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Abstract 

Skeletal muscle plasticity – the ability to adapt both structure and function in response to stimuli 

– is integral to physical activity and necessary for human health. Muscle adaptation enables both 

hypertrophy through exercise as well as recovery from injury. On the tissue level, adaptation is driven by 

cellular dynamics that dramatically alter the muscle composition. This is particularly true in the case of 

muscle regeneration, where damaged tissue must be removed before muscle fibers can regrow. The 

concurrent and interconnected collaboration of inflammatory cells (neutrophils and macrophages) and 

native muscle cells (fibroblasts, satellite stem cells, muscle fibers, and endothelial cells) during 

regeneration is vital for recovery of muscle health and function. 

My dissertation investigates muscle adaptation through the development of novel agent-based 

models (ABMs). This computational modeling platform is well suited for simulating the stochastic 

behaviors of cells, such as proliferation, apoptosis, protein secretion, and migration. My first ABM 

focuses on disuse-induced muscle atrophy. I constructed and tuned the model using literature-derived 

experimental data, and simulated 4-week long atrophy across 49 different muscles. The ABM also 

predicted that fibroblast secretion of TNF-α can exacerbate disuse-induced atrophy. Next, I extended 

the ABM to simulate muscle injury and regeneration. After incorporating additional rules to describe the 

behaviors of inflammatory cells and satellite stem cells, I utilized genetic algorithms to calibrate the 

model to experimental data. In addition to recapitulating the effects of modulating inflammation (i.e. 

macrophage knockdown experiments), my ABM was capable of predicting the timing and efficacy of a 

pharmacological treatment aimed at accelerating muscle regeneration. I then used the ABM’s 

predictions to design an in vivo experiment in which muscle regeneration was manipulated using 

macrophage colony stimulating factor (M-CSF). As was seen in silico, M-CSF injections accelerated 

regeneration following muscle laceration, validating the ABM’s predictions. 
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In sum, these ABMs of muscle adaptation have provided insight into cellular interactions during 

muscle atrophy, explored the dynamics of inflammation in muscle regeneration, and generated a novel 

hypothesis that was confirmed through in vivo experiments. Future extensions of my ABMs could be 

integrated into finite-element computational models, allowing for multi-mechanism (biological and 

mechanical) predictions of functional and structural muscle adaptation. Furthermore, continuation of 

my ABMs could provide a platform for evaluating therapies to beneficially affect muscle adaptation 

during surgical recovery, aging, or disease. 
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Chapter 1 

 

1.1 Overview 

One of the most important aspects of skeletal muscles is its plasticity, or ability to change and 

adapt in response to stimuli. It is crucial for these well-studied, force-generating organs to rapidly alter 

their shape, size, and structure in response to novel stimuli. In the most intuitive of examples, our 

muscles hypertrophy with increased activity and atrophy with decreased activity; a basic principle that 

most people have experienced through exercise. However, there are also numerous diseases and 

disorders that can lead to muscle maladaptation, such as Duchenne muscular dystrophy or spasticity. 

And these maladaptations have severe consequences on skeletal muscle function, such as impaired 

locomotion and metabolism dysregulation. Being able to predict how and why various stimuli generate 

muscle adaptation would allow us to create and test treatments for adaptations that have deleterious 

functional consequences.  

Muscle adaptation and remodeling occurs on the tissue level and involves numerous cells and 

structures. In a healthy case, muscle fibers are arranged in bundles, or fascicles, where each fiber and 

each bundle being surrounded my ECM (endomysium and perimysium, respectively). The ECM is where 

fibroblasts, nerves, blood vessels, and lymphatics reside. The composition of the muscle can alter 

drastically upon stimulation. A stimulus such as exercise can result in adaptation where whole muscle 

enlargement is generated by muscle fiber hypertrophy. Exercise also adjusts the fiber type composition, 
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increases vascular density, and alters neural activity. When muscle is damaged through injury, muscle 

tissue becomes transiently filled with cellular debris and inflammatory cells (neutrophils and 

macrophages) as the muscle recovers. Satellite stem cells, the muscle resident progenitor cell, are also 

activated and contribute to the regeneration process. Muscles can also become fibrotic and/or fatty in 

many diseases, including Duchenne muscular dystrophy and diabetes. Since muscle adaptations (both 

positive and negative) are driven by tissue level cellular interactions, I focused my research on 

understanding how muscles respond to specific stimuli at the tissue level. 

Computational modeling offers the ability to amalgamate known information for testing current 

and novel hypotheses, thereby being an ideal medium for predicting muscle adaptation. Historically, 

computational models of muscle have focused on predicting and exploring the mechanics of force 

generation. While spanning from protein interactions to whole body dynamics, these models often 

evaluate muscle at a single time point. However, as stated above, muscle structure changes over time 

due to stimuli. Therefore, I developed a modeling framework that could simulate numerous cells as they 

interacted and changed over time. I chose agent-based modeling (ABM) as my approach for simulating 

muscle adaptation. In ABMs, autonomous agents are assigned rules that govern their behaviors and 

interactions with each other and the environment. ABMs are well suited for cellular behaviors, such as 

apoptosis, migration, proliferation, and protein secretions. While there are numerous ABMs of cellular 

systems, including wound healing, angiogenesis, and inflammation, my work has generated the first 

ABM of muscle adaptation. 

