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Density Functional Theory and Trustworthy Machine Learning

Mukil Venthan Ayyasamy

(ABSTRACT)

The coefficient of thermal expansion (CTE) is a critical material property that quan-

tifies the degree to which a material expands or contracts upon heating. Despite

progress in theory, computations and empirical model development, existing knowl-

edge has limitations in predicting the CTE of complex materials such as the com-

pounds that form in the rare earth-silicon-oxygen (RE-Si-O) ternary space, which

are candidate materials for environmental barrier coatings (EBCs). This thesis aims

to bridge this gap by leveraging computational methods based on density functional

theory (DFT) calculations and machine learning (ML) techniques. While well-trained

ML models are good at generating predictions, they often serve as black boxes that

limit their interpretability. This limitation is particularly problematic in materials

science, where the available data sets are often limited and sparse.

To address these challenges, this dissertation targets three key goals: (1) Accelerating

the design of novel compounds in the complex RE-Si-O chemical space with targeted

CTE values by establishing previously unknown quantitative structure-property re-

lationships using DFT and ML; (2) Building trust in ML models (in a narrow sense)

by accurately gauging when and where they can succeed or fail, thereby facilitat-

ing well-informed design choices; and (3) Uncovering the insights behind ML model



iv

predictions to better comprehend the science underlying the quantified structure-

property relationships. This integrated approach was applied to three major material

classes in the RE-Si-O chemical space: RE disilicates, RE monosilicates, and RE

silicate apatites. Finally, a holistic CTE model was developed that quantitatively

captures the relationship between structure and volumetric CTE across these diverse

material classes, including some of the high entropy variants.

Throughout the thesis, I focused on two critical attributes of RE-Si-O systems that

are essential for the development of EBCs: the DFT total energies and the polyhedral

description of the crystal structures. Key contributions are summarized below:

• In RE disilicates, I used DFT calculations to generate the total energy difference

(∆E) data that offered key insights into the energetics favoring polymorph for-

mation. The calculations also provide optimized crystal structures from which

one can generate two types of descriptors: (1) Unit cell parameters (more acces-

sible to the experimental community) and (2) Polyhedral descriptors (may carry

mechanistic insights that can be correlated with CTE). I trained an ensemble

of ML models to rapidly predict the volumetric CTE, along with the associated

uncertainties. Experiments from our collaborators validated the CTE predic-

tions for the Sm2Si2O7 compound in P41 space group.

• In RE monosilicates, I focused on CTE anisotropy. Using DFT and density

of states calculations, I uncovered a previously unidentified trend that corre-

lated the d-orbital bandwidth and RE-O effective coordination numbers in iso-

electronic Sc2SiO5, Y2SiO5, and La2SiO5 compounds with the measured CTE

anisotropy data (taken from the literature). The crystal structures were con-

strained to the C2/c space group in these calculations.
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• In RE silicate apatites, I calculated ∆E from DFT to reveal the energetics trend

across the different RE silicate apatites: non-stoichiometric (RE9.33Si6O26) and

RE silicate apatite bearing alkali metals (RE9A1Si6O26, where A=Li, Na, K,

Rb, and Cs monovalent cations) and alkaline earth metals (RE8AE2Si6O26,

where AE=Be, Mg, Ca, Sr, and Ba divalent cations). Unlike the disilicates

and monosilicates, the literature data on CTE for this materials class is sparse.

Therefore, I did not investigate the CTE property for this materials class.

Nonetheless, my calculations led to the development of polyhedral descriptors

which I hypothesize as a more meaningful representation of the crystal chem-

istry when compared to the traditional ionic radii description.

• I built a holistic model that has the capability to predict the volumetric CTE

of RE disilicate, RE monosilicate and RE silicate apatites as a function of

chemical composition and crystal structure. Intriguingly, the model that was

trained only using single-component compounds was also able to predict the

CTE trend for two four-component systems: β-C2/m (Y, Yb, Lu, La)2Si2O7

and β-C2/m (Y, Yb, Er, Dy)2Si2O7 that were not part of the training data.

Post hoc model interpretation of the trained model revealed the critical role

of RE-O bond length, SiO4 polyhedral volume and bond angle variance within

SiO4 polyhedral units.

This thesis lays the foundation for rational design of volumetric CTE in RE-Si-O

compounds.
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Chapter 1

Introduction

1.1 Background and Motivation

The coefficient of thermal expansion (CTE) is an intrinsic material property that is

indicative of the extent to which a material expands upon heating.1 From a historical

perspective, heat change dimensions has been around since the first century B.C.;

however, more attention was focused on thermal expansion with the invention of a

thermometer in the late 1500s to early 1600s [2]. It was not until the discovery of

Invar, Einstein’s harmonic oscillators, and Grüneisen’s rule that thermal expansion

was given serious scientific thought in the early 1900s [2, 3, 4]. Most of the current

body of thermal expansion knowledge was generated between 1950 and 1980, and it

has significantly slowed down afterwards [2, 3].

The fundamental origin of thermal expansion can be directly traced to the anhar-

monic nature of the interatomic forces in solids [5]. If the forces are purely harmonic,

there would be no thermal expansion because atoms vibrate about their equilibrium

positions symmetrically whatever be the amplitude. However, the thermal vibrations

in any real solids are to some extent anharmonic, which leads to the phenomenon of

thermal expansion. The linear thermal expansion coefficient (αl) and volume expan-

1Some materials with negative thermal expansion contract upon heating [1]. However, such
materials will not be the focus of this thesis.
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sion coefficient (αv) are two important parameters used to quantitatively characterize

the extent of thermal expansion in any given material. The αl or αv is defined as per

unit change in length or volume with per unit change in temperature, respectively,

and is normally expressed as αl = dl/(ldT ) or αv = dV/(V dT ), where l is length, V

is volume and T is temperature. If the thermal expansion is isotropic, then αv = 3αl.

Usually, an average linear thermal expansion coefficient (αl) is measured and given

over a temperature range in the literature. Until now, numerous microscopic models

have been undertaken for estimating the thermal expansion coefficient. A full-fledged

and well known theory of thermal expansion was firstly proposed by Grüneisen [6]. It

is proved that the thermal expansion coefficient of a solid has a direct relation with

the heat capacity and inverse relation with the bulk modulus through the Grüneisen

parameter. Most of the later developments in theories of thermal expansion are re-

lated to a more sophisticated definition of Grüneisen parameter through different

lattice dynamical calculations [7, 8].

There has been a long-standing interest in establishing quantitative crystal structure–

electronic structure–CTE relationships in solids [9, 10, 11, 12, 1, 13, 14]. Thermal

expansion has strong correlation with chemical bonding. It is generally believed that

materials with stronger bonds will have lower thermal expansion because of their

rigid structures [11]. As a result, several empirical models have been proposed to

estimate CTE as a function of chemical bonding parameters. Megaw et al. deduced

an empirical equation to qualitatively relate linear CTE to Pauling valence of chemical

bond for simple compounds in cubic crystal structures [15]. Cameron et al. have

correlated CTE of metal-oxygen bonds with their stretching frequency and reduced

mass [16]. Hazen et al. initially developed an empirical relationship between the CTE

and Pauling valence in several metal-oxygen coordination polyhedra [17]. Later, the
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authors provided a general formula (given in Equation 1.1) between the CTE (α) and

chemical bonding parameters that include an empirical ionicity factor (S), valence of

cation (Zc) and anion (Za), and coordination number of cation (CN), [18]

α = 4× 10−6 CN

S2ZcZa

(1.1)

This formula was then used to predict the CTE of several binary and ternary oxides.

Roy et al. [11] argue that the α described by Equation 1.1 should be treated as a

zeroth-order approximation because it fails to describe the CTE for complex struc-

tures with two or more cation-centered polyhedral units in non-trivial topology and

irregular coordination (e.g. monosilicates, disilicates and silicate apatites explored

in this thesis). Moreover, the model for α also lacks an uncertainty quantification

capability.

The state-of-the-art computational efforts to realize a predictive understanding of

CTE require performing first principles calculations within the quasi-harmonic ap-

proximation (QHA) to account for temperature-dependent properties like CTE [7,

8, 19, 20, 21]. However, first principles based lattice dynamical calculations have

the limitation of increased computational cost for complex structures [22]. Moreover,

when there are instabilities in the phonon dispersion curves (e.g. a phonon mode with

imaginary frequency) then there is no consensus about how to treat such data within

the QHA approximation. Phonon instabilities are common when a crystal structure

is not dynamically stable at 0 K [23]. This limits the universal applicability of first

principles calculations to predict CTE. There is a need for developing alternative ap-

proach to complement the first principles calculations and guide experimental efforts

in accelerating new materials discovery for targeted applications.
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1.2 Research Topics Discussed

This thesis demonstrates how a combination of first principles calculations and data-

driven machine learning (ML) methods can be used to develop a quantitative and

predictive understanding of the relationship between the crystal structures and phys-

ical properties in the RE-Si-O crystal chemistry space. More specifically, I focus on

the volumetric CTE property because calculation of CTE from first principles is ex-

pensive and CTE is one of the critical properties of interest to the environmental

barrier coatings (EBC) community [24]. In addition to volumetric CTE, I have also

focused on developing an understanding of factors that govern polymorph stability in

the rare-earth disilicate (RE2Si2O7) and rare-earth monosilicate (RE2SiO5) materials.

All polymorphs in the RE2Si2O7 and RE2SiO5 crystal chemistry belong to non-cubic

crystal structures. As a result, CTE is anisotropic in these materials. Developing a

quantitative understanding of CTE anisotropy is an open question that is beyond the

scope of this thesis. Nonetheless, I investigated a specific aspect of CTE anisotropy

in this thesis that captures the role of electronic structure for a smaller subset of

RE2SiO5 compounds [25]. To investigate these important properties, I synergistically

integrated first principles calculations based on density functional theory (DFT) with

ML.

This thesis addresses the following research objectives. Initially, the thesis delves

into analyzing the DFT total energy differences for the expansive RE-Si-O domain,

which incorporates monosilicates, disilicates, and apatites. These calculations not

only indicate which polymorph of a compound is energetically favorable, but also

gives us the optimized structures. This data paves the way for our subsequent ob-

jective: rapidly estimating the CTE through a ML model that takes the optimized

structure as input. In this context, we can establish descriptors on two fronts: (1)
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the unit cell parameters and (2) polyhedral descriptors. It is important to probe the

relationships between structure and property at both these levels, investigating the

similarities and contrasts they hold. Although computationally, either level could be

our starting point, the unit cell parameters are more accessible to the experimental

community. I demonstrated the predictive power of the unit cell parameters for the

CTE within RE disilicates and monosilicates. Leveraging the experiments conducted

by our colleagues, we validate our models and demonstrate the efficacy of our strategy

for EBC applications. Although predicting the apparent bulk CTE (or volumetric

CTE) with ML is beneficial, the design of EBCs cannot overlook the tensorial nature

of CTE’s anisotropy. While there are experimental findings that highlight unique

anisotropy patterns in compounds [24], a deeper insight into these patterns would

enhance property customization. As a result, I utilized DFT calculations to shed

light on the connection between electronic structures and the anisotropy of CTE.

The second way to describe the relationship between structure and CTE would be via

polyhedral descriptors. It has a distinct advantages compared to the unit cell param-

eters: (1) It may carry mechanistic information that can be correlated with phonon

dispersion curves and phonon density of states and (2) It can serve as descriptors

that are unique to different structures across the entire RE-Si-O space including dis-

ilicates, monosilicates and apatites. This will enable us to accomplish our ultimate

task of building a holistic data-driven ML model that will establish a quantitative

relationship between the polyhedral descriptors and the CTE for the entire RE-Si-O

space. I developed a novel representation scheme based on polyhedral descriptors

that uniquely fingerprints both single- and multi-component compounds.

A typical ML approach (Figure 1.1) involves using a database of known materials

that is constructed by compiling available data and domain knowledge about some
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Figure 1.1: A schematic illustration of a typical ML approach used in materials
science. The approach generally involves collection of data and knowledge regarding
the problem at hand to build a dataset, which then will typically be used to build a
black-box model that outputs certain predictions. However, the human user (or the
domain expert) will not know when and why to trust the prediction with respect to
the input.

phenomena of interest as input, fitting a linear or non-linear function that mimics the

underlying nature of the problem, and generate predictions (with or without uncer-

tainties) on new and previously unseen data. There is no component in this approach

that was initially integrated in the formalism that will help the domain expert ascer-

tain whether the predictions will adhere to the underlying science. More recently, the

use of physics-informed ML or scientific ML addresses some of the concern [26, 27].

Also, the domain expert will not know when not to trust the model with respect to

the input space.

This approach may be sufficient if accurate prediction is the only goal. However, it is

imperative that we explain the black-box model, and the model confidence in order to

understand and explore the underlying science. This is especially true in the case of

small-sized datasets (less than a few hundred datapoints, which is typical in materials

science). To address this problem, one of the promising research directions is to focus
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on developing a trustworthy ML formalism (Figure 1.2). Two key properties can be

attributed to the trustworthy ML approach: (i) uncertainty quantification - to know

when the model makes predictions that it is confident about (Figure 1.2b) , and (ii)

model explanation - to know why (even approximately) if the prediction made by the

model is backed by science (Figure 1.2c). I discuss a rigorous uncertainty estimation

algorithm that quantifies the prediction intervals using bootstrap-based statistical

methods. There is a rapidly growing interest in the application of ML-based ap-

proaches to accelerate new materials discovery [28, 29]. Many of these approaches

rely on uncertainties from ML predictions to meaningfully explore the search space.

There aren’t many studies in the literature that have explored the promise of pre-

diction intervals for materials exploration [30]. In this thesis, I demonstrate a novel

prediction interval algorithm, study the efficacy of prediction intervals on benchmark

materials science datasets and then apply it to the models used in this thesis. I also

demonstrate novel post hoc model interpretation algorithms that can explain the pre-

dictions from the black-box models to provide an understanding of the hidden model

behavior. The purpose is to address the following question: when and why can we

trust on a ML model to make decisions, especially when trained on small and sparse

datasets? Addressing these questions bridges the gap between black-box ML models

and domain experts.

1.3 Specific Aims

This thesis addresses the following central questions:

1. Can we accelerate the design of novel compounds in the complex RE-Si-O

chemical space with targeted CTE? This requires us to establish a hitherto
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Figure 1.2: A schematic of the overarching goals for this thesis. (a) I gather data
and incorporate domain knowledge, (b) Using the data and knowledge, I then build
a trustworthy ML approach where the obbjective is to not only train a generalizable
black-box model that mimics the nature but also address the question of when and
why to trust the model using uncertainty quantification and (c) Model explanation,
where I peek into the black-box and uncover the hidden patterns. This is crucial for
developing an understanding of the underlying scientific phenomena.

unknown quantitative structure-property relationships in the RE-Si-O family

of compounds using computational and ML approaches.

2. Can we ensure trust in the ML approach by capturing insights into when/where

a ML model can succeed and/or fail (see Figure 1.2b). Associating the CTE pre-

diction with an accurate measure of model confidence will help the community

make informed design decisions.

3. Can we understand why a black-box ML model makes a certain prediction?

Structure-property relationships in materials can be better understood if the

predictive understanding is backed up by science hidden in the model (see Fig-

ure 1.2c).
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1.4 Thesis Organization

In this thesis, I have compiled a total of eight chapters (including Introduction). The

rest of the chapters are organized as follows:

• Chapter 2 reviews the foundational understanding of CTE from both micro-

scopic and macroscopic viewpoints. Building on this groundwork, the chapter

scrutinizes the ramifications of mismatches in thermal expansion on the me-

chanical integrity of systems where this is a concern. The narrative then pivots

to well-researched use-case: EBCs, and explores potential materials in the RE-

Si-O family that are suitable for this application. Emphasis is placed on the

need for establishing a link between crystal structure and CTE in these silicate

compounds. The chapter wraps up by motivating bond geometrical descriptors

based on RE-O and Si-O polyhedral units as information carriers of CTE across

different materials classes in the RE-Si-O chemical space.

• Chapter 3 is partitioned into two main sections. The first section centers around

DFT and its applications. It covers topics such as the optimization of crystal

structures, mapping out the total energy as a function of various polymorphs,

and calculating density of states, which will later be important for exploring

anisotropic trends in CTE in Chapter 5. The section also delves into the cal-

culation of formation energy, one of the variables I used for understanding the

relationship between structure and CTE, and finally describes the special quasir-

andom structures (SQS) method [31] needed for simulating multi-component

solid solutions. The second section is devoted to ML methodologies. It opens

with an overview of prevalent ML techniques, followed by a critique of com-

monly used performance and uncertainty metrics, highlighting their limitations
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in building user trust. The “black box” nature of certain ML algorithms is also

discussed. The chapter further elaborates on uncertainty quantification and ex-

plainable artificial intelligence as two approaches that can enhance trust in ML

models. The algorithms presented in this section are model- and data-agnostic,

but their application to models in subsequent chapters will be determined based

on the specific needs of each study. For the ML models focused on RE2Si2O7

(Chapter 4) and RE2SiO5 (Chapter 5), I’ll use standard error for uncertainty

assessment. For the holistic ML model, a more stringent prediction interval

method was used. Additionally, post hoc explanations will be applied to the

holistic model to better understand the link between structure and CTE in

RE-Si-O crystals.

• Chapter 4 discusses the crucial role of RE2Si2O7 in EBCs and outline its design

challenges. I used DFT calculations to assess the total energy of its polymorphs.

Next, we present ML algorithms that utilize unit cell parameters obtained from

DFT optimized crystal structures to establish a relationship between structure

and CTE, enabling quick CTE predictions along with uncertainties across the

entire RE2Si2O7 chemical space. Additionally, I employed polyhedral descrip-

tors to offer insights into structure-CTE relationships that simpler descriptors

like RE ionic radii may overlook. The chapter concludes with experimental val-

idation (conducted by our collaborators), thereby reinforcing the credibility of

our combined DFT and ML approaches.

• Chapter 5 discusses the DFT and ML approach applied to RE monosilicates.

Similar to Chapter 4, I calculated the total energy of RE2SiO5 compounds in the

two polymorphs and utilized ML models to predict their CTE based on DFT

optimized unit cell parameters. Recognizing the importance of CTE anisotropy
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in EBC applications, the later part of the chapter focuses on DFT calculations

linking the d-orbital bandwidth and RE-O effective coordination numbers in

isoelectronic Sc2SiO5, Y2SiO5, and La2SiO5compounds whose CTE anisotropy

data was taken from the published literature [24].

• Chapter 6 aims to achieve the overarching goal of the thesis—a holistic ML

model for describing CTE across the entire RE-Si-O chemical space. To accom-

plish this, the chapter first introduces data related to RE apatites, a class of

compounds not previously discussed in the thesis. It then explores the poten-

tial energy landscape pertinent to these compounds. Transitioning to machine

learning, the chapter delves into the construction of a holistic ML model for

CTE. The model employs polyhedral descriptors as training data, providing

insights that go beyond traditional descriptors like RE ionic radii. To instill

trust in the model, I apply a prediction interval algorithm for uncertainty quan-

tification and employ post hoc model interpretability methods. These methods

help to reveal the functional relationship between polyhedral descriptors and

CTE, offering new insights to the community. The consistency of the results

with other physical parameters further validates the approach.

• In Chapter 7, a summary of the research findings and key results are provided

to conclude the thesis.

• In Chapter 8, future research directions based on the thesis outcomes are out-

lined.
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Chapter 2

Background

2.1 CTE fundamentals

This chapter delves into the core principles of thermal expansion, starting with an ex-

ploration of the microscopic and macroscopic perspectives on the CTE in crystalline

materials. Following this foundation, the chapter examines the impact of thermal

expansion mismatches on the mechanical stability of systems where such issues are

prevalent. I then shift my focus to a commonly studied application, the EBC sys-

tem, and the prospective materials within the rare earth-silicon-oxygen (RE-Si-O)

spectrum for this application. The chapter emphasizes the importance of developing

a quantitative relationship between structure and CTE for these silicate materials.

I conclude by identifying the descriptors that could facilitate a mechanistic under-

standing of thermal expansion.

2.1.1 Microscopic Thermal Expansion Fundamentals

At the microscopic level, crystalline solids consist of atoms arranged in a periodically

ordered lattice or repeating structure [32]. These atoms are not fixed but continually

vibrate or oscillate around an average position [32, 33]. This system of atoms can

be represented through a Boltzmann energy distribution, initially formulated around
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Figure 2.1: The asymmetric potential energy well for the separation of two atoms,
which fundamentally describes the primary mechanism of thermal expansion [38].

Einstein’s theory of vibratory harmonic oscillators, using Planck’s energy quantiza-

tion [32, 34, 35]. While the harmonic term of the energy function can estimate many

crystalline properties, it does not predict thermal expansion [32]. If only harmonic

oscillations were considered, the vibration amplitude would increase with tempera-

ture, but the atoms’ average position would remain unchanged [36, 32]. In the most

basic scenario, the anharmonicity of the energy well between two atoms offers a fun-

damental mechanism for describing thermal expansion, as depicted in Figure 2.1 [37,

32, 35, 38].

This model of an asymmetric potential energy well can be extended to a straightfor-

ward one-dimensional model for vibratory motion, using a ball and spring model to

represent atoms in the lattice, as illustrated in Figure 2.2. However, atoms in the

lattice move not only in alignment with the springs but also perpendicularly to them,

creating a wave-like three-dimensional motion [37, 39]. These lattice vibrations’ en-

ergy can be quantized as phonons, serving as one of the primary mechanisms for

thermal transport [32, 35]. The characteristics of the bonds between atoms in the

lattice influence atomic spacing and, consequently, thermal expansion behavior [32].
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Figure 2.2: The ball and spring model of atoms and bonds, respectively, describing
the nature of atoms in a lattice [39].

On a microscopic level, thermal expansion theories are often expressed using ther-

modynamic quantities [37, 36]. Mie [37] initially predicted that the ratio of the

volumetric CTE to the isothermal compressibility would remain constant. Grüneisen

observed that the ratio of the volumetric CTE over the heat capacity was consistent

for many metals, leading to his rule [37, 36], expressed by Equation 2.1 [36]:

3α

χT

=
γCV

V
(2.1)

where α is the linear CTE, χT is the isothermal compressibility, CV is the specific

heat, V is the volume, and γ is the Grüneisen constant [36]. This parameter remains

constant with temperature change across many crystalline solids, reflecting the anhar-

monicity of the potential energy well for a pair of atoms [37]. While Grüneisen’s rule

does not account for phase transitions or anisotropic materials, it formed the founda-

tion for many subsequent theories [37]. More thermodynamic details and equations

for microscopic thermal expansion can be found in references [40, 41], including the

contributions to the CTE from electronic or magnetic effects. It is crucial to recog-

nize that any alteration to the crystal lattice can lead to significant changes in the

thermal expansion coefficient. For instance, a discontinuity in the CTE occurs as the

temperature nears a structural phase transition, where the crystal lattice rearranges

its structure, or at a ferromagnetic transition when the attraction or repulsion of

atoms alters, thus modifying the atoms’ equilibrium positions [37]. Estimates of the

CTE can be derived from the microscopic understanding of thermal expansion. The
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melting point of a solid at the microscopic level happens when thermal vibrations

are intense enough to break the lattice bonds [32]. The volumetric expansion of the

crystal lattice from 0 K to the melting point for many metals is roughly 8% [32].

Therefore, as a general guideline, the higher the melting point, the less expansion oc-

curs over each temperature segment, reducing the thermal expansion [32]. Stronger

bonds shorten the bond length and deepen and symmetrize the potential energy well,

lowering a material’s CTE [32]. Similarly, an increase in bond valence leads to a

decrease in the thermal expansion coefficient [32].

While these generalizations are applicable to pure metals, most engineered systems

utilize structural materials that are alloys, introducing additional complexities. A

prominent example is Invar, an alloy composed of 36 wt.% nickel and 64 wt.% iron

[32]. Below the Curie point, Invar exhibits ferromagnetic properties, experiencing

a volumetric magnetostriction that restricts thermal expansion due to the magnetic

field. Additionally, at temperatures beneath the Debye temperature, not all vibra-

tional phonon modes are active, leading to nonlinear expansion behavior in Invar at

colder temperatures [38].

2.1.2 Macroscopic Thermal Expansion Fundamentals for Pure

Materials

Thermal expansion is typically assessed and documented through the macroscopic

coefficient of linear thermal expansion, αij, a second-rank symmetric tensor property

[36, 32]. This coefficient connects the strain, or change in length per original length,

to a temperature change, as expressed in Equation 2.2 [32]:
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ϵij = αij∆T (2.2)

Here, the strain is denoted by ϵij, resulting from the linear coefficient of thermal

expansion, αij, due to a temperature change, ∆T . Since αij is a second-rank ten-

sor property, it can exhibit anisotropic behavior, leading to varying expansions along

different directions, with up to 6 independent directions based on the minimum sym-

metry [36, 32]. Each crystal system characterizes the inherent symmetry of atoms in

the material, describing the spatial relationship of material properties. The number of

independent thermal expansion constants required to define the CTE for each crystal

system is summarized in Figure 2.3.

Another approach to describing a material’s thermal expansion is through the volu-

metric thermal expansion coefficient, β, measured relative to a reference volume, as

shown in Equation 2.3 [37, 32]:

β =
1

V

(
δV

δT

)
P

(2.3)

Here, V represents the volume, and T the temperature, taken at constant pressure,

P . The volumetric thermal expansion for isotropic materials is simply three times

the linear CTE and is the sum of the principal axes of the linear CTE for anisotropic

materials [37, 32]. Although the CTE is inherently a tensor property, it is often

reduced to a scalar quantity, disregarding the anisotropy, for most materials [32].

This simplification is evident in textbooks and handbooks that list nominal CTE

values for various materials as scalars.
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Figure 2.3: Bravais lattice crystal systems and the corresponding coefficient of thermal
expansion tensor. Taken from Ref. [5].

2.1.3 Thermal Expansion Mismatch

A critical design challenge in the context of CTE is the thermal expansion mismatch.

This phenomenon is intricately connected to the properties and behavior of various

materials, especially in applications requiring careful thermal management across

heterogeneous interfaces. The mismatch of the CTE between two dissimilar materials

is found in many systems/applications related to composites, brazing, functionally

graded materials, coatings, etc. [42, 43, 44].

One of the applications of interest in this thesis is the thermal or environmental
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barrier coatings (T/EBCs) applied to the ceramic matrix composites (CMCs) in aero-

engine environments. From a materials engineering perspective, the integration of

EBCs and CMCs represents a transformative technology, poised to revolutionize the

manufacturing of ceramic-based gas turbines. This innovation is driven by the ever-

increasing need for more energy-efficient and environmentally sustainable propulsion

and energy generation systems [45, 46]. These advancements are crucial in meeting

the pressing societal demands of the 21st century.

