
FloodWatch: Building real-time geospatial visualizations for flood detection

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Chris Santamaria

Spring, 2023

Technical Project Team Members

Ankit Gupta

Abhir Karande

Shiva Manandhar

Shuo Yan

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

N. Rich Nguyen, Department of Computer Science

FloodWatch: Building real-time geospatial
visualizations for flood detection

Chris Santamaria
University of Virginia

Charlottesville, Virginia, USA

Figure 1. Region tileset layer displaying flood risk in southern Vietnam

Abstract
FloodWatch is a progressive web application, offering real-
time flood forecasting and a crowd-sourced reporting plat-
form. The app primarily seeks to aid citizens in Vietnam,
especially those in regions susceptible to coastal flooding
like Ho Chi Minh City. As part of the platform, effectively
informing users of relative flood risk in their region has be-
come a significant area of focus. Our team has implemented
this through "region tileset layers", allowing users to gauge
day-by-day flood risk at a glance through a visual map over-
lay.

1 Introduction
Recent models of global tide, storm surge and wave trends
have suggested that 52% of the global population will be at
risk of flooding by the year 2100 [6]. While this is becoming
an increasingly relevant topic in regions worldwide, areas
such as Ho Chi Minh City are already greatly susceptible
to coastal flooding with the issue worsening due to factors
such as growing urban expansion [3]. As a result, there have

been ongoing efforts to mitigate flood risk, both to ensure
safety of those affected and minimize associated damages.
While these sorts of endeavors may be promising long-term,
they aren’t without their own challenges; efforts such as a
$2.6 billion USD ring dike have unclear timelines and may
ultimately displace citizens living in construction zones [11].
Furthermore, newly emerging and rapidly changing data can
conflict with original projections, resulting in inadequate
short-term solutions [7].

Given inevitable constraints of developing physical flood
mitigation strategies (be it cost, time or even political deci-
sion making), FloodWatch presents a practical and accessible
alternative; the app serves at a data distribution platform
for citizens, enabling them to make informed choices about
their personal safety through both collected weather data
and user-submitted flood reports. The notion of live, crowd-
sourced flood reports also presents a new perspective when
considering the idea of "technological citizenship"; rather
than individuals needing to rely solely on relatively opaque
government entities, they can instead empower and benefit

CS 4980 Capstone Report, 2023, Charlottesville, Virginia USA C. Santamaria

from other citizens through a new form of civic involvement
[1].

Though user-submitted reports provide significant value
in the event of a flood, FloodWatch additionally aims to offer
objective data through real-time, historical and forecasted
weather sampling. All readings are supplemented with a gen-
erated "flood risk" score, conveying relevant information to
users at a glance. Weather data is currently collected from a
variety of third-party providers; in the future, we aim to en-
able individuals across Vietnam to contribute crowd-sourced
weather data directly to the FloodWatch platform.

This paper will describe the design and implementation
of FloodWatch’s "region tileset" feature, which visualizes ap-
proximately 20,000 daily collected weather readings through
an intuitive map-based user interface. With this, we aim to
provide a meaningful tool to citizens in Vietnam by enabling
them to respond to changing flood trends in their particular
region.

2 Design

Figure 2. Initial prototype of per-city flood risk markers

As an initial prototype, we approached this problem on a
per-city basis with a focus on themost populated cities across
Vietnam. Daily average weather data was collected for each
city, with readings stored in the app’s database alongside
its associated collection date. Each location could then be
visualized in the FloodWatch app via a marker on the app’s
main map display, with colors representing the location’s
relative flood risk. In practice, we found individual markers
to be a severe limitation; while major regions like Ho Chi
Minh City often had several nearby markers, they failed to
offer the level of granularity we sought to provide to users.
Similarly, lower population regions were often completely
unrepresented, providing no value to residing citizens.

Though our initial thought was simply to increase the
number of sampled cities, we quickly realized this was an
incomplete solution which would only further clutter the
map interface. Instead, we opted to rethink our approach to
visualization; while it was clear that we needed to collect
data across a larger representation of Vietnam, individual
point-basedmarkers proved to be both cumbersome for users
and detrimental for app performance.