Herein, I present my work on predicting cellular interactions and tissue level dynamics of muscle 

adaptation through a combination of modeling and in vivo experimentation. In Chapter 2, I use an ABM 

of muscle adaptation to explore how all limb skeletal muscle respond to disuse atrophy (i.e. removal of 

mechanical stimulation). The ABM incorporates simulated muscle fibers and fibroblasts, whose 
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behaviors and interactions were prescribed through an extensive literature review.  I developed an 

equation to mimic the rate of muscle atrophy observed in classic muscle disuse experiments. To validate 

my model, I parameterized my model to published experimental data. Sensitivity analyses were used to 

explore the influence of fibroblast secretions on fiber size during muscle atrophy. By focusing on 

fibroblasts, I elucidated the possible role non-fiber cells play during disuse-induced atrophy. Chapter 2 

formed the basis of a journal article that has already been published in the Journal of Applied 

Physiology. 

Chapter 3 extends my model to simulate muscle injury and inflammation. By providing context 

on current and historical muscle modeling, I outline the impetus for generating muscle adaptation 

models. Furthermore, this chapter reviews the inflammation process following injury. I focus specifically 

on the neutrophil and macrophage dynamics, and describe how they are incorporated into my ABM. I 

also explain how genetic algorithms, a powerful tool for optimizing unknown parameters, are used to 

identify a parameter set for muscle inflammatory cells that mimics experimental data. Chapter 3 formed 

the basis of a journal article that has been conditionally accepted in Cells, Tissues, and Organs. 

Chapter 4 presents a hypothesis driven rodent experiment engendered from my model 

predictions. One of the findings of my model was that the number of inflammatory cells present at the 

onset of injury affects muscle regeneration and satellite cell dynamics. Through the use of a rat muscle 

laceration model, I induced inflammation through injections of macrophage activating proteins. By 

comparing recovery from injury both with and without initial inflammation, I was able to evaluate the 

accuracy of my model predictions. I also used the inflammatory cell dynamics from my rodent 

experiment to further optimize and refine my ABM.  Chapter 4 will form the basis for a journal article 

that will be submitted to the journal Muscle and Nerve. 
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Lastly, in Chapter 5, I discuss my overarching goal of predicting muscle adaptation over time and 

how computational modeling has the potential to inform therapeutic strategies. Foremost, I examine my 

works’ position in the muscle modeling firmament. Continuing in that vein, I explore projects currently 

utilizing my models as well as propose how and why muscle ABMs could be linked to other models. For 

my final reflections, I describe the lessons I have learned and outline extensions and improvements for 

my models to further understand and probe muscle adaptation and remodeling. 

 

1.2 Background 

Muscle anatomy and microstructure 

 

Figure 1.1: The structure of muscle. From left to right, whole muscle is comprised of numerous fascicles. 
Each fascicle is a bundle of muscle fibers. The proteins in muscle fibers are arranged into myofibrils, 
which organize proteins vital for contraction, such as myosin and actin. Figure adapted from [1]. 

 

Skeletal muscles have highly organized cells and tissue structures. The predominant cell in 

muscle is the muscle fiber. These multi-nucleated cells generate force through numerous proteins, 

including actin and myosin (Figure 1.1). These proteins are grouped into myofibrils within a muscle fiber.  

Fibers are classified into types based on their contraction velocity, with the following twitch speeds 
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arranged from fastest to slowest: type IIb > type IIx > type IIa > type I  [2]. Fibers also differ in their 

metabolic abilities. Type I fibers favor oxidative phosphorylation, type IIb/x fibers favor glycolysis, and 

type IIa use a combination of both oxidative phosphorylation and glycolysis [2]. 

The hierarchical structure of muscle is easily observed when looking at successive transverse 

slices of muscle (Figure 1.1). Numerous myofibrils are contained within a muscle fiber. Each fiber is 

surrounded by extracellular matrix proteins (ECM) called the endomysium. Groups of fibers are bundled 

together in fascicles, and each fascicle is surrounded by another layer of ECM, the perimysium. 

Additionally, whole muscles and muscle groups are sheaved in connective tissue (epimysium and fascia). 

In a transverse view of muscle we can calculate an individual fiber’s cross sectional area (CSA) and 

observe the arrangement of fibers and ECM. With the help of staining techniques other aspects of fibers 

and muscle structure can be identified, such as the fiber type, nucleus placement, satellite stem cells, 

fibroblasts, blood vessels and nerves.  

Satellite stem cells are the muscle specific progenitor cells. They reside between the muscle 

fiber membrane and endomysium. These cells are quiescent during times of muscle homeostasis, but 

become activated during injury resulting from exercise or pathological conditions [3]–[6]. The details 

behind activation, proliferation, differentiation, and fusion to existing muscle fibers are extensive [7], [8] 

and will be discussed further in the muscle regeneration section. It is important to note that when 

activated, satellite cells secrete immunomodulation proteins and growth factors (such as VEGF and MCP 

– 1) that influence inflammatory cells in the regenerating muscle [9]. Additionally, many cells interact 

with satellite cells during regeneration, including fibroblasts, macrophages, and vascular cells [9]–[11].  

Chapters 3 and 4 discuss these behaviors and their incorporation into the ABM. 

The muscle fibroblast’s primary role is ECM maintenance. Through chemical and mechanical 

cues, muscle fibroblasts constantly remodel the ECM by 1) depositing ECM proteins such as various 
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collagens and fibronectin [12]–[14] and 2) secreting enzymes to digest structural proteins (matrix 

metalloproteinases or MMPs) [15], [16]. ECM turnover is critical for muscle adaptation, which enables 

cell migration and fiber reorganization [17]. In healthy muscle, this remodeling is low. Other cells can 

alter ECM turnover through interactions with fibroblasts or the ECM directly, as I will discuss in the 

muscle injury section. In addition to ECM maintenance, muscle fibroblasts produce factors (IGF-1, TGF-β, 

PDGF, TNF-α) which influence the muscle milieu by altering their own behavior, as well as the behavior 

of satellite stem cell and inflammatory [18]–[21]. A direct observation of this is their ability to modulate 

satellite stem cell behavior during regeneration [10]. Fibroblast influences on muscle atrophy can be 

found in Chapter 2. 

