

TOXIC TWEET CLASSIFICATION WITH NATURAL LANGUAGE PROCESSING

AND MACHINE LEARNING TECHNIQUES

A Technical Paper submitted to the Department of Computer Science

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By

Tanapol Kosolwattana

April 28, 2020

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISOR

N. Rich Nguyen, Department of Computer Science

1

Toxic Tweet Classification with Natural

Language Processing and Machine Learning

Techniques
--Category: Sentiment Analysis, Text Classification

Arty Kosolwattana

Department of Computer Science,

University of Virginia, USA

tk8mw@virginia.edu

Abstract— In recent years, recent research has been

experimenting with different approaches to classify texts in

sentimental ways. In this project, I will explore an

alternative approach to classify tweets using the word

embedding toolkit called Global Vector for Representation

(GloVe) [1] to extract features and apply a matrix

multiplication method to convert the tweet’s features into

vectors which will be trained in various classifiers, including

the Support Vector Model (SVM), random forest classifier,

and logistic regression.

Keywords— GloVe Embedding, Matrix multiplication,

sentiment analysis, text classification, machine learning,

exploratory data analysis

I. INTRODUCTION

Nowadays, in the online world, even

though social platforms provide a freedom for

users to share their thoughts through posts or

messages, some users use these tools to attack

other people’s feelings with negative words or

phrases, leading to cyberbullying, hate speech,

and cyber harassment. Therefore, I would like

to create a classifier that can provide a baseline

result of which class a tweet belongs to. For the

method, I propose an alternative approach to

build a model such that the implementation on

word embedding can provide a baseline result

or improve the performance on text

classification.

II. RELATED WORK

A. Automated Hate Speech and Offensive

Language Detection

Tingyan Xiang et al. propose a method

to create a multi-class classification [2]. The

authors use the Natural Language Toolkit

(NLTK) library [2] to perform data cleaning and

preprocessing steps. Then, they extract features

of each tweet dataset using the n-gram model

and the term frequency and document

frequency (tf-idf) model. They use different

classifiers to classify the features and return the

results in a format of confusion metrics. They

also compare the baseline model and parameter-

tuned model to see whether they can provide a

more accurate result in classifying multi-class

tweets.

III. PRELIMINARIES

A. Global Vector for Representation

(GloVe)

GloVe is an unsupervised learning

algorithm for obtaining vector representations

for words [1]. The algorithm generates word

embeddings by aggregating global word-word

co-occurrence number of words from a matrix

and present the result in the form of a dictionary

of training words.

In building the GloVe model, there are

two steps, including creating a co-occurrence

matrix and fitting it into the GloVe algorithm.

After training the GloVe object, a dictionary

which contains index-value elements for each

word is added to complete a model.

In figure 1, it illustrates a linear

substructure of the word in a vector space. This

application also provides a linear operation for

vectors that can be used to find a relationship

between words.

2

Figure 1: Relationship between words in a vector form [1]

IV. METHOD

A. Data Gathering

In the capstone project, I gather the data

from a data.world website. The dataset is owned

and used by Tom Davidson et al. for a published

work called Automated Hate Speech Detection

and the Problem of Offensive Language [3].

After downloading the dataset, I save them in

the file name labeled_data.csv.

Figure 2: A table represents column labels and top 5

rows of the dataset.

As shown in figure 2, the data column

names contain id, count, hate_speech,

offensive_language, neither, class, and tweet.

The ‘count’ represents the number of judges

who vote to label each tweet in the dataset. The

‘hate_speech’, ‘offensive_language’, and

‘neither’ represent the number of voters who

judge a tweet to be hate speech, offensive, and

neither. The ‘class’ represents the label which

majority of voters select the type of tweet, and

‘tweet’ represents a tweet text.

B. Text Cleaning and Preprocessing

After obtaining the tweet data from the

data.world website, I conduct text cleaning and

preprocessing steps to remove the unnecessary

words that are not considered in classification

and to increase the performance of GloVe

embedding.