Ultimately, we landed on a region-based visualization ap-
proach. Rather than displaying individual weather collection
points, we instead show shaded boundaries representing
regions across all of Vietnam. The fill color visualizes the
average flood risk score across all sampled points within the
boundary, providing a more holistic representation of a re-
gion than a single point. Regions are based on "administrative
divisions" as defined by the Database of Global Administra-
tive Areas [5]. Notably, our implementation supports mul-
tiple levels of granularity: administrative level one (ADM1)
including provinces and municipalities, ADM2 including
cities and districts, and ADM3 including local communes
and wards. By collecting data for multiple levels, we enable
visualization of flood risk from high-level provinces to low-
level neighborhoods.

Figure 3. Administrative level 2 region tileset layer

3 Generating collection points
As opposed to the previous per-city approach, sufficiently
representing the weather within an entire region requires
collecting multiple weather readings which can be aggre-
gated into a final flood risk score. However, determining the
quantity and location of these points presents an interesting
challenge: while obtaining a boundary’s centroid or center
of mass is relatively straightforward, generating multiple
points within a region is a far more subjective process.

In order to accurately reflect the weather condition across
an entire region, generated points must span the entire area;

FloodWatch: Building real-time geospatial visualizations for flood detection CS 4980 Capstone Report, 2023, Charlottesville, Virginia USA

more specifically, the distance from an arbitrary point in the
region from its closest collection point should be minimized.
Similarly, there should be enough generated points within
the region to keep the shortest distance between collection
points low. Fortunately, our use case is relatively flexible on
these constraints; given that sampled data will ultimately be
averaged, minor deviations from an ideal point distribution
are likely negligible for end users.
To solve this problem, we created an internal tool which

handles computing and visualizing these points. Given an in-
put data set, the tool generates a list of collection points
for each region. Input data is defined according to the
GeoJSON specification [2]: regions are represented as a
Feature objects, with each containing either a Polygon
(single boundary) or MultiPolygon (multiple boundaries)
describing its shape. Additionally, each Feature contains
metadata properties; though our input data includes basic
properties like region name and administrative level, our tool
also adds the generated collection points as an additional
property.
For each input Feature, collection points are generated

with the following algorithm:
1. Calculate a bounding box around the region (including

all boundaries if the feature is a MultiPolygon)
2. Generate random points within the bounding box,

based on a customizable "Area per random point" pa-
rameter

3. Filter out generated points which are not contained
by the feature’s boundary

4. Perform K-means clustering on the points, with the
number of clusters based on a customizable "Area per
cluster" parameter

5. For each cluster, extract its centroid point
6. Store resulting centroids in the feature’s properties

Figure 4. Generated collection points from internal tool

After completion, the tool saves the resulting GeoJSON
data set into a new "output" file which can be consumed

later in the region tileset pipeline. This process is performed
for the ADM1, ADM2 and ADM3 administrative levels —
as boundaries become smaller towards the ADM3 level, the
number of generated points per feature similarly decrease.
However, higher-granularity levels also contain significantly
more total points; while the ADM1 data set generates 6,640
points with the tool’s default parameters, ADM3 generates
more than double with 13,938 points.
In addition to representing flood risk through a fill color

on the region map overlay, the app also supports tapping
on individual regions to open a popup containing specific
weather information. However, rendering this requires deter-
mining a specific point within the region to visually "anchor"
the popup to. For most single-boundary regions, this is rel-
atively straightforward — calculations like center of mass
provide a visually intuitive location. However, our data sets
contain additional cases which must be supported:

• If a geometry data is a a MultiPolygon, find the center
of mass of the largest sub-polygon

• If the calculated center of mass does not fall within the
polygon, snap it to the nearest point on its boundary

This point is calculated as part of the previouslymentioned
collection point algorithm and saved as an additional feature
property.

Figure 5. Region popup anchored at its visual center

4 Collecting weather data
With the collection points generated, weather data can be
sampled. To provide per-day visualizations, our team util-
ities a nightly Python script managed via GitHub Actions
[4] which fetches data for a specified query date. For each
GeoJSON data set emitted by the previous tool, centroids
contained within its feature objects are used to query daily
average weather data at each point. Once data is collected for
all points within a region, readings are averaged to produce