 

Muscle adaptation  

1) Atrophy 

Chapter 2 focuses on a specific type of muscle adaptation: atrophy. Numerous conditions can lead 

to muscle atrophy, such as nerve damage, cachexia, or age [22]–[25]. The conditions of interest for this 

dissertation hinge on reduced muscle activity, also called muscle disuse. Two of the prominent models 

for disuse atrophy include immobilization and unweighting (commonly accomplished through hindlimb 

suspension). While there are numerous differences in the muscle response of these two techniques [26], 

especially when looking at neuronal activity [27], [28], both model systems generate atrophy in rodents 

[29], [30] and humans [31], [32]. 

Reduced activity of muscle has revealed muscle specific responses to atrophy. Some muscles, 

like the tibialis anterior and extensor digitorum longus, appear unaffected by disuse whereas the soleus 

and gastrocnemius show dramatic reduction in CSA [30], [33]. Even muscles within the same group, such 

as the vastus lateralis, rectus femoris, and vastus medialis, have significant differences in atrophy during 
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immobilization [34]. A common hypothesis suggests that muscles primarily responsible for moving 

against gravity are more susceptible to reduced activity, meaning they experience more rapid reduction 

in muscle size given the same duration of disuse [35]–[37]. Similarly, muscles that are used (activated) 

more frequently and constantly prior to disuse experience more severe atrophy [38]. For instance, the 

soleus falls within both categories and is especially sensitive to disuse [39], [40] with fiber CSA 

reductions reaching as high as 70% in rodents [41]. 

Type I muscle fibers are more sensitive to disuse atrophy.  Within the aforementioned 

susceptible muscles, type I fibers atrophy to a greater extent than types IIa/b/x [30], [33], [41], [42]. 

Muscle fibers can also switch phenotype in response to disuse; similar to the fast to slow phenotype 

switching from endurance exercise [43]. During disuse the fiber type transformation flows from type 1 -> 

IIa -> IIx -> IIb [33], [44]. It has also been proposed that fibers have an “adaptive range”, suggesting that 

fibers have an intrinsic limitation to what types they can switch to during a stimulus [2]. Muscles that are 

not sensitive to disuse atrophy, like the extensor digitorum longus, do not experience this switch from 

slow to fast phenotype [33]. 

Muscle fiber size is driven by protein turnover. Similar to the ECM turnover mentioned above, 

muscle fibers are constantly replacing old or damaged proteins. This balance of protein content in a 

muscle is dictated by the rate of protein synthesis and protein degradation. For instance, hypertrophy 

occurs when synthesis is greater than degradation. During disuse, muscle fibers decrease protein 

synthesis (roughly 50%) within two days and synthesis remains low while the muscle is inactive [40], 

[45]. Concurrently, Protein degradation transiently elevates for approximately two weeks before 

dropping down to match the synthesis rate (around day 30) [45], [46]. Numerous studies suggest type 

IIb and IIx fibers have reduced protein synthesis and reduced protein degradation compared to type I or 
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IIa fibers under normal conditions [47], [48]. In Chapter 2 I use my agent-based model to explore how 

the fiber differences could account for variation in atrophy across muscles during disuse. 

 

2) Regeneration 

 

Figure 1.2: Cellular dynamics during muscle regeneration. Muscle regeneration requires the coordinated 
interactions of numerous cell types. Cells that have been incorporated into my ABMs are outlined in 
black. Figure adapted from [11]. 

 

Skeletal muscles rapidly adapt and remodel muscle injury. Numerous cell types and cellular events 

are orchestrated during muscle regeneration (Figure 1.2) [11], often leading to recovery that is 

indistinguishable from the native uninjured tissue. Muscle regeneration is considered to have three 

overlapping phases: destruction, repair, and remodeling [49]. While inflammation is sometimes assigned 
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its own phase [50], I consider the inflammation process integral to all phases of muscle regeneration. 

Since my modeling focuses on the first two phases of regeneration (Chapters 3 and 4), I will emphasize 

these early cellular dynamics while highlighting key muscle recovery milestones. 

 The destruction phase of regeneration starts with an initial insult that generates cell damage 

and/or death. Muscle damage is induced from a wide variety of stimuli: over stretching, surgical 

manipulation, excessive exercise, contusions, laceration, toxins, hypoxia, etc. [38]. In all of these cases, a 

portion of the fiber membrane ruptures. Since the fiber is a long multinucleated structure, they seal off 

areas of damage to limit necrosis propagating down the entire fiber [51]. The necrotic fiber sections and 

other injured cells release an array of molecules known as the damage-associated molecular pattern 

(DAMP) [52], [53]. DAMPs are a large cohort of immune-active molecules, the most famous of them 

being high-mobility group box 1 and heat shock proteins [54], that are sensed by the local inflammatory 

cells via pattern recognition receptors [55]. These resident macrophages and neutrophils in turn release 

factors (such as IL-1 α/β and CXCL1) to recruit other inflammatory cells [55], thus beginning the 

inflammation cascade and second phase of regeneration. 