The primary objective of EBCs is to shield EBC/CMC systems from various modes

of degradation, thereby extending the lifespan of EBC/CMC systems. One of the

important requirements for EBCs is having low residual stresses that necessitates a

suitable thermal expansion match with CMC [47, 48]. In T/EBC systems that un-

dergo a temperature change above 1000◦C, a CTE difference of merely 1 ppm/ ◦C can

induce internal stresses reaching hundreds of megapascals at elevated temperatures

[49].

EBC Stresses: The stress exerted by EBC (denoted as σEBC) on CMC substrates

can be broken down into three components (Equation 2.4):

σEBC = σt + σa + σg (2.4)

where, σt is the thermal mismatch stress (given in Equation 2.5), σa is the aging

stress, and σg is the growth stress (Ref [50]).

σt =
(αEBC − αCMC)EEBC∆T

(1− νEBC)
(2.5)

where αEBC and αCMC are the CTE for EBC and the CMC substrate, respectively,
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EEBC is the Young’s modulus of EBC, and νc is the Poisson’s ratio of EBC [50].

The aging stress is a stress due to the changes in physical, mechanical, and chemical

properties of EBC that are induced by thermal exposures. Factors causing these

changes include oxidation, chemical reactions, phase transformations, and sintering.

The growth stress is a stress that develops during the EBC deposition. There are

other stresses not addressed in Equation 2.4 such as the thermal shock stress induced

by temperature gradient.

The challenges posed by thermal expansion mismatch are not limited to EBCs but

extend to various other applications where precise control over thermal properties is

essential. Understanding and addressing thermal expansion mismatch is vital for the

design and application of materials in various high-temperature environments, empha-

sizing the need for innovative materials and methods to alleviate the CTE mismatch

and enhance the performance and longevity of these critical systems. It is essential to

recognize that the considerations around thermal expansion mismatch often involve

not just the volumetric CTE but also the tensor property of CTE. This complexity

adds another layer to the challenge, especially when non-cubic compounds are be-

ing considered for specific applications, underscoring the need for a comprehensive

understanding of anisotropy in CTE.

2.2 Prospective materials for EBC applications

For industrial use, EBC materials must fulfill certain requirements. These include (a)

phase stability at high temperatures to avoid coating breakdown from phase trans-

formation; (b) CTEs that match with Si-based ceramics or CMCs to mitigate risks

of delamination or cracking due to CTE disparities; (c) chemical compatibility with
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the base material to overcome harmful reactions; (d) high resistance to hot-corrosion,

particularly from water vapor and calcium-magnesium-alumino silicate (CMAS) glass

deposits; and (e) low thermal conductivity for better temperature management of the

substrate [51].

EBC technology has evolved through about three generations. The first-gen mul-

lite/YSZ coatings fell out of favor due to CTE mismatch between YSZ and mullite,

which led to cracking and diffusion routes [52, 53, 54, 55]. Second-gen Si/mullite-

BSAS top coats have a tendency to detach during long-term high-temperature oper-

ation, likely because of glass phase formation [56, 57, 58, 59].

In contrast, rare-earth silicates nearly fulfill all the requirements for EBCs, gain-

ing significant interest for their CTEs compatibility with Si-based ceramics, high-

temperature phase stability, chemical compatibility, low thermal conductivity (espe-

cially the high entropy variants), and excellent resistance to hot corrosion by water

vapor and CMAS molten salts [60, 61, 62, 63]. Therefore, rare-earth silicates are con-

sidered the most promising materials for topcoat applications in an integrated EBC

structure with a Si bond layer. Unlike the previous two generations, its failure mainly

stems from cracks or fractures caused by stresses, resulting from volume strain due to

phase transition during corrosion, significant differences between CTEs of rare-earth

silicates and penetrated CMAS glass, and the growth of thermally grown oxide in the

Si bond layer. This thesis primarily only explores topics associated with the crystal

chemistry of RE-Si-O. In the next section, we investigate the crystal chemistry of RE-

Si-O and how its structure can be distinctly identified to comprehend the connection

between CTE and structure.
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Figure 2.4: The crystal structures of some of the observed rare-earth disilicates (in-
cluding their seven polymorphs), monosilicates (two polymorphs) and silicate apatite
(hexagonal crystal structure).

2.3 RE-Si-O Crystal Chemistry and Descriptors

Some of the rare-earth silicates formed from RE2O3 and SiO2, include RE2SiO5

monosilicates, RE2Si2O7 disilicates, and RE9.33Si6O26 silicate oxyapatites. The crys-

talline structure of these silicates varies based on the ratio of RE2O3 to SiO2 as well as

the size of the rare-earth cations. For a RE2O3:SiO2 ratio of 1:1, two distinct crystal

structures emerge, while seven polymorphs are observed for a ratio of 1:2. On the

other hand, RE9.33Si6O26 has only one crystal structure, irrespective of the type of

rare-earth cation involved [64].

Some of the representative crystal structures are shown in Figure 2.4. The disilicates

have seven known polymorphs: C2/m (β), Pnma (δ), P21/c (η), P 1̄ (α), P21/c

(G), P21/c (γ), and P41 (A). Wherein, CTEs of rare-earth disilicates with the same

crystal structures are similar. The smallest and largest unit cells are made of 11 and

88 atoms, respectively. The smaller sized polymorphs β-RE2Si2O7 and γ-RE2Si2O7

have average linear CTEs close to that of the Si-based ceramics (3.5− 4.5× 10−6K−1
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in the temperature range of 300-1400K).

On the other hand, the monosilicates have been reported in one of the two low-

symmetry monoclinic crystal structures in “X1” and “X2” [65, 66, 67, 68, 69].

The space group of X1-RE2SiO5 is P21/c, and it comprises rare-earth cations with the

larger ionic radii found in La–Gd. Conversely, the space group of X2-RE2SiO5 is C2/c,

which includes rare-earth cations with the smaller ionic radii of Tb–Lu. Notably, Tb

is an exception, as it is known to exist in both C2/c and P21/c. The coordination

numbers of rare-earth cations are 7 and 9 in X1-RE2SiO5, as well as 6 and 7 in X2-

RE2SiO5. The X2 and X1 unit cells have 64 and 32, respectively. The average linear

CTE of rare-earth monosilicate is increasing when increasing temperature, and reach

6.94− 8.84× 10−6K−1 at 1473 K.

Both disilicates and monosilicates are nominally stoichiometric. The apatite silicate

structure-type is non-stoichiometric (RE9.33Si6O26) and have alkali metals (RE9A1Si6O26,

where A=Li, Na, K, Rb, and Cs monovalent cations) and alkaline earth metals

(RE8AE2Si6O26, where AE=Be, Mg, Ca, Sr, and Ba divalent cations) as cation sub-

stitutions in the lattice, which adds complexity. RE9.33Si6O26) typically forms in the

hexagonal P63/m space group [70]. The unit cell contains 40-44 atoms, but supercells

(120-126 atoms) are needed to accommodate the vacancy point defects in the RE-site.

Usually, the CTEs of RE9.33Si6O26 are much higher than those of Si-based ceramics,

which may lead to its disuse as EBC materials [71, 72]. However, the outstanding

resistance of RE9.33Si6O26 to CMAS corrosion may attract attention on its potential

of RE9.33Si6O26 as a type of EBC material [73].

From the foregoing discussion, it is evident that the crystal structure plays a pivotal

role in determining the CTE of rare-earth silicates. Even when different rare-earth
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cations are present, silicates with identical crystal structures tend to have comparable

CTEs. The unifying structural feature across these silicates is the SiO4 tetrahedral

framework. These materials are made up of REOx polyhedra and SiO4 tetrahedra,

with the coordination numbers for the rare-earth cations ranging between 6 and 9.

Within these silicates, it is the thermal deformation resistance of the REOx polyhedra

that primarily dictates the CTEs [74, 75, 76].

In light of the key role that crystal structure and REOx polyhedra play in determining

the CTE of rare-earth silicates, polyhedral descriptors emerge as valuable tools for a

more nuanced understanding [17]. Descriptors based on polyhedra can serve as math-

ematical or geometrical constructs that characterize the shape, size, and symmetry

of a polyhedron encompassing a central atom or ion in a crystal or molecule. These

descriptors quantitatively portray the local environment that comprises (REOx) poly-

hedra and (SiO4) tetrahedra, offering insights into how this environment could mod-

ulate the CTE of the compounds [77]. Their universal applicability ensures they can

be leveraged across diverse materials, ranging from inorganic compounds to intricate

molecular systems. Commonly used polyhedral descriptors include the average bond

length, polyhedral volume, effective coordination number, distortion index, which

gauges the deviation of a polyhedron from a regular shape, quadratic elongation,

which measures the polyhedron’s elongation or compression, and bond angle vari-

ance, which assesses the variability in bond angles within the polyhedron [78].

While RE ionic radii remain the most commonly used descriptor for understanding

the CTE of materials in the RE-Si-O chemical space, it operates on a fairly straight-

forward principle. The strength of the RE metal-oxide bond diminishes as the ionic

radius increases for a given charged ion and coordination number. This leads to an

increase in the thermal expansion of disilicates as the radius of the RE cation in-
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creases. Although intuitive, this descriptor may lack the depth needed to understand

the underlying mechanistic insight affecting CTE. Another alternative lies in descrip-

tors based on unit cell parameters, such as volume and the lattice constants a, b, c

along with the angles between them. These parameters are often highly correlated

with ionic radii and offer the advantages of simplicity and accessibility. However,

like ionic radii, these descriptors may also lack the capability to provide mechanis-

tic insights. This brings us to the unique value of polyhedral descriptors. Unlike

ionic radii and unit cell parameters, polyhedral descriptors can capture the intricate

details of the local atomic environment, including the Si-O-Si bond angles and anhar-

monicity of lattice vibrations, both of which directly influence CTE. This provides a

level of mechanistic understanding that is not easily achievable with simpler descrip-

tors. Therefore, incorporating polyhedral descriptors into our analytical toolbox is

worthwhile. By comparing these with simpler, more accessible descriptors like ionic

radii, we can discern whether polyhedral descriptors offer additional, perhaps more

nuanced, information that is not captured by ionic radii. This comparative approach

is instrumental for deepening our understanding of the structure-CTE relationship

in these complex materials. In this context, the upcoming discussion will focus on

developing a set of polyhedral descriptors tailored for the RE-Si-O chemical space.

The aim is to devise descriptors that offer not just mechanistic information corre-

lating with CTE but also a level of universality. This universality is crucial for a

comprehensive description of CTE across all three classes of materials in the RE-Si-O

system, namely disilicates, monosilicates, and apatites.

Figure 2.5 shows a snapshot of a typical DFT optimized structure, where I have illus-

trated the descriptor generation logic. I divided the crystal structure into two sub-

units based on (1) RE-O polyhedra and (2) Si-O polyhedra. Using VESTA [79] (a ver-
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Figure 2.5: Schematic showing the logic for descriptor generation. The RE-O and
Si-O polyhedral units are highlighted. The average and standard deviation (SD) of
each polyhedral attribute extracted from VESTA for RE-O and Si-O polyhedra are
extracted for each compound. Along with formation energy we have an initial set
of 25 descriptors. Using correlation analysis, seven descriptors (Si avg bond length,
Si poly volume, RE avg bond length, AK avg bond length, RE avg bond length sd,
Si bondangle var) and form Energy are shortlisted.

satile software tool designed for visualizing and analyzing crystallographic structure

data), I generated the following six polyhedral descriptors for each unique polyhedron

in the crystal structure: (1) average bond length, (2) polyhedral volume, (3) effective

coordination number, (4) distortion index: D = 1
n

∑n
i=1

|li−lav|
lav

, where li is the distance

from the central atom to the ith coordination atom and lav is the average bond length,

(5) bond angle variance (only for Si-O polyhedra): σ2 = 1
m−1

∑m
i=1(ϕi−ϕ0)

2, where m

is (number of faces in the polyhedron)× 3
2

(i.e., number of bond angles), ϕi is the ith

bond angle, and ϕ0 is the ideal bond angle for a regular polyhedron (for example, 90◦

for an octahedron or 109◦28′ for a tetrahedron) and (6) quadratic elongation (only

for Si-O polyhedra): ⟨λ⟩ = 1
n

∑n
i=1

(
li
l0

)2

, where l0 is the center-to-vertex distance of

a regular polyhedron of the same volume. ⟨λ⟩ is dimensionless, giving a quantitative
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measure of polyhedral distortion which is independent of the effective size of the poly-

hedron. I note that these polyhedral descriptors are default in VESTA and have been

used before in the literature to study crystal chemistry trends [80, 81, 82, 83]. Given

that there are multiple polyhedral units in each polymorph, I employed the mean

and standard deviation of these descriptors across the different, distinct RE-O and

Si-O polyhedral entities for descriptor development. This approach results in a stan-

dardized representation in which every polymorph, regardless of its complex RE-O

or Si-O coordination configurations, can be articulated using a set of 24 descriptors.

This set comprises 12 descriptors based on the Si polyhedron (average and standard

deviation of six polyhedral descriptors), 8 related to the RE polyhedron (average and

standard deviation of four polyhedral descriptors), four for the alkali/alkaline earth

metal polyhedron (average of four polyhedral descriptors, as these do not possess

more than one unique polyhedron). The complete array of these descriptors, along

with their individual explanations, is presented in Table 2.1.

Table 2.1: List of polyhedral descriptors explored in this thesis along with their
descriptions.

Variable Description

Si avg bond length Average of average bond

length of Si-O across all Si-O polyhedra

Si poly volume Average of polyhedral

volume across all Si-O polyhedra

Si distortion Average of polyhedral

distortion across all Si-O polyhedra

Si eff coord num Average of effective

coordination number across all Si-O polyhedra

Si quad elong Average of quadratic

elongation across all Si-O polyhedra
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Si bondangle var Average of variance in

bond angles across all Si-O polyhedra

RE avg bond length Average of average bond

length of RE-O across all RE-O polyhedra

RE poly volume Average of polyhedral

volume across all RE-O polyhedra

RE distortion Average of polyhedral

distortion across all RE-O polyhedra

RE eff coord num Average of effective

coordination number across all RE-O polyhedra

AK avg bond length Average bond length of

Alkali/Alkaline Earth-O across all

Alkali/Alkaline Earth-O polyhedra

AK poly volume Average of polyhedral

volume across all Alkali/Alkaline Earth-O polyhedra

AK distortion Average of polyhedral

distortion across all Alkali/Alkaline Earth-O polyhedra

AK eff coord num Average of effective

coordination number across all

Alkali/Alkaline Earth-O polyhedra

Si avg bond length sd SD of average bond

length of Si-O across all Si-O polyhedra

Si poly volume sd SD of polyhedral

volume across all Si-O polyhedra

Si distortion sd SD of polyhedral

distortion across all Si-O polyhedra

Si eff coord num sd SD of effective

coordination number across all Si-O polyhedra

Si quad elong sd SD of quadratic

elongation across all Si-O polyhedra
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Si bondangle var sd SD of variance in

bond angles across all Si-O polyhedra

RE avg bond length sd SD of average bond

length of RE-O across all RE-O polyhedra

RE poly volume sd SD of polyhedral

volume across all RE-O polyhedra

RE distortion sd SD of polyhedral

distortion across all RE-O polyhedra

RE eff coord num sd SD of effective

coordination number across all RE-O polyhedra

One other useful descriptor would be lattice energy because various research stud-

ies have explored its impact in predicting the CTE of materials [84, 85]. For in-

stance, a study by Zhang et al. [84] employed lattice energy along with polyhe-

dral descriptors to semi-empirically describe the CTE. Lattice energy measures the

strength of the electrostatic bonds within a crystal, essentially serving as a yard-

stick for the thermodynamic stability. High lattice energy is often correlated with a

resistance to structural changes, including thermal expansion. While lattice energy

provides valuable insights, its calculation can be resource-intensive, particularly for

complex materials. Formation energy, on the other hand, represents the total en-

ergy change that occurs when a compound is formed from its elemental constituents.

This metric can be obtained from DFT calculations and offers a glimpse into the

thermodynamic stability of a compound. Thus, I hypothesize that combining for-

mation energy with local polyhedral descriptors (comprising 24 descriptors) offer a

coherent framework for investigating the relationship between structure and CTE

in crystals that form in the RE-Si-O phase space. This gives us an initial set of 25

descriptors. However, based on the correlation analysis detailed in the Appendix (sec-
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tion C.1), only 7 descriptors are required to convey the same information without re-

dundancy. They include: Si avg bond length, Si poly volume, RE avg bond length,

AK avg bond length, RE avg bond length sd, Si bondangle var and form Energy. Ex-

ploring structure-property relationships through the various descriptors mentioned in

this chapter is essential for understanding both their commonalities and differences.

Therefore, our forthcoming investigation into the crystal chemistry of RE-Si-O will be

based on a diverse set of descriptors including ionic radii, formation energy, polyhe-

dral features, and unit cell parameters. Before diving into that, the next chapter will

provide an in-depth look at the methodologies that I have explored in this thesis.
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Chapter 3

Methods

3.1 An Overview of Density Functional Theory

Density functional theory (DFT) offers a practical approach to solving the Schrödinger’s

equation, enabling the calculation of material properties from fundamental principles.

Rooted in the theories of Hohenberg, Kohn, Sham, Thomas, and Fermi, DFT asserts

that the total electronic energy of a system (Etot) can be expressed as a functional of

the system’s electronic charge density (ρ). This density is computed as the sum of

Kohn-Sham orbitals (ϕ), as described in Equation 3.1.

ρ(r) =
N∑
i

|ϕ(r)|2 (3.1)

The Kohn-Sham version of DFT calculates the energy for a given ϕ using the eigen-

value equation in Equation 3.2, known as the Kohn-Sham equation. This equation

consists of several components: Ts, the Kohn-Sham kinetic energy, given by Equa-

tion 3.3; EH , the Hartree energy, as in Equation 3.4; vext, the external potential; and

Exc, the electron-electron exchange correlation term [86, 87].

ϵiϕi(r) = [Ts + EH + vext + Exc]ϕ(r) (3.2)
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Ts[ρ(r)] =
N∑
i=1

∫
ρ∗(r)(− ℏ2

2m
∇2)ρ(r) (3.3)

EH [ρ(r)] =
e2

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r − r′| (3.4)

The term Exc is particularly challenging to solve directly within the Kohn-Sham

framework and requires numerical approximations. Despite this complexity, many

approximations yield results close to experimental values. However, Exc can still be a

significant source of error in DFT, and selecting the correct numerical approximation

is crucial.

Approximations for Exc are generally categorized into LDA and GGA. LDA, as ex-

pressed in Equation 3.5, assumes that Exc depends solely on ρ at each spatial point.

In contrast, GGA includes the first derivative of ρ, as shown in Equation 3.6. Fur-

ther refinements, such as meta-GGA functionals and Hybrid functionals, can also be

employed.

ELDA
XC =

∫
ϵxc(ρ(r))ρ(r)d3r (3.5)

EGGA
XC =

∫
ϵxc(ρ(r),∇ρ(r))ρ(r)d3r (3.6)

The choice of a basis set for the wave function is another essential aspect of DFT cal-

culations. For solid materials, Bloch planewaves are commonly used due to their pa-

rameterizable nature and ability to represent the periodicity of solids. Other options,

such as Slater type orbitals and Gaussian basis sets, are more suited for molecular

calculations.
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Figure 3.1: Scheme of the self-consistent solution of the Kohn-Sham equations. [86,
87]
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The Kohn-Sham (KS) equations are solved through a self-consistent iterative process,

as depicted in Figure 3.1. The procedure begins with an initial or trial value for the

electron density n(r). With a given exchange-correlation (XC) functional, the KS

potential VKS(r) is derived from this initial density. Solving the KS equations then

produces the KS orbitals ϕi(r), leading to a new electron density n(r) and a corre-

sponding total energy. This newly computed density is then used as the input for the

next iteration. The process continues, repeating these steps until self-consistency is

achieved. In practical terms, self-consistency is determined by the convergence of the

total energy. When consecutive total energy values differ by less than a chosen con-

vergence criterion, the calculation is considered complete, and the final total energy,

forces, stresses, and other properties can be reported.

3.1.1 Structure Optimization

Optimizing structures using DFT is a well-known approach in computational mate-

rials science. It involves finding the equilibrium geometry of a system that minimizes

the total energy. The Hellmann-Feynman theorem plays a crucial role in this opti-

mization, providing a theoretical foundation for calculating forces and guiding the

system to its minimum energy configuration. The Hellmann-Feynman theorem states

that the force on a nucleus is equal to the negative gradient of the total energy with

respect to the nuclear coordinates. Mathematically, it can be expressed as [86, 87]:

Fi = − ∂E
∂Ri

(3.7)

where Fi is the force on the i-th nucleus, E is the total energy, and Ri is the position

of the i-th nucleus. This theorem simplifies the calculation of forces in a system by
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relating them directly to the derivative of the energy. It allows for efficient computa-

tion of forces without explicitly considering the wave function’s response to nuclear

motion. By iteratively calculating total energy and forces and updating the geometry,

the system is guided to its equilibrium structure. The Hellmann-Feynman theorem’s

elegant relationship between forces and energy derivatives streamlines this process,

enabling efficient and accurate optimization. The steps involved are:

Initial Structure and Parameters

The optimization begins with an initial guess for the structure, including atomic posi-

tions and lattice parameters. This initial structure is often derived from experimental

data or previous calculations.

Total Energy Calculation

The total energy of the initial structure is calculated using DFT. This involves solving

the Kohn-Sham equations self-consistently to obtain the electronic structure and total

energy.

Force Calculation

Using the Hellmann-Feynman theorem, the forces on the nuclei are calculated from

the derivative of the total energy with respect to the nuclear positions. These forces

indicate how the atoms should move to reduce the total energy.
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Geometry Update

The atomic positions are updated based on the calculated forces, typically using

optimization algorithms like the steepest descent or conjugate gradient methods. The

updated geometry is expected to be closer to the equilibrium structure.

Convergence Check

The optimization process is iteratively repeated, recalculating the total energy and

forces and updating the geometry until convergence criteria are met. Common con-

vergence criteria include a threshold for the maximum force on any atom and a

tolerance for changes in total energy. Once convergence is achieved, the final opti-

mized structure represents the equilibrium geometry of the system, corresponding to

the minimum total energy.

DFT calculations not only provide the optimized structure of a material but also yield

the total energy for that structure. This total energy is a critical quantity that can

be used to explore the potential energy landscape and understand the energetic com-

petition among various possible structures a compound can form. By calculating the

energy difference ∆E (in meV/atom) with respect to the lowest energy structure, one

can gain insights into the stability and likelihood of different structural configurations.

The ground state structure of a compound is the configuration with the lowest total

energy. In terms of ∆E, the ground state structure has ∆E= 0 meV/atom, indicating

that it is the most stable and energetically favorable configuration. This structure

represents the natural state of the compound under given conditions and serves as a

reference point for evaluating other possible structures.
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Structures with a ∆E greater than 5 meV/atom are generally considered unlikely to

form [86, 87]. The higher ∆E indicates that these configurations are energetically un-

favorable compared to the ground state and metastable structures. While not entirely

ruled out, these higher ∆E structures are less likely to be observed in practice, and

their formation may require specific non-equilibrium conditions or external influences

[88].

3.1.2 Density of States Calculation

The density of states (DOS) is a key descriptor of chemical bonding and contains in-

formation related to its electronic properties. The DOS (measure of how many states

are available for occupation at each energy level) signifies the electronic structure by

illustrating the likelihood of finding a state at a specific energy level, with each state

having the capacity to be occupied by two electrons. The quantum mechanical nature

of electrons means that there is a probability associated with an electron existing at a

given energy, resulting in a spectral curve with intricate features. The DOS serves as

a visual representation of the electronic structure, where any alteration in the DOS

corresponds to a change in the available states for an electron. Consequently, this

shift is indicative of variations in the electronic structure and, presumably, electronic

properties. While the DOS curve encapsulates a statistical distribution of electronic

states, deciphering the factors and their interplay that constitute this distribution is

challenging. The complexity of these interactions leads to a DOS curve that is often

difficult to interpret. Since the DOS symbolizes the electronic structure, scrutinizing

the changes in DOS due to variations in crystal structure and chemistry contributes

to the formulation of enhanced relationships between electronic structure, crystal

structure, and chemistry.
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The calculation begins by solving the Kohn-Sham equations to obtain the eigenvalues,

which represent the energy levels of the system [86, 87]. The energy levels are then

grouped into bins or intervals, and the number of states in each bin is counted. To

obtain a smooth DOS curve, a smearing or broadening technique (e.g., Gaussian

smearing) is often applied to the binned data. The DOS is typically normalized to

ensure that the integral over all energies equals the total number of states. The partial

density of states (PDOS) provides insight into the contribution of specific atoms

or orbitals to the overall DOS. It is essential for understanding the local electronic

structure. The PDOS is calculated by projecting the Kohn-Sham wave functions

onto a set of localized atomic orbitals. This allows for the decomposition of the

DOS into contributions from specific atoms or orbitals. By analyzing the PDOS, one

can understand how different atomic species or orbital characters contribute to the

electronic structure, bonding, and other properties.

3.1.3 Formation Energy Calculation

Formation energy is a critical parameter in understanding the stability and properties

of materials, particularly in the context of defects, alloys, and novel compounds. In

this section, I outline the methodology employed to calculate the formation energy

using Density Functional Theory (DFT) calculations. The first step in calculating

formation energy is to determine the total energy of the system. This involves solving

the Kohn-Sham equations for the system of interest, considering both the electronic

and ionic contributions. The reference state energy is calculated for each constituent

element in its most stable form (e.g., bulk phase). This involves performing separate

DFT calculations for each element in a standardized condition, such as zero pressure

and temperature.
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The formation energy (Ef) of a compound is calculated using the following formula:

Ef = Etotal −
∑
i

niE
ref
i

where Etotal is the total energy of the compound, ni is the number of atoms of element

i in the compound, and Eref
i is the energy of element i in its reference state.

3.1.4 Special Quasirandom Structures (SQS)

Modeling disordered systems using conventional supercells can be computationally ex-

pensive and may not accurately capture the random nature of the atom distribution.

