
LOCAL SIMULATIONS OF MAGNETIZED ACCRETION DISKS 

Jacob Bernhard Simon 
Collinsville, IL 

B.S. in Physics, University of Illinois, 2004 

M.S. in Astronomy, University of Virginia, 2006

A Dissertation Presented to the Graduate 
Faculty of the University of Virginia 

in Candidacy for the Degree of 
Doctor of Philosophy 

Department of Astronomy 

University of Virginia 
July, 2010 

Jo n F. Hawley 

b� 
,�� 

!
'il)L Arras

. 

� 
Andrew S. Grimsh_a_w __ 



c©Copyright by

Jacob B. Simon

All rights reserved

August, 2010



To my grandfather, who inspired me to become a scientist through our many

conversations about the Universe.



iv

ABSTRACT

We present local shearing box simulations with the Athena code in order to study

angular momentum transport in magnetized accretion disks via the magnetorota-

tional instability (MRI). Parameterizing dissipation in the form of shear viscosity, ν,

Ohmic resistivity, η, and the magnetic Prandtl number, Pm = ν/η, we examine the

role of these parameters in setting the MRI-turbulent angular momentum transport

rate. Through a series of simulations without physical dissipation or vertical gravity,

we characterize numerical dissipation as a function of length scale and resolution,

quantified in terms of effective ν, η, and Pm. The resulting effective Pm ∼ 2, inde-

pendent of resolution and initial field geometry, and we find that MRI simulations

with effective ν, η, and Pm determined by numerical dissipation are not equivalent to

those where these numbers are set by actual physical dissipation. We also determine

that energy injected into turbulent fluctuations from differential rotation dissipates

on a timescale of much less than an orbital time; turbulent stress and disk heating

are locally correlated.

We then study the effect of physical dissipation on the MRI, but without vertical

gravity. In agreement with a previous study performed with the ZEUS code, we find

that turbulence dies out for values of Pm ! 1 if there is no net magnetic flux through

the domain. With a net toroidal magnetic flux, however, turbulence can be sustained

even when Pm < 1; only a sufficiently large resistivity can quench the turbulence.

In both cases, volume-averaged stress levels increase with Pm when turbulence is

sustained.

Finally, we examine the Pm effect with vertical gravity. Again, increasing Pm

leads to enhanced turbulence, but with a shallower dependence on Pm and with

considerably more temporal variability in the turbulent stress levels. Resistivity is
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again the critical parameter; if η is sufficiently large, the turbulence decays, leaving

a remnant weak radial field. This radial field then shears into toroidal field that

eventually reaches sufficient strength to reactivate the MRI. The result is episodic

outbursts of turbulence occurring on timescales ranging from tens to hundreds of

orbits.
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Chapter 1

Introduction

Whether it be the beautiful rings around Saturn, the flattened, spiral structure of the

Milky Way, or the primordial disk from which our very own solar system formed, the

Universe has a strong affinity for the formation of disks. This common phenomenon

is simply the direct result of angular momentum conservation; astrophysical systems

undergoing gravitational collapse spin up and the resulting centrifugal acceleration

leads to the flattening of material into a disk.

Perhaps most intriguing is a certain subclass of these structures, known as accre-

tion disks, which get their name from their ability to move gas inward and onto the

object at the center of the gravitational potential. This accretion is interesting be-

cause of the crucial role it plays in many astrophysical environments. In protostellar

systems, for example, the mass of the protostar is largely controlled by the accretion

of gas through the disk via dramatic increases in accretion rates and observed lumi-

nosity known as FU Ori outbursts (e.g., Hartmann 1998). Furthermore, the formation

of planets is inextricably connected to accretion disks in young stellar systems; not

only do planets directly form out of the disk material, but the accretion process itself

may play a pivotal role in the coagulation of dust particles into planetesimals (e.g.,
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Kretke & Lin 2007; Johansen 2009; Oishi & Low 2009; Yang et al. 2009; Dzyurkevich

et al. 2010) and the migration of planetary bodies (e.g., Winters et al. 2003; Nelson

& Papaloizou 2003, 2004; Papaloizou et al. 2004; Yang et al. 2009).

Accretion disks are also important in the final stages of stars’ lives, particularly

those in binary systems. The strong gravity of the “dead” compact star (i.e., a white

dwarf, neutron star, or black hole) strips gas off of the surface of the companion star.

This gas accretes onto the dead star via a disk, while heating up to considerable

temperatures and emitting light (up to X-ray wavelengths in some systems). These

binary systems are also quite variable, producing such observed phenomena as dwarf

nova outbursts in white dwarf systems and spectral state transitions in compact X-

ray binaries. This strong variability is thought to be directly related to the physics

of accretion itself.

The luminous distant quasars as well as other forms of Active Galactic Nuclei

(AGN) are believed to be powered by the accretion of gas onto a supermassive black

hole through a disk. As in their smaller mass cousins, these disks release an enor-

mous amount of gravitational energy as light, allowing us to see some of the most

distant objects in the Universe. Furthermore, given the strong relationship between

supermassive black hole mass and properties of the host galaxy (Ferrarese & Merritt

2000; Gebhardt et al. 2000), this disk accretion is likely to be causally linked to the

formation of larger scale structures.

It should now be clear that disk accretion is a very ubiquitous phenomenon in

the Universe, and that by understanding the physics of this process, we can begin

to unlock many of the Universe’s mysteries and answer some of the most profound

questions formulated to-date. It is the aim of this thesis to further our understanding

of accretion through a theoretical study of its physics.
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1.1 The α Model for Accretion Disks

Perhaps the most pervasive and important question in accretion disk physics is: what

removes angular momentum from the disk gas, allowing it to accrete inwards? One

might naively guess that the microphysical viscosity of the gas serves as a torque

between differentially rotating fluid elements and thus transports angular momentum

outward. This viscosity, however, is orders of magnitude too small to account for

the observed accretion rates. For example, consider fully ionized gas of temperature

T ∼ 104 K and density nH ∼ 1014 cm−3, appropriate for an AGN disk around a

108 M" black hole (Balbus & Henri 2008). From Spitzer (1962), we estimate the

viscosity to be ν ∼ 105 cm2 s−1. Assuming an accretion timescale on the order of the

viscous diffusion time,

τ ∼
R2

ν
(1.1)

where R ∼ 1015 cm is a typical length scale for these disks and corresponds to

30 Schwarzschild radii. This implies τ ∼ 1017 yr, which is much greater than the

age of the Universe. Microphysical viscosity cannot provide the necessary angular

momentum transport in accretion disks.

If the disk gas were somehow turbulent, then perhaps the interaction of turbulent

eddies can lead to a net transfer of angular momentum outward. While this notion of

enhanced turbulent viscosity has been around for some time, it was the seminal work

of Shakura & Syunyaev (1973) that first put this idea within the context of accretion

disks.

The disk-height-integrated radial angular momentum flux (e.g., Balbus & Hawley

1998) can be written as
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ΣR

[
vK〈vR〉z +

〈
δvφδvR −

δBφδBR

4πρ

〉

z

]
, (1.2)

where the coordinates are cylindrical (R,φ,z), Σ is the height-integrated disk surface

density, ρ is the gas volume density, vK is the Keplerian velocity, and δ denotes

fluctuations from an average. Thus, δvφ is the departure from Keplerian velocity, δvR

is the radial velocity fluctuation from the average, 〈vR〉z, and δBR and δBφ are the

magnetic field fluctuations from the average R and φ components respectively. The

z subscripts on the angled brackets denote density-weighted height integrations.

If matter slowly spirals inward, then 〈vR〉z is negative; this term represents the

inward flux of angular momentum carried by the accreting material. The second term

on the right-hand-side is completely composed of fluctuations, and it represents the

turbulent outward angular momentum flux. The turbulence can be magnetohydrody-

namic in nature, hence the magnetic field fluctuations in the outward flux. The basic

idea put forth by Shakura & Syunyaev (1973) is that correlations in the turbulent

fluctuations dominate the angular momentum flux, leading to net outward angular

momentum transport, while a small amount of angular momentum is dragged inward

(since 〈vR〉z < 0) with the majority of the gas. Thus, the so-called turbulent viscous

stress tensor responsible for outward radial angular momentum transport is written

as

WRφ ≡
〈

δvφδvR −
δBφδBR

4πρ

〉

z

. (1.3)

While Shakura & Syunyaev hypothesized that turbulence is responsible for mo-

mentum transport, they did not know the origin of this turbulence. Therefore, they

could not definitively state what sets the value of WRφ (i.e., what does WRφ function-

ally depend on?). They did, however, make the assumption that the amplitude of the



5

turbulent fluctuations is limited by the local sound speed, leading to the so-called α

prescription for the stress,

WRφ = αc2s , (1.4)

where cs is the gas sound speed, and α is a dimensionless parameter that quantifies

the level of angular momentum transport. This assumption was based on the argu-

ment that any velocities in excess of the sound speed would form shocks and quickly

dissipate to subsonic values. They also made the assumption that the gravitational

energy released as matter accretes inward would be rapidly radiated away. In other

words, the stress leading to angular momentum transport is locally correlated with

the radiation of gravitational energy. While these assumptions seemed reasonable,

there was still no obvious or robust origin for this turbulence; this mystery would

remain unsolved for nearly two more decades.

1.2 The Magnetorotational Instability (MRI)

As discussed above, it had long been in the mind of astrophysicists that magnetic fields

may play a role in the turbulence proposed by Shakura & Syunyaev (1973). However,

it was not until the discovery of the magnetorotational instability (MRI) by Balbus &

Hawley (1991) that the importance of this role was fully realized. Magnetic fields are

not just another component of the stress tensor, acting to further enhance transport;

they are in fact, the cause of the turbulence. In the presence of a negative angular

velocity gradient, a weak magnetic field of any orientation will rapidly destabilize the

flow, leading not only to enhanced turbulence but to a sustained, positive value for
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WRφ.1 In what follows, we will describe the basic physics of the MRI, first focusing on

the linear growth regime of the instability and then on the nonlinear, fully turbulent

saturated state.

1.2.1 MHD Equations

Before launching into a detailed description of the MRI, it is useful to write down

the equations of MHD, which are at the heart of disk dynamics and the MRI. A

magnetized, compressible fluid is described by,

∂ρ

∂t
+∇ · (ρv) = 0, (1.5)

ρ
∂v

∂t
+ ρv ·∇v = −∇

(
P +

1

2
B2

)
− ρ∇Φ +B ·∇B +∇ · T , (1.6)

∂B

∂t
= ∇× (v ×B − η∇×B). (1.7)

The first equation describes mass conservation, the second equation is the momentum

equation, and the third equation is the magnetic induction equation. Our notation is

standard; ρ is the density, v is the velocity, P is the (isotropic) gas pressure, and B

is the the magnetic field. The gravitational potential (as of yet undefined) is written

as Φ. The only microphysical effects we consider here are Ohmic resistivity, η, and

shear viscosity, ν, included via a viscous stress tensor,

Tij = ρν

(
∂vi
∂xj

+
∂vj
∂xi

−
2

3
δij∇ · v

)
. (1.8)

This system of equations also contains an equation of state. For an isothermal fluid,

this is
1Here, weak magnetic field simply means that there are Alfvén modes with phase speed less than

the orbital speed. This will be quantified later.
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P = ρc2s (1.9)

where cs is the isothermal sound speed. In the case of an adiabatic gas, which we will

also consider in this work, an equation of total energy conservation is included,

∂(E + ρΦ)

∂t
+∇ ·

[(
E + ρΦ + P +

1

2
B2

)
v −B(B · v)− v · T

+ η(∇×B)×B

]
= −∇ · F rad, (1.10)

where the total energy is defined as

E = ε +
1

2
ρv2 +

1

2
B2, (1.11)

and the thermal energy is

ε = P/(γ − 1). (1.12)

γ is the adiabatic index, which in this work will always be γ = 5/3. Note that we

could have just as well defined E to include the gravitational energy contribution,

ρΦ. However, in our code (described in Chapter 2), the gravitational term is gener-

ally separated from the total energy. The energy equation shows that total energy

(including gravity) is conserved except for losses represented by the radiative flux,

F rad. Finally, note that from now on, we will use a system of units with magnetic

permeability µ = 1.
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1.2.2 The Linear MRI

In this section, we closely follow the description presented in Section IV B of Balbus

& Hawley (1998), which is a simple treatment of the linear MRI. A more detailed

derivation can be found in Section IV C of that review. This simplified explanation

gives a more intuitive description of the physical mechanism for the MRI, and is

sufficient for this introduction, particularly since the work presented here has focused

on the nonlinear regime.

We start at an arbitrary radius in a disk with some (as of yet unspecified) radial

angular velocity profile. The disk gas is in circular orbits and is threaded with a

vertical magnetic field. The system is completely axisymmetric, and for the purposes

of this analysis, we assume that we are in a frame co-rotating with the fluid at the

circular orbit radius. The gas is then perturbed from its circular orbit by a distance

ξ. Let the spatial dependence of this perturbation vector be eikz and the amplitude of

the perturbed magnetic field be δB. We linearize the MHD equations of the previous

section to keep only terms that are first order in the perturbation amplitude.

From equation (1.7), one then obtains the relationship between the perturbed field

amplitude and the displacement vector,

δB = ikBξ. (1.13)

Furthermore, ∇ ·B = 0 implies that δBz = 0 and ξz = 0, where the z subscript on B

and ξ denotes the component in the z direction. From the momentum equation, the

magnetic tension is B ·∇B. With the perturbation applied, this term becomes

ik

ρ
BδB = − (k · vA)

2 ξ, (1.14)
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where the right side of the equation follows from using equation (1.13), and vA is the

Alfvén speed (vA ≡ B/
√

ρ).

Applying equation (1.14) to the momentum equation and assuming that the gas

is incompressible, the equations of motion become

ξ̈R − 2Ωξ̇φ = −
[
dΩ2

dlnR
+ (k · vA)

2

]
ξR, (1.15)

ξ̈φ + 2Ωξ̇R = − (k · vA)
2 ξφ, (1.16)

where Ω is the angular velocity. The second term on the left hand sides of the

equations accounts for the Coriolis force, and the first term on the right hand side of

equation (1.15) is the tidal force; these terms result from boosting into the co-rotating

frame. The final term on the right hand sides of the equations accounts for magnetic

tension.

To reiterate, these equations describe the displacement of a fluid element from its

circular orbit in the presence of a vertical magnetic field. There are a few interesting

features to point out from these equations. First of all, as described by Balbus &

Hawley (1998), these equations are mathematically equivalent to two orbiting masses

connected via a massless spring with spring constant (k · vA)
2. In fact, if one re-

moves the rotational motion (i.e., Ω = 0, dΩ2/dlnR = 0), the exact equation for

motion of mass on a spring (i.e., the harmonic oscillator) is recovered. The system

stably exhibits oscillations unless the spring constant is negative, which is impossible

because (k · vA)
2 cannot be negative. However, adding the tidal potential term back

in changes the picture. The effective spring constant in equation (1.15) then becomes

negative when
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dΩ2

dlnR
< 0, (1.17)

and

∣∣∣∣
dΩ2

dlnR

∣∣∣∣ > (k · vA)
2 ; (1.18)

i.e., the orbital velocity decreases outward (which is satisfied in a Keplerian disk)

and the spring is weak compared to the orbital stretching. In this case, the negative

effective spring constant causes continued growth of ξR through equation (1.15) and

thus growth of ξφ through equation (1.16). The system is unstable.

This basic mechanism is further illustrated in Fig. 1.1. The inner mass is moving

at a larger angular velocity than the outer mass, stretching the spring. This stretching

transports angular momentum from the inner mass to the outer mass. As the inner

mass loses angular momentum, it falls to a smaller orbit and increases its angular

velocity. The outer mass moves to a larger orbit and decreases its angular velocity.

But now the spring is stretched even more as a result of the increased velocity and

orbital separation. Thus, the two masses continually move apart with the spring

continually being stretched, leading to a runaway. For magnetized disks, magnetic

tension takes the place of spring tension, but the end result is the same; an instability.

Even from this simple description of the linear MRI, one can see that outward

angular momentum transport is at the heart of the instability. Indeed, the “stretch-

ing” of the magnetic field due to the shear leads to a torque that outwardly transfers

angular momentum. However, this linear approximation cannot remain in effect for-

ever; as the instability sets in, the perturbations grow exponentially in amplitude.

This is evident from again consulting equations (1.15) and (1.16). If the prefactor on

the right hand side of equation (1.15) is positive, then oscillations are replaced by



11

Fig. 1.1.— A cartoon of two springs orbiting a point mass at different radii, connected
by a spring with tension T . The inner mass, mi, moves at a higher angular velocity
than the outer mass, mo, thus stretching the spring. This stretching causes angular
momentum to be transported from mi to mo, which separates the two masses even
more. The result is a runaway. This picture serves to conceptualize the linear growth
of the magnetorotational instability (Balbus & Hawley 1998, Fig. 16).
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continual growth; increasing ξR leads to an increase in ξ̈R, and the system runs away.

By assuming a time dependence of e−iωt for the perturbations, we can calculate (after

a bit of math) the dispersion relation for the MRI,

ω4 − ω2
[
κ2 + 2 (k · vA)

2] +
[
(k · vA)

2 +
dΩ2

dlnR

]
= 0, (1.19)

where κ is the epicyclic frequency defined via

κ2 ≡ 4Ω2 +
dΩ2

dlnR
, (1.20)

which equals Ω2 for Keplerian rotation.

The instability sets in for ω2 < 0, and from the dispersion relation, one can

calculate the growth rate for the fastest growing mode. For Keplerian rotation, this

maximum growth rate is

|ωmax| =
3

4
Ω, (1.21)

which occurs for

(k · vA)max =

√
15

4
Ω. (1.22)

In other words, the fastest growing mode grows on an orbital (i.e., dynamical) timescale

and has a characteristic scale of roughly the distance an Alfvén wave can travel in an

orbital time.

It is clear that the MRI leads to rapid, exponential growth of small perturbations;

again, these perturbations will not remain small forever, and eventually the linear

approximation breaks down. What happens next requires knowledge of the nonlinear

regime, which becomes much less accessible by analytic methods.
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1.2.3 Hydrodynamic Transport?

Before moving onto a description of the nonlinear MRI, we want to reemphasize the

importance that magnetic fields play in angular momentum transport by once again

consulting equations (1.15)-(1.16), this time with the magnetic component removed

(i.e, vA = 0),

ξ̈R − 2Ωξ̇φ = −
dΩ2

dlnR
ξR, (1.23)

ξ̈φ + 2Ωξ̇R = 0. (1.24)

From the second equation, one can time-integrate ξ̈φ to find a relationship between

ξ̇φ and ξR. Plugging this into the first equation and simplifying with the help of

equation (1.20) yields,

ξ̈R = −κ2ξR. (1.25)

For an outwardly decreasing angular velocity (such as is present in Keplerian disks),

κ2 > 0, and we are left with the equation of a harmonic oscillator. With the re-

moval of the destabilizing term, (k · vA)
2, the tidal and Coriolis forces act to restore

displacements from circular orbits. Instead of rapidly growing modes, we get simple

epicyclic motion with frequency κ; there is no avenue for linear instability present in

purely hydrodynamic Keplerian disks!

While this simple exercise is illustrative in demonstrating how magnetic fields al-

ter orbital flow in a fundamental way, it is somewhat limited in that it only applies

to the linear regime. Can nonlinear amplitude disturbances lead to hydrodynamic

transport? This question has been investigated many times through both numerical
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and analytic work (e.g., Brandenburg et al. 1995; Balbus et al. 1996; Hawley et al.

1996; Balbus & Hawley 1998; Hawley et al. 1999; Lesur & Longaretti 2005; Shen

et al. 2006). By writing the equations for averaged kinetic energy fluctuations in

a purely hydrodynamic disk, Balbus & Hawley (1998) showed that if nonlinear in-

stability were to create outward angular momentum flux via turbulent fluctuations,

epicyclic motions actually serve as a dynamic sink for these fluctuations, and the

turbulence would likely die away; epicyclic oscillations are a stabilizing force, even

in the nonlinear regime! In agreement with this work, numerical simulations have

shown no evidence for any sustained hydrodynamic turbulence resulting from non-

linear perturbations. Furthermore, arguments by Lesur & Longaretti (2005) suggest

that even if hydrodynamic turbulence initiated from nonlinear perturbations does

exist, the resulting angular momentum transport would be negligible.

Finally, we should note that other, purely hydrodynamic mechanisms for angular

momentum transport have been investigated. One such example is that of transport

induced via turbulent convection, though the effect of this turbulence on the actual

transport of angular momentum is not entirely clear. Numerical simulations by Stone

& Balbus (1996) have shown that such momentum transport is actually directed

inward in the presence of convection. More recent work by Lesur & Ogilvie (2010)

and Käpylä et al. (2010) have shown that in some cases, convection can lead to

outward angular momentum transport. However, there are concerns about whether

or not such convection is efficient enough at extracting energy from the shear flow to

sustain itself. In other words, to sustain the convective turbulence, there would need

to be a continual source of heating within the disk other than differential rotation

(e.g., radioactive or chemical reaction heating) (Lesur & Ogilvie 2010).

Another possible transport mechanism is gravitational instability (e.g., Hartmann
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1998, and references therein). When the disk is sufficiently massive or cool, the gas

can become self-gravitating; self-gravity wins over the counteracting forces of thermal

pressure and orbital shear. The resulting “clumping” of the gas leads to torques that

outwardly transport angular momentum. However, because of the limited conditions

under which this mechanism operates, it is not likely to be a viable source of transport

in many disk systems (e.g., compact binary disks).

In summary, there are some possibilities for purely hydrodynamic angular mo-

mentum transport. This is perhaps good news since, in weakly ionized regions such

as the dead zones of protoplanetary and protostellar disks (see Gammie 1996), the

magnetic field may be insufficiently coupled to the gas to lead to MRI turbulence.2

However, as briefly outlined above, these purely hydrodynamic mechanisms often re-

quire that quite restrictive conditions be satisfied in order for angular momentum to

be transported outward. The MRI, on the other hand, is very robust; all one needs is

a sufficiently magnetized gas and a weak magnetic field. This mechanism is thus the

most viable option for momentum transport in most accretion disk environments.

1.2.4 The Nonlinear Regime

What happens beyond the exponential growth regime of the linear MRI? To answer

this question, one must solve the full set of nonlinear MHD equations given in § 1.2.1.

These equations are analytically solvable in very few cases, and the nonlinear regime

of the MRI is not one of these cases. Thus, we must turn to another method in the

theorist’s tool box: numerical simulations.

The first MRI simulations appeared in the early 1990’s, in the form of axisym-

metric calculations of a small patch of disk (Hawley & Balbus 1991, 1992). While

2Though, consider Turner et al. (2007) who show that the MRI-active layers of protostellar disks
can cause large scale magnetic fields to diffuse into the deadzone, leading to a nonzero stress there.
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simplistic, this preliminary work showed that the linear growth of the MRI in simula-

tions agreed with the analytic results and that once the nonlinear regime was reached,

angular momentum was transported outward via enhanced turbulence.3

In Hawley et al. (1995) and Hawley et al. (1996), the sustained outward transport

of angular momentum was confirmed for a variety of initial field geometries in full

three-dimensional simulations of a local, co-rotating patch of accretion disk (referred

to as the shearing box). For example, see Fig. 1.2, taken from Hawley et al. (1995),

which shows that after the exponential growth out of the linear regime, the MRI sat-

urates and continually transports angular momentum outward via enhanced Maxwell

stress, −BrBφ/4π, and Reynolds stress, ρδvrδvφ, which are accompanied by increased

magnetic and kinetic energies. That is, not only is the gas turbulent, but the turbu-

lent fluctuations are correlated to produce outward momentum transport. This early

work provided the baseline for future studies of the MRI via local simulations, and

we describe these studies a bit more in detail both in § 1.3 and in the introductions

to the chapters of this thesis.

Local simulations are quite useful for several reasons. First, they provide the

fewest number of ingredients needed to produce MRI turbulence: orbital shear and

magnetized gas. While such a simplistic approach is hardly enough to make direct

connections between theory and observation, it provides a first principles understand-

ing of the MRI from which one can advance towards more complicated simulations

and analytic models. Second, local simulations are particularly useful for studying

the microphysics of MRI turbulence. As recent results have shown (e.g., Fromang &

Papaloizou 2007; Fromang et al. 2007; Lesur & Longaretti 2007), the smallest scales

of the disk, where microphysical viscosity and Ohmic resistivity become important,

3Though, in the special case of a net vertical magnetic field, the nonlinear outcome of the MRI is
the so-called channel mode, which breaks down in three-dimensional simulations (Hawley & Balbus
1992; Hawley et al. 1995).
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Fig. 1.2.— The volume averaged magnetic and kinetic energy evolutions and Maxwell
and Reynolds stress evolutions for a fiducial shearing box simulation in Hawley et al.
(1995). The horizontal axis is time in units of orbits (defined at the center of the
local domain). Note that in the coordinate system of the shearing box, x corresponds
to the radial direction, and y corresponds to the azimuthal direction (see Hawley
et al. (1995) or Chapter 2 below). The development of the MRI is clearly shown.
The positive values for the Maxwell and Reynolds stresses indicate outward angular
momentum transport (Hawley et al. 1995, Fig. 3).
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may have a substantial influence over the saturation level of the MRI. Furthermore,

understanding the thermodynamic processes in MRI turbulence (e.g., turbulent en-

ergy flow, heating, and radiation), requires resolving the smallest disk scales possible,

as these small scales are responsible for turbulent energy dissipation.

Local simulations are usually confined to a size on order the vertical scale height.

Thus, these simulations are limited in the spatial scales that they can probe, and

understanding the behavior of the MRI on larger scales requires the use of global

simulations. With the advent of powerful supercomputers, global simulations with

sufficient resolution to evolve the MRI have become feasible. As the focus of this

thesis is on local simulations of the MRI, we will not describe in any detail the results

from global simulations. However, from the earliest global MRI simulations, such

as Hawley (2001), to more recent work (e.g., Beckwith et al. 2008a; Noble et al.

2010), these calculations have shown that the MRI does indeed operate on large

scales, leading to significant mass accretion onto the central object as well as other

interesting features, such as a strongly magnetized corona and the launching of jets,

which is itself a function of disk magnetic field topology (e.g., Beckwith et al. 2008a).

1.3 Motivation: ConnectingMRI Transport to Disk

Phenomenology

While global simulations may ultimately be the best method of connecting first prin-

ciples accretion disk simulations to observations, the resolutions necessary to capture

microphysical processes (e.g., viscosity and resistivity) in these simulations are cur-

rently far beyond computational capabilities. Furthermore, including complex radia-

tion physics in such calculations is still quite a ways off. The current most promising
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route to relating theory directly to observations is to create phenomenological models

of accretion disks that include the effects of MRI turbulence in a sort of “sub-grid”

manner.

Perhaps the best example of disk phenomenology is α disk theory. As discussed

above, it assumes that the stress is set by the gas and radiation pressure and that

stress and energy dissipation/radiation are locally correlated. As we now know that

the origin of the turbulence is the MRI, these assumptions should be reexamined. Is

the stress set by the pressure? If not, what does set the saturation level of the stress?

Furthermore, how well correlated are stress and the thermalization and subsequent

radiation of turbulent energy? Again, answering such questions not only provides a

better understanding of the angular momentum transport processes in disks but is

also currently the best hope for developing phenomenological accretion disk models.

Numerous studies have investigated the pressure dependence of MRI turbulent

stresses. In general, they have made it increasingly clear that the basic α stress

parameterization is not only too simplistic, it is actually misleading. Both the early

shearing boxes of Hawley et al. (1995) as well as more recent work by Sano et al.

(2004) have provided evidence that stress is not determined by pressure, at least

in the usual manner of the α disk. More specifically, the comprehensive parameter

study by Sano et al. (2004) observed at best only a very weak gas pressure dependence.

Instead, stress is (in some cases) proportional to the magnetic pressure (Hawley et al.

1995, 1996; Blackman et al. 2008), but the magnetic energy is not itself directly

determined by the gas or radiation pressure. The implications of these results are

significant. In particular, recent local simulations using vertically stratified shearing

boxes and radiation transport (Hirose et al. 2009) have found no evidence of the

thermal instability long believed to be present in radiation-pressure supported α disks.
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If stress is proportional to magnetic rather than gas or radiation pressure, what

determines the magnetic pressure in a disk? Apart from the expectation that the

field will remain subthermal, this remains uncertain. The simplest shearing box

simulations using ideal MHD have a limited range of significant parameters; this is

both a strength and a weakness of that model. The magnetic energy in the saturated

state could depend upon such factors as box size, the amplitude and geometry of the

imposed initial magnetic field, and the ratio of the gas pressure to magnetic pressure

(the plasma β value). Hawley et al. (1995) and Hawley et al. (1996) studied the effect

of initial magnetic field topology on the resulting stress and found that although

the MRI leads to turbulence regardless of the initial field, simulations that have an

imposed net vertical field produce higher turbulence levels than an imposed toroidal

field or a simulation that began with zero net magnetic flux within the domain.

Hawley et al. (1995) found that the total magnetic energy and the resulting stress in

the saturated turbulent state was a function of the initial plasma β with a uniform

vertical or toroidal field, namely that larger β (i.e., weaker fields) leads to smaller

saturation levels.

A physical influence that has, until recently, received less attention is physical

dissipation, namely shear viscosity ν and Ohmic resistivity η. The linear dispersion

relation for the vertical field MRI in the presence of ν and η was derived by Bal-

bus & Hawley (1998). Both terms can reduce the effectiveness of the MRI. In the

linear regime, viscosity damps the MRI growth rates and changes the wavelength

of the fastest growing mode, but does not alter the wavenumbers that are unstable.

Resistivity introduces a cutoff on the unstable wavelengths where the resistive diffu-

sion time becomes comparable to the MRI growth time (see, e.g., the discussion in

Masada & Sano 2008). Nonaxisymmetric MRI modes with Ohmic resistivity were
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examined by Papaloizou & Terquem (1997). They found that resistivity reduces the

amplification of such modes, and if large enough, can stabilize the toroidal field MRI.

Simulations by Hawley et al. (1996), Sano et al. (1998), Fleming et al. (2000),

Sano & Inutsuka (2001), Ziegler & Rüdiger (2001), and Sano & Stone (2002b) have

investigated the influence of η on the saturated state. The main result of these studies

is that increasing η leads to a decrease in turbulence, independent of the magnetic

field configuration. In zero net field models, the effect of η on the turbulence is larger

than one might expect from the linear MRI relation (Fleming et al. 2000), with the

turbulence decaying to zero for relatively low values of resistivity.

Recently, the work of Fromang et al. (2007) and Lesur & Longaretti (2007) has

sparked new interest in the effects of non-ideal MHD on the MRI. Fromang et al.

(2007) showed that both η and ν are important in determining the stress level in

MRI turbulent flows with zero net magnetic field. Lesur & Longaretti (2007) came to

the same conclusion for models with a net vertical field. The results were characterized

in terms of the magnetic Prandtl number, defined as Pm = ν/η, and it was found that

the saturation level increases with increasing Pm. Fromang et al. (2007) also found

that for the zero net field case, there exists a Pm below which the turbulence dies out,

and that this critical Pm decreases with decreasing ν (at least for the range in ν and

η examined in the paper).

One of the primary goals of this thesis work is a detailed investigation of this Pm

effect on the MRI. Specifically, what is the Pm dependence of the saturated stress for

different numerical algorithms, different magnetic field topologies, and other physical

effects, such as vertical gravity? Answering these questions is an important step

towards understanding the saturation of the MRI in real accretion disks.