In a text cleaning process, I tokenize

each tweet into a list of words and turn all letters

in each word into lowercase and convert

numbers into words and remove punctuation

and white space (in front or at the end of a

word). In a text preprocessing process, I stem

and lemmatize words so that each word is in the

most original form. Then, I convert them back

into the list of words so that each list represents

each tweet in the dataset. The example of the list

is shown in figure 3.

C. GloVe Embedding

 After cleaning the dataset by

transforming words in each tweet into a more

usable form of the list words, I apply GloVe

embedding to extract features from each word.

During the step, I set up a dimension of vector

to 50. The dimension number determines the

number of features inside each word in a GloVe

dictionary. As mentioned in the preliminaries

section, the word trained by GloVe embedding

can be used to conduct a word-analogy test to

find the closest words that relate to it. In figure

4, the function most_similar() provides the top

4 words that are considered to be most related

to the selected word. For each row of the GloVe

matrix, it contains the numbers that represent

the feature values that are obtained from a

training process. They are used to find features

in a tweet dataset which later on is converted to

a feature matrix.

Figure 4: The word similarity for ‘woman’

Figure 3: An example of the list of words that is used in

GloVe embedding

3

D. Matrix Multiplication

 First, for each word in a GloVe

dictionary, I check if it is in each tweet dataset

(which is now a list of words). If it is in a tweet,

I put 1 in a vector. If not, I put 0 in a vector. So,

the resulting vector for each tweet after doing

this step is the vector that contains only 0 and 1.

I combine all resulting vectors into a feature

matrix with the dimension of n x w by which n

stands for the number of tweets in the dataset

and w stands for the number of words in GloVe

matrix. Then, I multiple a feature matrix with a

GloVe matrix which has the dimension of w x

d. (‘d’ stands for the number of features of a

vector in a GloVe matrix) The result has the

dimension of n x d which in this case is 24783

x 50.

Figure 5: A diagram demonstrates the multiplication

between two matrices.

E. Applying Classifiers

 After obtaining the matrix that has a

dimension of 24783 x 50, I delete the index

values in the 1st column and save it in the file

name mod_data.csv. Before training, I use a

Panda dataframe toolkit to read that file and put

a feature matrix as the training value ‘x’. For the

training value ‘y’, I read the data from a column

‘class’ in labeled_data.csv. Then, I train the (x,

y) in different classifiers, including the Support

Vector Model (SVM), random forest classifier,

and logistic regression. After training, I apply

some parameter tuning to improve the accuracy

of each classifier. The result of the classifier

will be explained in the result section.

V. RESULTS

Accura

cy
Precisi

on
Recall F-

Score

Linear SVM 0.8605 0.8294 0.8605 0.8363

Logistic

Regression
0.8571 0.8287 0.8571 0.8358

Random Forest 0.8456 0.8209 0.8456 0.8307

 Figure 6: Table of evaluation metrics for each model

 As shown in figure 6, it appears that

Linear SVM has the best performance for

accuracy at 86.05% and precision at 82.94%.

This means this model correctly classifies

around 86.05 % of all tweet classification and

82.94% of all toxic tweets are correctly

classified. Linear SVM has given the most

satisfactory result since it can perform well

when there are many features which in this case

are features in each tweet of the dataset. Also,

the mapping to a higher dimensional space does

not really improve the performance [5].

 After getting the baseline results, I tune

some parameters in each classifier. For linear

SVM, I change the loss function from squared

hinge to hinge. For logistic Regression, I change

the penalty to ‘None’ and change the solver to

‘lbfgs’ to handle multinomial loss for multiclass

problems. For Random Forest, I add the max

depth from none to 10. As illustrated in figure

7, the result shows a better performance for

Linear SVM and Random Forest. However, for

Figure 7: Table of evaluation metrics for each model
after tuning parameters

Accura

cy
Precisi

on
Recall F-

Score

Linear SVM 0.8655 0.8479 0.8655 0.8418

Logistic

Regression
0.8571 0.8280 0.8571 0.8362

Random Forest 0.8544 0.8293 0.8544 0.8321

4

Logistic Regression, there is a very slight

improvement (about 0.4%) on f-score.

