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Introduction

Many problems related to difficult machine learning problems are symptoms of shortcut

learning. Shortcut learning, as Geirhos et al. puts it, are “decision rules that perform well on

standard benchmarks but fail to transfer to more challenging testing conditions, such as

real-world scenarios” (2020). In this paper, shortcuts are more specifically identified to be

decision rules that perform well on in-distribution datasets, but lower performance in

out-of-distribution datasets. At its core, shortcuts reveal a mismatch between the model’s

intended solution and the learned solution; they are decision rules that do not align with the logic

the model should have learned.

Figure 1: Examples of deep neural networks relying on shortcut features instead of learning the intended solution.

Figure taken from Geirhos et al. (2020).

As shown in Figure 1, examples of shortcuts can include using a grassy background to

identify the presence of sheep, or using what hospital a scan was taken from to determine if a

https://www.zotero.org/google-docs/?7SR9ka


patient has pneumonia instead of looking at the lung scan itself. Utilizing the wrong logic can

lead to incorrect results when testing on data outside of the original testing set. These flaws in

logic are extremely detrimental in real-life applications of machine learning technology; if a

wrong conclusion is made with regards to cancer screening tests, autonomous vehicle driving, or

job applications, the technology can be life-threatening.

Figure 2: Toy example of a neural network learning to classify a dataset of stars and moons using the object’s

location instead of the object’s shape. Figure taken from Geirhos et al. (2020).

Shortcuts are often difficult to identify. In the star and moon example in Figure 2, there

are three different possible decision rules. The model could classify each image using the

object’s shape, location, or number of white pixels. Classification by shape is the intended

solution, while the location and number of white pixels are shortcuts. In the field of natural

language processing (NLP), a model can rely on a word’s frequency in the training set to

determine whether the input text has a positive or negative connotation, or it could analyze the

last sentence of a paragraph to make a decision instead of taking into account the whole input

(Du et al., 2021). These models can produce high accuracy results, but the model itself would use

the wrong features for predictions, resulting in flawed logic connecting inputs to outputs

(Geirhos et al., 2020). As a result, these models would perform poorly on out-of-distribution

datasets. Identifying shortcuts in a model will allow researchers to develop better datasets and

https://www.zotero.org/google-docs/?CFT7Xd
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create machine learning models that learn the intended solution instead of relying on superficial

correlations.

Related Works

There have been many studies published recently regarding shortcut identification and

mitigation, with the most notable being Geirhos et al. and Du et al.

Geirhos et al. provides the definition of a shortcut and provides a tier list of decision rules

consisting of 1) all possible decision rules including non-solutions, 2) training solutions

including overfitting solutions that work well on the training set but not on in-distribution data

sets, 3) in-distribution test solutions, including shortcuts, that solves the training and

in-distribution test sets, and 4) the intended solution that uses the intended features and performs

well on out-of-distribution datasets (2020).

Du et al. identifies the first type of bias in NLP: lexical bias (2020). The researchers

found that NLP models have a strong preference for features located at the head of the

distribution, or features that are introduced first or most frequently (Du et al., 2021). This

preference results in a lack of attention to important information that may be at the tail of the

distribution, and the model may create shortcuts related to the features at the head. The paper

also identifies two types of biases in machine learning models: data bias, in which the model

learns superficial correlations due to the training set’s data distribution, and model bias, where

different models will have different outcomes given the same training data. The researchers

proposed a mitigation framework that regularizes the distribution of features and suppresses the

model from making overconfident predictions when the shortcut is deemed highly apparent (Du

et al., 2021).

https://www.zotero.org/google-docs/?IHPjEK
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A second type of bias in NLP is the overlap bias, in which high word similarity between

the premise and the hypothesis lead to predictions of entailment and low similarity results in

contradiction (McCoy et al., 2019). A third type of bias present in NLP is the negation bias.