 The repair phase of regeneration is characterized by the removal of cellular debris (necrotic 

tissue) [56]. Neutrophils are the earliest recruited inflammatory cell. Their primary responsibility is 

phagocytosis of cellular debris [57]. Neutrophils are also active producers of numerous growth factors 

and cytokines [58]. These factors (IL-8 for example) allow for recruitment of more neutrophils [59], while 

other factors (TNF-α, MCP-1) promote the recruitment of macrophages (Figure 1.2) [57], [60]. Some of 

the secreted molecules (like TNF-α) have shown signaling capabilities in satellite stem cells, muscle 

fibers, and fibroblasts [61]–[63]. Even upon apoptosis, neutrophils are active in the inflammation 

microenvironment. Apoptotic neutrophils both deter neutrophil recruitment [64] and alter macrophage 

secretion patterns (from pro-inflammatory to anti-inflammatory) [64], [65].  
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 The next inflammatory cell to be recruited is the pro-inflammatory macrophage (also known as 

classically activated, M1, or ED1+ macrophages), appearing shortly after the neutrophils (both cells are 

recruited within 24 hours of injury). M1 macrophages phagocytose cellular debris and actively enhance 

their own recruitment [66]. Most apropos to muscle regeneration, M1 macrophages directly interact 

with activated satellite stem cells [9], thereby enhancing satellite cell survival in the inflamed tissue. 

Macrophages are also integral to proper vascular remodeling during regeneration [67], [68]. In addition, 

M1 macrophages play an active role in ECM remodeling by 1) secreting their own ECM proteinases [69]–

[71] and 2) directly altering fibroblast functions through secreted factors [72], [73]. Indeed, the 

suppression of macrophage recruitment during muscle injury can lead to disruption of regeneration and 

fibrosis [74].  

 Satellite cells are activated in response to injury [75]. While the mechanisms of satellite cell 

activation are poorly understood, satellite cells activate along the entire length of an injured fiber, even 

in regions that received no damage [76]. Both quiescent and activated satellite cells express the 

transcription factor Pax7 [8].  While there are numerous subpopulations of satellite cells [77], most 

follow a general path from activation to incorporation into muscle fibers. After activation, these cells 

migrate to the injury site and proliferate [75], [78], [79]. At this point, satellite stem cells are often 

referred to as myoblasts and can express Myf5 and/or MyoD in addition to being Pax7+ [80]. It is during 

this proliferative state that myoblasts have been observed interacting with M1 macrophages, and the 

secretions of M1 macrophages enhance myoblast proliferation [9], [81] with the added benefit of 

delaying differentiation [82]. Fibroblasts are also involved in activated satellite cell proliferation 

dynamics. Deletion of fibroblasts leads to decreased satellite cell populations during regeneration [10]. 

The peak of myoblast population usually occurs between days 5 to 7 post injury [11]. 
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 Myoblast differentiation begins their incorporation into injured fibers and can occur throughout 

the repair and remodeling phases of regeneration. Differentiation is marked by the down regulation of 

Pax7 and the up regulation of Myogenin and/or Myf6 [8], [83], [84]. Differentiated myoblasts can either 

directly join a muscle fibers, or fuse with themselves to form multinucleated myotubes before fusing 

with a fiber (for in depth reviews see [85], [86]). The extracellular signaling environment orchestrates 

the decision to differentiate. IL-4, IL-10, and IGF-1 all promote differentiation of myoblasts [87]–[89]. 

These factors are secreted by M2 macrophages and interactions between myoblasts and M2 

macrophages lead to enhanced differentiation and fusion [90]. 

Anti-inflammatory (M2) macrophages arise from M1 macrophages switching phenotype [91] as 

well as being actively recruited from the blood near the end of the repair phase. The M2 population 

often peaks between day 4 and 6 post injury [11], [66], [92] and persists into the remodeling phase [93]. 

While there are numerous subtypes of M2 macrophages (see [94]), M2s generally promote 

inflammation resolution and tissue organization. M2s enhance the differentiation (and to a lesser extent 

proliferation) of satellite cells thereby repairing damaged fibers. Many of the same molecular mediators 

of muscle repair (IL-4, IL-10) as well as numerous others (TGF-β, PGE2) inhibit pro-inflammatory 

molecule production by M1 macrophages (Figure 1.2) [95], [96]. Furthermore, growth factors like IGF-1 

and TGF-β modulate fibroblast behaviors by altering proliferation, increasing migration, and enhancing 

collagen production / ECM turnover [97]–[99]. IGF-1 is also a well-known stimulant of protein synthesis 

in muscle fibers [100]. 

 The remodeling phase of regeneration often overlaps with the repair phase. Remodeling 

involves the return (or attempt, depending on the severity of injury) of muscle to a healthy architecture 

[49], [101]. As mentioned above, myoblast and myotubes fuse to muscle fibers to restore muscle fiber 

form and function. Muscle fibers also branch out from the regenerating stump [51], [102]. RNA studies 
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of regeneration suggest that ECM reorganization is the dominant process during the remodeling phase 

of regeneration [103], likely due to the need to reduce/remove the scar tissue formed by inflammatory 

cells during the repair phase. It should be noted that the duration of the remodeling phase and extent of 

recovery depends on the injury. For example, studies utilizing toxin induced injuries show complete 

muscle recovery after 2 or 3 weeks [10], [91], [103], whereas muscle laceration results in lingering 

fibrosis and impaired muscle function after 4 weeks [104]–[106]. 

 

Muscle modeling 

 Models are a framework of rules for describing how or why a phenomenon occurs. Modeling is 

an vital part of scientific investigation; a powerful tool for integrating known information and propose 

mechanisms for how things work. Given this definition, one could say Charles Darwin developed a model 

of evolution from his observations, with natural selection being a purported mechanism. Many models 

utilize mathematical equations to describe and predict phenomenon, such as the Hodgkin – Huxley 

model of action potential propagation in nerves or the cross-bridge cycle model of muscle contraction. 

These models enable us to explain complex phenomenon based on many components and the 

interactions between the components. Computational modeling allows for the amalgamation of more 

components (data) and mechanisms while shortening the time needed to evaluate/run the model. 