CS 4980 Capstone Report, 2023, Charlottesville, Virginia USA C. Santamaria

a single set of weather properties displayed to the user. Addi-
tionally, a flood risk score is computed based on the obtained
weather data — though our team is independently develop-
ing a unsupervised learning prediction model, our current
generation process uses a relatively simple prediction based
on measured precipitation.
Unlike the previously mentioned point generation tool,

performance of this weather data collection process is a ma-
jor priority. In early testing with a initial implementation,
we found that querying for just the initial ADM1 data set
took nearly five minutes to complete. Our first optimization
attempt was to implement multi-threading, spreading the
query workload across 8 threads. While this did improve
performance, we observed that CPU usage remained rela-
tively low throughout querying, leading us to believe that
computation was not the bottleneck. As an alternative, we
explored concurrently performing network requests through
an asynchronous task pool. By implementing this approach
in Python with asyncio [10], we observed a significant re-
duction to approximately 90 seconds for the ADM1 data
set.
While these speedups were promising, they were still in-

sufficient for the total amount of data we would be querying
with the ADM2 and ADM3 data sets. Fortunately, we no-
ticed that our chosen weather provider supports batched
requests of up to 50 queries at once. Utilizing this, we ob-
served dramatic improvements from the minimized number
of round-trip network requests: our previous ADM1-only
benchmark was reduced to less than 5 seconds, while run-
ning all data sets simultaneously takes approximately 16
seconds.

5 Visualization
With theweather data collected, we shifted our focus towards
visualization in the FloodWatch web app. We’ve previously
relied on Mapbox for map rendering via their mapbox-gl-js
library [8], so we opted to implement this feature within
our existing map UI. Mapbox supports loading GeoJSON
data as "sources", enabling rendered "layers" to selectively
display portions of the retrieved data; for example, render-
ing a partially-transparent layer with boundary fill colors
dependent on flood risk score.
However, the manner in which data is loaded is fairly

customizable. Our initial approach was to host generated
GeoJSON data sets from our nightly weather collection jobs,
allowing clients to download and visualize them in-app. Un-
fortunately, we quickly realized this had a significant upfront
data bottleneck — all three data sets were approximately 130
megabytes, with ADM3 alone being nearly 90 megabytes.
Until the data sets were loaded, we were unable to visualize
any portion of the data. Given that many target users in Viet-
nam may not have high-speed or stable internet connections,
this approach was insufficient.

Many modern mapping solutions approach this problem
via streaming "tiles" of data as needed, allowing clients to
only download map data for the regions visible or nearby
their current viewport. Tiles are often composed of raster
(pixel-based) or vector (GeoJSON-based) data, with metadata
such as zoom bounds being defined by a parent "tileset".
Using a vector tile-based approach seemed ideal for our use
case, though we quickly encountered another obstacle: in
order to support tile streaming, clients must interact with
a tileset server configured to send each generated data set.
Attempting to manually implement, configure and manage
such a server proved to be a significant challenge.
Fortunately, Mapbox provides their own Mapbox Tiling

Service [9], abstracting away most of the implementation
complexity of tilesets. At a high level, generated GeoJSON
data sets containing daily weather information are sent to
Mapbox as "tileset sources" during our nightly job. With
these uploaded, we can compose a single tileset with each
data set configured as a source layer. Once completed, clients
can load the tileset via a predetermined URL and progres-
sively stream map data; on average, rendering an initial map
view downloads less than 800 kilobytes of tile data.

6 Future work
Though our final implementation has served us well, we’re
continuing to iterate on both the tileset generation pipeline
and user-facing experience. Notably, one area of focus is the
frequency of tileset generation. Our current approach creates
entirely new tilesets (and associated tileset sources) for each
day processed; given the static nature of our administrative
boundary data, we’d ideally prefer to only update theweather
data encoded in Feature properties while keeping geometry
data constant. However, due to the way Mapbox Tiling Ser-
vice handles tiles, we are unable to make any changes to
an existing tileset without reprocessing all tiles, effectively
recreating the entire tileset.

One possible alternative could be to decouple the weather
data from the tileset itself. Rather than generating a complete
tileset in our nightly job, we could instead create a minimal
JSON-based file containing only weather data, with each
entry keyed by a unique region ID. When a client loads the
map, we could download both a static tileset (containing only
administrative boundary data) as well as well as dynamic
weather data (from a file storage provider like AWS S3). Once
both have loaded, we could inject weather data into the client-
side tileset properties for visualization. While this may work
in theory, it effectively eliminates the streaming capabilities
of our current tileset approach, requiring clients to download
weather data for all of Vietnam upfront to render any portion
of the region tileset.
More broadly, our team is beginning to shift focus from

research-oriented feature experimentation towards polishing
the app for end users. Though we believe the platform can