The SQS method overcomes these challenges by generating a structure that statis-

tically represents the randomness of the disordered system [89]. The SQS method

allows for the simulation of random structures by creating a representative structure

that mimics the statistical properties of a truly random system. The SQS method

has been widely used in DFT calculations for various applications alloy modeling,

defect studies and calculation of thermodynamic properties such as free energy by

accurately representing configurational entropy. In this thesis, I use SQS for optimiz-

ing structures of multi-component rare-earth disilicate compounds which are used for

validating the holistic ML model.

The SQS method is designed to emulate the correlation functions of a random alloy

up to a specific range. This means that the SQS captures the essential statistical

properties of the random system, such as pair correlations and higher-order correla-

tions, within a defined range. This statistical representation ensures that the SQS

behaves similarly to the random system it represents, providing a reliable model for
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computational studies. One of the key advantages of the SQS method is its ability to

represent a random structure using a relatively small supercell. Unlike conventional

methods that may require large supercells to capture randomness, the SQS method

efficiently models the disordered system without the need for extensive computational

resources. This size efficiency not only reduces computational cost but also makes

the method more accessible for complex simulations. Moreover, an accurate repre-

sentation of the statistical properties of a random system enables the calculation of

configurational averages without the need for extensive sampling. By capturing the

essential statistical behavior of the system, the SQS allows for meaningful averages

to be computed, providing insights into the system’s overall behavior. This ability

to perform configurational averaging streamlines the study of disordered systems,

making the SQS method a valuable tool in computational materials science.

The construction of an SQS begins with defining the target correlation functions

for the random system. These functions are based on the desired composition and

structural properties of the system and serve as the reference for constructing the

SQS. By carefully defining these target functions, the SQS can be tailored to represent

the specific random system under study. Once the target correlation functions are

defined, various candidate structures are generated by randomly distributing atoms

within a supercell. These candidate structures represent different possible realizations

of the random system and serve as the starting point for finding the optimal SQS.

The generation of diverse candidate structures ensures that the optimization process

explores a wide range of possibilities. The candidate structures are then evaluated

based on how closely their correlation functions match the target correlation functions.

Optimization algorithms are employed to find the structure that best represents the

random system. This optimization process involves iteratively adjusting the candidate
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structures and evaluating their correlation functions until the best match is found.

The result is an SQS that accurately captures the statistical properties of the random

system. The final step in constructing an SQS is validation. The selected SQS is

rigorously validated to ensure that it accurately represents the statistical properties

of the random system. This validation process may involve comparing the SQS’s

correlation functions with those of the target system and assessing how well the SQS

reproduces the system’s behavior. Successful validation confirms that the SQS is a

reliable model for the random system, ready for use in subsequent computational

studies.

3.2 Machine Learning

In this section, I initially explore some of the most commonly used ML algorithms and

approaches in the realm of material science. I will be using a definition of ML that is

both accessible and provided by Tim Mitchell in his book “Machine Learning” [90].

Mitchell states: “A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with experience E” This definition lays the basis for

our subsequent discussion on ML. Moreover, I will pinpoint areas of improvement

specifically in the application of ML to material science and suggest strategies for

enhancement.
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3.2.1 The Experience

At the heart of this definition lies the concept of “experience”. In the context of ML,

experience is a synthesis of knowledge and datasets. This knowledge is often patterns

or representations the model derives from the data it is exposed to. This experiential

learning can be broadly categorized into two primary ML paradigms: supervised

and unsupervised learning based on the nature of the examples they receive during

the training period. Unsupervised learning uses a dataset of examples with only

features (quantifiable characteristics of the subject under scrutiny) denoted as x, and

it learns some meaningful relationships among the examples, such as the probability

distribution p(x). Conversely, supervised learning employs a dataset of examples

with both features x and corresponding labels y, which are the “appropriate” values

associated to the features. In this scenario, the learning algorithm determines the

probability distribution p(y|x) or the expected outcome of a regression E(y|x).

3.2.2 The Task

ML can be utilized for a variety of tasks. These tasks typically involve the manipula-

tion of examples (or data points) provided to the algorithm. These examples consist

of variables/features/descriptors (such as chemical structures, chemical compositions,

reaction temperature, etc.) which are typically compiled into a vector x to illustrate

a material’s physiochemical properties, structural attributes, composition properties,

or synthesis process conditions. The subsequent sections will elucidate various algo-

rithms, primarily falling under two broad categories: supervised and unsupervised

ML. While there have been extensive efforts invested in the continuous search for

a “better” model, there is no universally superior algorithm for all problems [91].
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Therefore, the aim is not to find a universally superior algorithm but to identify an

algorithm that is best suited for a specific problem. With this perspective, it becomes

paramount to experiment with a variety of algorithms tailored to the unique facets

of the dataset and problem in question. Through meticulous evaluation and testing,

I identified specific algorithms that excelled with our datasets. The subsequent sec-

tions will focus on these algorithms. Armed with this foundational understanding

of these algorithms, readers will be better positioned to appreciate the depth of our

investigation in the subsequent chapters.

Classification

The purpose of an algorithm is to identify the category or class to which a specific

observation belongs. This is achieved by learning a function F : Rn −→ {1, . . . ,m}

that maps the feature vector x to one specific class among m distinct classes. Instead

of settling on a single class, the function can also provide a probability distribution

across all classes, where each entry in the output vector y = f(x) represents the

likelihood that the example belongs to a particular class. ML algorithms have been

effectively used to tackle materials classification tasks. For instance, given a set of

synthesis conditions, a classification model can predict whether synthesized materials

will form successfully or which sections of synthesized materials will exhibit defects.

Decision trees Decision trees (DTs) are models based on sequential logic. A thor-

ough review of DTs is given by Murthy [92], and recent advancements with various

algorithms are also available [93]. DTs offer a series of logical rules that examine

an object’s features. Within a DT, each node symbolizes the feature being classified,

and the branches descending from the parent node signify the possible values that the

parent node’s feature can assume. The parent node is then recursively divided into
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child nodes, each testing their features, until a stopping condition is reached, such

as reaching the tree’s maximum depth. However, DTs are susceptible to overfitting.

If a tree is deep and each child node contains only a small amount of data, the DT

model’s generalizability will be weak. Extensive research in DT has focused on finding

efficient algorithms that also reduce the tree’s size to avoid overfitting [93]. Another

method to prevent overfitting is to employ ensemble techniques, such as Random For-

est (RF) [94] and Gradient Boosting (GB) [95]. These methods make predictions by

combining the outputs of separately trained DTs, differing only in how the collection

of DTs is assembled. Random Forest trains each DT independently using a random

subset of the original data, obtained through bagging, where random samples are

drawn with replacement. To ease computational complexity, each DT can only select

a random subset of the entire feature set. An RF model makes a prediction on an

input vector by averaging individual models (regression) or choosing the class with

the majority votes (classification). Conversely, Gradient Boosting constructs base-

learners (individual models like DT or SVM that comprise the ensemble) sequentially

[95]. At each step, the next model’s parameter is selected to correlate most with the

negative gradient of the loss function, enhancing the ensemble’s performance with

each additional base-learner. It has been demonstrated that Gradient Boosting will

consistently outperform Random Forest if the parameters are meticulously adjusted

[93]. However, GB is generally slower than RF and more susceptible to noisy data.

One of the fundamental advantages of DT is its interpretability.

Regression

Another typical task is regression, where the algorithm strives to learn a function

F : Rn −→ R that determines a continuous value y or a group of continuous values
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Figure 3.2: Support Vector Machines for Classification. Individual points are colored
according to their classification. Dashed red and blue lines are the support vectors
with the black line being the optimized decision boundary.

represented as a vector y.

Support Vector Machines SVM are a popular method for nonlinear classification prob-

lems. They are perhaps easier to understand in the context of classification where

hyperplanes function as decision boundaries making the problem and solution easier

to visualize. For clarity I will start by introducing the classification methodology and

then transfer that logic to the regression problem.

Given a data set of (x1, x2, y)1, ..., (x1, x2, y)N , where y is either −1 or 1 we would

like to identify a decision boundary which is maximally distant from both y = 1

and y = −1. This decision boundary is referred to as a hyperplane and satisfies the

relationship wTx − b = 0, where w is normal to the hyperplane. We would like this

hyperplane to maximize the distance from the nearest point (x1, x2, y)i. If the points

are linearly separable, as they are in Figure 3.2 (a), this can be accomplished by first

selecting 2 initial hyperplanes, beyond which y takes on the value of either 1 or −1,

which are maximally distant from each other. These hyperplanes are termed support
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Figure 3.3: Support Vector Regression. Here there is no classification, blue lines
represent the support vectors used to identify the black line or optimized regression
line.

vectors. taking the parallel hyperplane that bisects the distance between these two

support vectors gives us the desired decision boundary.

⟨xi, xj⟩ = exp(
||xi − xj||2

2σ2
) (3.8)

To treat problems where the data is not clearly, similar to what is shown in Fig-

ure 3.2 (b), we can attempt to transform the data into higher dimensionality with

the hope that it is separable there [96]. A visualization of this methodology is shown

Figure 3.2 (b). It is computationally expensive to map individual observations into

higher dimensional space, instead we can describe the relationships between the data

though some nonlinear kernel (most commonly a radial basis function shown in Equa-

tion 3.8) and map this to a higher dimensional space. The decision boundary can

then be identified based on the kernel description and mapped back to the original

problem space.

In SVR we still rely on hyperplanes defined by mapping the problem to a higher

dimension through the kernel trick. The difference is, instead of trying to maximize

the difference between two support vectors, we are trying to maximize the number of

points which fall inside support vectors. This is shown schematically in Figure 3.3.
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The distance between the decision boundary and the support vectors (the other hy-

perplanes) is referred to as ϵ and is a hyperparameter of SVM. Only points which

fall inside of this window will be considered during the regression, which has the ef-

fect of making SVM less susceptible to outliers relative to other nonlinear modeling

techniques [97].

Clustering

This is a type of unsupervised learning task that is beneficial when dealing with a

large volume of unlabeled data. The objective is to group data points into clusters

where items within the same cluster are more “similar” to each other compared to

those in another cluster. The definition of “similar” depends on the context and

requirements. By grouping items into clusters, one can derive meaningful insights

from the data even when the dataset is unlabeled. Various clustering methods exist,

each designed for specific purposes. The two most prevalent forms of clustering are

partitioning clustering and hierarchical clustering.

Partitioning clustering is focused on dividing the items into k clusters [37]. Crisp

clustering ensures that each item is a member of only one class, with an output

of 0,1, while fuzzy clustering permits items to belong to clusters to varying degrees,

with values in the range [0,1]. Standard methods of partitioning clustering encompass

k-means clustering and k-medians clustering.

Hierarchical clustering, on the other hand, is designed to illustrate how clusters are

interconnected through tree-like structures [37]. The tree can be constructed down-

wards, breaking the top cluster into progressively smaller clusters (using divisive

algorithms), or upwards by starting with numerous small clusters and merging them
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(using agglomerative algorithms). Unlike partitioning clustering, which provides one

set of clusters for a single value of k, hierarchical clustering offers clusters for a range

of values of k. This allows hierarchical clustering to reveal how smaller clusters relate

to larger ones.

Dimension Reduction & Visualization

When developing a model, there may be instances where the number of features is

overwhelming. In such cases, it’s advantageous to decrease the dimension of the

features by transforming them into a lower dimension, while retaining as much infor-

mation as possible. This can enhance computational efficiency, potentially improve

model performance, prevent overfitting, and aid in uncovering insights for specific

tasks. Dimension reduction has been employed in material discovery to optimize pre-

diction results, such as condensing extensive long-time dynamic information into lower

dimension data for superior performance. Furthermore, by minimizing less relevant

features, dimension reduction can help reveal the fundamental physics/chemistry of

a material model. Additionally, the conversion of high-dimensional data into 2D or

3D plots for visualization is a crucial aspect of dimension reduction. This allows for

valuable insights to be gleaned from an understandable plot and has been used in

material discovery to visualize the high-dimensional material design space.

In essence, determining the task to be solved is the initial step in effectively applying

ML in material discovery. However, the task categories discussed so far are not always

standalone. For instance, efficient searching can be integrated with classification or

regression to create a closed design loop for finding high-temperature ferroelectric

perovskites, and dimension reduction can be utilized to build a superior feature set

for training the models [98].
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t-Distributed Stochastic Neighbor Embedding (t-SNE) This is a widely-used unsu-

pervised learning technique for dimension reduction and data visualization, consisting

of two stages [99]. First, in the original high-dimensional space, t-SNE constructs a

probability distribution to determine how likely two pairs of points would be chosen.

Points that are nearer to each other (for example, with a smaller Euclidean norm)

are assigned higher probabilities, and vice versa. Second, in the lower-dimensional

space, a probability distribution is defined over all points. The algorithm’s goal is to

minimize the Kullback-Leibler divergence, ensuring that the probability distributions

in both the high and low-dimensional spaces are similar to each other. This process

enables the mapping of points from a high-dimensional space to a lower one.

3.2.3 The Performance Measure

This is employed to evaluate an algorithm’s effectiveness on a specific task. For clas-

sification, the algorithm’s performance can be gauged based on accuracy (percentage

of correct output), error rate (percentage of incorrect output), or a more intricate

metric derived from the confusion matrix. For algorithms that produce a probability

distribution, the log-probability can be computed. For regression, it’s common to

use mean squared errors (MSE), mean absolute errors (MSE) or some forms of norm

errors.

The dataset for a specific task is usually divided into three parts: training dataset,

validation dataset, and test dataset. The algorithm is trained on the training dataset

and further optimized (by adjusting hyperparameters such as learning rate and struc-

ture of the algorithm model) based on the performance on the validation dataset. The

performance of the optimized supervised learning algorithm is typically measured by
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its ability to perform on the test dataset, known as the test performance, which serves

as an indicator of the model’s generalization capability.

So far in our exploration, we have delved into the elements and parts of conventional

ML which as per Mitchel’s definition encapsulates algorithms designed to adapt and

improve over time based on experience. However, looking ahead, my focus shifts

towards transcending the limitations of conventional approaches. In the following two

sections, I discuss the innovative tools and methodologies that enable us to go beyond

the mere performance measure “P”. By incorporating elements that facilitate a deeper

understanding of where and why a model fails, I aim to construct more robust and

insightful models. This includes the application of uncertainty quantification, which

provides insights into the reliability of predictions, and the utilization of Explainable

Artificial Intelligence (XAI) techniques, which shed light on the underlying reasons

for a model’s behavior. Together, these advanced approaches promise to enhance

our ability to build, interpret, and trust ML models, taking us a step closer to fully

realizing the potential of this dynamic field.

3.2.4 Uncertainty Quantification

A vast majority of the materials informatics literature only deals with the usage of

the average performance metrics of trained ML models such as the mean average

error (MAE), the mean square error (MSE), or the root-mean-square error (RMSE)

as the uncertainty metric to assess the quality of the trained regression models [100,

30]. These average estimates are insufficient to determine uncertainties associated

with individual instances. For example, when applying an ML model for predicting

the property of an unexplored material, we want to know how certain the model is
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Figure 3.4: The graphic shows the different sources of uncertainty. (a) Depicts the
uncertainty due to lack of data (called the model error). The model error reduces
as we collect more data in the regions that lack them. (b) Depicts the uncertainty
due to conflicting data for the same input space (called the sample noise). This is an
irreducible error and can only be quantified but not reduced.

about the prediction for that particular material, and an evaluation of the average

performance of the model over the entire dataset is not necessarily significant. Also,

such average error metrics are not reflective of the different sources of the uncertainty:

(1) Aleatoric (or data noise) uncertainty caused by the stochastic nature of data

generation process due to the inherent variations (or randomness) in the data. The

problem is referred to as the data consistency challenge in the field of materials

science, and can be viewed as aleatoric (or irreducible) uncertainty. (2) Epistemic (or

model error) uncertainty that stems from the sparsity in materials data due to the

expensive nature of the experiments. As a result, the trained ML model is ignorant

due to the lack of knowledge about the best model.

There are several other Uncertainty Quantification (UQ) methods available that

model the epistemic uncertainty using confidence intervals [101, 102]. But evaluating

the uncertainty for a new observation that the model has not seen using confidence

intervals (i.e. ignoring aleatoric contribution) leaves us with a false sense of accuracy.

The aleatoric contribution also has its impact on active learning [103] and anomaly
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detection problems [104]. The total uncertainty metric for a new observation, which

we refer to as prediction intervals in this work, can be evaluated by accounting for the

aleatoric sources along with the epistemic sources of data uncertainty. As a result,

prediction intervals are wider than confidence intervals.

Despite the importance of the prediction intervals in ML based materials modeling

and the availability of UQ methods to choose from, the literature on this area is sparse.

The reason behind the sparsity in their implementation towards materials informatics

problems can be due to additional computational effort beyond the training of the

model [30]. This is an exception for Bayesian methods like Gaussian process (GP)

since uncertainty estimation is innate to the method itself. GPs are Bayesian models

in which a prior distribution is first specified and then updated given observations

to yield a posterior distribution. The mean of this posterior distribution is used for

regression, and the covariance matrix is used for UQ [105].

However, GP regression has the disadvantage of normality assumptions regrading the

prior distribution and sample noise distribution which leads to loss of information such

as skew of the error. This makes the uncertainty metric of GP (called the credible

intervals) symmetric which is rarely the reality. Also, GP can not be used for high

dimensional datasets efficiently due to the cubic time complexity involved with the

inversion of the kernel matrix.

A few distribution-free PI algorithms have been introduced in the materials informat-

ics literature in the recent years. One of the popular approaches is the probabilistic

quantile regression method, where the mean squared error (MSE) loss function is

modified to predict conditional quantiles rather than conditional means [30, 106].

As shown in the work of Choudhary et al. and Osman et al. [30, 106], one of the

strengths of quantile regression is that one has to fit the model only once. How-
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ever, one notable weakness of the quantile prediction intervals is that the model is

quantifying its own uncertainty. This means that one is reliant on the model be-

ing able to correctly fit the data. So, in a case where the conditional means of the

data follow a linear trend but the quantiles don’t, one would then have to choose a

non-linear model to get correct prediction intervals. Further, if we’re overfitting the

training data then the prediction intervals will also become overfitted [107]. Another

approach to quantify PIs was introduced by Choudhary et al. [30], where the authors

used two independent ML models to fit the data: one to predict the actual value of

the property (the “base” model) and another to fit the residuals (the “error” model).

While interesting, this PI approach models the total error term (σ2
model +σ2

noise) with-

out distinguishing the relative contributions from σ2
model and σ2

noise. Furthermore, it

appears that the authors have assumed that the total error term can be modeled

as a function of the independent variable x. This particular formalism has a con-

nection with the Bayesian calibration of computer models introduced by Kennedy

and O’Hagan [108], who defined the error model term as the discrepancy function.

Unlike Kennedy and O’Hagan, in the approach developed by Choudhary et al., the

contribution of σ2
noise is not clearly discerned. To train these models, the data must

be split into three groups: one for fitting the base model, one for fitting the error

model and also validating the base model, and the last for validating the error model.

Although the method shows promising PI properties, like the quantile regression, the

PI quality relies on the model fit. Moreover, the division of the data into three sets

can be a significant drawback when the amount of data is limited which is typical in

material science domain.

Ensemble-based ML algorithms offer yet another route to quantify PIs in y. Recent

work by Lu et al. [109] and Roy et al. [110] are examples of random forest based
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ML methods, where PIs are constructed based on quantiles method, leave-one-out

method, shortest PI method and highest density region method. In another work,

Sricharan & Ashok [111] introduced a novel non-parametric bootstrap-based approach

for evaluating both the sources of uncertainties. We identify two key advantages with

this approach: (1) The algorithm is free from any assumptions about the data or noise

model, and (2) It is model agnostic. As this method is foundational to our approach

in constructing prediction intervals, I will dive deeper into the algorithm.

In examining the underlying methodology of this prediction interval algorithm, the

authors present the 0 th measured target, denoted by y(x0), as follows:

y0 = y(x0) = ψ(x0) + ϵ(x0) (3.9)

= ŷr(x0) + ψ(x0)− ŷr(x0) + ϵ(x0) (3.10)

= ŷr(x0) + ηr(x0) + ϵ(x0) (3.11)

where, ŷr(x0) is the model for a given input x0, ψ(x0) is the true regression mean and

ηr(x0), defined as ψ(x0) − ŷr(x0), signifies the model’s error. ϵ(x0) is the error that

shifts the target from its true regression mean, ψ(x0), to the measured value, y(x0).

The prediction error centralized around ŷr(x0) is then categorized into two distinct,

independent sources: (i) Model error, symbolized as ηr(x) and (ii) Observation noise,

represented as ϵ(x).

The authors employ bootstrapping techniques to deduce the realizations of the model

error ηr(x0). Bootstrapping as seen in Figure 3.5 is a resampling technique used in

statistics to estimate the distribution of a statistic by repeatedly sampling with re-
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Figure 3.5: A schematic of our proposed bootstrap prediction interval algorithm. The
algorithm is a modification of the prediction interval algorithm published by Srivat-
sava and Kumar [111]. Our modification lies in the approximation of observation
noise distribution using the .632 measure [112] of bootstrap residuals instead of train-
ing residuals as proposed by Srivatsava and Kumar. This is similar to the recent work
by Mougan and Nielsen.

placement from the observed data. By doing so, it’s possible to simulate the behavior

of a statistic over many “hypothetical” samples drawn from the underlying popu-

lation. During the bootstrapping process, not all observations are sampled in each

resample due to the nature of random sampling with replacement. The data points

that are not included in a particular bootstrap sample are termed as out-of-bag (OOB)

samples. These OOB samples are unique to each bootstrap iteration and can be used

as a validation set. On average, about 36.8% of the observations end up as OOB

samples in any given bootstrap iteration. This proportion arises from the properties

of random sampling with replacement, where any specific observation has a (1− 1
n
)n
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chance of being excluded, which approaches 1
e

as n becomes large.

From the bootstrapping procedure, the authors construct the model error as: mi =

ȳi,r(x0)−µ̂r(x0), where, ȳi,r(x0) denotes the predictions from each individual boostrap

resample and µ̂r(x0) is the bootstrap mean for m boostrap resamples, defined as:

µ̂r(x0) =

∑m
i=1 ȳi,r(x0)

m
(3.12)

The observation error, termed as oi are then approximated as the training error/resid-

uals,

oi = yi(xi)− ŷi(xi)

One of the disadvantages of this definition is that the training errors is known to be

too low because of possible overfitting. This will cause the PI to be too narrow or

optimistic. To overcome this issue, we use the 0.632 estimate (Friedman et al. [112]),

which is a weighted average of the training error and the OOB error. Specifically, it

is calculated as:

0.632× (OOB error) + 0.368× (training error) (3.13)

The rationale behind this weighting is that the training estimate often exhibits an

optimistic bias since the model is evaluated on the data it was trained on. On the other

hand, the OOB error can sometimes be overly pessimistic. The 0.632 estimate uses the

fact that only 36.8% of the observations end up as OOB samples and thus attempts

to strike a balance between these two. A recent paper by Mougan and Neilsen [113]

employing this modification shows significant improvement in the prediction interval

quality.
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The 0.632 estimate seeks to combine the optimism of the training error with the

pessimism of the OOB error. However, in practice, the degree of overfitting can vary

depending on the dataset and the model’s complexity. A fixed weight of 0.632 might

not always provide the most accurate estimate of the true error, especially when the

degree of overfitting is either very low or very high. This is where the Freidman’s

[112] validation weight comes into play.

The validation weight is designed to dynamically adjust based on the observed over-

fitting. When there’s no overfitting, the model’s performance on both the training

set and unseen data (OOB samples) should be very similar. In this situation, the

validation weight reduces to the standard 0.632 estimate. This is because the train-

ing error provides a reasonably accurate depiction of the model’s performance on new

data. If a model severely overfits the training data, its performance on the training

set would be much better than on unseen data. In such cases, the training error can

be highly misleading. To counteract this, when overfitting is detected to be severe,

the validation weight approaches 1. This effectively prioritizes the OOB error, which

is a more trustworthy indicator of the model’s performance on new data.

In essence, the validation weight acts as a corrective factor. By adjusting the emphasis

between training and OOB errors based on the observed overfitting, it aims to provide

a more realistic and reliable estimate of the model’s true error.

Mougan and Nielsen use the No Information Error Rate which serves as a baseline

error rate for calculating the relative overfitting rate and then the validation weight.

In the context of regression, No Information Error Rate is equivalent to the error one

would obtain if predictions were made without any information about the predictors.

A common approach is to predict the mean of the target variable for all observations.

The error of this naive model, which simply predicts the mean response regardless
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of the input, represents the No Information Error Rate. It essentially captures the

inherent variability in the data.

The Relative Overfitting Rate compares the performance difference between the model

on the bootstrap samples (training error) and on the out-of-bag samples (OOB er-

ror) to the difference between the naive model (No Information Error Rate) and the

training error. It’s calculated as:

(OOB error) - (training error)

(No Information Relative Error Rate) - (training error)
(3.14)

A relative overfitting rate close to 0 suggests minimal overfitting, while a rate close

to 1 indicates substantial overfitting.

The validation weight can then be used to adjust the weight between the OOB error

and the training error based on the observed degree of overfitting. It is defined as:

validation weight =
0.632

1− (1− 0.632)× overfitting Rate
(3.15)

In scenarios with no overfitting, the validation weight equals 0.632, aligning with

the standard 0.632 bootstrap estimate. This gives a balanced error estimate that’s

neither too optimistic (as with the training error) nor too pessimistic (as with the

OOB error). In cases of severe overfitting, the validation weight approaches 1. This

means the model’s performance on the OOB samples (new, unseen data) is given full

priority, providing a more realistic error estimate.
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Now the observation error oi can be written as:

(validation weight)× (OOB error) + (1-validation weight)× (training error) (3.16)

The Prediction Error Distribution is the distribution of errors made by the predictive

model, and it encompasses both the Model Error and Observation Error. For con-

structing the prediction intervals, Mougan and Nielsen [113] (and similarly Srivatsava

and Kumar [111]) take the approach of combining the Model and Observation Error

distributions by convolving the two distributions. In other words, they sum the two

error distributions, which gives a new error distribution that represents the total error

(or total uncertainty) in the predictions. From this combined distribution, prediction

intervals are constructed by taking quantiles at the desired confidence level. This is

a straightforward approach and is computationally less intensive.