Ultimately, muscle adaptation models are intended to answer the basic question: How does a 

muscle adapt in response to a stimulus? Sometimes, the stimuli are difficult to replicate experimentally, 

such as the effects of prolonged space flight on muscle function/size. Other times, the experiments are 

too complex to represent in vitro, and expensive (monetarily or number of animals needed) to perform 

in vivo. Therapeutic treatment to prevent cachexia is a perfect example of this. Finally, models are useful 
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for exploring diseases that have poor animal models, such as determining the efficacy of a drug 

treatment for Duchenne muscular dystrophy. 

Numerous skeletal muscle adaptation models have been developed over the past decade. These 

pioneering models have simulated the responses of muscle to different external stimuli, including: 

length changes, overload, immobilization, and disease [107]–[112]. In terms of spatial complexity, 

published models have ranged from simplified, one-dimensional growth laws to three-dimensional, 

anatomically-accurate finite element models. Regarding the biological complexity that they incorporate, 

published models range from phenomenological representations of muscle adaptation to mechanistic 

models of muscle degeneration and regeneration.  

 The most simplified computational models have explored muscle adaptation to external stimuli 

through one-dimensional phenomenological adaptation laws. For example, Tishya Wren created a 

mathematical model of strain-driven muscle and tendon lengthening and shortening [107]. The model 

used a singular growth rule where length changes in the musculotendinous unit were predicted from 

changes in average muscle length and minimum tendon strain. The model predicted muscle-tendon 

length changes observed in developing, healthy, and pathological situations. Similarly, one-dimensional 

stress-driven growth laws have been utilized to simulate increases in skeletal muscle volume due to 

overload [110], [112]. These models utilized one-dimensional frameworks to identify important 

overarching principles of muscle adaptation, but they did not explore the cellular and molecular factors 

that underpin adaptation.  

 Zöllner et al. built on this by developing a three-dimensional, anatomical skeletal model to 

predict the adaptive response to muscle length changes [109]. This model simulates the remodeling 

behaviors of sarcomeres during chronic stretch. Their continuum model used a one-dimensional, strain-

driven growth law in which the total stretch was a product of the reversible elastic stretch and 

irreversible growth stretch. The continuum model was then embedded into a nonlinear finite element 
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model to predict sarcomerogenesis, or the addition of sarcomeres [113], during mechanical stretch.  The 

addition of sarcomeres in series resulted in longitudinal muscle growth. Whereas Wren assumed that 

muscle lengthens at the muscle tendon junction, Zöllner’s three-dimensional model predicted that 

sarcomeres are predominantly added in elements closest to the tendon. Additionally, by demonstrating 

that multiple-step surgical lengthening has faster recovery compared to single-step muscle lengthening, 

this sarcomerogenesis model made predictions that are informative for designing therapeutic strategies.   

 Numerous groups have designed biologically focused computational models of muscle 

adaptation to analyze mechanisms of skeletal muscle degeneration and regeneration. For example, 

Jarrah et al. developed a model to investigate the effects of chronic inflammation on muscle damage 

and regeneration in mdx mice, a murine model of Duchenne muscular dystrophy [111]. Using a system 

of ordinary differential equations, Jarrah et al. simulated cyclic muscle damage and inflammation over a 

sixty-week period. Their model predicted that inflammation cycling was sensitive to both the damage-

driven proliferation rate of CD4+ T cells and the rate of recovery of damaged fibers. Furthermore, 

depletion of immune cells resulted in increased numbers of normal muscle fibers, a finding that has also 

been reported in the literature [114]. By incorporating the time-course of inflammatory cell behaviors, 

this computational model of muscle generated insights about specific therapeutic targets that can guide 

experiments for studying muscle injury and degenerative diseases.  

 

Agent-based modeling 

Agent-based modeling is a computational approach that simulates the emergent outcomes that 

arise from the unique behaviors of autonomous individuals and their interactions with one another. The 

“individuals” modeled are often on the organism level, such as human social dynamics or ecology [115]–

[117]. Transitioning scales, ABMs are particularly powerful tool for representing discrete stochastic 

biological processes [118], such as cells interacting with each other and responding to environmental 
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cues within a tissue. Numerous models have been created to study a wide range of multicellular 

processes; cell signaling networks, tissue mechanics, tissue growth, arterial remodeling, and 

angiogenesis just to name a few [119]–[124]. A common application of ABMs is in the study of 

inflammation, due to their ability to capture acute cellular dynamics and probe therapeutic intervention 

[125]–[129]. In the first steps towards creating a muscle adaptation model that incorporates multi-

cellular interactions, Chapter 2 describes an agent-based model of skeletal muscle atrophy during 

immobilization. My ABM simulated changes in muscle fiber cross-sectional area during disuse-induced 

atrophy. I used this computational model to investigate the influence of muscle architecture on the rate 

of muscle atrophy. Chapters 3 and 4 expand this work with the incorporation of muscle injury and 

inflammation.  
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disuse-induced atrophy 
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2.1 Abstract 

Skeletal muscle is highly responsive to use. In particular, muscle atrophy due to decreased activity is a 

common problem among the elderly and injured/immobile. However, each muscle does not respond 

the same way. We developed an agent-based model that generates a tissue level skeletal muscle 

response to disuse/immobilization. The model incorporates tissue-specific muscle fiber architecture 

parameters and simulates changes in muscle fiber size as a result of disuse-induced atrophy that are 

consistent with published experiments. We created simulations of 49 forelimb and hindlimb muscles of 

the rat by incorporating eight fiber type and size parameters in order to explore how these parameters, 

which vary widely across muscles, influence sensitivity to disuse-induced atrophy. Of the 49 muscles 

modeled, the soleus exhibited the greatest atrophy after 14 days of simulated immobilization (51% 

decrease in fiber size) while the extensor digitorum communis atrophied the least (32%). Analysis of 

these simulations revealed that both fiber type distribution and fiber size distribution influence the 

sensitivity to disuse atrophy, even though no single tissue architecture parameter correlated with 

atrophy rate. Additionally, software agents representing fibroblasts were incorporated into the model to 

investigate cellular interactions during atrophy. Sensitivity analyses revealed fibroblast agents have the 

potential to affect disuse-induced atrophy, albeit with a lesser effect than fiber type and size. In 

particular, muscle atrophy elevated slightly with increased initial fibroblast population and increased 

production of TNF-α. Overall, the agent-based model provides a novel framework for investigating both 

tissue adaptations and cellular interactions in skeletal muscle during atrophy. 