FloodWatch: Building real-time geospatial visualizations for flood detection CS 4980 Capstone Report, 2023, Charlottesville, Virginia USA

provide immense value to citizens in Vietnam, refining the
new user experience and promoting a sense of civic involve-
ment will become crucial aspects to preparing FloodWatch
for real-world usage. Early user testing has highlighted a
few notable areas of improvement, with the previously men-
tioned flood risk score being a common area of confusion.
To help improve this, other FloodWatch team members have
been independently developing a clustering-based unsuper-
vised learning model trained on historic flood data in Viet-
nam. Once completed, the accuracy (and in turn, utility) of
our predictions should significantly improve. Similarly, we’re
continuing to iterate on our visualization approach to intu-
itively convey risk level — for example, reserving red-shaded
regions for areas which have a high risk of flooding.

Acknowledgments
This project has been funded by grants won by Professor
Nguyen, Department of Computer Science. He has helped
with defining the vision of the project, gaining support from
our collaborators at HCMUS, and overseeing the project’s
progress.

References
[1] C.J. Andrews. 2006. Practicing technological citizenship. IEEE Technol-

ogy and Society Magazine 25, 1 (2006), 4–5. https://doi.org/10.1109/
MTAS.2006.1607713

[2] H. Butler, M. Daly, A. Doyle, Sean Gillies, T. Schaub, and Stefan Hagen.
2016. The GeoJSON Format. Request for Comments RFC 7946. Internet
Engineering Task Force. https://doi.org/10.17487/RFC7946 Num
Pages: 28.

[3] Phan N. Duy, Lee Chapman, Miles Tight, Phan N. Linh, and Le V.
Thuong. 2017. Increasing vulnerability to floods in new development
areas: evidence from Ho Chi Minh City. International Journal of Cli-
mate Change Strategies and Management 10, 1 (Jan. 2017), 197–212.
https://doi.org/10.1108/IJCCSM-12-2016-0169 Publisher: Emerald Pub-
lishing Limited.

[4] GitHub. 2023. GitHub Actions. https://github.com/features/actions
[5] Robert J. Hijmans. 2009. Global Administrative Areas (GADM). https:

//gadm.org/
[6] Ebru Kirezci, Ian R. Young, Roshanka Ranasinghe, SanneMuis, Robert J.

Nicholls, Daniel Lincke, and Jochen Hinkel. 2020. Projections of global-
scale extreme sea levels and resulting episodic coastal flooding over
the 21st Century. Scientific Reports 10, 1 (July 2020), 11629. https:
//doi.org/10.1038/s41598-020-67736-6 Number: 1 Publisher: Nature
Publishing Group.

[7] Robert Lempert, Nidhi Kalra, Suzanne Peyraud, ZhiminMao, Sinh Bach
Tan, Dean Cira, and Alexander Lotsch. 2013. Ensuring Robust Flood
Risk Management in Ho Chi Minh City. The World Bank. https:
//doi.org/10.1596/1813-9450-6465

[8] Mapbox. 2023. mapbox-gl-js. https://github.com/mapbox/mapbox-
gl-js original-date: 2013-03-07T14:45:24Z.

[9] Mapbox. 2023. Mapbox Tiling Service. https://docs.mapbox.com/
mapbox-tiling-service/guides/

[10] Python Software Foundation. 2023. asyncio — Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

[11] Lizzie Yarina. 2018. Your Sea Wall Won’t Save You. Places Journal
(March 2018). https://doi.org/10.22269/180327

https://doi.org/10.1109/MTAS.2006.1607713
https://doi.org/10.1109/MTAS.2006.1607713
https://doi.org/10.17487/RFC7946
https://doi.org/10.1108/IJCCSM-12-2016-0169
https://github.com/features/actions
https://gadm.org/
https://gadm.org/
https://doi.org/10.1038/s41598-020-67736-6
https://doi.org/10.1038/s41598-020-67736-6
https://doi.org/10.1596/1813-9450-6465
https://doi.org/10.1596/1813-9450-6465
https://github.com/mapbox/mapbox-gl-js
https://github.com/mapbox/mapbox-gl-js
https://docs.mapbox.com/mapbox-tiling-service/guides/
https://docs.mapbox.com/mapbox-tiling-service/guides/
https://docs.python.org/3/library/asyncio.html
https://doi.org/10.22269/180327

	Abstract
	1 Introduction
	2 Design
	3 Generating collection points
	4 Collecting weather data
	5 Visualization
	6 Future work
	Acknowledgments
	References