Determining the stress levels in MRI turbulence is only one aspect of the problem;
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another is exploring how that turbulence is dissipated into heat. Again, the α model

assumes that the accretion energy is deposited as heat locally and rapidly, and Balbus

& Papaloizou (1999) showed that this property should hold for the energetics of

MHD turbulence as well. In the simulations, we can determine the rate at which

turbulent energy is thermalized and the path that energy takes as it moves from the

free energy of the shear flow to turbulence and then to heat. Such issues were briefly

touched on by Brandenburg et al. (1995) who found that the turbulent magnetic

energy was ∼ 6 times greater than the perturbed kinetic energy, but dissipational

heating resulted from roughly equal contributions of magnetic and kinetic energy

dissipation. This result led them to suggest that there was a net transfer of magnetic

energy to turbulent kinetic energy. Sano & Inutsuka (2001) studied energy flow in the

context of MRI channel modes, which are strong radial streaming motions that result

from the linear growth of the vertical field MRI (Hawley & Balbus 1992; Balbus

& Hawley 1998). Their work included resistivity (but not viscosity) and showed

that resistive heating dominated the thermalization of energy stored in these channel

modes. Dissipational heating also plays an important role in radiative effects and

determining disk structure, both of which may be observable properties of disks (e.g.,

Beckwith et al. 2008b).

Thus, given the importance of understanding disk heating, another goal of this

thesis work is a detailed investigation of the “locality” of MRI-driven turbulence,

specifically focusing on the second assumption of the α model. How well correlated

are the stresses that drive angular momentum transport and thermalization of the

turbulent energy?
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1.4 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we provide a description

of the general Athena algorithm and the modifications made for the shearing box

simulations. In Chapter 3, we present a series of MRI simulations without physical

dissipation or vertical gravity. These simulations are utilized for comparison with

previous ZEUS-based results in the literature, for an analysis of the locality of turbu-

lent disk heating, and to quantify the numerical dissipation of Athena in preparation

for including physical dissipation. Chapter 4 explores the effect of Pm on MRI-driven

turbulence in the presence of a net toroidal field, and in Chapter 5, we examine the

effect of Pm on MRI turbulence in the presence of vertical gravity. Finally, we wrap

up with our main conclusions and some general thoughts in Chapter 6.
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Chapter 2

Numerical Methods

All of the simulations discussed here are performed with the Athena code. In this

chapter, we first describe the details of the Athena algorithm and then its application

to the shearing box problem.

2.1 Athena

The Athena code is a second-order accurate Godunov scheme for solving the equations

of MHD in conservative form using the dimensionally unsplit corner transport upwind

(CTU) method of Colella (1990) coupled with the third-order in space piecewise

parabolic method (PPM) of Colella & Woodward (1984) and a constrained transport

(CT; Evans & Hawley 1988) algorithm for preserving the ∇ ·B = 0 constraint.

Considerable effort has been put into testing Athena and documenting the results;

a very detailed description of the algorithm and tests can be found in Stone et al.

(2008), Gardiner & Stone (2005b) and Gardiner & Stone (2008). As these sources

are comprehensive, we will not repeat all the details here but will instead provide a

summary of the general methodology.
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Athena solves the MHD equations of § 1.2.1 in conservative form,

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

∂ρv

∂t
+∇ · (ρvv −BB) +∇

(
P +

1

2
B2

)
= 0, (2.2)

∂B

∂t
−∇× (v ×B) = 0. (2.3)

∂E

∂t
+∇ ·

[(
E + P +

1

2
B2

)
v −B(B · v)

]
= 0. (2.4)

The notation is the same as in § 1.2.1, and we have neglected the viscous, resistive,

and gravitational terms for the time being. We write the equations in this form

to demonstrate that each equation can be written as the time derivative of some

conserved quantity plus the divergence of the flux of that quantity.1 The conserved

quantities for these equations are mass, momentum, magnetic flux, and total energy.

The discretization of the above equations is done in such a manner as to ensure

the global conservation of these quantities. Specifically, a Riemann solver is fed

“left” and “right” state values for the gas variables at every interface between grid

cells. These left/right state values have been spatially interpolated from the grid cell

center to the interface. The flux for each conserved quantity is then calculated at the

interfaces via the Riemann solver. Since the fluxes at every interface are calculated

simultaneously, integrating the conservation equations forward in time through finite-

differencing ensures the global conservation of the conserved quantities. The specific

Riemann solver used for the simulations in this thesis is described in each chapter’s

1The pressure gradient term in equation (2.2) is not written as the divergence of a flux but
when writing out the components of the gradient, the ith component of the gradient becomes the
derivative of a flux term for the ith component of the momentum. Furthermore, equation (2.3) is
written in terms of the curl of an electromotive force (EMF), not the divergence of a flux. One can
recast this as the divergence of a flux, but the CT method evolves the magnetic field components
based on the above formulation (Stone et al. 2008). Thus, we display it in this fashion.
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“method” section.

The induction equation is solved via the CT method (Evans & Hawley 1988),

which is similar to the flux-conserving method, but uses the electromotive force (EMF)

at the corners between grid cells to conserve magnetic flux through the grid cell

interfaces. There are many details involved in combining this CT method with the

Riemann solver approach used for the other conserved quantities. Again, we refer

the reader to Stone et al. (2008), Gardiner & Stone (2005b), and Gardiner & Stone

(2008) for more information.

The viscous, resistive, and gravitational terms can be added to the above equations

in a conservative manner. For example, the viscosity can be added as the divergence of

the viscous stress tensor given by equation (1.8). Similarly, resistivity can be added to

the induction equation as a resistive EMF, thus ensuring that∇·B = 0 is maintained.

The details of implementation for these additional terms varies depending on the

specific simulations run, and we describe them in the later chapters as appropriate.

As mentioned above, Athena enforces strict conservation of total energy via equa-

tion (2.4). Thus, the internal energy equation is not solved, unlike most versions of

ZEUS (see Stone & Norman (1992a,b) for more information about ZEUS). Instead,

when the internal energy is needed, it is calculated by subtracting the magnetic and

kinetic energies from the total energy,

ε = E −
1

2
ρv2 −

1

2
B2. (2.5)

This approach ensures that dissipated kinetic and magnetic energy (either via numer-

ical or physical dissipation) ultimately ends up as heat and cannot leave the grid via

truncation error. This property makes Athena particularly advantageous for studies

of energy flow and dissipation, such as the work presented in Chapter 3.
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2.2 The Local Shearing Box Approximation

We use the local shearing box approximation in all of the simulations presented here.

The shearing box is a model for a local disk region whose size is small compared

to the radial location of the region, allowing us to expand the MHD equations in

Cartesian form (see Hawley et al. (1995) for more details). The box co-rotates with

an angular velocity Ω corresponding to the value at the center of the box. Boosting

into this co-rotating frame requires adding source terms to the momentum and total

energy equations to account for the gravitational, centrifugal, and Coriolis forces.

The modified momentum equation for ideal MHD is

∂ρv

∂t
+∇ · (ρvv −BB) +∇

(
P +

1

2
B2

)
= 2qρΩ2x− ρΩ2z − 2Ω × ρv, (2.6)

and the modified total energy equation is

∂E

∂t
+∇ ·

[(
E + P +

1

2
B2

)
v −B(B · v)

]
= 2qΩ2ρv · x− Ω2ρv · z, (2.7)

where q is the shear parameter, defined as q = −dlnΩ/dlnR. We use q = 3/2,

appropriate for a Keplerian disk. In this Cartesian expansion, x corresponds to the

radial displacement from the center of the box, y is the azimuthal coordinate, and z is

the vertical coordinate. The first source term on the right-hand side of equations (2.6)

and (2.7) corresponds to radial tidal forces (gravity and centrifugal) in the corotating

frame, and the second term in these equations corresponds to the vertical component

of gravity from the central object. The third term in equation (2.6) is the Coriolis

force. In some of the simulations, we have omitted the vertical gravity terms, making
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them “unstratified” shearing box simulations. Finally, note that unlike in § 1.2.1, the

gravitational terms are added as source terms to the energy equation; this was done

to reflect the method of handling gravity separately from the core Athena algorithm,

which we now describe.

The general procedure for the addition of source terms into Athena is as follows

(we again refer the reader to Stone et al. (2008) for details on the CTU-CT based

Athena algorithm).

1. After the spatial reconstruction step along the x direction, the x and y accel-

erations (i.e., gravity plus Coriolis) are added to the interface values for vx and

vy, respectively.

2. After the spatial reconstruction step along z, the vertical gravity acceleration

is added to the interface values for vz.

3. When the x-direction, transverse flux correction is added to the y and z interface

ρvx and ρvy values, add the x and y forces, respectively. Similarly, add the

appropriate source terms to the y and z interface values for E if the total

energy equation is evolved.

4. When the z-direction, transverse flux correction is added to the x and y interface

ρvz values, add the vertical gravity force. Similarly, add the vertical gravity

source term to the x and y interface values for E if the total energy equation is

evolved.

5. After the cell-centered momentum components are updated to the half-time-

step, add the appropriate source terms to these components. These updated

half-time-step values are used in the calculation of the half-time-step corner

values of the EMFs.
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6. After the cell-centered momentum components and total energy are updated to

the full time step, add the appropriate source terms again.

There are some simulations in which this procedure varies slightly, and we note these

cases in the appropriate chapters below.

Another important component of shearing box simulations is the shearing periodic

boundary conditions at the x boundaries, which are implemented as described in

Hawley et al. (1995) with a few modifications for Athena. First, to summarize Hawley

et al. (1995), fluid quantities within the x boundary ghost zones are mapped according

to their shear displacement from the opposite x boundary. Mathematically, this can

be written as

f(x, y, z) = f(x+ Lx, y − qΩLxt, z), (2.8)

for the inner x boundary, where Lx is the size of the domain in the x direction. The

function f represents any of the conserved fluid variables, except for the y momentum

and the total energy. The y momentum is adjusted to account for the shear across

the x boundaries as fluid moves out one boundary and enters at the other. Thus, at

the inner boundary the y momentum, my, is

my(x, y, z) = my(x+ Lx, y − qΩLxt, z) + qΩLx. (2.9)

The total energy is then adjusted to account for this difference in y momentum.

Similar expressions exist for the outer x boundary, but with the opposite sign on the

qΩ terms.

In the case that the difference in y positions between the two boundaries is a

non-integer number of grid cells, the y-shifted quantities must be reconstructed in
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the ghost zones to account for the remaining fraction of a grid cell. Furthermore, the

precise conservation of a quantity depends on how this reconstruction is performed,

and in general, the fluxes of a particular conserved quantity must be reconstructed

to globally conserve the quantity to roundoff level. For example, consider the con-

servation of magnetic flux through the computational domain. For the magnetic flux

through the box to be conserved to machine precision, the line integral of the elec-

tromotive force (EMF), E = −v ×B, along the boundaries must remain zero. The

y and z boundary conditions are periodic, and therefore, the line integrated EMFs

along these boundaries cancel. This is not the case with the shearing periodic bound-

aries, however. In particular, the net Bz flux through the grid will be conserved if

Ey = vzBx − vxBz is zero when integrated along both x boundaries. Computing the

EMF using ghost zone variables vz, Bx, vx, and Bz after reconstruction introduces

a truncation error, and the Bz flux is not conserved. This is avoided if we instead

perform the shearing-periodic reconstruction step on Ey itself. A similar argument

applies to conservation of mass and By flux; one needs to reconstruct the density flux

and Ez in the shearing boundaries to ensure conservation of these quantities.2 We

have found that the non-conservation of By flux is generally not a problem in our

simulations, as we describe in the appropriate chapters. However, we have noticed

that if the density flux is not reconstructed, mass is continually lost from the grid,

which can be a problem for long evolution times. Whether or not this reconstruction

is performed depends on the particular simulation, and we note it appropriately in

each chapter.

2In principle, the same argument applies to momentum and energy conservation, but these equa-
tions are not always conserved to machine precision due to the existence of source terms.
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Chapter 3

Local Simulations with Numerical

Dissipation

We apply a new, second-order Godunov code, Athena, to studies of the MRI using

unstratified shearing box simulations with a uniform net vertical field and a sinu-

soidally varying zero net vertical field. The Athena results agree well with similar

studies that used different numerical algorithms, including the observation that the

turbulent energy decreases with increasing resolution in the zero net field model. We

conduct analyses to study the flow of energy from differential rotation to turbulent

fluctuations to thermalization. A study of the time-correlation between the rates of

change of different volume-averaged energy components shows that energy injected

into turbulent fluctuations dissipates on a timescale of Ω−1, where Ω is the orbital

frequency of the local domain. Magnetic dissipation dominates over kinetic dissipa-

tion, although not by as great a factor as the ratio of magnetic to kinetic energy.

We Fourier-transform the magnetic and kinetic energy evolution equations and, us-

ing the assumption that the time-averaged energies are constant, determine the level

of numerical dissipation as a function of length scale and resolution. By modeling
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numerical dissipation as if it were physical in origin, we characterize numerical resis-

tivity and viscosity in terms of effective Reynolds and Prandtl numbers. The resulting

effective magnetic Prandtl number is ∼ 2, independent of resolution or initial field

geometry. MRI simulations with effective Reynolds and Prandtl numbers determined

by numerical dissipation are not equivalent to those where these numbers are set

by physical resistivity and viscosity. These results serve, then, as a baseline for fu-

ture shearing box studies where dissipation is controlled by the inclusion of explicit

viscosity and resistivity.1

3.1 Introduction

A large number of previous MRI studies have utilized the unstratified shearing box in

the absence of physical dissipation terms (relying instead on grid-scale effects to act

as dissipation), beginning with the earliest work of Hawley et al. (1995). Such studies

have been useful in understanding dependencies of the MRI stresses on properties such

as field topology (Hawley et al. 1995, 1996) and gas pressure (e.g., Sano et al. 2004)

without the complicating physics of radiation, vertical gravity, or physical dissipation.

However, in any study that depends on simulations, there remain factors which

cannot be overlooked: the effects due to numerics and finite resolution. The majority

of the results to-date were obtained with numerical codes based on the finite-difference

ZEUS algorithm (Stone & Norman 1992a,b), carried out at relatively low resolution.

ZEUS is effectively first-order in asymptotic convergence, and in its most widely

used form, evolves the internal rather than the total energy equation. There have

been improvements in both the available computational power, which makes higher

1This work was published in The Astrophysical Journal, Vol. 690, p.974, 2009; see Simon et al.
(2009)
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resolutions and longer evolution times possible, and in the algorithms for compressible

MHD. In this work, we will reexamine the properties of MHD turbulence in the

shearing box using a higher-order, Godunov code, Athena.

Athena represents an improvement over ZEUS in several ways including true

second-order convergence, increased effective resolution (see Stone & Gardiner 2005),

accurate shock capturing, and conservation of total energy. The version of Athena we

use here does not include explicit resistivity or viscosity and instead relies on numer-

ical dissipation to thermalize the turbulent energy. Nevertheless, this work will serve

as a starting point for studies of non-ideal effects, including the influence of Pm on the

turbulence (Fromang et al. 2007; Lesur & Longaretti 2007). As an important part of

establishing a baseline of simulations, we will characterize the numerical resistivity

and viscosity of Athena for the shearing box problem. To do so, we will follow the

work of Fromang & Papaloizou (2007) who studied the numerical effects of ZEUS

on the saturated state of MRI shearing box simulations that begin with zero net

field. They found that the amplitude of the turbulence decreases with increasing res-

olution and developed several useful diagnostics with which to quantify the effective

numerical resistivity and viscosity in the problem.

Finally, we utilize the energy-conserving properties of Athena in order to investi-

gate the question of turbulent locality. Specifically, we examine temporal correlations

of energy fluctuations in the saturated state of the MRI for an adiabatic equation of

state and measure how rapidly energy is extracted from the shear flow, pumped into

turbulent fluctuations, and then dissipated into thermal energy.

The structure of this chapter is as follows. In § 3.2, we describe the set of simula-

tions performed in this work. In § 3.3, we reexamine some of the results from previous

MRI studies and provide a comparison with these studies. In § 3.4, we present the
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energy fluctuation analysis used to study the locality of the turbulence. We then

characterize the numerical dissipation of Athena using Fourier transfer functions in

§ 3.5. Finally, we discuss the results and summarize our conclusions in § 3.6.

3.2 Numerical Simulations

While we gave a general description of the Athena shearing box in Chapter 2, many

of the simulation details vary between the different chapters of this thesis, and we

now describe the Athena implementation used here.

First, the x boundary conditions are the standard shearing periodic boundaries,

as described in Chapter 2 with the flux reconstruction approach only applied to the

y EMFs at the x boundaries; this conserves the net vertical magnetic flux through

the domain to machine precision. These simulations do not include a mass flux

reconstruction step, and as a result, mass is continually lost from the domain during

the evolution. To quantify the level of this mass loss, the total percentage of mass lost

over 100 orbits of evolution is ∼ 2% for our highest resolution simulations (see below

for a description of our simulations) and ∼ 10% for our lowest resolution simulations;

we observe convergence of mass conservation with resolution.

Second, as all of the simulations in this chapter are adiabatic, more information

about the energy evolution is needed. Although Athena conserves total energy, the

shearing boundaries do work on the fluid and represent a significant energy source. As

was shown in Hawley et al. (1995), one can integrate the total energy plus gravitational

potential energy, E + ρΦ, where Φ = qΩ2(L
2
x

12 − x2), over the domain to obtain

∂〈E + ρΦ〉
∂t

=
qΩ

LyLz

∫

X

(ρvxδvy − BxBy)dydz, (3.1)
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where Lx, Ly, and Lz are the domain sizes in the x, y, and z directions respectively,

δvy ≡ vy + qΩx, (3.2)

and the integral is calculated over one of the x boundaries. In our simulations,

equation (3.1) is satisfied to truncation level with the error coming from the tidal

potential source term in equation (2.7). It is possible to rewrite this source term

to guarantee that equation (3.1) is satisfied to roundoff level (see Gardiner & Stone

2005a), but we have found that this makes very little difference to how the total

energy evolves.

Gardiner & Stone (2005a) and Stone & Gardiner (2010) point out that the source

terms in the momentum equation cannot be written in a purely conservative form and

that the x and y momenta are tightly coupled through these terms. In the hydrody-

namic limit, the source terms account for epicyclic oscillations, and if the epicyclic

kinetic energy (see their equation 8) is not conserved to machine precision, coupling

between long wavelength modes and epicyclic oscillation modes can result from trun-

cation error. Over time this coupling can artificially increase the kinetic energy. To

ensure the conservation of epicyclic energy, Gardiner & Stone (2005a) and Stone &

Gardiner (2010) evolved the angular momentum fluctuations directly rather than the

y momentum, casting the equations into a form consistent with uniform epicyclic

motion. They then employed a Crank-Nicholson scheme to evolve the source terms

that govern the evolution of the momentum fluctuations. In MHD, however, oscilla-

tory epicyclic motion is replaced by unstable, growing MRI modes. Epicyclic kinetic

energy is not conserved and these special techniques are not required. Therefore, we

use the standard Athena algorithm (see Stone et al. 2008, and Chapter 2) to evolve

the momentum equations.
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Finally, we note that the Riemann solver used in all of these simulations is the

linearized Roe solver of Roe (1981), which has been extended to MHD (see Cargo &

Gallice 1997).

As was done in the original shearing box simulations (Hawley et al. 1995) our

standard shearing box has a radial size Lx = 1, an azimuthal size Ly = 2π, and a

vertical size Lz = 1. We initialize a velocity flow with v = −qΩxŷ, with q = 3/2,

Ω = 0.001, and −Lx/2 ≤ x ≤ Lx/2. In an isothermal disk, the sound speed is

cs ∼ ΩH where H is the scale height. With Lz = H , cs = LzΩ, and the initial

pressure is defined as P = ρΩ2L2
z. With ρ = 1, we have P = 10−6. In this chapter, we

consider two initial magnetic field geometries that are commonly used in shearing box

studies. Models labeled NZ (for Net Z-field) have an initial uniform vertical magnetic

field, Bz, and models labeled SZ (for Sine Z-field) begin with a sinusoidal distribution

of Bz and have zero net flux through the box. Specifically, we initialize the NZ runs

with B =
√

2P/β ẑ, and the SZ runs with B =
√

2P/β sin[(2π/Lx)x]ẑ. In both

cases, β = 1600. This determines the ratio of the vertical box size to the fastest

growing linear MRI wavelength as Lz/λc ∼ 4, where λc = 2π
√

16/15|vA|/Ω, and vA

is the Alfvén speed. To seed the MRI, we introduce random adiabatic perturbations

to P and ρ with amplitude δP/P = 0.01.

For both of these initial field configurations, we have run a full range of grid

resolutions, from Nx = 16, Ny = 32, Nz = 16 to the highest resolution used in this

study, Nx = 128, Ny = 256, Nz = 128, proceeding by factors of two. All of the

simulations were run for a total of 100 orbits.

In addition to the standard shearing box simulations, we have run some additional

experiments designed to further investigate magnetic and kinetic energy dissipation.

First, we perform a set of simulations in which we remove the velocity shear and the
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tidal and Coriolis force terms, thus removing the energy source that maintains the

turbulence. The purpose of these simulations is to investigate energy flow and dissi-

pation in the absence of the shear, which is the driving force for the turbulence. We

perform these simulations by restarting each of the standard shearing box runs at

a time when the shearing periodic boundaries are strictly periodic. These “periodic

points” are given by tn = nLy/qΩLx, with n = 0, 1, 2, ..., (see Hawley et al. 1995).

We choose the restart time to be 40 orbits. We then evolve the system to follow the

decay of the kinetic and magnetic energies.

Finally, we run a set of low resolution simulations with varying aspect ratio to

examine the effect of secondary parasitic modes on the channel solution (see § 3.3.2).

These simulations have the same initial conditions as the net flux simulation with

Nx = 32, Ny = 64, and Nz = 32 but with varying domain size in the x and y

dimensions. The grid cell size (e.g., Lx/Nx in the x direction) in each dimension is

kept constant. All simulations are summarized in Table 3.1.

3.3 General Properties of MRI Turbulence

This work represents the first detailed study of the MRI with Athena, which has an

algorithm significantly different from that used in ZEUS. To begin, we will reexamine

many of the shearing box models and the results already documented in the literature.

Any significant differences between Athena results and those previously published

could indicate where numerical effects (algorithm, resolution) have an influence. Since

Athena is an energy-conserving, shock-capturing algorithm it has at least the potential

to produce somewhat different results. Conversely, agreement between Athena and

other codes would support the robustness of the shearing box results to date.

In this section, we describe some of the general properties of MRI turbulence as
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simulated with Athena and compare our results with those in the literature. These

properties will also serve as a starting point for further analysis presented in the

following sections. In what follows, the highest resolution runs NZ128 and SZ128 will

serve as our fiducial simulations for each initial field geometry. We study resolution

effects for each field geometry using the lower resolution simulations.

3.3.1 Characteristics of Saturation

Figures 3.1 and 3.2 show the development of the MRI and the subsequent evolution

of the resulting MHD turbulence for the fiducial NZ128 and SZ128 runs respectively.

The MRI saturates before orbit 5 and the MHD turbulent state lasts for the remainder

of the 100 orbit simulation. Along with these figures, we list several time- and volume-

averaged quantities from the fiducial runs in Table 3.2. The time average is done from

orbits 20 to 100, and the errors are given by one standard deviation over this period.

Volume-averaged values are indicated by the single-angled bracket notation (e.g.,

〈B2〉), and time- and volume- averaged values are denoted by double-angled brackets

(e.g., 〈〈B2〉〉). In both fiducial runs, the toroidal field magnetic energy dominates with

〈B2
y/2〉 > 〈B2

x/2〉 > 〈B2
z/2〉. Examining the components of the kinetic energy and

perturbed kinetic energy, which is (ρ/2)(v2x+δv2y+v2z) with δvy given by equation (3.2),

we find they are closer to each other in value than are the components of the magnetic

energy. The relative ordering is similar except that the x kinetic energy is larger than

the perturbed y kinetic energy, ρδv2y/2, in SZ128. Another feature of note is the

greater saturation level and fluctuation amplitude of the NZ128 run compared to

that of SZ128. As in past studies, the Maxwell stress dominates over the Reynolds;

the ratio of the Maxwell to Reynolds stress oscillates between 1 and 10. Similarly,

past studies have shown a tight correlation between Maxwell (and total) stress and
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the magnetic energy density (see, e.g., Blackman et al. 2008). Here the ratio of the

Maxwell stress to the magnetic energy density is roughly 1/2. These values and the

overall observations are generally consistent with the results of Hawley et al. (1995),

Hawley et al. (1996), and Sano et al. (2004).

One major difference from past ZEUS simulations is the evolution of the total (E+

ρΦ) and thermal (ε) energy densities, shown in the lower right plot of Figs. 3.1 and 3.2

for the NZ128 and SZ128 runs respectively. Since we evolve an adiabatic equation of

state and there is no cooling term in the energy equation, the total energy increases

with time at a rate given by equation (3.1). The total energy increases because the free

energy of the shearing fluid is being thermalized by the turbulence, but the shearing

box boundary conditions continuously reinforce that shear. The stresses at the radial

boundaries therefore constitute a source term. Equation (3.1) also explains why the

total energy reaches a higher value at the end of the simulation in NZ128 compared

to SZ128. Since the volume-averaged stress (which is roughly equal to the stress at

the radial boundaries) is higher in NZ128, the energy injection rate will be larger.

These plots also show that the thermal energy follows the total energy very closely.

That is, the injected energy ends up as thermal energy a short time later (Gardiner

& Stone 2005a). We will further study the thermalization of injected energy in § 3.4

and § 3.5.

Does the significant increase in thermal energy affect the turbulence in any way?

This question was examined by Sano et al. (2004) in an extensive series of simulations.

They found evidence of a very weak dependence of the time-averaged Maxwell stress

on the gas pressure. Such an increase is not apparent from a first look at Figs. 3.1

and 3.2, but short timescale fluctuations are a dominant feature of these volume-

averaged quantities. We examined the long term behavior of the Maxwell stress using
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Fig. 3.1.— Volume-averaged energy densities and stresses normalized to the initial
gas pressure versus time for the NZ128 simulation. In the upper two plots, the black
line is the total energy density, the green line is the component of the energy density
in the x direction, the red line is the y direction component, and the blue line is
the z direction component. The upper left plot shows the volume-averaged magnetic
energy density, the upper right plot shows the perturbed kinetic energy density (i.e.,
with the shear subtracted off of vy), and the lower left plot is the volume-averaged
total stress (black), Maxwell stress (pink), and Reynolds stress (blue). The lower
right plot is the total energy density, including gravitational energy (solid line), and
the thermal energy density (dashed line). The y axes have the same range for all
plots except for the total/thermal energy density plot.
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Fig. 3.2.— Volume-averaged energy densities and stresses normalized to the initial
gas pressure versus time for the SZ128 simulation. In the upper two plots, the black
line is the total energy density, the green line is the component of the energy density
in the x direction, the red line is the y direction component, and the blue line is
the z direction component. The upper left plot shows the volume-averaged magnetic
energy density, the upper right plot shows the perturbed kinetic energy density (i.e.,
with the shear subtracted off of vy), and the lower left plot is the volume-averaged
total stress (black), Maxwell stress (pink), and Reynolds stress (blue). The lower
right plot is the total energy density, including gravitational energy (solid line), and
the thermal energy density (dashed line). The y axes have the same range for all
plots except for the total/thermal energy density plot.
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Fig. 3.3.— Time- and volume-averaged energy densities normalized to the initial
pressure for various resolutions. The two upper plots correspond to the net flux
simulations, and the two lower plots correspond to the zero net flux simulations. The
left plots are the averaged magnetic energy densities, and the right plots are the
averaged perturbed kinetic energy densities (i.e., with shear subtracted off of vy). In
all plots, the black symbols are the total energy density, the green symbols are the x
component of the energy density, the red symbols are the y component, and the blue
symbols are the z component. The time averages are done from orbit 20 to 100, and
the error bars indicate one standard deviation over this period.
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time-averaging procedures to smooth away the fluctuations (which do not appear to

change over long timescales). We found marginal evidence for a weak dependence of

the Maxwell stress on the gas pressure in some, but not all, of the data. While it is

possible that longer evolution times and a wider exploration of parameter space could

be useful to address this question further, it is clear the stress has barely changed

despite an increase in thermal pressure by a factor of order 100 in run NZ128. Thus

if there is any dependence of the stress on the pressure, it is very weak and does not

significantly affect the characteristics of local MRI turbulence.

We study the effect of resolution through a series of lower resolution simulations

(see Table 3.1). Figure 3.3 shows the time- and volume-averaged magnetic and per-

turbed kinetic energies as a function of grid resolution for both the net flux and zero

net flux initial conditions. The time average is calculated from orbits 20 to 100; the

error bars indicate one standard deviation. For the net flux simulation, there appears

to be a slight trend of increasing energy with resolution, as observed in Hawley et al.

(1995). Resolution has a more obvious effect on the zero net flux initial condition.

The turbulent energies decrease with increasing resolution. This resolution effect was

previously reported for zero net field initial conditions in other simulations (Fromang

& Papaloizou 2007; Pessah et al. 2007) using different numerical algorithms. With

Athena, the time- and volume-averaged total magnetic energy density decreases by

roughly a factor of two for each factor of two resolution increase. The amplitude of

the fluctuations in the total magnetic energy density decreases by roughly a factor of

two to four for each resolution increment. At all resolutions, the y magnetic energy

density continues to be the largest, followed by the x energy, and then the z energy.

As was the case for NZ128, ρδv2y/2 dominates for all net flux simulations, followed by

ρv2x/2, and then ρv2z/2. In the zero net flux simulations, the x kinetic energy density
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is greater than the perturbed y kinetic energy density. These components of the

perturbed kinetic energy density are close in value, and it is often the case that the

x and y components are within one standard deviation of each other. The ratio of

time- and volume-averaged Maxwell stress to time- and volume-averaged magnetic

energy density is constant with resolution. The ratio of time- and volume-averaged

Maxwell stress to time- and volume-averaged Reynolds stress has a slight increase

with resolution in the net flux simulations and a slight decrease with resolution in

the zero net flux simulations. However, we point out that the observed trends in

the ratio of stresses are subject to considerable uncertainty given the large error bars

calculated for the various quantities.

3.3.2 Channel Solution

One of the interesting aspects of the vertical field MRI in a shearing box is that

the fastest growing mode leads to axisymmetric radial streaming motions, dubbed

“channel solutions” (Hawley & Balbus 1992). Goodman & Xu (1994) pointed out

that for the vertical field in an unstratified box, the linear MRI eigenmode is also a

nonlinear solution in the incompressible limit. They further show that the nonlinear

channel solution is itself unstable to “parasitic modes.” These modes require radial

and azimuthal wavelengths larger than the vertical wavelength of the channel solution

and will disrupt the channel flow if the box is large enough (Balbus & Hawley 1998).

In the present simulations, the initial vertical field is sufficiently weak that the

fastest growing vertical wavelength is less than the radial and azimuthal dimensions

of the box, and any initial tendency toward the channel solution at the end of the

linear growth phase is quickly disrupted. However, we find that the large fluctuations
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Fig. 3.4.— The development and destruction of a channel flow during the NZ128
simulation. The upper left plot shows a fluctuation in the volume-averaged magnetic
energy density from t = 80 orbits to t = 85 orbits. The remaining plots show the
y-averaged perturbed y velocity (colors) and vx and vz (vectors). The upper right
plot occurs at t = 82.5 orbits, the lower left plot occurs at t = 83 orbits, and the
lower right plot occurs at t = 84 orbits. These times are indicated on the upper
left plot by the arrows. At t = 82.5 orbits, one can see the development of a two-
channel flow, in which one channel has vx < 0 and δvy < 0, and the other channel
has vx > 0 and δvy > 0. At t = 83 orbits, this channel flow is even more developed
as the perturbations to the y velocity have become even stronger and vx dominates
over vz everywhere. The development of this channel flow coincides with an increase
in volume-averaged magnetic energy density. By t = 84 orbits, the channel flow has
been destroyed, coinciding with the decrease in magnetic energy density.
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in the magnetic energy density for NZ128 are a result of recurring channel solutions.2

Figure 3.4 shows the azimuthally-averaged velocities at several times during the am-

plification and subsequent decay of one such fluctuation. The flow organizes itself

into a two-channel solution, which becomes more well-defined as the magnetic energy

increases. The channel solution is eventually destroyed via secondary, parasitic in-

stabilities (see Goodman & Xu 1994), which coincides with a decrease in magnetic

energy. The same channel solution appears during other instances of large magnetic

energy fluctuation in NZ128 and does not appear in SZ128. Furthermore, the recur-

ring channel flows appear in the lower resolution net magnetic flux simulations. As

observed previously, the channel solution and large magnetic energy fluctuations are

a property of simulations with a uniform Bz field (Sano & Inutsuka 2001).