Poliak et al. found that negation in the hypothesis side is strongly correlated with the

“contradiction” label in SNLI, whereas Schuster et al. found that negation in the claim side is

strongly correlated with with “refutes” label in FEVER (Poliak et al., 2018; Schuster et al.,

2019).

A case study centered around visual commonsense reasoning found that question

answering models, or models that try to determine the right answer choice to a question, do not

perform as intended because they often cheat by using the frequency of words in the answers, or

look at how many words the question and each answer choice have in common (Ye & Kovashka,

2021). The researchers approached the problem with an iterative masking technique, which ran

the model several times while deleting, or masking, a different part of the input each time to

determine which words are important and which words or phrases the model needs to ignore

while making predictions.

Yang and Wang introduced a framework that automatically identifies shortcuts using

interpretations on the model’s behavior (2019). The framework consists of a cross-dataset

analysis that identifies tokens that are more likely to be genuine than spurious, and

knowledge-aware perturbation that checks how stable the prediction is by perturbing the

extracted token to semantically similar neighbors. A weakness in Yang and Wang’s paper

includes the method’s reliance on attention-based interpretation scores and its lack of dataset

analysis (2019).

https://www.zotero.org/google-docs/?HNWOkP
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Methods

Setup

Two models were used in the experimental setup: BERT-base and RoBERTa-base (Liu et

al., 2019; Tenney et al., 2019).  Three different tasks were considered for each model, with an

in-distribution and out-of-distribution dataset for each task: classification used IMDB and Yelp,

natural language inference used SNLI and MNLI, and paraphrase identification used QQP and

TwitterPPDB for the task’s in-distribution and out-of-distribution dataset, respectively.

Interpretation Methods

The accuracy of the model in terms of learning the intended solution can be measured

using a model’s interpretation. Interpretations shed light onto what logic a model uses to solve a

problem. When the interpretation matches the intended solution, then the model has “learned”

correctly and can solve the problem with the intended logic.  Without interpretations, the model

is a black box: the user can only see the inputs and outputs of the model, but there is no

information about how the label is assigned. With the help of interpretation methods to explain a

model’s decisions, the technical project researchers can determine the correctness of a model and

try to identify shortcuts present in the model.

https://www.zotero.org/google-docs/?XXNMtX
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Figure 3. APOC scores of integrated gradients, sampling shapley, attention-based methods, and local interpretable

model-agnostic explanations on the IMDB dataset using the BERT-base model.

The interpretation methods considered in this paper’s experiments include integrated

gradients (IG), sampling shapley, attention-based methods, and local interpretable

model-agnostic explanations (LIME) (Castro et al., 2009; Pruthi et al., 2020; Ribeiro et al., 2016;

Sundararajan et al., 2017). The four interpretation methods were run using the BERT-base model

on the IMDB dataset. Results showed that sampling shapley is the best method, but it takes a

very long time to run. As a result, sampling shapley was initially used for experiments but the

interpretation method was later switched to attention-based methods for efficiency.

Experiments

The project used interpretation methods to analyze model behavior and try to identify

shortcut features from model explanations and data statistics using local mutual information

(LMI). LMI focuses on the correlation between a feature and a label and can be calculated from a

model’s explanations. Further experiments tried to invoke randomness to see if variance in LMI

would help identify shortcut features, which would be more likely to differ in importance

between runs of different randomness.

The experiments initially started with the pretrained models BERT and RoBERTa. The

models were each fine-tuned using the three in-distribution datasets (IMDB, SNLI, QQP) and

three different random seeds per dataset (42, 400, 4000) to produce 18 different models. Each

model was tested on in-distribution and out-of-distribution datasets to produce the model’s

accuracy, and then explanations were generated using the sampling  shapley interpretation

method. LMI statistics were then generated using the three different random seed models for

each dataset/model combination and the results were analyzed. Further experiments used

https://www.zotero.org/google-docs/?DhqAVM
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different model ensembles, training dynamics, and data bootstrapping with an attention-based

interpretation method to try to identify shortcut features.

