
1 

 

Examining the Current Decision-Making Capabilities of Self-Driving Systems 

 

 

 

 

 

 

 

 

A Research Paper submitted to the Department of Engineering and Society 

 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

 

Minh Nguyen 

Spring 2024 

 

 

 

 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 

assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

 

 

Advisor 

Joshua Earle, Department of Engineering and Society 



2 

 

Introduction: 

 

The automotive industry stands on the brink of a transformative revolution, with self- 

driving systems emerging as the focal point of innovation. These autonomous systems promise to 

enhance road safety, reduce traffic congestion, and provide greater mobility to individuals with 

disabilities, among numerous other benefits. Currently, the leading cause of death in the United 

States for those aged 1-54 is from traffic incidents (CDC, 2023). Additionally, 94% of accidents 

recorded by the National Motor Vehicle Crash Causation Survey (NMVCCS) were caused due to 

driver error (Singh, 2018). This illustrates a clear need for improvement, in terms of safety, in the 

world of automobiles. Advocates of autonomous vehicles (AVs) contend that this technology 

holds the potential to render our roads safer and cleaner compared to our current transportation 

systems. As we stand on the cusp of this autonomous revolution, it is imperative to examine the 

current decision-making capabilities of self-driving systems critically to ensure the complete 

safety of these vehicles. 

In this paper, I argue that while Avs hold immense potential to enhance road safety and 

reduce environmental harm, their widespread adoption necessitates a nuanced understanding of 

their capabilities, limitations, and societal implications. By examining the complex interplay 

between technology, human behavior, and regulatory frameworks, this paper seeks to provide a 

comprehensive analysis of the promises and challenges inherent in the integration of autonomous 

systems into our transportation infrastructure. In subsequent sections, this paper will delve into 

the technological advancements driving the development of Avs, examining their potential to 

revolutionize transportation systems and reshape urban landscapes. Furthermore, it will explore 

the ethical and regulatory considerations surrounding autonomous driving, including questions of 
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liability, privacy, and equity. To help with this, the Actor-Network Theory (ANT) Framework 

will be used in the analysis of autonomous vehicles. 

The section on “Research Methods” outlines the methodologies utilized and the types of 

sources that are relevant to the research. Following this, the “Current Capabilities of Self-Driving 

Vehicles” section provides an in-depth analysis of the present capabilities of autonomous 

vehicles, evaluating their performance across various driving scenarios and their adherence to 

safety standards. The section after applies the ANT framework to the topic by examining the key 

actors, networks, and controversies involved. This will allow for a deeper understanding of the 

complexities inherent in the advancement of autonomous technology. From there, a detailed case 

study of Uber’s autonomous vehicle accident is presented, offering real-world insights into the 

challenges and ethical dilemmas associated with autonomous driving. Through this structured 

examination, this paper aims to provide a comprehensive evaluation of autonomous driving 

technology while fostering informed dialogue on the future of transportation in an increasingly 

automated world. 

Research Methods: 

 

The current state of autonomous vehicles can be analyzed through the lens of Actor- 

Network Theory, which views technology not as an isolated entity, but as a part of complex 

networks involving human and non-human actors (Cresswell et al., 2010). In the context of 

autonomous vehicles, these actors encompass not only the technology itself—but also the 

workers, regulators, and the broader socio-cultural and institutional environments in which they 

operate. Central to ANT is the concept of obligatory passage points (Rydin, 2012), which denote 

crucial junctures where the network’s stability and direction are determined. Utilizing ANT, I aim 

to employ network mapping to visualize the intricate relationships and interactions between the 
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actors involved in the production and advancement of self-driving vehicles. This involves 

identifying human actors such as developers, regulators, and users, as well as non-human actors 

such as algorithms, sensors, and the vehicles themselves. By analyzing the relationships between 

these actors, including dependencies, conflicts, and alliances, I hope to gain a better 

understanding of the network dynamics. Furthermore, I plan to examine controversies and 

stabilization processes within the network, including looking at potential points of conflict and 

how all actors work to resolve them. To tie everything together, I also want to investigate 

translation processes, examining how information and intentions are shared among actors, 

influencing decision outcomes. This will help me understand how decisions are made within the 

network and how they impact the development and deployment of self-driving systems. 

