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Abstract— In recent years, recent research has been 

experimenting with different approaches to classify texts in 

sentimental ways. In this project, I will explore an 

alternative approach to classify tweets using the word 

embedding toolkit called Global Vector for Representation 

(GloVe) [1] to extract features and apply a matrix 

multiplication method to convert the tweet’s features into 

vectors which will be trained in various classifiers, including 

the Support Vector Model (SVM), random forest classifier, 

and logistic regression.  
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I. INTRODUCTION 

Nowadays, in the online world, even 

though social platforms provide a freedom for 

users to share their thoughts through posts or 

messages, some users use these tools to attack 

other people’s feelings with negative words or 

phrases, leading to cyberbullying, hate speech, 

and cyber harassment. Therefore, I would like 

to create a classifier that can provide a baseline 

result of which class a tweet belongs to. For the 

method, I propose an alternative approach to 

build a model such that the implementation on 

word embedding can provide a baseline result 

or improve the performance on text 

classification. 

II. RELATED WORK 

A. Automated Hate Speech and Offensive 

Language Detection 

Tingyan Xiang et al. propose a method 

to create a multi-class classification [2]. The 

authors use the Natural Language Toolkit 

(NLTK) library [2] to perform data cleaning and 

preprocessing steps. Then, they extract features 

of each tweet dataset using the n-gram model 

and the term frequency and document 

frequency (tf-idf) model. They use different 

classifiers to classify the features and return the 

results in a format of confusion metrics. They 

also compare the baseline model and parameter-

tuned model to see whether they can provide a 

more accurate result in classifying multi-class 

tweets. 

III. PRELIMINARIES 

A. Global Vector for Representation 

(GloVe) 

GloVe is an unsupervised learning 

algorithm for obtaining vector representations 

for words [1]. The algorithm generates word 

embeddings by aggregating global word-word 

co-occurrence number of words from a matrix 

and present the result in the form of a dictionary 

of training words.  

In building the GloVe model, there are 

two steps, including creating a co-occurrence 

matrix and fitting it into the GloVe algorithm. 

After training the GloVe object, a dictionary 

which contains index-value elements for each 

word is added to complete a model. 

In figure 1, it illustrates a linear 

substructure of the word in a vector space. This 

application also provides a linear operation for 

vectors that can be used to find a relationship 

between words.  
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Figure 1: Relationship between words in a vector form [1] 

IV. METHOD 

A. Data Gathering 

In the capstone project, I gather the data 

from a data.world website. The dataset is owned 

and used by Tom Davidson et al. for a published 

work called Automated Hate Speech Detection 

and the Problem of Offensive Language [3]. 

After downloading the dataset, I save them in 

the file name labeled_data.csv. 

 
Figure 2: A table represents column labels and top 5 

rows of the dataset. 

As shown in figure 2, the data column 

names contain id, count, hate_speech, 

offensive_language, neither, class, and tweet. 

The ‘count’ represents the number of judges 

who vote to label each tweet in the dataset. The 

‘hate_speech’, ‘offensive_language’, and 

‘neither’ represent the number of voters who 

judge a tweet to be hate speech, offensive, and 

neither. The ‘class’ represents the label which 

majority of voters select the type of tweet, and 

‘tweet’ represents a tweet text.  

B. Text Cleaning and Preprocessing 

After obtaining the tweet data from the 

data.world website, I conduct text cleaning and 

preprocessing steps to remove the unnecessary 

words that are not considered in classification 

and to increase the performance of GloVe 

embedding.  

In a text cleaning process, I tokenize 

each tweet into a list of words and turn all letters 

in each word into lowercase and convert 

numbers into words and remove punctuation 

and white space (in front or at the end of a 

word). In a text preprocessing process, I stem 

and lemmatize words so that each word is in the 

most original form. Then, I convert them back 

into the list of words so that each list represents 

each tweet in the dataset. The example of the list 

is shown in figure 3.  