 

2.2 Introduction 

Skeletal muscle adapts to activity levels, where elevated activity leads to increases in muscle size 

(muscle hypertrophy), while diminished activity levels lead to decreases in muscle size (muscle atrophy) 
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[38], [130]. Muscle atrophy is estimated to affect 45% of the U.S. elderly population and directly 

attributed to 1.5% of total direct healthcare costs in 2000 ($18.5 billion) [131]. In young people, 

diminished activity as a consequence of surgery-related immobilization [132], [133], bed rest [134], or 

long-term mechanical ventilation [135] lead to disabling muscle weakness.  

Muscle atrophy, triggered by loss of mechanical stimulation, causes changes in the behavior of 

the various cell types that comprise muscle tissue [62], [136]. Muscle fiber protein production decreases 

in the absence of mechanical stimulation [137], and protein breakdown transiently increases then 

diminishes during disuse [137]; both of these responses are likely dependent on muscle fiber type [47]. 

Furthermore, many non-muscle fiber cells are also sensitive to the mechanical environment in muscle 

[138]–[142]. For instance, fibroblasts are affected by changes in mechanical stimulation which alters 

their production of extracellular matrix (ECM) [143], and affects their proliferation [14], [16], apoptosis 

[144], and growth factor secretion [21]. Growth factors of the muscle milieu, in turn, affect muscle fiber 

and fibroblast behaviors [97], [145]–[150], and interactions between these cell types may affect ECM 

volume changes observed during muscle atrophy [151], [152].  While a wealth of experimental studies 

have captured these individual phenomena, the critical challenge is transforming all the information into 

a holistic understanding of how cell interactions dictate adaptive and atrophic processes in different 

muscles. 

Computational modeling approaches provide a solution to this critical challenge because they 

integrate experimental data in a quantitative and comprehensive manner to predict outcomes and 

relationships that are difficult to deduce from examining the data in isolation. Previous computational 

models of muscle atrophy have related changes in muscle function to observed macroscopic changes in 

muscle anatomy. These computational models have shown, for example, that diminished muscle size 

greatly influences strength and mobility [153], [154]. Models that describe the adaptive response of 
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muscle tissue to modified [107], [109] and diminished mechanical loading [112] have been developed.  

However, these previous models of muscle adaptation have been based on phenomenological equations 

that describe measurements of tissue responses to alterations in the mechanical environment, and 

therefore are unable to capture and study the effects of molecular signals and cellular behaviors on 

muscle tissue adaptation. Agent-based computational modeling, an approach that has been applied to 

study the underlying mechanisms of vascular remodeling, is well suited for investigating how molecular 

signals and cell behaviors integrate to cause tissue-level adaptations [118], [129], [155]–[158]. Agent-

based models (ABMs) represent individual biological cells as computational agents, and can simulate 

how collections of cells within a tissue will respond emergently to literature-derived rules. ABMs are 

particularly useful for studying biological phenomena that are dynamic, spatially heterogeneous, and 

stochastic. Therefore, we posited that development of an ABM of muscle would provide a powerful new 

framework for investigating how cellular-level changes in muscle cause tissue-level adaptations during 

disuse.   

We developed an ABM that simulates muscle fibers, fibroblasts, and their interactions during 

disuse induced atrophy by representing these biological entities as computational “agents” or “objects”. 

The ABM integrates published data describing muscle fiber hypertrophy/atrophy, muscle fiber type size 

and distribution (I, IIA, IIB and IID), protein secretions, and fibroblast migration/proliferation/apoptosis 

to determine how cross-sectional area (CSA) of the simulated fiber agents change over time. We first 

compared mean CSA in the ABM simulations to published experimental measurements of CSA in 

atrophied/suspended rat hind limb muscles. Next, we used the ABM to simulate disuse-induced atrophy 

in 49 different muscles given initial healthy geometries reported in literature. Finally, we performed a 

sensitivity analysis to determine the effect of fibroblast content and secretion of growth factors on the 

simulated atrophy response. These analyses enabled us to obtain insight into the following questions: 1. 

to what extent do differences in fiber type composition and fiber size across muscles influence 
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susceptibility to disuse-induce atrophy?, and 2. how might fibroblast content and secretion of growth 

factors and chemokines affect muscle atrophy during disuse? Using the model to probe these questions 

has allowed us to suggest new hypotheses about the effects of fiber type and fibroblast behaviors on 

muscle atrophy. 