Since the channel solution is subject to parasitic modes that depend on the avail-

able wavelengths that can fit in the box, we expect that this behavior is influenced by

the domain aspect ratio employed. To verify this, we have run several low resolution

simulations (labelled NZAR1 − NZAR6, see § 3.2) using different aspect ratios. We

found that for large enough Lx, the intermittent channel modes no longer occur; this

behavior was also observed by Bodo et al. (2008). The prominence of intermittent

channel flows is a consequence of the restrictions introduced by the domain size. How-

ever, we use this property in § 3.4, where the large fluctuations in turbulent energy

created by the channel solutions provide a clear marker of energy injection by the

boundaries. We can then track the subsequent thermalization of that energy.

2The recurrence of the channel solution presumably results from the fact that the net vertical
magnetic field can never be destroyed or removed from the domain, given the periodic boundary
conditions and the strict conservation of z magnetic flux.
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3.3.3 Energy Power Spectra

The nature of MRI-driven MHD turbulence can be characterized in part by the power

spectrum of kinetic and magnetic energies. To obtain such power spectra, we do a

full 3D Fourier transform on the simulation data employing the procedures outlined

in Hawley et al. (1995) to account for the shearing-periodic boundaries. Briefly,

the shearing periodic boundary conditions in the x direction allow the domain to

be strictly periodic in the x direction only at certain times, called periodic points tn

(described in § 3.2). To perform a standard fast Fourier transform (FFT) at some time

t that is not equal to tn, we transform the data into a frame where the x boundaries

are strictly periodic. We then calculate the FFT in this frame and remap to the

original frame.

The turbulent magnetic, kinetic, and perturbed kinetic energy densities in Fourier

space are defined as

1

2
|B̃(k)|2 ≡

1

2

[
|B̃x(k)|2 + |B̃y(k)|2 + |B̃z(k)|2

]
, (3.3)

1

2
|
√̃

ρv(k)|2 ≡
1

2

[
|
√̃

ρvx(k)|2 + |
√̃

ρvy(k)|2 + |
√̃

ρvz(k)|2
]
, (3.4)

1

2
|
√̃

ρδv(k)|2 ≡
1

2

[
|
√̃

ρvx(k)|2 + | ˜√
ρδvy(k)|2 + |

√̃
ρvz(k)|2

]
, (3.5)

where f̃ means the Fourier transform of f defined by

f̃(k) =

∫ ∫ ∫
f(x)e−ik·xd3x. (3.6)

Note that for the kinetic energies, we include the density along with the velocity
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when calculating the Fourier transform, resulting in the appearance of
√

ρ in the

above equations. To obtain these quantities as a function of length scale and to

improve statistics, we average our data over shells of constant k = |k|. For further

improvement of statistics, we average each of these terms over 161 frames (i.e., from

orbit 20 to 100 in increments of 0.5 orbits).

Figure 3.5 shows the power spectra of these energy densities for the net flux and

zero net flux runs. The figure shows resolution effects as different lines in each plot.

In all cases, the largest scales account for most of the energy. The general shape

of the energy power spectra agrees with previous studies (e.g., Hawley et al. 1995;

Fromang & Papaloizou 2007). For the net flux simulations, the magnetic energy

dominates over the kinetic and perturbed kinetic energies at all scales, independent

of resolution. As the resolution is increased, the power spectra extend to higher k,

but the general shape remains constant. At some values for k, the uncertainty in

energy (not plotted), represented by one temporal standard deviation around the

mean, is large enough to overlap with other energy components, making it difficult

to conclusively say which energy dominates at these particular scales.

We calculated a power law index in Fourier space for each energy density and at

each resolution. This slope was determined by a linear fit to the energy densities in log

space from kL/(2π) = 1 to the maximum scale for the given resolution. There is some

uncertainty in this measurement because the power spectra are not strictly linear in

log space (see Fig. 3.5). In NZ128, the energy density is proportional to [kL/(2π)]n

with n ≈ −4 for every energy density. This index is approximately constant with

resolution, but there is evidence that n becomes more negative at higher resolutions.

In determining an error in the value of n, we found that this error is often dominant.

Thus, such a resolution dependence is somewhat tentative.
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There is a noticeable resolution dependence in the zero net flux simulations. First,

as resolution is increased, the magnetic energy density decreases at all scales. This

effect was discussed in § 3.3.1; the power spectra are consistent with the power spec-

trum analysis of Fromang & Papaloizou (2007). The same resolution dependence is

observed for the perturbed kinetic energy density. The magnetic energy density at

small k decreases faster with resolution than does the perturbed kinetic energy den-

sity. The total kinetic energy density (i.e., including shear) remains constant with

resolution, which simply results from the fact that the shear velocity, which domi-

nates the kinetic energy, is constant with resolution. The uncertainty in each energy

component appears to be smaller than in the net flux simulations. However, there

are still some values of k at which the calculated errors overlap.

We calculated a power law index in Fourier space for each energy density and

resolution for the zero net flux simulations. The procedure we used was the same as

for the net flux simulations. For the kinetic and perturbed kinetic energy densities,

we found that n lies between -3.5 and -4, whereas for the magnetic energy density, n

lies between -3 and -3.5. There does not appear to be any resolution dependence in n

for the magnetic energy density, but there is a tentative decrease in n (similar to the

net flux case) with increasing resolution for the kinetic and perturbed kinetic energy

densities.

3.4 Locality of Turbulence

Athena evolves the equation for total energy, the volume-average of which will change

only due to the Maxwell and Reynold stresses at the radial boundaries (equation 3.1).

As was discussed in § 3.3, the individual volume-averaged magnetic and kinetic ener-

gies are highly variable throughout the evolution as energy is continuously transferred
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Fig. 3.5.— Spatial power spectra of various energy densities in the saturated state
of the standard net flux (left panels) and zero net flux simulations (right panels).
The spectra were obtained via an average over 161 frames in the saturated state and
an average over shells of constant modulus |k|. In each column, the first plot shows
magnetic energy density, the second shows kinetic energy density, and the third shows
perturbed kinetic energy density (as defined in the text). The effect of resolution is
shown in each individual plot; the dotted line corresponds to the resolution with
Nx = 16, the dot-dashed line corresponds to Nx = 32, the dashed line corresponds to
Nx = 64, and the solid line corresponds to Nx = 128. All energy densities have been
normalized to the initial gas pressure and are plotted against a dimensionless wave
number (L is the length of the smallest dimension of the box).
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between magnetic, kinetic and thermal components. We can study these energy flow

processes by tracking the energy injected at the boundaries as it is subsequently ther-

malized in the turbulence. For this purpose, the existence of the recurring channel

solution in the net magnetic field simulation is very useful; the sudden increase in

stress provides a clear injection of energy that can be traced using several diagnos-

tics. Having developed these diagnostics we can then apply them to the zero net

magnetic flux simulations. Finally, to gain additional insight into dissipation in the

turbulence, we conduct an experiment in which the shear flow and gravity terms have

been removed.

3.4.1 Sustained Turbulence

The total energy density, including the gravitational potential energy density, is de-

fined as

Etot = E + ρΦ = ε +
1

2
ρv2 +

1

2
B2 + ρΦ (3.7)

where Φ is given in § 3.2. Averaging equation (3.7) over the entire domain, taking

the time derivative, and rearranging the terms, we obtain,

Ṫ = Ein − K̇ − Ṁ − Ġ. (3.8)

where Ein ≡ ∂〈Etot〉/∂t is the energy injection rate due to stress at the boundaries

(see equation (3.1)), Ṫ ≡ ∂〈ε〉/∂t is the rate of change of thermal energy density, K̇ ≡

∂〈12ρv
2〉/∂t is the rate of change of the kinetic energy density, Ṁ ≡ ∂〈12B

2〉/∂t is the

rate of change of the magnetic energy density, and Ġ ≡ ∂〈ρΦ〉/∂t is the time derivative

of the tidal potential energy density. The brackets indicate a volume-average over the
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simulation domain. Ġ is the change in a fluid element’s gravitational energy as it

moves within the domain. We expect the contribution of the tidal potential term to

be insignificant, an expectation borne out by direct computation. We will ignore this

term in most of the subsequent discussion. The stress terms at the radial boundaries

are generally positive, which means energy is being injected into the box via the work

done by this stress (Ein > 0). The remaining terms in equation (3.8) can be either

positive or negative.

The lower right plot in Fig. 3.1 shows that the thermal energy density closely

follows the total energy density, but with a short time delay. This can be better seen

in Fig. 3.6, which shows the individual terms from equation (3.8) for a 20 orbit period

in the NZ128 simulation. There is a clear time delay of less than one orbit between

significant changes in the energy injection rate and the thermal energy derivative,

suggesting a comparable delay before the injected energy is thermalized, a property

noted in Sano & Inutsuka (2001) as well as in Gardiner & Stone (2005a). These

features in the energy derivatives result from the creation and destruction of channel

flows. During this time interval, the magnetic and kinetic energies are also changing.

By examining the maxima in the thermal energy derivative and the corresponding

features in the kinetic and magnetic energy derivatives, it appears that the magnetic

energy dissipation dominates the thermalization process.

It is useful to define a temporal correlation function for the various energy com-

ponents by writing
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CAB ≡






1

N − |L|

N−|L|−1∑

i=0

Ai+|L|Bi

1

N

N−1∑

i=0

Ai

if L < 0

1

N − |L|

N−L−1∑

i=0

AiBi+L

1

N

N−1∑

i=0

Ai

if L ≥ 0

(3.9)

where A and B are two time-series datasets N elements in length. The quantity L

is the number of elements over which to shift A and B with respect to each other to

calculate the correlation coefficient. We apply equation (3.9) to the energy rates by

setting A = Ṫ , and B = K̇, Ṁ , or Ein. This allows us to correlate the energy injection

rate and the change in kinetic and magnetic energies against the change in thermal

energy over certain timescales. Since Ṫ > 0, if the correlation between Ṫ and K̇ (or

Ṁ) is negative, then kinetic energy (or magnetic energy) must be decreasing, and a

strong negative correlation would suggest that kinetic energy (or magnetic energy) is

being thermalized.

Figure 3.7 is the correlation function for B = Ein, K̇, and Ṁ calculated over orbits

20 to 100. The x-axis is the correlation timescale in units of orbits. We only look at

correlation times of ! 1 orbit as the degree to which the thermal energy evolution

follows that of the total energy (see Figs. 3.1 and 3.2) indicate that thermalization

happens over that timescale. To examine the correlation function on longer timescales

would be misleading since peaks in the function would suggest a correlation between

two events that are not causally related (e.g., the injection of energy for one channel

event being correlated with the thermalization of energy for another channel event).
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Table 3.2. Saturation Characteristics in Unstratified MRI Turbulence

Quantity NZ128 SZ128

〈〈−BxBy〉〉/Po 0.216 ± 0.116 (6.55± 1.15)× 10−3

〈〈ρvxδvy〉〉/Po 0.028 ± 0.019 (1.91± 0.76)× 10−3

〈〈B2/2〉〉/Po 0.488 ± 0.262 0.014 ± 0.003
〈〈B2

x/2〉〉/Po 0.071 ± 0.027 (2.01± 0.38)× 10−3

〈〈B2
y/2〉〉/Po 0.388 ± 0.231 0.011 ± 0.002

〈〈B2
z/2〉〉/Po 0.029 ± 0.011 (7.98± 1.57)× 10−4

〈〈ρδv2/2〉〉/Po 0.145 ± 0.060 (7.69± 1.81)× 10−3

〈〈ρv2x/2〉〉/Po 0.046 ± 0.024 (3.73± 1.27)× 10−3

〈〈ρδv2y/2〉〉/Po 0.078 ± 0.035 (2.68± 0.60)× 10−3

〈〈ρv2z/2〉〉/Po 0.021 ± 0.011 (1.28± 0.21)× 10−3

〈〈−BxBy〉〉/〈〈ρvxδvy〉〉 7.60 ± 6.47 3.43 ± 1.49
〈〈−BxBy〉〉/〈〈B2/2〉〉 0.443 ± 0.336 0.462 ± 0.116



56

The left plot of the figure shows that Ein is strongly correlated with Ṫ on a timescale

of ∆t ∼ -0.2 orbits. This correlation is exactly what we observed in Fig. 3.6. The

energy injected by the stress at the boundaries ends up as heat less than one orbit

later. The negative sign on this value of ∆t simply means that the injection happens

before the thermalization. In the right plot, both K̇ and Ṁ are negatively correlated

with Ṫ suggesting that magnetic and kinetic energy are being thermalized. The

stronger magnetic correlation further suggests that magnetic dissipation contributes

more to thermalization than kinetic dissipation. The positive correlation between

K̇ and Ṁ against Ṫ at negative ∆t values is a result of the magnetic and kinetic

energies increasing along with the energy injection into the box. That is, the stress

at the boundaries increases the magnetic and kinetic energies which are dissipated a

short time later.

An interesting feature is evident in Fig. 3.7: the negative peak in the magnetic

and kinetic correlation functions occur for ∆t slightly greater than zero. Similarly,

in Fig. 3.6 one can see that peaks in the magnetic and kinetic energy derivatives are

offset with respect to the energy injection and thermalization peaks. For example, the

maximum rate for magnetic energy loss occurs after the maximum rate for thermal

energy gain. Of course, these are plots of the time derivative of the energy, so a peak

simply indicates where the second derivative is zero. The magnetic energy is both

losing energy to dissipation while gaining energy from the shear at the boundaries.

When the energy injection rate peaks decline, the thermalization rate is still growing

and the magnetic energy rate also peaks and begins to decline. Similarly, the slope

of the magnetic energy loss rate will change sign after the thermalization rate has

peaked and when the energy injection rate is no longer itself in decline.

As a test, we performed this correlation analysis on the lower resolution net-flux
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Fig. 3.6.— Time derivative of various volume-averaged energy densities for a 20 orbit
period in the NZ128 simulation. The time derivative of the energy densities have
been multiplied by an orbital time over the initial gas pressure. The dark blue line is
the energy injection rate, Ein, the black line is the thermal energy density derivative,
Ṫ , the green line is the kinetic energy density derivative, K̇, and the red line is the
magnetic energy density derivative, Ṁ . The dotted line indicates zero.



58

Fig. 3.7.— Correlation coefficients calculated over orbits 20 to 100 in the NZ128
simulation. The plot on the left was calculated by correlating the energy injection
rate, Ein, against the thermal energy time derivative, Ṫ . The x-axis is the correlation
length in time, and the y-axis is the coefficient multiplied by an orbital period over
the initial gas pressure. The plot on the right was calculated by correlating the
magnetic energy derivative, Ṁ , (solid line) and kinetic energy derivative, K̇, (dashed
line) against the thermal energy derivative. The dotted line indicates CAB = 0. Note
that the two plots have different y scales.

simulations and find that energy injection precedes thermalization by ∼ 0.2 orbits,

independent of resolution. Furthermore, magnetic dissipation dominates over kinetic

dissipation for all net flux simulations.

The analysis so far has only examined the rate of change in the energy terms, not

specifically how they change. For example, does a “dip” in Ṁ correspond to direct

thermalization of magnetic energy, or is there a transfer of energy from magnetic to

kinetic? To examine the energy flow in more detail, we focus on orbits 50 to 52 in

NZ128, for which we ran the NZ128 simulation at high temporal resolution. This

high time resolution allows us to resolve short timescale features, but also generates

many large data files. Therefore, we restrict this part of the analysis to the two orbit

period mentioned above. Consider the evolution equation for the volume-averaged

kinetic energy given by
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K̇ = −
〈
∇ ·

[
v

(
1

2
ρv2 +

1

2
B2 + P + ρΦ

)
−B(v ·B)

]〉

+

〈(
P +

1

2
B2

)
∇ · v

〉
− 〈B · (B ·∇v)〉 − Ġ−Qk, (3.10)

where Qk is the volume-averaged (numerical) kinetic energy dissipation rate. The

evolution equation for the volume-averaged magnetic energy is given by

Ṁ = −
〈
∇ ·

(
1

2
B2v

)〉
−

〈
1

2
B2∇ · v

〉
+ 〈B · (B ·∇v)〉 −Qm (3.11)

where Qm is the volume-averaged (numerical) magnetic energy dissipation rate. We

have calculated each term in these equations over the two orbit period and find that

the dominant terms are −〈∇ · (12ρv
2)v〉, 〈∇ · [B(v ·B)]〉, 〈B · (B ·∇v)〉, Qk, and Qm.

Qk and Qm are what remain after calculating all other terms in the energy equations

at a particular instant in time. Calculating the volume-averages of the first two terms

yields the radial boundary Reynolds and Maxwell stresses in Equation (3.1) (Hawley

et al. 1995), namely the energy injection rate by the shearing periodic boundaries.

The third of the dominant terms is the transfer rate of kinetic to magnetic energy via

field line stretching. Figure 3.8 plots the time-history of this term (pink line) along

with Ṫ (black line), the energy injection rate Ein (blue line), and −Qk and −Qm

(green and red lines, respectively). As energy is injected into the grid, a significant

fraction of this energy is transferred to the magnetic field via field line stretching,

presumably through the shear flow. Thermalization follows 0.2 orbits later and is

marked by increases in the absolute value of Qk and Qm, with |Qm| > |Qk|. The ratio

of kinetic to magnetic dissipation is approximately constant in time over this period,



60

with Qk/Qm ≈ 0.6. This suggests that the details of the thermalization do not vary

with intermittent increases in Ein that occur when the fluid experiences a channel

flow.

As discussed, the recurring channel modes in the net flux simulations create dis-

tinguishable points of energy injection that make it straightforward to follow the

subsequent thermalization. Such modes do not exist in the zero net flux simulations,

which makes the identification of specific correlations slightly more difficult. The

situation is further complicated by the overall reduced levels of the turbulence which

causes the time derivative of the thermal energy to be dominated by very high fre-

quency oscillations due to propagating spiral density waves (Gardiner & Stone 2005a).

We have determined that these waves are created by compressibility and have very

little effect on the dissipational heating within the box. To remove their dominance

in the energy derivatives, we rebin the time data using a “neighborhood” averaging

procedure in which the rebinned data points are calculated from averages of a spec-

ified number of original data points. We then apply equation (3.9) between Ein and

Ṫ ; the result is shown in Fig. 3.9. The correlation curve has several narrow peaks,

which result from residual effects of the rebinning process. The curve has a broader

peak near ∆t ∼ -0.2 orbits, which agrees with the same curves for NZ128 (Fig. 3.7).

The correlation function for SZ128 is not as sharply peaked as that for NZ128, which

is most likely a result of the lower amplitude variability in the rebinned SZ128 data.

Applying this analysis to the lower resolution zero net flux simulations, we find that

the correlation function always has a broad peak at ∆t ∼ -0.2 orbits. Thus, as was

the case in the net flux simulations, the energy injection/thermalization timescale is

independent of resolution.

Finally, we note that the saturated state of SZ128 is too complex to obtain correla-
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Fig. 3.8.— Various terms in the volume-averaged magnetic, kinetic, and thermal
energy density evolution equations over a two orbit period of NZ128. The energy
terms are Ṫ (black), Ein (blue), -Qk (green), -Qm (red), and the volume-averaged
transfer rate from kinetic to magnetic energy (pink). All of these terms are defined in
the text and have been multiplied by an orbital period over the initial gas pressure.
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Fig. 3.9.— Correlation coefficient calculated over the saturated state of the SZ128
simulation. The coefficient was calculated by correlating the energy injection rate
against the thermal energy density derivative. The x-axis is the correlation length
in time, and the y-axis is the coefficient multiplied by an orbital period over the
initial gas pressure. The narrow peaks in the curve correspond to residual effects
from rebinning the energy derivatives (described in the text). The broader peak in
the correlation function occurs at ∆t ∼ -0.2 orbits.
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tions between Ṁ , K̇, and Ṫ , such as was done for NZ128. In the net flux simulations,

the recurring channel modes lead to the build up and thermalization of magnetic

energy. The creation and thermalization of magnetic energy are events that are

well-separated in time, making it easy to study the flow of energy between various

components. In the zero net flux simulations, however, the average properties of the

turbulence remain more constant in time. We will further investigate the dissipation

of magnetic and kinetic energy for the zero net flux geometry in § 3.4.2 and § 3.5.1.

3.4.2 Decaying Turbulence

As noted by Hawley et al. (1995), the MHD turbulence decays without differential

rotation to sustain the MRI. We make use of this to observe how rapidly thermal-

ization occurs when there is no further input of energy. This analysis should provide

some additional insight into the thermalization process for each field geometry. We

remove the net shear flow and the Coriolis and tidal forces from a state taken from

the sustained MRI turbulence in the fiducial models. These runs are labeled “NZD”

and “SZD” in Table 3.1 and are described in more detail in § 3.2. Figure 3.10 shows

the subsequent magnetic and kinetic energy decay for both runs. In the figure, the

kinetic and magnetic energies have been normalized to their values at the starting

time of t = 40 orbits.

In NZD128, the ratio of total magnetic to kinetic energy at t = 40 orbits is

3.4. The figure shows that the magnetic energy decays more rapidly than the kinetic

energy at early times, losing almost half its initial value within 0.2 orbits. In SZD128,

the ratio of total magnetic to kinetic energy at t = 40 orbits is 1.4. The kinetic energy

shows high frequency oscillations about an average value that decays in time. These

oscillations are due to the same compressive, spiral waves that exist in the sustained
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turbulence simulations. The magnetic energy is unaffected by these waves. The

average decay of kinetic energy, calculated from smoothing away the oscillations, is

also shown in the figure. Both the kinetic and magnetic energies decay quickly over

time. Again, almost half the magnetic energy is lost within 0.2 orbits. The high

frequency oscillations also decay in amplitude over time. As was the case in NZD128,

the magnetic dissipation rate is initially faster than that for the kinetic energy. After

about one orbit, the decay rates become comparable.

Finally, we checked the contributions from the various terms in equations (3.10)

and (3.11). In both NZD128 and SZD128, there is some transfer from magnetic to

kinetic energy during the decay. However, the transfer rate is small compared to

the decay rate of the magnetic energy and is such that the numerical dissipation of

magnetic energy dominates over that of kinetic energy.

3.5 Measuring Numerical Dissipation

In their investigation of convergence of zero net flux shearing box simulations, Fro-

mang & Papaloizou (2007) carried out an analysis based on the evolution of magnetic

energy in Fourier space. This analysis shows how magnetic energy is created, trans-

ferred from one scale to another, and finally lost due to numerical dissipation. Their

study used the ZEUS code and assumed an isothermal equation of state. Here we

repeat and expand upon their analysis to understand dissipation as a function of

length scale in Athena.

We note several differences between our work and that of Fromang & Papaloizou

(2007). First, they focus on magnetic energy evolution and did not provide a com-

parable calculation for the kinetic energy. Second, recognizing that the y direction is

dominated by the largest scales, they restricted their analysis to axisymmetric modes,
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Fig. 3.10.— Volume-averaged magnetic and kinetic energy densities in the first 1.5 or-
bits of NZD128 (top) and SZD128 (bottom). In both plots, the upper curves corre-
spond to the kinetic energy density and the lower curves correspond to the magnetic
energy density. In SZD128, high frequency oscillations appear in the kinetic energy
evolution. To smooth away these oscillations, a moving window average was applied
to the kinetic energy density. The unsmoothed kinetic energy is shown by the dot-
ted line, while the smoothed kinetic energy is the solid line. The magnetic energy
density in the SZD128 plot has also been smoothed for consistency. Both the kinetic
and magnetic energy densities have been normalized to their respective (unsmoothed)
values at t = 40 orbits.
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namely ky = 0. Finally, as they were primarily interested in how poloidal field could

be regenerated as part of a dynamo process, a portion of their analysis concentrated

on the poloidal components rather than the full magnetic field. We have chosen to

extend the Fromang & Papaloizou (2007) analysis more generally to include a ki-

netic energy density evolution, nonaxisymmetric effects, and the effects of a nonzero

toroidal field.

Following Fromang & Papaloizou (2007), we decompose the velocity field of the

flow into the mean flow, V sh, and the turbulent velocity, vt, via

v = V sh + vt. (3.12)

The mean flow is defined as

V sh = Vshŷ =
ŷ

LyLz

∫ ∫
vy(x, y, z)dydz. (3.13)

Turning next to the induction equation, we substitute equation (3.12) for the

velocity, take the Fourier transform, and dot the result with the complex conjugate

of B̃(k), which is defined by equation (3.6) with f = B. All Fourier transforms are

done via equation (3.6) using a standard FFT and replacing f with the appropriate

quantity. The data is mapped into a frame in which the x boundaries are periodic

and then remapped into the original frame after performing the FFT.

The result of this calculation is an equation describing the magnetic energy density

evolution in Fourier space,

1

2

∂|B̃(k)|2

∂t
= A+ S + Tbb + Tdivv + Tbv +Dmag, (3.14)

where
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A = −Re

[
B̃

∗

(k) ·
∫ ∫ ∫

Vsh
∂B

∂y
e−ik·xd3x

]
, (3.15)

S = +Re

[
B̃∗

y(k) ·
∫ ∫ ∫

Bx
∂Vsh

∂x
e−ik·xd3x

]
, (3.16)

Tbb = −Re

[
B̃

∗

(k) ·
∫ ∫ ∫

(vt ·∇)Be−ik·xd3x

]
, (3.17)

Tdivv = −Re

[
B̃

∗

(k) ·
∫ ∫ ∫

(∇ · vt)Be−ik·xd3x

]
, (3.18)

Tbv = +Re

[
B̃

∗

(k) ·
∫ ∫ ∫

(B ·∇)vte
−ik·xd3x

]
. (3.19)

The Dmag term has no analytic expression; it is simply what is left over and accounts

for numerical losses of magnetic energy (Fromang & Papaloizou 2007). In the present

simulations, there is no physical resistivity. The other terms have the following mean-

ings: A is the transfer of magnetic energy between scales by the shear flow, S is the

creation of magnetic energy from this shear flow, Tbb is the advection of magnetic

energy between scales by the turbulent velocity field, Tdivv results from the turbu-

lent compressibility, and Tbv describes the creation of magnetic field by the turbulent

velocity fluctuations. In each case, Re signifies the real part of the transform.

One can follow a similar procedure using the momentum equation to determine

the evolution of the kinetic energy density in Fourier space. As described previously,

we include the density in our Fourier transforms. Consider the time derivative of
√

ρv

given by
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∂
√

ρv

∂t
=

√
ρ
∂v

∂t
+

v

2
√

ρ

∂ρ

∂t
. (3.20)

Note that here, for simplicity, we do not decompose the velocity into mean and tur-

bulent components. Using a combination of the continuity and momentum equations,

this equation can be written as

∂
√

ρv

∂t
=

√
ρ

[
−v ·∇v −

1

ρ
∇(P +

1

2
B2) +

1

ρ
(B ·∇B)− 2Ω × v + 2qΩ2xx̂

]

+
v

2
√

ρ
[−ρ(∇ · v)− v ·∇ρ] , (3.21)

If we take the Fourier transform of this equation and dot the result with the complex

conjugate of

√̃
ρv(k) =

∫ ∫ ∫
√

ρ(x)v(x)e−ik·xd3x, (3.22)

we arrive at

1

2

∂|√̃ρv(k)|2

∂t
= Tvv + Tcomp + Tvb + Tpress + Tcor + Tφ +Dkin, (3.23)

where

1

2
|
√̃

ρv(k)|2 ≡
1

2

[
|
√̃

ρvx(k)|2 + |
√̃

ρvy(k)|2 + |
√̃

ρvz(k)|2
]
, (3.24)

Tvv = −Re

[
√̃

ρv∗(k) ·
∫ ∫ ∫

[
√

ρ(v ·∇)v +
v

2
√

ρ
(v ·∇)ρ]e−ik·xd3x

]
, (3.25)
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Tcomp = −Re

[
√̃

ρv∗(k) ·
∫ ∫ ∫ √

ρv

2
(∇ · v)e−ik·xd3x

]
, (3.26)

Tvb = +Re

[
√̃

ρv∗(k) ·
∫ ∫ ∫

1
√

ρ
(B ·∇)Be−ik·xd3x

]
, (3.27)

Tpress = −Re

[
√̃

ρv∗(k) ·
∫ ∫ ∫

1
√

ρ
∇(P +

1

2
B2)e−ik·xd3x

]
, (3.28)

Tcor = −Re

[
√̃

ρv∗(k) ·
∫ ∫ ∫

(2Ω ×
√

ρv)e−ik·xd3x

]
, (3.29)

Tφ = +Re

[
√̃

ρv∗x (k) ·
∫ ∫ ∫

2
√

ρqΩ2xe−ik·xd3x

]
, (3.30)

and Dkin accounts for the dissipation of kinetic energy. Again, this dissipation is

numerical as we have not included an explicit viscosity term in our equations. Equa-

tion (3.23) describes the evolution of the kinetic energy density in Fourier space. Tvv is

a term that describes the transfer of kinetic energy between scales by the velocity field

(both the mean and turbulent velocity), Tcomp results from turbulent compressibility,

Tvb describes how kinetic energy changes from magnetic tension, Tpress represents the

effect of both gas and magnetic pressure on the kinetic energy, and Tφ is the effect of

the tidal potential on the kinetic energy. Note that Tcor is analytically equal to zero,

and it is not included in any of the following analysis or discussion.

In the saturated state of the MRI, the magnetic and kinetic energy densities should

be in a steady state on average (although they do show strong fluctuations over short

periods of time). If we consider the time-averages of equations (3.14) and (3.23), then

we can set the left hand sides to zero. We then rewrite these equations as
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Tvv + Tcomp + Tvb + Tpress + Tφ +Dkin = 0, (3.31)

A + S + Tbb + Tdivv + Tbv +Dmag = 0, (3.32)

where each of these terms is now a time-average. Here we average over 161 snapshots

from orbit 20 to 100 in increments of 0.5 orbits. Each of these terms is a function of

kx, ky, and kz, and in what follows we average the terms on shells of constant k = |k| as

was done in Fromang & Papaloizou (2007).3 Note that unlike the averaging described

in that paper, we include ky in the calculation of k.

3.5.1 Zero Net Magnetic Flux

Fiducial Run

In this section, we focus on the Fourier transfer functions for the fiducial zero net

magnetic flux simulation. Figure 3.11 plots the magnetic transfer functions defined

in equations (3.15)-(3.19) as a function of length scale for SZ128, and Fig. 3.12 plots

the kinetic transfer functions defined in equations (3.25)-(3.30). The dashed lines

correspond to plus or minus one standard deviation around the mean value of the time

average. Most of the transfer functions show large variation at small k values which

may be due to poor statistics at small k and relatively large time variability. Because

the transfer functions approach zero rapidly, we plot the ranges 1 < kL/(2π) < 20

and 20 < kL/(2π) < 64 in the same figure, but with different y scalings.

The shear term S is positive at all scales, as observed in Fromang & Papaloizou

(2007), meaning that By is created by the shear flow at all scales. A is small at all

3In our analysis, the average over shells of constant k was done before the temporal average.
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scales, supporting the assumption made in Fromang & Papaloizou (2007) that A ≈ 0.

Tbv is primarily negative at the largest scales, although there are large fluctuations,

and becomes positive for kL/(2π) " 35. The turbulent velocity fluctuations seem to

be creating magnetic energy at the smallest scales, but at larger scales, the magnetic

field appears to lose energy via this interaction with the turbulence. Tbb is negative for

k smaller than kL/(2π) ∼ 20, meaning that the turbulence is transferring magnetic

energy away from these scales. Although this analysis doesn’t determine the direction

of this cascade, at the largest scale (i.e., the box size) the energy can only cascade

to smaller scales. In terms of absolute value, S and Tbb are dominant on the largest

scales, while on small scales, Tbb > Tbv > S > 0.