In contrast to the convolution-based approach, I introduce an additional sampling

loop to draw samples from the total error distribution and adjust them using Rademacher

variable. Rademacher variables are random variables that take the values +1 or -1

with equal probability. By adjusting the sampled errors using the Rademacher vari-

able, they effectively introduce a form of randomness that mimics the flipping or

mirroring of errors. This adjustment can help in providing a more robust estimate of

the prediction intervals, especially when the underlying error distribution has heavy

tails or is not symmetric. This approach is inspired by the textbook on “Bootstrap

methods and their application” by Davison and Hinkley [114], as well as by a paper

authored by Lins et al. [115]. Our prediction interval algorithm can be seen in Ap-

pendix A.1 . Our modifications of the prediction interval algorithm by Srivatsava and

Kumar [111] discussed in this section was developed in collaboration with Dr. Tianxi
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Li from UVa-Department of Statistics, whose expertise in statistics was pivotal for

understanding the relevant literature and algorithm development.

I evaluate the performance of our approach in three different materials science based

regression benchmark data sets curated by Henderson et al. [116]. I chose datasets of

different sizes that involves prediction of: (1) Thermal hysteresis (∆T) of NiTiCuFePd

alloys (22 observations),(2) Curie temperature (Tc) of perovskites (117 observations),

(3) Effective thermal conductivity (Keff ) (720 observations) using structure and ther-

modynamics based descriptors. For further details, readers are directed to refer to

Henderson et al. [116]

Dataset Method PI for α =
0.95 0.85 0.75 0.5 0.25 0.05

Thermal hysteresis
Our Method 1.00 0.76 0.69 0.5 0.29 0.08

Doubt 0.94 0.83 0.74 0.51 0.26 0.049

Curie temperature
Our Method 1.00 0.73 0.67 0.55 0.24 0.063

Doubt 0.93 0.84 0.73 0.52 0.27 0.048

Effective thermal conductivity
Our Method 0.99 0.78 0.62 0.45 0.28 0.04

Doubt 0.95 0.86 0.76 0.49 0.25 0.051

Table 3.1: A comparison of our PI algorithm against the “doubt” method by Mougan
and Nielsen [113], where the metric used is the prediction interval coverage probability
(PICP) for various prescribed confidence levels. Parity of PICPs with the confidence
levels is considered to be the best result. The PICPs show that “doubt” outperforms
our approach.

I choose the coverage probability (PICP) as our performance metric which is the most

important characteristic of PIs, and it is determined by counting the number of target

values that the constructed PIs cover.

PICP =
1

ntest

ntest∑
i=1

ci (3.17)

where,
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ci =


1, if ti ∈ [Li, Ui]

0, if ti /∈ [Li, Ui]

(3.18)

In this equation, ntest represents the number of samples included in the test set, while

Li and Ui correspond to the lower and upper boundaries of the ith PI. It is desirable for

the coverage probability (PICP) to be equal to or greater than the nominal confidence

level associated with the PIs.

Although our algorithm is model agnostic, in this work, I only demonstrate our al-

gorithm using the ϵ-support vector regression with a non-linear Gaussian radial ba-

sis function kernel (SVRRBF) [117]. During the training and comparison process,

I split the data into 100 different 90%/10% train/test splits using different sam-

pling seeds. Then the PICP was evaluated for different prescribed confidence levels

0.95,0.85,0.75,0.5,0.25,0.05 and the results are shown in Table 3.1. It is evident the

the algorithm’s PICP does not does not meet the prescribed confidence levels in all

the datasets. The PICP is found to be suboptimal for all confidence intervals, except

for the 0.05 level. Specifically, there are noticeable underestimations at the 0.85, 0.75,

and 0.5 confidence levels, while the 0.95 level consistently shows overestimations. In

contrast, the algorithm developed by Mougan and Nielsen [113], known as “doubt”,

performs well across the board for all confidence levels. As a result, I integrate the

“doubt” algorithm into our holistic CTE model for RE-Si-O. The underlying reasons

for the shortcomings of our original approach, as well as potential improvements, will

be the focus of future research.

The next section will cover the explainable artificial intelligence methods used in this
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thesis that can help us ensure trustworthiness of the ML models.

3.2.5 Explainable artificial Intelligence

Explainable artificial intelligence (XAI) refers to the methods and techniques within

the field of AI that make the logic, decisions, and actions of ML models under-

standable to human experts. The need for explainability stems from the increasing

complexity of AI models, which can act as “black boxes”, making it difficult to un-

derstand how decisions are made. XAI aims to bridge this gap, fostering trust and

facilitating the integration of AI systems in critical areas like science, healthcare, and

finance.

The taxonomy of XAI ((Figure 3.6)) can be broadly categorized into two main areas:

Explainable Models: These are models (also known as glass box models) designed to be

inherently explainable. They include simpler models like linear regression, decision

trees, and rule-based systems where the relationship between input and output is

transparent.

Post Hoc Explainability (Black-box explainers): This involves applying techniques

to explain the decisions of accurate black-box models after they have been made.

Methods like breakDown [118], SHAP [119], and what-if plots [118] fall under this

category.

The accuracy-explainability tradeoff (Figure 3.7) represents a fundamental dilemma

in AI. On one hand, complex models such as deep neural networks and ensemble meth-

ods often deliver superior predictive accuracy. They can capture intricate patterns

and nonlinear relationships in data that simpler models might miss. However, their

complexity makes them opaque and difficult to understand, even for experts. On the
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Figure 3.6: A general overview and categorization of Model explanation. The
schematic shows the broad classification of model explanations including glass box
models and black box explanations or post-hoc model explanations. This thesis fo-
cusses only on the black box explainers which can further be classified into two types:
1) Variable attribution and 2) What-if plots. They both can be used to provide
model explanations in different granularities (local and global). While local explana-
tion involves a single observation, global explanation explains the model as a whole
considering all the observations in question.

other hand, simpler models like linear regression or decision trees are more transpar-

ent and interpretable. They allow users to see the exact relationships between input

variables and the predicted output. Yet, this transparency often comes at the cost of

predictive accuracy, especially when dealing with complex or high-dimensional data

like those I deal with in this thesis. Therefore, I strike balance between transparency

and accuracy by choosing the post-hoc model explanations for the non-linear black

box models known for their accuracy.
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Figure 3.7: The accuracy-explainability tradeoff in AI. The accuracy vs explainability
(notational) graph depicts the lack of explainability or transparency in accurate mod-
els and the lack of accuracy in explainable models. The goal of employing black-box
explainers is to harness the advantages of both ends of the spectrum.

Post-hoc Explainability

Post hoc model explanation can be defined as the human interpretable descriptions of

the relationship between the input and its corresponding prediction. For tabular data,

human interpretable description is often variable attribution values that additively

build towards the prediction. Most of the variable attribution methods work based

on a common general idea. The intuition behind the idea is that if breaking the

link between a variable (Xj) and the target (y), increases in prediction error, then

the variable j is consider important for making a prediction. Thus, its is given a

high variable attribution value. This approach aids in understanding which variables

or features are most influential in a model’s predictions, which is a cornerstone of

explainability in ML.

Distinct from mere variable importance, which offers a broad overview of influen-

tial features, counterfactuals represent another type of model explanation. Often

referred to as “what-if scenarios”, they are plots that show the marginal effect of a
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single feature on the prediction of a previously fit model [120]. In addition to offering

insights on variable importance, they also provide specific, actionable recommenda-

tions. Therefore, they typically resonate more with non-experts, presenting tangible

scenarios that demystify model decisions in relatable terms.

Both variable attribution and counterfactuals can be further classified into: i) global

explanation and ii) local explanation [121, 120]. The global explanation provides an

interpretable description of the whole model behaviour given the entire input. It helps

the user to understand the big picture of the underlying function. Whereas, the local

explanation provides an interpretable description of the model behaviour specific to

a target neighborhood (instance-wise). In a typical materials science dataset, this

might often mean the description the input-output relationship for a specific material

and/or a specific structure.

The literature on application of explainable ML methods to engineering problems is

dense. However, the idea of incorporating explainable ML methods into the current

ML-based materials design and discovery workflow is still in its infancy. The efforts

based on tree-based ML models used for materials design often include global inter-

pretation methods since its innate to decision tree method [122, 123, 124]. However,

only a handful of materials science papers that uses local explanation methods are

found in the literature [122, 125, 28, 29].

Along with the sparsity of local interpretability methods being used in materials infor-

matics, I also identify the following knowledge gaps in the application of explainable

ML in materials science:

i) What-if scenario: Although variable attribution methods give an idea of which

variable is important towards a prediction, it does not help the domain expert visu-
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alize the functional relationship between the variables and the prediction. To do this,

what-if plots like the partial dependence plot (global method) and individual con-

ditional expectation plot (local method) can be used [121, 120]. They describe the

change in the prediction as we change a variable with other variables held constant.

ii) Local, global and intermediate level explanation: While most of the efforts

in explainable ML focus on either local or global explanation, a framework that can

provide explanation at the intermediate level is crucial for making decisions [121, 120].

This is especially important in materials science as often there will be a class/group of

instances that correspond to a material class or a specific structure. Local explanation

can address one of the compounds in the material class. But its also crucial to uncover

the underlying mechanisms of materials phenomena with respect to types of materials

or structure.

iii) Uncertainty of explanations: As explained in the previous section, uncertainty

is crucial to understand when we can trust an ML output. Arguably, this applies to

model explanations too. However, there are no papers in the materials informatics

literature that report model explanation with quantified uncertainties.

The global variable importance provides users with an overarching perspective on

the influence of predictor variables on the model’s predictions, encompassing the

entire dataset. The algorithmic approach adopted by DALEX [126] to compute this

global variable importance is rooted in permutation. For each predictor variable, the

algorithm shuffles or permutes its values and subsequently gauges the impact of this

permutation on the model’s performance. Essentially, the deterioration in the model’s

performance, often measured using metrics like accuracy for classification tasks or

root mean squared error (RMSE) for regression, signifies the importance of that

particular variable. A substantial dip in performance upon permutation is indicative
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of the variable’s pivotal role in the model’s predictions. Conversely, a negligible

change suggests that the variable might not be as influential. They can discern which

features are paramount to the model and which might be superfluous. Furthermore,

understanding these influential variables can enhance the model’s interpretability,

making it more palatable to stakeholders and facilitating more informed decision-

making.

While global variable importance offers a broad understanding, it’s equally crucial to

delve into the intricacies of individual predictions. Local variable attribution meth-

ods address this need, providing insights into how each feature contributes to specific

instance predictions. Among these local methods, SHapley Additive exPlanations

(SHAP), developed by Lundberg and Lee [127], stands out as one of the most ac-

claimed techniques. SHAP’s strength lies in its foundation on cooperative game the-

ory, where SHAP values were initially conceptualized to determine individual players’

contributions to a collective outcome [119]. In predictive models, the contribution of

each variable can be calculated by averaging over every possible ordering of variables

using SHAP, allowing to locally analyze the importance of each input feature for a

given instance prediction.

In SHAP analysis, the variable importance measure of the j-th variable (or the first

j variables) on an instance x∗ is articulated as φ(j, x∗) = 1
p!

∑
J ∆[j|π(J,j)](x∗), where

the summation spans all p! permutations of input variables. The term π(J, j) desig-

nates the set of input variables that precede the j-th variable in set J . In essence,

φ(j, x∗) encapsulates the average importance of the variable across all conceivable

orderings, underscoring SHAP’s thoroughness in model interpretation. In the ML

context, SHAP offers a granular look into feature contributions by averaging over all

potential feature orderings. This meticulous approach ensures a comprehensive un-
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derstanding of a feature’s influence, making SHAP particularly adept at pinpointing

the drivers behind individual predictions.

While variable attributions provide insights about the more general questions such

as whether a feature should be included in the model in the first place, or which

features are most important to a model’s prediction, what-if plots provide useful

insights into the relationship between each feature and the predicted response for

each instance or compositions in our dataset. The what-if plots for a particular

observation (local) are generated by determining the marginal effect of a feature,

f̂(x
(i)
S , x

(i)
C ), i.e., the change in model prediction as x

(i)
S , the value of a feature under

consideration, increases or decreases [128]. In the function described, x
(i)
C are actual

values of other features from the dataset. This localized perspective is known as

Individual Conditional Expectation (ICE).

Building on the ICE concept, the Partial Dependence Plot (PDP) can be understood

as an average of ICE plots over all data points. Specifically, the PDP for a feature is

calculated as PDP(xS) = 1
N

∑N
i=1 f̂(x

(i)
S , x

(i)
C ), where N represents the total number of

instances in the dataset. By taking this average, PDP offers a holistic understanding

of a feature’s influence across the entire dataset, revealing general trends that may

not be apparent when examining individual data points through ICE. Together, ICE

and PDP provide a comprehensive lens, with ICE detailing instance-specific insights

and PDP giving an aggregated overview, ensuring a rich and nuanced understanding

of model behaviors.

Up to this point, I’ve looked into both local and global techniques for variable attri-

bution and what-if analyses. However, in the realm of materials science, examining

clusters or groups of data points can reveal hidden patterns and trends. To tap into

these insights, I merge the perspectives of global and local explanations by employ-
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Figure 3.8: The flow chart for ML and model explainability approach for explaining
model behaviour at local and intermediate levels. (Adapted from our recently pub-
lished paper [129].)

ing unsupervised clustering. The foundational idea is to use variable attributions as

embeddings, encapsulating the sensitivity profile of each data point. When I cluster

based on these embeddings, I group data points that the model perceives similarly

in terms of feature importance. Such clustering can unearth patterns that might be

latent in the raw data, revealing cohorts of data points for which the model has con-

sistent sensitivities. I perform this step by clustering (k-means method) the instances

using treating the local variable importance values as embeddings (as shown in Fig-

ure 3.8). With these clusters in hand, applying ICE analyses becomes a powerful

next step. By exploring counterfactual scenarios for entire clusters, we can discern

collective patterns in how slight perturbations to inputs might affect model predic-

tions for groups of data points. This aggregated view offers a balance between the

granularity of individual data point explanations and the broader strokes of global

model behavior. In essence, this combined approach harnesses the strengths of both
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variable attribution and counterfactual explanations. It proposes a method that op-

erates at an intermediate level of granularity, offering insights that are both detailed

and broadly applicable.

In the context of ML, elucidating model behavior is only half the challenge. Equally

crucial is the understanding of the uncertainties associated with these interpretations.

As we delve into variable attributions and counterfactual explanations, assessing the

reliability and variance of the derived insights becomes paramount. Bootstrap stan-

dard errors emerge as a robust statistical tool to address this. As discussed in the

previous section, bootstrapping involves repeatedly drawing samples (with replace-

ment) from the original dataset and recalculating the desired metric for each sample.

For our context, it means recalculating variable attributions and counterfactual sce-

narios over these resampled datasets. The mean and standard error observed across

these recalculations provides the aggregate measure and measure of uncertainty re-

spectively. All the methods and approaches I’ve discussed, encompassing the explain-

ability techniques, our unique clustering strategy and uncertainty quantification, are

concisely compiled and included in Appendix A.2.

Our algorithm capable of explaining the ML model on global, local and intermedi-

ate levels is shown to be useful for understanding a prediction. Two of my recent

publications on the use of explainable ML methods on high entropy alloys show that

the developed algorithms are portable between datasets [129, 130]. The promise of

these methods are demonstrated on the basis of the post hoc model explanations to

check if the model reflects the underlying science. This adds trust to our data-driven

approach.
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Chapter 4

Crystal Chemistry of RE2Si2O7

Rare-earth disilicates (RE2Si2O7) represent one of the three major material classes in

the rare-earth, silicon, and oxygen (RE-Si-O) chemical space. They serve as an ideal

subject for examining the coefficient of thermal expansion (CTE) due to their role in

Environmental Barrier Coatings (EBCs). EBCs, designed to shield high-performance

materials from harsh thermal and chemical conditions, make CTE an indispensable

factor for ensuring long-lasting performance. Nonetheless, the engineering of disili-

cates is complex, largely due to their polymorphic nature. The existence of various

energetically viable crystal forms complicates the design process. Consequently, two

key attributes become essential for the application of disilicates in EBCs: (1) The

DFT total energy difference is invaluable for assessing the relative stability of multiple

polymorphs, and (2) The relationship between structure and CTE that can accelerate

the design of these compounds.

4.1 Chapter Organization

The chapter begins by contextualizing the significance of RE2Si2O7 in the EBC ap-

plication. I discuss why this material is pivotal for high-performance applications

and what challenges are currently faced in its implementation. I then dive into the

DFT total energy calculations of RE2Si2O7. This section provides a comprehensive
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survey on how energetically competitive various polymorphs are, based on their sta-

bility and formation energies. The DFT calculations form the cornerstone of our

theoretical investigation. This section elaborates on the methodology used for these

calculations and discusses the results, emphasizing the presence of several energet-

ically competing crystal structures. This phenomenon is rationalized as one of the

reasons for observing polymorphism in RE2Si2O7. In the next section, we introduce

the ML models employed to establish a relationship between the crystal structures

and their CTE. Finally, I present experimental data to validate the computational

findings. Collaborative experiments conducted by Dr. Deijkers and Dr. Wadley from

UVa-MSE serve to corroborate the relationship between the crystal structure and

CTE, thereby validating the ML predictions.

4.2 Introduction

Metal oxide and silicate coatings are commonly used to provide thermal and environ-

mental protection for high temperature gas turbine engine components [65, 66, 67,

68]. In applications such as aviation jet engines, where temperatures up to 1500◦C

are common in the hottest sections, environmental barrier coatings (EBCs) protect

the Si-based ceramic matrix composite (CMC) gas turbine components from reacting

with oxygen and corrosive water vapor. Thus, there is interest in discovering novel

EBC oxides and silicates for gas turbine applications that will enable higher temper-

ature operation for the future jet propulsion technology [131]. RE2Si2O7, where RE

is a rare-earth element, are identified as candidate materials for EBC applications

because of their thermal stability at high temperatures, high resistance to oxidation

and good match in the coefficient of thermal expansion (CTE) with the Si-based
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Figure 4.1: The crystal structures of seven polymorphs in the RE2Si2O7 family of
compounds. The RE-site, SiO4 tetrahedral unit, and the disilicate unit is highlighted.

CMCs, such as SiC fiber reinforced SiC composites [132, 133]. But, the disilicates are

relatively volatile in steam conditions at 1400–1500◦ C [134]. The steam volatility

problem can be reduced through the use of rare-earth monosilicates (RE2SiO5) [134],

however these materials have a higher CTE than the Si-based CMCs [135] leading to

coating cracking and loss of protection [136]. Thus, there is no optimal EBC material

available that satisfies all requirements for operation under extreme conditions and

coating materials design remains an important challenge [131, 77, 137, 138].

The focus of this study is on the RE2Si2O7 family of compounds because the chemical

diversity and structural flexibility (via polymorphism) offer a fertile playground to

tailor the thermophysical properties for a targeted application. The phase stability of

RE2Si2O7 family has also been shown to be a strong function of the RE3+ chemistry,

temperature, and processing history [139, 140, 141]. Some of the experimentally
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observed polymorphs are shown in Figure 4.1. Intriguingly, not all polymorphs have

a CTE in the desired range for EBC applications (3–5.5×10−6 K) [132]. Depending on

the RE3+ cation and the associated RE2Si2O7 crystal structure, their linear coefficient

of thermal expansion (CTE) range from 3.9–14×10−6 K−1 [140, 142].

The objective of this work is two-fold. First, to explore the total energy trend of

RE2Si2O7 materials as the rare-earth is varied using DFT calculations, and to ex-

tract insights into the polymorphism exhibited by these compounds. A quantitative

understanding of the energetics and its relationship with structural phase transforma-

tions is important for tailoring the properties of RE2Si2O7-type compounds as EBC

materials [132]. This work aims to provide thermodynamic insights using DFT cal-

culations. Although theoretical work based on DFT calculations exist on RE2Si2O7

compounds [77, 138, 143, 144, 145, 146, 147], most of the effort has focused on a

subset of RE2Si2O7 crystal structure space.

The vast majority of the DFT studies have focused on determining the CTE from

phonon calculations using quasi-harmonic applications (QHA) [77, 138]. The CTE

of a material can be defined as the fractional increase in length (linear dimension)

per unit rise in temperature [148]. To date, experimental CTE values are known

for only 18 out of 112 possible RE2Si2O7 structures [77, 140, 142]. Performing high-

throughput phonon calculations to calculate the CTE using QHA on the entire search

space is computationally challenging because some of the polymorphs have as many

as 88 atoms in the unit cell. An alternative approach is needed that will enable

accelerated screening for quantities, such as CTE, that are difficult to calculate using

first principles methods.

The second objective of this work is to explore the potential of machine learning (ML)

methods to rapidly predict the CTE for unexplored RE2Si2O7 polymorphs. Although
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a few ML-based attempts at CTE prediction have been explored in the literature [149,

150, 151], no ML work exists on the prediction of CTE for RE2Si2O7 polymorphs.

4.3 DFT calculations of the RE2Si2O7 crystal chem-

istry

I started this research by calculating the ∆E (in meV/atom) with respect to the

lowest energy structure using DFT. The DFT calculations are performed using the

planewave pseudopotential code Quantum ESPRESSO [152]. The PBEsol exchange-

correlation functional [153] was used and the core and valence electrons were treated

with ultrasoft pseudopotentials [154]. The Brillouin zone integration was performed

using a Monkhorst-Pack [155] k-point mesh centered at Γ and 60 Ry plane-wave cutoff

for wavefunctions (600 Ry kinetic energy cutoff for charge density and potential).

The scalar relativistic pseudopotentials were taken from the PSLibrary [156]. The

atomic positions and the cell volume were allowed to relax until an energy convergence

threshold of 10−8 eV and Hellmann-Feynman forces less than 2 meV/Å, respectively,

were achieved. The 4f -states for the rare-earth elements are considered as core states

in our calculations. The converged crystal structures were visualized in VESTA [79]

and the space groups were determined using FINDSYM [157].

In Table 5.3, the total energy difference per atom (∆E) with respect to the lowest

energy structure is given for a selected set of eight RE2Si2O7 compounds. An interest-

ing feature about these compounds (except RE=Yb and Y, which will be discussed

later) is that each compound has at least three or more crystal structures within

a ∆E threshold of 5 meV/atom, indicating close energetic competition between the
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Table 4.1: Total energy difference (∆E, meV/atom) from DFT calculations with
respect to the lowest energy structure in RE2Si2O7, where RE=La, Ce, Sm, Gd,
Nd, Pr, Yb and Y. Space groups given in parentheses indicate the final converged
structure when the lattice constant tolerance is set at 0.0001 decimal places or lower
in FINDSYM[157].

Space group ∆E (meV/atom)
La2Si2O7 Ce2Si2O7 Sm2Si2O7 Gd2Si2O7 Nd2Si2O7 Pr2Si2O7 Yb2Si2O7 Y2Si2O7

C2/m (β) 67.08 52.60 12.91 0.00 28.95 40.49 0.00 0.00
Pnma (δ) 24.74 19.43 4.68 2.05 9.46 14.50 29.79 10.47
P21/c (η) 0.63 0.24 6.27 14.01 0.60 0.22 71.59 33.05
P 1̄ (α) 0.00 2.75 8.83 1.40 0.00 1.75 69.05 32.88

P21/c (G) 3.11 (P 1̄) 2.75 0.00 (P 1̄) 1.40 (P 1̄) 0.001 (P 1̄) 1.76 36.54 14.04
P21/c (γ) 63.03 49.76 13.15 1.32 27.87 38.60 3.51 1.99
P41 (A) 0.34 0.00 4.72 11.20 0.09 0.00 64.90 27.02

polymorphs. For example, La2Si2O7 has four unique structures that are within the

5 meV/atom threshold. The lowest energy structure is found to be the triclinic α-P 1̄

space group. The monoclinic (η-P21/c) and tetragonal (A-P41) structures are within

1 meV/atom above the α-P 1̄ structure (within the intrinsic errors of DFT total en-

ergy). The G-P21/c monoclinic structure is 3.11 meV/atom above the ground state

structure. The La2Si2O7 compound has been synthesized in both G-P21/c and A-P41

crystal structures and both of their experimental CTE values are also known [139,

140].

Similar to La2Si2O7, the Ce2Si2O7 compound has been synthesized in both A-P41 (at

lower temperature) and G-P21/c (at higher temperature) structures [158]. The DFT

data given in Table 5.3 indicate that the lowest energy structure of Ce2Si2O7 is A-P41

and the total energy of the monoclinic G-P21/c structure is 2.75 meV/atom higher

with respect to A-P41 structure. Although there is another structure (η-P21/c) that

is only 0.24 meV/atom higher in energy above that of A-P41, it is not discussed

here because this structure has not been reported in the experimental literature.

Experimentally, Ce2Si2O7 is known to undergo a “sluggish” phase transition from A-

P41 to G-P21/c at 1274◦ C [158, 159]. While these results indicate that the ∆E data
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from DFT can be used to find the thermodynamical contribution to the free energy,

the rates of the phase changes upon cooling are not addressed. On the basis of ∆E

data given in Table 5.3, the observed polymorphic behavior in Pr2Si2O7, Nd2Si2O7,

Sm2Si2O7 and Gd2Si2O7 can be rationalized [131, 139, 141, 160].

The Yb2Si2O7 paints a different picture. The lowest energy structure belongs to

the monoclinic β-phase with a C2/m space group. The next most favorable phase

is another monoclinic structure (γ-P21/c), which is 3.51 meV/atom higher in energy

relative to β-C2/m. The γ-P21/c structure has not been reported in the experimental

literature. The third lowest energy structure is the orthorhombic δ-Pnma phase,

which is 29.8 meV/atom higher in energy compared to the β-C2/m phase. In the

experimental literature, crystal structure and CTE data has only been found for the

β-C2/m phase.

There is one compound of Y2Si2O7 that eluded the simple thermodynamic description

based on the DFT ∆E data. The Y2Si2O7 compound exists in multiple polymorphs

(α-, β-, γ-, and δ-phases) [140], however the ∆E data fails to capture this behav-

ior. The ∆E data predicts an energetic competition only between the β-C2/m and

γ-P21/c phases. We conjecture that kinetics (e.g. activation barrier for the phase

transformation) is relatively more important in the Y2Si2O7 crystal chemistry com-

pared to other compounds in the RE2Si2O7 family. The Gibbs free energy of formation

based on CALPHAD (CALculation of PHAse Diagram) has been shown to reproduce

the phase diagram of Y2Si2O7 with sufficient accuracy, which further confirms the im-

portant role of kinetics in describing the phase equilibria of the Y2Si2O7 compound

[161, 162, 163].

The ∆E data for the remaining eight RE2Si2O7 (RE=Dy, Eu, Ho, Lu, Tm, Sc, Er

and Tb) compounds are given in the Appendix section B.1. The calculated ∆E
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trend for these compounds are similar to those of Yb2Si2O7 and Y2Si2O7 indicating

relatively less propensity for polymorph formation. It is noted that the Sm2Si2O7

has been synthesized before in at least two polymorphs [139, 160]: α-P 1̄ and A-P41

phases. Table 5.3 shows that both polymorphs are within the ∆E=5 meV/atom

energy threshold.