 Another result that I look for is a

confusion matrix since it can determine the

performance of a classification model on a set

of test data for which the true values are known

[6]. In figure 8, it shows that the Random Forest

Classifier have the best performance for

determining the offensive case (0.95) and

neither (0.72) case. However, it still has a poor

performance on hate speech case (0.04) with

0.75 on a Hate-Offensive grid. This means that

the classifier cannot accurately separate the hate

type from offensive type.

VI. LIMITATIONS & EXTENSIONS

A. Limitations

 The matrix multiplication step requires

a large amount of time of processing since it

takes two large matrices which are a feature

matrix (converted from tweet dataset) and co-

occurrence matrix from GloVe embedding step.

Also, there might be some limitations of

classifying processes regarding the tone of

language whether it is trolling or sarcastic.

Tweets with these tones can be considered

either offensive or non-offensive when labeling

manually, but hard to identify when training

with classifiers. Therefore, there might be a

method to assign the tones of some words

before the training in classifiers.

B. Extensions

 The experiment can be extended to more

sentiment analysis after training with GloVe

algorithm. Also, there can be an improvement

in a text preprocessing process so that it can

improve a performance in both GloVe training

period and classifier training period.

VII. CONCLUSION

 In the capstone project, it provides a

baseline result which can be improved with

more systematic ways of text processing. With

the objective of being an alternative approach, I

hope this project can inspire audience to try

different methods for solving the classification

and text mining problems. Also, I hope that this

project can raise the awareness of people to

mitigate the toxicity and create healthy and

hate-free online communities.

REFERENCES
[1] J. Pennington, R. Socher, and C. Manning, “Glove: Global

Vectors for Word Representation,” in Proceedings of the 2014

Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar, 2014, pp. 1532–1543.

[2] “yueqiusun/Twitter-hate-speech-classifier,” GitHub. [Online].

Available: https://github.com/yueqiusun/Twitter-hate-speech-

classifier. [Accessed: 11-Dec-2019].

[3] “Natural Language Toolkit — NLTK 3.4.5 documentation.”

[Online]. Available: https://www.nltk.org/. [Accessed: 11-Dec-
2019].

[4] T. Davidson, “Hate Speech and Offensive Language - dataset by

thomasrdavidson,” data.world. [Online]. Available:
https://data.world/thomasrdavidson/hate-speech-and-offensive-

language. [Accessed: 11-Dec-2019].

[5] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to
Support Vector Classification,” p. 16.

[6] “Confusion Matrix in Machine Learning,” GeeksforGeeks, 15-

Oct-2017.
[7] Alexandre KOWALCZYK, “Linear Kernel: Why is it

recommended for text classification?” SVM Tutorial, 19-Oct-

2014.
[8] J. S. Chawla, “Word Vectorization using GloVe,” Medium, 24-

Apr-2018. [Online]. Available:

https://medium.com/@japneet121/word-vectorization-using-

glove-76919685ee0b. [Accessed: 04-Dec-2019].

[9] D. Monsters, “Text Preprocessing in Python: Steps, Tools, and

Examples,” Medium, 15-Oct-2018. [Online]. Available:
https://medium.com/@datamonsters/text-preprocessing-in-

python-steps-tools-and-examples-bf025f872908. [Accessed: 11-

Dec-2019].
[10] R. Vickery, “Detecting Hate Speech in Tweets: Natural

Language Processing in Python for Beginners,” Medium, 11-

Feb-2019. [Online]. Available:
https://medium.com/vickdata/detecting-hate-speech-in-tweets-

natural-language-processing-in-python-for-beginners-

4e591952223. [Accessed: 11-Dec-2019].

Figure 8: The confusion matrix for the Random Forest
Classifier [2]

