assumption of three available treatments at every checkup, the physician is presented 

with a network of 34 = 81 different treatment sequences by only the fourth checkup.  

Miller, in his seminal paper, observed that humans are simply unable to make sound 

decisions among a surprisingly small number (capped at 9) number of alternatives 

(Miller, 1956).  This hypothesis that decision-makers cannot process large numbers of 

alternatives on their own necessitates the development of technology to come to their aid.  

This thesis describes one such tool in the context of HCC treatment. 

The primary objective of this study is to develop a tool to aid medical 

decisionmakers in their management of HCC in ways that existing models cannot—

namely, the Markovian limitations of accommodating a heterogenetic patient cohort 

within the model, and pursuing greater levels of patient specificity. For an individual 

patient, our model will output the Pareto-optimal (to be defined in a later section) set of 

treatments for the number of months that corresponds to the median wait time for his 

region.  Future research should develop a solution algorithm in Objective-C and a 

subsequent iOS application so that a physician may input his patient’s location (i.e., 

UNOS region) and state of health (i.e., MELD score at listing) and quickly view a list of 
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optimal strategies (in terms of lifetime provided and cost incurred) and their respective 

quantitative tradeoffs.   

On a higher level, this methodology will allow researchers to simulate test cases 

in the theoretical rather than the physical realm.  The ability to simulate therapeutic 

schedules that would be unfeasible or unethical to administer to actual patients will be of 

great value to researchers seeking to develop baseline statistics for HCC and other 

diseases. 

 

1.1  Problem Statement 
 

HCC treatment is not “one-size-fits-all” in any sense.  Each patient is 

characterized by his unique state of health both at the beginning of and at every point 

throughout his treatment, and different therapies are available to him at different times 

given these continuously updated states of health.  Depending on his UNOS region and 

MELD score, a patient may receive a transplant rather briefly after listing, or wait a year 

until a donor liver is available.  Because of the uniqueness of pre-transplant treatment 

across the U.S., there is no established sequence of therapies month-to-month.  

The disequilibrium between the supply of and demand for donor livers further confounds 

the problem of HCC treatment, as the limited availability of transplantable organs 

emphasizes that they are allocated to the patients who will most benefit (in terms of 

lifetime provided) from them.  The Organ Procurement and Transplantation Network 

(OPTN) keeps an updated online record of the U.S. waiting list.  According to their 

national data, there are 15,720 candidates on the waitlist for liver transplantation as of 

March 4, 2013.  Yet, in 2012, there were only 6,633 deceased donors (and 246 living 
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donors) added to the waitlist as compared to 11,609 new candidates.  The majority 

(72.61%) of these patients were at least the age of 50 upon their listing.   

Thus, given the severity of the problem at hand and the necessity of a patient-specific 

approach, the problem examined in this thesis is how best to model HCC treatment’s 

sequential decision-making.  This is not a clinical cohort study, a retrospective chart 

review per se, or a study designed to inform physicians of the most efficacious bridging 

therapy; rather, this thesis seeks to lay the foundations for a dynamic modeling approach 

that, once sufficient data are available, can be populated and customized for any 

combination of patient and available therapies.  It should be noted that the therapies, 

MELD scoring buckets, and patients used later in this paper’s hypothetical case study are 

meant to serve as an only as examples and that the model can theoretically be refined to 

any combination thereof and be solved via the same mathematical technique. 

 

1.2 Objectives 
 

This thesis seeks to extend the work started by Bleistein (2011) in his effort to: 

Develop a system-based methodology that would assist clinicians and the medical 

community involved in liver transplantation to evaluate the trade-offs among the multiple 

options available for the treatment of HCC patients, including the allocation of living and 

deceased livers to patients of varied health conditions.  Bleistein built a static model to 

analyze the tradeoffs between pre-transplant bridging therapies.  His work will be further 

detailed in the review of the literature. 

The work contained herein seeks to complete the next modeling iteration, based 

off Bleistein’s prior modeling efforts.  Specifically, this work develops a methodology for 
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dynamic multiobjective decision trees (D-MODT), from which comes a model for HCC 

centered on the importance of the patient’s state of health.  While at this present moment 

sufficient data is not available to populate a full D-MODT for a patient with a lengthy 

wait time or an unorthodox (yet theoretically feasible) combination of therapies over 

time, the purpose of this work is rather to demonstrate the advantages of the D-MODT 

methodology vis-à-vis other methodologies (including but not limited to Markov 

models), the importance of the state variable, and the benefit of incorporating patient 

specificity.   

In sum, this work seeks to provide researchers with an improved methodology 

with which to later, when sufficient data are available, populate large-scale models and 

accurately evaluate the tradeoffs among the vast combinations of therapeutic sequences 

possible during HCC treatment.  More future directions for this work will be discussed in 

a later section. 
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2 REVIEW OF THE LITERATURE 
 

Throughout the years, HCC has been the subject of many studies.  In this section, 

several papers are summarized in order to present the reader with a clearer view of the 

work that has already been done, and also to expose to him the space that the model 

presented in this paper attempts to fill.  These papers served as both motivation for this 

current work and also provided the model with several data points that could not be 

determined from the OPTN database alone.   

 

2.1 General HCC Literature 
 

 The following papers give a general historical overview of the disease in terms of 

survival, treatment strategies, and management.  Though they may cite clinical cohort 

studies or treatment trials within their bodies, these papers were intended as broad 

educational overviews of HCC. 

 Llovet, Burroughs, and Bruix (2003) give a broad overview of HCC’s incidence 

and treatment options.  They note that HCC is one of the few cancers with well-defined 

major risk factors, and that this may help physicians in its early detection.  Such early 

detection helps patients with so-called “Early HCC”, defined as 2-3 nodules not 

exceeding 3cm, achieve excellent outcomes after OLT.  These survival rates, along with 

many others including dropout rates, rates of survival for untreated control groups, 

intermediate stage, and advanced stage patients, as well as transplantation survival rates, 

are detailed in this paper’s many statistical tables.  These valuable survival rates were 
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consulted in the development of this thesis’s own case study (to be detailed in a later 

section).  Additionally, this paper supported many of the assumptions inherent in this 

paper’s case study: namely, the assumption of the bridging therapies available to the 

patient at every step in his treatment, and the assumption of the patient’s liver function 

upon his entry of the model. 

 Parkin et al., (2001) provided global estimates of the burdens of all cancers 

worldwide.  They note that HCC is the 3rd deadliest cancer overall, and that its incidence 

rate (at the time of publication ) was 564.3 per 100,000 people.  They provide this thesis 

with the assumption that patients who survive at least 5-years post-treatment can be 

considered cured, given the advanced age of most HCC patients, and that death after 5 

years is likely to be from another cause.  Furthermore, they model the shape of the 

survival curve within 5 years of treatment via the Weibull distribution. 

 Llovet et al., (2004) depict a diagnosis and treatment strategy for HCC, noting 

again the importance of early HCC treatment.  Patients meeting the so-called “Milan 

Criteria” of 1 tumor not exceeding 5cm or 3 tumors not exceeding 3cm have excellent 5-

year survival rates of 50-75%.  In their treatment group, they were able to diagnose 40% 

of their patients early.  They note that there is no acceptable treatment for advanced-stage 

HCC patients, and that this treatment group should be given palliative therapy to ease 

their pain.  Citing ethical reasons, they claim that a “control” group of patients has not 

been established.  D-MODT’s ability to simulate clinical cases in the theoretical realm 

and establish such a group will be discussed later in this paper.   

 Altekruse, McGlynn, and Reichman (2009) studied the rising incidence of HCC 

in the United States, noting that it tripled from 1.6 per 100,000 to 4.9 per 100,000 
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between 1975 and 2005.  However, the 2-4 year survival rates associated with HCC 

doubles between 1992 and 2004.  This is due, the authors posit, to better awareness of the 

disease, more frequent HCC screening, and more aggressive therapeutic approaches such 

as OLT and resection.  They note that Hepatitis-C, alcohol abuse, and obesity are among 

the leading factors associated with HCC infection.   

 El-Serag (2004) provided this thesis with several statistics on survival rates for 

different therapies and the overall disease.  He notes that of the 8,500-11,500 new cases 

annually in the U.S., 74% occur in men, and their average age is 65 years.  Referring 

back to obesity as having a strong association with HCC, the author states that the U.S. is 

an “epidemic of overweight and obesity,” as 66% of adults are overweight and 20% are 

obese. 

 Bruix and Sherman (2010) describe many of the therapeutic options for HCC 

treatment and their associated survival rates.  Additionally, this paper explains in detail 

the debate behind the use of MELD for liver allocation and its shortcomings when 

applied to HCC.  This will be discussed in detail later in this thesis.  Furthermore, the 

authors promote RFA as an excellent bridge, as it has similar efficacy to percutaneous 

ethanol injection (PEI), but requires far less sessions.  The authors also promote sorafenib 

as the firstline treatment for patients who can no longer be treated with bridges such as 

TACE, RFA, or PEI. Highlighting the benefits of early detection and treatment, they note 

that, “In the past decades HCC has gone from being an almost universal death sentence to 

a cancer that can be prevented, can be detected early, and can be cured with appreciable 

frequency given early detection.” 
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 Wiesner et al., (2003) further discuss MELD’s capability for ranking potential 

recipients with liver disease (HCC and otherwise).  They claim that for the entire liver 

disease cohort, a subset of which is HCC patients, MELD accurately predicts 3 month 

mortality.  A discussion of MELD and its use within this thesis’s model will come later in 

this text. 

 The above papers served as a motivation for developing a tool to assist 

decisionmakers with the complex problem of HCC treatment.  Given the disease’s wide 

impact and positive response to the early administration of therapies, it is vital that 

technology be developed to aid physicians in prescribing the right treatments at the right 

times. 

 

2.2 Clinical Literature Review 
 

 The following papers detail clinical studies that examine the effects of different 

approaches upon actual patient cohorts, as opposed to the hypothetical cohorts dealt with 

in other (i.e., Markovian modeling) approaches.  Many of these studies compare one 

treatment versus another, or the effects of a singular treatment upon a large cohort of 

patients over time. 

 Azoulay, et al. (2002) sought to determine factors affecting the outcomes of re-

transplantation, and identified three variables associated with poor patient outcomes: 

urgency of re-transplantaition, age, and creatinine levels (one component of MELD).  

This paper contains survival rates for the years following transplantation and re-

transplantation (which are markedly lower).  The authors conclude that re-transplantation 
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denies allocating livers to patients who haven’t undergone their first transplant, and that it 

is significantly more costly than the first transplantation. 

 Roberts, et al. (2010) studied the outcomes of patients who undergo ablation and 

then wait until transplantation (“ablate and wait”) versus those patients who go through 

the transplantation procedure according to the Milan Criteria.  They argue that the 

patients’ underlying tumor biology is more apparent in scans for the former group, and 

that the Milan Criteria are “surrogate markers” for such biologies.  They found that 

patients from the “ablate and wait” group had excellent outcomes post-OLT, but that 30% 

dropped out during the waiting period.  The authors suggest that perhaps all patients 

should undergo a minimum wait time (e.g., 6 months), since treated tumors do not 

frequently degenerate in the time between a bridge and OLT.   

 Rodriguez-Luna, et al. (2004) studied the recurrence of Hepatitis-C (HCV) in 

patients post-OLT.  They tested the hypothesis that HCV recurrence is more common 

post-LDLT versus DDLT, and found that there was no significant difference. 

 Sangiovanni, et al. (2006) performed a large cohort study in which they studied, 

in part, the development of HCC in HCV patients.  Of the 214 patients studied, 32% 

developed HCC, and it was the main cause of death in 44% of these cases.  After the 

diagnosis of HCC, these patients had an annual mortality rate of 31.5% per year.  This is 

especially important to note since HCV is predicted to rise in incidence over the next 

decade. 

 Hashikura, et al. (2001) analyzed a center’s 10-year history with 110 living-

related donor graft transplantation (LRLT).  This procedure was developed as an 

alternative to DDLT due to the serious shortage of donor livers.  The authors found that 
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this procedure offered excelled (80%+) 1, 3, and 5-year survival rates for patients and 

grafts, and promote the expansion of LRLT. 

 Markmann, et al. (1997) examined the effects of 356 re-transplantations at UCLA 

from 1984-1996.  Their results were in harmony with Azoulay, et al. (2002), in that the 

survival of the re-transplanted patients was inferior to those receiving their first OLT, and 

that the procedure of re-transplantation is an inefficient use of the already scarce number 

of donor organs. 

 Livraghi, et al. (1995) compared 3-year survival rates of cirrhotic HCC patients 

who had been treated with resection, PEI, and those who had not received any treatment.  

They found that resection and PEI offered 79% and 71% 3-year survival, respectively, 

compared to the 26% survival for the “do nothing” group.  They concluded that surgery 

and PEI improve survival, and that more work needs to be done to determine which 

treatment to give patients. 

 Mazzaferro, et al. (1996) performed a cohort study of 48 cirrhotic patients with 

small (i.e., meeting the Milan Criteria) HCC who underwent OLT.  After four years, the 

actuarial survival rate of these patients stood at 75%, and recurrence-free survival was 

83%.  They concluded that OLT is an effective treatment for unresectable Milan HCC 

patients with cirrhosis. 

 Llovet, et al. (2008) studied the effects of administering sorafenib to 602 patients 

with advanced HCC.  They note that, in these advanced patients, no systematic 

therapeutic sequence had been established.  This study found that sorafenib offered 10.7 

months of median survival, compared to the placebo’s 7.9 months.  This additional 

lifetime of 3 months provided by sorafenib was built into this thesis’s model.   
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 Chok, et al. (2011) performed a comparative study with 91 unresectable HCC 

patients who had received either TACE or RFA.  Using only the objective of survival, 

they found that TACE survival was 80% and 58% after 1 and 2 years; RFA survival was 

82% and 72% after the same times.   

 Lau and Lai (2009) reviewed the role of RFA in the treatment of HCC.  

Reviewing a number of databases from 1997-2008, they argue that RFA is an excellent 

bridge for patients who expect to wait for a long time (>6 months) until OLT.  They 

provide tables with survival rates and dropout rates, which this thesis consulted in its case 

study. 

 Many studies in the literature focus on a single bridging therapy (e.g., TACE or 

RFA) and provide survival and dropout statistics for varying time periods.  These papers 

were extremely variable as data sources for this thesis’s case study.  In particular, Choi, et 

al. (2007), Lu, et al. (2005), Mazzaferro, et al. (2004), Raut, et al. (2005) performed 

cohort studies on dropout rates and survival associated with RFA; Maddala, et al. (2004), 

Takayasu, et al. (2006), Oldhafer, et al. (1998), and Graziadei, et al. (2003) did so for 

TACE. 

 The above papers shed light on the state of the art of administering HCC 

treatments, and were invaluable resources in the design of the model described in this 

thesis.  Survival statistics, dropout rates, etc. were consulted from these and other papers 

in the formulation of the case study elsewhere in this paper.  
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2.3 Markov Models: Overview and Clinical Studies 
 

 All models are built to answer questions.  In the previous section, the studies that 

were described reviewed the effects of various therapies on actual cohorts of patients to 

draw conclusions about the efficacies of various treatment strategies.  However, many 

researchers wish to quickly simulate the results of a particular drug’s application to a 

large group of patients without having to physically carry out the research over many 

years’ time.  To this end, many studies build models, make assumptions, and use prior 

data to simulate treatments, test hypotheses, and answer questions.  Building models 

allows researchers to test therapeutic combinations that would be infeasible or unethical 

to test in the real world, and also allows for years’ worth of trials to be simulated in mere 

moments.   

 In studies where the administration of a therapy is performed upon a large 

hypothetical cohort of patients, Markov models are used the vast majority of the time.  

The mathematics of these models are governed by the titular Markov Property, which 

states that for random variables 𝑋!,𝑋!,…𝑋! and states 𝑥!, 𝑥!,… , 𝑥!, that: 

 

𝑃 𝑋! = 𝑥! 𝑋!!! = 𝑥!!!,… ,𝑋! = 𝑥!,𝑋! = 𝑥! = 𝑃(𝑋! = 𝑥!|𝑋!!! = 𝑥!!!)               (1) 

 

That is, the present state of a random variable depends only on the prior state and is 

“memoryless” of the past states.  The following paragraphs detail many studies that have 

employed Markov modeling techniques.  A discussion regarding Markov models’ 

applicability and appropriateness is to follow. 
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 Llovet, et al. (2002) built a Markov model to assess the cost effectiveness of 

bridging therapies for cirrhotic HCC patients while awaiting OLT.  The set of therapies 

considered was PEI, surgical resection, and no action.  After bridging therapy, the 

patients could transition to OLT, dropout, or death (the same transition states used in this 

thesis post-bridge).  States of health were analyzed in three-month cycles, and the model 

was simulated over the course of 10 hypothetical years.  Employing a cost-effectiveness 

cutoff value of $50,000/1 year life gained, the authors found that both PEI was a cost-

effective bridge for early HCC patients on the waitlist for OLT.   Resection was cost-

effective should the patient face a longer wait time (>1 year). 

 Cheng, et al. (2001), in their study of LDLT versus DDLT for small non-

resectable HCCs, developed a Markov model to simulate the effects (in terms of survival) 

among three strategies: no OLT, intent to perform DDLT, and LDLT.  Even when 

varying via Monte Carlo simulation many factors (e.g., tumor grown pattern, severity of 

cirrhosis, regional transplant volume, etc.), they found that LDLT dominated DDLT in 

terms of life expectancy.  This paper did not consider the monetary costs associated with 

either procedure. 

 Sarasin, et al. (2001) also compared the effects of LDLT versus DDLT with their 

own Markov model.  Unlike the previous paper, this study considers the costs of both 

types of transplantation.  For their model’s hypothetical patient, the authors found that 

LDLT was more effective than DDLT after 3.5 months on the waiting list.  For waiting 

times of 1 year, LDLT provided up to 2.8 more years of survival than DDLT.   

 Northup, et al. (2009) developed a multistage Markov model to explore the costs 

and benefits between three strategies: medical management only, waitlist for DDLT, 
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waitlist with possible DDLT or LDLT.  The study was simulated over a hypothetical 

period of 10 years.  The authors found that both strategies 2 and 3 were cost-effective 

over the 10-year period compared to strategy 1.  Regarding the tradeoffs between 

strategies 2 and 3, the study found that the inclusion of LDLT to a DDLT program does 

offer better patient survival, albeit at an increased cost. 

 Volk, Vijan, and Marrero (2008) built a Markov model to compare 

transplantation’s survival benefit for patients who fall outside of the Milan Criteria versus 

the harm to other patients on the waitlist.  They note that, as of their study, no empirical 

research had defined the post-transplant survival rates that would justify expanding the 

Milan Criteria.  This study used the UCSF Criteria (1 tumor not exceeding 6.5 cm, 3 

tumors not exceeding 4.5cm), and their Markov model examined the decision of whether 

or not to perform OLT on a patient who exceeds the Milan Criteria but meets the UCSF 

Criteria.   They found that transplanting patients who exceed the Milan Criteria resulted 

in a 44% increased risk of death, and concluded that this outweighed the benefit of OLT.  

They note that any expansion of the Milan Criteria will have to be supported by excellent 

survival rates for the newly admitted patients. 

 The work of Naughler and Sonnenberg (2010) was heavily consulted in the 

development of my model.  In their paper, the authors constructed a Markov chain to 

compare survival rates and the cost-effectiveness of different HCC pre-OLT treatment 

strategies for patients with small (<2cm) HCC.  The two strategies considered were: 

immediate TACE or RFA, and monitoring alone.  Separate Markov chains were built for 

the simulation of each strategy, and a hypothetical cohort of 1000 patients was studied 

over 10 years.  The authors concluded that it was more cost-effective (their threshold was 
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$50-100k/year) to bridge with TACE/RFA than to simply monitor, and that RFA was a 

better bridge than TACE (although some patients are precluded from RFA due to 

technical issues).  Aside from insight on the tradeoffs between TACE/RFA, this paper 

provided this thesis with several valuable survival and cost statistics for the therapies 

considered, and also an exponential mathematical equation used for calculating monthly 

rates of transition from yearly rates.   

 Vitale, et al. (2010) developed a Markov model to study the efficacy of 

employing sorafenib as a bridging therapy towards OLT versus using no bridge for 6 

months.  The authors found that Sorafenib provided a median survival time of 94 days, 

which was consistent with other papers and has led to this thesis’s assumption of 3 

months of provided lifetime.   

 

2.3.1 Limitations of Markov Models 
 

 As evidenced by their presence in the papers reviewed in the prior section, 

Markov models are dominant in the literature.  This is due, in part, to their attractive 

simulation ability.  Software exists (e.g., Data 3.5, Tree Age Software) that allows 

medical researchers to quickly input probabilities, generate, and solve Markov models in 

a small amount of time.  In addition, the passage of time within the model is very 

conveniently handled by the Markov mathematics, as each transition from one state to 

another is analogous with the passage of a homogenous amount of time.  In the papers 

reviewed, this period was almost always three months.   

 Despite their attractiveness and convenience, the Markov approach has its 

shortcomings.  Davis, et al. (2010) note that, “[Markov] models have significant 
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limitations in that the studied cohort is considered homogeneous and traverses through 

their disease at a fixed and predictable rate over time.”  To his first point regarding the 

homogeneous cohort, the papers this thesis reviewed did indeed assume that every patient 

inputted into their Markov model was the same.  As an example, Cheng, et al. (2001) 

assumed a homogeneous cohort in which every patient was a 58-year-old male with 

cirrhosis and a single non-resectable 3.5cm HCC.  In practice, the uniqueness of each 

patient and his initial state of health are key in determining which therapies a physician 

prescribes. The costs and life expectancies, and subsequently a model’s output, associated 

with different therapeutic sequences differ greatly depending on these initial states of 

health.  Thus, a more appropriate model would consider that every patient could have his 

own unique characteristics and initial state of health; that is, it would allow for a 

heterogeneous and diverse patient population. 