To examine the current decision-making capabilities of self-driving systems, I will 

employ a mixed-methods approach involving both qualitative and quantitative data collection 

and analysis methods. To begin, I plan to access relevant documents, technical specifications, 

and literature related to self-driving systems through online databases, academic journals, 

regulatory websites, and technical reports. Specific sources may include journals such as the 

Journal of Autonomous Vehicles and Systems, technical reports from organizations like the 

National Highway Traffic Safety Administration (NHTSA), and regulatory guidelines from 

entities like the Society of Automotive Engineers (SAE). Synthesizing and interpreting this 

literature provides a comprehensive understanding of the evolving landscape of autonomous 

vehicles and the factors influencing the decision-making processes. Subsequently, I aim to 

conduct a case study from an incident involving Uber’s self-driving cars to get a better picture of 

how all the actors involved in autonomous vehicle technology interact with each other in a real- 
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life scenario. This can help me gain valuable insights into the ethical, legal, regulatory, 

technological, and societal dimensions of autonomous vehicle technology. 

The methodology represents a pioneering effort to bridge the gap between technology 

and society as the research community embarks on a journey of exploration and discovery within 

the realm of autonomous technologies. Through the lens of ANT and the prism of online 

research, I aim to uncover the decision-making capabilities within self-driving systems, paving 

the way for a more informed and nuanced understanding of our technological future. 

Current Capabilities of Self-Driving Systems: 

 

Background 

 

The landscape of autonomous driving technology has been rapidly evolving in recent 

years, with various companies and researchers around the world working tirelessly to advance 

the capabilities of self-driving cars. However, determining the current state of autonomous 

driving is a challenging task, primarily due to the conflicting and often sensationalized 

information presented by the media. To help with this, SAE International has defined six levels 

of driving automation to help track the progress of self-driving development (USEPA, 2023). 

The levels are defined as: 

• Level 0 – The car has no driving automation. The driver is always in full control of the 

car, although the car might have the ability to send safety warnings. 

• Level 1 – The car has driver assistance. This means that the car can control either the 

speed or steering, but not at the same time. Examples include adaptive cruise control and 

lane assist technology. 
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• Level 2 – The car can control both speed and steering, but only in certain conditions. This 

includes when the car is in slow-speed situations, such as parking assistance. 

• Level 3 – The car has “conditional automation” capabilities. The car can control the 

speed and steering, as well as monitor its surroundings. The driver still needs to be 

paying full attention while behind the wheel (ex. Traffic Jam Assist) 

• Level 4 – The car is highly automated and can self-drive in normal conditions. Human 

drivers will need to take over in uncertain circumstances such as extreme weather. 

• Level 5 – The car is fully automated. The car can drive itself in all conditions. 

 

Currently, self-driving systems level 3 and below are widely produced, with level 4 

systems gradually developing (Wang et al, 2021). Nonetheless, developing level 4 and level 5 

systems presents a much greater challenge than the first three levels. So far, the decision-making 

capacity of self-driving systems has been based on scenario-driven and task-driven approaches 

that enable the car to perform specific tasks without the need for human intervention (Ulbrich et 

al, 2017). However, this method of development fails to achieve the ultimate goal of producing 

fully automated cars. The current scenario-driven concept means that manufacturers would have 

to come up with an infinite number of scenarios to achieve a fully automated car. 

Development of Robotaxis 

 

In the effort for full automation, level-4 robotaxis have emerged as a pioneering 

application of autonomous vehicle technology, particularly in urban environments worldwide. 

Focusing more on the United States; Waymo, Cruise, and Motional are the companies 

spearheading the development and deployment of these robotaxis—leveraging advanced sensors, 

machine learning algorithms, and high-definition mapping to attempt to navigate complex cities 
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safely (Schneider, 2023). Currently, there are five cities in the United States where people can 

take a fully operational robotaxi: San Francisco, Phoenix, Los Angeles, and Las Vegas (Yang, 

2024). Dozens of other cities in the US are currently testing their own robotaxi system using 

level-4 self-driving technology. 

Despite all this promise, there have been recent setbacks for autonomous vehicles with 

General Motors’ Cruise having to recall 950 of its robotaxis following a pedestrian collision in 

San Francisco occurring on October 2nd, 2023 (Kolodny, 2023). This callback underscores the 

ongoing challenges and limitations facing autonomous driving technology, emphasizing that full 

safety and reliability have yet to be achieved. Despite the extensive testing and development 

efforts, incidents and technical issues persist, highlighting the complexity of navigating dynamic 

urban environments. Cruise’s collision has not been the only cause of backlash as Waymo, Zoox, 

and Mercedes Benz have also had their share of controversies including collisions and protests. 

In just the state of California, there have been a total of 687 collisions from autonomous vehicles 

(California DMV, 2024). While these incidents emphasize the importance of rigorous testing, 

validation, and continuous refinement of autonomous systems, they also serve as valuable 

learning opportunities to enhance the safety and performance of self-driving technology. 