It is difficult to say anything conclusive about the kinetic transfer functions on the

largest scales as they are subject to considerable uncertainty, although Tvb < 0 appears

reasonably well constrained at these scales. At smaller scales, the two dominant terms

are Tvv and Tvb, with Tvb > Tvv > 0; kinetic energy is being transferred to these scales

by the turbulence, and being created by magnetic field.

Equations (3.31) and (3.32) have been set to zero from the assumption that the

magnetic and kinetic energies are in a time-averaged steady state. The dissipation

termsDmag andDkin are simply what is left over after the other transfer functions have

been computed. The top plots in Fig. 3.13 are the kinetic and magnetic dissipation

and the ratio Dkin/Dmag as a function of k for 20 < kL/(2π) < 64; the scatter at

small k is large and there is considerable uncertainty in the dissipation values. At

small scales, magnetic dissipation dominates kinetic dissipation by a factor of roughly

three. The kinetic and magnetic dissipation rate increases in magnitude towards

larger scales.

Following Fromang & Papaloizou (2007), we can determine an effective resistivity
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Fig. 3.11.— Magnetic Fourier transfer functions versus a dimensionless wave number
(L is the length of the smallest dimension in the box) for SZ128. Each plot is displayed
in two components; the left part shows the data for 1 < kL/(2π) < 20, and the right
part shows the data for 20 < kL/(2π) < 64 by changing the x and y axis scaling. In
all plots, the solid line is the average value for the transfer function. This average
was obtained over 161 frames in the saturated state and shells of constant |k|. The
upper (lower) dashed line that matches color with the solid line correspond to the
transfer function plus (minus) one temporal standard deviation. From top to bottom,
the plots show S (red) and A (black), Tbb, Tdivv, and Tbv.
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Fig. 3.12.— Kinetic Fourier transfer functions versus a dimensionless wave number (L
is the length of the smallest dimension in the box) for SZ128. Each plot is displayed
in two components; the left part shows the data for 1 < kL/(2π) < 20, and the right
part shows the data for 20 < kL/(2π) < 64 by changing the x and y axis scaling. In
all plots, the solid line is the average value for the transfer function. This average
was obtained over 161 frames in the saturated state and shells of constant |k|. The
upper (lower) dashed line that matches color with the solid line correspond to the
transfer function plus (minus) one temporal standard deviation. From top to bottom,
the plots show Tvv, Tvb, Tpress (red) and Tcomp (black), and Tφ.
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and viscosity as a function of length scale by assuming that the numerical effects

behave as if they were physical resistivity and viscosity. For example, with a constant

Ohmic resistivity, the induction equation would have an additional term proportional

to ∇2B, with the constant of proportionality being the resistivity. If we take the

Fourier transform of this term and dot it with the complex conjugate of B̃(k), the

real part is

Tη = +Re

[
B̃

∗

(k) ·
∫ ∫ ∫

∇2Be−ik·xd3x

]
= −k2|B̃(k)|2. (3.33)

We can then define an effective resistivity as a function of k by

ηeff(k) ≡
Dmag(k)

Tη(k)
. (3.34)

Similarly, a constant kinematic shear viscosity would add a term proportional to

√
ρ[∇2v + 1

3∇(∇ · v)] to equation (3.21), with the constant of proportionality being

the viscosity. Note that we only consider shear viscosity here for simplicity. We

take the Fourier transform of the viscous term, dot it with the complex conjugate of

equation (3.22), and take the real part. The result is

Tν = +Re

[
√̃

ρv∗(k) ·
∫ ∫ ∫

√
ρ[∇2v +

1

3
∇(∇ · v)]e−ik·xd3x

]
. (3.35)

This equation can be made simpler by realizing that the second term of the integrand,

related to the divergence of v, is negligible. We can also assume that the density is

relatively constant, and arrive at

Tν = −k2|
√̃

ρδv(k)|2. (3.36)
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We have substituted the perturbed velocity here because it is the only velocity that

can lead to numerical dissipation of kinetic energy. That is, a pure shear flow will

not encounter any numerical viscosity, and we can subtract off this flow. We define

an effective viscosity by

νeff(k) ≡
Dkin(k)

Tν(k)
. (3.37)

We can also characterize the effective resistivity and viscosity in terms of a Reynolds

number,

Reeff(k) ≡
coH

νeff(k)
, (3.38)

and magnetic Reynolds number,

Rmeff(k) ≡
coH

ηeff(k)
, (3.39)

where we have used the initial isothermal sound speed, co = 0.001, as a characteristic

velocity, andH = Lz is a characteristic length. These numbers quantify the numerical

dissipation coefficients in a dimensionless manner.

Finally, we define an effective Prandtl number by

Pm,eff(k) ≡
νeff(k)

ηeff(k)
(3.40)

The effective viscosity and resistivity as well as the effective Prandtl number are

shown in the bottom plots of Fig. 3.13. The viscosity and resistivity are fairly constant

at large k. The effective Reynolds numbers are on the order of Reeff ∼ 12000, and

Rmeff ∼ 20000 at large k. The Prandtl number is also relatively flat at these scales,

and Pm,eff ∼ 1.6. This result agrees with Fromang & Papaloizou (2007), where
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Pm,eff > 1 for ZEUS. While the numerical dissipation of Athena is not physical, the

“flatness” of νeff and ηeff suggests a resemblance to physical dissipation at small scales.

Finally, note that although the Prandtl number is greater than unity, the magnetic

dissipation dominates over kinetic dissipation. Evidently, Tη is larger than Tν because

there is more magnetic energy than kinetic energy at a given scale. In particular,

Tη

Tν
=

|B̃(k)|2

|√̃ρδv(k)|2
. (3.41)

Since there is more magnetic energy than perturbed kinetic energy at a given scale,

magnetic dissipation dominates.

Resolution Effects

To gauge the effect of resolution on these various quantities, we perform the same

analysis on the lower resolution runs, SZ16, SZ32, and SZ64. We focus, in particular,

on the small scales (i.e., large k) where our quantities are statistically more well-

determined. Figure 3.14 shows νeff , ηeff , Pm,eff , and the ratio of Dkin to Dmag as a

function of x resolution, Nx. The data points are calculated by averaging the quantity

of interest over k in the regions of k-space where the error on the quantity is less than

its mean value.4 The displayed error bars are the propagation of the errors from the

temporal statistics. At these large values of k, νeff , ηeff , Pm,eff , and Dkin/Dmag are

relatively flat, varying by a factor of at most 2. Consequently, these averages should

be representative at small scales.

The numerical viscosity and resistivity decrease as a function of resolution. The

dashed lines in the two upper panels of the figure show the line νeff , ηeff ∝ N−2
x . The

viscosity and resistivity decrease slower than this with increasing Nx; we measured

4There are some quantities for which the error is never less than the mean. In these cases, we
average over regions where the mean is greater than 80% of the error.
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Fig. 3.13.— Numerical dissipation quantities plotted against a dimensionless wave
number (L is the length of the smallest dimension in the box). These plots correspond
to data from SZ128. The upper left plot shows the dissipation rate of kinetic energy
(green) and magnetic energy (red) in Fourier space. The upper right plot shows the
ratio of these two dissipation rates. The lower left plot shows the effective numerical
viscosity (green) and resistivity (red). The lower right plot shows the ratio of the
viscosity to resistivity (i.e., the effective Prandtl number). In all plots, the solid line
is the average value for the quantity of interest. For Dkin and Dmag, this average
was obtained from averaging over shells of constant |k| and over 161 frames in the
saturated state. The averaged viscosity and resistivity values were calculated as
described in the text. The upper and lower dashed lines correspond to the error
propagated from one temporal standard deviation.
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Fig. 3.14.— Averaged dissipation related quantities as a function of grid resolution.
These plots correspond to data from the zero net flux simulations, SZ16, SZ32, SZ64,
and SZ128. The upper left plot shows the effective viscosity versus x resolution. The
dashed line shows νeff ∝ N−2

x . The upper right plot shows the effective resistivity
versus x resolution. Again, the dashed line shows ηeff ∝ N−2

x . The lower left plot
shows the ratio of kinetic to magnetic dissipation versus x resolution. The lower right
plot shows the effective Prandtl number versus x resolution. For each resolution, the
data point was obtained from averaging the quantity as a function of k over values of
k where the error in this quantity is not much larger than the mean value. The error
bars represent the propagated errors from the temporal statistics.
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νeff , ηeff ∝ N−1.6
x . The figure also shows that both the effective Prandtl number and

the ratio of kinetic to magnetic dissipation are constant with resolution to within the

error bars.

Comparison with Previous Results

Fromang & Papaloizou (2007) were interested in the transfer function for the poloidal

field, as the regeneration of this field is key to a self-sustaining dynamo. They found

that the magnetic dissipation of ZEUS for the poloidal magnetic field departs from

the physical dissipation model at small k and could even be a nonphysical “positive”

dissipation. We repeat the same analysis as performed in that paper, but with SZ128,

for comparison. First, we examine the magnetic dissipation for the full 3D Fourier

analysis described above. Second, we do the same procedure but setting By = 0 to

focus on the effect of only including poloidal field. Finally, we perform the procedure

with By = 0 and in the plane ky = 0 (i.e., axisymmetry). These simplifications allow

us to reproduce the poloidal field analysis of Fromang & Papaloizou (2007).

The results are shown in Fig. 3.15. The left two plots correspond to the Fourier

analysis in which only By = 0 is assumed. The right plots assume By = 0 and ky = 0.

The black lines in the bottom two plots correspond to the magnetic dissipation for the

full 3D Fourier analysis with By .= 0 and ky .= 0. It is apparent that when By = 0 is

assumed in the calculations, the magnetic dissipation becomes positive at large scales.

However, when By is included, the magnetic dissipation remains negative. Whether

or not ky = 0 is assumed seems to make very little difference, supporting the notion

that small ky dominates. Since Athena and ZEUS both find positive Dmag at small

k, it is unlikely that this effect can be attributed to algorithmic limitations specific

to ZEUS. Since Dmag is not a derived quantity but simply what remains after all the
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transfer functions are calculated, it seems likely that the positive Dmag values for

the poloidal field analysis are due to incomplete statistics at large scales, or other

inadequacies of the analysis when applied solely to the poloidal field. At small k, the

standard deviations of the quantities (dashed lines) are considerable. The standard

deviation on Dmag when By .= 0 is significantly larger than when one sets By = 0.

This reflects the large variability of 〈B2
y/2〉 compared to the other components of

magnetic energy (see e.g., Fig. 3.2). At any given time, Dmag can be positive; the

assumption of time-stationarity does not hold at any point in time. But when the

data are time-averaged, Dmag < 0.

Finally, we compare the numerical magnetic Reyolds number calculated with equa-

tion (3.39) but with the By = 0 and ky = 0 assumptions. For SZ128, we find that

Rmeff ∼ 11000, and for SZ64, Rmeff ∼ 3500. Fromang & Papaloizou (2007) find

Rmeff ∼ 30000 for their Nx = 128 run, and Rmeff ∼ 10000 for their Nx = 64 run;

both of their calculated effective Reynolds numbers are larger than those calculated

for Athena. This result seems to suggest that ZEUS is actually less dissipative than

Athena. However, there are several points to consider. First, numerical dissipation

is a nonlinear function of resolution, sharply increasing as the number of zones per

wavelength decreases (high wavenumbers). The effective Reynolds number is ob-

tained by measuring dissipation at the high k end of the spectrum. As reported by

Shen et al. (2006) Athena appears to have higher dissipation than ZEUS for poorly

resolved waves, as evidenced by the ability of Athena to avoid the aliasing errors seen

with ZEUS for hydrodynamic shearing box waves. They further point out that for

wavelengths larger than 16 grid points Athena is less dissipative. Further, 2D simu-

lations of decaying turbulence have demonstrated that when saturation amplitude is

reached, the decay time is longer in Athena than in ZEUS, consistent with Athena
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Fig. 3.15.— Magnetic dissipation rate from the SZ128 simulation for three versions
of the transfer function analysis. The upper left plot and the red lines in the lower
left plot correspond to the analysis in which By = 0 was assumed. The upper right
plot and the red lines in the lower right plot correspond to the analysis in which both
By = 0 and ky = 0 were assumed. The black lines in the lower plots result from
relaxing both of these assumptions. The solid lines in the upper plots correspond to
Dmag whereas the dashed lines correspond to ηTη with η = 10−7 chosen to provide a
reasonable match to Dmag at large k. The dashed lines in the lower plots correspond
to one standard deviation above and below the quantity represented by the solid line
of the same color. A horizontal line at zero is shown in all plots as the blue dotted
line. Note the difference in y-axis scale between the upper and lower plots.
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having a higher effective resolution (Stone & Gardiner 2005). In the present context,

we find that the time- and volume-averaged total stresses in our simulations are larger

than those calculated in the simulations of Fromang & Papaloizou (2007). Stronger

turbulence leads to larger kinetic and magnetic turbulent fluctuations, which in turn

enhances dissipation via grid-scale effects. Finally, we reemphasize that assuming

By = 0 may have a significant impact on the measurement of effective magnetic

dissipation via this analysis.

3.5.2 Net Vertical Magnetic Flux

Fiducial Run

We perform the same transfer function analysis on the fiducial net magnetic flux run,

NZ128. The various transfer function terms as a function of k are shown in Figs. 3.16–

3.17. As was the case in the zero net flux simulation, S is positive at all scales and

dominates at small k; A is relatively small throughout. Tbv and Tbb are negative at

large scales and positive at small scales, with Tbb > 0 for kL/(2π) " 5, and Tbv > 0

for kL/(2π) " 20. At small scales, Tbb > Tbv > S > 0. Of the kinetic terms, Tvv and

Tvb dominate with Tvb > Tvv > 0. These results are in general agreement with SZ128,

except that the magnitude of the various terms is larger for NZ128 than for SZ128,

and Tbb and Tbv become positive at smaller k values compared to SZ128.

As before, we calculate the kinetic and magnetic dissipation as well as effective

values for the viscosity and resistivity. Figure 3.18 shows these quantities for NZ128

at the smallest scales. As was the case for SZ128, the mean magnetic dissipation

dominates over kinetic dissipation by a factor of roughly three at these scales. Note,

however, the large error bars associated with these plots, which encompass values of

Dkin/Dmag > 1. Again, the error bars are the temporal standard deviation of the
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transfer functions. Since NZ128 has a larger temporal variability, larger error bars are

expected. The mean value for Dkin/Dmag is on the order of 0.6-0.7, which is consistent

with the analysis in § 3.4.1 in which we found Qk/Qm ∼ 0.6.

The effective viscosity and resistivity show the same basic result as in the SZ128

case. νeff , ηeff , and Pm,eff change by a factor of order unity at large k. The effective

Reynolds numbers are on the order of Reeff ∼ 4000, and Rmeff ∼ 8000 at large

k. Pm,eff has a mean value of ∼ 1.9. Again, there is considerable uncertainty in

these values due to the large amplitude fluctuations in the turbulence. The error

bars encompass values of Pm,eff less than unity. As a result, it is more difficult to

conclusively say that the dissipation behaves the same way in NZ128 as in SZ128.

However, in an average sense, the two simulations agree well qualitatively.

Resolution Effects

We can again look at the effect of resolution on these various dissipation quantities.

Figure 3.19 shows this effect for the net flux simulations (NZ16, NZ32, NZ64, and

NZ128). The procedure by which to average over k is the same as described in § 3.5.1.

The displayed error bars are the propagation of the errors from the temporal statistics.

At these large values of k, νeff , ηeff , Pm,eff , and Dkin/Dmag are relatively flat, varying

by a factor of at most 2.

The numerical viscosity and resistivity decrease as a function of resolution. The

dashed lines in the two upper panels of the figure show the line νeff , ηeff ∝ N−2
x . The

viscosity and resistivity decrease slower than this with increasing Nx; we measured

νeff , ηeff ∝ N−1.3
x . The figure shows that the effective Prandtl number is constant with

resolution to within the error bars. There appears to be a slight increase in Dkin/Dmag

with resolution, but this trend is not definitive given the large uncertainties on the
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Fig. 3.16.— Magnetic Fourier transfer functions versus a dimensionless wave number
(L is the length of the smallest dimension in the box) for NZ128. Each plot is displayed
in two components; the left part shows the data for 1 < kL/(2π) < 20, and the right
part shows the data for 20 < kL/(2π) < 64 by changing the x and y axis scaling. In
all plots, the solid line is the average value for the transfer function. This average
was obtained over 161 frames in the saturated state and shells of constant |k|. The
upper (lower) dashed line that matches color with the solid line correspond to the
transfer function plus (minus) one temporal standard deviation. From top to bottom,
the plots show S (red) and A (black), Tbb, Tdivv, and Tbv.
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Fig. 3.17.— Kinetic Fourier transfer functions versus a dimensionless wave number (L
is the length of the smallest dimension in the box) for NZ128. Each plot is displayed
in two components; the left part shows the data for 1 < kL/(2π) < 20, and the right
part shows the data for 20 < kL/(2π) < 64 by changing the x and y axis scaling. In
all plots, the solid line is the average value for the transfer function. This average
was obtained over 161 frames in the saturated state and shells of constant |k|. The
upper (lower) dashed line that matches color with the solid line correspond to the
transfer function plus (minus) one temporal standard deviation. From top to bottom,
the plots show Tvv, Tvb, Tpress (red) and Tcomp (black), and Tφ.
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Fig. 3.18.— Numerical dissipation quantities plotted against a dimensionless wave
number (L is the length of the smallest dimension in the box). These plots correspond
to data from NZ128. The upper left plot shows the dissipation rate of kinetic energy
(green) and magnetic energy (red) in Fourier space. The upper right plot shows the
ratio of these two dissipation rates. The lower left plot shows the effective numerical
viscosity (green) and resistivity (red). The lower right plot shows the ratio of the
viscosity to resistivity (i.e., the effective Prandtl number). In all plots, the solid line
is the average value for the quantity of interest. For Dkin and Dmag, this average
was obtained from averaging over shells of constant |k| and over 161 frames in the
saturated state. The averaged viscosity and resistivity values were calculated as
described in the text. The upper and lower dashed lines correspond to the error
propagated from one temporal standard deviation.
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data.

One might expect νeff and ηeff to decrease with increasing resolution since these

terms arise from truncation error. Linear wave advection test problems with Athena

have shown that the truncation error converges at second order (e.g., Stone et al.

2008). On this basis, one would expect νeff , ηeff ∝ N−2
x . We find a shallower decrease

with Nx, but MRI turbulence is a fully nonlinear system and one in which the satura-

tion level appears to be controlled (at least partially) by the dissipation scale. Thus,

one should not necessarily expect the same convergence behavior as in a linear system

with an analytic solution that is independent of the dissipation scale.

3.6 Summary and Discussion

We have carried out a series of local, unstratified shearing box simulations with the

Athena code to study the characteristics of MRI driven turbulence. Athena uses a

second-order, conservative, compressive MHD algorithm, which is significantly differ-

ent from the algorithms employed in many of the previous MRI studies. In our work,

we have run several standard models for comparison with previous work, and char-

acterized the numerical dissipation of the Athena code for the shearing box problem.

Furthermore, we have exploited the energy conservation property of Athena to carry

out a study of energy flow within MRI-driven turbulence.

To compare with previous numerical results, we have investigated the effects of

different initial field geometries (uniform or sinusoidal Bz), varying domain aspect

ratio, and numerical resolution. In all of our simulations, the MRI is initiated and

sustained over many orbits. The time- and volume-averaged properties of the resulting

turbulent flow, such as stress levels and magnetic and kinetic energies, are consistent

with previous results. As in previous work, we find that boxes containing net vertical
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field saturate at higher amplitudes compared to those without net fields. The total

stress is proportional to the magnetic pressure with a constant of proportionality

∼ 0.5, but is independent of the gas pressure. In the net field simulation, the gas

pressure increases by a factor of 100, due to thermalization of the turbulence, without

affecting the stress. The consistency of these results with past work indicate that these

properties do not result from details of the employed algorithm.

Fourier analysis of the turbulence shows that the largest scales in the box domi-

nate the energetics. In the presence of a net field, the amplitude of the spatial power

spectra is largely independent of resolution on the largest scales. This is not true for

the zero net flux simulations however. For those simulations, the amplitude decreases

as resolution increases, which is consistent with the overall resolution behavior. For

net field simulations, the averaged turbulent magnetic and kinetic energies increase

slightly with resolution, whereas for the zero net field simulations, the energies de-

crease with increasing resolution roughly in proportion to the grid zone size. This

apparent lack of convergence for the zero net field shearing box simulations was pre-

viously demonstrated by Fromang & Papaloizou (2007) using the ZEUS code.

The net field simulation shows intermittent channel flows which cause temporary

increases in stress through amplification of large-scale MRI modes. The parasitic

modes described by Goodman & Xu (1994) destroy the channel flow within about

one orbit of time, but the rapid increase in stress produces a subsequent increase in

thermal energy. The presence of these discrete channel flow events is a consequence

of the box size—larger boxes do not experience them—but we use their presence to

study the subsequent energy flow following a rapid increase in stress.

Because Athena evolves the total energy equation, magnetic and kinetic energy

losses due to numerical grid-scale effects are added to the internal energy. This makes
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Fig. 3.19.— Averaged dissipation related quantities as a function of grid resolution.
These plots correspond to data from the net flux simulations, NZ16, NZ32, NZ64,
and NZ128. The upper left plot shows the effective viscosity versus x resolution. The
dashed line shows νeff ∝ N−2

x . The upper right plot shows the effective resistivity
versus x resolution. Again, the dashed line shows ηeff ∝ N−2

x . The lower left plot
shows the ratio of kinetic to magnetic dissipation versus x resolution. The lower right
plot shows the effective Prandtl number versus x resolution. For each resolution, the
data point was obtained from averaging the quantity as a function of k over values of
k where the error in this quantity is not much larger than the mean value. The error
bars represent the propagated errors from the temporal statistics.
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Athena well suited to examining the turbulent energy flow and subsequent dissipation.

The recurring channel flows in the net flux model provide a sudden injection of energy

into the box by increasing the stress operating on the shearing boundaries of the box.

The injected energy appears as heat after∼ 0.2 orbits. This corresponds to a timescale

Ω−1, which equals Lz/cs where cs is the initial soundspeed. This timescale determines

the amplitude of the Alfvén speed, vA, and its fundamental MRI wavelength, λMRI;

Lz/cs ∼ λMRI/vA. The timescale is thus on the order of the eddy turnover time,

indicating that dissipational heating is a local process and that energy is not carried

over large distances before it is thermalized.

In the fiducial zero net magnetic flux simulation, SZ128, there are no recurring

channel modes, making it more difficult to trace the flow of injected energy. The

analysis is further complicated by the presence of compressive waves that dominate

the time derivative of the thermal energy, Ṫ . These waves are also present in the

net field simulations, but their amplitude is smaller relative to the larger turbulent

kinetic energy found with a net field. A detailed examination of the components of

the internal energy equation indicate that the compressive waves do not appear to

contribute significantly to irreversible heating. By averaging Ṫ for the zero net flux

simulation, we find a correlation of Ṫ with Ein on the same timescale of ∼ 0.2 orbits.

In the net field simulation, the dissipation of magnetic energy is larger than that for

the kinetic energy, not unexpected as the ratio of the average magnetic to perturbed

kinetic energy is ∼ 3.4. But the ratio of the magnetic to kinetic dissipation rate

is roughly constant at ∼ 1.7. The fact that the ratio of dissipation rates does not

equal the ratio of energies may result from a couple of possibilities. First, there

could be a net transfer of magnetic to perturbed kinetic energy as was suggested in

Brandenburg et al. (1995).5 Second, the difference in the ratios could arise from

5§ 3.4.1 shows that there is in fact a net transfer of kinetic to magnetic energy. However, this
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the effective Prandtl number being larger than one. In particular, if Qk ∝ νeffδv2/2

and Qm ∝ ηeffB2/2, then (B2/δv2)(Qk/Qm) ∼ Pm,eff . With the above values for

the energy and dissipation ratios, we find (B2/δv2)(Qk/Qm) ∼ 2, which is consistent

with the determination of Pm,eff from the Fourier analysis (see discussion below). The

agreement between the two separate calculations of Pm,eff may be coincidental, but it

is suggestive of Qk ∝ νeffδv2/2 and Qm ∝ ηeffB2/2.

The turbulence is sustained by the continued action of the MRI in extracting

energy from the differential rotation. This can be removed from the simulations

allowing us to study the decay of the turbulence in detail (simulations NZD128 and

SZD128). Figure 3.10 shows that magnetic losses dominate over kinetic losses during

this decay. In both simulations nearly 50% of the magnetic energy and 20% of the

kinetic energy has been dissipated after 0.2 orbits. By one orbit into the decay, most of

the magnetic and kinetic energy has been lost. Although these decay timescales arise

in a turbulent flow that lacks power input from the MRI, the results are consistent

with the conclusion that turbulent energy dissipation occurs on a rapid timescale of

order Ω−1.

Fromang & Papaloizou (2007) used a detailed Fourier analysis (§ 3.5) to study

magnetic energy flow and thermalization as a function of length scale in the shearing

box. In this analysis, the individual terms in the evolution equation for the magnetic

energy are examined in Fourier space. Averaging over time and assuming that the

magnetic energy is in a statistical steady state, one sets the sum of these terms equal

to a remainder, which is credited to numerical effects. These numerical losses can then

be modeled as an effective resistivity (and viscosity for the kinetic energy), allowing

one to characterize the numerical dissipation in the simulation.

kinetic energy includes the shear flow, and thus, this result tells us nothing of the energy transfer
between magnetic and perturbed kinetic energy.
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We repeated their analysis with Athena and extended it to the kinetic energy.

The dominant effect at large scales is the generation of magnetic field by the back-

ground shear. This energy is transferred to other scales by the turbulence. Net

positive field creation by the turbulent flow and energy gains by the transfer between

scales only happens at small wavelengths. This point of transition from loss to gain

happens at smaller scales for the zero net field simulation compared to the net field

model. Magnetic dissipation dominates over kinetic dissipation at small scales (i.e.,

kL/(2π) " 20). Modeling these as an effective resistivity η and viscosity ν shows

that η and ν drop with increasing resolution with a power that lies between first- and

second-order in grid resolution. The effective Prandtl number, on the other hand, is

nearly constant as a function of resolution with a value between ∼ 1.5 and 2.

Fromang & Papaloizou (2007) observed what they described as “negative” resis-

tivity in an analysis restricted to the poloidal field alone. In repeating their exact

analysis with Athena, we also observed such an “anti-dissipation” at large scales.

This indicates that this effect is not associated with a numerical algorithm limitation

associated with ZEUS. More likely, it arises from the statistical uncertainty at large

scales and from the failure of the assumptions that go into the definition of the dissi-

pation term. We note that the inclusion of the toroidal field By in the analysis shows

net dissipation at all scales, although again the statistical variation is large at large

scales.

In conclusion, what do these results imply for shearing box simulations and the

MRI? First, as observed by Fromang & Papaloizou (2007), the scales over which

turbulent energy generation occurs are not well-separated from those where there is

significant dissipation; the MRI operates over a wide range of scales. The MRI grows

at a rate ∼ kvA for all k less than Ω/vA. At large scales, a weak field will grow more
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slowly than the timescale over which energy is transferred between scales, between

magnetic and kinetic forms, and ultimately thermalized. If a field is chopped up by

reconnection, it may be reduced to small scales where the MRI no longer operates. In

the presence of a net field, there will always be a significant driving term at the scales

set by that imposed field. In the absence of such a field, however, the outcome will be

determined by the complex interplay of loss due to dissipation and amplification by

the MRI. In the numerical simulations with zero net field, increasing the resolution

causes an overall decrease in the saturation energies. Fromang & Papaloizou (2007)

attribute this to higher resolution enabling the MRI to operate at intermediate scales

which facilitates the transfer of energy to small scales and promotes reconnection and

dissipation. What is perhaps surprising is that resolving the MRI at these scales leads

to greater field dissipation than would otherwise be accomplished by the numerical

losses that would occur if those scales were underresolved. Because the same effect is

observed with both Athena and ZEUS, it seems likely that this ability of the MRI to

transfer energy away from the largest scales in the shearing box and to increase the

total dissipation is a physical rather than numerical effect.

In related work, Fromang et al. (2007) and Lesur & Longaretti (2007) studied the

effect of varying the physical (not numerical) magnetic Prandtl number, Pm, on the

turbulence. They found that the saturation amplitudes were increased with increased

Pm. Fromang et al. (2007) found evidence that there exists a critical Pm > 1 below

which zero net field simulations would die out rather than achieve a steady turbulent

state. Our results in this investigation show that this Prandtl number dependence is a

distinct effect from the observed dependence of the turbulence on resolution. We find

the numerical Pm to be largely independent of resolution in Athena. Taken together,

however, the dependence on physical Pm and the dependence on resolution point to
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the importance of small and intermediate scale magnetic dissipation and reconnection

to establishing saturation amplitudes in MRI-driven turbulence.

As discussed by Fromang & Papaloizou (2007), numerical dissipation can deviate

significantly from physical dissipation. In § 3.5.1, we showed that ηeff and νeff are rela-

tively flat at small scales, suggesting a resemblance to physical dissipation. However,

consider the numerical Reynolds number as calculated from equation (3.38) for our

zero net flux simulations. For Nx = 128, we found Reeff ∼ 12000, and Pm,eff ∼ 1.6 for

all of zero net flux simulations. From the parameter space studies of Fromang et al.

(2007), these values for the Reynolds and Prandtl numbers correspond to marginal

MRI turublence; that is, they lie very close to the critical line between sustained and

decaying turbulence. For Nx = 64, Reeff ∼ 4100, and the Reynolds number is even

smaller for the lower resolutions. These values are well within the decaying turbulence

regime, but we find active MRI turbulence in all of our simulations. These results

show that the effective Reynolds and Prandtl numbers of Athena as measured at large

wavenumbers does not apply at smaller k values where there are many grid zones per

wavelength. Thus, the Reynolds numbers and Prandtl numbers that we calculate

should be taken as a measure of the effective numerical dissipation of the code and

not equated to a flow with the same Reynolds and Prandtl number as determined by

a simple physical resistivity and viscosity.

This result highlights an uncertainty associated with any MRI simulation that

depends only on numerical rather than physical dissipation. It is apparent that the

numerical Prandtl number can play an important role in determining the ratio of

magnetic to kinetic dissipation. More speculatively, the Prandtl number may also

play a role in the timescale over which thermalization occurs. In the present study,

we found that both the thermalization timescale and the effective numerical Prandtl
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number were largely independent of resolution. However, the turbulent energy ther-

malization timescales and properties we measure may be subject to change when

explicit dissipation is included. It will be a very important next step in this work to

include physical dissipation and verify these results.

This work is only the first step in applying Athena to the problem of the ener-

getics of MRI turbulence. The present study provides a calibration of the numerical

dissipation, which will be important in future studies that include explicit resistivity

and viscosity. Furthermore, the unstratified shearing box has the virtue of simplicity

and allows a detailed study of MRI turbulence without too many confounding fac-

tors, but it also may prove too limited for predictive application to accretion flows.

The inclusion of vertical stratification and radiative cooling are both straightforward

extensions to the present study. The detailed diagnostics developed and applied in

this study should prove valuable in this planned work.
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Chapter 4

Prandtl Number Effects on

Unstratified Disks

Resistivity and viscosity play a significant role in establishing the energy levels in

turbulence driven by the MRI in local astrophysical disk models. This study uses

the Athena code to characterize the effects of a constant shear viscosity ν and Ohmic

resistivity η in unstratified shearing box simulations with a net toroidal magnetic flux.