4.4 Structure-CTE relationship of RE2Si2O7 using

Machine Learning

In addition to crystal structure, CTE is also important to assess the viability of

RE2Si2O7 compounds for EBC applications. I built an ML model that can predict

CTE using descriptors based on the structure and following the sections that discusses

details of the dataset, descriptor generation, model architecture and results.

4.4.1 Dataset and Descriptor Generation

The input to ML models are the descriptors that represent each RE2Si2O7 in their

crystal structure. The DFT-optimized unit cell parameters (three axial distances

and three axial angles), volume, and number of atoms in the unit cell are considered

as inputs. The descriptor set, comprising these 8 variables for all 112 RE2Si2O7

compounds, is subjected to pairwise statistical correlation analysis using pair-wise

correlation analysis (Pearson correlation). The correlation plot Figure 4.2 shows that

the number of atoms in the unit cell and lattice constant c are strongly correlated

with the unit cell volume. Therefore, the number of atoms in the unit cell and lattice

constant c are not considered as input for ML.
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Figure 4.2: Pair-wise statistical correlation analysis for the eight descriptors from
DFT calculations for 16 RE2Si2O7 compounds in seven polymorphs. Dark red and
dark blue indicate strong positive and negative correlation, respectively. For exam-
ple, a strong positive correlation (> 0.9) is found between the lattice constant c, the
number of atoms in the unit cell (#atoms), and the volume. Since correlation indi-
cates redundancy, we did not consider the lattice constant c and #atoms as input for
building ML models. The remaining descriptors, a, b, α, β, γ, and volume were used
as inputs for building ML models.

The dependent variable in the dataset is the experimentally measured volumetric

CTE, to be specific, ABCTE (apparent bulk coefficient of thermal expansion) data

compiled from surveying the published literature [77, 140, 142]. Fernández-Carrión

et al. documented at least three different methods for extracting the CTE data from

the literature: (i) ABCTE from X-ray diffraction (XRD) data, (ii) coefficient of mean

linear thermal expansion from XRD using matrix algebra analysis, and (iii) average

linear CTE from dilatometric measurements. Therefore, some amount of variability

is expected in the CTE data used for ML. However, we were unable to quantify the

variation because the measurement uncertainties are not reported in the original pa-
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Figure 4.3: Decision trees for classification of polymorphs in RE disilicates based on
GINI impurity using the training data shown in Table 6.1. At each node, a check
occurs and if true proceeds to the left and vice-versa until it reaches the leaf node
that displays the classification. Under each classification, the compounds belonging
to the space group are listed.

pers. In addition, it is also not uncommon to have secondary phases and non-uniform

stress distrbution in the samples that were used for CTE measurements, which intro-

duces another source of measurement uncertainty that is difficult to quantify using

traditional analysis. Therefore, due to the lack of data on measurement uncertainty,

I considered the experimental ABCTE as a point estimate for training ML models.

Although unit cell parameters are the main descriptors used for ML model training,

mainly because they are relatively easy to generate, leveraging polyhedral descriptors

in data visualization provides additional insights. Specifically, it aids in understanding
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the relationship between these descriptors and the various polymorphs. The details on

these descriptors is included in Table 2.1. The dataset can be visualized using decision

trees built for classification of the different polymorphs in RE disilicates. The primary

objective of this study is not to create a generalized predictive model, but rather to

gain insights into the underlying data patterns and generate meaningful decision rules.

Decision trees are renowned for their interpretability, making them an ideal choice

for comprehending complex datasets. By deliberately overfitting the model, I aim to

capture fine-grained patterns, which may reveal underlying relationships among the

features and classes. The results of this analysis provide valuable domain knowledge

that can be leveraged to make informed decisions and guide further data exploration.

The tree initiates its decision-making process at the root node by evaluating the

feature Si eff coord num sd. It further unfolds through several decision nodes, gen-

erating unique decision paths that culminate in the final classification into one of

six different polymorphs in the training data. If Si eff coord num sd > 0.009, the

compounds are directly classified into P41. This path serves as a decisive factor

for RE disilicate compounds, emphasizing the pivotal role of variance in Si effective

coordination number in their classification. The pathway to C2/m involves com-

pounds where Si eff coord num sd ≤ 0.009 and RE eff coord num ≤ 5.97. It can

be noted that P41 and C2/m are classified just using effective coordination number

based descriptors. Compounds are classified into Pnam if Si eff coord num sd ≤

0.009, RE eff coord num > 5.97 and Si distortion > 0.011. This path is indica-

tive of the significance of both Si distortion and coordination environment of the

RE and Si polyhedra. If Si eff coord num sd ≤ 0.009, RE eff coord num > 5.97,

Si distortion ≤ 0.011 and Si poly volume ≤ 2.209 the compounds are classified as

P 1̄. The classification of P21−γ and P21−G involves the use of Si eff coord num sd
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twice. If Si eff coord num sd ≤ 0.009, RE eff coord num > 5.97, Si distortion ≤

0.011, Si poly volume > 2.209 and Si eff coord num sd ≤ 0.002 the compounds are

classified as P21 − γ and P21 − G follows a similar path Si eff coord num sd ≤

0.009, RE eff coord num > 5.97, Si distortion ≤ 0.011, Si poly volume > 2.209 and

Si eff coord num sd > 0.002.

The next visualization that I used to understand the dataset is the plot of our polyhe-

dral descriptors against the RE ionic radii. The visualizations illuminate the specific

trends exhibited by each structural type, as well as the unique insights provided by

the polyhedral descriptors that are not captured solely by ionic radii, the conven-

tional descriptor for CTE. From the plots Figure 4.4, it can be inferred that the

variables correlate with ionic radii in different strengths. While RE avg bond length

is strongly correlated (positive) to ionic radii Si avg bond length, Si poly volume has

only a moderate positive correlation. RE avg bond length sd is the only variable that

doesn’t show any correlation. The form Energy which has a strong positive correla-

tion to ionic radii is the only variable with several outliers in every space group. There

are also other variables with a few outliers RE avg bond length and Si bondangle var.

This indicates that the descriptors are likely dictated by a complex interplay of factors

that ionic radii alone cannot capture. Si bondangle var often shows a strong nega-

tive correlation with ionic radii, especially in space groups like Pnma, P41 and P 1̄.

Overall, although it can see that many of the variables have correlation with ionic

radii, the presence of some uncorrelated variables and outliers suggest that the ionic

radii alone is not sufficient for capturing the full scope of influences on the material’s

CTE.
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4.4.2 Machine Learning and Bootstrap Resampling

An ensemble of SVRRBF-based ML models is used to establish a relationship between

the unit cell parameters (X) from DFT and the continuous dependent variable CTE

(Y ). Given a sample of data (X, Y ), the regression problem can be formulated as

follows, Y=f(X) + η, where η is the random error term. Although there are many

methods available for determining f from data, we chose the ϵ-support vector regres-

sion with a non-linear Gaussian radial basis function kernel (SVRRBF) [117] because

of its improved generalization ability [164, 165]. The ϵ-SVR contain “hyperparame-

ters” such as the penalty parameter, the insensitive loss function parameter, and a

coefficient of the kernel function that control the model complexity and help balance

the bias-variance tradeoff. The SVR hyperparameters were adjusted to optimize the

leave-one-out error. We utilized the ϵ-SVR method as implemented in the e1071

package [166] within the RSTUDIO environment [167].

Since the training set (containing 15 observations) is only a small sample of the pop-

ulation, we lack complete information on the probability distribution of model pa-

rameters. This introduces uncertainty in quantifying the model output distribution.

Therefore, estimating error bars for each prediction is as important as estimating

the mean prediction itself. We employed the bootstrap resampling technique [168]

for assessing uncertainty, a method particularly well-suited for scenarios with lim-

ited training data [169, 170, 171, 172, 173, 174]. This approach involves generating

numerous ”pseudo training sets” by randomly selecting samples from the original

training set, with replacement. Consequently, some data points may be duplicated,

while others might be omitted. Using these pseudo sets, we build an ensemble of

SVRRBF models. The ensemble’s mean and standard error serve as indicators of the

expected CTE and its uncertainty, respectively.
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There are two important tuning variables associated with the procedure: (i) The size

of the data points to be resampled (n) and (ii) the number of resamples (B). Here,

the n was fixed at 15 (number of unique samples in the training data), whereas 10

different values for B were explored (between 10–200). Every resampling created

two kinds of samples: in-bag and out-of-bag. The data points in the in-bag samples

were used for training the ML models. The out-of-bag samples were used to test

the performance of the trained models. The optimal value for B was determined by

calculating the out-of-bag root mean squared error (RMSE) associated with each B.

A total of 15 RE2Si2O7 compounds were used to train the ML models and eight

independent RE2Si2O7 were used for testing. The ensemble SVR models with B=25

had the smallest out-of-bag RMSE. Thus, an ensemble of 25 SVR models was used

to train the models and the trained models were subsequently used to predict the

ABCTE for the remaining 97 RE2Si2O7 compounds not considered in the training

set.

The performance of the ensemble of 25 SVR models on the training and test data is

shown in Figure 4.5. The training data is shown as black dots and test data is shown

as blue diamond and green squares. The test data includes both experimentally

measured and DFT-QHA computed ABCTE values. In Table 6.1, the compounds

used for training and testing, along with the ML predictions, are also given. It is

important to note that the test data was not used to train the ensemble of ML

models. A vast majority of the data points, especially the test points, either lie close

to or on the X=Y line that indicates good training performance.

The trained models were then used to predict the ABCTE for the remaining RE2Si2O7

compounds not considered in the training set. We chose Sm2Si2O7 for experimentally

validating our predictions since there is no experimental or theoretical report of CTE
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Table 4.2: The compounds used for training and testing the ML models is given.
The ABCTE predictions from ML, along with the uncertainty (σ), is also given.
All experimental (training and test data) and DFT-QHA (test data) ABCTE data
are taken from Fernández-Carrión et al. [140], Dolan et al. [142] and Luo et
al. [77], respectively. The temperature ranges used for the CTE determination in
both experiments and DFT-QHA calculations are also given. (Data published in
Ref. AyyasamyRE2Si2O7)

RE2Si2O7 Experimental Temperature ML Predicted
ABCTE (×10−6 K−1) range (K) ABCTE ± σ (×10−6 K−1)

Training data (Experimental from literature)
A-P41 La2Si2O7 14 303-1373 12.4 ± 1.17
A-P41 Pr2Si2O7 11.8 303-1573 11.8 ± 0.86
A-P41 Nd2Si2O7 10.5 303-1473 10.9 ± 1.08
δ-Pnma Gd2Si2O7 7.3 303-1873 7.6 ± 0.46
δ-Pnma Dy2Si2O7 7.7 303-1423 7.6 ± 0.44
β-C2/m Er2Si2O7 3.9 303-1873 4.2 ± 0.14
β-C2/m Yb2Si2O7 4 303-1873 4.3 ± 0.11
β-C2/m Lu2Si2O7 4.2 303-1823 4.3 ± 0.14
β-C2/m Sc2Si2O7 5.4 303-1873 4.6 ± 0.52
γ-P21/c Ho2Si2O7 4.2 303-1748 4.3 ± 0.78
γ-P21/c Y2Si2O7 3.9 293-1473 4.4 ± 0.77
G-P21/c La2Si2O7 6.4 303-1073 6.6 ± 0.40
G-P21/c Pr2Si2O7 6.8 303-1648 6.7 ± 0.41
α-P 1̄ Gd2Si2O7 8.3 303-1573 8.2 ± 0.50
α-P 1̄ Dy2Si2O7 8.5 303-1648 8.1 ± 0.45

Test data (Experimental from literature)
β-C2/m Y2Si2O7 4.1 293-1673 4.2 ± 0.35
α-P 1̄ Y2Si2O7 8 293-1473 8.1 ± 0.69

δ-Pnma Y2Si2O7 8.1 293-1673 7.6 ± 0.44
Test data (DFT-QHA from literature)

β-C2/m Ho2Si2O7 4.09 300-1700 4.2 ± 0.19
β-C2/m Tm2Si2O7 3.92 300-1700 4.2 ± 0.11
γ-P21/c Er2Si2O7 4.03 300-1700 4.3 ± 0.78
δ-Pnma Tb2Si2O7 8.27 300-1700 7.6 ± 0.44
δ-Pnma Ho2Si2O7 8.57 300-1700 7.5 ± 0.44

New prediction and Experimental validation (This work)
A-P41 Sm2Si2O7 11.55 ± 18 573-1248 10.39 ± 1.41

data for Sm2Si2O7 in any of the polymorphs. Also, Sm2Si2O7 is one of the compounds

with multiple competing polymorphs as per our ∆E data (Table 5.3) indicating that

Sm2Si2O7 could form in either G-P21/c, δ-Pnma or A-P41 phase. Therefore, the

experimental validation of our CTE and ∆E predictions for this compound will be

valuable for the community. The experiments were performed by our collaborators

Dr. Deijkers and Prof. Wadley from UVa-MSE department.
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4.5 Experimental validation of Sm2Si2O7

The ceramic Sm2Si2O7 sample was synthesized using high-energy ball milling. Sam-

ples annealed at 950◦C for 144 hours did not form any Sm2Si2O7 phase. On the other

hand, the sample annealed at 1400◦C for 20-hours formed Sm2Si2O7 phase, but there

was also a significant fraction of hexagonal Sm9.33Si6O26 apatite phase. Finally, the

sample annealed at 1500◦C for 20 hours formed a majority Sm2Si2O7 A-phase in the

P41 space group (see Figure 4.6a, where small amounts of α-SiO2 cristobalite and

P21/c-Sm2SiO5 phases are also found). The tetragonal A-P41 phase is not the lowest

energy structure from DFT (Table 5.3). The P41 structure is 4.71 meV/atom higher

in energy relative to the ground state structure. The scanning electron microscopy

(SEM) image (shown in Figure 4.6b) also indicates the samples majority phase as

Sm2Si2O7 with partially reacted Sm2SiO5 and SiO2 together with a small volume

fraction of porosity.

The CTE value for the sample was measured using dilatometry in the temperature

range 373-1273 K. The heating and cooling cycle of a test sequence is shown in

Figure 4.6c. The CTE is measured as the dL
L0
· 1
dT

, where L0 is the original length.

The dilatometry data also shows a small kink in the CTE curve in the 200◦-300◦C

temperature range, where the α- to β-SiO2 transition is known to occur [175]. The

contribution from the α- to β-SiO2 phase change towards CTE can be ignored by not

considering any dilatometry data below 300◦C. In the 300◦-975◦C temperature range,

CTE can be determined from the heating and cooling cycle as 11.73 and 11.37 ×

10−6 K−1, respectively. The average CTE can then be calculated as 11.55 ± 0.18 ×

10−6 K−1. However, resolving the role of α-SiO2 alone does not address the problem,

because the sample still contains some volume fraction of the β-SiO2 and Sm2SiO5

phase. Thus, even in the refined temperature range (300◦-975◦C), our measured CTE
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data corresponds to that of a composite sample. Disentangling the contribution from

Sm2SiO5 was found to be non-trivial due to the large spread in the literature CTE

data for Sm2SiO5. For example, He et al. [176] report a wide range of CTE values

between 9 and 12 × 10−6 K−1 for the Sm2SiO5 compound. Tian et al. [177] report

a value between 7 and 8 × 10−6 K−1 for Sm2SiO5 in the C2/c structure. Thus, we

conclude that the CTE value of 11.55 ± 0.18 × 10−6 K−1 can be considered as a

lower bound limit for the Sm2Si2O7 compound in the A-P41 structure. This result

falls within the uncertainty of the ML prediction of 10.39 ± 1.41 × 10−6 K−1, thus

validating the model.

4.6 Summary

In conclusion, this chapter presents a detailed analysis of the trends between RE

ionic radii and polyhedral descriptors for RE disilicate compounds. Our observations

indicate that some of the polyhedral descriptors like RE avg bond sd were not highly

correlated with the ionic radii. This suggests that these descriptors carry information

not captured by the ionic radii alone, broadening our perspective on the factors influ-

encing the CTE. We also delve into the potential of unit cell parameters as another

descriptor set for machine learning-based CTE prediction. I employed an integrated

strategy that fuses DFT calculations with ML techniques to effectively identify and

predict the CTE of RE2Si2O7 materials. These materials are critically important for

the engineering of EBCs. The DFT data provide valuable information about ∆E that

favor the formation of specific polymorphs. Further, our machine learning models, in-

corporating unit cell parameters derived from DFT, successfully capture CTE trends

across a range of RE2Si2O7 compounds. The validity of these models is corroborated
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through comparisons with both existing literature and our own experimental results

for Sm2Si2O7. Overall, the chapter outlines an approach that spans computational

modeling, ML, and experimental validation. This multi-pronged strategy aims to

accelerate the design and discovery of RE2Si2O7 compounds with optimal character-

istics for EBC applications. I acknowledge that understanding the volumetric CTE

is not entirely sufficient because CTE anisotropy plays an important role in these

compounds [24]. Even so, the advancements highlighted in our discussion represent a

pivotal movement in this area of research. It’s noteworthy that comprehensive data

on CTE anisotropy has only recently started appearing in the literature, making the

development of a machine learning model to describe anisotropy a challenging en-

deavor. However, in the upcoming chapter, we delve into an interesting trend in CTE

anisotropy as presented by Ridley et al. [24], exploring it through electronic structure

calculations.
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Figure 4.4: Graphical representation of polyhedral metrics (Y-axes) in relation to
rare-earth (RE) ionic radii in Angstroms (Å) (X-axes), focusing on a charge state of
3+ and a coordination number of 8. The plots are representative of all 112 RE disil-
icates. The secondary X-axis bears the annotations of RE cation in the compound.
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Figure 4.5: Performance of the trained ensemble of 25 SVR models. The X- and
Y -axes are the known and ML predicted ABCTE data, respectively. The error bar
represent the standard deviation from the ensemble of ML models. The red dashed
line represents the X=Y line and the data points falling on this line indicate perfect
agreement between the ML models and the known data. The black dots are the
experimental data points used to train the models. The blue diamond and green
squares represent the test data that were not used to train the ML models. The
true values for the blue diamond and green square data points are taken from the
experimental measurements and published DFT-QHA calculations [77], respectively.
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(c)

(P21/c)
Sm2Si2O7 (P41)

Sm2SiO5 SiO2

Pore

Figure 4.6: Results from (a) X-ray Diffraction (XRD), (b) SEM image, and (c)
Dilatometry measurements for the synthesized Sm2Si2O7 ceramic sample. The major-
ity phase in XRD is the tetragonal P41 A-phase, which was predicted as metastable
from DFT ∆E calculations. The SEM image shows the sample as predominantly
Sm2Si2O7 with a minor amount of partially reacted Sm2SiO5 and unreacted SiO2

together with porosity. The CTE from dilatometry for the temperature range of
300◦-975◦ C is measured as 11.55 ± 0.18 × 10−6 K−1, which is in agreement with the
ML prediction of 10.39 ± 1.41 × 10−6 K−1.
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Chapter 5

Crystal Chemistry of RE2SiO5

This chapter delves into the rare-earth monosilicates (RE2SiO5), which is yet another

important materials family within the RE-Si-O crystal chemistry domain. Similar to

disilicates, these compounds have emerged as promising candidates for Environmen-

tal Barrier Coatings (EBC) applications, owing to their exceptional thermal stability

and resistance to chemical attack. The challenges encountered in the design of dis-

ilicates for EBC applications are equally applicable to monosilicates. Consequently,

a comprehensive survey of the DFT total energy, coupled with the rapid prediction

of the coefficient of thermal expansion (CTE) across the entire search space included

in this chapter is of significant value to the EBC community. A recent experimental

study conducted by Dr. Ridley and Dr. Opila from UVa-MSE has shed new light

into the CTE values of select monosilicate compounds. The intriguing anisotropy

trends reported in their work have inspired a more focused examination of anisotropy

from the perspective of electronic structure within my research. Understanding the

anisotropy of CTE is pivotal in formulating design philosophies for EBC materials, as

it provides insights into the directional dependencies that may influence the material’s

behavior and performance in specific applications.



92

5.1 Chapter Organization

Similar to Chapter 4, I will initially survey the DFT total energy difference of the

RE2SiO5 space to understand how energetically competitive the polymorphs are in

this materials family. I then discuss DFT calculations and the results predicting the

presence of several energetically competing crystal structures, which is rationalized as

one of the reasons for observing polymorphism. Then I use ML methods to establish

a relationship between the crystal structures of RE2SiO5 and their volumetric CTE.

Finally, I show the DFT work used to unravel the correlation between electronic

structure and anisotropy trends observed in key RE2SiO5 compounds.

5.2 Introduction

The RE2SiO5 compounds are promising candidates for EBC application at extreme

temperature environments, such as the high temperature gas turbine engine compo-

nents as they offer superior thermal stability and resistance to chemical attack com-

pared to the other RE silicate material classes [65, 66, 67, 68, 69] These compounds

are known to form in one of the two low-symmetry monoclinic crystal structures in

space groups C2/c (also referred to as “X2” in the literature) or P21/c (X1). The

unit cell and the local coordination environment surrounding the cations for the two

structures are shown in Figure 5.1. The C2/c and P21/c structures are preferred for

smaller (Tb–Lu) and larger RE3+ cations (La–Gd), respectively (except Tb which

exists in both C2/c and P21/c) [178, 24]. The conventional unit cells of C2/c and

P21/c structures contain 64 and 32 atoms, respectively. In both the C2/c and P21/c

structures, there are two unique crystallographic sites for the RE-element and one
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Y2SiO5 in P21/c

Figure 5.1: The crystal structure of Y2SiO5 in (a) C2/c (ground state) and (b) P21/c
(metastable) space groups. The two crystallographically unique Y-atoms (Y1 and
Y2) and the Si atoms are labeled for clarify.

unique crystallographic site for the Si-atom. In both structures, the Si-O atoms are

coordinated by a Si-centered tetrahedron; whereas there are two unique, irregular

RE-cation centered RE-O polyhedral units in the unit cell (with a local coordination

environment containing RE-O6, RE-O7 or RE-O8 oxygen neighbors depending on the

RE-cation size).

Like RE2Si2O7, the study of RE2SiO5 polymorphs and their relationship to CTE and

potential energy landscape is equally vital, given their potential for tailoring thermo-

physical properties. Once again, the challenge lies in the limited availability of phase

stability and CTE data, as experimental approaches are costly, and high-throughput

phonon calculations using the Quasiharmonic Approximation (QHA) are computa-

tionally demanding, especially for polymorphs with large unit cells. An ML based

approach is required to understand the linkage between structure and properties and

thus expedite the screening of compounds. First, I aim to analyze the total energy

trends across different rare-earth elements using DFT calculations, shedding light on

the polymorphism within these compounds. A detailed understanding of the energy

dynamics and its correlation with structural phase changes is vital for customizing

RE2SiO5 as EBC materials. While some theoretical insights based on experiments are
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available, the focus has been limited to a narrow subset of RE2SiO5 compounds, mir-

roring the challenges faced with RE2Si2O7. Secondly, I harness the capabilities of ML

to swiftly forecast the CTE for unexplored RE2SiO5 polymorphs. Although ML has

been employed for CTE prediction in other contexts, its application to RE2SiO5 is an

unexplored area, paralleling the opportunities and challenges identified for RE2Si2O7.

This novel approach could pave the way for a more efficient exploration of these

complex materials. As discussed in Chapter 2, in cubic systems, CTE is an isotropic

quantity. However, the RE silicate materials that form in non-cubic space groups, the

CTE can have different magnitudes (and signs) along each unique axis. A popular

example in the RE2SiO5 materials family is the Y2SiO5. This compound is one of

the promising candidates for EBC application due to its excellent high-temperature

stability, low oxygen permeability, and low thermal conductivity. [179, 69] However,

recent experimental measurements indicate a large CTE anisotropy in phase-pure

Y2SiO5 bulk compound, which is not desired for EBC applications. [24] In contrast,

the degree of CTE anisotropy in Sc2SiO5 was found to be notably low. Both Y2SiO5

and Sc2SiO5 form in the same C2/c crystal structure. In addition, both Y and Sc

have similar valence electron configuration of nd1(n + 1)s2, where n is the principal

quantum number (n=3 and 4 in Sc and Y, respectively). There is no data in the

literature that provide insights into the plausible reasons behind the large difference

in the CTE anisotropy between Y2SiO5 and Sc2SiO5. It is common in the literature

to explore a solid solution approach (eg., mix Sc2SiO5 with Y2SiO5) to reduce the

CTE anisotropy problem. However, Sc-containing compounds are more expensive

compared to that of the Y-containing compounds. Therefore, their extensive use as

an EBC material is uncertain. Developing a fundamental understanding is impor-

tant to rationally explore strategies that will enable one to lower the degree of CTE

anisotropy in the Y2SiO5 compound.
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5.3 DFT study of the RE2SiO5 crystal chemistry

To describe the energetics of the RE2SiO5 crystal chemistry, I calculated the ∆E (in

meV/atom) with respect to the lowest energy structure using DFT calculations. The

DFT calculations were performed using the planewave pseudopotential code Quantum

ESPRESSO [152]. The PBEsol exchange-correlation functional [153] was used and the

core and valence electrons were treated with ultrasoft pseudopotentials [154]. The

Brillouin zone integration was performed using a Monkhorst-Pack [155] k-point mesh

centered at Γ and 60 Ry plane-wave cutoff for wavefunctions (600 Ry kinetic energy

cutoff for charge density and potential). The scalar relativistic pseudopotentials were

taken from the PSLibrary [156]. The atomic positions and the cell volume were

allowed to relax until an energy convergence threshold of 10−8 eV and Hellmann-

Feynman forces less than 2 meV/Å, respectively, were achieved. The 4f -states for the

rare-earth elements are considered as core states in our calculations. The converged

crystal structures were visualized in VESTA [79] and the space groups were determined

using FINDSYM [157].

Unlike disilicates, the interpretation of ∆E in monosilicates is relatively simple be-

cause it has been known to form in only two polymorphs X1 (P21/c) and X2 (C2/c).

In Table 5.1, I show the ∆E values obtained from the DFT calculations for the entire

monosilicate chemical space. The stable structure for larger rare-earth cations (La-

Gd) is X1 (P21/c) and the stable structure for smaller cations (Tb-Lu) is X2 (C2/c)

[24] with an exception of Tb2Si2O7 which exists in both the structures. The DFT

∆E calculations capture this trend well except for Gd2Si2O7 whose ground state is

predicted to be X2 (C2/c). However, the X1 (P21/c) phase having a ∆E value 2.95

meV/atom shows a close energetic competition between the two Gd2Si2O7 phases.