 The homogeneous passage of time between states in the literature’s Markov 

models is also an assumption that must be called into question.  Formally, time 

homogeneity is satisfied if, for states i, j, time t, and step s: 

  

    𝑃(𝑋! = 𝑗|𝑋!!! = 𝑖)                                                           (2) 

 

is independent of t.  Several papers such as that by Llovet, et al. (2002) assume that three 

months pass between every state transition in their model.  At UVA, the clinical team 

does not necessarily wait three months between every checkup; a patient is scanned one 

month after his initial treatment is administered, then every three months (if he remains 

on the same therapy) or one month (if he changes therapies).  Additionally, a patient may 
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respond differently to therapies at different times throughout his treatment, so the 

independence of t in Equation (2) is further unjustified.   A more appropriate model 

should consider all combinations of this one-and-three month checkup lattice, and not 

assume that, for example, a patients state of health will behave the same way from 

months 3 to 6 as it would from months 6 to 9.   

 Perhaps the greatest assumption of all is the “memorylessness” property described 

previously in Equation (1), in which the current state of a system depends only on the 

previous state.  Surely, a physician examining his patient at his 5th checkup would not 

base his current therapeutic recommendation solely on the 4th checkup, but rather use all 

available past and historical information so as to make the most informed decision.  The 

Markov property ignores this past information, and disregards the chain of events that 

lead to the system’s prior state.  A more appropriate model would allow for a current 

decision to incorporate all knowledge of past events. 

 The above critiques are not meant to dismiss the Markov modeling approach, but 

rather to identify ground upon which complementary and supplementary models can be 

constructed.  The remainder of this thesis describes the methodology behind a 

complementary Bayesian model. 
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3 METHODOLOGY 
 

 The following text details the particular methodological aspects that comprise the 

multi-objective decision tree (MODT) and later the dynamic multi-objective decision tree 

(D-MODT), the product of this thesis.  The structure and development of MODT is 

explained, and an overview of Bleistein’s (2011) MODT for HCC treatments is 

presented. 

 

3.1 Decision Theory 
 

 The decision tree, popularized by Raiffa’s (1968) seminal publication, is both 

analytically and graphically informative, as it employs Bayesian analysis to provide the 

decision-maker with the expected value of the objective while visually depicting all 

stages in the decision process.  A sample decision tree is depicted below in Figure 1. 
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Figure 1: Single Objective Decision Tree (Haimes 2011) 

Decision tree analysis contains three basic components: 

1: Decision nodes (represented by squares), at which point the decision-maker 

must select one action (represented by a line) among a set of feasible alternatives 

2: Chance nodes (represented by circles), which represent points at which 

divergent probabilistic states of nature (represented by lines) occur 

3: Consequences: at the end of each branch, the value of the outcomes (i.e, cost) is 

denoted by µ.   

 Multiplying the probabilities associated with each chance branch by their 

corresponding consequence µ and then averaging these values out for each chance node 

solves the decision tree.  Because of the mathematical similarities between this and the 

MODT/D-MODT, a formal discussion of the mathematics behind the solution procedure 

will occur later in this thesis.   

 



26	  

3.2 Multiple Objectives 
 

 Although single-objective decision trees such as those theoretically depicted in 

Figure 1 are a powerful graphical and analytical tool for decision-makers, most real-

world problems are characterized by multiple, non-commensurate, and conflicting 

objectives (Haimes 2011).  The description of these objectives as non-commensurate, by 

definition, should dissuade modelers from employing approaches that seek to combine 

multiple objectives into a single scalar value.  Yet, as is evidenced in the review of the 

literature, many researchers (Llovet, et al. (2002); Naughler and Sonnenberg (2010); etc.) 

optimize in terms of cost-effectiveness, and by doing so combine the competing 

objectives of minimization of cost and maximization of life into one scalar value.  Thus, 

it is necessary to consider a method where the values of objectives are kept separate 

rather than combined.  The concept of Pareto-optimality allows decision-makers to view 

tradeoffs among different strategies while still maintaining the separateness of the 

objective functions.  It also provides the decision-maker with a set of feasible solutions 

rather than a singular “optimal” solution.  In plain English, a solution to a multiobjective 

optimization problem is termed noninferior, or Pareto optimal, if improving one objective 

function can only be achieved at the expense of degrading another.  To define a Pareto-

optimal solution mathematically, consider the following multiobjective optimization 

problem (MOP): 

 

                                              min!∈! 𝑓! 𝒙 , 𝑓! 𝒙 ,… , 𝑓! 𝒙                                           (3) 

𝑋 = {𝒙|𝑔! 𝑥 < 0; 𝑖 = 1,2,… ,𝑚} 
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where in Equation (3) x is an n-dimensional vector of decision variables, X is the set of 

all feasible solutions, and gi(x) s the ith constraint. 

 A decision x* is said to be Pareto-optimal to the system posed by Equation (3) if 

and only if: 

 

          ∄𝑥 ∋ 𝑓! 𝑥 ≤ 𝑓! 𝑥∗ ; 𝑗 = 1,2,…𝑛                                         (4) 

 

with strict inequality holding for at least one j.  To clarify, consider the following 

hypothetical case in which we seek to minimize two objective functions.  Suppose we 

have the following three options: 

    
𝑓!
𝑓!

= 80
20 !

, 2080 !
, 7590 !

                                                (5) 

 

 We would say that strategy 3 is dominated by strategy 2, since in terms of the 

objective (minimize both f1 and f2) it is inferior.  Similarly, we would say that strategies 1 

and 2 are Pareto-optimal with respect to the solution set since improving one objective 

function (e.g., reducing f1 from 80 to 20) can only be done at the expense of degrading 

another (e.g., increasing f2 from 20 to 80).  Graphically, we can draw a Pareto-optimal 

frontier for the example as follows: 
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Figure 2:  Sample Pareto-Optimal Frontier 

The above example illustrates that the concept of Pareto-optimality allows the decision-

maker to decide among many feasible solutions, rather than force him to weight 

objectives and be confined to one “optimal” point.  In the MODT methodology, the 

model output is a set of Pareto-optimal strategies that can be traced throughout the tree, 

all the way back to the first decision.  What follows is a brief overview of the MODT 

methodology. 

 

3.3 Multi-Objective Decision Trees (MODTs) 
 

3.3.1 Overview 
 

 Haimes, Li, and Tulsiani (1990) extended the single objective decision tree 

(SODT) models prevalent in earlier decades to broaden the concept of decision-tree 

analysis, since most real-world problems have multiple rather than single objectives.  

Thus, the final branches of the MODT contain vector-valued performance measures, 
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rather than scalars.  The MODT’s model structure is akin to that of the SODT, in that it is 

a sequence of decision nodes and probabilistic chance nodes.  Compare the topology of 

the SODT in Figure 1 with that of the MODT in Figure 3: 

	  

Figure 3: Structure of MODT (Haimes, Li, and Tulsiani 1990) 

The notation in the above figure corresponds to the following: 

 

 1) ai
n is the ith action available to the decision-maker at decision node n 

 2) θj
n is the jth probabilistic state of nature possible at chance node n 

 3) r(ai, θj ) = [r1(ai, θj) …,rk(ai, θj)]t is the k-dimensional vector-valued 

performance measure associated with action ai and probabilistic state of nature θj 
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From the above definitions, the general definition of Pareto-optimality for 

MODTs is the following (for minimization of all objective functions):  

 

A point r = [r1,r2,…,rk]t in the objective function space is said to be Pareto-

optimal if there does not exist another feasible point r’ = [r1
’,r2

’,…,rk
’]t such that ri 

’≤ ri, 

for i = 1,2,…,k with at least one strict inequaility holding for i = 1,2,…,k.                     (6) 

 

3.3.2 Solution Procedure   
 

 The following mathematical approach is taken from Haimes (2011).  The solution 

procedure for MODTs begins at the end (leftmost branches) of the decision tree and 

proceeds iteratively until the initial decision node of the tree is reached. At each decision 

node n, and at each branch emerging to the right side of that node, there is a 

corresponding set of vector-valued performance measures 𝑟 𝑎!!  for each alternative ai.  

We identify the set of noninferior solutions by solving 𝑟! = min 𝑟 𝑎!!! , where U is 

the union operator.  At each chance node m and at branches emerging to the right of that 

node, we find the corresponding set of vector-valued performance measures 𝑟!! for each 

state of nature 𝜃!!.  We then calculate the vector-valued performance measures denoted 

𝑟! = min𝐸!! 𝑟!! .  This procedure is repeated until the starting point of the tree is 

reached. 
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3.3.3 MODT Analysis for HCC Treatments     
 

 Bleistein (2011) employed the MODT methodology to examine the tradeoffs 

between various treatment strategies for HCC.  He built a simplified model, which this 

section will briefly review.  This served as motivation for this thesis’s extended dynamic 

methodology, and the two approaches will be greatly compared in the later sections of 

this paper. 

 Bleistein built a two-stage model, depicted below in Figure 4, to examine the 

tradeoffs associated with different treatment strategies. 

	  

Figure 4: Simplified MODT for HCC (Bleistein, 2011) 
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This model spanned two decision periods: the decision of which pre-operative bridging 

therapy to employ, and the decision of whether or not to transplant (if the patient was 

eligible for OLT) or which post-dropout therapy to employ (if the patient was removed 

from the wait list).  This decision tree considered two objective functions: maximize the 

patient’s additional expected life (in terms of years of life), and minimize the patient’s 

expected cost of therapy (in terms of $U.S.).  Bleistein considered TACE, RFA, and “Do 

Nothing” as bridging therapies for the initial decision node.  For the chance node 

associated with the results of the bridging therapy, the patient either died, dropped out 

from the waiting list, or remained on the waiting list as an OLT candidate until a liver 

became available.  In the case that he dropped out from the waiting list, the patient could 

either be prescribed sorafenib or nothing.  In the case that the patient remained on the 

waiting list, he either received an OLT eventually, or continued his bridging therapy 

(from the first decision node) without receiving an OLT. 

 To populate his model, Bleistein derived various probabilities such as dropout 

rates, death rates, transplant rates, and post-transplant survival from the UNOS database.  

He noted that, more often then not, there was not sufficient data in the UNOS database 

(such as probabilities for survival within smaller time periods), so he consulted the 

literature in many instances.  These probabilities, the techniques with which he harvested 

them, and his modeling assumptions were all invaluable towards this thesis as well as for 

the population of the model in its case study.   

 Solving his model, Bleistein found that the Pareto-optimal treatment sequences 

were grouped into two categories: those that were characterized by high additional 

lifetime at high cost to the patient (i.e., eventual transplantation), and those that were 
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characterized by low additional lifetime but at low cost to the patient (i.e., where 

transplantation was not carried out).  Again, Pareto-optimality does not prescribe a cost 

per years of life threshold as is done many other modeling approaches, so it is up to the 

physician (and the patient) to decide whether the high life/high cost or less life/less cost 

option is right for them.  Regarding the bridging therapies, Bleistein went on to discuss 

the many cases (depending on a patient’s progression, etc.) where one therapy would 

dominate another.  It is important to note that in his (and the current) model, input data 

was combined from many sources, and many assumptions were made.  He admits that 

altering these assumptions could drastically change the output of the model.  Thus, it is 

important to regard the purpose of Bleistein’s work as laying the foundation for a new 

modeling approach rather than solely as a study to determine optimal therapeutic 

sequences. 

 Although Bleistein’s model was groundbreaking in that it presented a novel 

approach to modeling HCC treatments, it was quite simplified and included many 

limiting assumptions.  The next section describes the purpose of this thesis: the 

development of a more appropriate, dynamic model. 
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4 DYNAMIC MULTIOBJECTIVE DECISION TREE FOR HCC 
 

 The following subsections detail the motivation behind and the development of a 

dymanic multi-objective decision tree (D-MODT) for HCC treatments.  A large-scale 

methodology for producing patient-specific D-MODTs is discussed, and a simplified 

three-month D-MODT is charted and populated with data from multiple sources. 

 

4.1 Motivation 
 

 The catalyst for the development of the present work was Bleistein’s (2011) 

preliminary work with developing a simplified MODT for HCC treatments.  In his work, 

he identified several major areas for the improvement of his model.  These and other 

potential areas for improvement of his approach are discussed in the following 

paragraphs: 

 

Consideration of time.  Haimes (2012) highlights the centrality of the time frame in all 

decision-making, and that models must answer the following question: What are the 

impacts of current decisions on future options?  The time frame is critical in healthcare 

delivery, and should be explicit in a model that seeks, among other things, to assess the 

impacts of various treatment strategies over the course of HCC treatment.  Information 

regarding for how long a patient is prescribed a specific therapy, how long he is on that 

therapy before he is switched to another therapy, how long he must wait for an OLT, etc. 
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may greatly vary the expected life and cost associated with his treatment.  Bleistein’s 

MODT was time-invariant in that, in his model, a physician selected (and was confined 

to) one pre-transplant therapy.  Yet, as the goal of a bridging therapy is to maintain a 

patient’s state of health as he awaits transplantation, a more appropriate model would 

consider the possibility that the physician may decide upon a different therapy at every 

possible decision juncture.  Indeed, the Bayesian updates that mathematically 

characterize MODT methodology suggest that a methodology in which patient 

probabilities of progression, death, etc. can be updated when every new piece of 

information is received (at every checkup) would be more a more appropriate approach.  

At every chance node, the patient’s probability of progression, etc. should be conditioned 

mathematically upon time, among other factors. 

 

Additional treatment granularity.  Bleistein realized that his tree could be greatly 

expanded in terms of pathways.  His pre-transplant bridging decision node indicated upon 

which “path” a patient was put in terms of bridging strategy, but it did not provide 

information regarding for how long that therapy was administered, or at what point in his 

overall therapy it was prescribed.  This presents an opportunity to add great patient 

specificity in the model: where Bleistein’s model assumed that every patient who 

followed the TACE decision branch received the exact same treatment schedule while he 

awaited transplantation, a more realistic model could include many TACE branches 

corresponding to different possible TACE treatment times, etc.  In addition, Bleistein’s 

model did not consider the possibility that a TACE patient may be switched to RFA, or 

any other possible combination of therapies.  In practice, surely a physician who observes 
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a patient’s poor response to his initial therapy will not continue to administer that same 

treatment.  Proper population of such a refined model, in which not only combinations of 

therapies but also combination of times of administration are possible, could shed much 

light on the efficacies associated with times of treatment.  The lattice-like and sequential 

nature of the MODT/D-MODT topology is convenient for answering such questions. 

 

Additional outcome granularity.  In Bleistein’s model, the only three outcomes into 

which a patient could be classified post-bridging therapy were “death, dropout from 

waitlist, eligible for OLT”.  By charting only these three chance branches, this makes the 

assumption that all patients who were still eligible for OLT once a liver became available 

would have the same benefit from receiving the liver (in terms of the objective function).  

Surely, not all patients who undergo OLT do so from the same state of health.  A more 

appropriate model should separate this and other branches into more refined categories, 

such as “condition improved, condition stable, condition worsened,” so that survival and 

cost could be better projected.  Again, this calls into question the issue of the time 

domain.  Rather than separating patients into a small number of categories that 

correspond to their state at the end of their bridging therapy, as Bleistein’s model did, a 

more refined model would separate patients into a number of categories based on their 

current state of health as every new piece of information arrived.  Yet, even the 

categories of “improved, stable, worsened” are ill-defined and necessitate a metric with 

which to classify a patient’s condition of health.  This goal introduces the need for the 

definition of a state variable, which will be discussed at length in a following section. 
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Geographic specificity.  Currently, UNOS has divided the United States into eleven 

different transplant regions.  The expected waiting times until transplantation vary greatly 

in these regions; for example, a patient residing in Indiana (region 10) may wait for far 

less time for a transplantation that a patient residing in New York City (region 9).  Thus, 

length of treatment and, by extension, the sequences of bridging therapies are different 

for different regions of the country.  The expected survival and cost will differ greatly 

given a patient’s length of treatment, and a more appropriate model will take as an input a 

patient’s OPTN region so that it may accordingly account for his expected wait time until 

a liver transplantation becomes available. 

 

Patient specificity.  One of the critical weaknesses of Markov models is that they assume 

a homogeneous patient cohort, that is, they treat every patient who enters the model as 

the same (e.g., a 58-year old cirrhotic male with a 3.5cm HCC).  Bleisten’s model, as 

well, did not adjust its output dependent on which patient entered the decision tree.  

However, the HCC population is quite heterogeneous, and a realistic model would 

account for the fact that every patient will respond differently to different treatments.  

Thus, such a model will project Pareto-optimal treatment sequences based off of not only 

the historic national databases, but also according to the specific patient’s own current 

and past states of health, responses to prior treatments, etc.  Again, this necessitates the 

definition of a state variable with which a patient’s health can be traced and updated 

throughout his passage in the model.  His state should be defined as he enters the model, 

updated at every checkup, and used to generate his expected life/cost vectors at every 

decision node 
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4.2 D-MODT Topology 
 

 This section describes the structure of the D-MODT for HCC treatments, and is 

based off of the motivating factors in the previous section.  Because the model is 

customizable for every patient based off of his state of health and his geographic region, 

there does not exists a “full-scale” model; rather, there exists a framework for developing 

a detailed model for every patient.  This model can span many decision periods and 

become quite large very quickly, so for the purposes of readability the specific nodes 

themselves will be examined along with an explanation of how they are incorporated into 

a patient’s individual mode.  Perhaps the biggest limitation of such a refined and specific 

methodology is that data simply does not exist with which to populate all hypothetical 

branches of a patient’s individual decision tree.  After the discussion of the model 

structure, a simplified three-month case study will be examined, in which many 

assumptions were made so as to populate the model with data from multiple sources. 

 The D-MODT is comprised of sequences of decision and chance nodes.  Akin to 

Bleistein’s model, the D-MODT for HCC treatment has two decision “periods”: the pre-

transplant bridge, and the decision at the time of transplant.  Unlike his model, however, 

these periods are not characterized by a single decision node.  Rather, they contain many 

possible decision nodes, based off of the length of the patient’s time until transplant.  

Since a physician re-evaluates and re-scans his patient at every checkup, the D-MODT is 

partitioned so that there is a new decision node for every checkup.  Recall the following 

timing of checkups discussed earlier, in which the wait between checkups is 3 months if 

the same bridging therapy is employed as the last checkup, and 1 month if the bridging 

therapy is switched.  For example, suppose that at the patient’s initial checkup (Month 0) 



39	  

after being placed on the wait list, he is prescribed TACE.  Since this is a “new” bridging 

therapy, he is checked again in one month (at Month 1).  At this Month 1 checkup, if the 

physician decides that the patient should remain on TACE, he is not checked again until 

Month 4 (the 3-month assumption), unless of course a transplant becomes available, at 

which point the patient would be immediately transplanted.  However, if the physician 

decides to switch the patient’s therapy to, for example, RFA, then the patient is checked 

again at Month 2 (the 1-month assumption).  To illustrate this, a simple pre-transplant D-

MODT is presented in Figure 5, where only two hypothetical therapies (TA and TB) and 

two probabilistic states of health (B and W) are considered. 

	  

Figure 5: Simplified Pre-Transplant D-MODT 



40	  

Note that in Figure 5, the passage of every month is depicted by a horizontal line.  It 

is important to note that, while this dynamic and sequential decision node structure is 

more realistic, it also very quickly can span a massive decision tree.  Even in this very 

simplified example, there are already 40 potential paths through the decision tree. 

 The horizontal length (i.e., number of months) of the D-MODT is customized for 

each patient based off of his geographical location.  The Organ Transplant and 

Procurement Network (OPTN) keeps up-to-date records online of the median wait times 

for patients dependent on their region (i.e., 1-11) and their initial MELD score at listing.  

These are the two inputs to the decision tree, which make it customizable for each 

patient.  Appendix A contains a table of median wait times (in days) based off of initial 

MELD score by region, as well as 95% confidence intervals for these times.  It is 

important to remember that although HCC patients are assigned priority scores of 22 

points plus an additional 3 points every 3 months until a transplant event (i.e., OLT, 

death, dropout) occurs, that this is an assigned MELD score rather than his calculated 

MELD score, which is based off his levels of creatinine, bilirubin, and INR.  That is, 

HCC patients effectively have 2 MELD scores at all times: that which prioritizes their 

place on the wait list for OLT (assigned), and that which corresponds to their three 

biochemical factors (calculated).  These assigned MELDs of 22+ wait times vary among 

each region from 490 days (Region 5) to 27 days (Region 10).  For each patient, his pre-

transplant D-MODT spans for the median number of months in Appendix A according to 

his initial assigned MELD score.  For the hypothetical D-MODT in Figure 5, this median 

wait time would be 3 months. 
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 The next subsections detail the selection of the available therapies at each 

decision node and the states of nature emanating from each probabilistic chance node.  A 

full sample D-MODT is too large to present in a readable format, and is presented in 

simplified form at the end of the section. 

 

4.2.1 State Variable and MELD Discussion 
 

 The states of a system, commonly a multidimensional vector, characterize the 

system as a whole and play a major role in estimating its future behavior for any given 

inputs.  Haimes (2012) highlights the centrality of the state variable, noting that every 

system is characterized at any moment in time by its state variables.  One of the major 

weaknesses of Bleistein’s model is that there was no central state variable with which the 

physician could gauge his patient’s progress throughout the treatment.  In a dynamic 

problem, it is vital that a state variable be defined, so that the system can be objectively 

compared to itself at different times throughout its evolution.  A formal definition of 

“state variable” is given by Chen (1999):  

 

The state x(t0) of a system at time t0 is the information that at time t0 that, together with 

the input u(t), for t ≥ t0, determines uniquely the output y(t) for all t ≥ t0. 