A previous study of shearing boxes with zero net magnetic field performed with the

ZEUS code found that turbulence dies out for values of the magnetic Prandtl number,

Pm = ν/η, below Pm ∼ 1; for Pm " 1, time- and volume-averaged stress levels

increase with Pm. We repeat these experiments with Athena and obtain consistent

results. Next, the influence of viscosity and resistivity on the toroidal field MRI is

investigated both for linear growth and for fully-developed turbulence. In the linear

regime, a sufficiently large ν or η can prevent MRI growth; Pm itself has little direct

influence on growth from linear perturbations. By applying a range of values for ν

and η to an initial state consisting of fully developed turbulence in the presence of a

background toroidal field, we investigate their effects in the fully nonlinear system.
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Here, increased viscosity enhances the turbulence, and the turbulence decays only if

the resistivity is above a critical value; turbulence can be sustained even when Pm < 1,

in contrast to the zero net field model. While we find preliminary evidence that the

stress converges to a small range of values when ν and η become small enough, the

influence of dissipation terms on MRI-driven turbulence for relatively large η and ν

is significant, independent of field geometry.1

4.1 Introduction

Recently, the work of Fromang et al. (2007) and Lesur & Longaretti (2007) has

sparked new interest in the effects of non-ideal MHD on the MRI. Fromang et al.

(2007) showed that both resistivity and viscosity are important in determining the

stress level in MRI turbulent flows with zero net magnetic field. Lesur & Longaretti

(2007) came to the same conclusion for models with a net vertical field. The results

were characterized in terms of the magnetic Prandtl number, defined as Pm = ν/η. In

these simulations, the saturation level increases with increasing Pm. Fromang et al.

(2007) also find that for the zero net field case, there exists a Pm below which the

turbulence dies out, and that this critical Pm decreases with decreasing viscosity (at

least for the range in viscosity and resistivity examined in the paper).

One magnetic field geometry that has not yet been explored with both physical

resistivity and viscosity is that of a net toroidal field. Such fields could be the most

relevant to astrophysical disks. Following the arguments of Guan et al. (2009) and

references therein, both global and local disk simulations as well as observations of

disk galaxies show a dominance of toroidal field over other field components. Indeed,

1This work was published in The Astrophysical Journal, Vol. 707, p. 833, 2009; see Simon &
Hawley (2009)
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the background shear flow naturally creates toroidal field from radial field. It seems

likely that any given region of an accretion disk will contain some net azimuthal field.

In this chapter, we perform the first investigation of the toroidal field MRI in the

presence of both viscosity and resistivity and compare the results with those obtained

for zero net and net vertical field simulations. The structure of the chapter is as

follows. In § 4.2, we describe our algorithm, parameters, and tests of our viscosity and

resistivity implementation. For comparison purposes, we reexamine the simulations

of Fromang et al. (2007) with our code in § 4.3. Our main results, focusing on the

toroidal field simulations, are presented in § 4.4. We wrap up with our discussion and

conclusions in § 4.5.

4.2 Numerical Simulations

In the simulations presented here, the x boundary conditions are the standard shear-

ing periodic boundaries, as described in Chapter 2 with the flux reconstruction ap-

proach applied to the y EMFs at the x boundaries (to conserve net vertical magnetic

flux) and the density flux at the x boundaries (to conserve mass). This flux recon-

struction step is not applied to the EMFs responsible for the evolution of the net

toroidal field. Consequently, in the simulations initialized with a net toroidal field,

the resulting truncation error produces a loss of net By flux from the domain; ∼ 5-

10 % of the initial toroidal field is lost per 100 orbits for the high resolution, sustained

turbulence simulations. This corresponds to a background β value of ∼ 110-120 at

100 orbits. While this truncation error does not appear to have any significant af-

fect on the turbulent energy levels in our simulations, it may become important to

conserve By to roundoff level for longer evolution times.

The shearing box source terms are included in the algorithm in a directionally
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unsplit manner, consistent with the CTU algorithm. We do not use the Crank-

Nicholson method of Gardiner & Stone (2005a) that ensures precise conservation

of epicyclic energy. As in Chapter 3, we have found this added complexity to be

unnecessary for simulations dominated by the MRI.

The Riemann solver used in all of these simulations is the linearized Roe solver of

Roe (1981), which has been extended to MHD (see Cargo & Gallice 1997).

Both the viscosity and resistivity are added via operator splitting; the fluid vari-

ables updated from the CTU integrator are used to calculate the viscous and resistive

terms. In these simulations, the viscosity term is calculated in a slightly different (and

simpler) form than in equations (1.6) and (1.8). The modified momentum equation

for these calculations is

∂ρv

∂t
+∇·(ρvv−BB)+∇

(
P +

1

2
B2

)
= 2qρΩ2x−2Ω×ρv+∇·(ρν∇v)+∇

(
1

3
ρν∇ · v

)
,

(4.1)

These two different methods are equivalent when ρν is spatially constant, which

is generally a good assumption. In particular, we have performed a few shearing

box experiments with both implementations, and find no significant differences in

turbulent stress evolution. Specifically, we restarted a few simulations using the

form in equation (1.8), and we found that the volume-averaged magnetic energies are

initially indistinguishable between the two approaches. Due to the chaotic nature of

the MRI, the two curves eventually diverge, but nevertheless maintain the same time

average.

The viscous and resistive terms are discretized in a flux-conservative manner con-

sistent with the Athena algorithm. In particular, the third and fourth terms on the

right-hand side of equation (4.1) are written so that ρν∇v and (1/3)ρν∇·v are defined
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as fluxes at the cell faces. Taking the divergence of the third term and the gradient

of the fourth term via finite-differencing ensures that momentum conservation is not

violated by the viscous terms. The resistive contribution to the induction equation is

added in a manner consistent with the EMFs; the term η∇×B is computed at cell

corners to ensure that when differenced via the curl operator, ∇·B = 0 is maintained.

Note that this resistive contribution to the EMF must also be reconstructed at the

shearing-periodic boundaries in order to preserve Bz precisely.

The addition of viscosity and resistivity places an additional constraint on the

time step,

∆t = CoMIN

(
∆tCTU, 0.75

∆2

8/3ν
, 0.75

∆2

2η

)
, (4.2)

where Co is the CFL number (Co = 0.4 here), ∆tCTU is the time step limit from the

main integration algorithm (see Stone et al. 2008), and ∆ is the minimum grid spacing,

∆ = MIN(∆x,∆y,∆z). Several three-dimensional tests of viscosity and resistivity

revealed that if the viscous or resistive time step is close to ∆tCTU, the evolution

becomes numerically unstable. This problem was remedied by multiplying the viscous

and resistive time steps by 0.75. The additional 4/3 factor in the denominator of the

viscous time step results from the last term on the right-hand side of equation (4.1).

This can be most easily understood by considering a one-dimensional problem, in

which case the effective ν value increases by a factor of 4/3 due to the compressibility

term. Therefore, the effective ν that goes into the time step calculation is taken as

(4/3)ν. Note that most of our simulations will have ν and η sufficiently small that

the viscous and resistive time steps are large compared to ∆tCTU. In fact, only the

simulations with the largest values of η and ν reach the diffusion limit on ∆t.
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4.2.1 Tests of Physical Dissipation

We performed a number of problems to test the implementation of viscosity and

resistivity within Athena. Resistivity was tested by solving the diffusion of a current

sheet along one dimension; a uniform magnetic field is initialized with a change in

sign across one grid zone. This problem has a simple analytic solution (see e.g.,

Komissarov 2007). The agreement between the numerical and analytic solution was

excellent. By replacing the magnetic field with a uniform velocity flow, the identical

test can be performed for the viscosity. Again, the numerical solution agreed with

the analytic solution.

Next, we initialized a uniform vertical magnetic field in a shearing box with

nonzero viscosity and resistivity and measured the growth of various MRI modes

in the linear regime. We compared the measured values with those from analytic

linear theory (see e.g., Masada & Sano 2008; Pessah & kwan Chan 2008) and found

excellent agreement for a wide range in viscosity and resistivity.

Finally, we examined the propagation of small amplitude, isothermal sound and

Alfvén waves in the presence of viscosity and resistivity. Again, the numerical solution

can be compared directly to an analytic solution. These tests were done in one, two,

and three dimensions; in the multidimensional tests, the propagation direction of the

wave was chosen to be along the grid diagonal. The resistivity was tested via the

decay of the Alfvén waves, and the viscosity was tested via the decay of the sound

waves. The error as a function of x resolution for two of these tests is given in Fig. 4.1.

The error is calculated from the square root of the sum of the squared errors in the

density and momenta (for the sound wave) and the density, momenta, and magnetic

field (for the Alfvén wave). The solution to each wave converges at a rate very close

to second order, shown by the dashed line.
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Fig. 4.1.— Numerical error as a function of x resolution for the three-dimensional
decaying linear wave problem. The boxes are the errors for a decaying Alfvén wave,
and the asterisks are the errors for a decaying sound wave. The error is calculated
from the square root of the sum of the squared errors in the density and momenta (for
the sound wave) and the density, momenta, and magnetic field (for the Alfvén wave)
obtained using the analytic solution. The dashed line shows the slope corresponding
to second-order convergence.
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4.2.2 Shearing Box Parameters

The shearing box used in this study has radial size Lx = 1, azimuthal size Ly = 4, and

vertical size Lz = 1. Most of the simulations presented here use 128×200×128 equally

spaced grid zones; some simulations use half the number of zones in each direction.

The initial velocity is v = −qΩxŷ, with q = 3/2, Ω = 0.001, and −Lx/2 ≤ x ≤ Lx/2.

The isothermal sound speed is cs = ΩH where H is the scale height. With Lz = H ,

we have cs = LzΩ, and with ρ = 1, the initial pressure is P = ρΩ2L2
z = 10−6.

The dissipation terms ν and η are parameterized in terms of the Reynolds number,

Re ≡
csH

ν
, (4.3)

the magnetic Reynolds number,

Rm ≡
csH

η
, (4.4)

and the magnetic Prandtl number,

Pm ≡
ν

η
=

Rm

Re
. (4.5)

Since the properties of the MRI are more directly determined by the Alfvén speed

rather than the sound speed, another useful dimensionless quantity is the Elsasser

number,

Λ ≡
v2A
ηΩ

, (4.6)

where vA is the Alfvén speed. With cs = ΩH and β = 2c2s/v
2
A, we can relate Rm to

Λ,
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Λ =
2

β
Rm. (4.7)

In addition to the explicit dissipation terms, there will also be some effective diffu-

sion due to numerical effects. Generally speaking, numerical diffusion will not behave

in the same manner as physical diffusion (e.g., it is not a simple function of a gradi-

ent in field or velocity); numerical diffusion generally has a much stronger effect at

small scales than at large scales. Also the effects of numerical diffusion may be differ-

ent from one type of simulation to another. By calculating numerical losses at high

wavenmbers in Fourier space and modeling those as if they were physical viscosity and

resistivity, we quantified the numerical dissipation of Athena in Chapter 3. We found

that the effective Rm for the zero net field and net z field simulations at Nx = 128

were 20000 and 8000 respectively, and 7000 and 5000 for Nx = 64. The effective Pm

is ∼ 2 for these simulations. Since numerical dissipation is problem-dependent, these

numbers should be regarded as estimates, and their values will likely be somewhat

different in different applications. However, they serve as a guideline for including

physical dissipation. In the present study, numerical and physical dissipation may be

comparable at large wavenumbers for Re,Rm " 10000. The physical dissipation in

some of our simulations may fall into this marginally resolved regime. Nevertheless,

we can explore a large enough range in Re and Rm values to observe clear effects due

to viscosity and resistivity.

4.3 Zero Net Flux Simulations

Fromang & Papaloizou (2007) and Pessah et al. (2007) presented the surprising result

that for zero net field shearing box simulations without any explicit dissipation
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Table 4.1. Zero Net Flux Simulations with Physical Dissipation

Label Re Pm Rm Turbulence? α

SZRe800Pm4 800 4 3200 No -
SZRe800Pm8 800 8 6400 Yes 0.031
SZRe800Pm16 800 16 12800 Yes 0.046
SZRe1600Pm2 1600 2 3200 No -
SZRe1600Pm4 1600 4 6400 No -
SZRe1600Pm8 1600 8 12800 Yes 0.026
SZRe3125Pm1 3125 1 3125 No -
SZRe3125Pm2 3125 2 6250 No -
SZRe3125Pm4 3125 4 12500 Yes 0.013
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terms, the steady-state turbulent energy decreases with increasing grid resolution.

In Chapter 3, we obtained the same result for zero net field simulations without

explicit dissipation using the Athena code. These results pointed to the importance

of including explicit dissipation terms in such simulations.

Fromang et al. (2007) showed that turbulent activity is strongly influenced by

these dissipation terms; the saturated stress increases with increasing Pm. Here we

return to the zero net field problem and include the dissipative terms to compare

with the results of Fromang et al. (2007). The simulations are initialized with B =
√

2P/β sin[(2π/Lx)x]ẑ where β = 400. These runs are labeled SZ for sinusoidal z-field

and have resolution Nx = 128, Ny = 200, Nz = 128. The viscosity and resistivity in

these simulations are chosen to reproduce the calculations of Fromang et al. (2007).

The initial state is perturbed in each grid zone with random fluctuations in ρ at

amplitude δρ/ρ = 0.01. The SZ simulations are listed in Table 4.1. The column

labeled “Turbulence?” states whether or not the turbulence was sustained in a given

simulation. The column labeled “α” gives the resulting turbulent stress in terms of

the dimensionless value α ≡ 〈〈ρvxδvy − BxBy〉〉/Po, with δvy ≡ vy + qΩx. Po is the

initial gas pressure and the double bracket denotes a time and volume average. The

time average is calculated from orbit 20 until the end of the simulation, and as is

the case throughout this paper, volume average refers to an average over the entire

simulation domain.

The results of these simulations are consistent with those of Fromang et al. (2007).

For example, Fromang et al. (2007) lists α values for a Re = 3125 and Rm = 12500

model run with four different codes, including ZEUS. These values range from α =

0.0091 to 0.011; we obtain 0.013. The increase in turbulent energy levels with Pm is

demonstrated by a series of simulations with the same Rm and increasing viscosity.



107

Fig. 4.2.— Time- and volume-averaged stress parameter α as a function of Pm in
the SZ simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po, where the average is calculated over
the entire simulation domain and from 20 orbits to the end of the simulation. Only
simulations with sustained turbulence are plotted. The Pm = 4 model has Rm =
12500 whereas the other two have Rm = 12800. There is a nearly linear increase in
α with Pm.
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Fig. 4.3.— Time evolution of volume-averaged magnetic energy density normalized
by the gas pressure for the SZ runs with Re = 1600 and varying Pm. The volume
average is calculated over the entire simulation domain. The solid line corresponds to
Pm = 8, the dashed line corresponds to Pm = 4, and the dotted line corresponds to
Pm = 2. The turbulence decays for the lowest two Pm values, with the Pm = 4 case
taking roughly 60 orbits to decay.



109

For example, for a constant Rm ≈ 12800 (some of the simulations had Rm = 12800

while others had Rm = 12500; see Fromang et al. (2007)), Pm values were varied by

factors of 2 from 1 to 16. Sustained turbulence was seen for Pm ≥ 4 with α values

increasing from 0.0091 for Pm = 4 to 0.019 and 0.044 for Pm = 8 and 16 respectively.

The Athena runs have α values of 0.013, 0.026, and 0.046. These data are plotted in

Fig. 4.2, which shows that the increase in α with Pm is nearly linear.

The largest differences between the Athena simulations and the ZEUS simulations

of Fromang et al. (2007) lie in the marginally turbulent cases. For example, we

find decaying turbulence for Re = 1600, Pm = 4, whereas ZEUS produces sustained

turbulence for these parameters. Figure 4.3 shows the volume-averaged magnetic

energy density normalized by the gas pressure versus time for the three Pm values at

Re = 1600. The lowest Pm simulation decays quite rapidly, whereas the Pm = 4 case

takes roughly 60 orbits to decay. Differences in the numerical properties of Athena

and ZEUS might account for these results, given the sensitivity to numerical factors

as shown by zero net field simulations. We also note that we use a slightly larger

domain size in y than in Fromang et al. (2007). The boundary in parameter space

between sustained turbulence and decay is unlikely to be hard and fast, and detailed

numerical surveys that attempt to define that boundary are probably not warranted.

Some such studies may, however, provide additional insights into the sensitivity of

the MRI turbulence to specific numerical factors.

4.4 Toroidal Field Simulations

To examine the effect of viscosity and resistivity on the MRI with a net toroidal field,

we have run a series of simulations initialized with B =
√

2P/βŷ, where β = 100,

and with varied Re and Rm values. Re ranges from 100 to 25600, and Pm ranges
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from 0.25 to 16 (though, in some simulations, we set either η or ν equal to zero). We

will consider the influence of the physical dissipation terms on two types of problems:

the linear MRI growth regime, and fully nonlinear turbulence.

4.4.1 The Linear Regime

The linear nonaxisymmetric MRI was first examined by Balbus & Hawley (1992).

For nonaxisymmetric modes, the MRI tends to be most robust in the presence of a

poloidal field. However, even the purely toroidal field case is unstable, athough, as

emphasized by Balbus & Hawley (1992), that case is somewhat singular. As always

with the ideal MRI, the most unstable mode has k · vA / Ω. The linear analysis

is complicated by the background shear which causes radial wavenumbers to evolve

with time. Amplification of a given mode occurs when the wavenumber ratio k/kz

goes through a minimum as the radial wavenumber swings from leading to trailing.

In general, the purely toroidal MRI favors high kz wavenumbers and small values of

ky/kz, in contrast to the vertical field MRI where the wavenumber kz of the most

unstable mode is determined by the Alfvén speed.

Papaloizou & Terquem (1997) examined the toroidal field MRI with the addition

of resistivity. They point out that because kx grows arbitrarily large, all linear modes

will eventually damp out in the presence of resistivity. For small enough resistivities,

however, there can be a period of growth when kx ∼ 0. For the MRI to become self-

sustaining, this growth has to continue long enough for the perturbations to reach

nonlinear amplitudes. Resistivity is also particularly important for the pure toroidal

field MRI because large kz is favored for mode growth. Equation (32) of Papaloizou

& Terquem (1997) provides an approximate condition for transient amplification of

the MRI in the presence of resistivity. For Keplerian shear and for modes where
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Table 4.2. Toroidal Field Simulations Initialized from Linear Perturbations

Label Re Pm Rm Λ Nx = 64 Nx = 128

YLRe800Pm0.5 800 0.5 400 8 No -
YLRe800Pm1 800 1 800 16 No -
YLRe800Pm2 800 2 1600 32 No -
YLRe800Pm4 800 4 3200 64 No -
YLRe800Pm8 800 8 6400 128 No -
YLRe1600Pm0.5 1600 0.5 800 16 No -
YLRe1600Pm1 1600 1 1600 32 No -
YLRe1600Pm2 1600 2 3200 64 No -
YLRe1600Pm4 1600 4 6400 128 No -
YLRe1600Pm8 1600 8 12800 256 No -
YLRe3200Pm0.5 3200 0.5 1600 32 No No
YLRe3200Pm1 3200 1 3200 64 No No
YLRe3200Pm2 3200 2 6400 128 Yes No
YLRe3200Pm4 3200 4 12800 256 - Yes
YLRe6400Pm0.5 6400 0.5 3200 64 Yes No
YLRe6400Pm1 6400 1 6400 128 Yes Yes
YLRe6400Pm2 6400 2 12800 256 Yes Yes
YLRe6400Pm4 6400 4 25600 512 Yes Yes
YLRe12800Pm0.5 12800 0.5 6400 128 Yes Yes
YLRe12800Pm1 12800 1 12800 256 Yes Yes
YLRe12800Pm2 12800 2 25600 512 Yes Yes
YLRe12800Pm4 12800 4 51200 1024 Yes Yes
YLRe25600Pm0.5 25600 0.5 12800 256 Yes Yes
YLRe25600Pm1 25600 1 25600 512 Yes Yes
YLRe25600Pm2 25600 2 51200 1024 Yes Yes
YLRe25600Pm4 25600 4 102400 2048 Yes Yes



112

k · vA ∼ Ω, this reduces to the condition

k2
zη ∼ Ω. (4.8)

In other words, there is no amplification of modes for which the diffusion time is

comparable to the orbital frequency. Although viscosity was not included in the

analysis, one might expect it to be similarly influential.

Simulations of the linear growth of the MRI in the presence of resistivity for a

purely toroidal β = 100 initial field were first carried out by Fleming et al. (2000)

using a ZEUS code with an adiabatic equation of state. For this field strength, the

critical MRI wavelength in the azimuthal direction is 2πvA/Ω ≈ H . They found

field decay for a Rm = 2000 simulation, but field growth to turbulent saturation for

Rm = 5000 and above.

In this section, we follow the growth of the MRI in a shearing box with a purely

toroidal field while including both resistivity and viscosity. The system is seeded

within each grid zone with random perturbations in ρ at amplitude δρ/ρ = 0.01.

The simulations were run at two resolutions, Nx = 64, Ny = 100, Nz = 64 and

Nx = 128, Ny = 200, Nz = 128 and are labelled YL for y-field, linear regime. In this

standard set of simulations, the range of Re examined runs from 800 to 25600, and

the range of Rm is from 400 to 102400. Table 4.2 lists these simulations. The last two

columns state whether or not MRI growth is observed for the Nx = 64 and Nx = 128

resolutions, respectively. A dash in either of these columns means that the simulation

was not run at that particular resolution. MRI growth is defined by the evolution

of the volume-averaged magnetic and kinetic energy components. A simulation is

considered to have zero growth if after 20–40 orbits, the various energy components

are either decaying or constant in time without any indication of exponential increase.
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Growth to saturation is observed in cases when Re and Rm are at 6400 and above.

Clearly, a sufficiently large viscosity or resistivity can inhibit growth. But what

about the very high or very low Pm limits? To approach that question, we carried

out simulations where only ν or η was nonzero. These experiments were done at the

Nx = 64 resolution. In our first experiments, we set η to zero and Re to 100 and

800. The Re = 800 run showed growth to saturation, but the Re = 100 case had

no growth. Next we set ν to zero and Rm to 800 and 1600. The lower resistivity

(Rm = 1600) grew to saturation, whereas the higher resistivity (Rm = 800) did not.

Although the existence of a critical Rm value is consistent with the results of Fleming

et al. (2000), the value of Rm at which growth is prevented is smaller here than what

they found. We note that there remains unavoidable numerical dissipation associated

with grid scale effects, which will make the value of a critical Rm obtained through

simulations somewhat dependent on algorithm and resolution.

The effect of numerical resolution is not necessarily obvious. Consider model

YLRe3200Pm2, which has Re = 3200 and Rm = 6400, and model YLRe6400Pm0.5,

which has these values reversed. In both cases, the Nx = 64 simulations show growth

but the Nx = 128 models do not. One difference between the two resolutions is

in the initial perturbations. While the density perturbations have the same am-

plitude in both resolutions, the higher resolution initial density is given power at

smaller scales because the perturbations are applied to each grid zone. This leads

to a smaller amplitude for each Fourier mode. Does this account for the differ-

ence seen in these two resolutions? To investigate this, we ran both Nx = 64 ver-

sions of YLRe3200Pm2 and YLRe6400Pm0.5 with initial perturbations of amplitude

δρ/ρ = 0.005 and δρ/ρ = 0.001. Note that these amplitudes lead to comparable

(δρ/ρ = 0.005) or smaller (δρ/ρ = 0.001) amplitude modes in Fourier space com-
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pared to the δρ/ρ = 0.01 initialized modes at the higher resolution. Neither of the

smaller amplitude YLRe3200Pm2 simulations showed any growth (as of 20-30 orbits),

but both YLRe6400Pm0.5 simulations showed growth to saturation.

From these experiments it seems that the effects of viscosity and resistivity are

comparable and that the transition region between decay and growth to turbulence lies

between Reynolds numbers of 3200 and 6400 for Pm near unity. This corresponds to a

critical vertical wavelength, defined in terms of equation (4.8), of λc/H ∼ 2π/Rm1/2 =

0.111 and 0.079, respectively. As viscosity (resistivity) is increased, MRI growth can

be achieved by decreasing the resistivity (viscosity). This trend only works up to

certain limits; if either the viscosity or resistivity is large enough, MRI growth is

completely quenched, independent of the value of the other dissipation term.

4.4.2 The Nonlinear Regime

Of potentially greater interest than the linear MRI regime is the effect of viscosity and

resistivity on fully developed MRI-driven turbulence. To study this nonlinear regime,

we begin with model YLRe25600Pm4, a simulation with Re = 25600 and Pm = 4 at

Nx = 128, Ny = 200, Nz = 128 (Table 4.2) that was run to 59 orbits in time. The

MRI grows and the flow becomes fully turbulent. Averaging from t = 15 to 59 orbits

gives a stress value of α = 0.05. We use this simulation at t = 36 orbits to initialize a

series of simulations with different values of Re and Rm. These runs are labelled YN

for y-field, nonlinear regime, and they are all run to 200 orbits, except for simulation

YNRe12800Pm0.25, which was run to 100 orbits. All the YN simulations are listed

in Table 4.3.

When evolving onward from orbit 36 with modified dissipation terms, a simulation

shows a rapid readjustment followed by either sustained turbulence at a new
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Table 4.3. Toroidal Field Simulations Initialized from Nonlinear Turbulence

Label Re Pm Rm Turbulence? α 〈〈Λ〉〉 〈〈Λz〉〉

YNRe400Pm0.5 400 0.5 200 No - 4 -
YNRe400Pm1 400 1 400 No - 8 -
YNRe400Pm2 400 2 800 No - 15 -
YNRe400Pm4 400 4 1600 No - 30 -
YNRe400Pm8 400 8 3200 Yes 0.043 614 16.8
YNRe400Pm16 400 16 6400 Yes 0.068 1983 58.2
YNRe800Pm0.25 800 0.25 200 No - 4 -
YNRe800Pm0.5 800 0.5 400 No - 8 -
YNRe800Pm1 800 1 800 No - 15 -
YNRe800Pm2 800 2 1600 Yes 0.019 137 3.87
YNRe800Pm4 800 4 3200 Yes 0.038 495 18.0
YNRe800Pm8 800 8 6400 Yes 0.054 1413 56.2
YNRe1600Pm0.5 1600 0.5 800 No - 15 -
YNRe1600Pm1 1600 1 1600 Yes 0.018 120 4.45
YNRe1600Pm2 1600 2 3200 Yes 0.033 403 18.6
YNRe1600Pm4 1600 4 6400 Yes 0.044 1120 52.6
YNRe3200Pm0.5 3200 0.5 1600 Yes 0.016 106 4.53
YNRe3200Pm1 3200 1 3200 Yes 0.025 314 16.4
YNRe3200Pm2 3200 2 6400 Yes 0.035 860 47.4
YNRe3200Pm4 3200 4 12800 Yes 0.043 2170 127
YNRe6400Pm0.5 6400 0.5 3200 Yes 0.021 263 14.9
YNRe6400Pm1 6400 1 6400 Yes 0.031 748 45.2
YNRe6400Pm2 6400 2 12800 Yes 0.038 1880 118
YNRe12800Pm0.25 12800 0.25 3200 Yes 0.021 262 15.8
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amplitude or decay to smooth flow, depending on the new values of Re and Rm. The

column labeled “Turbulence?” in Table 4.3 states whether or not the given simulation

has sustained turbulence. Note that for Rm " 1600, the turbulence is sustained

except for the relatively viscous Re = 400 model. This critical Rm value is below

the critical value obtained above for sustained growth in the linear regime when

the resistivity and viscosity are comparable but near the critical Rm value in the

linear regime in the absence of explicit viscosity. For simulations where turbulence is

sustained, the column labeled “α” gives the time- and volume-averaged dimensionless

stress, where the time average is calculated onward from orbit 50.

The column labeled “〈〈Λ〉〉” gives a time- and volume-averaged Λ value in the

final state of each simulation. Unlike Rm, Λ will change with the evolving magnetic

field strength. Beginning with equation (4.7), we write

β =
2c2s〈ρ〉
〈B2〉

(4.9)

to give

〈Λ〉 =
Rm

c2s

〈B2〉
〈ρ〉

, (4.10)

where the angled brackets denote a volume average. One could also volume-average

the square of the Alfvén speed in the calculation of β instead of averaging B2 and ρ

separately (e.g., β = 2c2s/〈v2A〉). We have calculated 〈Λ〉 using both types of averages

for several frames in the saturated state of a few simulations. We have found at most

a factor of 2 difference between the different calculations. Since 〈B2〉 varies by a

similar factor in the saturated state (see Fig. 4.4), this factor of 2 difference is within

the uncertainty of Λ at any given time. The time-average of the volume-averaged

Elsasser number, 〈〈Λ〉〉, as given in the table, is calculated from orbit 50 until the end

of the simulation. For the decayed turbulence simulations in which the turbulence has
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Fig. 4.4.— Time evolution of volume-averaged magnetic energy density normalized
by the gas pressure for the YN runs with Re = 25600 (black curve) and Re = 1600
(colored curves). The volume average is calculated over the entire simulation domain.
The colors indicate Pm; green corresponds to Rm = 800 (Pm = 0.5), light blue to
Rm = 1600 (Pm = 1), red to Rm = 3200 (Pm = 2), and dark blue to Rm = 6400
(Pm = 4). Increasing Rm (Pm) leads to enhanced turbulence.
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not fully decayed by orbit 50, the time average is calculated onward from a point at

which the volume-averaged magnetic energy is constant in time. Note that for these

decayed turbulence simulations, 〈〈Λ〉〉 should equal the β = 100 value associated with

the net toroidal field, as given in Table 4.2. However, because of the evolution of the

net By (see § 4.2), the value of 〈〈Λ〉〉 after the turbulence has decayed will be slightly

different than the β = 100 value.

Since the magnetic field varies within the domain, the local value of Λ can also

vary from the overall average. Histograms showing the number of grid zones with

v2A of a certain value reveal that the percentage of grid zones that have Λ < 1 is at

most ∼ 0.01%. For the sustained turbulence models, 〈〈Λ〉〉 is typically on the order

of 100-1000; the smallest value for a run with sustained turbulence is 106, and the

largest value associated with a run that decays is 30.

The behavior of the MRI is often characterized by the vertical component of the

Alfvén speed, and as such, we have also calculated the Elsasser number using only

the vertical component of the magnetic field,

〈Λz〉 =
Rm

c2s

〈B2
z〉

〈ρ〉
, (4.11)

where the angled brackets denote a volume average. We have calculated the time

average of this number, 〈〈Λz〉〉, onward from orbit 50 for all the sustained turbulence

YN simulations. This number is displayed in the last column of Table 4.3. The

decayed turbulence simulations have Bz approaching zero, and we do not calculate a

vertical Elsasser number for these. Again, we calculated the vertical Elsasser number

both by averaging B2
z and ρ separately as well as by averaging the ratio B2

z/ρ. We

compared the two calculations for several frames and found at most a factor of 1.3

difference between them.
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The 〈〈Λz〉〉 values for the runs that have Rm closest to the critical value are on

the order unity, with the smallest value being 3.87. As touched upon by Fleming

et al. (2000), growth of the vertical field MRI is largely suppressed for v2Az/(ηΩ) ! 1

(i.e., for vertical Elsasser numbers less than unity). That we find 〈〈Λz〉〉 ∼ 1 close

to the “decayed turbulence” regime may suggest that the vertical field MRI plays an

important role in the sustained nonlinear turbulence of these toroidal field simulations.

One trend to note from these data is that the ratio of 〈〈Λz〉〉 to 〈〈Λ〉〉 increases with

both decreasing ν and decreasing η; the vertical magnetic energy becomes a larger

fraction of the total magnetic energy as either dissipation term is reduced.

The evolution of the magnetic energy in a typical set of simulations is shown in

Fig. 4.4. For these runs, Re = 1600 and Rm varies by factors of two from Rm = 800

to 6400. The black line shows the initial evolution of YLRe25600Pm4, whose state

at 36 orbits serves as the initial condition. It is clear that decreasing the resistivity

(increasing the Pm number) enhances the saturation level, and for a large enough

resistivity, the turbulence decays.