Results

Results from the experiments consisting of the BERT and RoBERTa model on the

in-distribution and out-of-distribution datasets for the three NLP tasks with three different

random seeds are found in Figure 4. There is little difference between the testing accuracy for

different random seeds with the same model and dataset. However, there is a significant accuracy

drop from testing a model on the in-distribution dataset versus the out-of-distribution dataset for

each task except classification.

Testing Accuracy

Task Dataset Seed 42, Run 1 Seed 400, Run 2 Seed 4000, Run 3

BERT RoBERTa BERT RoBERTa BERT RoBERTa

Classification IMDB 91.571 93.572 91.351156
64772272

93.124149
5237333

91.623309
05306972

93.2282077
9636596

Yelp 90.989 93.103 91.3 91.923684
21052632

90.313157
89473683

93.5078947
368421

Natural
Language
Inference

SNLI 90.205 91.079 90.469416
78520626

91.058727
90083316

90.123958
54501118

90.9774436
0902256

MNLI 74.485 77.155 73.201548
80782556

78.214795
19054412

73.833299
36824944

76.6863664
1532504

Paraphrase
Identification

QQP 91.422 91.457 91.224338
36260203

91.620084
09596834

91.239178
82760327

91.3232747
959436

TwitterPPDB 87.782 86.943 87.760808
77608088

87.997418
79974188

87.373628
73736288

86.8788986
8788987



Figure 4. Testing accuracy results from the different experimental models. For each task, there are two datasets: the

top dataset is the in-distribution dataset and the bottom dataset is the out-of-distribution dataset. Each model (BERT,

RoBERTa) was run three times using different random seeds (42, 400, 4000) on each dataset.

Each model produced explanations using the interpretation methods, and the explanations

were used to calculate LMI scores. Each model can produce its own LMI score for each word

token, but the LMI mean and variance for each token were found using multiple models with

different random seeds per model and dataset. In Figure 5, the x-axis represents the LMI mean

and the y-axis represents the LMI variance. Each point on the cartography represents a token in

the input.

Figure 5. Token cartography based on LMI mean (x-axis) and variance (y-axis) for different model

ensembles with various random seeds on the negative label. Tokens higher up in the graph have higher frequency.



We can distinguish between shortcuts and genuine tokens a little bit based on the word

frequency in the in-distribution dataset and the LMI distribution, but there is not enough of a

difference between genuine tokens and spurious tokens to tell. For example, spurious tokens like

“the” and “it” have a similar score to the genuine token “bad”. In addition, many tokens towards

the middle are overlapped, making the results hard to read. The model’s behavior is very similar

between shortcut features and genuine tokens and it is difficult to differentiate the two. Thus, it

was concluded that shortcuts cannot be identified using only data statistics and in-distribution

data.

Future Work

Out-of-distribution data can be analyzed to see if shortcuts can be identified with outside

datasets. The same experimental process would be used, in which data statistics and LMI are

gathered. However, different approaches can be used as necessary to obtain results.

Another next step includes human evaluation for identifying shortcuts. The model can be

fine-tuned on an in-distribution dataset and then have a human annotate the results. The model

can then be retrained with the human annotations and the experiment would observe if the model

performs better than before and whether the amount of shortcuts would diminish.

Finally, once the shortcuts have been identified, a strategy can be created to prevent or

mitigate shortcuts in NLP models. Mitigation strategies are the ultimate goal of shortcut learning

research in order to understand and further improve machine learning models.

Conclusion



Through experiments with multiple models, datasets, and model ensembles, it can be

concluded that using only data statistics and in-distribution datasets is inadequate to identify

shortcuts. Previous works that use only data statistics and in-distribution datasets to identify and

mitigate shortcuts will need to reconsider their approaches, as there is not enough information to

find shortcuts in the data from those sources alone. Additional information would be needed to

accurately find the model’s spurious tokens, which may include looking at out-of-distribution

datasets. If shortcuts can be accurately identified and mitigated, then machine learning models

can improve drastically and be more reliable in real-world situations.
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