Similarly, the close ∆E values for the two structures of Tb2Si2O7 support the com-
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pound’s existence in both configurations. Recently, the RE monosilicates (RE=Sc,

Y, Dy, Er, and Yb) were synthesized in X2 (C2/c) structure by Ridley et al [24],

confirming the DFT predictions.

Table 5.1: Total energy difference (∆E, meV/atom) from DFT calculations with
respect to the lowest energy structure in RE2SiO5. Space groups were determined
using the FINDSYM [157] web application. Structures with ∆E=0 (bold face font)
represent the ground state structure for that compound.

∆E (meV/atom)
Space Group La2SiO5 Ce2SiO5 Pr2SiO5 Nd2SiO5 Sm2SiO5 Eu2SiO5 Gd2SiO5 Tb2SiO5

X1-P21/c 0.00 0.00 0.00 0.00 0.00 0.00 2.95 6.39
X2-C2/c 24.93 22.03 18.64 14.67 6.03 38.65 0.00 0.00

∆E (meV/atom)
Space Group Dy2SiO5 Ho2SiO5 Er2SiO5 Tm2SiO5 Yb2SiO5 Sc2SiO5 Y2SiO5 Lu2SiO5

X1-P21/c 13.19 11.80 13.19 13.12 12.31 7.63 6.98 11.39
X2-C2/c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.4 Exploring Structure-CTE relationship of RE2SiO5

using Machine Learning

I follow the same approach as in the case of RE2Si2O7 for building a model for

predicting the CTE for all 32 possible RE2SiO5 compounds.

5.4.1 Dataset and Descriptor Generation for Training Ma-

chine Learning Models

The dataset for training the ML model to predict CTE for RE silicates is shown in

Table 6.1. The data contains 11 RE monosilicates including three X1 structures and

8 X2 structures. The source of the CTE data is literature based on experimental

characterization as shown in the Table 6.1.
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Table 5.2: Thermal Expansion Coefficients Data for RE monosilicate collected from
Literature.

Compound Experimental Temperature Reference
ABCTE (×10−6 K−1) range (K)

X1-P21/c Gd2SiO5 10.3 473–1623 Al Nasiri et al. [180]
X1-P21/c Nd2SiO5 8.91 303-1373 Ridley et al. [181]
X1-P21/c Y2SiO5 8.7 473–1623 Fukuda et al. [182]
X2-C2/c Dy2SiO5 7.6 303-1373 Tian et al. [183]
X2-C2/c Ho2SiO5 7.38 303-1373 Tian et al. [183]
X2-C2/c Lu2SiO5 6.7 473–1623 Al Nasiri et al. [180]
X2-C2/c Sc2SiO5 6.17 303-1373 Ridley et al. [24]
X2-C2/c Tb2SiO5 8.9 303-1373 Tian et al. [183]
X2-C2/c Tm2SiO5 7.64 303-1373 Tian et al. [183]
X2-C2/c Y2SiO5 7.7 303-1373 Fukuda et al. [182]
X2-C2/c Yb2SiO5 7.2 473–1623 Al Nasiri et al. [180]

In the preceding chapter on RE disilicates, I utilized decision trees for data exploration

and visualization. The interpretability of decision trees makes them equally apt for

examining the complexities within RE monosilicates. Just as before, My aim is not

predictive accuracy but rather understanding the intricacies of the data. Unlike

the RE disilicates, the decision tree for monosilicates is simple. The polymorphs

are simply split by the polyhedral descriptor Si eff coord num (the average effective

coordination number of Si polyhedra in the structure). The decision rule for “X1”-

P21/c structure is Si eff coord num ≤ 3.989 and it is Si eff coord num > 3.989 for

the structure “X2”-C2/c. The result of the Pearson correlation analysis performed on

the dataset (11 training and the rest 21 observations not included in training) with 8

variables including the unit cell parameters a, b, c, α, β, γ, volume, number of atoms

(natoms) shown in Figure 5.3 suggest that the training data should be reduced to 11

rows and 2 columns represented by just the “volume” and “b” axis cell parameter. It

is important to note that variable “b” in turn is highly correlated to the polyhedral

descriptor Si eff coord num that splits this dataset.

Continuing along the lines of the investigative approach employed in the RE disilicates

chapters, the next visualization we perform involves plotting polyhedral descriptors
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Figure 5.2: Decision trees for classification of polymorphs in RE monosilicates based
on GINI impurity using the training data shown in table Table 5.2. At each node,
a check occurs and if true proceeds to the left and vice-versa until it reaches the
leaf node that displays the classification. Under each classification, the compounds
belonging to the space group are listed.

against RE ionic radii. These visual representations, referenced in Figure Figure 5.4,

expose the unique patterns associated with each space group. From these plots, it’s

evident that the P21/c and C2/c structural types both exhibit similar trends in vari-

ables such as form Energy, RE avg bond length, and Si bondangle var. Specifically,

while form Energy and RE avg bond length display a strong positive relationship

with ionic radii, Si bondangle var shows a negative one, with the trend being more

pronounced for P21/c.

In contrast, when considering Si avg bond length, Si poly volume, and RE avg bond length sd,



99

Figure 5.3: Pearson correlation coefficient plot for the dataset comprising 32 RE2SiO5

compounds. Dark red indicate strong positive correlation. The plot shows that the
variables “b” and “volume” are the only two variables that are not highly correlated
and thus are not redundant and suitable inputs for the ML model.

the trends between P21/c and C2/c diverge substantially. Particularly for C2/c,

these variables demonstrate a high degree of non-linearity and lack of correlation.

This stands in stark contrast to the disilicates, where space groups largely followed

parallel trends. For the C2/c space group, Si avg bond length and Si poly volume are

strongly positively correlated with ionic radii, while RE avg bond length sd shows a

negative correlation.

5.4.2 Machine Learning and Bootstrap Resampling

I adopt the same eSVR based architecture as seen in Chapter 4 to establish a quan-

titative relationship between the unit cell parameters (X) from DFT and CTE (Y )
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Figure 5.4: Graphical representation of polyhedral metrics (Y-axes) in relation to
Rare Earth (RE) Ionic Radii in Angstroms (Å) (X-axes), focusing on a charge state
of 3+ and a coordination number of 8. The secondary x-axis bears the annotations of
RE cation in the compound. The plots are representative of all 32 RE monosilicates.

assembled from surveying the published experimental literature of known RE2SiO5

compounds. The only change is the number of bootstrap resamples (B) used in the

ensemble which is optimised (based on smallest out-of-bag RMSE) to be 10 in the

case of RE2SiO5 training dataset.

A total of 11 RE2SiO5 compounds were used to train the ML models and 3 inde-

pendent RE2SiO5 (RE=Er,Tb,Sm) were used for validation from literature. The

performance of the model is shown in Figure 5.5. A vast majority of the data points,

especially the test points, either lie close to or on the X=Y line that indicates good

training performance. The trained models were then used to predict the ABCTE

for the remaining 21 RE2SiO5 compounds not considered in the training set. The

predictions for all 32 RE2SiO5 compounds, including specific markings (asterisks) for

the ground state polymorphs, are illustrated in Figure 5.6. These predictions serve
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as a valuable tool in making informed design decisions tailored to EBC applications.

However, it is imperative to recognize that the provided predictions pertains solely

to volumetric CTE. Given that CTE is inherently a tensor property, the potential

anisotropy in CTE must be taken into account. This consideration becomes par-

ticularly significant when contemplating the utilization of non-cubic compounds for

EBC applications, as the directional dependence of thermal expansion may influence

material’s mechanical behavior and performance.

5.5 Anisotropy trends in RE2SiO5

Figure 5.7 shows one of the interesting results to note from the work by Ridley et al.

is a large CTE anisotropy in phase-pure Y2SiO5 bulk compound, which is not desired

for EBC applications [24]. In contrast, the degree of CTE anisotropy in Sc2SiO5 was

found to be notably low as we can see in Figure 5.7. Both Y2SiO5 and Sc2SiO5 form

in the same C2/c crystal structure. In addition, both Y and Sc have similar valence

electron configuration of nd1(n + 1)s2, where n is the principal quantum number

(n=3 and 4 in Sc and Y, respectively). There is no data in the literature that provide

insights into the plausible reasons behind the large difference in the CTE anisotropy

between Y2SiO5 and Sc2SiO5. An understanding of factors that govern the CTE

anisotropy is crucial for tailoring the material for targeted applications. [186, 187,

24].

We hypothesise that the difference in the degree of CTE anisotropy between Y2SiO5

and Sc2SiO5 is due to the electronic structure difference originating from the 4d15s2

and 3d14s2 valence electronic configurations of Y and Sc, respectively. I tested the

hypothesis by performing density functional theory (DFT) calculations to uncover
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Table 5.3: Total energy difference (∆E, meV/atom) from DFT calculations with
respect to the lowest energy structure in RE2SiO5, where RE=Sc, Y, and La. Space
groups were determined using the FINDSYM web application. Structures with ∆E=0
(bold face font) represent the ground state structure for that compound.

Space Group Sc2SiO5 Y2SiO5 La2SiO5

C2/c 0 0 24.93
P21/c 7.63 6.98 0

hitherto unknown electronic structure trends with implications in the design of EBC

materials for protecting high temperature gas turbine engine components. The key

data of interest is the electronic structure of Sc2SiO5 and Y2SiO5 compounds. For

completeness, we also consider the La2SiO5 compound in the analysis. The valence

electron configuration of La can be written as 5d16s2, which is also isoelectronic to Y

and Sc. More specifically, we calculate the total and atom-projected (local) density

of states (DOS) in the ground state and hypothetical structures. While the ground

state structures will contain atoms in their equilibrium volume and fully relaxed

positions, the hypothetical structures carry a unique meaning in this work. In the

two hypothetical structures that we have considered, we fix the unit cell volume to be

that of Sc2SiO5 (741.19 Å3) and La2SiO5 (980.98 Å3). In contrast, the unit cell volume

for Y2SiO5 in its equilibrium structure is 844.59 Å3. We then fully substitute the Sc-

and La-atoms with that of Y-atoms and relax only their atomic positions until the

total interatomic forces are negligibly small. These calculations reveal the electronic

structure difference between Y-4d and Sc-3d orbitals in the C2/c crystal structures,

as well as the dependence of Y-4d orbital bandwidth on the unit cell volume.

In Table 5.3, we show the total energy difference (∆E, in meV/atom) between the two

monoclinic crystal structures for Sc2SiO5, Y2SiO5 and La2SiO5. In the case of Sc2SiO5

and Y2SiO5, the C2/c space group is found to be the lowest energy structure, which

is in agreement with the experimental data. [24] However in La2SiO5, the P2/c space
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group is the lowest energy structure, which is also in agreement with the experimental

data. The total energy difference data for the rest of the RE2SiO5 compounds are

given in the Supplemental Information.

In Figure 5.8, we show the diverse RE-O coordination environment surrounding the

RE1-O and RE2-O atoms in the C2/c structure, where RE=Sc, Y, and La. In the

case of Sc2SiO5 compound, we have two six-coordinated Sc1-O and Sc2-O polyhedra.

In Y2SiO5, where the ionic radius of Y3+ is greater than that of Sc3+, the Y1-O is

a seven-coordinated polyhedron whereas the Y2-O remains six-coordinated (similar

to the Sc2-O environment). Finally, in La2SiO5 (where the ionic radius of La3+ is

largest of the three cations) both La1- and La2-sites are seven-coordinated to the

neighboring O atoms.

In Figure 5.9, we show the total and local DOS for Sc2SiO5 and Y2SiO5 in their

ground state C2/c structures. We have also included the DOS for La2SiO5 in the

higher energy C2/c structure (see Table 5.3). All three compounds are predicted as

wide band gap insulators. The DFT-GGA level band gaps for Sc2SiO5, Y2SiO5 and

(hypothetical) La2SiO5 in the C2/c structures are predicted as 4.6, 5.0, and 4.7 eV,

respectively. We believe this is an underestimation of the true or experimentally mea-

sured band gap due to the well-documented limitations of the semi-local functionals

to adequately describe the excited state property. [188, 189] Nonetheless, this dis-

crepancy does not affect the key goals of this work. From Figure 5.9, we infer that the

the top of the valence bands and the bottom of the conduction bands are dominated

by the oxygen-2p and RE-d states, respectively. One of the insights gleaned from the

local DOS is the width of the RE-d orbitals in the conduction bands. Our definition

of the d-orbital bandwidth is given in Figure 5.9. As expected, the Sc-3d orbitals

in the conduction bands have a narrow bandwidth (Figure 5.9a) compared to that
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of the Y-4d (Figure 5.9b) and La-5d orbitals (Figure 5.9c). Intriguingly, the Y-4d

and La-5d orbitals in the conduction bands have similar bandwidths. We expected

the Y-4d orbitals to have a relatively narrower bandwidth compared to that of the

more spatially extended La-5d orbitals. We conjecture that the large Y-4d orbital

bandwidth in the conduction bands is one of the key reasons behind the relatively

large degree of CTE anisotropy experimentally observed in the Y2SiO5 compound

compared to that of the Sc2SiO5 counterpart. [24]

I also performed two additional DFT calculations to test whether one can reduce the

Y-4d bandwidth in the conduction bands. First, I fully substituted Y in the place of

Sc in Sc2SiO5 but we constrained the unit cell volume to that of the Sc2SiO5 com-

pound (mimicking hydrostatic pressure). I relaxed the internal coordinates until the

interatomic forces were small. This constrained simulation cell was 73.3 meV/atom

higher in energy compared to the Y2SiO5 compound in its equilibrium volume. In

Figure 5.10a, I show the local Y-O coordination environment that defines the two crys-

tallographically independent Y-sites for this hypothetical compound. In the ground

state structure (shown in Figure 5.10b), only the Y1-O polyhedron was coordinated

to seven O-atoms, whereas in this hypothetical compound both Y-O polyhedra are

seven-coordinated. The increase in effective number of neighboring O-atoms is likely

due to the smaller unit cell volume, which forces the atoms to get closer to one

another. We then calculated the total and local DOS for the hypothetical Y2SiO5

compound in the reduced unit cell volume. The spectra is shown in Figure 5.11a. We

find that the Y-4d bandwidth increased marginally relative to that of the Y2SiO5 in

its ground state structure (see Figure 5.11b). These results indicate that the hydro-

static pressure is not a viable route to reduce the Y-4d bandwidth in the conduction

bands.
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Alternatively, I also fully substituted Y in the place of La in the metastable La2SiO5

C2/c structure. In this case, I constrained the unit cell volume to that of the La2SiO5

compound. Similar to the previous simulation, we only relaxed the internal coor-

dinates until the interatomic forces were small. This hypothetical structure was

84.1 meV/atom higher in energy than the equilibrium Y2SiO5 structure. In Fig-

ure 5.10c, we show the local Y-O coordination environment for this hypothetical

compound. Both Y-O polyhedra reduced its effective number of neighboring O atoms

to six in this structure. The larger unit cell volume did not require the atoms to get

closer to one another. I then calculated the total and local DOS. The results are

shown in Figure 5.11c. We find that the Y-4d bandwidth reduced when compared to

that of the ground state Y2SiO5, which is encouraging. However, the reduction was

not dramatic to match that of the Sc-3d bandwidth in the Sc2SiO5 compound.

5.6 Summary

In summary, the approach combining DFT and ML is demonstrated as a method to

accelerate the discovery of EBC materials in the RE2SiO5 search space. The DFT

calculations reveal that the ∆E data contain insights that are correlated with the

energetics promoting polymorph formation. The ML work highlighted the potential

of data-driven techniques in rapidly predicting CTE, a task that typically requires

significant computational resources. Acknowledging the fact that anisotropy in CTE

could be an additional cause for microcracking [186, 187], I used DFT to gain insights

on the anisotropy patterns in RE2SiO5. The DFT calculations to reveal a previously

unknown correlation between the d-orbital bandwidth and unit cell volume in the

C2/c structure for three RE2SiO5 compounds (Sc2SiO5, Y2SiO5 and La2SiO5). In
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order to reduce the Y-4d bandwidth, which I conjecture will also reduce the degree

of CTE anisotropy, the Y2SiO5 compound should form in an open structure with a

reduced Y-O effective coordination number in both polyhedral units. This will likely

require materials synthesis and processing using non-equilibrium techniques. Future

work can focus on the coupling between unit cell volume and point defects (eg.,

introduce Y- and O-vacancies), which can further affect the local DOS and modify

the Y-4d bandwidth in the conduction bands.
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Figure 5.5: Performance of the trained eSVR model. The X- and Y -axes are the
known and ML predicted ABCTE data, respectively. The error bar represent the
standard deviation from the ensemble of ML models. The red dashed line represents
the X=Y line and the data points falling on this line indicate perfect agreement
between the ML models and the known data. The black dots are the experimental
data points used to train the models. The red diamonds represent the validation data
that were not used to train the ML models. The validation data points include X2-
C2/c Er2SiO5 reported by Khan et al. [184] and Ridley et al. [24], X2-C2/c Tb2SiO5

by Ridley et al. [24] and X1-P21/c Sm2SiO5 reported by Ogura et al. [185].
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Figure 5.6: The ML predicted CTE with uncertainties from bootstrapping for all the
RE2SiO5 compounds.The polymorphs predicted to be ground state (∆E=0) by DFT
calculations are marked by asterisks. The polymorphs marked in red are included
in the training data and green marks validation set. The ones marked in black are
unexplored compounds.

Figure 5.7: CTE Anisotropy trends in RE2SiO5 (RE=Sc,Y,Yb,Nd,Er,Dy) reported
by Ridley et al [24].
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(a) (b) (c)Sc2SiO5 in C2/c Y2SiO5 in C2/c La2SiO5 in C2/c
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Figure 5.8: RE-O coordination environment in (a) Sc2SiO5 and (b) Y2SiO5 in their
respective ground state C2/c structures. In (c), we show the local La-O environment
for the La2SiO5 compound in its metastable C2/c structure. The longest bond lengths
that define the seventh RE-O bond are highlighted in the Figure for the Y2SiO5 and
La2SiO5 compounds.
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Figure 5.9: Total and local DOS for (a) Sc2SiO5 and (b) Y2SiO5 in their respective
ground state C2/c structures. In (c), we show the total and local DOS for La2SiO5

in its metastable C2/c structure. EF is the Fermi energy.
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in C2/c Y2SiO5 in C2/c

<latexit sha1_base64="CqDr6rGIZRmnN+yO0Hl16bpEExg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hq0R5bvXisYD8gDWWz3bRLN5uwuxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTjopTSWibxDyWvQArypmgbc00p71EUhwFnHaDyd3c7z5RqVgsHvU0oX6ER4KFjGBtJK9q1+pXKOs3m7NBueLYzgJonbg5qUCO1qD81R/GJI2o0IRjpTzXSbSfYakZ4XRW6qeKJphM8Ih6hgocUeVni5Nn6MIoQxTG0pTQaKH+nshwpNQ0CkxnhPVYrXpz8T/PS3VY9zMmklRTQZaLwpQjHaP5/2jIJCWaTw3BRDJzKyJjLDHRJqWSCcFdfXmddKq2e23XHqqVxm0eRxHO4BwuwYUbaMA9tKANBGJ4hld4s7T1Yr1bH8vWgpXPnMIfWJ8/K+aP5A==</latexit>

2.483 Å
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Figure 5.10: RE-O coordination environment in (a) Y-substituted Sc2SiO5 in the
hypothetical C2/c structure with a smaller unit cell volume, (b) Y2SiO5 in its ground
state C2/c structure with equilibrium volume, and (c) Y-substituted La2SiO5 in its
hypothetical C2/c structure with a larger unit cell volume. The longest bond lengths
that define the seventh RE-O bond are highlighted in the Figure.
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Figure 5.11: Total and local DOS for (a) Y-substituted Sc2SiO5 in the hypothetical
C2/c structure with a smaller unit cell volume, (b) Y2SiO5 in its ground state C2/c
structure with equilibrium volume, and (c) Y-substituted La2SiO5 in the hypothetical
C2/c structure with a larger unit cell volume. EF is the Fermi energy.
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Chapter 6

Holistic CTE model for the

RE-Si-O crystal chemistry

This chapter focuses on establishing a holistic description of the structure-CTE rela-

tionship for the three major materials classes in the RE-Si-O crystal chemistry (that

include disilicates, monosilicates, and silicate apatites). Such a description provides

a framework for developing a fundamental understanding of key factors that impact

the CTE. Deriving a unified theoretical equation/model that can comprehensively

describe the relationship across various material classes is a non-trivial task. Cur-

rently, such a comprehensive model is absent from the literature. To this end, I will

demonstrate a holistic ML model developed based on polyhedral features that can

be used across different compounds (both single- and multi-component) belonging to

different material classes. Through advanced interpretability methods, this model not

only predicts but also elucidates the functional relationships governing the thermal

expansion behavior in RE-Si-O crystal systems. The research discussed in this chap-

ter is an important step towards design optimization of the RE-Si-O crystal chemistry

for EBC applications.
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6.1 Chapter Organization

First, I motivate the need for a holistic description of CTE. Then, I discuss the RE

silicate apatites. I discuss the DFT total energy trends relevant to these compounds

before transitioning to the task of constructing a holistic ML model for CTE. I then

apply the prediction intervals method, as described in subsection 3.2.4 to quantify the

uncertainty associated with the predictions. I then use post hoc model interpretability

methods to reveal the learned relationship between the polyhedral descriptors and

the CTE. Lastly, an interpretable mathematical equation for CTE as a function of

polyhedral descriptors is formulated using grammatical evolution [190, 191, 192],

guided by the insights from post hoc model interpretability.

6.2 Introduction

In preceding chapters, I discussed in some detail two distinct RE-Si-O material classes:

RE2Si2O7 (Chapter 4) and RE2SiO5 (Chapter 5). I demonstrated that one can estab-

lish structure-CTE relationship within each of those materials family based on unit

cell parameters. The predictive capability of these models was also demonstrated.

While predictive models are invaluable, they provide little insights into the under-

standing of CTE. Such an understanding would two purposes: (1) It would not only

enhance the model’s predictive accuracy but also provide design rules that can in

essence, uncovering physical insight would enable researchers to dissect the complex

interplay between crystal structure and CTE, thus paving the way for more targeted

research and development. Building on this need for mechanistic understanding,

the central challenge then hinges on finding a common representation for CTE that



113

can effectively capture the interplay between structure and CTE. This representa-

tion should encapsulate mechanistic information related to phonon dispersion curves,

which fundamentally dictates the CTE. However, the challenge is magnified by the

rich structural diversity within the RE-Si-O crystal chemistry, known for its exten-

sive polymorphism. Finding a descriptor set that is both mechanistically informative

and universally applicable across different RE-Si-O material classes is a daunting but

necessary task.

In pursuit of this objective, numerous empirical models in existing literature have

made commendable progress. These models often capitalize on the fundamental re-

lationship between thermal expansion and the strength of chemical bonds. Models

by Megaw, Cameron, and Hazen have been particularly noteworthy in this context,

incorporating key parameters like valence, stretching frequency of bonds, ionicity

factor, and coordination number to predict CTE [15, 16, 17, 18]. Adding to this

body of work, Zhang et al. recently introduced a semi-empirical approach grounded

in principles of chemical bonding. Their model effectively predicts thermal expan-

sion coefficients for both simple and complex crystals by considering lattice energy

and bond geometric descriptors [84]. However, these existing approaches exhibit a

notable limitation: they often rely on pairwise approximations involving binary com-

pounds to make predictions for more complex, multi-component systems [84]. This

approach, albeit simple and an excellent starting point, can become unreliable for

complex materials, especially in the case of entropy stabilized compounds, when the

multicomponent compound lacks features or characteristics that are present in the

binary compounds. This limitation underscores the need for a descriptor set that is

both informative at the mechanistic level and universally applicable across the diverse

and complex landscape of RE-Si-O materials.
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I hypothesize that the local polyhedral features can serve as the common descriptor

that has a more meaningful representation of the crystal chemistry when compared

to the traditional RE ionic radii description of CTE. This approach is akin to the

semi-empirical models I mentioned earlier. I recognize that a lack of extensive data

for less-studied material classes is a significant hurdle, a challenge that could be ad-

dressed by crafting a CTE model applicable across diverse classes. For example, there

are only five known compounds in the RE silicate apatites class for which CTE data

is available in the existing literature. Moreover, multi-component compounds in the

RE2Si2O7 and RE2SiO5 have recently garnered interest due to their potential for re-

duced thermal conductivity via the high entropy effect [193, 24, 194, 195]. Therefore,

I consider generating the data for RE silicate apatites class as an important step

towards our goals. Before diving deep into the intricacies of the holistic ML model,

I will discuss the data I have gathered on RE silicate apatites and DFT total energy

results.

6.2.1 DFT calculations of the Rare-Earth Silicate Apatites

The apatite silicate structure is inherently non-stoichiometric, with a general formula

of RE9.33Si6O26. This structure type offers a fertile playground for cation substitu-

tions, allowing for both alkali metals (with formula RE9A1Si6O26, where A can be

Li, Na, K, Rb, or Cs) and alkaline earth metals (with formula RE8AE2Si6O26, where

AE is Be, Mg, Ca, Sr, or Ba) to substitute the RE-site in the lattice. These com-

pounds typically crystallizes in the hexagonal P63/m space group [70]. For simulating

RE9.33Si6O26, I constructed a 1×1×3 supercell containing 124 atoms in order to ac-

commodate the non-stoichiometry. I used the unit cell containing 42 atoms for the

RE9A1Si6O26 and RE8AE2Si6O26crystal chemistry. I calculated ∆E (in meV/atom)
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with respect to the lowest energy structure using DFT calculations. The DFT calcu-

lations were performed using the planewave pseudopotential code Quantum ESPRESSO

[152]. The PBEsol exchange-correlation functional [153] was used and the core and

valence electrons were treated with ultrasoft pseudopotentials [154]. The Brillouin

zone integration was performed using a Monkhorst-Pack [155] k-point mesh centered

at Γ and 60 Ry plane-wave cutoff for wavefunctions (600 Ry kinetic energy cutoff

for charge density and potential). The scalar relativistic pseudopotentials were taken

from the PSLibrary [156]. The atomic positions and the cell volume were allowed

to relax until an energy convergence threshold of 10−8 eV and Hellmann-Feynman

forces less than 2 meV/Å, respectively, were achieved. The 4f -states for the rare-

earth elements are considered as core states in our calculations. The converged crystal

structures were visualized in VESTA [79] and the space groups were determined using

FINDSYM [157].