To quantify the dependence of the saturation amplitude on the dissipation coef-

ficients, we plot the α values for the ensemble of simulations as a function of Re,

Rm and Pm. Figure 4.5 shows α versus Rm; the color indicates Re value, and the

symbols correspond to the Pm value. The simulations with α = 0 are those where

the turbulence decayed away, which include all simulations with Rm ≤ 800 and the

Re = 400, Rm = 1600 simulation. Overall there is a general trend of increasing α

value with decreasing resistivity.

The dependence of α on Re is shown in Fig. 4.6. Here the color indicates the Rm

value, whereas Pm is again represented by a symbol. Evidently, if the resistivity is

low enough, increasing the viscosity will increase the α values. However, consider the
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YN simulations with Rm = 1600. These simulations suggest that if the resistivity

is close to some critical value, increasing the viscosity will cause the turbulence to

decay. Another feature of note is that as Re increases, the range of α for different

Rm values becomes smaller, and α appears to converge to ∼ 0.02− 0.04 for all Rm.

This could indicate that as ν and η decrease, their influence on the turbulence level

might decrease. However, for large values of Re or Rm, the dissipation lengthscales

are under-resolved, and higher resolution is needed to test this possibility.

We plot the dependence of α on Pm in Fig. 4.7. In this figure, the colors represent

varying Rm while the symbols denote different Re values. The clearest trend is that if

Rm is large enough to sustain turbulence, increasing Pm leads to larger α values. Note

that turbulence can be sustained even for Pm less than unity, if Rm is large enough.

At constant Rm, we find that α ∝ Reδ1 with δ1 ranging from -0.1 to -0.3 (calculated

by a linear fit to the data in log space for non-decayed turbulence simulations only).

At constant Re value, we find α ∝ Rmδ2 with δ2 in the range 0.4-0.8 and δ2 generally

decreasing with increasing Re.

These results naturally lead to the question of why increasing ν or decreasing

η causes an increase in turbulence. Magnetic reconnection and dissipation of field

lines, either due to an explicit resistivity or to grid-scale effects, presumably play

the primary role in limiting the amplitude of the MHD turbulence. Balbus & Hawley

(1998) hypothesized that increased viscosity would inhibit reconnection by preventing

velocity motions that would bring field together on small scales. When Pm > 1, the

viscous length is greater than the resistive one, and magnetic field dissipation becomes

less efficient, leading to an increase in turbulent stress (e.g., Balbus & Henri 2008). If

this hypothesis is correct, there may also be a change in the dissipation of kinetic and

magnetic energy into heat. To investigate this possibility, we carry out an analysis of
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Fig. 4.5.— Time- and volume-averaged stress parameter α as a function of Rm in the
YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from 50 orbits
onward, and the volume average is calculated over the entire simulation domain.
The colors correspond to Re values, and the symbols correspond to Pm values. Red
symbols are Re = 400, green Re = 800, dark blue Re = 1600, black Re = 3200, pink
Re = 6400, and light blue are Re = 12800. Circles are Pm = 0.25, crosses Pm = 0.5,
asterisks Pm = 1, diamonds Pm = 2, triangles Pm = 4, squares Pm = 8, and X’s are
Pm = 16. Note that some of the decayed turbulence (α = 0) simulations are not
plotted for clarity. Increasing Rm results in larger α values, and for Rm less than
800–1600, the turbulence decays.
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Fig. 4.6.— Time- and volume-averaged stress parameter α as a function of Re in the
YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from 50 orbits
onward, and the volume average is calculated over the entire simulation domain. The
colors correspond to Rm values, and the symbols correspond to Pm values. Light blue
symbols are Rm = 800, green Rm = 1600, dark blue Rm = 3200, black Rm = 6400,
and red are Rm = 12800. Circles are Pm = 0.25, crosses Pm = 0.5, asterisks Pm = 1,
diamonds Pm = 2, triangles Pm = 4, squares Pm = 8, and X’s are Pm = 16. Note
that some of the decayed turbulence (α = 0) simulations are not plotted for clarity.
Increasing Re leads to decreasing α values.
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Fig. 4.7.— Time- and volume-averaged stress parameter α as a function of Pm;
α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from 50 orbits onward, and the
volume average is calculated over the entire simulation domain. The colors correspond
to Rm values, and the symbols to Re values. Light blue symbols are Rm = 800, green
Rm = 1600, dark blue Rm = 3200, black Rm = 6400, and red are Rm = 12800.
Crosses are Re = 400, asterisks Re = 800, diamonds Re = 1600, triangles Re = 3200,
squares Re = 6400, and circles are Re = 12800. Note that some of the decayed
turbulence (α = 0) simulations are not plotted for clarity. The average stress increases
with increasing Pm.
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viscous and resistive heating for several of the simulations.

Consider the volume-averaged kinetic and magnetic energy evolution equations,

K̇ = −
〈
∇ ·

[
v

(
1

2
ρv2 +

1

2
B2 + P + ρΦ

)
−B(v ·B)

]〉

+

〈(
P +

1

2
B2

)
∇ · v

〉
− 〈B · (B ·∇v)〉 − Ġ−Qk, (4.12)

and

Ṁ = −
〈
∇ ·

(
1

2
B2v

)〉
−

〈
1

2
B2∇ · v

〉
+ 〈B · (B ·∇v)〉 −Qm. (4.13)

Here, K̇ and Ṁ are the time derivatives of the volume-averaged kinetic and mag-

netic energies, respectively. The time derivative of the volume-averaged gravitational

potential energy is given by Ġ, and Qk and Qm are the volume-averaged kinetic

and magnetic energy dissipation rates, respectively. The gravitational potential is

Φ = qΩ2(L
2
x

12 − x2).

We determine Qk and Qm for select YN models by computing the time average of

each of the source terms in the energy evolution equations using 200 data files equally

spaced in time over 20 orbits. We assume Ġ is zero in the time-average; the analysis

in Chapter 3 found Ġ is always negligibly small. The time-derivatives, K̇ and Ṁ , are

calculated by differentiating the volume-averaged kinetic and magnetic energy history

data with respect to time and then sampling these data to the times associated with

the data files. The dissipation terms Qk and Qm, which include both physical and

numerical effects, are the remainder after all the other terms are calculated.

Figure 4.8 shows the ratio of the time-average 〈Qk〉 to 〈Qm〉 as a function of
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Pm and α for select YN runs. The colors and symbols are the same as in Fig. 4.6.

The time average is calculated from t = 70 − 90 orbits for YNRe400Pm16 (black

X) and YNRe12800Pm0.25 (blue circle), t = 110 − 130 orbits for YNRe800Pm2

(green diamond) and YNRe800Pm8 (black square), and t = 110.6 − 130.6 orbits

for YNRe800Pm4 (blue triangle) and YNRe3200Pm4 (red triangle). The ratio of

viscous to resistive heating generally increases as either α or Pm increases, although

not monotonically. The relative heating ratio is not simply proportional to Pm as one

might naively expect.

The data suggest a general relationship between saturated stress and 〈Qk〉/〈Qm〉.

We know that the stress level sets the total dissipation rate, Qk + Qm (see Chapter

3); stronger stresses extract more energy from the background shear flow, and that

turbulence is rapidly dissipated into heat. However, does stronger turbulence by itself

change the heating ratio, or is the change in the heating ratio mainly determined by

changes in Pm, which also increase the turbulence levels? This question of causality

cannot be definitively answered from these data.

Further insight may come from examining the ratio of averaged Reynolds stress,

〈〈ρvxδvy〉〉, to averaged Maxwell stress, 〈〈−BxBy〉〉, as a function of α; this is shown

in Fig. 4.9. The colors and symbols are the same as in Fig. 4.8. The double brackets

for the stresses denote time and volume averages, where the time average is calculated

over the same 20 orbit period as in Fig. 4.8. There is a decrease in the ratio of the

Reynolds to Maxwell stress as the total stress increases. These stresses are propor-

tional to the perturbed magnetic and kinetic energies at the largest scales, and if this

continued down to the dissipation scale, we might expect that the ratio 〈Qk〉/〈Qm〉

would behave similarly with α. In fact, the heating ratio shows the opposite trend

with α, indicating that a transfer of energy from magnetic to kinetic fluctuations
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Fig. 4.8.— Ratio of kinetic to magnetic energy dissipation rate as a function of Pm

(top panel) and α (bottom panel) for select YN runs; α ≡ 〈〈ρvxδvy−BxBy〉〉/Po. The
colors and symbols are the same as in Fig. 4.6. The kinetic and magnetic dissipation
rates as well as α have been averaged in volume and time. The volume average
is calculated over the entire simulation domain and the time average is calculated
from t = 70 − 90 orbits for YNRe400Pm16 (black X) and YNRe12800Pm0.25 (blue
circle), t = 110 − 130 orbits for YNRe800Pm2 (green diamond) and YNRe800Pm8
(black square), and t = 110.6 − 130.6 orbits for YNRe800Pm4 (blue triangle) and
YNRe3200Pm4 (red triangle). The ratio of viscous to resistive heating generally
increases as either α or Pm increases, although not monotonically.
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Fig. 4.9.— Ratio of Reynolds stress to Maxwell stress as a function of α for select
YN runs; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The colors and symbols are the same as
in Fig. 4.6. The Maxwell and Reynolds stresses as well as α have been averaged in
volume and time. The volume average is calculated over the entire simulation domain
and the time average is calculated from t = 70− 90 orbits for YNRe400Pm16 (black
X) and YNRe12800Pm0.25 (blue circle), t = 110 − 130 orbits for YNRe800Pm2
(green diamond) and YNRe800Pm8 (black square), and t = 110.6 − 130.6 orbits
for YNRe800Pm4 (blue triangle) and YNRe3200Pm4 (red triangle). The ratio of
Reynolds to Maxwell stress generally decreases with increasing α.
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must occur in the turbulent cascade.

Past net toroidal field simulations without explicit dissipation terms also find a

trend for a decrease in the ratio of the Reynolds to Maxwell stress with increasing α

(e.g., Hawley et al. 1995). So this may be a general result independent of Pm. The

quantity 〈Qk〉/〈Qm〉 has not been extensively studied in past shearing box simulations,

but in Chapter 3, we found a ratio of ∼ 0.6 for a net vertical field model without

explicit dissipation terms.

In summary, these observations are consistent with the hypothesis that decreasing

Pm increases the efficiency of magnetic reconnection and hence reduces the overall

stress level. However, a more in-depth study would be required to better understand

the full causal relationship between the ratio of dissipation terms and the saturation

levels.

Finally, we note that the ratio of Reynolds stress to perturbed kinetic energy

increases with increasing ν, as shown in Fig. 4.10. There is no observed trend with

η. As ν is increased, the fluid motions that are not being directly driven by the MRI

become increasingly damped. The fluid motions that are driven by the magnetic field

in the form of Reynolds stress follow the behavior of the Maxwell stress with ν. This

is also consistent with the hypothesis that increased ν leads to less efficient magnetic

reconnection; the kinetic fluctuations become damped relative to the driving via the

MRI, making it difficult to bring field lines close together for reconnection.

Overall, resistivity seems to play a more fundamental role than viscosity in these

net toroidal field simulations. There is a critical Rm below which turbulence decays

or fails to grow from linear perturbations. For a given resistivity near this critical

value, a relatively low viscosity leads to MRI growth (linear regime) or sustained

turbulence (nonlinear regime). A high viscosity can prevent growth (linear regime)
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Fig. 4.10.— Ratio of Reynolds stress to perturbed kinetic energy as a function of Re in
the sustained turbulence YN simulations. Both the Reynolds stress and the perturbed
kinetic energy are time and volume averaged, with the time average calculated from
orbit 50 onward and the volume average calculated over the entire simulation domain.
The colors correspond to Rm values, and the symbols correspond to Pm values. Green
symbols are Rm = 1600, blue Rm = 3200, black Rm = 6400, and red are Rm =
12800. Circles are Pm = 0.25, crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2,
triangles Pm = 4, squares Pm = 8, and X’s are Pm = 16. The ratio of stress to energy
increases with increasing viscosity but does not change with resistivity.
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or cause decay (nonlinear regime). Once the resistivity is sufficiently low to ensure

MRI growth to saturation and continued turbulence, the effect of viscosity changes

and higher viscosity gives larger α values.

4.5 Summary and Discussion

In this study, we carried out a series of local, unstratified shearing box simulations

of the MRI with Athena including the effects of constant shear viscosity and Ohmic

resistivity. The first simulations were initialized with a zero net magnetic flux in the

domain for comparison with the results of Fromang et al. (2007). The second set of

simulations are the first investigation of the impact of both viscosity and resistivity

on models with a net toroidal field.

For the values of viscosity and resistivity they studied, Fromang et al. (2007)

found that turbulence was sustained only above a critical Pm value, specifically when

Pm " 1. There was evidence that this critical Pm value decreases as Re increases

(viscosity is reduced). We repeated these experiments and found that the saturation

level of the MRI depends strongly on both viscosity and resistivity, and for every

Re, there exists a critical Pm value below which the turbulence dies out. For those

simulations where turbulence was sustained, we found good agreement between the

Athena α values and those of Fromang et al. (2007).

Zero net field simulations are fundamentally different from net field models because

an imposed background field cannot be removed as a result of the simulation evolution.

The net field remains unstable and can drive fluid motion even during the fully

nonlinear turbulence phase, assuming that that field was unstable to begin with.

Lesur & Longaretti (2007) examined the effects of diffusion on models with a net

β = 100 vertical field in a 1×4×1 shearing box using a pseudo-spectral incompressible
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code. They found a relation α ∝ P δ
m with δ = 0.25–0.5 for values of Pm ranging from

0.12 to 8, but they found no case where the turbulence died out completely for the

range of viscosities and resistivities studied.

Among net field models, the purely vertical field case is significantly different from

the purely toroidal field model, hence the need for the study we have presented here.

For a vertical field, the linear MRI favors wavenumbers kz ∼ Ω/vA and kx = ky = 0.

The purely toroidal case favors ky ∼ Ω/vA with k/kz minimized. Since kx is time

dependent due to the background shear, a given mode undergoes a finite period of

amplification as kx swings from leading to trailing. These properties suggest that

purely toroidal field models might be more sensitive to dissipation than the vertical

field case.

In our numerical study of the linear growth regime of the toroidal MRI, we have

found that increasing either the viscosity or the resistivity can prevent the growth

of MRI modes. As the viscosity (resistivity) increases, the MRI needs a smaller

resistivity (viscosity) in order to grow. However, for large enough values of either the

viscosity or the resistivity, MRI growth is suppressed, even in the absence of the other

dissipation term. Because of the importance of small wavelength (large wavenumber)

modes, the critical Rm values, below which growth is inhibited, tends to be larger

than what one would expect from an axisymmetric vertical field analysis, even in

the absence of viscosity. Here, for comparable values of viscosity and resistivity, the

critical Rm value was around 3200–6400.

Because the linear toroidal field MRI is time dependent, turbulence can only

be sustained if nonlinear amplitudes are reached during the growth phase. Thus,

the outcome of the linear MRI phase can be sensitive to the initial amplitude of the

perturbations in a simulation where the viscous or resistive values are near the critical
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value.

In the nonlinear regime, we found that viscosity generally acts in an opposite sense

to that in the linear regime; increased viscosity enhances angular momentum trans-

port. Furthermore, increasing the resistivity appears to decrease the saturation level,

in agreement with previous studies, and the critical Rm, below which the turbulence

dies is ∼ 800–1600. Near the critical Rm, however, increasing the viscosity causes

the turbulence to decay, a behavior more in line with the linear regime.

In our simulations, as well as those of Lesur & Longaretti (2007), Pm < 1 did not

necessarily quench the nonlinear turbulence or prevent growth from linear perturba-

tions. Resistivity or viscosity above a certain level can stabilize the system against

these perturbations, but if both are sufficiently small, their ratio has no influence

on MRI growth. The presence of turbulence, however, is distinct from the satura-

tion level of that turbulence, and here Pm can have a significant effect. For both

net toroidal and net vertical field simulations, α increases with increasing Pm for the

range of values studied.

What do these results imply for the effect of resistivity and viscosity on the MRI

and on astrophysical systems? In principle, they could be quite significant. In pro-

tostellar disks, the resistivity is thought to be quite high near the midplane, leading

to the existence of the dead zone (Gammie 1996). The Rm values studied here could

be applicable to such systems. However, the implications for accretion disks with

small values of viscosity and resistivity (e.g., X-ray binary disks) are less clear. Be-

cause the range of α values we obtained decreases with increasing Re (Fig. 4.6), it

is possible that α may converge to a single value independent of Pm as Re and Rm

are increased. If true, this would suggest that the dissipation scales might have very

little influence on the saturation level of the MRI in astrophysical disks. This idea
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will need to be tested with higher resolution simulations to ensure that the (small)

viscous and resistive scales are adequately resolved. If, on the other hand, Pm still has

an influence on the turbulence even for very small values of viscosity and resistivity,

our results (taken together with those in the literature) could be applicable to such

disks. The resistivity, viscosity, and Pm can vary quite substantially in these systems,

not only between different astrophysical objects, but also within a given disk (e.g.,

Brandenburg & Subramanian 2005). Balbus & Henri (2008) analyze a possible Pm

dependence on radius in X-ray binaries to suggest that such a dependence could be

at the core of spectral state transitions in these systems.

The work to date is suggestive, but there remain several limitations associated

with these shearing box simulations. First, the simulations are unstratified; vertical

gravity may also play a role in establishing the overall turbulent state. For example,

Davis et al. (2010) carried out a series of zero net field shearing box simulations

with vertical gravity and explicit dissipation and found that the turbulence does not

decay as readily as in the unstratified case. Secondly, all of the simulations to date

have explored a relatively restricted range of parameters. Here, for example, we have

examined only one value for the toroidal field strength and one domain size. Finally,

as touched upon above, the range of values for Re and Rm that have been studied

are somewhat restricted and certainly much smaller than would be appropriate for

many astrophysical disk systems. While this limitation is partially computational and

can be improved upon with higher resolutions, the question remains for astrophysical

systems whether viscous and resistive processes that take place on relatively small

lengthscales can have a significant influence on macroscopic stress terms whose scales

are on order the pressure scale height in the disk. But regardless of the importance

of resistivity and viscosity for astrophysical systems, the values of Re and Rm are
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very important for setting α in numerical simulations, much more so than many other

shearing box parameters (e.g., pressure) studied to date. Without a more thorough

understanding of the role that dissipation terms play, quantitative predictions of α

values from simulations will not be possible.

In summary, our experiments have explored the effect of changing viscosity and

resistivity on MRI simulations with a net toroidal field. This work serves to expand

upon previous investigations of the impact of small-scale dissipation. While the di-

rect applicability of studies such as this to specific stress values within astrophysical

systems remains uncertain, it is likely that for the conceivable future, numerical sim-

ulations will be our primary, if not only way to explore the nature of MRI-driven

turbulence. A thorough understanding of MRI turbulence can only be obtained with

a complete understanding of the effects of diffusion, both numerical and physical.
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Chapter 5

Prandtl Number Effects on

Vertically Stratified Disks

We have run a series of local, isothermal shearing box simulations with the Athena

code to study the effect of vertical gravity, shear viscosity, ν, and Ohmic resistivity, η

on MRI-driven turbulence. Our first set of simulations are unstratified and serve to

calibrate the effects of physical dissipation at low resolutions. We find that the effect of

the magnetic Prandtl number, Pm = ν/η, on the turbulence is well-converged by ∼ 32

grid zones per disk scale height, H . Our main simulations focus on the effect of vertical

gravity on the MRI. In agreement with previous results, we find that enhanced,

subthermal magnetic field is generated via the MRI for |z| ! 2H . This predominantly

toroidal field is produced via the shear of radial field and buoyantly rises out of the

disk, leading to a magnetic pressure dominated region for |z| " 2H . Radial and

toroidal fields of opposite polarity are then generated near the mid-plane, leading

to oscillations of the mean horizontal field within the mid-plane. These oscillations

have a period of 10 orbits modulated by a longer timescale that ranges from tens to

hundreds of orbits. As in unstratified simulations, increasing Pm leads to an increase in
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volume-averaged stresses, but with a less steep dependence on Pm and considerably

more temporal variability. Furthermore, if η " csH/3200, where cs is the sound

speed, the turbulence undergoes periods of decay followed by regrowth of the MRI,

on timescales ranging from 10 to 100 orbits. The regrowth of the MRI is caused by

weak radial field shearing into toroidal field sufficiently strong to activate the toroidal

field MRI.

5.1 Introduction

Vertical stratification alters the behavior of MRI-driven turbulence and the result-

ing disk structure significantly. Radial and toroidal fields are generated near the

mid-plane via shear and MRI turbulence, buoyantly rise upwards, and are replaced

with fields of the opposite sign in the mid-plane region. This behavior happens on

a ∼ 10 orbit timescale and appears to be integrally connected with an MHD dy-

namo in these systems (e.g., Brandenburg et al. 1995; Stone et al. 1996; Hirose et al.

2006; Guan 2009; Shi et al. 2010; Gressel 2010; Davis et al. 2010). Furthermore,

the vertical structure of the disk consists of MRI-turbulent gas that is marginally

stable to buoyancy within |z| ∼ 2H . Outside of this region, the gas is magnetically

dominated, significantly less turbulent, and buoyantly unstable (e.g., Guan 2009; Shi

et al. 2010). Since most of these results have come from ZEUS-based calculations,

one of our goals is to further examine the spatial and temporal properties of vertically

stratified MRI-driven turbulence with the higher-order Godunov code, Athena. How

does the vertical structure of the turbulence as seen with Athena compare to previous

ZEUS-based results? What more can we learn about the temporal variability in the

averaged mid-plane fields and how it relates to the MHD dynamo?

Beyond these questions remains the issue of how physical dissipation affects the



137

MRI in the presence of vertical gravity. While the effect of Ohmic resistivity on the

vertically stratified MRI in has been studied in some detail (e.g., Miller & Stone 2000),

most of these calculations employ a very large resistivity in order to completely quench

the MRI and create the dead zone thought to be present in protostellar disk systems

(e.g., Gammie 1996; Fleming & Stone 2003; Fromang & Papaloizou 2006; Oishi et al.

2007; Turner & Sano 2008; Ilgner & Nelson 2008; Oishi & Low 2009; Turner et al.

2010). Furthermore, the effect of both viscosity, ν, and resistivity, η, on vertically

stratified turbulence has barely been examined. To our knowledge, the only such

investigation was carried out by Davis et al. (2010); their simulations contained zero

net magnetic flux and employed vertically periodic boundary conditions to maintain

this zero net flux. They were specifically interested in understanding how vertical

gravity would affect the unstratified zero net flux models of Fromang & Papaloizou

(2007) and Fromang et al. (2007). They found that without physical dissipation,

the volume-averaged stress level reaches a constant value as numerical resolution is

increased; this is in stark contrast to unstratified simulations in which the stress

level is proportional to the grid scale (Fromang & Papaloizou 2007). Furthermore,

they examined three ν and η values that lead to decay in unstratified boxes. With

vertical gravity, these ν and η values do not necessarily cause decay but lead to

large amplitude, long timescale fluctuations in the volume averaged stress level; the

turbulence is active for ∼ 100 orbits, then decays for another ∼ 100 orbits, and then

becomes active again.

The primary goal of this work is to understand exactly how ν and η affect MRI

turbulence in vertically stratified shearing boxes. In particular, what is the origin

of the fluctuations seen in Davis et al. (2010), and is it relevant to real accretion

disks? How does increasing the magnetic Prandtl number, Pm = ν/η, affect the
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structure and amplitude of MRI-driven turbulence when vertical gravity is included?

These simulations will also serve as an essential starting point for future studies that

include more realistic, temperature- and density-dependent ν and η.

The structure of this chapter is as follows. In § 5.2, we describe our numer-

ical code, Athena, and the implementation of the vertically stratified shearing box

methodology. We first present a series of unstratified shearing box simulations in § 5.3

to calibrate the effects of physical dissipation and serve as controls for the vertically

stratified shearing boxes with constant ν and η. In § 5.4, we discuss our vertically

stratified simulations, which are the primary focus of this chapter. The first set of

these simulations contain no physical dissipation, and we carry out several analyses

to improve our understanding of vertically stratified MRI turbulence. The second set

of simulations then includes physical dissipation to study the Pm effect. We wrap up

with a discussion and our general conclusions in § 5.5.

5.2 Shearing Box Implementation

The implementation of the shearing box for the simulations presented in this chapter

differs in several ways from that of the previous chapters. Specifically, while the basic

description of the shearing box presented in Chapter 2 still applies, there are several

distinct differences in the source terms, boundary conditions, and integration algo-

rithm. These differences result from a separate development of the Athena shearing

box by Thomas Gardiner and James Stone, and we closely follow the description of

Stone & Gardiner (2010) in this section. Also, note that the Riemann solver used in

all of these simulations is the HLLD solver (Miyoshi & Kusano 2005; Mignone 2007).
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5.2.1 Source Terms

The shearing box source terms for these simulations consist of the Coriolis force and

the radial and vertical gravitational forces in equation (2.6). All of the simulations in

this chapter are isothermal, so we do not consider the energy equation source terms.

The radial and vertical gravitational forces can be written as the negative gradient

of a potential, −ρ∇Φg, where

Φg = −qΩ2x2 +
1

2
Ω2z2. (5.1)

This potential is discretized on the grid such that differencing the potential returns

the appropriate acceleration/force. This calculation of the force is done in a manner

consistent with the CTU algorithm, as described in § 2.2, except for during the final

flux update (i.e., after the fluxes are recomputed and everything is calculated to the

half-time-step value; see Stone et al. (2008)). During this step, Crank-Nicholson time

differencing is employed; the fluid quantities used to calculate the source terms are

averaged to the half-time step value (n+ 1/2), as opposed to using the quantities at

the previous time step (n) as is done in the forward time differencing of the stan-

dard algorithm. This implementation precisely conserves the epicyclic kinetic energy

(Gardiner & Stone 2005a; Stone & Gardiner 2010).

5.2.2 Boundary Conditions

The boundary conditions used in these simulations are slightly different than those

of previous chapters. First of all, the y direction boundaries are periodic as usual.

The x direction boundaries are the usual shearing-periodic boundary conditions, as

described in Chapter 2. One difference, however, between the implementation here
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and that in the other chapters is that the reconstruction of the fluid variables within

the shifted grid zones is done on the fluid fluxes and not on the variables themselves.

The ghost zone fluid variables are then updated via these reconstructed fluxes. The

order of this reconstruction matches the spatial reconstruction in the physical grid,

e.g., 3rd order reconstruction of the ghost zone fluxes is done when the PPM spatial

reconstruction is employed. Note that this is in addition to the EMF/flux remapping

described in Chapter 2.

Finally, the vertical boundary conditions are modified outflow conditions, which

are summarized as follows. ρ is extrapolated into the ghost zones based upon an

isothermal, hydrostatic equilibrium. The reference value is the last physical zone,

denoted by ke. Therefore, for the upper vertical boundary, the ρ value in grid cell k

is

ρ(k) = ρ(ke)exp

(
−
z(k)2 − z(ke)2

H2

)
, (5.2)

where H is the vertical scale height (defined below). A similar expression holds for the

lower vertical boundary. This extrapolation provides hydrostatic support against the

opposing gravitational forces, which are also applied in the ghost zones. All velocity

components, Bx, and By are copied into the ghost zones from the last physical zone

assuming a zero slope extrapolation. If the sign of vz in the last physical zone is

such that an inward flow into the grid is present, vz is set to zero in the ghost zones.

Finally, Bz is set in the ghost zones to ensure that ∇ ·B = 0 and is thus calculated

from the ghost zone values of Bx and By.
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5.2.3 Orbital Advection

For our simulations in which the radial size of the shearing box is H , the velocity is

initialized with

vy = −qΩx. (5.3)

However, for sufficiently large domains where |x| " H/q, vy can become super-

sonic, resulting in a decrease in the Courant limited time step. Furthermore, the

presence of this background shear flow can lead to a systematic change in trunca-

tion error with radial position in the box, which in turn causes features in the radial

density and stress profiles (Johnson et al. 2008). For our larger radial domain sim-

ulations then, we implement an orbital advection scheme, which subtracts off the

background shear flow and evolves it separately from the fluctuations in the fluid

quantities (Masset 2000; Johnson et al. 2008; Davis et al. 2010; Stone & Gardiner

2010).

In the Athena implementation of orbital advection, the fluid is decomposed into

shear flow components and fluctuations from this shear flow. In particular, the ve-

locity fluctuations are defined as

δvx = vx, (5.4)

δvy = vy + qΩx, (5.5)

δvz = vz, (5.6)
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where q = 3/2. All other variables that are related to the velocity have a correspond-

ing fluctuation variable that is defined in terms of the δv velocities. These fluctuation

variables are then evolved with the usual Athena algorithm. The time step constraint

(not including the viscosity/resistivity contributions; see below) is then

∆tCTU = CoMIN

(
∆x

(|δvx|+ Cfx)
,

∆y

(|δvy|+ Cfy)
,

∆z

(|δvz|+ Cfz)

)
(5.7)

where Co is the CFL number (Co = 0.4 here), Cfi is the fast magnetosonic wavespeed

in the i-th direction, and the MIN is taken over all grid zones. The shear flow

components to the fluid variables are evolved via a remap corresponding to linear

advection by the background flow. This remapping is done on the fluxes and on the

EMFs so that conservation and ∇ ·B = 0 are maintained.

5.2.4 Physical Dissipation

Both the viscosity, ν, and resistivity, η, are added via operator splitting; the fluid

variables updated from the CTU integrator are used to calculate the viscous and

resistive terms. The viscosity term is calculated via the divergence of the viscous stress

tensor, equation (1.8), and the resistive term is included as an additional EMF within

the induction equation, as in equation (1.7). As in Chapter 4, this formulation allows

us to discretize the viscous and resistive terms in a flux-conservative and constrained-

transport manner, consistent with the Athena algorithm. Specifically, the viscous

stress tensor components are defined as fluxes at the cell faces, and the resistive EMF

term is computed at cell corners. Note that this resistive contribution to the EMF

must also be reconstructed at the shearing-periodic boundaries in order to preserve

Bz precisely.

The addition of viscosity and resistivity places an additional constraint on the
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time step,

∆t = MIN

(
∆tCTU, Co

∆2

4ν
, Co

∆2

4η

)
, (5.8)

where ∆tCTU is the time step limit from the main integration algorithm (see Stone

et al. (2008) or the definition above), and ∆ is the minimum grid spacing, ∆ =

MIN(∆x,∆y,∆z). Note that most of our simulations will have ν and η sufficiently

small that the viscous and resistive time steps are large compared to ∆tCTU.

In all of our simulations, ν and η are parameterized in terms of the Reynolds

number,

Re ≡
csH

ν
, (5.9)

the magnetic Reynolds number,

Rm ≡
csH

η
, (5.10)

and the magnetic Prandtl number,

Pm ≡
ν

η
=

Rm

Re
. (5.11)

The Re, Rm, and Pm values are constant both in space and time, cs is the isothermal

sound speed, and H is the disk scale height as defined below.
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5.3 Resolving Physical Dissipation in Unstratified

Disks

The highest resolution runs of Davis et al. (2010) with physical dissipation have 64

grid zones per H (Davis, private communication). We have performed shearing boxes

at this resolution, but simulations with sufficiently long evolution times to capture

the observed long timescale variability are very computationally expensive. Since one

of the goals of this work is a larger exploration of ν and η parameter space, we have

run most of our production simulations at 32 zones per H . To address the issue of

resolving physical dissipation at this lower resolution, we begin with a resolution study

of isothermal, unstratified shearing box simulations including physical dissipation.