China has also emerged as a leader in the pursuit of producing fully automated vehicles 

with companies Baidu and Pony.ai leading the front. Similarly to the United States, these 

companies have also started to launch robotaxis in major Chinese cities such as Beijing, 

Shanghai, Guangzhou, etc (Cheng, 2023). Baidu through its Apollo program has made 

significant strides in developing autonomous driving technology and fostering collaboration 

within the industry. The Apollo program has facilitated partnerships with automakers, technology 

companies, and government agencies, accelerating the deployment of self-driving vehicles in 
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various cities across China. Additionally, based on a survey of Chinese residents, the reception of 

these autonomous vehicles has also been more positive compared to the US, with positive levels 

of perceived usefulness and perceived ease of use (Liu et al, 2020) 

These level-4 robotaxis represent a significant milestone in the evolution of autonomous 

mobility, marking the transition from research and development to real-world applications in 

urban settings. While autonomous driving holds promise for the future of mobility, the recent 

Cruise recalls, as well as the regularly occurring collisions, serve as a reminder of the work that 

remains to be done to achieve widespread adoption and public trust. As the industry continues to 

innovate and iterate, addressing these challenges and mitigating future risks will be paramount to 

realizing the full potential of autonomous vehicles and ensuring their safe integration into 

everyday transportation networks. 

Application of ANT Framework to Autonomous Vehicles 

 

In this rapidly evolving landscape of autonomous vehicle technology, the assessment of 

decision-making capabilities within self-driving cars stands as a pivotal focus of research and 

scrutiny. As stated earlier, ANT provides a compelling lens through which to analyze the intricate 

network of self-driving systems, emphasizing the agency and interdependencies of both human 

and non-human elements. 

Human Actors 

 

To start, researchers and engineers are actively involved in studying and developing the 

decision-making algorithms and systems within self-driving cars Their expertise in machine 

learning, artificial intelligence, and robotics contributes to the refinement and improvement of 

these capabilities. They conduct experiments, analyze data, and develop new algorithms to 
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enhance the decision-making process of autonomous vehicles (Ahmed, 2018). Additionally, 

government agencies and policymakers play a crucial role in shaping the regulatory landscape 

surrounding autonomous cars. They develop guidelines, standards, and regulations that govern 

the testing, deployment, and operation of autonomous vehicles. The United States Department of 

Transportation (USDOT) has developed an “Automated Vehicles Comprehensive Plan” which 

defines three goals to achieve the USDOT’s vision for Automated Driving Systems (ADS) 

(USDOT, 2021). Next, ethicists also play a role in the network. They engage in discussions about 

the moral and ethical considerations inherent in self-driving car decision-making. They explore 

questions related to liability, accountability, and the ethical dilemmas faced by autonomous 

vehicles in various scenarios. In general, they work to figure out what to prioritize when it comes 

to ensuring the safety of the public (Nyholm & Smids, 2016). Lastly, human drivers and 

pedestrians remain active participants in the transportation ecosystem. Their behaviors, reactions, 

and interactions with autonomous vehicles shape the development and testing of decision- 

making algorithms. Understanding human factors is crucial for designing algorithms that can 

anticipate and respond to unpredictable situations on the road. 

Non-human actors 

 

At the core of the autonomous vehicle ecosystem are the self-driving cars themselves. 

 

Firstly, the decision-making capabilities of autonomous vehicles rely heavily on software 

algorithms. These algorithms interpret sensor data process information, and generate commands 

for vehicle control, including steering, acceleration, and braking. The development and 

refinement of these algorithms are crucial for enhancing the safety, efficiency, and reliability of 

autonomous vehicles (Levinson et al, 2011). Next, sensor technologies such as lidar, radar, 

cameras, ultrasonic sensors, and GPS enable self-driving cars to perceive their surroundings and 
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gather real-time data about the environment. Lidar (light detection and ranging) sensors emit 

laser pulses and measure the time it takes for the pulses to return after reflecting off objects in the 

environment. This is particularly effective for detecting obstacles, identifying lane markings, and 

mapping the surrounding terrain. Radar (radio detection and ranging) sensors use radio waves to 

detect objects and measure their distance, speed, and direction of travel. This is useful in adverse 

weather conditions such as rain, fog, and snow, where visibility may be limited for other sensor 

technologies. There are also cameras that capture visual information from the surrounding 

environment including road signs, traffic lights, pedestrians, and other vehicles. Combining this 

with deep learning algorithms allows the car to identify and classify objects, recognize road 

markings, and interpret complex traffic scenarios (Marti et al, 2019). 