 

Thus, the prescription of any therapy to a patient by the physician is done so to change 

(i.e., improve) the state of the patient’s health.  In order for him to prescribe said therapy, 

he must know the patient’s current state of health.  Thus, a major obstacle in this thesis 

was the selection of a state variable with which to accurately gauge the condition of the 
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patient at any time throughout his treatment.  Many options were considered, including 

MELD score, Alpha-fetoprotein levels, magnitude of tumor volume between scans (i.e., 

% regression, progression), etc.   

 Alpha-fetoprotein (AFP) has been used as a prognostic tool for HCC for some 

time (Nomura, Ohnishi, and Tanabe, 1989).  Kulik, et al. (2012) performed a cohort 

study on the outcomes of LDLT and DDLT recipients with HCC and found that AFP 

levels post-therapy were good predictors of survival post-OLT.  However, this does not 

necessarily support AFP’s use as a state variable throughout the patient’s pre-OLT 

treatment sequence. 

 MELD, devised in 2002, is a commensurate score of three biochemical factors 

which seeks to assess a patient’s risk of death within 90 days of being placed on the wait 

list for OLT (Kamath and Kim, 2007): 

 

MELD = 3.78[Ln serum bilirubin (mg/dL)] + 11.2[Ln INR] + 9.57[Ln serum creatinine 

(mg/dL)] + 6.43                 (7) 

 

At every checkup, the patient can be re-scanned, his MELD score re-calculated, and thus 

his risk of death updated.  This suggests that MELD would be an appropriate state 

variable with which to gauge a patient’s progress (the lower the MELD, the less risk of 

death).  However, the fact that MELD is not observable is problematic: a state variable 

should be a single observable value (i.e., biochemical factor).  A therapy should be 

prescribed based on a specific observable factor, not an aggregate or commensurate 

score.  At the advice of UVA physicians, however, it was decided that MELD is the best 
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currently available candidate for this model’s state variable.  The physician, however, 

should still be informed of the independent values of each of the three biochemical 

factors at each checkup.  Thus, the identification and implementation of a more 

appropriate state variable is an avenue for the expansion of this work. 

 Having selected MELD as the state variable for the D-MODT, the question was 

then how to use MELD at the chance nodes to add granularity to possible patient 

responses to the therapy at the preceding decision node.  Since MELD is an aggregate of 

three ln() functions, it is a continuous score.  While it is possible to assign continuous 

probability distributions at the chance nodes, many studies a la Merion, et al. (2005) 

instead use MELD “buckets,” that is, they group patients into MELD categories of 2-3 

points and study transitions between these buckets.  Merion’s paper contains information 

regarding the proportion of the wait list population in MELD buckets of 2 for initial 

listing as well as at the time of transplant. 

 For this work, it was decided to discretize MELD scores at every chance node in 

the following manner: {[0,10) ; [10,15) ; [15,20) ; [20,25) ; 25+}.   

 

4.2.2 Sequence of Nodes 
 

 In the pre-transplant portion of the tree, the pathways emanating from every 

decision node correspond to potential therapies at that decision node.  At the initial 

decision node, and at every “bridging therapy” decision node, the following options are 

available and are displayed below in Figure 6: 
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Figure 6: Initial and Bridging Decision Nodes 

 1. TACE: Transarteral chemoembolization 

 2. RFA: Radiofrequency ablation 

 3. DN: “Do nothing” i.e., no bridging therapy 

In lieu with the methodology of MODT, a chance node follows every decision 

node in the D-MODT methodology.  Every chance node has the following pathways 

emanating from it, and is depicted below in Figure 7: 
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Figure 7: D-MODT Chance Nodes 

 1. Death: The patient has died 

 2. M1: The patient’s MELD score has transitioned to [0,10) 

 3. M2: The patient’s MELD score has transitioned to [10, 15) 

 4. M3: The patient’s MELD score has transitioned to [15, 20) 

 5. M4: The patient’s MELD score has transitioned to [20, 25) 

 6. M5: The patient’s MELD score has transitioned to 25 or above 

 It is important to note that, in the above figure, the prior MELD score is assumed 

as an input, either from the patient’s initial calculated MELD, or the scan performed at 

the last checkup.  The mathematics governing these transitions are given in section 4.2.4.  

Moving forward from this chance node, all of the arcs (except death, at which the 

decision tree is terminated) transition to another decision node.  If the patient has been 

categorized into one of the MELD states (i.e., M1-M5), then he is still eligible for OLT 
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and moves to another decision node as in Figure 6.  If he drops out from the wait list, his 

next and final decision node is the post-dropout decision node, which is depicted along 

with its two therapeutic options below in Figure 8: 

	  

Figure 8: Post-Dropout Decision Node 

1. Sorafenib: the patient is administered sorafenib for the remainder of his 

treatment schedule 

2. DN: “Do nothing” i.e., no therapy 

These three nodes comprise the pre-transplant decision tree.  At the patient’s 

expected time of transplantation (i.e., median wait time from Appendix A) according to 

his initial assigned MELD score, the following decision node occurs (if the patient is has 

not yet died or dropped out from the wait list): 
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Figure 9: Transplant Decision Node 

 1. OLT: Liver transplant is performed 

 2. CB: No transplant is performed, patient continues his bridging therapy 

 

4.2.3 Complete D-MODT Structure 
 

 In Figure 10, the sequence of decision and chance nodes is illustrated in a 

complete D-MODT for HCC treatments.  Because each decision tree is of custom length 

for the patient in question, the pre-transplant tree extends to a hypothetical E[TX], which 

represents his median time until transplant based off of his region and initial MELD 

score.  Note that, for readability’s sake, only one chance node and decision node are 

depicted at each month, although from the above methodology it should be understood 

that every decision arc leads to another chance node, etc.  A “…” after a node indicates 

that paths from it, the same as those depicted in nodes of the same month, spawn from it 
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and continue on for the remainder of the decision tree.  The objectives under 

consideration are lifetime provided and cost associated with treatment. 

	  

Figure 10: Full D-MODT for HCC Treatments 

	  

4.2.4 Mathematical Solution Procedure 
 

 Corresponding to the MODT solution procedure outlined in Haimes (2011), the 

D-MODT for HCC is solved via the process of averaging out and folding back.  Every 

chance node is solved by “averaging out,” where the probability associated with each arc 
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is multiplied by that arc’s damage vector via vector multiplication.  Take, for example, 

the following chance node depicted in Figure 11: 

	  

Figure 11: Sample Chance Node 

 This node would be solved via the calculations in Eqn. (8): 

 

   0.25 ∗ 5.00+ 0.50 ∗ 6.00+ 0.25 ∗ 7.00
0.25 ∗ 0.20+ 0.50 ∗ 0.30+ 0.25 ∗ 0.40 = 6.00

0.30                     (8) 

 

 In the case of the D-MODT for HCC, this would equate to multiplying the 

damage vector (Life and Cost) associated with each of {Death, M1-M5, Dropout} with 

their respective probabilities of occurrence at each chance node Ci: 

 

𝐿!"
𝐶!"

=
𝑃 𝐷𝑒𝑎𝑡ℎ ∗ 𝐸 𝐿!"#$! + 𝑃 𝑀1 ∗ 𝐸 𝐿!! +⋯+ 𝑃 𝐷𝑟𝑜𝑝 ∗ 𝐸 𝐿!"#$
𝑃 𝐷𝑒𝑎𝑡ℎ ∗ 𝐸 𝐶!"#$! + 𝑃 𝑀1 ∗ 𝐸 𝐶!! +⋯+ 𝑃 𝐷𝑟𝑜𝑝 ∗ 𝐸 𝐶!!"#

        (9) 
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Where L represents the lifetime provided and C represents the cost associated with a 

particular arc.  The P(M1), etc., represent the probability of a transition to the M1 MELD 

bucket.  Of course, the probability of this transition is dependent on many factors, such as 

the patient’s prior MELD score, as well as the treatment administered at the previous 

month.  Let us define i > j as indices in the set of months [0,1,…n}, where n is the final 

checkup (i.e., the median time until transplant, where the pre-transplant decision tree 

ends) and the set of treatments 𝑇 𝑖 = {𝑇𝐴𝐶𝐸,𝑅𝐹𝐴,𝐷𝑁} as the treatment administered at 

month i.  Also, define M(i) as a patient’s MELD bucket [1,5] at month i.  Now, we can 

calculate the transitions between MELD buckets via Bayes’ Theorem: 

 

 𝑃 𝑀 𝑖      𝑀 𝑗 ,𝑇(𝑗)) =   
𝑃(𝑀 𝑗 ,𝑇(𝑗)     𝑀 𝑖 ∗𝑃(𝑀 𝑖 )
𝑃 𝑀 𝑗 ,𝑇 𝑗 𝑀 𝑖 ∗𝑃(𝑀 𝑖 )𝑖

             (10) 

 

Where the denominator on the left hand side of the equation comes from the partitioning 

of the MELD state space into five buckets. 

By definition, the probabilities associated with all arcs emanating from a chance 

node should sum to 1.  The calculation in Eqn. (9) solves an individual chance node.  

Once all chance nodes corresponding to arcs emanating from a particular decision node 

are solved in the same manner as Eqn. (9), their solutions are compared in terms of 

Pareto-optimality, and the inferior solutions are discarded from the remainder of the tree.  

This procedure is repeated until the starting point of the tree, the initial decision of 

bridging therapy at Month 0, is reached.   
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4.3 Advantages of D-MODT Methodology 
 

 The D-MODT methodology for HCC treatments has many advantages over both 

non-Bayesian (e.g., Markov) models, as well as earlier versions of the MODT for HCC 

(Bleistein, 2011).  The following paragraphs summarize these advantages, and are 

structured as a response to the motivating questions posed in section 4.1. 

 Time dependency and conditional probabilities.  As noted multiple times, the time 

domain is central to HCC treatment.  Physicians must not only prescribe the best 

therapies to their patients, but at the proper times in order to preserve their state of health 

as they await OLT.  Markov models account for time in the sense that their transitions are 

viewed as homogeneous steps throughout time, but they lack the refinement that is 

present in the D-MODT’s ability to move through the nonhomogeneous lattice of 

checkups that characterizes HCC treatment.  All probabilities in the model can be 

conditioned on their time of occurrence, given the availability of appropriate data.  In 

addition, the Bayesian approach employed in D-MODT takes into account all past events 

in the patient’s therapy, as opposed to the Markov property’s ignorance of all but the 

most recent event.  This mathematical approach gives D-MODT the ability to distinguish, 

at step i, between patients who have had different treatments past the i-1st step, which is 

one of the many ways D-MODT is much more patient-specific.  

 Patient specificity.  In many Markovian approaches, a homogeneous patient 

population is assumed.  This is far from realistic, especially given HCC’s prevalence as 

the fifth-most common type of cancer.  D-MODT makes use of the calculated MELD 

score as a state variable, as it inputs a patient’s initial MELD score at the Month 0 
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decision node (D0).  This initial MELD score is then used to calculate probabilities of 

transition to future chance nodes’ MELD buckets.  For example, the probabilities 

associated with a patient’s D-MODT whose initial calculated MELD is 12 will be very 

different from those of a patient whose initial MELD is 24, since the latter patient will 

have a higher probability of death or dropout at the first chance node.  Thus, every patient 

will have an individual D-MODT based off of his initial calculated MELD score as well 

as his geographic location (see below). 

 Geographic specificity.  The wait times for transplantation vary greatly with one’s 

geographic location, and thus also do one’s chances of death or dropout while on the 

waiting list.  A good model should take into account one’s location and forecast the 

length of bridging therapy accordingly.  The D-MODT takes as an input one’s OPTN 

region (1-11) and utilizes this figure (see Appendix A for median wait times by region 

and initial assigned MELD) to structure the pre-transplant decision tree’s horizontal 

length, which corresponds to the time spent waiting for transplantation.   

 Sequential nature of treatments.  Bleistein’s model did not account for how long a 

treatment was administered, nor was it built to accommodate treatment sequences where 

different treatments are administered at different times.  D-MODT addresses this by 

charting out all possible combinations of therapies given the one and three month 

checkup interval assumption.  Once the model can be fully populated, this approach will 

be a powerful tool for researchers seeking to determine at what points the administration 

of certain therapies are most efficacious to a patient.   

 Additional chance node granularity.  Bleistein’s model only allowed for three 

possibilities at his single pre-transplant probabilistic chance node: death, dropout, and 
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eligibility for transplantation.  D-MODT still accounts for the fact that patients may die 

and dropout before they receive a transplant, but is much more granular with respect to 

those patients who remain eligible for transplant.  Many patients on the wait list will 

eventually receive a transplant, and there must be some distinction made among them in 

terms of their status while they await transplant, so that appropriate bridging therapies 

may in the meantime be assigned to them.  D-MODT provides additional granularity by 

defining a patient’s calculated MELD score as the state variable, and partitions the 

spectrum of MELD scores into five “buckets,” among which patients transition 

throughout their treatment.  Given a patient’s progression through these buckets, the D-

MODT will assign appropriate probabilities so that the physician may, at every update of 

the patient’s status, analyze his most recent expected life and cost associated with each 

therapeutic option. 

 Hierarchical structure of nodes.  The structure of D-MODT (and MODT) is that 

of a hierarchical tree-of-trees.  Each decision node can be viewed as the root of its own 

tree and, via the same mathematical procedure that is used to solve the model in its 

entirety, can be solved to determine the set of Pareto-optimal treatment sequences 

stemming from that specific node.  In that sense, the D-MODT is far more than a tool 

used to project efficacious sequences for a patient’s entire treatment process; rather, it is a 

guide with which a decision-maker can study the effects of employing any therapy at any 

time throughout a hypothetical schedule of treatments.  The tree can likewise be 

decomposed to elucidate answer to one’s specific questions that need not go through the 

entire model’s solution process to answer.   
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 This hierarchical nature allows the D-MODT to be employed as both a short and 

long-term forecasting tool.  A treatment administered at a checkup seeks to give the 

patient the best chance of survival until the next checkup.  Just as a lengthy D-MODT can 

take as an input a patient’s initial calculated MELD score, a physician can also input a 

patient’s current MELD score and solve a one-period D-MODT (i.e. one or three months, 

depending on the patient’s last therapy) to gather information on the tradeoffs among the 

therapies he is currently considering prescribing. 

 Model mutability.  Although the D-MODT in this paper focuses on three 

therapies and two objectives, the model can easily be tailored to answer more general 

questions by adding branches to decision nodes (if one wishes to consider more 

therapeutic options), or adding dimensions to the damage vectors (if one wishes to 

consider more objectives).  This, of course, is dependent upon the availability of data 

with which to construct further decision trees. 

 It has been stressed that D-MODT is a methodology that is unique to each patient.  

Thus, the population of a general model a la Bleistein (2011) and the many Markovian 

papers in the literature is impossible.  To demonstrate the D-MODT solution procedure in 

detail, the following case study is provided.  A general discussion of D-MODT, future 

directions, identification of areas for improvement, and conclusion is to follow.
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5 D-MODT FOR HCC: AN EXPLANATIVE CASE STUDY 
    

 The following sections are meant to serve as a guide to solving a D-MODT for 

HCC, as well as review the database and provide information on data acquisition for 

those interested.  The case study is not meant as an argument for or against any 

therapeutic sequence, and truthfully could not be used as one due to the many 

assumptions taken in populating it with data.  This section also demonstrates how one 

disadvantage of the D-MODT methodology lies in its massive data requirements, and 

should serve as motivation for future modeling efforts that still maintain its level of 

sophistication while easing its current data requirements.  A summary of the overall 

thesis, future directions, and conclusion are included at the end of this section. 

 

5.1 Simplified Model for Case Study 
 

 A good case study should demonstrate the efficacy of a methodology without a 

high level of complexity or unnecessary study on the part of the reader.  Thus, much 

thought was devoted to constructing a numerical example for this thesis that would 

highlight the benefits of its methodology while still remaining relatively simple and easy 

to understand.   Recall that the D-MODT can be viewed hierarchically as a “tree of 

trees”—that is, each decision node is essentially the root of its own tree.  Thus, the 

solution procedure explained below can be repeated for additional nodes if one wishes to 

solve larger D-MODTs.  To demonstrate this paper’s methodology, one month’s worth of 
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decisions were simulated.  This decision was made for simplicity’s sake; several months’ 

worth of models were charted out.  A three-month D-MODT contained 3,486 total nodes, 

the two-month contained 337 nodes, and the one-month contained 22 nodes.  The length 

of the one-month tree corresponds to a one-month wait time, as (according to Appendix 

A) is the case for UNOS Regions 6 (WY, CO, NE, KS, IA, MO) and 10 (MI, IN, OH).  

Yet, this tree can also be viewed hierarchically as one month in a sequence of many.  The 

one-month D-MODT is charted below in Figure 12.   

	  

Figure 12: D-MODT for One Month 

In Figure 12, an initial therapy decision {TACE, RFA, DN} is made at Month 0.  In the 

time between Month 0 and Month 1, the patient ether dies, remains eligible for transplant 
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(i.e., transitions among the MELD buckets), or drops out from the transplant waiting list.  

If the patient remains eligible, the decision is immediately made whether or not to 

undergo OLT.   

 Hierarchically, Figure 12 can be viewed as one of the decision nodes D1-D5 in 

Figure 13, which depicts a two-month D-MODT.   

 

 

	  

Figure 13: 2-Month D-MODT for HCC 
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 Note that, in a larger (i.e., spanning more months) D-MODT, the branches 

emanating from nodes D1-D5 would not all span one month, as they do in Figure 13.  

Rather, they would follow the one-and-three month assumption.  For example, in a larger 

tree, any of the TACE branches emanating from nodes D1-D5 would span three months, 

to month 4, as the model assumes that two consecutive treatments of the same time will 

cause the time between checkups to be three months.  However, since the expected time 

until transplant is only 2 months in the D-MODT in Figure 13, the patient’s state of 

health will be observed instead after one month, since at this point he will immediately be 

transplanted as the donor liver is available.  

 The following sections describe the assumptions behind and the population of the 

one-month D-MODT pictured in Figure 12.   

 

5.2 Assumptions  
 

 The following assumptions were made for the model in this case study: 

 1) The set of treatment options included {TACE, RFA, DN} as bridges while on 

the waitlist to OLT.  Sorafenib becomes an option once the patient dropped out from the 

wait list. 

 2) At each chance node, the patient’s state is observed, which corresponds to a 

checkup.  These feature the absorbing states of death or dropout, as well as the transient 

states of the five MELD buckets. 

 3) The set of patients considered were those receiving a priority MELD score for 

a stage T2 HCC diagnosis. 



59	  

 4) If the patient was still on the waitlist at his median time to transplant (1 month 

according to Appendix A), a decision would be made immediately regarding whether or 

not to perform the transplantation. 

 5) Probabilities with which the tree was populated, as well as the final damage 

vectors, were derived from the Standard Transplant Analysis and Research (STAR) 

database, and the relevant literature. 

 

5.3 Review of the Database and Model Population 
 

5.3.1 STAR Database 
 

 This section reviews the various methods used to populate the model used in this 

paper’s case study.  As much as was possible, data was collected from the UNOS 

Standard Transplant Analysis and Research (STAR) database.  This database was made 

available upon request by UNOS and contains data files for HCC patients who were 

placed on the waitlist for OLT between December 11, 1985 and April 30, 2012.  There 

are two datasets in this database which were of interest to this study: the 

LIVER_PUBLIC_USE dataset, which contains general information on patients such as 

date of registration, calculated MELD scores, and a multitude of demographic statistics; 

the HCC_TUMOR_DATA dataset contains information such as if RFA or TACE was 

performed on the patient’s lesion, the type of tumor (T1 or T2), and case outcomes.  The 

two datasets are linked to each other via the WL_ID_CODE identifier.  An index of 

variables examined in this study from both datasets are provided in Appendix B.   
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 The first step to harvesting useful probabilities from this data was to whittle down 

the massive datasets into only the patients this study wished to consider.  The strategy 

employed was to reduce the two sizes of the two datasets independently to capture 

patients within those datasets who met the assumptions for this study, and then to match 

those datasets by WL_ID_CODE and use as a final dataset only those patients who were 

still in both datasets.  Recall that one assumption was that patients had to be diagnosed 

with T2 HCC.  The HCC_TUMOR_DATA dataset was filtered so that it only contained 

patients whose first chronological ORIG_APP_DATE (original application date) entry 

had “HCC Meeting Policy 3.6.4.4 Criteria (Stage T2)” in the HCC_DIAG (HCC 

diagnosis) field.  This reduced the original set of 19,087 patients to 15,155 within this 

dataset. 

 The next step was to consider only the patients in the LIVER_PUBLIC_USE 

dataset that did not receive an LDLT.  The DON_TY (donor type) field indicates whether 

the donor was deceased or living. Records with an  “L” entry in this field (living) were 

discarded.  Additionally, the EXC_HCC field indicates whether or not a patient was 

given a wait list exception (i.e., MELD priority) due to HCC. Also, any patients who had 

been previously transplanted (value >0 in the NUM_PREV_TX field) were removed.  

Filtering the dataset for these criteria reduced the dataset from 209,969 patients to 14,013 

patients. 

 The two filtered datasets were then combined into one dataset containing only 

those patients whose WL_ID_CODEs that appeared in both datasets.  This dataset 

contained 20,875 records for 11,320 patients.  It is important to note that each patient 
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had, on average, less than two entries, which makes difficult the calculations of entry-to-

entry probabilities, such as those that must be conditioned on certain months.   

 Next, the data from this main dataset was filtered to examine patients who 

received TACE, RFA, DN as their pre-transplant bridge.  The indicators in the 

CHEMOEMBO, and RFA fields were employed to select patients who only underwent 

these two therapies.  For the DN set of patients, the set of patients who did not receive 

any (CHEMOEMBO, CHEM_ABLAT, CRYO, RESECT, RFA) bridges were 

considered.  Patients who received combinations of bridges were discarded.  Together, 

the set of patients numbered 12,370.  Table 1 lists the number of patients in each of these 

categories: 

Therapy Number of Patients 

TACE 4267 

RFA 1401 

DN 6702 

Table 1: Bridge Statistics from STAR Database 

 The next step in populating the model was to divide each of the three bridging 

datasets into three groups of patients: those who died within a month, those who were 

eligible for transplant, and those who dropped out from the waiting list within a month.  