The first set of unstratified simulations are the zero net magnetic flux shearing

boxes investigated in Fromang et al. (2007) and Chapter 4; see Table 5.1. Specifically,

they are initialized with B =
√

2Po/βsin[(2π/Lx)x]ẑ where β = 400. These runs are

labelled with “SZ” for “Sine Z” (see Table 5.1). The isothermal sound speed is

cs = 0.001, corresponding to an initial gas pressure Po = 10−6 with initial density

ρo = 1. The orbital velocity of the local domain is Ω = 0.001. Note that in these

simulations, we define the scale height to be H ≡ cs/Ω = 1, which is a slightly

different definition than for the vertically stratified simulations below (by a factor of
√
2). In what follows, the SZ runs will have this definition of H , and the second set

of unstratified simulations will have the definition of H given by equation (5.13).

All of these runs are initialized with physical dissipation, and we study four dif-

ferent cases of Re, Pm values; Re = 800, Pm = 16; Re = 3125, Pm = 4; Re = 6250,

Pm = 1; and Re = 12800, Pm = 2. In each case, several resolutions are run in order

to study convergence: 16, 32, and 64 grid zones per H . The labeling scheme of the
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runs refers to resolution, field geometry, and dissipation values; e.g.,16SZRe800Pm16

corresponds to 16 zones per H , the “Sine Z” geometry, and Re = 800, Pm = 16.

The MRI is seeded with random perturbations to the density and the velocity

components introduced at the grid scale. The amplitude of the density perturbations

is δρ = 0.01 and the amplitude of the velocity perturbations is (1/5)δρcs for each

component (though, a different randomization is applied for each component). We

do not employ orbital advection in these simulations. All simulations are run to 400

orbits, except for the runs in which the turbulence decays and also 32SZRe800Pm16

and 32SZRe3125Pm4, which were run to 289 orbits and 246 orbits, respectively.

We also include some higher resolution simulations from Chapter 4 in this work for

additional information.

Figure 5.1 shows the resolution dependence of the time- and volume-averaged

stress normalized by the gas pressure, the so-called α parameter,

α ≡
〈
〈ρvxδvy −BxBy〉

〈P 〉

〉
, (5.12)

where the interior brackets denote a volume average, and the exterior brackets denote

a time average. The volume average is calculated over the entire simulation domain,

and the time average is calculated from orbit 20 to the end of the run. Since the

gas is isothermal, 〈P 〉 = 〈ρ〉c2s . Note that the Nx = 128 data points were taken from

Chapter 4. Ny/Nx = 4 in the simulations presented here, which differs from the

Chapter 4 runs where Ny = 200 and Ny/Nx = 1.56. Furthermore, the calculations

done in Chapter 4 were performed with the Roe method for the Riemann solver, in

contrast to the HLLD solver used here. We do not believe that these differences will

lead to substantial deviations in the calculated α values. To test this hypothesis,

we have run both 64SZRe800Pm16 and 64SZRe3125Pm4 with the same version of
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Athena and setup used in Chapter 4. Averaging from 20 to 100 orbits in each case,

we find α = 0.036 and α = 0.014 for the Re = 800, Pm = 16 and Re = 3125, Pm = 4,

respectively; the differences in α are not large compared to the change in going from

16 to 32 zones per H .

For the sustained turbulence simulations, α appears to be converging with reso-

lution. More specifically, by 32 grid zones per H , α appears to be within a factor

of ∼ 1.4 of the corresponding value at 128 zones per H . There is also a consid-

erable change in α as one decreases the resolution to 16 zones per H , at least for

32SZRe800Pm16 and 32SZRe3125Pm4. All resolutions with Re = 6250 and Pm = 1

have decayed turbulence in agreement with the higher resolution simulations of Fro-

mang et al. (2007).

The second set of unstratified simulations contain a net toroidal field. The runs

with physical dissipation are initiated from the turbulent state (at t = 100 orbits)

of a run with only numerical dissipation. While these are not vertically stratified

simulations, we define H to be that of a stratified, isothermal disk,

H =

√
2cs
Ω

. (5.13)

The isothermal sound speed, cs = 7.07× 10−4, corresponding to an initial value (and

mid-plane value in stratified simulations) for the gas pressure of Po = 5× 10−7. With

Ω = 0.001, the value for the scale height is H = 1.

In the numerical dissipation run, the initial Bx and Bz are calculated from the y

component of the vector potential,

Ay =






−
√

2Po

βp

H
2π

[
1 + cos

(
2πr
H

)]
if r < H

2

0 if r ≥ H
2

(5.14)
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where r =
√
x2 + z2 and βp = 1600 is the poloidal field β value. The initial By is

given by

By =






√
2Po

βy
− (B2

x +B2
z ) if B2

x +B2
z .= 0

0 if B2
x +B2

z = 0
(5.15)

where βy = 100 is the toroidal field β value. This field configuration is the twisted

azimuthal flux tube of Hirose et al. (2006), with minor modifications to the dimensions

and β values. We seed the MRI with the same perturbations as the SZ runs described

above.

These parameters and initial conditions were chosen to match those used in the

vertically stratified simulations of § 5.4. These runs are labelled using the same

scheme as the SZ simulations, but with “FT” for “Flux Tube” (see Table 5.1). Also,

for simulations with no physical dissipation, we replace the “RePm” with “Num” for

“Numerical dissipation”. The domain size is Lx = 2H , Ly = 4H , and Lz = 1H , and

the resolution is 32 zones per H . Orbital advection is employed in these calculations.

The calculation with only numerical dissipation was run to 150 orbits and has an

α value of 0.021, where the time average is done from orbit 20 to orbit 150. The sim-

ulations with physical dissipation were all run out to 220 orbits and the time history

of the volume-averaged stress is displayed in Fig. 5.2. There is a clear dependence

on the dissipation parameters and on Pm in particular (note that 32FTRe800Pm4

and 32FTRe1600Pm4 have the same Pm and nearly the same saturation level). For

large enough resistivity (i.e., low Rm), the turbulence decays; the critical Rm value

is ∼ 1000, in agreement with the higher resolution simulations of Chapter 4.

Averaging from orbit 120 to the end of the simulation, we calculate α, and in

Fig. 5.3, we plot α versus Pm for these low resolution runs along with the higher
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Fig. 5.1.— Time- and volume-averaged stress parameter α as a function of grid
zones per H in the SZ simulations; α ≡ 〈〈ρvxδvy −BxBy〉/〈P 〉〉, where the average
is calculated over the entire simulation domain and from 20 orbits to the end of the
simulation. Only simulations with sustained turbulence are plotted. By 32 zones per
H , the α values appear to be relatively close to the higher resolution values.
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Fig. 5.2.— Volume-averaged Reynolds and Maxwell stresses normalized by the the
volume-averaged gas pressure as a function of time in orbits in the unstratified, net
toroidal field simulations. The black line corresponds to Re = 800 and Pm = 4,
magenta is Re = 800 and Pm = 8, green is Re = 1600 and Pm = 0.5, light blue is
Re = 1600 and Pm = 2, dark blue is Re = 1600 and Pm = 4, and red is Re = 6400
and Pm = 0.5. There is a clear dependence on Pm, and for sufficiently low Rm, the
turbulence decays.
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resolution counterparts of Chapter 4 (see Table 4.3). The dashed lines are a linear

fit to the data in log-log space. From this linear fit, we calculate the parameter δ in

α ∝ P δ
m. For 32 grid zones per H , δ = 0.54, and for 128 grid zones per H , δ = 0.33;

there is a steeper Pm dependence at lower resolution. Furthermore, all α values for the

higher resolution simulations are larger than those in the lower resolution simulations.

Again, the comparison between these two resolutions carries some uncertainty due to

a difference in the details of the various simulations.

There are several points to make from these results. First, for zero net field

calculations, the MRI saturation level does not continually decrease with increasing

resolution in the presence of physical dissipation in contrast to simulations with only

numerical dissipation (Fromang & Papaloizou 2007, Chapter 3). This is in agreement

with the recent results of Fromang (2010), which show that even the presence of small

ν and η is sufficient to provide convergence in the zero net flux shearing box.

Furthermore, both the zero net flux and net toroidal flux results suggest that only

moderate resolutions (i.e., 32 grid zones per H) may be necessary to capture the

general effects of changing ν and η, at least for the range of Re, Rm, and Pm values

considered here. This contrasts with the assumption usually made that one must

choose a sufficiently high resolution to ensure that the effective numerical dissipation

scale is below the viscous and resistive dissipation scales (see e.g., Fromang et al. 2007,

and Chapters 3 & 4). This is not to say that everything is sufficiently converged at 32

grid zones per H . Indeed, Fig. 5.3 shows a significant resolution effect. However, the

general dependence of α on dissipation parameters appears to be captured, even at

these resolutions. This is an important point for our main calculations, in which we

are limited to 32 grid zones per H for a comprehensive study of physical dissipation

effects.
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Fig. 5.3.— Time- and volume-averaged stress parameter α as a function of Pm

in the lower resolution FT simulations (asterisks) and the higher resolution, net
toroidal field simulations of Chapter 4 (diamonds). In the FT simulations, α ≡
〈〈ρvxδvy − BxBy〉/〈P 〉〉, whereas in the higher resolution simulations, α ≡ 〈〈ρvxδvy−
BxBy〉〉/Po; see Chapter 4. These definitions are roughly equivalent since 〈P 〉 ≈ Po.
For the FT simulations, the average is calculated over the entire simulation domain
and from 120 orbits to the end of the simulation. Only simulations with sustained
turbulence are plotted. The dashed lines are linear fits to the data in log-log space.
Both resolutions show a clear Pm dependence, but this dependence is steeper at the
lower resolution.
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5.4 Vertically Stratified Simulations

In this section, we describe a series of vertically stratified, isothermal shearing box

simulations that investigate the interplay between physical dissipation and vertical

gravity. As such, we have run various Re, Rm, Pm combinations, summarized in

Table 5.2. All physical dissipation calculations are initialized from the turbulent

state of a baseline run with only numerical dissipation. The restart time from this

baseline simulation is 100 orbits. All α values are calculated via equation (5.12) with

the volume average obtained over all x and y and for |z| ≤ 2H .

5.4.1 Baseline Simulations

Before investigating the effect of dissipation coefficients, we describe our baseline

runs without physical dissipation. The initial conditions for these runs are as follows.

The density stratification corresponds to the hydrostatic equilibrium solution for a

constant temperature throughout the domain,

ρ(x, y, z) = ρoexp

(
−

z2

H2

)
, (5.16)

where ρo = 1 is the mid-plane density, and H is the scale height in the disk, as defined

in § 5.3. A density floor of 10−4 is applied to the physical domain at all times to ensure

that the density does not get too small in the upper layers of the disk. A very small

density leads to a large Alfvén speed and a very small time step. Furthermore, we have

found that very small densities can lead to numerical effects that ultimately crash the

code. All other parameters and initial conditions are identical to the corresponding

FT runs of § 5.3.

The baseline calculation is done at 32 and 64 grid zones per H ; these runs are
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Table 5.2. Vertically Stratified Shearing Box Simulations

Label Re Rm Pm Resolution Integration time Description
(zones per H) tstop − tstart (orbits)

32Num – – – 32 1058 num. dissipation
32Re800Pm4 800 3200 4 32 487 –
32Re800Pm8 800 6400 8 32 325 –
32Re1600Pm0.5 1600 800 0.5 32 263 –
32Re1600Pm2 1600 3200 2 32 1082 –
32Re1600Pm4 1600 6400 4 32 488 –
32Re6400Pm0.5 6400 3200 0.5 32 863 –
32Re6250Pm1 6250 6250 1 32 337 –
32Re1600Pm2 By+ 1600 3200 2 32 584 By added at 50 orbits
32ShearBx – – – 32 45 net Bx within midplane
64Num – – – 64 159 num. dissipation
64Re800Pm4 800 3200 4 64 84 –
64Re1600Pm0.5 1600 800 0.5 64 108 –
64Re1600Pm2 1600 3200 2 64 80 –
64Re1600Pm4 1600 6400 4 64 80 –
64Re6400Pm0.5 6400 3200 0.5 64 83 –
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32Num and 64Num in Table 5.2, respectively. 32Num is run to a total integration

time of 1058 orbits; it has sustained turbulence at a level of α = 0.028, where the

time average is done from orbit 20 until the end of the calculation. 64Num is run to

159 orbits, and the turbulence is sustained with α = 0.022, where the time average

is done from orbit 20 until the end of the simulation.

One particularly useful diagnostic in these vertically stratified simulations is the

space-time diagram of horizontally averaged quantities. Space-time plots of horizon-

tally averaged By and total stress normalized by the volume-averaged gas pressure

(within |z| ≤ 2H) for a 100 orbit period in the 64Num simulation are shown in

Fig. 5.4. One can see from the top panel that By undergoes sign flipping accompa-

nied by rising into the upper disk regions. This behavior has been noted in previous

vertically stratified shearing boxes (e.g., Brandenburg et al. 1995; Stone et al. 1996;

Hirose et al. 2006; Guan 2009; Shi et al. 2010; Gressel 2010; Davis et al. 2010), and

the fact that our simulations reproduce it supports the robustness of this behavior.

The period of this sign flipping is ∼ 10 orbits at both resolutions.

Two additional quantities are shown in the top panel. The white contours denote

where the gas β value switches from greater than to less than unity. For |z| " 2−2.5H ,

β < 1, except for some regions very near the vertical boundaries where β > 1 as a

result of there being no magnetic field there. The black contours denote where the

fluid becomes buoyantly unstable. Specifically, we follow the criterion of Newcomb

(1961) as outlined in Guan (2009): The gas is buoyantly stable if

∣∣∣∣
dρ

dz

∣∣∣∣ >
∣∣∣∣
ρ2g

γP

∣∣∣∣ (5.17)

where γ = 1 here because the gas is isothermal. The figure shows that for |z| " 2H ,

the fluid is unstable to buoyancy and the slope of the By structures changes in the
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Fig. 5.4.— Space-time diagram of the horizontally averaged By (top panel) and total
stress normalized by the volume-averaged gas pressure (bottom panel). The volume-
average is done for all x and y and for |z| ≤ 2H . The white contours on the top panel
denote where β goes from greater to less than unity, and the black contours mark the
boundaries between buoyantly stable and unstable gas. The horizontally averaged
By appears to rise vertically into the upper z layers, being replaced in the mid-plane
region by By of the opposite sign. The rise speed of the field increases after |z| ∼ 2H
is reached. The sign flipping in By has a period of ∼ 10 orbits.
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Fig. 5.5.— Left: Time evolution of volume-averaged By in 32Num. The volume
average is done for all x and y and for |z| ≤ 0.5H . The dashed line corresponds to
〈By〉 = 0. Right: Temporal power spectrum of 〈By〉 from the left plot, calculated from
orbit 50 to 1050. The 10 orbit period oscillations in 〈By〉 are immediately apparent in
both plots, particularly as the peak in the power spectrum. The 10 orbit oscillations
are modulated on longer timescales, ranging from tens to hundreds of orbits.

space-time diagram; the field rises faster for |z| " 2H . For |z| ! 2H , there are regions

of buoyant instability and stability, and it is within this region that the MRI appears

to be active as suggested by the bottom panel of the figure. Indeed, the total stress

appears to drop off rapidly near |z| ∼ 2H . It may be that the marginal buoyancy

stability coupled with the turbulence induced via the MRI leads to a slower rise of

field structures up until |z| ∼ 2H , where the gas then becomes buoyantly unstable.

These results are consistent with the recent ZEUS calculations of Guan (2009) with

large radial extent as well as with Shi et al. (2010) using a version of ZEUS that

includes radiation physics and total energy conservation. In particular, the top panel

of Fig. 5.4 looks very similar to Figure 6 in Shi et al. (2010).

The oscillation of the volume-averaged toroidal field (within |z| ≤ 0.5H) is de-

picted more clearly in Fig. 5.5, which shows the evolution of this field and its temporal

power spectrum. The figure shows that the 10 orbit period oscillation is dominant,

and the oscillation amplitude appears to modulated on longer timescales, ranging
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Fig. 5.6.— Time evolution of volume-averaged field components for part of 32Num.
Red is 〈Bx〉, black is 〈By〉, and blue is 〈By〉 as calculated from 〈Bx〉 using a simple
toy model discussed in the text. The volume average is done for all x and y and for
|z| ≤ 0.5H . The dashed line corresponds to 〈Bx,y〉 = 0. 〈Bx〉 has been multiplied
by a factor of 5 relative to 〈By〉 to make a more direct comparison possible. The
variations in 〈Bx〉 are accompanied by variations in 〈By〉, which are offset in time,
and the toy model shows that the evolution of 〈By〉 is controlled by shear of radial
field and buoyant removal of toroidal field.
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from tens to hundreds of orbits.

Furthermore, the averaged radial field appears to exhibit the same 10 orbit cyclic

behavior as the toroidal field, but with a slight temporal lag, as shown in Fig. 5.6.

This plot resembles very closely the behavior of the α-dynamo model derived in Guan

(2009). Specifically, the authors write simplified evolution equations for volume-

averaged horizontal field components assuming an α dynamo;

d〈By〉
dt

= −qΩ〈Bx〉 −
|vA|
2H

〈By〉+
α1

2H
〈Bx〉, (5.18)

d〈Bx〉
dt

= −
|vA|
2H

〈Bx〉 −
α2

2H
〈By〉 (5.19)

The first term on the right hand side of equation (5.18) is simply the shear of radial

field into toroidal. The second term is the buoyant rise of toroidal field, which is

estimated to have a characteristic buoyant velocity equal to the Alfvén speed, and

the Alfvén speed is approximated as the toroidal field Alfvén speed. The third term

is the α-dynamo term coupling Bx to the evolution of By. Equation (5.19) is nearly

identical, except there is no shear term and the toroidal and radial field components

have been flipped with respect to equation (5.18). Also, note that in general α1 .= α2.

Guan (2009) numerically integrated this set of equations assuming α1 = α2 =

−0.01 and found a solution that looks strikingly similar to the red and black curves in

Fig. 5.6. As a related experiment, we have numerically integrated the 〈By〉 evolution

equation using our simulation data for 〈Bx〉 (the red curve) and the initial condition

for 〈By〉 taken from 〈By〉 at t = 0. We have set α1 = 0 but have kept the shear

and buoyancy terms. The result is shown in the same figure as the blue curve.

The agreement between the actual evolution of 〈By〉 and the “modeled” evolution

suggests that the evolution of the toroidal field within the mid-plane region is almost



160

completely controlled by the shearing of radial field and the buoyant removal of the

generated toroidal field.

The remaining question, then, is what creates the radial field? If we set α2 = 0

and numerically integrate the above equations assuming some initial conditions, both

field components decay away. Along with those of Guan (2009), these results support

the idea of an α-dynamo, but what mechanism is responsible for α2 .= 0? The most

likely candidate is MRI turbulence; turbulent fluctuations create EMFs that generate

poloidal field (e.g., Brandenburg et al. 1995; Davis et al. 2010; Gressel 2010), but the

physics of how this is accomplished is still not well understood.

In Fig. 5.7, we plot the time- and horizontally-averaged vertical distributions of

various quantities. The data correspond to 32Num, and the time average is done

from orbit 100 to the end of the calculation. The figure shows that the stress drops

off rapidly near |z| ∼ 2H . The shape of the distribution is generally the same for

both Maxwell and Reynolds stresses, with the Maxwell stress always greater than

the Reynolds stress by a factor that varies from 2.3 to 5.6 depending on z; this

factor is ∼ 4 when averaged over all z, in agreement with unstratified simulations

(e.g., Hawley et al. 1995). Furthermore, as shown in the bottom two panels, the

magnetic pressure is relatively flat and less than the gas pressure for |z| ! 2H ,

whereas the upper layers of the disk are dominated by the magnetic energy which

decreases with height. These results are consistent with previous studies of isothermal

disks (Stone et al. 1996; Miller & Stone 2000; Guan 2009). What is perhaps even more

interesting, however, is that the vertical structure of the turbulence is also consistent

with simulations containing more complex physics, such as radiation pressure (Hirose

et al. 2006; Krolik et al. 2007; Hirose et al. 2009). There are some differences between

our results and other works, however. For example, we do not observe the double
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peak profile in the stress as seen in the radiation-pressure-dominated simulations of

Hirose et al. (2009).

Finally, we examine the three-dimensional structure of the magnetic field in the

fully turbulent gas. A streamline integration of 32Num at t = 100 orbits is shown in

Fig. 5.8. The field strength is denoted by color rather than field line density. Within

|z| ! 2H , the field is primarily toroidal but has a smaller scale, tangled structure

in the x and z directions. Very near the vertical boundaries, however, the field

appears to develop larger excursions from being purely toroidal. We have checked

several snapshots throughout the evolution of 32Num and find that this structure is

typical of the saturated state, except for at t = 550 orbits, in which the field near

the boundaries is primarily vertical. It is not clear whether or not the different field

structure at large |z| is a physical effect or simply due to the boundary conditions.

Consider the shearing box in Hirose et al. (2006), which uses a vertical domain twice

as large as 32Num. Comparing to their Fig. 16, the field structure of 32Num at

|z| ∼ 4H appears to be less toroidal. In fact, the field structure at this |z| in 32Num

resembles more closely the field structure at |z| ∼ 8H in their simulation. This may

indicate the role of the vertical outflow boundary conditions on influencing the field

structure very near the boundaries. Away from the vertical boundaries, the magnetic

field in 32Num appears to have a very similar structure to that in Hirose et al. (2006).

5.4.2 Turbulent and Non-turbulent States

Having established the baseline simulations without physical dissipation, we now turn

to examining the effect of changing ν and η. The relevant runs are listed in Table 5.2,

with the labeling scheme of number of grid zones per H , Re, Pm; thus, 32Re800Pm8

is a simulation at 32 zones per H , Re = 800, and Pm = 8. The total stress time
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Fig. 5.7.— Time- and horizontally-averaged vertical distributions of various quantities
in 32Num. Upper left: gas density; upper right: Maxwell (solid) and Reynolds
(dashed) stresses; lower left: gas pressure (solid), magnetic energy (dashed), and
kinetic energy (dotted); lower right: gas β defined as the time- and horizontally-
averaged gas pressure divided by the time- and horizontally-averaged magnetic energy
density. The time average is done from orbit 100 to the end of the simulation. The
stress and magnetic energy is relatively flat for |z| ! 2H but drops off substantially
for larger |z|. Outside of |z| ∼ 2H , the magnetic energy dominates over gas pressure.
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Fig. 5.8.— Magnetic field structure at t = 100 orbits in 32Num, produced via a
stream line integration. The field strength (in code units) is displayed via color and
not the density of the field lines. The magnetic field has a primarily toroidal structure
but has a smaller, tangled structure in the x and z directions.
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Fig. 5.9.— Volume-averaged Reynolds and Maxwell stresses normalized by the
volume-averaged gas pressure as a function of time in orbits in the vertically stratified
simulations at 64 (left) and 32 (right) grid zones per H . The volume-average is done
for all x and y and for |z| ≤ 2H . The black line corresponds to Re = 800 and Pm = 4,
green is Re = 1600 and Pm = 0.5, light blue is Re = 1600 and Pm = 2, dark blue is
Re = 1600 and Pm = 4, and red is Re = 6400 and Pm = 0.5. Some of the simulations
appear to undergo periods of decay followed by regeneration of the MRI. This can
occur on very long timescales of ∼ 100 orbits in some cases.

evolution for a subset of these simulations performed with 64 zones per H is shown

in the left panel of Fig. 5.9. From the figure, it would appear that 64Re6400Pm0.5,

64Re1600Pm0.5, and 64Re800Pm4 have decaying turbulence, while turbulence is sus-

tained in the remaining simulations. Furthermore, 64Re1600Pm0.5 undergoes periods

of enhanced stress followed by decay, though the overall trend is a decreasing average

stress level with time.

The right panel of Fig. 5.9 is the stress evolution for the equivalent simulations with

32 zones per H . There is considerable variability on long timescales; 32Re6400Pm0.5

in particular exhibits periods of very low stress followed by significant increases in

stress on timescales of ∼ 100 − 200 orbits. The more viscous and resistive run,

32Re1600Pm0.5, shows similar variability but on a much shorter timescale of " 10

orbits. From this figure, it would appear that the turbulence in 32Re1600Pm2

has decayed without any indication of regrowth. Furthermore, 32Re1600Pm4 and
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32Re800Pm4 remain at their maximal stress levels, which are very similar between

the two runs (likely a result of both runs having the same Pm).

Is the decay and regrowth of turbulence an artifact of using a relatively low res-

olution in these calculations? Several pieces of evidence suggest this is not the case.

First of all, both resolutions for Re = 1600, Pm = 0.5 show the same variable stress

behavior on " 10 orbit timescales. Secondly, even at 32 zones per H , dissipation

coefficients play a significant role in determining the stress level, as shown above.

The fact that the low resolution, unstratified simulations show sustained turbulence

for sufficiently small η whereas vertically stratified simulations exhibit this variability

for the same parameters suggests that the variability is a direct result of adding in

vertical gravity. Thirdly, this variability was (first) seen in the simulations of Davis

et al. (2010), which were run at a higher resolution of 64 zones per H (Davis, pri-

vate communication). We note, however, that while Davis et al. (2010) used the

same numerical algorithm as in this work, they used a different initial magnetic field

configuration and vertical boundary conditions. We will return to this point shortly.

Finally, we consider the Q criterion for resolution of the MRI given in Noble et al.

(2010),

Qi ≡
λMRI,i

∆xi
=

2πvAi

Ω∆xi
(5.20)

where the subscript i = (x, y, z) depending on the direction of interest (thus, ∆xi is

the grid spacing in direction i), and λMRI is the fastest growing MRI wavelength. For

Qi ! 6, the growth of the underlying MRI can be suppressed (Sano et al. 2004) and

we consider the MRI to be under-resolved, though this number has some uncertainty

and should be taken only as an estimate. Figure 5.10 shows Qy and Qz as a function

of time for 32Re1600Pm4 and 64Re1600pm4. The Alfvén speed for these runs is
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Fig. 5.10.— Quantitative measurement of how well resolved the MRI is in the toroidal
(Qy; left plot) and vertical (Qz; right plot) directions as a function of time. The solid
line corresponds to run 32Re1600Pm4 and the dashed line is 64Re1600pm4. The
dotted horizontal line corresponds to Q = 6, below which the MRI is considered to
be under-resolved (Sano et al. 2004). Qi is calculated using the volume average of the
magnetic energy and gas density for all x and y and for |z| ≤ 0.5H (see text). The
toroidal field MRI at both resolutions as well as the vertical field MRI at the higher
resolution appear to be reasonably well-resolved. However, at the lower resolution,
the vertical field MRI is only marginally resolved.

calculated as,

vAi =

√
〈B2

i 〉
〈ρ〉

(5.21)

where the angled brackets denote a volume average for all x and y and for |z| ≤ 0.5H .

The figure suggests that the toroidal field MRI is quite well-resolved, but that the

vertical MRI may be only marginally resolved for the lower resolution simulation.

The higher resolution Qy and Qz are roughly a factor of 2 larger than the lower

resolution Q values, which is simply a result of ∆xi decreasing by a factor of 2 for

the higher resolution. Put another way, the turbulent saturation level is roughly the

same between the two resolutions. This result coupled with the difference in how well

resolved the vertical field MRI is between the two resolutions implies the vertical field

MRI may not be playing a particularly significant role in setting the saturation level
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in these simulations.

An alternate definition for the averaged Alfvén speed is

vAi =

〈
|Bi|√

ρ

〉
. (5.22)

That is, one can volume average the Alfvén speed calculated at each grid cell. We

have produced the equivalent plots as those in Fig. 5.10 for the lower resolution and

found that the Q values calculated via this method are a factor of ∼ 1.3 smaller than

those calculated via Equation (5.21). While Equation (5.22) is more accurate than

Equation (5.21), it is more computationally demanding to calculate vA at every grid

cell since it involves analyzing a large number of three-dimensional data sets. The

Alfvén speed calculated via Equation (5.21), on the other hand, involves smaller files

containing the one-dimensional, horizontally averaged data. We use Equation (5.21)

in our calculation of the Qi values for simplicity.

If this decay/regrowth is indeed a physical effect, what is its origin? In what

follows, we carry out a number of diagnostics and experiments designed to answer

this question. We first consider the space-time diagram of the horizontally averaged

Bx and By components for several simulations. Fig. 5.11 shows this diagram for the

first 200 orbits of 32Re1600Pm0.5. As can be seen from this figure (and Fig. 5.9), the

turbulence level decreases dramatically from the beginning. This is not too surprising

considering that the same Re, Pm values give rapid decay of the turbulence in the

unstratified case; the resistivity is large enough to quench the turbulence immediately.

The space-time plots show that after this decay, there is a residual magnetic field

left within the mid-plane region. In particular, within |z| ! 0.5H , there is a net

horizontally averaged Bx < 0 and By < 0 near t = 110 orbits. The average Bx within

this region remains constant for awhile, and By increases due to the shear of Bx,
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Fig. 5.11.— Space-time diagram of the horizontally averaged Bx (top panel) and By

(bottom panel) for the first 200 orbits of 32Re1600Pm0.5. The turbulence initially
decays, leaving a net Bx within the mid-plane region, which shears into toroidal
field. This appears to eventually reenergize the MRI, but the large resistivity quickly
quenches the turbulence again.
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eventually flipping to By > 0. By t ∼ 130 orbits, the turbulence has reemerged,

and the average By rises to larger |z|. The resistivity then kills off the MRI again,

leading to another period of Bx shearing into By before the next outburst of active

turbulence.

We now consider 32Re6400Pm0.5, which, as noted above, also experiences alter-

nating states of MRI turbulence and decay. It is not immediately clear why the

turbulence should decay at all for these dissipation parameters, since the equivalent

unstratified run had sustained turbulence. We shall come back to this issue later, but

for now, we focus on what causes the MRI to kick on after the fluid spends nearly 150

orbits in the non-turbulent state. Fig. 5.12 shows the space-time plot of Bx and By

for a 300 orbit period in 32Re6400Pm0.5 during which the turbulence dies out and is

then reenergized. For clarity, we also plot the volume-averaged horizontal field, 〈Bx〉

and 〈By〉, where the average is done for all x and y and for |z| ≤ 0.5H . When the

MRI is shut off, there is a net radial field left in the mid-plane region, which then

shears into By. Indeed, the lower right panel shows a linear response in 〈By〉 to a

constant 〈Bx〉; see, e.g., 750-800 orbits.

From Figs. 5.11 and 5.12, it would seem that it is the growth ofBy that periodically

reactivates the MRI. The most unstable wavelengths of the radial and vertical field

MRI are very under-resolved; Qx ! 1 and Qz ! 1 during the non-turbulent states

of both 32Re1600Pm0.5 and 32Re6400Pm0.5, where Q was calculated as a function

of time using equations (5.20) and (5.21). Using these same equations to calculate

Qy, we find that the toroidal field MRI can reach marginal resolution in the non-

turbulent states of these runs. Quantitatively, Qy ∼ 10 − 20 in the non-turbulent

states of 32Re1600Pm0.5, though occasionally Qy = 6. The typical Qy values for the

non-turbulent states of 32Re6400Pm0.5 are similar but somewhat smaller. Also, Qy
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Fig. 5.12.— Space-time diagram of the horizontally averaged Bx (top left) and By

(bottom left) for a 300 orbit period in 32Re6400Pm0.5, and the average of Bx (top
right) and By (bottom right) over all x and y and for |z| ≤ 0.5H as a function of time
in orbits for the same 300 orbit period. During the period of no MRI turbulence, a
net radial field still exists within the mid-plane region. This field appears to flip signs
occasionally, leading to corresponding flips in By due to shear.
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is well above the marginal resolution limit when the turbulence starts to decay.

To further test the hypothesis that the toroidal field is responsible for reactivating

the MRI, we carry out two additional experiments. First, we take the state of the

gas in 32Re1600Pm2 at t = 150 orbits; at this point, the turbulence is in the process

of decaying and the average of By within |z| ≤ 0.5H , 〈By〉 = 5.9× 10−6, is relatively

small compared to the oscillation amplitude of 〈By〉 in the turbulent state, which

is ∼ 5 × 10−5. We restart this simulation and add a net By = 8.9 × 10−5 into the

region |z| ≤ 0.5H , which corresponds to a toroidal β ≈ 126 (using β defined with the

initial mid-plane gas pressure Po). This run is 32Re1600Pm2 By+ (see Table 5.2).