In addition to the technical non-human factors, the self-driving car network includes 

regulatory frameworks and infrastructure elements. Regulatory frameworks established by 

government agencies and policymakers govern the development, testing, deployment, and 

operation of self-driving cars. These regulations define safety standards, licensing requirements, 

and liability frameworks for AVs. In the United States, there are both federal and state actions 

that have taken place dealing with laws related to self-driving vehicles (NCSL, 2020). Lastly, 

infrastructure elements such as traffic lights, signs, road markings, and communication systems 

interact with self-driving cars and influence their decision-making processes. Connected 

infrastructure technologies enable vehicle-to-infrastructure (V2I) communication, providing 

additional information and enhancing the capabilities of autonomous vehicles in navigating 

complex environments (Dey et al, 2016). 

Interaction of Actors 
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Self-driving cars operate within socio-technical networks characterized by dynamic 

relationships and dependencies among human and non-human actors. The human and non- 

human actors described in the sections above engage in interactions that shape the design, 

testing, and evaluation of the decision-making capabilities of autonomous vehicles. For example, 

manufacturers collaborate with researchers and engineers to develop and optimize decision- 

making algorithms. Regulators and policymakers work alongside industry stakeholders to 

establish safety standards, certification processes, and legal frameworks governing autonomous 

vehicle technology. We can see these relationships further in a case study of an incident 

involving Uber’s autonomous vehicle program. 

Case Study: Uber’s Autonomous Vehicle Incident 

 

Background on Incident 

 

On March 18th, 2018, an Uber self-driving taxi struck and killed a pedestrian in Tempe, 

Arizona, prompting significant scrutiny of the safety and efficacy of autonomous vehicle 

technology. The subsequent investigation by the National Transportation Safety Board (NTSB) 

not only highlighted the technical failures, but also revealed complex interactions and power 

dynamics within the autonomous vehicle network. The incident also exposed gaps in Uber’s 

safety culture, revealing a network where internal milestones and initiatives took precedence 

over safety considerations (NTSB, 2019). 

At the heart of the incident was the Uber backup driver who failed to effectively monitor 

the road and the automated driving system, leading to the tragic outcome. The backup driver 

pleaded guilty to endangerment and was sentenced to three years of supervised probation (CNN, 

2020). There was also further investigation into the technical failures and sensor limitations that 
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may have contributed to the accident. Research was conducted into the effectiveness of Uber’s 

sensor suite, including lidar, radar, and cameras, in detecting and responding to pedestrian 

movements and other objects on the road. According to the NTSB report, the system detected an 

object six seconds prior to the crash; however, the system first classified the pedestrian as an 

unknown object, then as a vehicle, then lastly as a bicycle. Due to the variability of the 

classification, the predicted path of the pedestrian was faulty, and it was not until 1.3 seconds 

before the collision that the system determined that emergency braking was necessary. However, 

the emergency braking was designed so that only the operator could use it, so the car was unable 

to slow down, going 39 miles per hour when it ran into the pedestrian. The accident occurred at 

nighttime, which could have impacted the performance of the sensors; although, Uber reported 

that the radar and lidar technology were effective at identifying, especially in the darkness (Kohli 

& Chadha, 2019). 

In the aftermath, Uber ceased testing of its self-driving vehicles to examine the safety 

concerns and reevaluate their autonomous vehicle program. This decision to suspend testing was 

aimed at ensuring the safety of pedestrians, cyclists, and other road users while the company 

conducted a thorough investigation into the incident (Said, 2018). It was not until the end of 

2018 that Uber resumed its testing of autonomous vehicles. Unfortunately for Uber, the damage 

was done with the accident as their autonomous vehicle program was never able to get back on 

its feet. In a later report made by the National Transportation Safety Board (NTSB), it was said 

that Uber’s “inadequate safety culture” contributed to the fatal collision. The NTSB Chairman, 

Robert Sumwalt, stated “Safety starts at the top, the collision was the last link of a long chain of 

actions and decisions made by an organization that unfortunately did not make safety the top 

priority” (NTSB, 2019). The report exposed Uber’s tendency to take safety shortcuts to fulfill 
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internal milestones and initiatives. Ultimately, Uber discontinued its autonomous vehicle 

program in 2020 as they were never able to regain their footing after the tragic incident. 

Applying Actor-Network Theory (ANT) Uber’s Incident 

 

Human actors are at the forefront of the incident. Developers, represented by Uber, aim to 

advance autonomous vehicle technology for commercial purposes, driven by the promise of 

innovation and profit. This includes engineers, data scientists, and investors, who contribute 

expertise and resources to develop and deploy self-driving vehicles. Regulatory and 

policymaking entities, such as the NTSB and local transportation authorities, serve as critical 

actors in the network, advocating for safety, accountability, and public welfare. They try to 

enforce the adherence to safety standards, certification processes, and liability frameworks to 

ensure the safe integration of self-driving cars into society. There are also ethicists and advocacy 

groups that highlight ethical considerations and raise awareness about the potential risks and 

implications of autonomous vehicles. They attempt to push for greater transparency, 

accountability, and ethical decision-making in the development of self-driving technology. 