The fields DAYSWAIT_CHRON, END_DATE, INIT_DATE, PSTATUS, REM_CD, 

and TX_DATE were used to calculate these statistics.  This information is displayed 

below in Table 2 and can be used as prior probabilities for Bayesian calculations within 

the therapy groups: 
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Therapy % Died (1M) % Dropped Out (1M) % Eligible 

TACE 3.37 1.24 95.39 

RFA 4.14 0.86 95.00 

DN 5.09 0.81 94.10 

Table 2: Overall Statistics for Bridging Therapies (STAR Database) 

These probabilities must be conditioned on the prior stage’s MELD score (in this case 

study, this corresponds to the patient’s initial MELD).  Due to the lack of multiple entries 

for many patients, the transitions between MELD scores are calculated by examining the 

difference between the initial (INIT_MELD or MELD_PELD_LAB_SCORE) and the 

final (FINAL_MELD) scores.  Within each therapy, the probabilities associated with the 

arcs emanating from that therapy’s Month 1 chance node were calculated.  In the 

database, patients who had died or dropped out from the waiting list often lacked MELD 

information.  To account for this, the conditioned probabilities of death and dropout on 

any MELD score are assumed to be the unconditioned probabilities of death or dropout 

(regardless of initial MELD).  Table 3 depicts the probabilities associated with the chance 

arcs, given that the patient’s initial MELD score was below 10.  Appendix C lists the 

rests of the tables (for other initial MELD scores). 

   

Therapy P(De|M1) P(M1|M1) P(M2|M1) P(M3|M1) P(M4|M1) P(M5|M1) P(Dr|M1) 

TACE 3.37 65.11 22.73 5.68 1.65 0.22 1.24 

RFA 4.14 67.64 21.33 4.31 1.29 0.43 0.86 

DN 5.09 61.87 25.33 4.93 1.60 0.37 0.81 

Table 3: Chance Node Probabilities For Initial Meld [0,10) 
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Note that some probabilities, such as P(M5|M1) are assigned a <0.00001 probability 

since they did not occur in the database but are still technically feasible. 

 

5.3.2 Data from the Literature 
 

 Since the STAR database did not contain adequate data regarding month-to-

month checkups, the literature was consulted for monthly survival statistics and costs for 

bridging therapies and transplantation.  To remain consistent with Bleistein (2011), the 

costs per event of OLT, DN TACE, and RFA were taken from Naugler and Sonnenberg 

(2010).  The cost of Sorafenib was taken from Bleistein (2011).  It is important to note 

that the DN therapy still has a cost attached to it, which is due to clinical expenses.  Table 

4 displays this information. 

 

Therapy Cost Reference 

TACE $6,080/month Naugler and Sonnenberg (2010) 

RFA $2,300/month Naugler and Sonnenberg (2010) 

Sorafenib $5,000 (one-time) Bleistein (2011) 

OLT $278,800 (one-time) Naugler and Sonnenberg (2010) 

DN $287/month Naugler and Sonnenberg (2010) 

Table 4: Costs of Therapies 

 

 The above costs are incurred at each month that their therapy is employed.  

Additionally, data was taken from the literature regarding expected additional survival 

time.  Table 5 displays this information. 
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Therapy E[Additional Life] Reference 

TACE 51.23 months Naugler and Sonnenberg (2010) 

RFA 63.28 months Naugler and Sonnenberg (2010) 

Sorafenib 3.00 months Multiple 

OLT 81.00 months Llovet, Fuster, and Bruix (1999) 

DN 0.00 months Assumed 

Table 5: Expected Survival Times 

 

 These survival times correspond to the survival benefit of their therapies when 

administered independently of other therapies.  It is assumed that DN provides no 

additional survival.  In this case study, these are the expected survival times 

associated with the arcs emanating from the Month 1 decision nodes.   

 

5.3.3 Future Data Needs 
 

 One of the benefits of harvesting data from a large dataset is the illumination of 

areas where data is currently not present.  There are currently many unpopulated areas 

whose population would allow for better modeling efforts.  One such area concerns 

combinations of therapies.  The D-MODT methodology is built to allow for the physician 

to change a patient’s bridging therapy at every checkup.  To accurately populate the 

damage vectors corresponding to sequences where combinations of therapies are 

prescribed in a large-scale D-MODT, this data needs to exist.  Current clinical studies 

such as those in this paper’s literature review typically consider the effects of a single 
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therapy over an amount of time.  What is the efficacy of employing, say, TACE for 1 

month and RFA for 3 months, followed again by TACE for 2 months?  While the 

expected monthly survival associated each independent therapy is available in the 

literature, the survival associated with therapeutic combinations has yet to be determined 

(to the best of the author’s knowledge). 

 The passage of more time will allow for the relevant medical databases to 

continue growing in number.  A mere 10 years have passed since the implementation of 

MELD, and there simply is not yet enough data for the population of all points of a robust 

and lengthy model such as a large-scale D-MODT.  The inclusion of more patients will 

allow “rarer” sections of models to be populated with relevant data, and will refine the 

existing data (such as MELD transition probabilities).  In this study, the time between 

MELD measurements was not included as a factor due to the lack of such data.  Should a 

D-MODT be charted for 12 months, there would be very few data points with which to 

populate the arcs in say, months 10-12 of the tree, since the average number of checkups 

recorded for a patient in the STAR database is less than 2. 

 Additionally, studies that provide more granularity with regards to the impacts of 

a therapy upon a patient with a certain MELD score will help populate models such as the 

D-MODT that use MELD as the patient’s state of health and condition its probabilities 

upon it.  How does the impact of a therapy (with respect to lifetime provided and cost 

incur) change when it is administered to patients who have transitioned to particular 

MELD scores at a certain time?      
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5.4 Case Study Results 
 

 After the model was populated with data via the techniques in the preceding 

section, the one-month D-MODT depicted in Figure 12 was solved according to the 

solution procedure outlined in section 4.2.4.  Recall that the D-MODT has two inputs: the 

patient’s initial calculated MELD score, and his geographic region.  In this case study, 

the assumption was already made that the patient’s geographic region was 6 or 10, which 

coincides with a D-MODT of one month’s length.  Regarding the patient’s initial MELD 

score, decision trees were constructed for the five possible initial MELD buckets.  The 

decision tree to be discussed in detail in this text will be that of a patient whose initial 

calculated MELD score lies within the first bucket: [0,10).  Appendix D contains the 

decision trees corresponding to the four other MELD buckets. 

 To ascertain the values of the damage vectors [L,C] associated with each decision 

arc emanating from the Month 1 decision nodes, the expected survival and cost 

associated with each therapy were added to the one-month cost and additional survival of 

the bridging therapy employed at Month 0.  Once this expected survival and cost was 

computed for every Month 1 decision arc, these vectors were compared in terms of 

Pareto-optimality.  Recall that this case study wishes to maximize the expected additional 

lifetime provided by a treatment, while minimizing its cost.  Thus, “folding back” is 

employed here, and dominated vectors are discarded.  All of the Month 1 vectors were 

Pareto-optimal with respect to each other (i.e., versus the other vectors at a particular 

decision node).  These values are depicted in Table 6.  This table of damage vectors is 
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used for the decision tree where the patient’s initial MELD score lies in the first MELD 

bucket. 

Next, the Month 1 chance nodes must be averaged out.  Every Pareto-optimal 

decision arc for Month 1 (pictured in Table 6) is multiplied by its probability.  Since there 

were two non-dominated decision for each of the 6 branches emanating from every 

chance node, there are 3x26 = 192 sequences to consider.   
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Node Decision E[L] E[C] 
1 TX 81.43 284080.00 
 TACE 51.66 30384.00 

2 TX 81.43 284080.00 
 TACE 51.66 30384.00 

3 TX 81.43 284080.00 
 TACE 51.66 30384.00 

4 TX 81.43 284080.00 
 TACE 51.66 30384.00 

5 TX 81.43 284080.00 
 TACE 51.66 30384.00 

6 Sorafenib 3.43 11080.00 
 DN 0.43 6366.67 

7 TX 81.53 280300.00 
 RFA 63.81 20686.00 

8 TX 81.53 280300.00 
 RFA 63.81 20686.00 

9 TX 81.53 280300.00 
 RFA 63.81 20686.00 

10 TX 81.53 280300.00 
 RFA 63.81 20686.00 

11 TX 81.53 280300.00 
 RFA 63.81 20686.00 

12 Sorafenib 3.53 7300.00 
 DN 0.53 2586.67 

13 TX 81.00 278286.67 
 DN 0.00 1146.67 

14 TX 81.00 278286.67 
 DN 0.00 1146.67 

15 TX 81.00 278286.67 
 DN 0.00 1146.67 

16 TX 81.00 278286.67 
 DN 0.00 1146.67 

17 TX 81.00 5286.67 
 DN 0.00 1146.67 

18 Sorafenib 3.00 5286.67 
 DN 0.00 1146.67 

 

TABLE 6: Damage Vectors for Month 1 Decision Nodes 

For example, consider the combination of decision options at the TACE arc emanating 

from decision node D0.  One of these decision rules (the first row in Table 8), states that 
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a transplantation will be performed regardless of the MELD bucket the patient transitions 

into, and that sorafenib will be provided if the patient drops out from the waiting list.  

That is, this combination is (TX|M1, TX|M2, TX|M3, TX|M4, TX|M5, 

Sorafenib|Dropout).  The damage vector for this decision rule is calculated 

mathematically as: 

 

𝐿!" ∗ 𝑃 𝑀1 + 𝐿!" ∗ 𝑃 𝑀2 + 𝐿!" ∗ 𝑃 𝑀3 + 𝐿!" ∗ 𝑃 𝑀4 + 𝐿!" ∗ 𝑃 𝑀5 + 𝐿!"#$%. ∗ 𝑃 𝐷𝑟𝑜𝑝.
𝐶!" ∗ 𝑃 𝑀1 + 𝐶!" ∗ 𝑃 𝑀2 + 𝐶!" ∗ 𝑃 𝑀3 + 𝐶!" ∗ 𝑃 𝑀4 + 𝐶!" ∗ 𝑃 𝑀5 + 𝐶!"#$%. ∗ 𝑃 𝐷𝑟𝑜𝑝. =

= 81.43 0.65+ 0.23+ 0.06+ 0.02+ 0.002 + 3.43 ∗ 0.01
284080 0.65+ 0.23+ 0.06+ 0.02+ 0.002 + 11080 ∗ 0.01 ≅ 77.72

271121.30  (11) 

 

where the elements of the vector correspond to this policy offering an additional expected 

life of 77.72 months at an expected cost of $271,121.30.  This procedure is repeated for 

each of the 192 possible policies.  These tables are very large, and are located in 

Appendix D for the interested reader.  Once these calculations are complete, the policies 

are compared in terms of Pareto-optimality both in terms of the set of policies emanating 

from each of the three D0 decision arcs, as well as overall (i.e., against all 191 other 

policies).  For example, the policy (Policy 128 in Appendix D) that suggests (RFA|M1, 

RFA|M2, RFA|M3, RFA|M4, RFA|M5, DN|Dropout) after initial RFA bridging 

dominates the policy (Policy 33 in Appendix D) that suggests (TACE|M1, TX|M2, 

TX|M3, TX|M4, TX|M5, Sorafenib|Dropout) after initial DN bridging because: 

 

 

                                           60.62
19673.95 !"#

> 58.33
105939.84 !!

         (12) 
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Note that the “greater” sign in Equation 12 is expressed in the sense of dominance of 

objective functions, as opposed to in the traditional mathematical sense.  Every policy is 

compared to the other policies as in Equation 12.  After discarding every inferior policy, 

the decision-maker is left with a set of Pareto-optimal treatment sequences.  Below, Table 

7 displays the number of these policies for each of the five D-MODTs corresponding to 

the five initial calculated MELD buckets.  To view the list of these policies, one many 

consult Appendix D, which contains a “P-O” column (Pareto-optimal) for each of the five 

decision trees.  Rows marked with an “X” in this column are inferior policies. 

 

Initial Calculated MELD Optimal Policies Inferior Policies 

< 10 84 108 

[10, 15) 71 121 

[15, 20) 71 121 

[20, 25) 34 158 

≥ 25 88 104 

Table 7: Number of Optimal/Inferior Policies for Each D-MODT 

  

Note that the number of optimal policies decreases as the patient’s initial calculated 

MELD score increases.  The large number of optimal policies associated with the fifth 

MELD bucket (those scores greater than or equal to 25) should be viewed with caution, 

since there were by far less patients with initial MELD scores in this category: in the DN 
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set of patients, for example, only 17 of the 4730 (0.36%) had initial MELD scores at or 

over 25.   

 For the model discussed in this case study (MELD < 10), the initial bridging 

therapies can be decomposed as follows: 

 

D0 Bridge Optimal (of 64) Inferior (of 64) E[L] of Optimal E[C] of Optimal 

TACE 8 56 73.19 232682.51 

RFA 64 0 69.05 143010.86 

DN 12 52 2.85 10158.32 

Table 8: Statistics for Optimal Policies 

 Next, Pareto-optimality graphs were charted for each of the decision trees.  For 

each decision tree, two charts were made: that of all the treatment strategies (inferior 

policies included), and that of only the Pareto-optimal strategies (the numbers of which 

are located in Table 8).  Below are these two such graphs for the decision tree discussed 

in this case study, that of the initial calculated MELD < 10.   
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Figure 14: Plot of All Treatment Policies 

Plotting the policies is another way to quickly identify which among them are dominated.  

In Figure 14 the objective functions define the graph’s axes.  Noting that the vertical axis 

(corresponding to the patient’s expected additional life) has been inverted, Pareto-optimal 

solutions will be those that lie closest to the origin—that is, those that maximize the 

patient’s expected additional life while minimizing his expected cost.  Policies, such as 

those in the red circle in Figure 14, are dominated by policies such as those in the yellow 

circle.  The points in the yellow circle fall closer to the origin with respect to both axes 

than those in the red circle, and thus are Pareto-optimal to those policies. 
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 Considering only those points that are deemed Pareto-optimal, Figure 15 was 

charted.  

 

Figure 15: Optimal Treatment Policies 

Note that none of the points in Figure 15 is closer to the origin with respect to both axes 

than any other point.  Consulting a chart like this, a physician can now decide whether he 

values cost or life more in a patient’s specific disease management scenario, and select a 

policy accordingly.  The values of these points can be matched to their treatment policies 

via consulting Appendix D.  For example, the points contained in the orange circle in 

Figure 15 are points featuring DN as the initial bridging therapy.  These policies provide 

the patient with less than 10 months of expected additional life, and all have associated 

costs of less than $20,000.  Additionally, notice the separation between the two groups of 

points providing 60+ months of additional expected life, noted by the red box and arrows.  

RFA/TX	  	  
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The large division between these two groups of points comes from the decision at node 

D7.  At this node, RFA has already been administered as the patient’s initial bridge, and 

his MELD score has transitioned from M1 to M1 (i.e., it has remained in the first <10 

MELD bucket).  The large divide between the groups of points comes from the decision 

to TX (points on the right) or to provide RFA (points on the left) at the time of organ 

availability. This is an excellent example of the benefits of D-MODT methodology; 

because so many (68%) of patients whose initial MELD score transition into the M1 

bucket at Month 1, the therapeutic decision at node D7 is crucial to the patient’s expected 

life and cost.  In a model where patient specificity and time are ignored, the criticality of 

this decision node may not be evident.  Note that many of the points from both groups 

feature the decision to transplant, but it is for which group of patients that this decision is 

made that greatly impacts the expected value of the additional life and cost. 

 For the interested reader, Appendix E contains the graphs for all policies and 

Pareto-optimal policies for the remaining four initial MELD bucket models. 

 The above case study serves to provide the reader with an idea of how physicians 

may use this paper’s methodological approach to project the efficacious impacts of 

competing therapies for both the present time (i.e., a single checkup; by folding back on 

the present decision) and for the entirety of a patient’s treatment (i.e., by charting out an 

appropriately long decision tree).  It is important to note that the D-MODT methodology 

is not confined strictly to the assumptions under which it was placed in this section.  

Although this case study only considered three bridging therapies, the inclusion of other 

therapies is not restricted.  Additionally, a decision tree of any length can theoretically be 

constructed, so long as the data is present with which to populate it.  Thus, this case study 
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served as an example of how the D-MODT methodology may be applied in a particular 

instance.  Even with a limited database and a short decision tree of one month, valuable 

quantitative tradeoff information for competing treatment policies was able to be 

determined, and optimal sequences were projected.    

 

5.5 Discussion and Future Work 
 

  The D-MODT methodology provides a patient-specific, multiobjective approach 

to modeling the efficacious impacts of HCC treatments.  To further advance the state of 

the art, there are many future directions for this research: 

 

Improvement of model structure.  As was evidenced in section 5.1, every additional 

month considered in the D-MODT results in an exponentially increasing number of 

computations to be performed.  This fact, while not important for small models such as 

the one presented in this paper’s case study, becomes a major problem when attempting 

to chart out and solve a larger model, such as one for a priority MELD patient in Region 

5 (CA, NV, UT, NM, AZ, HI), who has an expected wait time of 16 months until 

transplantation.  The D-MODT’s robustness, in this sense, is a weakness: because the 

methodology accounts for every possible combination of therapies and probabilistic states 

of health a patient may encounter during his treatment.  Folding back at every non-

terminal decision node, every permutation of Pareto-optimal treatment policies from the 

last period must be considered.  In this paper, seven arcs were charted out from every 

chance node, which lead to a staggering 192 permutations of treatment policies at the first 

non-terminal decision node. 
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 What Markov models lack in robustness and specificity, they certainly make up 

for in convenience.  Future attempts at refining this methodology should consider 

integrating the Markov state transition diagram within the D-MODT, while still 

maintaining the D-MODT’s Bayesian mathematics.  The D-MODT was developed as a 

complementary method to Markov models, and the strengths of the two approaches 

should be attempted to be combined into a single model. 

 

Improved definition of the state variable.  Haimes (2012) notes that the state variable 

characterizes the system as a whole and plays a major role in estimating its future 

behavior for any given inputs.  In the context of HCC treatment, it is important to define 

an appropriate state variable so that a patient’s progress may be tracked throughout the 

management of his disease.  This approach uses the MELD score as that state variable.  

While the MELD score is a valuable measure with which physicians manage the 

allocation of donor organs, MELD is not in itself a true “state variable,” as MELD is a 

calculated mathematical combination of three biochemical factors: bilirubin, Creatinine, 

and INR.  A true state variable should be observable, which MELD is not; a physician 

should prescribe a therapy based off of specific observations.  Thus, work must be done 

on determining an appropriate indicator of the severity of HCC within a patient.  Alpha-

fetoprotein has been discussed as a candidate for this indicator, and is conveniently 

accounted for in the STAR database (as a field in the HCC_TUMOR_DATA dataset).  

Other candidates include the magnitude of tumor volume between scans, and tumor 

staging levels.  Studies should be conducted using these various factors as state variables 

rather than MELD.   
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Development of complementary software.  The D-MODT’s ability to project efficacious 

treatment sequences at any checkup should be incorporated into an application (i.e., 

iPhone application) that physicians could use to extract tradeoff information on-the-go.  

This future aim is currently part of a pending patent by the author.  This would allow for 

widespread use of the D-MODT methodology in clinical settings and promote further 

work between engineering and medicine. 

 

Further data collection.  For this model’s case study, data from the STAR database was 

used wherever it was available.  However, even in a one month example, there were 

many limitations presented by the database.  The final vectors at the end of the decision 

tree were populated with data from the literature and assumptions made by the other 

rather than observed from patient records in the database, because these records were 

insufficient in number.  Also, data regarding the effects of administering combinations of 

different therapies must be collected and studied, as the D-MODT allows for the 

possibility that a physician may prescribe a different therapy to his patient at any given 

month.   

 

Extension to other areas.  The success of this and future modeling efforts should promote 

the use of this approach in contexts other than HCC treatment.  Other disease 

management situations, such as kidney disease, are characterized by similar organ 

allocation dilemmas.  Physicians involved in these decision-making processes certainly 

also face treatment schedules where they observe a patient on a regular basis, take a 

measurement of his state variable, and must decide among competing options for his next 
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therapy.  It is beyond human capability to accurately decide among many alternatives, 

which necessitates the development and use of auxiliary decision-making technology, 

such as the D-MODT. 

 

5.6 Conclusion 
 

Physicians managing hepatocellular carcinoma (HCC) patients awaiting 

orthotopic liver transplantation (OLT) are faced with a myriad of treatment options.  As 

transplantation requires lengthy waiting times in some regions of the United States, it is 

important that the physician best sequence his patient’s bridging therapies to maintain his 

state of health until a donor liver becomes available.  The heterogeneity of the HCC 

patient cohort and their rapidly changing states of health create a decision-making 

problem where, given the knowledge of a patient’s current and past states, the physician 

must make a decision among the many therapies available at each checkup.  The so-

called “seven plus-minus-two” rule prohibits a human from accurately judging between 

many such options.   

This thesis builds upon prior work to develop a dynamic multiobjective decision 

tree (D-MODT) methodology capable of elucidating quantitative tradeoff information for 

therapies available to the patient at each state throughout his overall treatment.  The 

Bayesian mathematics and patient specificity built into this approach seek to extend the 

current state of the art by complementing the widely-used Markov decision models.   