 

2.3 Materials and methods 

Agent-based model design 

We developed an ABM of a single muscle fascicle containing fourteen muscle fibers (Figure 2.1). We 

chose fourteen fibers to optimize simulation time while modeling a fascicle that falls within a range of 

observed fiber numbers per fascicle [159]–[163]. We chose to model rat muscle due to the abundance 

of published atrophy studies and cellular experiments describing fibroblast behaviors in rat muscle. The 

model represents a cross sectional slice of muscle (3 μm thick), and is assumed to have periodic 

boundary conditions in the Z-direction (orthogonal to the screen / muscle fiber cross section). Each 

simulation was initialized with unique muscle fiber geometry through user input of CSA and fiber type 

distribution. Four different muscle fiber types are included in the ABM: type I, type IIA, type IIB, and type 

IID. A computational time step of 1 hour was used throughout the study, and simulations of up to 28 

days of atrophy were performed. All simulations were repeated ten times because the ABM 

incorporates stochastic behaviors of fibroblasts and simulating identical initial conditions can give 

outputs that vary from one another. Ten simulations generated an amalgamated fiber population (140 

total fibers) that falls within the range that has been quantified in published experimental studies of 

muscle [159], [160], [164]. The ABM was constructed using NetLogo 5.0, and a MATLAB (2013b) script 

organized the data into tables, generated plots, and ran statistical analyses. Our code can be 

downloaded from https://simtk.org/home/muscle_abm. 
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Figure 2.1: Agent-based model of muscle atrophy. Still frames from our ABM showing the initial 
configuration, 7 days, 14 days, and 28 days (left to right) of simulated muscle atrophy. Fibroblasts, fiber 
types, and extracellular matrix (ECM) are labeled. 

 

Each fibroblast and muscle fiber was represented in our model as an agent. All agents interacted 

with their environment and one another through behaviors derived from or inspired by literature (see 

Table 2.1 for general rules of agent interactions and Table 2.2 for specific ABM implementation). It has 

been suggested that muscle fiber protein content directly corresponds to fiber size [48], [137], [165]. We 

made the assumption that the muscle fiber protein density remains constant and that muscle fiber CSA 

is directly proportional to total protein content.  Through these assumptions, we generated the 

following equations:  

 

Equation 2.1 describes how the CSA of each fiber agent changes over time. βS is the protein 

synthesis coefficient (μm2/hr) and βD is the protein degradation coefficient (1/hr). If protein degradation 

was greater than synthesis, the fiber agent underwent atrophy. If protein synthesis was greater than 

degradation, the fiber agent hypertrophied. Both βS and βD are specific to disuse-induced atrophy and 

determined by fitting them to experimental data (see parameter estimation). In recent studies where 

𝑬𝒒.  𝟐. 𝟏       
𝑑𝐶𝑆𝐴

𝑑𝑡
= 𝛽𝑆 − 𝛽𝐷 ∗ 𝐶𝑆𝐴 

𝑬𝒒.  𝟐. 𝟐       𝐶𝑆𝐴𝑚𝑖𝑛 = 𝐶𝑆𝐴|𝑡→∞ =
𝛽𝑆

𝛽𝐷
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individual fiber type protein synthesis rates were measured [166], type IIB and IID fibers were shown to 

have 20% and 33% less protein synthesis compared to type I and IIA. It has also been suggested that 

type IIB and IID fibers have decreased protein degradation compared to type I and IIA fibers [48]. 

Therefore, we reduced type IIB and IID fiber synthesis (βS) and degradation (βD) coefficients by 33% 

compared to type I and IIA fibers. Muscle loss plateaus after prolonged periods of disuse [137].  This 

phenomenon is replicated in the equation 2.2 by observing that the limit of CSA(t) as time approaches 

infinity is the minimum cross-sectional area (CSAmin), which equates to the ratio of βS to βD. We interpret 

CSAmin to represent the smallest area a fiber can become due to disuse. CSAmin is the same for all fibers 

and is determined by βS to βD, which were fit to experimental data (see below). Reduction in both 

synthesis and degradation for type IID and IIB fibers also preserved the same CSAmin for all fiber types. 

Fibroblast agents replicate known fibroblast behaviors of motility and production of growth 

factors, cytokines, and ECM proteins. In order to describe motility, we incorporated a previously 

published correlated random walk model [167] described by the following equation: 

 

In equation 2.3, the mean squared displacement of a cell over a given time, d2(t), is determined by two 

main parameters, speed (S) and persistence (P) which is the magnitude of the persistence vector (<p>). 

Chemotaxis factors have been shown to alter a cell’s speed and persistence [147], [168], so S and <p> 

were determined for each chemokine. A fibroblast’s speed was determined by summing all factor-

induced speed changes to its baseline speed (Table 2.1). Fibroblasts were given persistence vectors 

(<pi>) for each chemokine (i) that were defined to be oriented along the direction of the chemokine 

gradient, and then <pi> vectors were summed to generate a single persistent vector, <p>. The 

magnitude of the resultant persistence vector (P) was used in Eq. 2.3, and the fibroblast was oriented to 

𝑬𝒒.  𝟐. 𝟑       𝑑2(𝑡) = 2𝑆2𝑃[𝑡 − 𝑃(1 −  𝑒−𝑡/𝑃)] 
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face the direction of <p>. In the case where a fibroblast was located in a region of a particular 

chemokine’s maximum concentration, the probability of moving was inversely proportional to the ratio 

of the concentration of that chemokine’s local maximum to the magnitude of the gradients of the other 

chemokines.  

 

 

 

Fibroblast agents contributed to the muscle milieu by secreting insulin growth factor 1 (IGF-1), 

tumor necrosis factor – α (TNF-α), transforming growth factor-β (TGF-β) and platelet derived growth 

factor (PDGF). Muscle fiber agents produced IGF-1. The rules that govern how these spatially dependent 

secreted factors influenced individual fiber and fibroblast agents are outlined in Table 2.1 and 2.2. 

Fibroblast agents sensed and secreted proteins in the location it occupied (a 3 x 3 x 3 μm3 cube) whereas 

muscle fibers sensed the mean protein concentrations of their perimeter and secreted proteins on their 

perimeter. All fibroblasts were considered healthy and mechanically unstimulated for this rule set. 