C.  GloVe Embedding 

 After cleaning the dataset by 

transforming words in each tweet into a more 

usable form of the list words, I apply GloVe 

embedding to extract features from each word. 

During the step, I set up a dimension of vector 

to 50. The dimension number determines the 

number of features inside each word in a GloVe 

dictionary. As mentioned in the preliminaries 

section, the word trained by GloVe embedding 

can be used to conduct a word-analogy test to 

find the closest words that relate to it. In figure 

4, the function most_similar() provides the top 

4 words that are considered to be most related 

to the selected word. For each row of the GloVe 

matrix, it contains the numbers that represent 

the feature values that are obtained from a 

training process. They are used to find features 

in a tweet dataset which later on is converted to 

a feature matrix. 

 
 

Figure 4: The word similarity for ‘woman’ 

Figure 3: An example of the list of words that is used in 

GloVe embedding 
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D. Matrix Multiplication 

 First, for each word in a GloVe 

dictionary, I check if it is in each tweet dataset 

(which is now a list of words). If it is in a tweet, 

I put 1 in a vector. If not, I put 0 in a vector. So, 

the resulting vector for each tweet after doing 

this step is the vector that contains only 0 and 1. 

I combine all resulting vectors into a feature 

matrix with the dimension of n x w by which n 

stands for the number of tweets in the dataset 

and w stands for the number of words in GloVe 

matrix. Then, I multiple a feature matrix with a 

GloVe matrix which has the dimension of w x 

d. (‘d’ stands for the number of features of a 

vector in a GloVe matrix) The result has the 

dimension of n x d which in this case is 24783 

x 50. 

 
Figure 5: A diagram demonstrates the multiplication 

between two matrices. 

E. Applying Classifiers 

 After obtaining the matrix that has a 

dimension of 24783 x 50, I delete the index 

values in the 1st column and save it in the file 

name mod_data.csv. Before training, I use a 

Panda dataframe toolkit to read that file and put 

a feature matrix as the training value ‘x’. For the 

training value ‘y’, I read the data from a column 

‘class’ in labeled_data.csv. Then, I train the (x, 

y) in different classifiers, including the Support 

Vector Model (SVM), random forest classifier, 

and logistic regression. After training, I apply 

some parameter tuning to improve the accuracy 

of each classifier. The result of the classifier 

will be explained in the result section.  

 

 

V.  RESULTS 
 

Accura

cy 
Precisi

on 
Recall F-

Score 

Linear SVM 0.8605 0.8294 0.8605 0.8363 

Logistic 

Regression 
0.8571 0.8287 0.8571 0.8358 

Random Forest 0.8456 0.8209 0.8456 0.8307 

   Figure 6: Table of evaluation metrics for each model 

 As shown in figure 6, it appears that 

Linear SVM has the best performance for 

accuracy at 86.05% and precision at 82.94%. 

This means this model correctly classifies 

around 86.05 % of all tweet classification and 

82.94% of all toxic tweets are correctly 

classified. Linear SVM has given the most 

satisfactory result since it can perform well 

when there are many features which in this case 

are features in each tweet of the dataset. Also, 

the mapping to a higher dimensional space does 

not really improve the performance [5].  

 After getting the baseline results, I tune 

some parameters in each classifier. For linear 

SVM, I change the loss function from squared 

hinge to hinge. For logistic Regression, I change 

the penalty to ‘None’ and change the solver to 

‘lbfgs’ to handle multinomial loss for multiclass 

problems. For Random Forest, I add the max 

depth from none to 10. As illustrated in figure 

7, the result shows a better performance for 

Linear SVM and Random Forest. However, for

Figure 7: Table of evaluation metrics for each model 
after tuning parameters 

 
Accura

cy 
Precisi

on 
Recall F-

Score 

Linear SVM 0.8655 0.8479 0.8655 0.8418 

Logistic 

Regression 
0.8571 0.8280 0.8571 0.8362 

Random Forest 0.8544 0.8293 0.8544 0.8321 
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Logistic Regression, there is a very slight 

improvement (about 0.4%) on f-score.  