The D-MODT methodology must continue to be refined and improved by future 

researchers.  The ability to employ the robust mathematics of Bayesian analysis and still 

maintain a high level of patient specificity cause the current methodology to be 
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computationally expensive.  The simplicity and quick simulation ability associated with 

Markov models should be integrated into the D-MODT; namely, the transitions of a 

patient within the “state of health” space could be integrated into a state transition 

diagram that would eliminate the need for the cumbersome chance nodes that the D-

MODT currently contains.  Furthermore, more appropriate (i.e., observable) state 

variables should be considered with which to indicate a patient’s level of disease 

progression or regression during his treatment.   

The current work should be regarded as the laying of a mathematical and 

theoretical foundation with which to promote future data collection and from which to 

develop more refined models.  With such models, it is the ultimate goal of this research to 

improve the process of HCC treatment for all parties concerned. 
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APPENDIX A: MEDIAN WAIT TIMES BY MELD AND REGION 
 

The following table lists the median wait times for OPTN regions 1-11 based off of a 

patient’s MELD score at listing.  This data was harvested last on January 17, 2013, but 

can be updated by visiting: http://optn.transplant.hrsa.gov/latestData/rptStrat.asp.  A “-“ 

indicates that an insufficient sample was available for inclusion in the table. 

REGION INIT MELD MEDIAN 
WAIT (D) 

NEAREST 
MONTHS 

95% CONF 

1 ( , 10) - - - 
 [11, 18] 1971 66 - 
 [19, 24] 213 7 (157, 371) 
 [25, ) 38 1 (33,59) 
2 ( , 10) 2777 93 (1628, -) 
 [11, 18] 631 21 (500, 812) 
 [19, 24] 111 4 (91, 133) 
 [25, ) 29 1 (19, 36) 
3 ( , 10) 177 6 (126, 284) 
 [11, 18] 157 5 (122, 184) 
 [19, 24] 49 2 (38, 55) 
 [25, ) 9 1 (8, 12) 
4 ( , 10) 2433 81 (1462, .) 
 [11, 18] 826 28 (561, 982) 
 [19, 24] 75 3 (44, 105) 
 [25, ) 14 1 (10, 22) 
5 ( , 10) 3564 119 (2885, .) 
 [11, 18] 2277 76 (1923, 2852) 
 [19, 24] 490 16 (334, 735) 
 [25, ) 35 1 (24, 45) 
6 ( , 10) 441 15 (229, 1250) 
 [11, 18] 296 10 (198, 450) 
 [19, 24] 40 1 (28, 88) 
 [25, ) 10 1 (5, 20) 
7 ( , 10) 1120 37 (598, 2044) 
 [11, 18] 513 17 (426, 620) 
 [19, 24] 126 4 (89, 149) 
 [25, ) 14 1 (11, 18) 
8 ( , 10) 1091 36 (583, 2017) 
 [11, 18] 530 18 (411, 815) 
 [19, 24] 127 4 (77, 165) 
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 [25, ) 25 1 (20, 45) 
9 ( , 10) 3245 108 (2042, .) 
 [11, 18] 947 32 (663, 1298) 
 [19, 24] 211 7 (153, 309) 
 [25, ) 26 1 (19, 35) 
10 ( , 10) 181 6 (119, 291) 
 [11, 18] 140 5 (114, 179) 
 [19, 24] 27 1 (21, 36) 
 [25, ) 15 1 (9, 21) 
11 ( , 10) 2911 97 (2328, .) 
 [11, 18] 805 27 (655, 1051) 
 [19, 24] 98 3 (80, 137) 
 [25, ) 22 1 (18, 31) 
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APPENDIX B: INDICES OF DATASET VARIABLES 
 
LIVER_PUBLIC_USE 
Name Description 
ADMISSION_DATE Date of Admission to TX Center 
CREAT_DIS Serum Creatinine at Time of Discharge 
CREAT_TX Serum Creatinine at Time of TX 
DAYSWAIT_CHRON Days on Liver Waiting List 
DEATH_DATE Date of Death for Patient that Died on Waiting 

List 
DIS_INR INR at Discharge 
DON_TY Donor Type-Deceased, Living 
END_DATE Earliest Dates of Removal From waiting List, 

Transplant, Death 
END_STAT Candidate Status at Transplant Offer 
EXC_HCC Type of Exception Relative to HCC 
FINAL_BILIRUBIN Most Recent Waiting List Bilirubin 
FINAL_INR Most Recent Waiting List INR 
FINAL_MELD_OR_PELD Most Recent Waiting List MELD or PELD 
FINAL_MELD_PELD_LAB_SCORE Most Recent Waiting List MELD/PELD Lab 

Score 
FINAL_SERUM_CREAT Most Recent Waiting List Serum Creatinine 
INIT_BILIRUBIN Initial Waiting List Bilirubin 
INIT_DATE Beginning Date for Registration 
INIT_INR Initial Waiting List INR 
INIT_MELD_OR_PELD Initial Waiting List MELD or PELD 
INIT_MELD_PELD_LAB_SCORE Initial Waiting List MELD/PELD Lab Score 
INIT_SERUM_CREAT Initial Waiting List Serum Creatinine 
INIT_STAT Initial Waiting List Status Code 
INR_TX Recipient INR at Transplant 
LIST_MELD Patient Listed Prior to MELD/PELD? 
LISTRY Actual Year Registrant Listed 
MELD_PELD_LAB_SCORE MELD/PELD Lab Score at Time of Transplant 
MOST_RCNT_CREAT Recipient Most Recent Creatinine 
NUM_PREV_TX The Number of Previous Transplants 
PSTATUS Recipient Died (1=Dead, 0=Alive) 
PT_CODE Encrypted Recipient Identifier 
PX_STAT Recipient Status (Died, ReTX, Lost, Alive) 
PX_STAT_DATE Recipient Status Date 
REGION WL UNOS/OPTN Region Where 

Listed/Transplanted 
REM_CD Reason for Removal from the Waiting List 
SSDMF_DEATH_DATE Social Security Death Master File Death Date 
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TBILI_TX Recipient Total Bilirubin @ Transplant 
TRR_ID_CODE Encrypted Transplant Identifier 
TX_DATE Transplant Date 
TX_MELD Transplant Occurred Prior to MELD/PELD? 
TX_YEAR Transplant Year 
WL_ID_CODE Encrypted Registration Identifier 
 
HCC_TUMOR_DATA 
Name Description 
ABLATE Any Ablative Therapy (Y/N) 
CASE_ID Case Number 
CHEM_ABLAT Chemical Ablation of Lesion 
CHEMOEMBO Chemoembolization of Lesion 
CRYO Cryo Ablation of Lesion 
FORM_ID Form ID 
HCC_DIAG HCC Diagnosis 
INIT_EXT Initial/Extension/Appeal 
ORIG_APPL_DATE Application Date 
RESECT Surgical Resection 
RFA Radio Frequency Ablation of Lesion 
WL_ID_CODE Encrypted Registration Identifier 
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APPENDIX C: PROBABILITY TABLES 
Therapy P(De|M1) P(M1|M1) P(M2|M1) P(M3|M1) P(M4|M1) P(M5|M1) P(Dr|M1) 

TACE 3.37 65.11 22.73 5.68 1.65 0.22 1.24 

RFA 4.14 67.64 21.33 4.31 1.29 0.43 0.86 

DN 5.09 61.87 25.33 4.93 1.60 0.37 0.81 

Chance Node Probabilities For Initial Meld [0,10) 

Therapy P(De|M2) P(M1|M2) P(M2|M2) P(M3|M2) P(M4|M2) P(M5|M2) P(Dr|M2) 

TACE 3.37 12.57 56.91 19.06 4.96 1.89 1.24 

RFA 4.14 10.95 60.67 18.54 4.00 0.84 0.86 

DN 5.09 10.11 58.38 20.08 4.01 1.52 0.81 

Chance Node Probabilities For Initial Meld [10,15) 

Therapy P(De|M3) P(M1|M3) P(M2|M3) P(M3|M3) P(M4|M3) P(M5|M3) P(Dr|M3) 

TACE 3.37 1.42 21.54 53.97 15.62 2.84 1.24 

RFA 4.14 2.59 21.97 54.93 11.63 3.88 0.86 

DN 5.09 0.97 16.68 59.34 14.62 2.49 0.81 

Chance Node Probabilities For Initial Meld [15,20) 

Therapy P(De|M4) P(M1|M4) P(M2|M4) P(M3|M4) P(M4|M4) P(M5|M4) P(Dr|M4) 

TACE 3.37 <0.00001 9.54 23.17 55.87 6.81 1.24 

RFA 4.14 <0.00001 7.31 47.50 40.19 <0.00001 0.86 

DN 5.09 0.60 6.59 26.97 53.34 6.59 0.81 

Chance Node Probabilities For Initial Meld [20,25) 

Therapy P(De|M5) P(M1|M5) P(M2|M5) P(M3|M5) P(M4|M5) P(M5|M5) P(Dr|M5) 

TACE 3.37 <0.00001 27.25 40.88 27.25 <0.00001 1.24 

RFA 4.14 <0.00001 <0.00001 95.00 <0.00001 <0.00001 0.86 

DN 5.09 <0.00001 16.61 22.14 27.67 27.67 0.81 

Chance Node Probabilities For Initial Meld 25+ 
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APPENDIX D: DECISIONS FOR MONTH 0 NODES  
 

Initial Calculated Meld < 10 

  Month 1 
Decision 

    Damage Vector  

Policy 
# 

Initial 
Decision 

M1 M2 M3 M4 M5 Drop Lives Cost P-O 

1 TACE TX  TX TX TX TX Sorafenib 77.72 271121.30  

2 TACE TX  TX TX TX TX DN 77.68 271062.86  

3 TACE TX  TX TX TX TACE Sorafenib 77.65 270563.17  

4 TACE TX  TX TX TX TACE DN 77.61 270504.73  

5 TACE TX  TX TX TACE TX Sorafenib 77.22 266935.32 X 

6 TACE TX  TX TX TACE TX DN 77.19 266876.87 X 

7 TACE TX  TX TX TACE TACE Sorafenib 77.16 266377.19 X 

8 TACE TX  TX TX TACE TACE DN 77.12 266318.74 X 

9 TACE TX  TX TACE TX TX Sorafenib 76.02 256711.37 X 

10 TACE TX  TX TACE TX TX DN 75.99 256652.93 X 

11 TACE TX  TX TACE TX TACE Sorafenib 75.96 256153.24 X 

12 TACE TX  TX TACE TX TACE DN 75.92 256094.79 X 

13 TACE TX  TX TACE TACE TX Sorafenib 75.53 252525.39 X 

14 TACE TX  TX TACE TACE TX DN 75.50 252466.94 X 

15 TACE TX  TX TACE TACE TACE Sorafenib 75.47 251967.26 X 

16 TACE TX  TX TACE TACE TACE DN 75.43 251908.81 X 

17 TACE TX  TACE TX TX TX Sorafenib 70.95 213456.20 X 

18 TACE TX  TACE TX TX TX DN 70.91 213397.76 X 

19 TACE TX  TACE TX TX TACE Sorafenib 70.88 212898.07 X 

20 TACE TX  TACE TX TX TACE DN 70.85 212839.63 X 

21 TACE TX  TACE TX TACE TX Sorafenib 70.46 209270.22 X 

22 TACE TX  TACE TX TACE TX DN 70.42 209211.77 X 

23 TACE TX  TACE TX TACE TACE Sorafenib 70.39 208712.09 X 

24 TACE TX  TACE TX TACE TACE DN 70.36 208653.64 X 

25 TACE TX  TACE TACE TX TX Sorafenib 69.26 199046.27 X 

26 TACE TX  TACE TACE TX TX DN 69.22 198987.83 X 

27 TACE TX  TACE TACE TX TACE Sorafenib 69.19 198488.14 X 

28 TACE TX  TACE TACE TX TACE DN 69.16 198429.69 X 

29 TACE TX  TACE TACE TACE TX Sorafenib 68.77 194860.29  

30 TACE TX  TACE TACE TACE TX DN 68.73 194801.84  

31 TACE TX  TACE TACE TACE TACE Sorafenib 68.70 194302.16  

32 TACE TX TACE TACE TACE TACE DN 68.66 194243.71  

33 TACE TACE TX TX TX TX Sorafenib 58.33 105939.84 X 

34 TACE TACE TX TX TX TX DN 58.30 105881.39 X 

35 TACE TACE TX TX TX TACE Sorafenib 58.27 105381.71 X 

36 TACE TACE TX TX TX TACE DN 58.23 105323.26 X 

37 TACE TACE TX TX TACE TX Sorafenib 57.84 101753.85 X 
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38 TACE TACE TX TX TACE TX DN 57.80 101695.41 X 

39 TACE TACE TX TX TACE TACE Sorafenib 57.78 101195.72 X 

40 TACE TACE TX TX TACE TACE DN 57.74 101137.28 X 

41 TACE TACE TX TACE TX TX Sorafenib 56.64 91529.91 X 

42 TACE TACE TX TACE TX TX DN 56.60 91471.46 X 

43 TACE TACE TX TACE TX TACE Sorafenib 56.58 90971.77 X 

44 TACE TACE TX TACE TX TACE DN 56.54 90913.33 X 

45 TACE TACE TX TACE TACE TX Sorafenib 56.15 87343.92 X 

46 TACE TACE TX TACE TACE TX DN 56.11 87285.48 X 

47 TACE TACE TX TACE TACE TACE Sorafenib 56.08 86785.79 X 

48 TACE TACE TX TACE TACE TACE DN 56.05 86727.35 X 

49 TACE TACE TACE TX TX TX Sorafenib 51.57 48274.74 X 

50 TACE TACE TACE TX TX TX DN 51.53 48216.29 X 

51 TACE TACE TACE TX TX TACE Sorafenib 51.50 47716.61 X 

52 TACE TACE TACE TX TX TACE DN 51.46 47658.16 X 

53 TACE TACE TACE TX TACE TX Sorafenib 51.07 44088.75 X 

54 TACE TACE TACE TX TACE TX DN 51.04 44030.31 X 

55 TACE TACE TACE TX TACE TACE Sorafenib 51.01 43530.62 X 

56 TACE TACE TACE TX TACE TACE DN 50.97 43472.18 X 

57 TACE TACE TACE TACE TX TX Sorafenib 49.87 33864.80 X 

58 TACE TACE TACE TACE TX TX DN 49.84 33806.36 X 

59 TACE TACE TACE TACE TX TACE Sorafenib 49.81 33306.67 X 

60 TACE TACE TACE TACE TX TACE DN 49.77 33248.23 X 

61 TACE TACE TACE TACE TACE TX Sorafenib 49.38 29678.82 X 

62 TACE TACE TACE TACE TACE TX DN 49.35 29620.38 X 

63 TACE TACE TACE TACE TACE TACE Sorafenib 49.32 29120.69 X 

64 TACE TACE TACE TACE TACE TACE DN 49.28 29062.24 X 

65 RFA TX  TX TX TX TX Sorafenib 77.48 266347.78  

66 RFA TX  TX TX TX TX DN 77.46 266307.25  

67 RFA TX  TX TX TX RFA Sorafenib 77.41 265231.44  

68 RFA TX  TX TX TX RFA DN 77.38 265190.91  

69 RFA TX  TX TX RFA TX Sorafenib 77.25 262998.76  

70 RFA TX  TX TX RFA TX DN 77.23 262958.22  

71 RFA TX  TX TX RFA RFA Sorafenib 77.18 261882.42  

72 RFA TX  TX TX RFA RFA DN 77.15 261841.88  

73 RFA TX  TX RFA TX TX Sorafenib 76.72 255158.42  

74 RFA TX  TX RFA TX TX DN 76.69 255117.88  

75 RFA TX  TX RFA TX RFA Sorafenib 76.64 254042.08  

76 RFA TX  TX RFA TX RFA DN 76.62 254001.54  

77 RFA TX  TX RFA RFA TX Sorafenib 76.49 251809.40  

78 RFA TX  TX RFA RFA TX DN 76.46 251768.86  

79 RFA TX  TX RFA RFA RFA Sorafenib 76.41 250693.06  

80 RFA TX  TX RFA RFA RFA DN 76.39 250652.52  

81 RFA TX  RFA TX TX TX Sorafenib 73.70 210972.11  

82 RFA TX  RFA TX TX TX DN 73.68 210931.58  

83 RFA TX  RFA TX TX RFA Sorafenib 73.63 209855.77  
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84 RFA TX  RFA TX TX RFA DN 73.60 209815.24  

85 RFA TX  RFA TX RFA TX Sorafenib 73.47 207623.09  

86 RFA TX  RFA TX RFA TX DN 73.45 207582.56  

87 RFA TX  RFA TX RFA RFA Sorafenib 73.40 206506.75  

88 RFA TX  RFA TX RFA RFA DN 73.37 206466.22  

89 RFA TX  RFA RFA TX TX Sorafenib 72.94 199782.75  

90 RFA TX  RFA RFA TX TX DN 72.91 199742.22  

91 RFA TX  RFA RFA TX RFA Sorafenib 72.86 198666.41  

92 RFA TX  RFA RFA TX RFA DN 72.84 198625.88  

93 RFA TX  RFA RFA RFA TX Sorafenib 72.71 196433.73  

94 RFA TX  RFA RFA RFA TX DN 72.68 196393.20  

95 RFA TX  RFA RFA RFA RFA Sorafenib 72.63 195317.39  

96 RFA TX RFA RFA RFA RFA DN 72.61 195276.85  

97 RFA RFA TX TX TX TX Sorafenib 65.50 90744.87  

98 RFA RFA TX TX TX TX DN 65.47 90704.34  

99 RFA RFA TX TX TX RFA Sorafenib 65.42 89628.53  

100 RFA RFA TX TX TX RFA DN 65.39 89588.00  

101 RFA RFA TX TX RFA TX Sorafenib 65.27 87395.85  

102 RFA RFA TX TX RFA TX DN 65.24 87355.32  

103 RFA RFA TX TX RFA RFA Sorafenib 65.19 86279.51  

104 RFA RFA TX TX RFA RFA DN 65.16 86238.97  

105 RFA RFA TX RFA TX TX Sorafenib 64.73 79555.51  

106 RFA RFA TX RFA TX TX DN 64.71 79514.97  

107 RFA RFA TX RFA TX RFA Sorafenib 64.66 78439.17  

108 RFA RFA TX RFA TX RFA DN 64.63 78398.63  

109 RFA RFA TX RFA RFA TX Sorafenib 64.50 76206.49  

110 RFA RFA TX RFA RFA TX DN 64.48 76165.95  

111 RFA RFA TX RFA RFA RFA Sorafenib 64.43 75090.15  

112 RFA RFA TX RFA RFA RFA DN 64.40 75049.61  

113 RFA RFA RFA TX TX TX Sorafenib 61.72 35369.20  

114 RFA RFA RFA TX TX TX DN 61.69 35328.67  

115 RFA RFA RFA TX TX RFA Sorafenib 61.64 34252.86  

116 RFA RFA RFA TX TX RFA DN 61.61 34212.33  

117 RFA RFA RFA TX RFA TX Sorafenib 61.49 32020.18  

118 RFA RFA RFA TX RFA TX DN 61.46 31979.65  

119 RFA RFA RFA TX RFA RFA Sorafenib 61.41 30903.84  

120 RFA RFA RFA TX RFA RFA DN 61.39 30863.31  

121 RFA RFA RFA RFA TX TX Sorafenib 60.95 24179.84  

122 RFA RFA RFA RFA TX TX DN 60.93 24139.31  

123 RFA RFA RFA RFA TX RFA Sorafenib 60.88 23063.50  

124 RFA RFA RFA RFA TX RFA DN 60.85 23022.97  

125 RFA RFA RFA RFA RFA TX Sorafenib 60.72 20830.82  

126 RFA RFA RFA RFA RFA TX DN 60.70 20790.29  

127 RFA RFA RFA RFA RFA RFA Sorafenib 60.65 19714.48  

128 RFA RFA RFA RFA RFA RFA DN 60.62 19673.95  

129 DN TX  TX TX TX TX Sorafenib 76.25 260900.48 X 
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130 DN TX  TX TX TX TX DN 76.22 260866.94 X 

131 DN TX  TX TX TX DN Sorafenib 75.95 260885.16 X 

132 DN TX  TX TX TX DN DN 75.92 260851.63 X 

133 DN TX  TX TX DN TX Sorafenib 74.95 256466.24 X 

134 DN TX  TX TX DN TX DN 74.93 256432.70 X 

135 DN TX  TX TX DN DN Sorafenib 74.65 256450.92 X 

136 DN TX  TX TX DN DN DN 74.63 256417.39 X 

137 DN TX  TX DN TX TX Sorafenib 72.25 247237.48 X 

138 DN TX  TX DN TX TX DN 72.23 247203.94 X 

139 DN TX  TX DN TX DN Sorafenib 71.95 247222.16 X 

140 DN TX  TX DN TX DN DN 71.93 247188.62 X 

141 DN TX  TX DN DN TX Sorafenib 70.96 242803.24 X 

142 DN TX  TX DN DN TX DN 70.93 242769.70 X 

143 DN TX  TX DN DN DN Sorafenib 70.66 242787.92 X 

144 DN TX  TX DN DN DN DN 70.63 242754.38 X 

145 DN TX  DN TX TX TX Sorafenib 55.73 190700.92 X 

146 DN TX  DN TX TX TX DN 55.70 190667.38 X 

147 DN TX  DN TX TX DN Sorafenib 55.43 190685.60 X 

148 DN TX  DN TX TX DN DN 55.40 190652.06 X 

149 DN TX  DN TX DN TX Sorafenib 54.43 186266.68 X 

150 DN TX  DN TX DN TX DN 54.41 186233.14 X 

151 DN TX  DN TX DN DN Sorafenib 54.13 186251.36 X 

152 DN TX  DN TX DN DN DN 54.11 186217.82 X 

153 DN TX  DN DN TX TX Sorafenib 51.73 177037.91 X 

154 DN TX  DN DN TX TX DN 51.71 177004.38 X 

155 DN TX  DN DN TX DN Sorafenib 51.44 177022.60 X 

156 DN TX  DN DN TX DN DN 51.41 176989.06 X 

157 DN TX  DN DN DN TX Sorafenib 50.44 172603.67 X 

158 DN TX  DN DN DN TX DN 50.41 172570.14 X 

159 DN TX  DN DN DN DN Sorafenib 50.14 172588.36 X 

160 DN TX DN DN DN DN DN 50.11 172554.82 X 

161 DN DN TX TX TX TX Sorafenib 26.13 89433.96 X 

162 DN DN TX TX TX TX DN 26.11 89400.43 X 

163 DN DN TX TX TX DN Sorafenib 25.83 89418.64 X 

164 DN DN TX TX TX DN DN 25.81 89385.11 X 

165 DN DN TX TX DN TX Sorafenib 24.83 84999.72 X 

166 DN DN TX TX DN TX DN 24.81 84966.19 X 

167 DN DN TX TX DN DN Sorafenib 24.53 84984.40 X 

168 DN DN TX TX DN DN DN 24.51 84950.87 X 

169 DN DN TX DN TX TX Sorafenib 22.14 75770.96 X 

170 DN DN TX DN TX TX DN 22.11 75737.42 X 

171 DN DN TX DN TX DN Sorafenib 21.84 75755.64 X 

172 DN DN TX DN TX DN DN 21.81 75722.11 X 

173 DN DN TX DN DN TX Sorafenib 20.84 71336.72 X 

174 DN DN TX DN DN TX DN 20.82 71303.18 X 

175 DN DN TX DN DN DN Sorafenib 20.54 71321.40 X 
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176 DN DN TX DN DN DN DN 20.52 71287.87 X 

177 DN DN DN TX TX TX Sorafenib 5.61 19234.40  

178 DN DN DN TX TX TX DN 5.59 19200.86  

179 DN DN DN TX TX DN Sorafenib 5.31 19219.08 X 

180 DN DN DN TX TX DN DN 5.29 19185.55  

181 DN DN DN TX DN TX Sorafenib 4.32 14800.16  

182 DN DN DN TX DN TX DN 4.29 14766.62  

183 DN DN DN TX DN DN Sorafenib 4.02 14784.84 X 

184 DN DN DN TX DN DN DN 3.99 14751.31  

185 DN DN DN DN TX TX Sorafenib 1.62 5571.40  

186 DN DN DN DN TX TX DN 1.60 5537.86  

187 DN DN DN DN TX DN Sorafenib 1.32 5556.08 X 

188 DN DN DN DN TX DN DN 1.30 5522.54  

189 DN DN DN DN DN TX Sorafenib 0.32 1137.16  

190 DN DN DN DN DN TX DN 0.30 1103.62  

191 DN DN DN DN DN DN Sorafenib 0.02 1121.84 X 

192 DN DN DN DN DN DN DN 0.00 1088.30  

 

Initial Calculated MELD [10,15) 

  Month 1 
Decision 

    Damage Vector  

 Initial 
Decision 

M1 M2 M3 M4 M5 Drop Lives Cost P-O? 