The calculations show that all the RE9.33Si6O26 compounds converged in the P3 space

group. However, the RE8AE2Si6O26 converged in three subgroups of P63/m: P 6̄, P 3̄

and P63. Whereas the RE9A1Si6O26 converged in P 6̄ and Pm space groups. One of

the reasons for the discrepancy could be attributed to the smaller size of the supercells

and/or unit cells that are not sufficient to mimic the disorder. The plots describing

the energetic competition for the all of the AE groups (AE=Ba, Be, Ca, Mg, Sr) and

A groups (A=Li, Na, K, Rb, Cs) are included in the Appendix (section C.2). Here, I

discuss only a few plots that are representative of the trends the compounds follow.

In the compounds of RE8AE2Si6O26, the influence of AE ions on the ground state and

metastable structures are significant. In Figure 6.1, the total energy difference per

atom (∆E) with respect to the lowest energy structure is shown for RE8AE2Si6O26

(AE=Ba). In the figure, ∆E=0 mev/atom is the lowest energy structure (ground
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Figure 6.1: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE8AE2Si6O26 for AE=Ba,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.

structure).

For AE=Ba, the predominant ground state structure across different RE is P 3̄, with

almost every compound having a closely competing metastable structure in P63. A

similar trend can also be seen in the case of AE=Sr. On the other hand, when AE=Be

and Mg, the predominant ground state structure shifts to P63 with P 3̄ being the close

competitor. AE=Ca (Figure 6.2), is the only case where there is no clear dominant

energetic preference. Here, out of the 16 compounds, 10 of them (RE=Nd, Dy, Er,

Eu, Ho, Pr, Sm, Tb, Y, Gd) have P 3̄ structure as their lowest energy configuration.

Meanwhile, the P63 structure is the ground state for the remaining 6 compounds

(RE=La, Ce, Sc, Tm, Yb, Lu).
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Figure 6.2: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE8AE2Si6O26 for AE=Ca,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.

In contrast to RE8AE2Si6O26, for the compounds of RE9A1Si6O26, where A includes

alkali metals, the predominant ground state structure is Pm across all types of A ions,

without any close competing metastable structures. Exceptions to this general trend

include RE9Rb1Si6O26 for RE elements Gd, Sm, and Y, as well as RE9Na1Si6O26

for RE elements La and Y (shown in Figure 6.3). In these specific compounds, the

ground state structure is P 6̄.

Overall, within the RE8AE2Si6O26 series, the AE ions play a significant role in deter-

mining the stable structure. For instance, the presence of AE ions such as Ba and Sr

predominantly leads to the stabilization of the P 3̄ structure, with a close competitor

in the P63 phase. A shift is observed for AE ions like Be and Mg, which predomi-
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Figure 6.3: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE9A1Si6O26 for A=Na,where space groups given in paren-
theses indicate the final converged structure when the tolerance is set at 0.0001 or
lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.

nantly stabilize in the P63 structure. However, for AE=Ca, there’s a mix, with no

clear dominant structure, showcasing both P 3̄ and P63 as ground states.

On the other hand, in the RE9A1Si6O26 series, where A represents alkali metals,

the influence of the A ion on the structural preference is less pronounced. The se-

ries demonstrates a more consistent preference for the Pm structure across different

alkali metals. Exceptions arise, notably with A=Rb and Na, where certain RE ele-

ments deviate and favor the P 6̄ structure. These observations underscore the more

dominant influence of AE in determining structural preferences compared to A ions.

While overarching patterns are evident, specific elemental combinations can introduce

variations, underscoring the complex interplay of factors in these compounds.
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6.3 Structure-CTE relationship of RE-Si-O using

a holistic ML model

This section will discuss the details of the descriptor generation, ML model and the

results that include the predictions for single and multi-component compounds in

RE-Si-O, post-hoc model explanation and equation generation for volumetric CTE

in RE-Si-O.

6.3.1 Dataset and Descriptor Generation

The dataset for training the holistic ML model to predict CTE for multiple classes

of RE silicates is shown in Table 6.1. The data contain 21 RE disilicates, 11 RE

monosilicates, 3 RE-Si apatites (RE= La, Dy, Nd) and 2 alkaline earth (AE) metal

bearing RE-Si apatites (AE=Ca and RE=Y, Yb) for which experimental volumetric

CTE values are available. I restricted the data collection to only consider the single

component compounds because I did not perform DFT calculations to mimic pseudo-

binary or pseudo-ternary solid solutions. The literature source of the CTE data is

shown in the Table 6.1 for each compound.

Next, I visualize the dataset using decision trees. While the previous chapters focused

on classification of polymorphs within individual classes of RE disilicates, RE monosil-

icates, and RE containing apatites, this chapter takes a more holistic approach. Here,

the objective shifts to classifying the overarching material classes themselves. De-

spite the change in focus, the value of interpretability remains constant, allowing us

to understand relationships not just within but also between these distinct material

classes. In this chapter, I aim to draw broader conclusions that can inform decisions
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Table 6.1: Thermal Expansion Coefficients Data From Literature.

Compound Experimental Temperature Reference
ABCTE (×10−6 K−1) range (K)

A-P41 La2Si2O7 14 303-1373 Fernández-Carrión et al. [196]
A-P41 Pr2Si2O7 11.8 303-1573 Fernández-Carrión et al. [196]
A-P41 Nd2Si2O7 10.5 303-1473 Fernández-Carrión et al. [196]
A-P41 Sm2Si2O7 11.55 573-1248 Ayyasamy et al. [197]
A-P41 Ce2Si2O7 12.4 573-1248 Strzelecki et al. [198]
δ-Pnma Gd2Si2O7 7.3 303-1873 Fernández-Carrión et al. [196]
δ-Pnma Dy2Si2O7 7.7 303-1423 Fernández-Carrión et al. [196]
δ-Pnma Y2Si2O7 8.1 293-1673 Fernández-Carrión et al. [196]
β-C2/m Er2Si2O7 3.9 303-1873 Fernández-Carrión et al. [196]
β-C2/m Yb2Si2O7 4 303-1873 Fernández-Carrión et al. [196]
β-C2/m Lu2Si2O7 4.2 303-1823 Fernández-Carrión et al. [196]
β-C2/m Sc2Si2O7 5.4 303-1873 Fernández-Carrión et al. [196]
β-C2/m Y2Si2O7 4.1 293-1673 Fernández-Carrión et al. [196]
γ-P21/c Ho2Si2O7 4.2 303-1748 Fernández-Carrión et al. [142]
γ-P21/c Y2Si2O7 3.9 293-1473 Fernández-Carrión et al. [142]
G-P21/c La2Si2O7 6.4 303-1073 Fernández-Carrión et al. [196]
G-P21/c Pr2Si2O7 6.8 303-1648 Fernández-Carrión et al. [196]
α-P 1̄ Gd2Si2O7 8.3 303-1573 Fernández-Carrión et al. [196]
α-P 1̄ Dy2Si2O7 8.5 303-1648 Fernández-Carrión et al. [196]
α-P 1̄ Y2Si2O7 8 293-1473 Fernández-Carrión et al. [196]

X1-P21/c Gd2SiO5 10.3 473–1623 Al Nasiri et al. [180]
X1-P21/c Nd2SiO5 8.91 303-1373 Ridley et al. [181]
X1-P21/c Y2SiO5 8.7 473–1623 Fukuda et al. [182]
X2-C2/c Dy2SiO5 7.6 303-1373 Tian et al. [183]
X2-C2/c Ho2SiO5 7.38 303-1373 Tian et al. [183]
X2-C2/c Lu2SiO5 6.7 473–1623 Al Nasiri et al. [180]
X2-C2/c Sc2SiO5 6.17 303-1373 Ridley et al. [24]
X2-C2/c Tb2SiO5 8.9 303-1373 Tian et al. [183]
X2-C2/c Tm2SiO5 7.64 303-1373 Tian et al. [183]
X2-C2/c Y2SiO5 7.7 303-1373 Fukuda et al. [182]
X2-C2/c Yb2SiO5 7.2 473–1623 Al Nasiri et al. [180]
P3 Nd9.33Si6O26 9.4 303-1373 Okudera et al. [199]
P3 Dy9.33Si6O26 9.64 303-1373 Misture et al. [200]
P3 La9.33Si6O26 9.4 303-1373 Fukuda et al. [201]

P63 Ca2Y8(SiO4)6O2 8.7 303-1373 Stokes et al. [202]
P63 Ca2Yb8(SiO4)6O2 8.54 303-1373 Stokes et al. [202]
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Figure 6.4: Decision trees for determining CTE based on GINI impurity on the train-
ing data shown in table Table 6.1. At each node, a check occurs and if true proceeds
to the left and vice-versa until it reaches the leaf node that displays the classification.
Under each classification, the compounds belonging to the corresponding material
classes are listed.

and strategies in multiple domains of RE-Si-O crystal chemistry.

The decision tree built on this dataset classified the three classes using formation

energy as the root node and 6 decision nodes generating a total of 8 unique de-

cision paths. Classification of disilicates involves one path: [If form Energy is >

−323.25 AND Si bondangle var sd ≤ 12.805 AND RE eff coord num > 5.772 AND

Si avg bond length ≤ 1.639 AND RE distortion ≤ 0.043→ Disilicates]. Sm2Si2O7 in

P41 is the only compound that does not follow this path. RE distortion ≤ 0.043 is the

decision node that separates this compound from the rest of the disilicates. Similar

to disilicates, the classification of monosilicates predominantly involves one path: [If

form Energy ≤ −323.24 AND Si avg bond length > 1.631 → Monosilicates]. How-

ever, Sc2SiO5-X2 and La2SiO5-X1 does not follow this path as they are separated
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from the rest of the monosilicates by the decision node form Energy ≤ -323.248.

Unlike the other two classes, the classification of apatites does not involve one single

prominent decision path. In the training data, 40% of the apatites are classified using

Si avg bondlength > 1.631 condition; 40% are classified using Si bondangle var sd >

12.805 condition; the rest 20% (Nd9.33Si6O26) are classified using a common decision

path as Sm2Si2O7 P41 with the only difference being Si eff coord num sd thresh-

old. This may be due to the proximity of Sm2Si2O7 P41 to the apatite compound

Nd9.33Si6O26 in the high-dimensional space, which is shown in the t-SNE plot [203]

(Figure 6.5). The t-SNE plot also justifies the compounds Sc2SiO5-X2 and La2SiO5-

X1 not following the path that the rest of the monosilicates follow by highlighting their

proximity to the disilicate clusters. Interestingly, alkaline/alkali earth metal bearing

RE-Si-apatites are not clustered together with common decision paths, which is con-

trary to the t-SNE result. Instead, Dy9.33Si6O26 and Ca2Yb8(SiO4)6O2 P63 follow the

path: [If form Energy ≤ −323.24 AND Si avg bond length ≤ 1.631→ Apatite], while

La9.33Si6O26 P3 and Ca2Y8(SiO4)6O2 P63 follow the path: [If form Energy > −323.25

AND Si bondangle var sd > 12.805→ Apatite].

Next I analyze the trends between these descriptors and the RE ionic radii. The

ionic radii reported are for the 3+ oxidation state and for a coordination number of

8. The trends shown in Figure 6.6 are representative of the training dataset built for

the holistic ML model. I ignored the descriptor AK avg bond length because there

are only three apatite data points for which it is non-zero in the training set. From

the plots, it can be seen that RE avg bond length is the only variable that shows

highly correlated increase with RE ionic radii. This is consistent with the fact that

the RE metal-oxide bond strength decreases with increasing ionic radius, which could

result in longer bond lengths. The plots of the Si avg bond length, Si poly volume
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Figure 6.5: Visualization showing two-dimensional projections of our high-
dimensional dataset based on the t-distributed stochastic neighborhood embedding
(t-SNE) method [203].

and form Energy (ignoring outliers) show a moderately correlated trends. Decrease in

form Energy with increasing ionic radius could be related to the fact that larger ions

have a higher coordination number and can form more stable, lower-energy structures.

Si avg bond length increase with larger radii. We see a similar rise in Si poly volume

as ionic radii increases. The plot of Si bondangle var and RE avg bond length sd is

scattered with no clear trend, implying that the bond angle variability is not solely

dependent on ionic sizes. Overall, while RE ionic radii provide a useful first-order

approximation for predicting CTE, the polyhedral variables offer additional dimen-

sions of information that can be crucial for a more comprehensive understanding of

the material properties.
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6.3.2 Machine Learning and Bootstrap Resampling

ML is used to establish a quantitative relationship between the down-selected 7 de-

scriptors (X) and ABCTE (Y ) assembled from surveying the published experimental

literature of known RE disilicate, monosilicate and apatite compounds [77, 140, 142].

Since ABCTE is a numerical quantity, I used regression-based ML methods in this

problem. Given a sample of data (X, Y ), the regression problem can be formulated

as follows, Y=f(X) + η, where η is the random error term. The regression learning

was performed using the support vector regression (SVR) algorithm. We used the ϵ-

support vector regression with a non-linear Gaussian radial basis function kernel [117]

because of its improved generalization ability [164, 165]. SVR hyperparameters such

as the penalty term and the insensitive loss function were adjusted to optimize the

leave-one-out error. We used the ϵ -SVR method implemented in the e1071 package

[166] within the RSTUDIO environment [167].

I built an ensemble of SVR (eSVR) models using the bootstrap resampling method

[168] to make predictions as well as evaluate the error bars based on standard error.

And, in addition to the standard errors, I also constructed the prediction intervals

using the “doubt” algorithm discussed in subsection 3.2.4 which is also based on

bootstrapping. The mean and standard deviation of the predictions from the eSVR

models are then used as an estimate of the ABCTE and its associated standard

errors, respectively. The prediction intervals can be calculated using the quantile of

the total error distribution which is essentially the sum of model (Equation 3.12) and

observation error Equation 3.16 defined in subsection 3.2.4. Each individual SVR

model in the ensemble goes through hyperparameter optimization using a grid-search

method consisting of γ (distance penalty) = (0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1), and cost = (0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100) with
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10-fold cross validation provided by the e1071 package in R. [166]

I divided the dataset into training and testing subsets. This was achieved through

the common practice of a random train/test split, which helps to prevent overfitting

and assess model performance on unseen data. I ensured reproducibility by setting

a random seed. I experimented with different random seeds (e.g., 42, 123, and 789)

to assess the robustness of our model. The models trained on the different training

data were used to predict the ABCTE along with the error bars for the different

corresponding test data points that were not included in the training. The perfor-

mance was characterized by calculating the R2 value along with the RMSE between

the predicted and true values in the independent test set.

Prediction of CTE for single component RE-Si-O compounds

The best performing training data chosen based on the performance on the test

data includes a total of 33 data points including the data contains 18 RE disilicates,

11 RE monosilicates, 2 RE-Si apatites and 2 alkaline earth metal bearing RE-Si

apatites. The performance of the eSVR model on the training and test data is shown

in Figure 6.7. The training data is shown as black dots and test data is shown as

blue diamond (experimental measurements) and red triangles (DFT-QHA literature

data [77]). The PIs (gray lines) being wider than the standard error is indicative of

the prediction interval algorithm accounting for observation error in addition to the

model error. In Table 6.2, the compounds used for testing and validation, along with

the ML predictions and the two uncertainty metrics (standard error and prediction

intervals) are also given. A vast majority of the data points, especially the test points,

either lie close to or on the X=Y line indicating good training performance.
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Prediction of multi-component RE2Si2O7 compounds

To demonstrate the capability of the trained model to make predictions for multi-

component compounds in spite of being trained only on single component compounds,

it was used to predict the ABCTE for multi-component (La,Lu,Y,Yb)2Si2O7 - β-

C2/m and (Dy,Er,Y,Yb)2Si2O7 - β-C2/m structures obtained from the SQS-DFT

calculations performed by Dr. Kyungtae Lee (former postdoc fellow from UVa-MSE

materials informatics group). DFT calculations are performed using the planewave

pseudopotential code Quantum ESPRESSO [152]. The PBEsol exchange-correlation

functional [153] was used and the core and valence electrons were treated with ul-

trasoft pseudopotentials [154]. The Brillouin zone integration was performed using

a Monkhorst-Pack [155] k-point mesh centered at Γ. We used the k-mesh size of

5×3×1, 5×3×1 and 3×2×2 for β-C2/m, δ-Pnma and G-P21/c structures, respec-

tively. The planewave cutoffs were set at 60 Ry and 720 Ry for wavefunctions and

kinetic energy, respectively. The scalar relativistic pseudopotentials were taken from

the PSLibrary [156]. The atomic positions and the cell volume were allowed to relax

until an energy convergence threshold of 10−8 eV and Hellmann-Feynman forces less

than 3 meV/Å, respectively, were achieved. The 4f -states for the rare-earth elements

are considered as core states in our calculations. The converged crystal structures

were visualized in VESTA [79] and the space groups were determined using FINDSYM

[157]. We also use VESTA to generate the polyhedral descriptors as input for training

ML models, which is common in the materials science literature[204, 205, 206].

To model disordered substitutional solid solution, the SQS structrues were con-

structed using the ATAT code [207, 208]. We considered a total of six elements (four

RE, Si and O) to formulate each solid solution based on the Monte Carlo simulated

annealing method [209]. The SQS structures were made with the clusters consisting of
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pair and triple points with various intersite distances ranging from 4 to 10 Å for every

1 Å increase. The optimal SQS structures were identified by finding the structures

with a minimum value of objective function, which is a measure to evaluate simi-

larity to the correlation functions of a disordered state. The geometry optimization

of the resulting SQSs was conducted using the Quantum ESPRESSO. We constructed

the SQS structures for β-C2/m (110 atoms) and optimized them (i.e., relax both

internal coordinates and cell parameters) using DFT. These calculations were done

by my colleague Dr. Kyungtae Lee (former postdoc fellow from UVa-MSE materials

informatics group)

The ML ABCTE predictions with standard error for (Y0.25Yb0.25Lu0.25La0.25)2Si2O7

- β-C2/m and (Y0.25Yb0.25Er0.25Dy0.25)2Si2O7 - β-C2/m (in units of 10−6 K−1) are

5.57±1.15 and 4.37± 0.58. When accounting for prediction intervals, the estimates

are 5.57±2.19 and 4.37± 1.99. The ABCTE of (Y0.25Yb0.25Lu0.25La0.25)2Si2O7 in

the two-phase structure (β-C2/m+G-P21/c) was experimentally measured to be 5.6

×10−6 K−1 using dilatometry in the temperature range of 300-950 °C by our col-

leagues Dr. Deijkers and Dr. Wadley from UVa-MSE. Also the ABCTE of β-C2/m

(Y0.25Yb0.25Er0.25Dy0.25)2Si2O7 was experimentally measured to be 3.28 by Salanova

et al. [210] (UVa-MSE PhD student in Dr. Ihlefeld group). The experimental values

which fall within the error bar of the ML prediction validate the model and demon-

strate the capability of the model to extend the predictions to multi-component com-

pounds. To comprehend the significance of this achievement, it is essential to consider

the broader context. There are at least 15 common RE elements with a nominal 3+

charge state in the periodic table (Sc, Y and 13 lanthanides, excluding Pm) that

can occupy the RE-site in RE2Si2O7. If we consider forming four-, five-, and six-

component RE2Si2O7 solid solutions with equiatomic RE concentrations, then we
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Table 6.2: The compounds used for testing and experimentally validating the eSVR
models are given. The ML prediction for ABCTE ×10−6 K−1, along with the boot-
strap standard error (σ) and the prediction interval (PI) from the doubt algorithm
[113], are given. The temperature ranges used for the CTE determination in both
experiments and DFT-QHA calculations are also given.

Compound Experimental Temperature ML Predicted
ABCTE range (K) ABCTE ± [σ],[PI]

Test data
γ-P21/c Ho2Si2O7 4.2 303-1748 4.2 ± 0.09,2.01
β-C2/m Sc2Si2O7 5.4 303-1873 5.4 ± 0.36,2.11
X2-C2/c Er2Si2O7 7.6 303-1373 7.43 ± 0.17,2.10
P3 La9.33Si6O26 9.4 303-1373 11.78 ± 2.29,2.42

Test data (DFT-QHA from literature) [77]
β-C2/m Ho2Si2O7 4.09 300-1700 4.09 ± 0.08,2.02
β-C2/m Tm2Si2O7 3.92 300-1700 4.2 ± 0.03,2.01
γ-P21/c Er2Si2O7 4.03 300-1700 4.13 ± 0.05,2.08
δ-Pnma Tb2Si2O7 8.27 300-1700 7.4 ± 0.13,2.10
δ-Pnma Ho2Si2O7 8.57 300-1700 7.5 ± 0.13,2.12

Literature validation for multi-component RE2Si2O7

β-C2/m (Dy, Er, Y, Yb)2Si2O7 [210] 3.28 573-1248 4.37 ± 1.27,2.56
New prediction and Experimental validation (This work)

β-C2/m (Y, Yb, Lu, La)2Si2O7 5.6 573-1248 5.57 ± 1.15,2.32

have a total of 9,373 (1365 + 3003 + 5005) unique compositions. This number per-

tains solely to RE2Si2O7 solid solutions and does not take into account other material

classes. Navigating such an extensive chemical space using traditional trial-and-error

methods is impractical. The ability of the holistic ML model to navigate through this

vast search space is a critical outcome. This capability can efficiently guide further

experimental exploration of new multi-component RE-Si-O solid solutions, thereby

accelerating the design of EBC materials with targeted volumetric CTE.

Post hoc Model Interpretability

ML is a powerful tool for establishing quantitative relationships between composition

and properties. However, it is often viewed as a “black box” method due to the

difficulty in examining and explaining the model behavior. Without comprehending

what a trained model has “learned”, it becomes a challenge to determine if the model
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is accurately reflecting the system’s physics. To gain a deeper understanding of the

model’s behavior, I employed a post hoc interpretability approach (elaborated in

subsection 3.2.5) that leverages both variable attribution and what-if plots. While

variable attribution offers insight into the model’s behavior for each observation in

the dataset by illustrating the contribution of each descriptor to the predicted value,

what-if plots reveal the insights about the functional relationship between a descriptor

and the response variable.

I used a well-known global what-if plot method referred to as partial dependence plot

(PDPs) to reveal the pattern that the black-box eSVR models have learned [211].

PDPs capture insights about the relationship between a descriptor and the response

by showing how the model prediction would be affected if we changed a value of

one variable while keeping all other variables unchanged [112]. Since I trained an

ensemble of B SVR models, I evaluated the partial dependence estimates for each of

the trained SVR models in the ensemble. The mean and standard deviation of the

estimates are considered as the partial dependence estimates of the ensemble model

and the associated uncertainty, respectively. I employed the pdp package [211] as

implemented in R-language for visualizing the final PDP plots.

While PDPs are useful for offering a broad qualitative perspective on how a fea-

ture impacts a model’s outcomes, they shouldn’t be leaned on for exact quanti-

tative analysis. This is due to their inherent linearity assumption and the ten-

dency to average out descriptor interactions. The PDPs (Figure 6.9) illustrating

the functional relationships between the predicted CTE and the descriptor show two

different trends. One in which the predicted CTE decreases with the increase in

descriptor value. Si poly volume is the only descriptor following this inverse re-

lationship. The rest of the descriptors follow the trend in which the predicted
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CTE increases with the increase in the descriptor value with RE avg bond length,

RE avg bond length sd, Si poly volume, Si bondangle var being more sensitive than

form Energy and AK avg bond length. The sensitivity of the PDP curves can be

interpreted as the importance or the contribution of the descriptor towards the

prediction. The global feature importance analysis also seems to indicate similar

importance ranking for the descriptors. Figure 6.8 shows that form Energy and

AK avg bond length are descriptors belonging to the least important descriptors

while RE avg bond length, RE avg bond length sd, Si bondangle var and Si poly volume

are the top four important descriptors.

The PDP shows that the CTE increases with an increase in RE avg bond length. I

interpret it using the general idea that longer RE-O bonds are generally weaker than

shorter ones. This is because the outer shell electrons, which are involved in bonding,

are farther from the nucleus in longer bonds, leading to weaker electrostatic attraction

between the RE ions and the surrounding oxygen atoms. Weaker bonds are easier

to break and reform, which would make the material more susceptible to thermal

expansion. This is also why we can say that the RE metal-oxide bond strength de-

creases with increasing ionic radius for a given charged ion and coordination number,

leading to the thermal expansion of disilicates increasing with the RE cation radius.

In simpler terms, longer RE-O bonds make it easier for the material to expand when

heated, resulting in a higher CTE.

To corroborate this functional relationship, I plot RE avg bond length against the

RE-O interatomic force constants (IFC) as shown in Figure 6.10. The IFC is ob-

tained from a recent study on RE2Si2O7 using DFT-DFT calculations [77]. The

plot shows that RE avg bond length inversely correlates with the interatomic force

constant of RE-O polyhedra serves as a strong confirmation of the trend that PDP
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shows. The interatomic force constant is a measure of bond strength or stiffness.

A lower value for the interatomic force constant implies weaker or less stiff bonds.

Since RE avg bond length and the interatomic force constant are inversely related,

this tells us that longer RE-O bonds are indeed weaker, corroborating the explana-

tion for the first trend. This inverse correlation essentially reinforces the idea that

longer RE avg bond length contributes to a higher CTE. The weaker or less stiff RE-

O bonds don’t hold the lattice as tightly together, providing the material with greater

flexibility to expand or contract, which manifests as a higher CTE. This shows that

our model mimic one of the physical descriptors that dictate the CTE.

The increase in CTE with an increase in Si bondangle var (variance in the Si-O-Si

bond angles) can imply that a greater variance in these bond angles leads to a more

flexible molecular structure. This flexibility allows the crystal lattice to accommo-

date more thermal vibrations, leading to a higher CTE. While factors like bond angle

variance, bond length and bond length variability contribute to greater thermal ex-

pansion, an increase in Si poly volume appears to have the opposite effect, making

the structure more rigid and less prone to thermal expansion. A larger Si poly volume

could mean that the polyhedra are filling up the available space within the crystal lat-

tice more efficiently, leaving less “free volume” for the material to expand into when

heated. This effective space-filling would make the structure more rigid, reducing

its ability to accommodate thermal vibrations and thereby leading to a lower CTE.