Beyond human actors, non-human elements such as sensor technologies, machine 

learning algorithms, and software systems play an important role in shaping decision-making 

processes within autonomous vehicles. Lidar, radar, cameras, and other sensors serve as the 

sensory organs of self-driving cars. However, they may encounter limitations in accurately 

detecting and responding to dynamic environmental stimuli, as evidenced by the 

misclassification of the pedestrian in the Uber incident. Machine learning algorithms also 

contribute to the decision-making capabilities of self-driving cars, processing sensor data and 

generating commands for vehicle control. Yet, the effectiveness of these algorithms relies on 
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extensive training data and ongoing refinement, posing challenges in anticipating and responding 

to novel or unforeseen scenarios on the road. 

The Uber incident exemplified how all the actors described can interact with each other 

and their power dynamics. While developers sought to innovate and commercialize autonomous 

vehicle technology, regulators advocated for safety and accountability, resisting unchecked 

advancement. In the aftermath of the incident, regulatory networks like the NTSB asserted their 

influence by demanding transparency from Uber. The NTSB’s investigation and subsequent 

reports shed light on Uber’s safety shortcomings, exposing a network characterized by 

insufficient monitoring of backup drivers and inadequate risk assessment procedures. This 

scrutiny prompted Uber to suspend testing and reevaluate its autonomous vehicle program. 

Discussion: 

 

The development and integration of AVs has presented many challenges and 

opportunities, demanding careful consideration of regulatory frameworks, technological 

advancements, and societal implications. While the landscape of AVs is marked by innovation 

and promise, it is also filled with complexities and uncertainties, requiring proactive measures to 

ensure safety, accountability, and public trust. Amidst all the complexities, it is imperative to 

recognize that safety should be paramount. The incidents involving Cruise and Uber underscore 

the need for stringent regulatory oversight and safety standards that mitigate risks and protect 

public welfare. However, regulatory efforts should strike a balance between fostering innovation 

and safeguarding against potential harms, avoiding overly restrictive policies that limit 

technological progress. 
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To address the challenges posed by AVs, policymakers must develop comprehensive 

regulatory frameworks that define safety requirements, certification processes, and liability 

frameworks. These regulations should be adaptable to evolving technological advancements 

while making sure developers are accountable for safety standard violations. Policymakers 

should also incentivize collaborative research and development among industry leaders, 

academic institutions, and government agencies. As of right now, it feels like each party are 

working separately to see who achieves full automation first. As we can see from the case study, 

this can be counter-productive and lead to potential harm. By fostering interdisciplinary 

collaboration, we can have diverse viewpoints, which helps to address complex challenges in AV 

technology. Additionally, policymakers should invest in public education and engagement 

initiatives to increase awareness and understanding of self-driving technology. This can address 

public concerns and build public trust. If AVs are going to be a big part of our future, we should 

be educated on their capabilities and shortcomings. 

For the future, more research is needed to continue to advance technological innovations 

in AVs. Sensor technologies and decision-making algorithms have fallen short so far, leading to 

repeated incidents involving self-driving cars. By enhancing the reliability and robustness of 

these systems, researchers can minimize risks and enhance safety and autonomous 

transportation. Additionally, more research is also needed to improve public trust of AVs. The 

current perception from the public is a bit skeptical due to common collisions and accidents. 

Understanding user preferences and behaviors can inform the design and deployment of 

autonomous vehicles that align with user needs and expectations. 

Conclusion: 
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The emergence of autonomous vehicles promises a shift in the landscape of 

transportation by enhancing safety, efficiency, and accessibility. However, all this promise also 

comes with its challenges. The presence of incidents such as those from Uber and Cruise 

highlight the importance of stronger regulatory frameworks, tighter safety standards, and further 

research to address technological limitations and societal concerns. As we continue to navigate 

the complexities of self-driving vehicles, proactive measures are essential to ensure safety, 

accountability, and public trust. In conclusion, the journey towards fully autonomous 

transportation has provided hope for transformative innovation but has also proven to be 

problematic. However, by leveraging interdisciplinary insights, embracing ethical considerations, 

and prioritizing public welfare, instead of chasing profit, we can harness the potential of 

autonomous vehicles to create a safer, more sustainable future of mobility for all. 
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