1 TACE TX  TX TX TX TX Sorafenib 77.72 271121.30  

2 TACE TX  TX TX TX TX DN 77.68 271062.86  

3 TACE TX  TX TX TX TACE Sorafenib 77.15 266326.45 X 

4 TACE TX  TX TX TX TACE DN 77.12 266268.00 X 

5 TACE TX  TX TX TACE TX Sorafenib 76.24 258537.98 X 

6 TACE TX  TX TX TACE TX DN 76.20 258479.54 X 

7 TACE TX  TX TX TACE TACE Sorafenib 75.68 253743.13 X 

8 TACE TX  TX TX TACE TACE DN 75.64 253684.68  

9 TACE TX  TX TACE TX TX Sorafenib 72.04 222766.85 X 

10 TACE TX  TX TACE TX TX DN 72.00 222708.40 X 

11 TACE TX  TX TACE TX TACE Sorafenib 71.48 217971.99 X 

12 TACE TX  TX TACE TX TACE DN 71.44 217913.55 X 

13 TACE TX  TX TACE TACE TX Sorafenib 70.56 210183.52 X 

14 TACE TX  TX TACE TACE TX DN 70.53 210125.08 X 

15 TACE TX  TX TACE TACE TACE Sorafenib 70.00 205388.67 X 

16 TACE TX  TX TACE TACE TACE DN 69.97 205330.23 X 

17 TACE TX  TACE TX TX TX Sorafenib 60.77 126742.91 X 

18 TACE TX  TACE TX TX TX DN 60.74 126684.47 X 

19 TACE TX  TACE TX TX TACE Sorafenib 60.21 121948.06 X 

20 TACE TX  TACE TX TX TACE DN 60.17 121889.61 X 
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21 TACE TX  TACE TX TACE TX Sorafenib 59.30 114159.59 X 

22 TACE TX  TACE TX TACE TX DN 59.26 114101.14 X 

23 TACE TX  TACE TX TACE TACE Sorafenib 58.73 109364.73 X 

24 TACE TX  TACE TX TACE TACE DN 58.70 109306.29 X 

25 TACE TX  TACE TACE TX TX Sorafenib 55.10 78388.45 X 

26 TACE TX  TACE TACE TX TX DN 55.06 78330.01 X 

27 TACE TX  TACE TACE TX TACE Sorafenib 54.54 73593.60 X 

28 TACE TX  TACE TACE TX TACE DN 54.50 73535.15 X 

29 TACE TX  TACE TACE TACE TX Sorafenib 53.62 65805.13 X 

30 TACE TX  TACE TACE TACE TX DN 53.59 65746.69 X 

31 TACE TX  TACE TACE TACE TACE Sorafenib 53.06 61010.28 X 

32 TACE TX TACE TACE TACE TACE DN 53.02 60951.83 X 

33 TACE TACE TX TX TX TX Sorafenib 73.97 239231.72 X 

34 TACE TACE TX TX TX TX DN 73.94 239173.27 X 

35 TACE TACE TX TX TX TACE Sorafenib 73.41 234436.86 X 

36 TACE TACE TX TX TX TACE DN 73.37 234378.42 X 

37 TACE TACE TX TX TACE TX Sorafenib 72.50 226648.40 X 

38 TACE TACE TX TX TACE TX DN 72.46 226589.95 X 

39 TACE TACE TX TX TACE TACE Sorafenib 71.93 221853.54 X 

40 TACE TACE TX TX TACE TACE DN 71.90 221795.10 X 

41 TACE TACE TX TACE TX TX Sorafenib 68.30 190877.26 X 

42 TACE TACE TX TACE TX TX DN 68.26 190818.81 X 

43 TACE TACE TX TACE TX TACE Sorafenib 67.74 186082.40 X 

44 TACE TACE TX TACE TX TACE DN 67.70 186023.96 X 

45 TACE TACE TX TACE TACE TX Sorafenib 66.82 178293.94 X 

46 TACE TACE TX TACE TACE TX DN 66.79 178235.49 X 

47 TACE TACE TX TACE TACE TACE Sorafenib 66.26 173499.08 X 

48 TACE TACE TX TACE TACE TACE DN 66.22 173440.64 X 

49 TACE TACE TACE TX TX TX Sorafenib 57.03 94853.32 X 

50 TACE TACE TACE TX TX TX DN 56.99 94794.88 X 

51 TACE TACE TACE TX TX TACE Sorafenib 56.47 90058.47 X 

52 TACE TACE TACE TX TX TACE DN 56.43 90000.02 X 

53 TACE TACE TACE TX TACE TX Sorafenib 55.55 82270.00 X 

54 TACE TACE TACE TX TACE TX DN 55.52 82211.56 X 

55 TACE TACE TACE TX TACE TACE Sorafenib 54.99 77475.15 X 

56 TACE TACE TACE TX TACE TACE DN 54.95 77416.70 X 

57 TACE TACE TACE TACE TX TX Sorafenib 51.36 46498.87 X 

58 TACE TACE TACE TACE TX TX DN 51.32 46440.42 X 

59 TACE TACE TACE TACE TX TACE Sorafenib 50.79 41704.01 X 

60 TACE TACE TACE TACE TX TACE DN 50.76 41645.57 X 

61 TACE TACE TACE TACE TACE TX Sorafenib 49.88 33915.54 X 

62 TACE TACE TACE TACE TACE TX DN 49.84 33857.10 X 

63 TACE TACE TACE TACE TACE TACE Sorafenib 49.32 29120.69 X 

64 TACE TACE TACE TACE TACE TACE DN 49.28 29062.24 X 

65 RFA TX  TX TX TX TX Sorafenib 77.48 266347.78  

66 RFA TX  TX TX TX TX DN 77.46 266307.25  
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67 RFA TX  TX TX TX RFA Sorafenib 77.33 264167.02  

68 RFA TX  TX TX TX RFA DN 77.31 264126.49  

69 RFA TX  TX TX RFA TX Sorafenib 76.77 255963.22  

70 RFA TX  TX TX RFA TX DN 76.75 255922.69  

71 RFA TX  TX TX RFA RFA Sorafenib 76.62 253782.46  

72 RFA TX  TX TX RFA RFA DN 76.60 253741.93  

73 RFA TX  TX RFA TX TX Sorafenib 74.20 218215.34  

74 RFA TX  TX RFA TX TX DN 74.17 218174.81  

75 RFA TX  TX RFA TX RFA Sorafenib 74.05 216034.59  

76 RFA TX  TX RFA TX RFA DN 74.02 215994.05  

77 RFA TX  TX RFA RFA TX Sorafenib 73.49 207830.78  

78 RFA TX  TX RFA RFA TX DN 73.46 207790.25  

79 RFA TX  TX RFA RFA RFA Sorafenib 73.34 205650.03  

80 RFA TX  TX RFA RFA RFA DN 73.31 205609.49  

81 RFA TX  RFA TX TX TX Sorafenib 66.73 108839.97  

82 RFA TX  RFA TX TX TX DN 66.70 108799.43  

83 RFA TX  RFA TX TX RFA Sorafenib 66.58 106659.21  

84 RFA TX  RFA TX TX RFA DN 66.56 106618.67  

85 RFA TX  RFA TX RFA TX Sorafenib 66.02 98455.41  

86 RFA TX  RFA TX RFA TX DN 66.00 98414.87  

87 RFA TX  RFA TX RFA RFA Sorafenib 65.87 96274.65  

88 RFA TX  RFA TX RFA RFA DN 65.85 96234.11  

89 RFA TX  RFA RFA TX TX Sorafenib 63.45 60707.53  

90 RFA TX  RFA RFA TX TX DN 63.42 60667.00  

91 RFA TX  RFA RFA TX RFA Sorafenib 63.30 58526.77  

92 RFA TX  RFA RFA TX RFA DN 63.27 58486.24  

93 RFA TX  RFA RFA RFA TX Sorafenib 62.74 50322.97  

94 RFA TX  RFA RFA RFA TX DN 62.71 50282.44  

95 RFA TX  RFA RFA RFA RFA Sorafenib 62.59 48142.21  

96 RFA TX RFA RFA RFA RFA DN 62.56 48101.68  

97 RFA RFA TX TX TX TX Sorafenib 75.54 237920.05  

98 RFA RFA TX TX TX TX DN 75.52 237879.51  

99 RFA RFA TX TX TX RFA Sorafenib 75.39 235739.29  

100 RFA RFA TX TX TX RFA DN 75.37 235698.75  

101 RFA RFA TX TX RFA TX Sorafenib 74.83 227535.49  

102 RFA RFA TX TX RFA TX DN 74.81 227494.95  

103 RFA RFA TX TX RFA RFA Sorafenib 74.68 225354.73  

104 RFA RFA TX TX RFA RFA DN 74.66 225314.19  

105 RFA RFA TX RFA TX TX Sorafenib 72.26 189787.61  

106 RFA RFA TX RFA TX TX DN 72.23 189747.08  

107 RFA RFA TX RFA TX RFA Sorafenib 72.11 187606.85  

108 RFA RFA TX RFA TX RFA DN 72.08 187566.32  

109 RFA RFA TX RFA RFA TX Sorafenib 71.55 179403.05  

110 RFA RFA TX RFA RFA TX DN 71.52 179362.52  

111 RFA RFA TX RFA RFA RFA Sorafenib 71.40 177222.29  

112 RFA RFA TX RFA RFA RFA DN 71.37 177181.76  
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113 RFA RFA RFA TX TX TX Sorafenib 64.79 80412.23  

114 RFA RFA RFA TX TX TX DN 64.76 80371.70  

115 RFA RFA RFA TX TX RFA Sorafenib 64.64 78231.48  

116 RFA RFA RFA TX TX RFA DN 64.62 78190.94  

117 RFA RFA RFA TX RFA TX Sorafenib 64.08 70027.67  

118 RFA RFA RFA TX RFA TX DN 64.06 69987.14  

119 RFA RFA RFA TX RFA RFA Sorafenib 63.93 67846.92  

120 RFA RFA RFA TX RFA RFA DN 63.91 67806.38  

121 RFA RFA RFA RFA TX TX Sorafenib 61.50 32279.80  

122 RFA RFA RFA RFA TX TX DN 61.48 32239.26  

123 RFA RFA RFA RFA TX RFA Sorafenib 61.36 30099.04  

124 RFA RFA RFA RFA TX RFA DN 61.33 30058.51  

125 RFA RFA RFA RFA RFA TX Sorafenib 60.80 21895.24  

126 RFA RFA RFA RFA RFA TX DN 60.77 21854.70  

127 RFA RFA RFA RFA RFA RFA Sorafenib 60.65 19714.48  

128 RFA RFA RFA RFA RFA RFA DN 60.62 19673.95  

129 DN TX  TX TX TX TX Sorafenib 76.25 257760.98 X 

130 DN TX  TX TX TX TX DN 76.22 257727.44 X 

131 DN TX  TX TX TX DN Sorafenib 75.01 257698.05 X 

132 DN TX  TX TX TX DN DN 74.99 257664.52 X 

133 DN TX  TX TX DN TX Sorafenib 73.00 246647.66 X 

134 DN TX  TX TX DN TX DN 72.97 246614.13 X 

135 DN TX  TX TX DN DN Sorafenib 71.77 246584.74 X 

136 DN TX  TX TX DN DN DN 71.74 246551.20 X 

137 DN TX  TX DN TX TX Sorafenib 59.98 202111.27 X 

138 DN TX  TX DN TX TX DN 59.96 202077.73 X 

139 DN TX  TX DN TX DN Sorafenib 58.75 202048.34 X 

140 DN TX  TX DN TX DN DN 58.73 202014.80 X 

141 DN TX  TX DN DN TX Sorafenib 56.73 190997.95 X 

142 DN TX  TX DN DN TX DN 56.71 190964.42 X 

143 DN TX  TX DN DN DN Sorafenib 55.50 190935.02 X 

144 DN TX  TX DN DN DN DN 55.48 190901.49 X 

145 DN TX  DN TX TX TX Sorafenib 28.96 95966.65 X 

146 DN TX  DN TX TX TX DN 28.93 95933.11 X 

147 DN TX  DN TX TX DN Sorafenib 27.73 95903.72 X 

148 DN TX  DN TX TX DN DN 27.70 95870.18 X 

149 DN TX  DN TX DN TX Sorafenib 25.71 84853.33 X 

150 DN TX  DN TX DN TX DN 25.69 84819.80 X 

151 DN TX  DN TX DN DN Sorafenib 24.48 84790.40 X 

152 DN TX  DN TX DN DN DN 24.45 84756.87 X 

153 DN TX  DN DN TX TX Sorafenib 12.69 40316.93 X 

154 DN TX  DN DN TX TX DN 12.67 40283.40 X 

155 DN TX  DN DN TX DN Sorafenib 11.46 40254.01 X 

156 DN TX  DN DN TX DN DN 11.44 40220.47 X 

157 DN TX  DN DN DN TX Sorafenib 9.44 29203.62 X 

158 DN TX  DN DN DN TX DN 9.42 29170.09 X 
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159 DN TX  DN DN DN DN Sorafenib 8.21 29140.69 X 

160 DN TX DN DN DN DN DN 8.19 29107.16 X 

161 DN DN TX TX TX TX Sorafenib 68.06 229742.12 X 

162 DN DN TX TX TX TX DN 68.03 229708.59 X 

163 DN DN TX TX TX DN Sorafenib 66.83 229679.20 X 

164 DN DN TX TX TX DN DN 66.80 229645.66 X 

165 DN DN TX TX DN TX Sorafenib 64.81 218628.81 X 

166 DN DN TX TX DN TX DN 64.78 218595.28 X 

167 DN DN TX TX DN DN Sorafenib 63.58 218565.88 X 

168 DN DN TX TX DN DN DN 63.55 218532.35 X 

169 DN DN TX DN TX TX Sorafenib 51.79 174092.41 X 

170 DN DN TX DN TX TX DN 51.77 174058.88 X 

171 DN DN TX DN TX DN Sorafenib 50.56 174029.48 X 

172 DN DN TX DN TX DN DN 50.54 173995.95 X 

173 DN DN TX DN DN TX Sorafenib 48.54 162979.10 X 

174 DN DN TX DN DN TX DN 48.52 162945.56 X 

175 DN DN TX DN DN DN Sorafenib 47.31 162916.17 X 

176 DN DN TX DN DN DN DN 47.29 162882.64 X 

177 DN DN DN TX TX TX Sorafenib 20.77 67947.79 X 

178 DN DN DN TX TX TX DN 20.74 67914.26 X 

179 DN DN DN TX TX DN Sorafenib 19.54 67884.86 X 

180 DN DN DN TX TX DN DN 19.51 67851.33 X 

181 DN DN DN TX DN TX Sorafenib 17.52 56834.48 X 

182 DN DN DN TX DN TX DN 17.50 56800.94 X 

183 DN DN DN TX DN DN Sorafenib 16.29 56771.55 X 

184 DN DN DN TX DN DN DN 16.26 56738.02 X 

185 DN DN DN DN TX TX Sorafenib 4.50 12298.08 X 

186 DN DN DN DN TX TX DN 4.48 12264.55 X 

187 DN DN DN DN TX DN Sorafenib 3.27 12235.15 X 

188 DN DN DN DN TX DN DN 3.25 12201.62 X 

189 DN DN DN DN DN TX Sorafenib 1.26 1184.77  

190 DN DN DN DN DN TX DN 1.23 1151.23  

191 DN DN DN DN DN DN Sorafenib 0.02 1121.84  

192 DN DN DN DN DN DN DN 0.00 1088.30  

 

Initial Calculated MELD [15, 20) 

  Month 1 Decision     Damage 
Vector 

  

 Initial 
Decision 

M1 M2 M3 M4 M5 Drop Lives Cost P-O? 