This highlights the complex interplay of factors that determine a material’s thermal

properties and shows that the relationship between microscopic structural parameters

and macroscopic properties like CTE can be quite nuanced.
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Analytical Equation for CTE

While post-hoc model explanations of ML models are insightful, generating an explicit

equation goes a step further: it crystallizes these insights into a form that is both

interpretable and generalizable. An equation reveals the mathematical relationships

between variables, allowing for more direct scientific interpretation and offering a

blueprint for the targeted experimental design. This melding of predictive accuracy

with interpretability creates a powerful tool for material science, enabling us to more

efficiently explore and understand complex systems.

To this end, I use a new method that is built upon the foundations of the XAI

algorithms discussed in this thesis. The algorithm uses grammatical evolution [191].

It begins with a population of randomly generated mathematical expressions and

iteratively refines them through processes analogous to natural selection, crossover,

and mutation in biological systems. The predefined set of grammar rules ensures that

the resulting equations are syntactically correct and logically coherent. Traditional

grammatical evolution often produces equations that are mathematically correct but

difficult to interpret or lacking physical meaning. To address this, we added a layer

of constraint based on PDP and the functional relationships they reveal between

polyhedral descriptors and CTE. This novel algorithm was developed by my colleague

Mr. Shunshun Liu.

I used the same training data used for the eSVR model and trained the grammatical

evolution model using the gramEvol [212]. Additionally, we informed the grammar

using our PDP functional relationships of all 7 variables form Energy, Si poly volume,

Si bondangle var, RE avg bond length, RE avg bond length sd, Si avg bond length sd,

and AK avg bond length. Out of these variables, the model omitted form Energy and
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AK avg bond length, which is consistent with their global feature importance values

(see Figure 6.8). The equation evolved by the model using the remaining 5 variables

is:

CTE = 8.905× RE avg bond length− 7.214× Term1− 12.644 (6.1)

Term1 =
Si poly volume

Si bondangle var× Term2
(6.2)

Term2 = 1− Si poly volume× Si bondangle var

× (RE avg bond length sd + AK avg bond length) (6.3)

In the evolved equation, RE avg bond length has a positive correlation with CTE,

indicating that an increase in this parameter generally results in a higher CTE. Term1,

which combines Si poly volume and Si bondangle var, RE avg bond length sd and

AK avg bond length also modulate CTE, but their effects are more complex and are

embedded within Term1.

The ABCTE predictions using the evolved equation for (Y0.25Yb0.25Lu0.25La0.25)2Si2O7

- β-C2/m and (Y0.25Yb0.25Er0.25Dy0.25)2Si2O7 - β-C2/m (in units of 10−6 K−1) are

5.67 and 4.8 respectively and the experimental ABCTE of the two compounds are 5.6

and 3.28 [210] (in units of 10−6 K−1) respectively. The close alignment between our

model’s predictions and experimental data serves as a strong validation of the evolved

equation, marking a key milestone of this thesis. The unique strength of this approach

is its generalizability and accuracy. Unlike traditional models that use semi-empirical

equations based on local bond geometric features, our algorithm can be applied to a

broader array of materials, including complex hign entropy compounds. This opens

up new avenues for accelerating the design of a diverse range of compounds in the
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RE-Si-O crystal chemistry.

6.4 Summary

In this chapter, I addressed a gap in the current literature by developing a holistic

ML model that describes the structure-CTE relationship across a range of mate-

rial classes within the RE-Si-O crystal chemistry. This holistic ML model offers

a unified framework that is applicable to both single and multi-component com-

pounds. This adaptability is achieved through an innovative approach to descrip-

tor generation, which leverages polyhedral features. An eSVR model using these

descriptors was built to rapidly predict the ABCTE of all the compounds in RE-

Si-O crystal chemistry. One of the key results is the ability of the model trained

solely on single-component RE silicates to predict the ABCTE of 2 different four-

component β-C2/m (Y, Yb, Lu, La)2Si2O7 and β-C2/m (Y, Yb, Er, Dy)2Si2O7

with prediction uncertainties quantified. The agreement between ML prediction and

experimental validation adds confidence to the approach. Post hoc model interpre-

tation of the validated eSVR model revealed the functional relationship between the

polyhedral descriptors and the ABCTE. The PDP trends show that variables like

Si bondangle var, RE avg bond length sd, and Si avg bond length positively affect

CTE, while Si poly volume negatively impacts it. Among these, RE avg bond length

stands out for its validated significance through its inverse correlation with the inter-

atomic force constant, emphasizing its crucial role in determining thermal expansion

behavior. While post hoc model interpretation offer valuable insights, generating

an explicit equation like the one evolved through grammatical evolution provides an

even deeper understanding. This equation not only encapsulates complex relation-
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ships between variables but also offers a highly reliable and generalizable framework

for understanding and predicting CTE in RE-Si-O crystal chemistry. Importantly,

the close match between the model’s outputs and experimental results serve as a key

validation of the developed ideas.
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Figure 6.6: Graphical representation of polyhedral metrics (Y-axes) in relation
to Rare Earth (RE) Ionic Radii in Angstroms (Å) (X-axes), focusing on a charge
state of 3+ and a coordination number of 8. The plots are representative of the
training data including all three material classes in RE-Si-O space. The variable
AK avg bond length is ignored as we only have 2 alkali earth/alkaline earth metal
bearing apatites in the dataset. The secondary x-axis bears the annotations of RE
cation in the compound.
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Figure 6.7: Performance of the eSVR model trained on the dataset including all
three material classes in RE-Si-O space. The X- and Y -axes are the known and ML
predicted ABCTE data, respectively. The error bar represent the standard error from
the ensemble of eSVR model. The grey lines represent the prediction interval limits
constructed using the doubt algorithm [113]. The red dashed line represents the X=Y
line and the data points falling on this line indicate perfect agreement between the
ML models and the known data. The black dots are the data points used to train
the models. The red diamonds represent the test data that were not used to train
the ML models.
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Figure 6.8: Results of global feature importance analysis for the eSVR model trained
on the dataset including all three material classes in RE-Si-O space. Blue bar shows
average impact, across all the models in the ensemble, on the dropout loss. Orange
error bar depicts the standard deviation of the dropout loss across all the models.
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Figure 6.9: PDPs showing the relationship between the descriptors (x-axis) and CTE
(y-axis). The shaded regions indicate the uncertainties based on standard deviation.
The plots of representative of the training dataset including all three material classes
in RE-Si-O space.

Figure 6.10: Plots showing inverse correlation between RE avg bond length and inter-
atomic force constants of RE-O polyhedron [77] obtained by DFT-QHA calculations
for a select RE disilicate compounds.
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Chapter 7

Conclusion

This dissertation has addressed the three goals initially stated:

1. Accelerate the design of novel compounds in the complex RE-Si-O chemi-

cal space with targeted CTE. This required me (in collaboration with several

excellent researchers) to establish a hitherto unknown quantitative structure-

property relationships in the RE-Si-O family of compounds using computational

and ML approaches.

2. Ensure trust in the informatics approach by precisely knowing when/where a

ML model can succeed and/or fail. I developed a prediction interval approach

that provided an estimate of model confidence to make informed design deci-

sions.

3. Understand why a black-box ML model makes a certain prediction. Structure-

property relationships in materials can be better understood if the predictive

understanding is backed up by science hidden in the model. The XAI approach

was instrumental in helping me accomplish this objective.

Having accomplished these objectives, I want to reflect on the insights gained in this

chapter. Although these goals were first stated separately, as I continued to make

progress in my research I learned that they are closely linked. In fact, achieving each



141

goal was part of a larger, unified effort to improve our knowledge of RE-Si-O crystal

chemistry. The RE-Si-O chemical space, encompassing RE disilicates, RE monosili-

cates, and RE apatites, is both intricate and expansive. While traditional approaches

have relied on ionic radii as the primary descriptor for structure-property relation-

ships and energetics of RE silicates, this dissertation demonstrated the importance of

employing DFT calculations and ML methods synergistically. These calculations de-

scribed the ∆E trends across the RE-Si-O crystal chemistry, identifying energetically

favorable polymorphs and providing optimized crystal structure data. This enabled

the establishment of two novel sets of descriptors: unit cell parameters and polyhe-

dral features. These descriptors offered deeper insights into the complex relationships

between structure and CTE, across all three material classes.

The DFT-ML approach has been particularly impactful for RE disilicates, a cru-

cial material class for EBC applications. DFT calculations yielded ∆E data that

offered key insights into the energetics favoring polymorph formation. These findings

were further validated by existing literature. The ML approach provided a fast-track

method for predicting the CTE as a function of unit cell parameters. The uncertain-

ties were quantified using bootstrap standard errors of the predictions. Importantly,

experimental validations on the structure and CTE of Sm2Si2O7 served to confirm

the accuracy of our predictions, effectively closing the design loop.

Extending our approach of DFT and ML to RE monosilicates, similar results were

achieved. Intrigued by a notable pattern in CTE anisotropy discovered in the recent

research conducted by Ridley et al. I shifted focus to CTE anisotropy. I chose DFT to

gain insights into the underlying mechanisms driving this phenomenon. The density

of states calculations revealed a previously unidentified correlation between the d-

orbital bandwidth and unit cell volume in the C2/c structure for Sc2SiO5, Y2SiO5,
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and La2SiO5. To reduce the Y-4d bandwidth and, we conjecture, consequently lessen

CTE anisotropy, Y2SiO5 should be synthesized in an open structure with reduced Y-O

effective coordination numbers in both polyhedral units. Achieving this would likely

necessitate novel, non-equilibrium materials synthesis and processing techniques.

Shifting the lens from unit cell parameters to polyhedral descriptors offers distinct

advantages in describing structure-CTE relationships. First, polyhedral descriptors

have the potential to carry mechanistic information that can be linked with phonon

dispersion curves and phonon density of states. Second, they provide a unique set of

descriptors applicable across the diverse RE-Si-O chemical space, including disilicates,

monosilicates, and apatites. This versatility sets the stage for the development of a

holistic machine learning model capable of mapping structure to CTE across the entire

RE-Si-O domain. In this context, I introduced a novel representation scheme based on

polyhedral descriptors and formation energy, aimed at uniquely fingerprinting both

single and multi-component compounds, thereby enabling the ML model to establish

a quantitative relationship between structure and CTE.

To compile the dataset for the holistic CTE model, I also explored the RE silicate

apatites, an area where data has been lacking up to this point. The DFT calcu-

lations optimized non-stoichiometric (RE9.33Si6O26) in P3 structure. In the case of

RE9A1Si6O26 and RE8A2Si6O26, ∆E calculations revealed the interesting energetics

trends. The ∆E calculations showed that in the RE8AE2Si6O26 series, AE ions, like

Ba and Sr, majorly favor the P 3̄ structure, with P63 closely trailing. However, for Be

and Mg, the P63 structure takes precedence. AE=Ca presents a mixed trend without

a clear frontrunner. Contrarily, in the RE9A1Si6O26 series featuring alkali metals as

A, a consistent preference emerges for the Pm structure. Notable exceptions include

A=Rb and Na, aligning with P 6̄. This highlights AE’s pronounced influence over
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structure compared to A, with specific elemental combinations adding nuance to the

observed patterns.

I then built the holistic ML model for the dataset inluding all three classes of RE-

Si-O space. In this iteration, I went beyond merely calculating the standard error

and establish robust prediction intervals that do not rely on the assumption of normal

distribution, taking into account both the uncertainties in the model and observational

noise. One of the key outcomes of this model is the ability of the model trained

solely on single-component RE silicates to predict the ABCTE of multi-component

counterparts. I made predictions for β-C2/m (Y, Yb, Lu, La)2Si2O7 and β-C2/m (Y,

Yb, Er, Dy)2Si2O7 with prediction uncertainties quantified. The agreement between

ML prediction and experimental validation adds confidence to the approach.

Post hoc model interpretation of the validated eSVR model revealed the functional re-

lationship between the polyhedral descriptors and the ABCTE. The PDP trends show

that variables like Si bondangle var, RE avg bond length sd, and Si avg bond length

positively affect CTE, while Si poly volume negatively impacts it. These trends sug-

gest a complex interplay of structural features affecting thermal behavior. Specifically,

a more flexible structure is indicated by higher bond angle variance (Si bondangle var)

and greater bond length variability (RE avg bond length sd and Si avg bond length).

Longer average bond lengths (RE avg bond length) further point to weaker bonds,

all contributing to a higher propensity for the material to expand when heated. Con-

versely, larger silicon-oxygen polyhedral volumes (Si poly volume) act as a counter-

balance, making the structure more rigid and less prone to thermal expansion, thereby

lowering the CTE. The inverse correlation between RE avg bond length and the in-

teratomic force constant for RE-O polyhedra confirms that longer RE-O bonds are

weaker, reinforcing the trend that such bonds contribute to a higher CTE. These in-
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sights provide a nuanced understanding of how a microscopic parameter like RE avg bond length

can impact a macroscopic property like thermal expansion.

While post-hoc model explanations of ML models are insightful, generating an ex-

plicit equation goes a step further: it crystallizes these insights into a form that is

both interpretable and generalizable. An equation reveals the mathematical relation-

ships between variables, allowing for more direct scientific interpretation and offering

a blueprint for targeted experimental design. To this end, in collaboration with my

research group, we built a grammatical evolution model that is informed by the func-

tional relationships of the variables with CTE that is captured by PDP. The equation

captures relationships between polyhedral descriptors and the CTE in RE-Si-O crys-

tal chemistry. Notably, the close agreement between the model’s predictions and the

experimental data provides a validation of our approach. This work represents a sig-

nificant step forward in the field, offering a reliable, interpretable, and generalizable

model that has the potential to significantly accelerate the design and discovery of

new materials.
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Chapter 8

Future Work

8.1 Equation-Informed Bayesian Models

This thesis yielded insights into polyhedral descriptors’ intricate relationship with

CTE in RE-Si-O crystal chemistry. It introduced an innovative approach, culmi-

nating in an explicit equation for CTE in RE-Si-O that enhances interpretability.

One intriguing avenue for future work is leveraging the equation developed through

grammatical evolution to inform Bayesian models. The equation, grounded in the

functional relationships of polyhedral descriptors with CTE, could serve as a prior

distribution for Bayesian models. This integration would merge the power of ML and

the interpretability of mathematical equations, offering an innovative framework for

materials design. Bayesian models inherently models uncertainties due to their prob-

abilistic nature. The integration of the equation-derived prior distribution further

augments this aspect, enhancing the model’s ability to provide reliable prediction

intervals.

8.2 Calibration for prediction interval algorithm

In the area of predictive modeling, I developed an algorithm for constructing predic-

tion intervals that diverges from traditional convolution-based methods, such as those
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proposed by Mougan and Nielsen [113] and Srivatsava and Kumar [111]. The devel-

oped approach incorporates an additional sampling loop adjusted by Rademacher

variables, aiming to address issues related to heavy-tailed or asymmetric error dis-

tributions. Despite these innovations, the current performance of our algorithm is

subpar. A natural extension for improving our algorithm lies in calibration tech-

niques aimed at achieving more reliable coverage probabilities. By post hoc adjusting

the prediction intervals based on observed discrepancies, the algorithm could poten-

tially yield more accurate intervals, especially when dealing with complex or limited

data sets.

The following steps could be undertaken to achieve this:

1. After the prediction intervals are initially constructed, evaluate their actual

coverage probabilities on validation datasets,

2. Identify the degree to which the observed coverage deviates from the expected

confidence level,

3. Develop and implement an algorithm to adjust the initially constructed intervals

based on the observed discrepancies. This could be inspired by existing work

on calibrated forecasting, and

4. Re-evaluate the adjusted intervals on multiple datasets to ensure that the cali-

bration process has effectively improved the coverage probabilities.

8.3 Influence of defects on electronic structure trends

Continuing of the effort on anisotropy in CTE, the exploration of point defects, specif-

ically Y- and O-vacancies, emerges as a critical next step. Given our newfound un-
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derstanding of the d-orbital bandwidth and its relation to unit cell volume, it will

be interesting to probe how point defects can offer more nuanced control over these

variables. Investigating the interplay between unit cell volume and these defects could

potentially allow us to further modulate the Y-4d bandwidth and, by extension, the

CTE anisotropy. This stands as a promising avenue for future research. Since exper-

imental validation will be tricky, it will be worthwhile to check if the CTE anisotropy

can be predicted using the quasi-harmonic approximations. This will validate the

hypothesis and may motivate new experiments.
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Appendix A

Trustworthy ML

A.1 Trustworthy ML algorithms

Distribution-free bootstrap based prediction interval algorithm. Glossary: α-confidence

level, x0-new observation, mi-model error, oi-observation error, ti-training error

Algorithm A.1. 1: procedure PredictInterval(α, x0)

2: Build b bootstrap samples Bi from R(r)

3: Initialize bootstrap sample set D = ϕ

4: for each bootstrap sample Bi do

5: Build regression models ȳr

6: Obtain centered samples mi = µ̂r(xi)− ȳr(xi)

7: D → D ∩mi

8: end for

9: Initialize training error sample E1 = ϕ

10: for each training sample (xi, yi) do

11: Compute error ti = yi(xi)− µ̂r(xi)

12: E1 → E ∩ ti
13: end for

14: Initialize OOB error sample set E2 = ϕ

15: for each OOB sample (xi, yi) do
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16: Compute error oi = yi(xi)− µ̂r(xi)

17: E2 → E ∩ oi
18: end for

19: Build the set G = (1− validationweight)× (ti) + (validationweight)× (oi)

20: Generate the prediction error distribution δbm0

21: For a new datapoint x0 :

22: for b = 1, ..., B do

23: for m = 1, ..., B/2 do

24: Generate Rademacher variable η

25: Calculate ϵ by sampling a residual from G adjusted by η

26: δbm0 = mi + oi

27: end for

28: end for

29: PI(x0) = µ̂r(xi) + δα/20, δ
α/2

0

30: end procedure

Explainable ML algorithm for local global and intermediate levels using the SHAP

and ICE methods along with k-means clustering

Algorithm A.2. 1: procedure SHAP analysis(D, eSVM) ▷ Procedure to

construct the SHAP dataframe with the training dataset (D)

2: RowLength ← Size(D) ▷ Total number of instances of D

3: for i ← 1 to RowLength do ▷ Loops through each instance of D

4: for j ← 1 to 50 do ▷ Loops through 50 bootstrap samples

5: M ← eSVM[j]

6: Exp ← Model explainer(M, D[j]) ▷ Generates a model explainer for a

given bootstrap sample
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7: SHAP pred[j] ← Predict parts(Exp, new observation=D[i]) ▷

Calculates the variable attributions to the prediction of a given instance

8: Merged SHAP pred[i] ← Binding(SHAP pred[j]) ▷ Merges the

resulting variable attributions on every loop iteration

9: end for

10: Avg Merged SHAP pred[i] ← Mean(Merged SHAP pred[i]) ▷ Averages

the SHAP values of all the bootstrap samples for a given instance

11: SHAP dataframe ← Binding(Avg Merged SHAP pred[i])

12: end for

13: return SHAP dataframe

14: end procedure

15: procedure k-means clustering(SHAP dataframe) ▷ Procedure for k-means

clustering based on SHAP values

16: k ← 10 ▷ k: the number of clusters

17: Cluster info ← kmean(SHAP dataframe, k) ▷ Implements the k-means

clustering algorithm

18: return Cluster info ▷ Classifies each instance with a specific cluster label

19: end procedure

20: procedure ICE analysis(D, eSVM, Cluster info) ▷ Procedure for ICE

analysis based on cluster information

21: idx ← cluster label ▷ Choose a cluster label of interest

22: for i ← 1 to length(Cluster info[idx]) do ▷ Loops through all the instances

with the given cluster label

23: for j ← 1 to 50 do ▷ Loops through 50 bootstrap samples

24: M ← eSVM[j]

25: Exp ← Model explainer(M, D[j])
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26: ICE pred[j] ← Predict profile(Exp, new observation=D[i]) ▷

Calculates individual ICE profiles

27: Merged ICEpred ← Binding(ICE pred[j]) ▷ Merges the resulting ICE

data on every iteration of the inner loop

28: end for

29: Merged ICEdata ← Binding(Merged ICEpred) ▷ Merges the resulting

ICE data on every iteration of the outer loop

30: end for

31: ICE dataframe ← Mean(Merged ICEdata) ▷ Averages the ICE data across

all the instances with the given cluster label

32: return ICE dataframe

33: end procedure



152

Appendix B

Crystal Chemistry of RE2Si2O7

B.1 Total energy difference of RE2Si2O7 from DFT

Table B.1: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in, where Space groups given in parentheses indicate the final
converged structure when the tolerance is set at 0.0001 or lower in FINDSYM [157].

Space Group
∆E (meV/atom)

Dy2Si2O7 Eu2Si2O7 Ho2Si2O7 Lu2Si2O7 Tm2Si2O7 Sc2Si2O7 Er2Si2O7 Tb2Si2O7

C2/m (β) 0.00 143.66 0.00 0.00 0.00 0.00 0.00 0.00

Pnma (δ) 11.53 146.69(P 1̄) 16.10 34.01 24.92 69.06 20.21 6.79
P21/c (η) 33.53 96.23 43.01 80.45 61.40 57.99 51.87 23.71
P 1̄ (α) 14.26 0.00 20.22 41.03 31.12 60.97 51.55 (P21/c) 7.88

P21/c (G) 14.25 (P 1̄) 92.27 (P 1̄) 20.22 (P 1̄) 41.03 (P 1̄) 31.12 (P 1̄) 60.96 (P 1̄) 25.50 (P 1̄) 7.90 (P 1̄)
P21/c (γ) 2.17 139.92 2.54 3.78 3.19 5.27 2.84 1.75
P41 (A) 29.58 73.70 38.50 72.51 55.73 122.94 46.54 20.34
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Appendix C

RE Silicate Apatites

C.1 Correlation analysis of polyhedral descriptor

set

The linear Pearson correlation coefficient (PCC) was then used to perform the pair-

wise statistical correlation analysis[213]. The inputs for the correlation analysis are

the 25 descriptors (24 polyhedral descriptors and formation energy) extracted from

the DFT optimized structures. The correlation plot is shown in Figure C.1, which

indicates that most of the descriptors show strong statistical correlation and hence

carry redundant information. We removed redundancy by only considering pairs

whose PCC was less than 0.7. From a total of 25 descriptors, we down-selected only

7 descriptors as inputs for ML model building. They include: Si avg bond length,

Si poly volume, RE avg bond length, AK avg bond length, RE avg bond length sd,

Si bondangle var and form Energy.
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Figure C.1: Pair-wise statistical correlation analysis for the training data used for the
holistic CTE model. Dark red and dark blue indicate strong positive and negative
correlation, respectively. We remove redundancy by only considering variables whose
PCC was less than 0.7 for building ML models.

C.2 DFT total energy data of RE silicate apatites
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Figure C.2: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE8AE2Si6O26 for AE=Ba,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.3: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE8AE2Si6O26 for AE=Be,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.4: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE8AE2Si6O26 for AE=Sr,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.5: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE8AE2Si6O26 for AE=Ca,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.6: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE8AE2Si6O26 for AE=Mg,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.7: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE9A1Si6O26 for A=Cs,where space groups given in paren-
theses indicate the final converged structure when the tolerance is set at 0.0001 or
lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.8: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE9A1Si6O26 for A=K,where space groups given in paren-
theses indicate the final converged structure when the tolerance is set at 0.0001 or
lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.9: Total energy difference, in from DFT calculations with respect to the
lowest energy structure in RE9A1Si6O26 for A=Li,where space groups given in paren-
theses indicate the final converged structure when the tolerance is set at 0.0001 or
lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.10: Total energy difference, in from DFT calculations with respect to
the lowest energy structure in RE9A1Si6O26 for A=Na,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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Figure C.11: Total energy difference, in from DFT calculations with respect to
the lowest energy structure in RE9A1Si6O26 for A=Rb,where space groups given in
parentheses indicate the final converged structure when the tolerance is set at 0.0001
or lower in FINDSYM. ∆E=0 signifies the ground structure. When ∆E is within a
range of approximately 5 meV/atom, it suggests a close energetic competition with
the ground state structure.
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orbital Bandwidth and Coefficient of Thermal Expansion Anisotropy in RE2SiO5

Compounds (RE=Sc,Y,La).” AIP Advances, 12(4), 045012, (2022).

Contribution: DFT paper. I contributed to the problem formulation, DFT calculation,

analysis of the results, and writing of the manuscript

2. Mukil V. Ayyasamy, Jereon A. Deijkers, Haydn NG. Wadley, Prasanna V.

Balachandran, “Density functional theory and machine learning guided search

for RE2Si2O7 with targeted coefficient of thermal expansion.” Journal of the

American Ceramic Society, 103, 4489-4497 (2021).

Contribution: DFT + ML + Experimental paper. I contributed to the problem formu-

lation, DFT calculation, ML, analysis of the results, and writing of the manuscript.

Model explanation (ME)

1. Kyungtae Lee, Mukil Ayyasamy, Paige Delsa, Timothy Q. Hartnett, and

Prasanna V. Balachandran. “Phase Classification of Multi-Principal Element

Alloys via Interpretable Machine Learning.”npj Comput Mater, 8, 25 (2022).
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Contribution: ML paper. I contributed towards the conceptualization and development

of the interpretable or explainable ML algorithm used in the paper.

2. Kyungtae Lee, Mukil Ayyasamy, and Prasanna V. Balachandran. “A Com-

parison of Explainable Artificial Intelligence Methods in the Phase Classification

of Multi-Principal Element Alloys.” manuscript in prepraration (2022).

Contribution: ML paper. I contributed towards the conceptualization and development

of the interpretable or explainable ML algorithm used in the paper.

Miscellaneous

1. Timothy Q. Hartnett, Mukil V. Ayyasamy, and Prasanna V. Balachandran,

“Prediction of New Iodine-containing Apatites using Machine Learning and

Density Functional Theory.” MRS Communications 9, 882-890 (2019).

Contribution: DFT + Machine learning paper. Tim and I equally contributed to

this paper. I was responsible for for the construction of one of the two classification

algorithms, and equal portions of the DFT calculated formation energies. Writing was

equally shared between Tim and myself.

2. Jon F Ihlefeld, Ting S Luk, Sean W Smith, Shelby S Fields, Samantha T

Jaszewski, Daniel M Hirt, Will T Riffe, Scott Bender, Costel Constantin, Mukil

V. Ayyasamy, Prasanna V. Balachandran, Ping Lu, M David Henry, Paul S

Davids,“Compositional dependence of linear and nonlinear optical response in

crystalline hafnium zirconium oxide thin films.” Journal of Applied Physics

128, 034101 (2019).

Contribution: Experimental + DFT paper. I performed DFT calculations and calcu-

lated the band structures data.
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