 Another result that I look for is a 

confusion matrix since it can determine the 

performance of a classification model on a set 

of test data for which the true values are known 

[6]. In figure 8, it shows that the Random Forest 

Classifier have the best performance for 

determining the offensive case (0.95) and 

neither (0.72) case. However, it still has a poor 

performance on hate speech case (0.04) with 

0.75 on a Hate-Offensive grid. This means that 

the classifier cannot accurately separate the hate 

type from offensive type. 

VI. LIMITATIONS & EXTENSIONS 

A. Limitations 

 The matrix multiplication step requires 

a large amount of time of processing since it 

takes two large matrices which are a feature 

matrix (converted from tweet dataset) and co-

occurrence matrix from GloVe embedding step. 

Also, there might be some limitations of 

classifying processes regarding the tone of 

language whether it is trolling or sarcastic. 

Tweets with these tones can be considered 

either offensive or non-offensive when labeling 

manually, but hard to identify when training 

with classifiers. Therefore, there might be a 

method to assign the tones of some words 

before the training in classifiers.  

B. Extensions 

 The experiment can be extended to more 

sentiment analysis after training with GloVe 

algorithm. Also, there can be an improvement 

in a text preprocessing process so that it can 

improve a performance in both GloVe training 

period and classifier training period. 

VII. CONCLUSION 

 In the capstone project, it provides a 

baseline result which can be improved with 

more systematic ways of text processing. With 

the objective of being an alternative approach, I 

hope this project can inspire audience to try 

different methods for solving the classification 

and text mining problems. Also, I hope that this 

project can raise the awareness of people to 

mitigate the toxicity and create healthy and 

hate-free online communities. 

REFERENCES 
[1] J. Pennington, R. Socher, and C. Manning, “Glove: Global 

Vectors for Word Representation,” in Proceedings of the 2014 

Conference on Empirical Methods in Natural Language 
Processing (EMNLP), Doha, Qatar, 2014, pp. 1532–1543. 

[2] “yueqiusun/Twitter-hate-speech-classifier,” GitHub. [Online]. 

Available: https://github.com/yueqiusun/Twitter-hate-speech-

classifier. [Accessed: 11-Dec-2019]. 

[3] “Natural Language Toolkit — NLTK 3.4.5 documentation.” 

[Online]. Available: https://www.nltk.org/. [Accessed: 11-Dec-
2019]. 

[4] T. Davidson, “Hate Speech and Offensive Language - dataset by 

thomasrdavidson,” data.world. [Online]. Available: 
https://data.world/thomasrdavidson/hate-speech-and-offensive-

language. [Accessed: 11-Dec-2019]. 

[5] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to 
Support Vector Classification,” p. 16. 

[6] “Confusion Matrix in Machine Learning,” GeeksforGeeks, 15-

Oct-2017.  
[7] Alexandre KOWALCZYK, “Linear Kernel: Why is it 

recommended for text classification?” SVM Tutorial, 19-Oct-

2014. 
[8] J. S. Chawla, “Word Vectorization using GloVe,” Medium, 24-

Apr-2018. [Online]. Available: 

https://medium.com/@japneet121/word-vectorization-using-

glove-76919685ee0b. [Accessed: 04-Dec-2019]. 

[9] D. Monsters, “Text Preprocessing in Python: Steps, Tools, and 

Examples,” Medium, 15-Oct-2018. [Online]. Available: 
https://medium.com/@datamonsters/text-preprocessing-in-

python-steps-tools-and-examples-bf025f872908. [Accessed: 11-

Dec-2019]. 
[10] R. Vickery, “Detecting Hate Speech in Tweets: Natural 

Language Processing in Python for Beginners,” Medium, 11-

Feb-2019. [Online]. Available: 
https://medium.com/vickdata/detecting-hate-speech-in-tweets-

natural-language-processing-in-python-for-beginners-

4e591952223. [Accessed: 11-Dec-2019]. 

 

Figure 8: The confusion matrix for the Random Forest 
Classifier [2] 

 