1 TACE TX  TX TX TX TX Sorafenib 77.72 271121.30  

2 TACE TX  TX TX TX TX DN 77.68 271062.86  
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3 TACE TX  TX TX TX TACE Sorafenib 76.87 263916.34 X 

4 TACE TX  TX TX TX TACE DN 76.83 263857.89 X 

5 TACE TX  TX TX TACE TX Sorafenib 73.07 231493.99 X 

6 TACE TX  TX TX TACE TX DN 73.03 231435.54 X 

7 TACE TX  TX TX TACE TACE Sorafenib 72.22 224289.02 X 

8 TACE TX  TX TX TACE TACE DN 72.18 224230.58 X 

9 TACE TX  TX TACE TX TX Sorafenib 61.65 134201.57 X 

10 TACE TX  TX TACE TX TX DN 61.61 134143.13 X 

11 TACE TX  TX TACE TX TACE Sorafenib 60.80 126996.61 X 

12 TACE TX  TX TACE TX TACE DN 60.77 126938.16 X 

13 TACE TX  TX TACE TACE TX Sorafenib 57.00 94574.26 X 

14 TACE TX  TX TACE TACE TX DN 56.96 94515.81 X 

15 TACE TX  TX TACE TACE TACE Sorafenib 56.15 87369.29 X 

16 TACE TX  TX TACE TACE TACE DN 56.12 87310.85 X 

17 TACE TX  TACE TX TX TX Sorafenib 71.30 216475.19 X 

18 TACE TX  TACE TX TX TX DN 71.27 216416.74 X 

19 TACE TX  TACE TX TX TACE Sorafenib 70.46 209270.22 X 

20 TACE TX  TACE TX TX TACE DN 70.42 209211.77 X 

21 TACE TX  TACE TX TACE TX Sorafenib 66.65 176847.87 X 

22 TACE TX  TACE TX TACE TX DN 66.62 176789.43 X 

23 TACE TX  TACE TX TACE TACE Sorafenib 65.81 169642.90 X 

24 TACE TX  TACE TX TACE TACE DN 65.77 169584.46 X 

25 TACE TX  TACE TACE TX TX Sorafenib 55.24 79555.45 X 

26 TACE TX  TACE TACE TX TX DN 55.20 79497.01 X 

27 TACE TX  TACE TACE TX TACE Sorafenib 54.39 72350.49 X 

28 TACE TX  TACE TACE TX TACE DN 54.35 72292.04 X 

29 TACE TX  TACE TACE TACE TX Sorafenib 50.59 39928.14 X 

30 TACE TX  TACE TACE TACE TX DN 50.55 39869.69 X 

31 TACE TX  TACE TACE TACE TACE Sorafenib 49.74 32723.17 X 

32 TACE TX TACE TACE TACE TACE DN 49.70 32664.73 X 

33 TACE TACE TX TX TX TX Sorafenib 77.29 267518.82 X 

34 TACE TACE TX TX TX TX DN 77.26 267460.38 X 

35 TACE TACE TX TX TX TACE Sorafenib 76.45 260313.85 X 

36 TACE TACE TX TX TX TACE DN 76.41 260255.41 X 

37 TACE TACE TX TX TACE TX Sorafenib 72.64 227891.51 X 

38 TACE TACE TX TX TACE TX DN 72.61 227833.06 X 

39 TACE TACE TX TX TACE TACE Sorafenib 71.80 220686.54 X 

40 TACE TACE TX TX TACE TACE DN 71.76 220628.09 X 

41 TACE TACE TX TACE TX TX Sorafenib 61.23 130599.09 X 

42 TACE TACE TX TACE TX TX DN 61.19 130540.64 X 

43 TACE TACE TX TACE TX TACE Sorafenib 60.38 123394.12 X 

44 TACE TACE TX TACE TX TACE DN 60.34 123335.68 X 

45 TACE TACE TX TACE TACE TX Sorafenib 56.58 90971.77 X 

46 TACE TACE TX TACE TACE TX DN 56.54 90913.33 X 

47 TACE TACE TX TACE TACE TACE Sorafenib 55.73 83766.81 X 

48 TACE TACE TX TACE TACE TACE DN 55.69 83708.36 X 
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49 TACE TACE TACE TX TX TX Sorafenib 70.88 212872.70 X 

50 TACE TACE TACE TX TX TX DN 70.84 212814.26 X 

51 TACE TACE TACE TX TX TACE Sorafenib 70.03 205667.74 X 

52 TACE TACE TACE TX TX TACE DN 70.00 205609.29 X 

53 TACE TACE TACE TX TACE TX Sorafenib 66.23 173245.39 X 

54 TACE TACE TACE TX TACE TX DN 66.19 173186.94 X 

55 TACE TACE TACE TX TACE TACE Sorafenib 65.38 166040.42 X 

56 TACE TACE TACE TX TACE TACE DN 65.35 165981.98 X 

57 TACE TACE TACE TACE TX TX Sorafenib 54.81 75952.97 X 

58 TACE TACE TACE TACE TX TX DN 54.78 75894.53 X 

59 TACE TACE TACE TACE TX TACE Sorafenib 53.97 68748.00 X 

60 TACE TACE TACE TACE TX TACE DN 53.93 68689.56 X 

61 TACE TACE TACE TACE TACE TX Sorafenib 50.16 36325.66 X 

62 TACE TACE TACE TACE TACE TX DN 50.13 36267.21 X 

63 TACE TACE TACE TACE TACE TACE Sorafenib 49.32 29120.69 X 

64 TACE TACE TACE TACE TACE TACE DN 49.28 29062.24 X 

65 RFA TX  TX TX TX TX Sorafenib 77.48 266347.78  

66 RFA TX  TX TX TX TX DN 77.46 266307.25  

67 RFA TX  TX TX TX RFA Sorafenib 76.79 256274.76  

68 RFA TX  TX TX TX RFA DN 76.77 256234.22  

69 RFA TX  TX TX RFA TX Sorafenib 75.42 236154.67  

70 RFA TX  TX TX RFA TX DN 75.39 236114.14  

71 RFA TX  TX TX RFA RFA Sorafenib 74.73 226081.65  

72 RFA TX  TX TX RFA RFA DN 74.71 226041.11  

73 RFA TX  TX RFA TX TX Sorafenib 67.75 123741.81  

74 RFA TX  TX RFA TX TX DN 67.72 123701.28  

75 RFA TX  TX RFA TX RFA Sorafenib 67.06 113668.79  

76 RFA TX  TX RFA TX RFA DN 67.03 113628.25  

77 RFA TX  TX RFA RFA TX Sorafenib 65.69 93548.70  

78 RFA TX  TX RFA RFA TX DN 65.66 93508.17  

79 RFA TX  TX RFA RFA RFA Sorafenib 65.00 83475.68  

80 RFA TX  TX RFA RFA RFA DN 64.97 83435.14  

81 RFA TX  RFA TX TX TX Sorafenib 73.59 209310.58  

82 RFA TX  RFA TX TX TX DN 73.56 209270.05  

83 RFA TX  RFA TX TX RFA Sorafenib 72.90 199237.56  

84 RFA TX  RFA TX TX RFA DN 72.87 199197.03  

85 RFA TX  RFA TX RFA TX Sorafenib 71.53 179117.48  

86 RFA TX  RFA TX RFA TX DN 71.50 179076.94  

87 RFA TX  RFA TX RFA RFA Sorafenib 70.84 169044.45  

88 RFA TX  RFA TX RFA RFA DN 70.81 169003.92  

89 RFA TX  RFA RFA TX TX Sorafenib 63.85 66704.61  

90 RFA TX  RFA RFA TX TX DN 63.83 66664.08  

91 RFA TX  RFA RFA TX RFA Sorafenib 63.17 56631.59  

92 RFA TX  RFA RFA TX RFA DN 63.14 56591.06  

93 RFA TX  RFA RFA RFA TX Sorafenib 61.79 36511.51  

94 RFA TX  RFA RFA RFA TX DN 61.77 36470.97  
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95 RFA TX  RFA RFA RFA RFA Sorafenib 61.11 26438.48  

96 RFA TX RFA RFA RFA RFA DN 61.08 26397.95  

97 RFA RFA TX TX TX TX Sorafenib 77.02 259623.78  

98 RFA RFA TX TX TX TX DN 77.00 259583.24  

99 RFA RFA TX TX TX RFA Sorafenib 76.33 249550.75  

100 RFA RFA TX TX TX RFA DN 76.31 249510.22  

101 RFA RFA TX TX RFA TX Sorafenib 74.96 229430.67  

102 RFA RFA TX TX RFA TX DN 74.94 229390.13  

103 RFA RFA TX TX RFA RFA Sorafenib 74.27 219357.65  

104 RFA RFA TX TX RFA RFA DN 74.25 219317.11  

105 RFA RFA TX RFA TX TX Sorafenib 67.29 117017.81  

106 RFA RFA TX RFA TX TX DN 67.26 116977.27  

107 RFA RFA TX RFA TX RFA Sorafenib 66.60 106944.78  

108 RFA RFA TX RFA TX RFA DN 66.58 106904.25  

109 RFA RFA TX RFA RFA TX Sorafenib 65.23 86824.70  

110 RFA RFA TX RFA RFA TX DN 65.20 86784.16  

111 RFA RFA TX RFA RFA RFA Sorafenib 64.54 76751.68  

112 RFA RFA TX RFA RFA RFA DN 64.51 76711.14  

113 RFA RFA RFA TX TX TX Sorafenib 73.13 202586.58  

114 RFA RFA RFA TX TX TX DN 73.10 202546.05  

115 RFA RFA RFA TX TX RFA Sorafenib 72.44 192513.56  

116 RFA RFA RFA TX TX RFA DN 72.42 192473.02  

117 RFA RFA RFA TX RFA TX Sorafenib 71.07 172393.47  

118 RFA RFA RFA TX RFA TX DN 71.04 172352.94  

119 RFA RFA RFA TX RFA RFA Sorafenib 70.38 162320.45  

120 RFA RFA RFA TX RFA RFA DN 70.36 162279.92  

121 RFA RFA RFA RFA TX TX Sorafenib 63.40 59980.61  

122 RFA RFA RFA RFA TX TX DN 63.37 59940.08  

123 RFA RFA RFA RFA TX RFA Sorafenib 62.71 49907.59  

124 RFA RFA RFA RFA TX RFA DN 62.68 49867.05  

125 RFA RFA RFA RFA RFA TX Sorafenib 61.33 29787.50  

126 RFA RFA RFA RFA RFA TX DN 61.31 29746.97  

127 RFA RFA RFA RFA RFA RFA Sorafenib 60.65 19714.48  

128 RFA RFA RFA RFA RFA RFA DN 60.62 19673.95  

129 DN TX  TX TX TX TX Sorafenib 76.25 255112.88 X 

130 DN TX  TX TX TX TX DN 76.22 255079.34 X 

131 DN TX  TX TX TX DN Sorafenib 74.23 255009.79 X 

132 DN TX  TX TX TX DN DN 74.20 254976.26 X 

133 DN TX  TX TX DN TX Sorafenib 64.40 214595.01 X 

134 DN TX  TX TX DN TX DN 64.38 214561.48 X 

135 DN TX  TX TX DN DN Sorafenib 62.39 214491.92 X 

136 DN TX  TX TX DN DN DN 62.36 214458.39 X 

137 DN TX  TX DN TX TX Sorafenib 28.18 90658.00 X 

138 DN TX  TX DN TX TX DN 28.16 90624.47 X 

139 DN TX  TX DN TX DN Sorafenib 26.16 90554.92 X 

140 DN TX  TX DN TX DN DN 26.14 90521.38 X 
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141 DN TX  TX DN DN TX Sorafenib 16.34 50140.13 X 

142 DN TX  TX DN DN TX DN 16.31 50106.60 X 

143 DN TX  TX DN DN DN Sorafenib 14.32 50037.05 X 

144 DN TX  TX DN DN DN DN 14.30 50003.51 X 

145 DN TX  DN TX TX TX Sorafenib 62.73 208885.93 X 

146 DN TX  DN TX TX TX DN 62.71 208852.39 X 

147 DN TX  DN TX TX DN Sorafenib 60.72 208782.84 X 

148 DN TX  DN TX TX DN DN 60.69 208749.31 X 

149 DN TX  DN TX DN TX Sorafenib 50.89 168368.06 X 

150 DN TX  DN TX DN TX DN 50.87 168334.52 X 

151 DN TX  DN TX DN DN Sorafenib 48.88 168264.97 X 

152 DN TX  DN TX DN DN DN 48.85 168231.44 X 

153 DN TX  DN DN TX TX Sorafenib 14.67 44431.05 X 

154 DN TX  DN DN TX TX DN 14.64 44397.52 X 

155 DN TX  DN DN TX DN Sorafenib 12.65 44327.96 X 

156 DN TX  DN DN TX DN DN 12.63 44294.43 X 

157 DN TX  DN DN DN TX Sorafenib 2.83 3913.18  

158 DN TX  DN DN DN TX DN 2.80 3879.65  

159 DN TX  DN DN DN DN Sorafenib 0.81 3810.10 X 

160 DN TX DN DN DN DN DN 0.79 3776.56 X 

161 DN DN TX TX TX TX Sorafenib 75.46 252424.62 X 

162 DN DN TX TX TX TX DN 75.44 252391.09 X 

163 DN DN TX TX TX DN Sorafenib 73.44 252321.53 X 

164 DN DN TX TX TX DN DN 73.42 252288.00 X 

165 DN DN TX TX DN TX Sorafenib 63.62 211906.75 X 

166 DN DN TX TX DN TX DN 63.59 211873.22 X 

167 DN DN TX TX DN DN Sorafenib 61.60 211803.67 X 

168 DN DN TX TX DN DN DN 61.58 211770.13 X 

169 DN DN TX DN TX TX Sorafenib 27.39 87969.74 X 

170 DN DN TX DN TX TX DN 27.37 87936.21 X 

171 DN DN TX DN TX DN Sorafenib 25.38 87866.66 X 

172 DN DN TX DN TX DN DN 25.35 87833.12 X 

173 DN DN TX DN DN TX Sorafenib 15.55 47451.88 X 

174 DN DN TX DN DN TX DN 15.53 47418.34 X 

175 DN DN TX DN DN DN Sorafenib 13.54 47348.79 X 

176 DN DN TX DN DN DN DN 13.51 47315.26 X 

177 DN DN DN TX TX TX Sorafenib 61.95 206197.67 X 

178 DN DN DN TX TX TX DN 61.92 206164.13 X 

179 DN DN DN TX TX DN Sorafenib 59.93 206094.58 X 

180 DN DN DN TX TX DN DN 59.91 206061.05 X 

181 DN DN DN TX DN TX Sorafenib 50.11 165679.80 X 

182 DN DN DN TX DN TX DN 50.08 165646.27 X 

183 DN DN DN TX DN DN Sorafenib 48.09 165576.71 X 

184 DN DN DN TX DN DN DN 48.07 165543.18 X 

185 DN DN DN DN TX TX Sorafenib 13.88 41742.79 X 

186 DN DN DN DN TX TX DN 13.86 41709.26 X 
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187 DN DN DN DN TX DN Sorafenib 11.87 41639.71 X 

188 DN DN DN DN TX DN DN 11.84 41606.17 X 

189 DN DN DN DN DN TX Sorafenib 2.04 1224.92  

190 DN DN DN DN DN TX DN 2.02 1191.39  

191 DN DN DN DN DN DN Sorafenib 0.02 1121.84 X 

192 DN DN DN DN DN DN DN 0.00 1088.30  

 

Initial Calculated MELD [20,25) 

  Month 1 Decision     Damage 
Vector 

  

 Initial 
Decision 

M1 M2 M3 M4 M5 Drop Lives Cost P-O? 

1 TACE TX  TX TX TX TX Sorafenib 77.72 271121.30  

2 TACE TX  TX TX TX TX DN 77.68 271062.86  

3 TACE TX  TX TX TX TACE Sorafenib 75.69 253844.61 X 

4 TACE TX  TX TX TX TACE DN 75.65 253786.16 X 

5 TACE TX  TX TX TACE TX Sorafenib 61.08 129381.35 X 

6 TACE TX  TX TX TACE TX DN 61.05 129322.90 X 

7 TACE TX  TX TX TACE TACE Sorafenib 59.06 112104.65 X 

8 TACE TX  TX TX TACE TACE DN 59.02 112046.21 X 

9 TACE TX  TX TACE TX TX Sorafenib 70.82 212339.94  

10 TACE TX  TX TACE TX TX DN 70.78 212281.50  

11 TACE TX  TX TACE TX TACE Sorafenib 68.79 195063.24 X 

12 TACE TX  TX TACE TX TACE DN 68.75 195004.80 X 

13 TACE TX  TX TACE TACE TX Sorafenib 54.19 70599.99 X 

14 TACE TX  TX TACE TACE TX DN 54.15 70541.54 X 

15 TACE TX  TX TACE TACE TACE Sorafenib 52.16 53323.29 X 

16 TACE TX  TX TACE TACE TACE DN 52.12 53264.84 X 

17 TACE TX  TACE TX TX TX Sorafenib 74.88 246918.71 X 

18 TACE TX  TACE TX TX TX DN 74.84 246860.26 X 

19 TACE TX  TACE TX TX TACE Sorafenib 72.85 229642.01  

20 TACE TX  TACE TX TX TACE DN 72.81 229583.56  

21 TACE TX  TACE TX TACE TX Sorafenib 58.24 105178.75 X 

22 TACE TX  TACE TX TACE TX DN 58.21 105120.31 X 

23 TACE TX  TACE TX TACE TACE Sorafenib 56.22 87902.05 X 

24 TACE TX  TACE TX TACE TACE DN 56.18 87843.61 X 

25 TACE TX  TACE TACE TX TX Sorafenib 67.98 188137.34 X 

26 TACE TX  TACE TACE TX TX DN 67.94 188078.90 X 

27 TACE TX  TACE TACE TX TACE Sorafenib 65.95 170860.64 X 

28 TACE TX  TACE TACE TX TACE DN 65.91 170802.20 X 

29 TACE TX  TACE TACE TACE TX Sorafenib 51.35 46397.39 X 

30 TACE TX  TACE TACE TACE TX DN 51.31 46338.94 X 
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31 TACE TX  TACE TACE TACE TACE Sorafenib 49.32 29120.69 X 

32 TACE TX TACE TACE TACE TACE DN 49.28 29062.24 X 

33 TACE TACE TX TX TX TX Sorafenib 77.72 271121.30  

34 TACE TACE TX TX TX TX DN 77.68 271062.86 X 

35 TACE TACE TX TX TX TACE Sorafenib 75.69 253844.61 X 

36 TACE TACE TX TX TX TACE DN 75.65 253786.16 X 

37 TACE TACE TX TX TACE TX Sorafenib 61.08 129381.35 X 

38 TACE TACE TX TX TACE TX DN 61.05 129322.90 X 

39 TACE TACE TX TX TACE TACE Sorafenib 59.06 112104.65 X 

40 TACE TACE TX TX TACE TACE DN 59.02 112046.21 X 

41 TACE TACE TX TACE TX TX Sorafenib 70.82 212339.94 X 

42 TACE TACE TX TACE TX TX DN 70.78 212281.50 X 

43 TACE TACE TX TACE TX TACE Sorafenib 68.79 195063.24 X 

44 TACE TACE TX TACE TX TACE DN 68.75 195004.80 X 

45 TACE TACE TX TACE TACE TX Sorafenib 54.19 70599.99 X 

46 TACE TACE TX TACE TACE TX DN 54.15 70541.54 X 

47 TACE TACE TX TACE TACE TACE Sorafenib 52.16 53323.29 X 

48 TACE TACE TX TACE TACE TACE DN 52.12 53264.84 X 

49 TACE TACE TACE TX TX TX Sorafenib 74.88 246918.71 X 

50 TACE TACE TACE TX TX TX DN 74.84 246860.26 X 

51 TACE TACE TACE TX TX TACE Sorafenib 72.85 229642.01 X 

52 TACE TACE TACE TX TX TACE DN 72.81 229583.56 X 

53 TACE TACE TACE TX TACE TX Sorafenib 58.24 105178.75 X 

54 TACE TACE TACE TX TACE TX DN 58.21 105120.31 X 

55 TACE TACE TACE TX TACE TACE Sorafenib 56.22 87902.05 X 

56 TACE TACE TACE TX TACE TACE DN 56.18 87843.61 X 

57 TACE TACE TACE TACE TX TX Sorafenib 67.98 188137.34 X 

58 TACE TACE TACE TACE TX TX DN 67.94 188078.90 X 

59 TACE TACE TACE TACE TX TACE Sorafenib 65.95 170860.64 X 

60 TACE TACE TACE TACE TX TACE DN 65.91 170802.20 X 

61 TACE TACE TACE TACE TACE TX Sorafenib 51.35 46397.39 X 

62 TACE TACE TACE TACE TACE TX DN 51.31 46338.94 X 

63 TACE TACE TACE TACE TACE TACE Sorafenib 49.32 29120.69 X 

64 TACE TACE TACE TACE TACE TACE DN 49.28 29062.24 X 

65 RFA TX  TX TX TX TX Sorafenib 77.48 266347.78  

66 RFA TX  TX TX TX TX DN 77.46 266307.25  

67 RFA TX  TX TX TX RFA Sorafenib 77.48 266347.78 X 

68 RFA TX  TX TX TX RFA DN 77.46 266307.25 X 

69 RFA TX  TX TX RFA TX Sorafenib 70.36 162008.91  

70 RFA TX  TX TX RFA TX DN 70.33 161968.38  

71 RFA TX  TX TX RFA RFA Sorafenib 70.36 162008.91 X 

72 RFA TX  TX TX RFA RFA DN 70.33 161968.38 X 

73 RFA TX  TX RFA TX TX Sorafenib 69.06 143031.13  

74 RFA TX  TX RFA TX TX DN 69.04 142990.60  

75 RFA TX  TX RFA TX RFA Sorafenib 69.06 143031.13 X 

76 RFA TX  TX RFA TX RFA DN 69.04 142990.60 X 
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77 RFA TX  TX RFA RFA TX Sorafenib 61.94 38692.26  

78 RFA TX  TX RFA RFA TX DN 61.92 38651.73  

79 RFA TX  TX RFA RFA RFA Sorafenib 61.94 38692.26 X 

80 RFA TX  TX RFA RFA RFA DN 61.92 38651.73 X 

81 RFA TX  RFA TX TX TX Sorafenib 76.19 247370.00 X 

82 RFA TX  RFA TX TX TX DN 76.16 247329.46 X 

83 RFA TX  RFA TX TX RFA Sorafenib 76.19 247370.00 X 

84 RFA TX  RFA TX TX RFA DN 76.16 247329.46 X 

85 RFA TX  RFA TX RFA TX Sorafenib 69.06 143031.13 X 

86 RFA TX  RFA TX RFA TX DN 69.04 142990.60 X 

87 RFA TX  RFA TX RFA RFA Sorafenib 69.06 143031.13 X 

88 RFA TX  RFA TX RFA RFA DN 69.04 142990.60 X 

89 RFA TX  RFA RFA TX TX Sorafenib 67.77 124053.35  

90 RFA TX  RFA RFA TX TX DN 67.74 124012.81  

91 RFA TX  RFA RFA TX RFA Sorafenib 67.77 124053.35 X 

92 RFA TX  RFA RFA TX RFA DN 67.74 124012.81 X 

93 RFA TX  RFA RFA RFA TX Sorafenib 60.65 19714.48  

94 RFA TX  RFA RFA RFA TX DN 60.62 19673.95  

95 RFA TX  RFA RFA RFA RFA Sorafenib 60.65 19714.48 X 

96 RFA TX RFA RFA RFA RFA DN 60.62 19673.95  

97 RFA RFA TX TX TX TX Sorafenib 77.48 266347.78 X 

98 RFA RFA TX TX TX TX DN 77.46 266307.25 X 

99 RFA RFA TX TX TX RFA Sorafenib 77.48 266347.78 X 

100 RFA RFA TX TX TX RFA DN 77.46 266307.25 X 

101 RFA RFA TX TX RFA TX Sorafenib 70.36 162008.91 X 

102 RFA RFA TX TX RFA TX DN 70.33 161968.38 X 

103 RFA RFA TX TX RFA RFA Sorafenib 70.36 162008.91 X 

104 RFA RFA TX TX RFA RFA DN 70.33 161968.38 X 

105 RFA RFA TX RFA TX TX Sorafenib 69.06 143031.13 X 

106 RFA RFA TX RFA TX TX DN 69.04 142990.60 X 

107 RFA RFA TX RFA TX RFA Sorafenib 69.06 143031.13 X 

108 RFA RFA TX RFA TX RFA DN 69.04 142990.60 X 

109 RFA RFA TX RFA RFA TX Sorafenib 61.94 38692.26 X 

110 RFA RFA TX RFA RFA TX DN 61.92 38651.73 X 

111 RFA RFA TX RFA RFA RFA Sorafenib 61.94 38692.26 X 

112 RFA RFA TX RFA RFA RFA DN 61.92 38651.73 X 

113 RFA RFA RFA TX TX TX Sorafenib 76.19 247370.00 X 

114 RFA RFA RFA TX TX TX DN 76.16 247329.46 X 

115 RFA RFA RFA TX TX RFA Sorafenib 76.19 247370.00 X 

116 RFA RFA RFA TX TX RFA DN 76.16 247329.46 X 

117 RFA RFA RFA TX RFA TX Sorafenib 69.06 143031.13 X 

118 RFA RFA RFA TX RFA TX DN 69.04 142990.60 X 

119 RFA RFA RFA TX RFA RFA Sorafenib 69.06 143031.13 X 

120 RFA RFA RFA TX RFA RFA DN 69.04 142990.60 X 

121 RFA RFA RFA RFA TX TX Sorafenib 67.77 124053.35 X 

122 RFA RFA RFA RFA TX TX DN 67.74 124012.81 X 
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123 RFA RFA RFA RFA TX RFA Sorafenib 67.77 124053.35 X 