Figure 5.13 shows the subsequent evolution of the stress along with the stress evolution

of 32Re1600Pm2. Not only does the turbulence return, but the system undergoes

episodic transitions between turbulent and non-turbulent states on ∼ 100 orbit time

scales, as in 32Re6400Pm0.5.

In our second experiment, we initialize a stratified shearing box with all the same

parameters as in 32Num but with the magnetic field initially consisting of a very

weak radial field. Specifically, for |z| ≤ 0.5H , Bx = −
√

2Po/βx where βx = 106. This

field strength is very under-resolved; the Q value via equations (5.20) and (5.21) is

0.2, and the radial field MRI will not be activated during the evolution. Figure 5.14

shows the space-time diagrams of horizontally averaged Bx and By. The shearing

of weak radial field leads to linear growth of toroidal field. Eventually, the toroidal

field reaches a sufficient strength to activate the MRI. Once the MRI sets in, the

subsequent behavior is very similar to the other vertically stratified MRI simulations;

there are rising magnetic field structures, dominated by the toroidal component, and

the period of oscillations in the mean field is ∼ 10 orbits.

These results all suggest that as long as there is a net radial field (even a weak
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one) left within the mid-plane region, the MRI will eventually be reactivated through

the creation of a sufficiently strong toroidal field. All of the simulations in which

turbulence sets in after a period of decay show the presence of a net radial field

within the mid-plane during the non-turbulent state. 32Re1600Pm2, however, is

the only simulation that does not show the re-emergence of the MRI, despite over

1000 orbits of integration! An examination of the mid-plane region (up to |z| ! H)

in the non-turbulent state of this run shows that the residual radial field is weaker

than in the non-turbulent states of the other simulations. If this radial field would

remain constant in time, the toroidal field would continually strengthen to the point

of reactivating MRI. However, 〈Bx〉 continues to change sign even in the absence of

turbulence, though with a period of many hundreds of orbits. That is, 〈Bx〉 oscillates

about zero but with a very small amplitude, which lead to oscillations in 〈By〉 due

to shear. 〈By〉 never reaches a sufficient amplitude to reactivate the MRI, and the

simulation remains in the non-turbulent state.

Intriguingly, 〈Bx〉 oscillates about zero in all of our simulations, even in the non-

turbulent states. The cause of this behavior is unclear, but may be related to activity

near |z| ∼ 2H (see, e.g., Fig. 5.12). It is possible that the MRI is still active in this

region (i.e., due to smaller ρ, the Alfvén speed may be sufficiently large to overcome

resistive diffusion), or it could be some other mechanism at play. We will not pursue

this issue further here but will address it in future work.

We now return to the issue of why the turbulence decays in the first place. As

noted earlier and in Chapter 4, the critical Rm value below which the turbulence

decays in unstratified shearing boxes is ∼ 1000, but in these stratified shearing boxes,

we have found that Rm can be as large as 3200 and the turbulence will still decay.

One major difference between the stratified and unstratified simulations is that with
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Fig. 5.13.— Volume-averaged Reynolds and Maxwell stresses normalized by the
volume-averaged gas pressure as a function of time in orbits in 32Re1600Pm2 (solid
line) and 32Re1600Pm2 By+ (dashed line). The volume average is done over all x
and y and for |z| ≤ 2H . The run in which a net By is added into the mid-plane region
(dashed line) has the MRI reactivated, followed by subsequent periods of decay and
growth.
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Fig. 5.14.— Space-time diagram of the horizontally averaged Bx (top panel) and By

(bottom panel) for 32ShearBx. The uniform radial field that is present initially shears
into toroidal field, which eventually becomes strong enough to launch the MRI.
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Fig. 5.15.— Volume-averaged total stress normalized by the volume-averaged gas
pressure as a function of time in orbits for a series of unstratified shearing box sim-
ulations. The volume-average is done over the entire simulation domain. In each
plot, the black line is from a simulation with only numerical dissipation. The colored
lines are simulations with physical dissipation, initiated from the numerical dissipa-
tion run at orbit 100. The red lines correspond to Re = 1600, Pm = 2 and the blue
line is Re = 1600, Pm = 1. The top panel is initiated with a background toroidal
field characterized by β = 1000, and the bottom panel has β = 10000. The weaker
toroidal field appears to be killed off at a lower resistivity compared to the stronger
background field.
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vertical gravity, the net magnetic field within a localized region of the domain changes

due to buoyancy.

What is the effect of changing the dissipation coefficients for different background

field strengths? This question was discussed in the recent work of Longaretti & Lesur

(2010); they found that the dependence of angular momentum transport on Rm and

Pm became steeper for weaker background (vertical) fields in unstratified shearing

boxes. We carry out similar (though less extensive) experiments here by first initial-

izing two unstratified simulations with no physical dissipation and with a uniform,

net toroidal field, one with βy = 1000 and the other with βy = 10000. To shorten the

time to MRI saturation, we also include a poloidal field loop of the exact same struc-

ture, size, and strength (βp = 1600) as present in 32FTNum. All other parameters,

including resolution and initial conditions, are identical to those in 32FTNum, and

these simulations are labeled as 32FTNumβ1000 and 32FTNumβ10000; see Table 5.1.

These simulations were evolved for 100 orbits, and then we restarted with Re = 1600

and with Pm = 1 and 2.

The time history of the volume-averaged stresses for these simulations is shown

in Fig. 5.15. For βy = 1000, the turbulence survives at Rm = 3200 but dies at

Rm = 1600, whereas for βy = 10000, the turbulence dies even at Rm = 3200. It

would seem that for each increase in βy by a factor of 10, the critical Rm value

increases by roughly a factor of 2; it becomes easier to kill off the MRI with a lower

resistivity as the background toroidal field is weakened. While Longaretti & Lesur

(2010) did not address the issue of critical Rm values, their results with net vertical

fields are generally consistent with ours. The resistivity seems to have a more profound

effect on the turbulence for weaker background fields.

There is one caveat to this result worth mentioning. If we use equations (5.20)
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and (5.21) (here, we volume average over the whole domain) to calculate the Qy

corresponding to the initial background field strengths we find thatQy = 6.4 andQy =

2 for βy = 1000 and βy = 10000, respectively; the toroidal field MRI is marginally

resolved in the βy = 1000 simulation and under-resolved in the weakest field case.

However, there are two additional issues to consider. First of all, despite these low

Qy values, the first 100 orbits, calculated without physical dissipation, show sustained

turbulence, suggesting that at least some MRI modes are being resolved. It is only

when resistivity is turned on that decaying turbulence is observed. The low Qy

values do introduce uncertainty on the values for the critical resistivity, but the effect

of resistivity is unmistakeable. Secondly, these unstratified simulations still serve as

a guide for why the turbulence decays in the stratified simulations. That is, if the

MRI is under-resolved in these unstratified runs, it will be equally under-resolved in

the stratified simulations when the background toroidal field is weak enough.

How does this resistivity effect relate to the decay of turbulence in the vertically

stratified simulations with Rm = 3200? We know that the average toroidal field,

〈By〉, within the mid-plane region oscillates around zero with a period of 10 orbits.

Thus, every 10 orbits or so, 〈By〉 is conceivably weak enough for resistivity to kill the

turbulence, but the turbulence remains sustained for many of these 10 orbit periods.

Furthermore, averaging By within some vertical distance from the mid-plane erases

information about the field structure there; e.g., 〈By〉 might be small but there could

still be strong toroidal fields of opposite polarity close to z = 0. The point is, one

cannot necessarily expect the turbulence to decay away strictly whenever 〈By〉 drops

below a certain (small) value.

As noted above, the 〈By〉 oscillation amplitude appears to be modulated by a

longer timescale, more on the order of ∼ 100 orbits (see, e.g., Fig. 5.5). This behavior
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is present in all simulations with and without physical dissipation. It is interesting

that this is roughly the same timescale over which the turbulence appears to decay

and regrow in the Rm = 3200 simulations. Comparing the time evolution of 〈By〉

for |z| ≤ 0.5H with the evolution of the total stress shows that the minima in the

oscillation amplitude are generally correlated with the decay of turbulence. One

exception is near 200 orbits in 32Re6400Pm0.5 in which 〈By〉 becomes rather small,

but the turbulence remains active, though relatively weak compared to the fully

active state. This correlation implies that if the mean toroidal field near the mid-

plane remains sufficiently small for some time, perhaps due to the longer timescale

variability, resistivity can catch up with the MRI and cause eventual decay.

All of the results up to this point show that there exists a critical Rm below which

the turbulence experiences this intermittency and that this critical value is Rm <

6000. We carry out two more stratified simulations with Rm ∼ 6000 but different Pm

values in order to further test this hypothesis. The first simulation is 32Re800Pm8;

thus, Rm = 6400, and Pm is relatively large. The turbulence is sustained over a long

time, nearly 330 orbits, without any sign of decay. The dissipation coefficients of the

second simulation, 32Re6250Pm1, are chosen to match the relatively high Rm, low

Pm simulation that decays in the zero net flux shearing box (see Fromang et al. 2007,

and Chapter 4). This simulation also remained sustained for nearly 330 orbits.

In summary, for sufficiently small Rm, stratified MRI turbulence can decay away,

leaving a net radial field within the mid-plane region, which shears into toroidal field.

Once this toroidal field reaches a sufficiently large amplitude, the MRI is reactivated,

the turbulence is sustained for some duration and then decays again, repeating this

pattern. This behavior appears to be independent of the Pm values we have probed,

except for near Rm = 3200. In particular, 32Re800Pm4 has sustained turbulence,
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whereas 32Re1600Pm2, 32Re1600Pm2 By+, and 32Re6400Pm0.5 do not. In the

higher resolution runs, 64Re800Pm4 and 64Re6400Pm0.5 show decay but 64Re1600Pm2

appears to be sustained (though again, these simulations were not integrated very far).

While Pm may play a role here, the line between sustained and intermittent turbu-

lence is unlikely to be hard and fast, and many factors probably contribute to the

nature of the turbulence near this Rm value.

Is this the same mechanism responsible for the variability observed in the simu-

lations of Davis et al. (2010)? First of all, the largest Rm used in their simulations

was Rm = 3200, consistent with the largest critical Rm in our simulations. Secondly,

an examination of the space-time data from their simulation with Re = 800, Pm = 2

(kindly provided by the authors) shows the same behavior as we have observed here; a

net radial field remains within the mid-plane region after decay, shearing into toroidal

field, from which the MRI is reactivated.

Lastly, we examine the magnetic field structure in the shearing box in the non-

turbulent state. Figure 5.16 shows the equivalent information as Fig. 5.8, but for

orbit 550 of 32Re1600Pm2 By+. For |z| " 2H , the field remains mainly toroidal

but with some relatively large excursions, resembling the field structure in this region

during fully active turbulence. Within 2H , the field is almost completely toroidal,

and any small radial (or vertical) field present within this region is not visible in

this image. We also examined the azimuthally averaged poloidal field structure in

several snapshots of this run. We found that the structure of the field was different,

depending on which snapshot we examined. At some times, the poloidal field within

2H is almost completely radial, with very little vertical field; at other times, the

vertical and radial fields are comparable in size such that the field takes on a more

loop-like structure.
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Fig. 5.16.— Magnetic field structure at t = 550 orbits in 32Re1600Pm2 By+, pro-
duced via a stream line integration. The field strength (in code units) is displayed
via color and not the density of the field lines. The color scale is the same as that in
Fig. 5.8 for comparison. This snapshot corresponds to a state in which the turbulence
has decayed. The magnetic field is almost completely toroidal near the mid-plane but
has a tangled structure in the upper |z| regions, more reminiscent of the active state.
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5.4.3 The Prandtl Number Effect on Sustained Turbulence

In this section, we investigate how Pm affects angular momentum transport in sus-

tained turbulence simulations. Does the same relationship between α and Pm present

in unstratified shearing boxes carry over to stratified simulations? The time evolution

of the volume-averaged total stress divided by the volume-averaged gas pressure for

the sustained turbulence simulations is shown in Fig. 5.17. The volume average is

done for all x and y and for |z| ≤ 2H . As the figure shows, there is a general increase

in the turbulence levels with Pm, but there is also significant temporal variability in

the stress. As a result, the curves overlap at certain times, much more so than for

unstratified turbulence (see Fig. 5.2).

This feature is also shown by Fig. 5.18, which displays the α parameter (as defined

above) for the unstratified (left panel) and stratified simulations (right panel). The

time average for the unstratified simulations is the same as in Fig. 5.3, from orbit 120

to the end of the calculation, and for the stratified simulations, this average is done

from orbit 150 until the end of the simulation. The error bars denote one standard

deviation about the temporal average. While there is a clear dependence of α on Pm

in the stratified simulations, the temporal variability is significantly larger relative to

the trend with Pm than in the unstratified case. Taking a linear fit in log-log space,

we again calculate δ in α ∝ P δ
m; δ = 0.54 for unstratified turbulence (from § 5.3), and

δ = 0.25 for stratified calculations.

In Fig. 5.19, we show the vertical profile for the total stress in the sustained

turbulence runs calculated via temporal and horizontal averaging. The time average

was done from orbit 150 to the end of each simulation. Increasing Pm appears to

increase the stress for nearly all z, and in all cases the stress drops off dramatically

near |z| ∼ 2H , consistent with the baseline simulations. Furthermore, 32Re800Pm8
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appears to have a sharper peak in the stress profile near z = 0, whereas the other

simulations have a flatter stress profile for |z| ! 2H . Creating the same vertical stress

profiles for different temporal averaging windows produces the same general results;

the stress increases with Pm and 32Re800Pm8 has a sharper peak near the mid-plane.

In some cases, however, the stress does not necessarily increase monotonically with

Pm at |z| " 2H . These results are generally consistent with the dependence of stress

on Pm for unstratified simulations; where the MRI is at work, increasing Pm leads to

an increase in stress.

Finally, we examined the vertical profile for the same quantities as in Fig. 5.7. We

found that these profiles in the sustained turbulence simulations are all very similar

to each other and to 32Num; the general vertical structure of the disk does not appear

to be sensitive to Pm.

5.5 Summary and Discussion

We have carried out a series of shearing box simulations with the Athena code to

characterize the behavior of MRI-driven turbulence in the presence of both vertical

gravity and physical dissipation. Until the recent work of Davis et al. (2010), the role

of physical dissipation in setting the level of angular momentum transport was studied

solely in unstratified simulations. As Davis et al. (2010) has shown, however, this is

an oversimplification; turbulence that decays in unstratified simulations is sustained

in the presence of vertical gravity. These authors also observe intermittent turbulence

in their simulations with physical dissipation; the turbulence decays away but then

regrows on the timescale of ∼ 100 orbits.

Our primary goal in this study has been to understand the mechanism behind this

behavior and determine its relevance to astrophysical disk systems. Our simulations
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Fig. 5.17.— Volume-averaged total stress normalized by the volume-averaged gas
pressure as a function of time in orbits in the lower resolution, vertically stratified
simulations where turbulence remains sustained. The volume-average is done for all x
and y and for |z| ≤ 2H . The left plot is the first 120 orbits of the evolution, whereas
the right plot is 350 orbits of the evolution. The black line corresponds to Re = 800
and Pm = 4, dark blue is Re = 1600 and Pm = 4, magenta is Re = 800 and Pm = 8,
and brown is Re = 6250 and Pm = 1. The vertical axis has been chosen to match
that of Fig. 5.2 for comparison.

Fig. 5.18.— Time- and volume-averaged stress parameter α as a function of Pm in
the unstratified FT simulations (left plot) and the stratified simulations (right plot);
α ≡ 〈〈ρvxδvy − BxBy〉/〈P 〉〉. The average is calculated over the entire domain (all
x and y and for |z| ≤ 2H) and from 120 (150) orbits to the end of the simulation
for the unstratified (stratified) runs. The dashed lines are linear fits to the data in
log-log space, and the error bars denote one standard deviation about the temporal
average. Both cases show a clear Pm dependence. However, in the stratified runs,
this dependence is less steep, and there is considerable temporal variability.
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Fig. 5.19.— Time- and horizontally-averaged total stress as a function of z on a linear
(left) and logarithmic (right) vertical scale. The stress is normalized by the time- and
volume-averaged gas pressure, where the volume average is done for all x and y and
for |z| ≤ 2H . The time average is done from orbit 150 until the end of each simulation.
The solid line corresponds to 32Re800Pm8, the dashed line is 32Re800Pm4, the dotted
line is 32Re1600Pm4, and the dot-dashed line is 32Re6250Pm1. The stress appears
to increase with Pm for nearly all z, and for all Pm, there is a sharp decrease in the
stress for |z| " 2H .

are thus an extension of those in Davis et al. (2010), but with several improvements.

First, we have implemented more realistic, outflow boundary conditions in the vertical

direction, whereas Davis et al. (2010) use vertically periodic boundaries. Second, in

order to capture this intermittent turbulence, most of our simulations were run for

significantly longer integration times than is usually done in shearing box calculations.

Given the long evolution times probed here, it was necessary to run these simula-

tions at a resolution of 32 grid zones per H . Before running the vertically stratified

simulations, we executed a series of unstratified calculations to determine the res-

olution at which the influence of physical dissipation on the MRI is resolved. We

found that the effect of physical dissipation on MRI saturation is reasonably well

converged at 32 zones per H : α increases with Pm at this resolution, although with a

steeper dependence than at higher resolution, and α is roughly constant with resolu-

tion above 32 zones per H for a given set of Re, Rm, and Pm values. This in itself is
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an interesting result since it shows that the higher resolutions used in Fromang et al.

(2007), Lesur & Longaretti (2007), and Chapter 4 may not be necessary to capture

the general effects of physical dissipation.

We found that the inclusion of vertical gravity influences MRI turbulence and

the resulting disk structure in several ways. First, for |z| ! 2H , the time- and

horizontally-averaged turbulent energy and stresses are roughly constant with height,

the magnetic field is only marginally stable to buoyancy, and β > 1. In the upper

regions of the disk, on the other hand, the turbulence is significantly weaker, β < 1,

and the field is buoyantly unstable, rising away from the mid-plane at a faster rate

than for |z| ! 2H .

These results, which are consistent with the ZEUS-based results of Guan (2009),

suggest that there are two separate vertical regions in these disks. For |z| ! 2H , the

disk is fully turbulent with enhanced Maxwell and Reynolds stresses and subthermal

magnetic fields. Here, the MRI is fully at work and leads to occasional changes in

the buoyant stability of the magnetic field such that predominantly toroidal field

structures slowly rise away from the mid-plane. Outside of this region, the MRI

appears to be stable, and the fluid is characterized by a superthermal field that

rapidly rises out of the disk via buoyancy. These results suggest that to capture the

behavior of the vertically stratified MRI, one need not go much beyond ±2H from the

mid-plane. This is confirmed by a few additional simulations in which we extended

the outer boundary to 6H from the mid-plane instead of 4H . We found no difference

in the vertical structure of the disk, the volume averaged stress levels, or the temporal

variability of the system.

The second major effect resulting from vertical gravity is considerable temporal

variability: a strong 10 orbital period variability in the magnetic field within the
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mid-plane region, which is modulated on timescales of tens to hundreds of orbits.

The 10 orbit variability has been seen in many previous studies of vertically stratified

shearing boxes (e.g., Stone et al. 1996; Hirose et al. 2006; Guan 2009; Shi et al. 2010;

Gressel 2010; Davis et al. 2010) and originates from the buoyant rise of predominantly

toroidal field from the mid-plane region; after this buoyant rise, a field of opposite

sign takes it place at the mid-plane. We found that the evolution of this toroidal field

is almost entirely controlled by the shearing of radial field and buoyancy.

The longer timescale variability, which appears in all of our simulations, is a new

discovery. We do not know the origin of this variability, but there is evidence that it

plays a role in the decay and subsequent regrowth of the MRI in sufficiently resistive

disks, which occurs on a similar timescale. When the averaged mid-plane toroidal field

remains relatively weak for a sufficiently long time, resistivity wins over turbulent MRI

driving, and the turbulence decays. Any radial field left within the mid-plane region,

even if weak, will shear into toroidal field; this mechanism is completely independent

of physical dissipation. Once the toroidal field reaches a particular strength, the MRI

is re-energized, and the disk becomes turbulent again.

This behavior is not particularly sensitive to Pm and is the same as that reported

by Davis et al. (2010). Thus, it does not appear to be related to the dynamo is-

sue of Pm ∼ 1 in zero net magnetic flux shearing boxes, which Davis et al. (2010)

specifically investigated, and is instead a robust behavior that emerges whenever the

disk is sufficiently resistive. The critical Rm below which the turbulence experiences

these alternating periods of decay and active turbulence is 3200 ! Rmc ! 6000. If

Rm > Rmc, the turbulence remains sustained for the dissipation parameters explored

here, and averaged stress levels increase with Pm for all z, though with a less steep

dependence of α on Pm compared to unstratified simulations.
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What do these results imply for the MRI and its application to astrophysical disks?

First, our analysis has shed light on the long-sought-after MRI dynamo. The cycles of

activity and inactivity observed in our high-resistivity simulations in addition to our

analysis of the temporal behavior of the horizontal field in our baseline runs directly

demonstrate the important role played by the shearing of radial field into toroidal

field. This orbital shear is a fundamental component to the behavior of the MRI and

in the presence of vertical gravity, leads to significant temporal variability and allows

the MRI to function even in highly resistive disks. The generation of radial field from

toroidal can be modeled by a simple α dynamo and is likely linked to the turbulence

of the MRI itself. Furthermore, since this same behavior is observed in the zero net

flux simulations of Davis et al. (2010), the MRI does appear to constitute a dynamo

in vertically stratified local simulations.

The temporal variability present in the higher resistivity simulations could have

potential observational implications for several types of accretion disks. Indeed, pro-

toplanetary disks have large regions of low ionization gas, including the dead zone

layer (Gammie 1996). Dwarf nova disks also contain regions of partial ionization, and

it is intriguing that the Rm values in these systems (see Gammie & Menou 1998) are

on the same order as the critical Rm ∼ 103 for the intermittent turbulence behavior

observed in our simulations. Even some regions of AGN disks may have moderately

high resistivity, though typical Rm values are probably larger than those in dwarf

nova systems because of the larger disk scale height (Menou & Quataert 2001).

It is tempting to associate the peaks and dips of turbulent activity in our sim-

ulations with the outbursts and variability observed in these systems. Of course,

there remains much work before such a connection can be formed. In particular,

more realistic simulations will have η (and ν) depending on fluid quantities, such as
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temperature and density, rather than being constant throughout the disk. Further-

more, the influence of other non-ideal MHD effects on the MRI needs more study.

The Hall effect is often times just as important as Ohmic resistivity in astrophysi-

cal environments (Wardle 1999; Balbus & Terquem 2001; Balbus 2003), and while

simulations including both Hall and Ohmic terms have been carried out by Sano &

Stone (2002a) and Sano & Stone (2002b), there remains more parameter space to

explore and physics to include. Lastly, we note that if η is so large that no MRI

modes are present, the temporal variability we observe will likely not exist at all and

the turbulence will be completely quenched.

What of the Pm effect when the resistivity is low and turbulence is continually

sustained? This question holds relevance for hot, fully ionized disks, such as X-ray

binaries. While our simulations show that angular momentum transport increases

with Pm in sustained transport, the Re and Rm values of such disks are significantly

larger than the values probed here. Whether or not the Pm effect continues into the

large Re/Rm regime remains very much an open area of research.

Finally, one particular field geometry that has not been explored here or in most

vertically stratified local simulations is that of a net vertical field. These simulations

are quite challenging; the channel mode dominates the solution (Miller & Stone 2000;

Latter et al. 2010), leading to very strongly magnetized regions of the disk that

can often times cause the numerical integration techniques to fail (but see Suzuki &

Inutsuka (2009), who produced a stable evolution).

In summary, we have explored the spatial and temporal behavior of the MRI

in the presence of both vertical gravity and physical dissipation. We found that for

moderately resistive simulations, the local domain cycles between states of turbulence

and decay, and that orbital shear of radial field into toroidal field is essential to both
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this behavior as well as the temporal variability of fully active turbulence. In addition,

when sustained, turbulent stresses increase with Pm, in agreement with unstratified

simulations. Our calculations are an important stepping stone towards more realistic

simulations that include temperature-dependent ν and η.
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Chapter 6

Conclusions and Outlook

The MRI is currently the most promising candidate for angular momentum transport

in magnetized accretion disks. All that is required is orbital shear and sufficient

ionization to couple the gas to the magnetic field; the result is sustained turbulent

outward angular momentum transport. The past two decades have firmly established

this conclusion both analytically and in local and global simulations for many different

magnetic field configurations and parameters.

Despite this tremendous progress, there has not yet been any direct connection

made between observations and these theoretical models. This is partially the fault

of observations, as our instruments are not sensitive enough to observe signatures

of MRI-induced turbulence. But current simulations of this turbulence are equally

lacking in that they cannot yet address aspects of MRI turbulence that could be

connected with observations. The holy grail of accretion disk simulations is high

resolution, global simulations of MRI turbulence with a realistic prescription for ra-

diative transfer. One could then construct model observations from such simulations

to compare to actual observations. Currently, however, such calculations are far from

feasible.
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Another approach is to construct a phenomenological disk evolution model, which

captures the essential MRI physics in a sub-grid manner. The primary example of disk

phenomenology is the α-disk model of Shakura & Syunyaev (1973), which assumes

that the turbulent stresses are determined by the gas and radiation pressure of the

fluid, though it does not make any assumptions as to the source of this turbulence.

But numerical studies of the MRI have shown that turbulent stress is not dependent

on these pressures and the α model is not quite the full picture. So then, what

physical properties of the disk do play a role in setting the saturation amplitude of

the MRI?

Recently, it has become evident that shear viscosity (ν) and Ohmic resistivity

(η) have a particularly strong influence over the MRI (e.g., Fromang et al. 2007;

Lesur & Longaretti 2007), and in this thesis, we have carried out local shearing box

simulations with Athena in order to obtain a deeper understanding of how the viscous

and resistive dissipation scales affect MRI-driven turbulence. We first characterized

the numerical dissipation of our code in the absence of vertical gravity, which is an

essential step towards including more realistic prescriptions for dissipation. We then

characterized the effect of ν, η, and Pm on the MRI, both in the presence and absence

of vertical gravity.

Our primary conclusion is that the viscous and resistive dissipation scales do

significantly affect the saturation level of the MRI for the (admittedly small) Reynolds

numbers probed in these calculations. This is perhaps not surprising considering the

work of Fromang & Papaloizou (2007), Fromang et al. (2007), and Lesur & Longaretti

(2007), in which this dependence was first discovered. Our calculations, however,

expand upon this preliminary work and elucidate several unresolved issues.

First, we found that the effective numerical Pm of Athena is ∼ 2 independent of
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resolution and field geometry. This result shows that the decrease in MRI saturation

with increasing resolution in the zero net flux model is not related to a change in

numerical Pm. Furthermore, the numerical Pm and Reynolds numbers calculated

from this analysis should lead to decay if they were equivalent to a physical Pm

and Reynolds number. Instead, these simulations show sustained turbulence, which

indicates that numerical dissipation cannot be equated to physical dissipation. Thus,

to truly understand how the MRI operates in local simulations, one must include

physical dissipation.

Second, the dependence of the turbulent saturation level on Pm is a robust effect,

as it is present for Athena as well as for ZEUS, and it exists for net toroidal, net

vertical, and zero net magnetic flux. However, in contrast to the zero net flux model,

Pm < 1 does not lead to decay if there is a net field penetrating the local domain. In

the case of a net background field, only a sufficiently high resistivity can quench the

turbulence.1

Third, the basic Pm effect remains when vertical gravity is included. However, if

the turbulence is sustained, the dependence of stress on Pm is weaker and considerably

more variable in time than in unstratified simulations. The critical parameter in these

simulations is again resistivity; if η is large enough, the turbulence undergoes periods

of decay followed by regrowth on timescales ranging from 10-100 orbits. The regrowth

of the MRI is a direct result of the shearing of a weak radial field into a toroidal field.

When this field reaches sufficient strength, the MRI is reactivated.

In summary, while Pm is an important parameter in determining the level of

angular momentum transport, it may not be as critical as was once thought, i.e., in

the simulations of Fromang et al. (2007). Decay of turbulence for Pm < 1 appears

1We did not examine the net vertical field model in this work, but based upon the results of
Fleming et al. (2000), we suspect that a sufficiently large η can quench turbulence in this case as
well.
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to occur only for unstratified, zero net field simulations, and these models are not

particularly realistic. For more realistic models, resistivity is the more important

parameter in determining whether or not the turbulence will decay. Furthermore, the

actual dependence of the time- and volume-averaged stresses on Pm is relatively weak

in the more realistic simulations that include vertical gravity and some form of net

background field. It is also entirely possible that for sufficiently small ν and η, the Pm

dependence vanishes completely; there is even some hint of this in the calculations

presented in Chapter 4. This would spell doom for models put forth to describe

state transitions in fully ionized, black hole accretion disks via the steep temperature

dependence of Pm (Balbus & Henri 2008).

However, more work remains before jumping to any such conclusions. For instance,

a detailed Fourier analysis of the energy transfer between scales and magnetic/velocity

fields could reveal the presence or absence of an inverse cascade that is enhanced as

Pm increases. If such an inverse cascade does occur, one could then examine how

this cascade changes as the dissipation scale is pushed towards larger wavenumbers.

While we may not yet be able to resolve the ν and η values of real astrophysical

disks, this analysis could help us to extrapolate the Pm effect to significantly smaller

ν and η. This avenue of research is one of many that the author of this thesis plans

to pursue.

If the Pm effect does indeed vanish for small ν and η, there are many systems

(e.g., dwarf nova and protostellar disks) where η is large enough to play a role in

MRI evolution. Another task that I am very interested in pursuing is local sim-

ulations of the MRI with a more realistic prescription for η, such as one that is

temperature-dependent. Coupled with the variability already observed in our con-

stant η simulations, such a study could provide some very useful insights into the
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observed variability and outburst behavior of these moderately resistive accretion

systems.

As far as simulations go, we are now much closer to understanding what sets the

saturation level of the MRI : background field strength and Pm matter. But is there

anything else? There are, of course, other non-ideal MHD effects such as the Hall term

and ambipolar diffusion, which have only barely been explored in the context of the

MRI (e.g., Sano & Stone 2002a,b; Low et al. 1995). Another worthwhile endeavour,

then, is to better understand the role that these additional effects play. Continued

investigation of the interaction of radiation and MRI-driven turbulence is also called

for; such work would be an extension of the excellent progress made by several groups

(see, e.g., Turner 2004; Hirose et al. 2009).

Another issue in constructing a phenomenological disk model is that of thermo-

dynamics. Does the assumption made by the α model that turbulent heating and

angular momentum transport are locally correlated hold true in MRI turbulence?

The analytic work of Balbus & Papaloizou (1999) suggests that it should hold. In

this thesis, we have carried out preliminary analyses to directly address this question

in the context of numerical simulations. We found that the extraction of free energy

from the shear flow by the MRI followed by the thermalization of this energy happens

on a timescale much less than an orbit, ∼ 0.2 orbits. While this seems to support

the idea of local turbulent heating, the simulations involved did not include physical

dissipation or vertical gravity. An important extension to this work, then, would be

a detailed study of disk heating in the context of more realistic physics, possibly even

with temperature- and density-dependent dissipation.

It is clear that there remains much work to be done in studies of MRI-driven ac-

cretion. But progress has been excellent, and ever increasing computational facilities
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allow more complex physics to be incorporated and higher resolutions to be achieved.

Thus, the future will likely see continued progress, and accretion disk theory will no

doubt remain an active and vibrant field for some time.
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