124 RFA RFA RFA RFA TX RFA DN 67.74 124012.81 X 

125 RFA RFA RFA RFA RFA TX Sorafenib 60.65 19714.48 X 

126 RFA RFA RFA RFA RFA TX DN 60.62 19673.95  

127 RFA RFA RFA RFA RFA RFA Sorafenib 60.65 19714.48 X 

128 RFA RFA RFA RFA RFA RFA DN 60.62 19673.95  

129 DN TX  TX TX TX TX Sorafenib 76.24 243892.05  

130 DN TX  TX TX TX TX DN 76.21 243858.52  

131 DN TX  TX TX TX DN Sorafenib 70.90 243619.22 X 

132 DN TX  TX TX TX DN DN 70.88 243585.69 X 

133 DN TX  TX TX DN TX Sorafenib 33.03 96065.57 X 

134 DN TX  TX TX DN TX DN 33.01 96032.04 X 

135 DN TX  TX TX DN DN Sorafenib 27.69 95792.75 X 

136 DN TX  TX TX DN DN DN 27.67 95759.21 X 

137 DN TX  TX DN TX TX Sorafenib 54.39 169147.39 X 

138 DN TX  TX DN TX TX DN 54.37 169113.86 X 

139 DN TX  TX DN TX DN Sorafenib 49.05 168874.57 X 

140 DN TX  TX DN TX DN DN 49.03 168841.03 X 

141 DN TX  TX DN DN TX Sorafenib 11.19 21320.92 X 

142 DN TX  TX DN DN TX DN 11.16 21287.38 X 

143 DN TX  TX DN DN DN Sorafenib 5.85 21048.09 X 

144 DN TX  TX DN DN DN DN 5.82 21014.56 X 

145 DN TX  DN TX TX TX Sorafenib 70.90 225628.52 X 

146 DN TX  DN TX TX TX DN 70.88 225594.99 X 

147 DN TX  DN TX TX DN Sorafenib 65.56 225355.70 X 

148 DN TX  DN TX TX DN DN 65.54 225322.16 X 

149 DN TX  DN TX DN TX Sorafenib 27.69 77802.05 X 

150 DN TX  DN TX DN TX DN 27.67 77768.51 X 

151 DN TX  DN TX DN DN Sorafenib 22.36 77529.22 X 

152 DN TX  DN TX DN DN DN 22.33 77495.69 X 

153 DN TX  DN DN TX TX Sorafenib 49.05 150883.87 X 

154 DN TX  DN DN TX TX DN 49.03 150850.33 X 

155 DN TX  DN DN TX DN Sorafenib 43.72 150611.04 X 

156 DN TX  DN DN TX DN DN 43.69 150577.51 X 

157 DN TX  DN DN DN TX Sorafenib 5.85 3057.39  

158 DN TX  DN DN DN TX DN 5.82 3023.86  

159 DN TX  DN DN DN DN Sorafenib 0.51 2784.56 X 

160 DN TX DN DN DN DN DN 0.49 2751.03 X 

161 DN DN TX TX TX TX Sorafenib 75.75 242229.21  

162 DN DN TX TX TX TX DN 75.73 242195.68  

163 DN DN TX TX TX DN Sorafenib 70.41 241956.38 X 

164 DN DN TX TX TX DN DN 70.39 241922.85 X 

165 DN DN TX TX DN TX Sorafenib 32.55 94402.73 X 

166 DN DN TX TX DN TX DN 32.52 94369.20 X 

167 DN DN TX TX DN DN Sorafenib 27.21 94129.91 X 

168 DN DN TX TX DN DN DN 27.18 94096.37 X 
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169 DN DN TX DN TX TX Sorafenib 53.91 167484.55 X 

170 DN DN TX DN TX TX DN 53.88 167451.02 X 

171 DN DN TX DN TX DN Sorafenib 48.57 167211.73 X 

172 DN DN TX DN TX DN DN 48.54 167178.19 X 

173 DN DN TX DN DN TX Sorafenib 10.70 19658.08  

174 DN DN TX DN DN TX DN 10.68 19624.54  

175 DN DN TX DN DN DN Sorafenib 5.36 19385.25 X 

176 DN DN TX DN DN DN DN 5.34 19351.72 X 

177 DN DN DN TX TX TX Sorafenib 70.41 223965.68 X 

178 DN DN DN TX TX TX DN 70.39 223932.15 X 

179 DN DN DN TX TX DN Sorafenib 65.08 223692.86 X 

180 DN DN DN TX TX DN DN 65.05 223659.32 X 

181 DN DN DN TX DN TX Sorafenib 27.21 76139.21 X 

182 DN DN DN TX DN TX DN 27.18 76105.67 X 

183 DN DN DN TX DN DN Sorafenib 21.87 75866.38 X 

184 DN DN DN TX DN DN DN 21.85 75832.85 X 

185 DN DN DN DN TX TX Sorafenib 48.57 149221.03 X 

186 DN DN DN DN TX TX DN 48.54 149187.49 X 

187 DN DN DN DN TX DN Sorafenib 43.23 148948.20 X 

188 DN DN DN DN TX DN DN 43.21 148914.67 X 

189 DN DN DN DN DN TX Sorafenib 5.36 1394.55  

190 DN DN DN DN DN TX DN 5.34 1361.02  

191 DN DN DN DN DN DN Sorafenib 0.02 1121.72  

192 DN DN DN DN DN DN DN 0.00 1088.19  

 

Initial Calculated MELD ≥ 25 

  Month 1 Decision     Damage 
Vector 

  

 Initial 
Decision 

M1 M2 M3 M4 M5 Drop Lives Cost Pareto? 

1 TACE TX  TX TX TX TX Sorafenib 77.71 271092.90  

2 TACE TX  TX TX TX TX DN 77.67 271034.45  

3 TACE TX  TX TX TX TACE Sorafenib 77.71 271092.90  

4 TACE TX  TX TX TX TACE DN 77.67 271034.45  

5 TACE TX  TX TX TACE TX Sorafenib 69.60 201960.74 X 

6 TACE TX  TX TX TACE TX DN 69.56 201902.29 X 

7 TACE TX  TX TX TACE TACE Sorafenib 69.60 201960.74 X 

8 TACE TX  TX TX TACE TACE DN 69.56 201902.29 X 

9 TACE TX  TX TACE TX TX Sorafenib 65.54 167381.97  

10 TACE TX  TX TACE TX TX DN 65.50 167323.53  

11 TACE TX  TX TACE TX TACE Sorafenib 65.54 167381.97  

12 TACE TX  TX TACE TX TACE DN 65.50 167323.53  
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13 TACE TX  TX TACE TACE TX Sorafenib 57.43 98249.81 X 

14 TACE TX  TX TACE TACE TX DN 57.39 98191.37 X 

15 TACE TX  TX TACE TACE TACE Sorafenib 57.43 98249.81 X 

16 TACE TX  TX TACE TACE TACE DN 57.39 98191.37 X 

17 TACE TX  TACE TX TX TX Sorafenib 69.60 201960.74 X 

18 TACE TX  TACE TX TX TX DN 69.56 201902.29 X 

19 TACE TX  TACE TX TX TACE Sorafenib 69.60 201960.74 X 

20 TACE TX  TACE TX TX TACE DN 69.56 201902.29 X 

21 TACE TX  TACE TX TACE TX Sorafenib 61.48 132828.58  

22 TACE TX  TACE TX TACE TX DN 61.45 132770.13  

23 TACE TX  TACE TX TACE TACE Sorafenib 61.48 132828.58  

24 TACE TX  TACE TX TACE TACE DN 61.45 132770.13  

25 TACE TX  TACE TACE TX TX Sorafenib 57.43 98249.81 X 

26 TACE TX  TACE TACE TX TX DN 57.39 98191.37 X 

27 TACE TX  TACE TACE TX TACE Sorafenib 57.43 98249.81 X 

28 TACE TX  TACE TACE TX TACE DN 57.39 98191.37 X 

29 TACE TX  TACE TACE TACE TX Sorafenib 49.31 29117.65 X 

30 TACE TX  TACE TACE TACE TX DN 49.28 29059.21 X 

31 TACE TX  TACE TACE TACE TACE Sorafenib 49.31 29117.65 X 

32 TACE TX TACE TACE TACE TACE DN 49.28 29059.21 X 

33 TACE TACE TX TX TX TX Sorafenib 77.71 271092.90  

34 TACE TACE TX TX TX TX DN 77.67 271034.45  

35 TACE TACE TX TX TX TACE Sorafenib 77.71 271092.90  

36 TACE TACE TX TX TX TACE DN 77.67 271034.45  

37 TACE TACE TX TX TACE TX Sorafenib 69.60 201960.74 X 

38 TACE TACE TX TX TACE TX DN 69.56 201902.29 X 

39 TACE TACE TX TX TACE TACE Sorafenib 69.60 201960.74 X 

40 TACE TACE TX TX TACE TACE DN 69.56 201902.29 X 

41 TACE TACE TX TACE TX TX Sorafenib 65.54 167381.97  

42 TACE TACE TX TACE TX TX DN 65.50 167323.53  

43 TACE TACE TX TACE TX TACE Sorafenib 65.54 167381.97  

44 TACE TACE TX TACE TX TACE DN 65.50 167323.53  

45 TACE TACE TX TACE TACE TX Sorafenib 57.43 98249.81 X 

46 TACE TACE TX TACE TACE TX DN 57.39 98191.37 X 

47 TACE TACE TX TACE TACE TACE Sorafenib 57.43 98249.81 X 

48 TACE TACE TX TACE TACE TACE DN 57.39 98191.37 X 

49 TACE TACE TACE TX TX TX Sorafenib 69.60 201960.74 X 

50 TACE TACE TACE TX TX TX DN 69.56 201902.29 X 

51 TACE TACE TACE TX TX TACE Sorafenib 69.60 201960.74 X 

52 TACE TACE TACE TX TX TACE DN 69.56 201902.29 X 

53 TACE TACE TACE TX TACE TX Sorafenib 61.48 132828.58  

54 TACE TACE TACE TX TACE TX DN 61.45 132770.13  

55 TACE TACE TACE TX TACE TACE Sorafenib 61.48 132828.58  

56 TACE TACE TACE TX TACE TACE DN 61.45 132770.13  

57 TACE TACE TACE TACE TX TX Sorafenib 57.43 98249.81 X 

58 TACE TACE TACE TACE TX TX DN 57.39 98191.37 X 
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59 TACE TACE TACE TACE TX TACE Sorafenib 57.43 98249.81 X 

60 TACE TACE TACE TACE TX TACE DN 57.39 98191.37 X 

61 TACE TACE TACE TACE TACE TX Sorafenib 49.31 29117.65 X 

62 TACE TACE TACE TACE TACE TX DN 49.28 29059.21 X 

63 TACE TACE TACE TACE TACE TACE Sorafenib 49.31 29117.65 X 

64 TACE TACE TACE TACE TACE TACE DN 49.28 29059.21 X 

65 RFA TX  TX TX TX TX Sorafenib 77.48 266347.78  

66 RFA TX  TX TX TX TX DN 77.46 266307.25  

67 RFA TX  TX TX TX RFA Sorafenib 77.48 266347.78  

68 RFA TX  TX TX TX RFA DN 77.46 266307.25  

69 RFA TX  TX TX RFA TX Sorafenib 77.48 266347.78  

70 RFA TX  TX TX RFA TX DN 77.46 266307.25  

71 RFA TX  TX TX RFA RFA Sorafenib 77.48 266347.78  

72 RFA TX  TX TX RFA RFA DN 77.46 266307.25  

73 RFA TX  TX RFA TX TX Sorafenib 60.65 19714.48  

74 RFA TX  TX RFA TX TX DN 60.62 19673.95  

75 RFA TX  TX RFA TX RFA Sorafenib 60.65 19714.48  

76 RFA TX  TX RFA TX RFA DN 60.62 19673.95  

77 RFA TX  TX RFA RFA TX Sorafenib 60.65 19714.48  

78 RFA TX  TX RFA RFA TX DN 60.62 19673.95  

79 RFA TX  TX RFA RFA RFA Sorafenib 60.65 19714.48  

80 RFA TX  TX RFA RFA RFA DN 60.62 19673.95  

81 RFA TX  RFA TX TX TX Sorafenib 77.48 266347.78  

82 RFA TX  RFA TX TX TX DN 77.46 266307.25  

83 RFA TX  RFA TX TX RFA Sorafenib 77.48 266347.78  

84 RFA TX  RFA TX TX RFA DN 77.46 266307.25  

85 RFA TX  RFA TX RFA TX Sorafenib 77.48 266347.78  

86 RFA TX  RFA TX RFA TX DN 77.46 266307.25  

87 RFA TX  RFA TX RFA RFA Sorafenib 77.48 266347.78  

88 RFA TX  RFA TX RFA RFA DN 77.46 266307.25  

89 RFA TX  RFA RFA TX TX Sorafenib 60.65 19714.48  

90 RFA TX  RFA RFA TX TX DN 60.62 19673.95  

91 RFA TX  RFA RFA TX RFA Sorafenib 60.65 19714.48  

92 RFA TX  RFA RFA TX RFA DN 60.62 19673.95  

93 RFA TX  RFA RFA RFA TX Sorafenib 60.65 19714.48  

94 RFA TX  RFA RFA RFA TX DN 60.62 19673.95  

95 RFA TX  RFA RFA RFA RFA Sorafenib 60.65 19714.48  

96 RFA TX RFA RFA RFA RFA DN 60.62 19673.95  

97 RFA RFA TX TX TX TX Sorafenib 77.48 266347.78  

98 RFA RFA TX TX TX TX DN 77.46 266307.25  

99 RFA RFA TX TX TX RFA Sorafenib 77.48 266347.78  

100 RFA RFA TX TX TX RFA DN 77.46 266307.25  

101 RFA RFA TX TX RFA TX Sorafenib 77.48 266347.78  

102 RFA RFA TX TX RFA TX DN 77.46 266307.25  

103 RFA RFA TX TX RFA RFA Sorafenib 77.48 266347.78  

104 RFA RFA TX TX RFA RFA DN 77.46 266307.25  
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105 RFA RFA TX RFA TX TX Sorafenib 60.65 19714.48  

106 RFA RFA TX RFA TX TX DN 60.62 19673.95  

107 RFA RFA TX RFA TX RFA Sorafenib 60.65 19714.48  

108 RFA RFA TX RFA TX RFA DN 60.62 19673.95  

109 RFA RFA TX RFA RFA TX Sorafenib 60.65 19714.48  

110 RFA RFA TX RFA RFA TX DN 60.62 19673.95  

111 RFA RFA TX RFA RFA RFA Sorafenib 60.65 19714.48  

112 RFA RFA TX RFA RFA RFA DN 60.62 19673.95  

113 RFA RFA RFA TX TX TX Sorafenib 77.48 266347.78  

114 RFA RFA RFA TX TX TX DN 77.46 266307.25  

115 RFA RFA RFA TX TX RFA Sorafenib 77.48 266347.78  

116 RFA RFA RFA TX TX RFA DN 77.46 266307.25  

117 RFA RFA RFA TX RFA TX Sorafenib 77.48 266347.78  

118 RFA RFA RFA TX RFA TX DN 77.46 266307.25  

119 RFA RFA RFA TX RFA RFA Sorafenib 77.48 266347.78  

120 RFA RFA RFA TX RFA RFA DN 77.46 266307.25  

121 RFA RFA RFA RFA TX TX Sorafenib 60.65 19714.48  

122 RFA RFA RFA RFA TX TX DN 60.62 19673.95  

123 RFA RFA RFA RFA TX RFA Sorafenib 60.65 19714.48  

124 RFA RFA RFA RFA TX RFA DN 60.62 19673.95  

125 RFA RFA RFA RFA RFA TX Sorafenib 60.65 19714.48  

126 RFA RFA RFA RFA RFA TX DN 60.62 19673.95  

127 RFA RFA RFA RFA RFA RFA Sorafenib 60.65 19714.48  

128 RFA RFA RFA RFA RFA RFA DN 60.62 19673.95  

129 DN TX  TX TX TX TX Sorafenib 76.24 186343.65  

130 DN TX  TX TX TX TX DN 76.21 186310.12  

131 DN TX  TX TX TX DN Sorafenib 53.82 185198.11 X 

132 DN TX  TX TX TX DN DN 53.80 185164.58 X 

133 DN TX  TX TX DN TX Sorafenib 53.82 109659.01 X 

134 DN TX  TX TX DN TX DN 53.80 109625.48 X 

135 DN TX  TX TX DN DN Sorafenib 31.41 108513.47 X 

136 DN TX  TX TX DN DN DN 31.39 108479.94 X 

137 DN TX  TX DN TX TX Sorafenib 58.30 124984.85 X 

138 DN TX  TX DN TX TX DN 58.28 124951.32 X 

139 DN TX  TX DN TX DN Sorafenib 35.89 123839.32 X 

140 DN TX  TX DN TX DN DN 35.87 123805.78 X 

141 DN TX  TX DN DN TX Sorafenib 35.89 48300.22 X 

142 DN TX  TX DN DN TX DN 35.87 48266.68 X 

143 DN TX  TX DN DN DN Sorafenib 13.48 47154.68 X 

144 DN TX  TX DN DN DN DN 13.45 47121.14 X 

145 DN TX  DN TX TX TX Sorafenib 62.78 140310.70  

146 DN TX  DN TX TX TX DN 62.76 140277.16  

147 DN TX  DN TX TX DN Sorafenib 40.37 139165.16 X 

148 DN TX  DN TX TX DN DN 40.35 139131.62 X 

149 DN TX  DN TX DN TX Sorafenib 40.37 63626.06 X 

150 DN TX  DN TX DN TX DN 40.35 63592.52 X 
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151 DN TX  DN TX DN DN Sorafenib 17.96 62480.52 X 

152 DN TX  DN TX DN DN DN 17.93 62446.99 X 

153 DN TX  DN DN TX TX Sorafenib 44.85 78951.90 X 

154 DN TX  DN DN TX TX DN 44.83 78918.37 X 

155 DN TX  DN DN TX DN Sorafenib 22.44 77806.36 X 

156 DN TX  DN DN TX DN DN 22.41 77772.83 X 

157 DN TX  DN DN DN TX Sorafenib 22.44 2267.26  

158 DN TX  DN DN DN TX DN 22.41 2233.73  

159 DN TX  DN DN DN DN Sorafenib 0.02 1121.72  

160 DN TX DN DN DN DN DN 0.00 1088.19  

161 DN DN TX TX TX TX Sorafenib 76.24 186343.65  

162 DN DN TX TX TX TX DN 76.21 186310.12  

163 DN DN TX TX TX DN Sorafenib 53.82 185198.11 X 

164 DN DN TX TX TX DN DN 53.80 185164.58 X 

165 DN DN TX TX DN TX Sorafenib 53.82 109659.01 X 

166 DN DN TX TX DN TX DN 53.80 109625.48 X 

167 DN DN TX TX DN DN Sorafenib 31.41 108513.47 X 

168 DN DN TX TX DN DN DN 31.39 108479.94 X 

169 DN DN TX DN TX TX Sorafenib 58.30 124984.85 X 

170 DN DN TX DN TX TX DN 58.28 124951.32 X 

171 DN DN TX DN TX DN Sorafenib 35.89 123839.32 X 

172 DN DN TX DN TX DN DN 35.87 123805.78 X 

173 DN DN TX DN DN TX Sorafenib 35.89 48300.22 X 

174 DN DN TX DN DN TX DN 35.87 48266.68 X 

175 DN DN TX DN DN DN Sorafenib 13.48 47154.68 X 

176 DN DN TX DN DN DN DN 13.45 47121.14 X 

177 DN DN DN TX TX TX Sorafenib 62.78 140310.70  

178 DN DN DN TX TX TX DN 62.76 140277.16  

179 DN DN DN TX TX DN Sorafenib 40.37 139165.16 X 

180 DN DN DN TX TX DN DN 40.35 139131.62 X 

181 DN DN DN TX DN TX Sorafenib 40.37 63626.06 X 

182 DN DN DN TX DN TX DN 40.35 63592.52 X 

183 DN DN DN TX DN DN Sorafenib 17.96 62480.52 X 

184 DN DN DN TX DN DN DN 17.93 62446.99 X 

185 DN DN DN DN TX TX Sorafenib 44.85 78951.90 X 

186 DN DN DN DN TX TX DN 44.83 78918.37 X 

187 DN DN DN DN TX DN Sorafenib 22.44 77806.36 X 

188 DN DN DN DN TX DN DN 22.41 77772.83 X 

189 DN DN DN DN DN TX Sorafenib 22.44 2267.26  

190 DN DN DN DN DN TX DN 22.41 2233.73  

191 DN DN DN DN DN DN Sorafenib 0.02 1121.72  

192 DN DN DN DN DN DN DN 0.00 1088.19  
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APPENDIX E: GRAPHS OF STRATEGIES (ALL AND OPTIMAL) 
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