Diffusion was executed at the end of each 1-hour time step using NetLogo’s “diffuse” subroutine (where 

the diffuse parameter was set to 0.5, run ten times per time step).  This resulted in a diffusion 

coefficient for all secreted factors of 1.2 x 10-7 cm2/s, which is consistent with previous measurements in 

brain tissue [169]. Two-fold increases or decreases in the diffusion coefficient did not statistically alter 
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simulated muscle atrophy after 14 days.  Muscle fibers were considered impermeable to secreted 

factors. The clearance half-life for secreted factors was set to 4 hours. 
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Parameter Estimation 

Because both βD and βS represent parameters in the system that cannot be measured directly using 

existing experimental tools, we estimated the parameter values by tuning the model to published 

experiments of disuse atrophy.  We simulated mean CSA changes over ten days in the rat soleus using a 

wide range of degradation coefficients (βD) (1-4 x 10-3 hr-1) and synthesis coefficients (βS) (1-6 μm2/hr-1). 

Initial CSA and fiber type distributions were taken from the control limb in each study. We then 

compared the ABM-generated mean CSAs to experimental measurements [162] of CSA during atrophy 

using root mean square error (RMSE). The values of βD and βS that generated the smallest RMSE 

between published data and model outputs were used for our similarity comparisons (see next section). 

Model similarity with empirical measurements 

Once βD and βS were generated based on fitting to soleus data (described above), the ABM was used to 

simulate atrophy of the gastrocnemius (GM) over ten days [162]. Initial fiber type distributions in the 

ABM were taken from Armstrong and Phelps [159], and the ABM-generated mean CSA was compared to 

independent, published measurements of atrophied GM over ten days [162]. Our group has previously 

used statistically-defined benchmarks to establish similarity criteria [129], [155], and here we 

determined that the model had achieved similarity if the ABM-generated CSAs failed to prove statistical 

different when compared to published data.  

Simulations of atrophy across a range of muscles with different tissue architectures 

Healthy fiber area and fiber distributions published by Delp and Duan [164] were used as initial 

conditions to simulate muscle atrophy (49 different rat limb muscles). Additionally, we performed a 

Euclidean shortest distance clustering of these muscles using initial fiber size and population percentage 

(for each fiber type, 8 parameters total) in MATLAB. We calculated the normalized atrophy as one minus 
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the current CSA divided by initial mean CSA (Normalized atrophy = 1 – CSA(t) / initial CSA). We created a 

dendrogram to visualize architectural similarities in muscles and to compare them to the ABM 

simulations of muscle atrophy.  

Sensitivity analysis 

To evaluate how fibroblast behavior influences muscle atrophy, we performed a sensitivity analysis on 

protein secretion and fibroblast population size. Hypothetical muscles with pure fiber types (I or IIB) and 

initial CSA means of 4,500 μm2 were simulated in order to assess the sensitivity of muscle fiber atrophy 

to fibroblast behaviors. Additionally, we conducted a sensitivity analysis on soleus and extensor 

digitorum communis (EDC) because they were suggested to atrophy the most and least by the ABM, 

respectively. We conducted a one-dimensional sensitivity analysis by simulating fold changes (-4, -2, +2, 

+4) in starting fibroblast population and secretion rates of each growth factor/cytokine. Each set of 

parameters were simulated for 28 days. Statistical differences between parameter perturbations and 

baseline were determined using one-way ANOVA (alpha = .01) comparisons at each time point. 

 

2.4 Results 

Estimation of protein synthesis and degradation coefficients, βD and βS  

When the degradation coefficient (βD) and synthesis coefficient (βS) were varied simultaneously, the 

model generated decreases in mean CSA of the soleus muscle from the initial 4200 μm2 to between 

2200 and 2900 μm2 after ten days (Figure 2.2A). At the values of 0.0027 hr -1 for βD and 1.6 μm2/hr for βS, 

the ABM generated a mean CSA that closely matched literature data with a RMSE that was less than 1% 

for type I and IIA fibers [162]. These fitted values for βD and βS were used for all subsequent ABM 

simulations. 
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Figure 2.2: Parameterization and similarity testing of the muscle atrophy model. Minimum RMSE was 
used to optimize the degradation coefficient (βD) and synthesis coefficient (βS) to data from Kyparos et 
al. (panel A, [162]). We tested similarity of our model using gastrocnemius (GM) data from the same 
paper (panel B). When compared to Kyparos et al. data, the RMSE was below 6% (Type I: 2.3%, Type IIA: 
5.9%, Type IIB: 3.4%). Distributions of fiber type were taken from Armstrong and Phelps [159]. 

 

Evaluating model similarity by comparing in silico and published measurements of mean CSA during 

atrophy 

We used published initial conditions from the GM and the fitted degradation and synthesis coefficients 

(described above) to simulate atrophy in the GM. The ABM simulated how three fiber type populations 
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atrophied over the course of ten days (Figure 2.2B). A Wilcoxon rank-sum test on the CSAs of each fiber 

type population at day 10 determined that the in silico data were not statistically different from 

published experimental data [162], thereby passing our test of similarity. Additionally, the in silico 

changes in mean CSA for each fiber type were within an average of 4% RMSE of independent, published 

experimental measurements of mean CSA in the GM.  

 

Simulations of muscle atrophy across a range of tissue architectures result in varying levels of muscle 

atrophy 

Using the degradation and synthesis coefficients described above, the ABM generated decreases in CSA 

over a 28 day time course in different adult rat muscles with known initial cross sectional area and fiber 

type distributions. Two plantarflexors (soleus and GM, Figure 2.3A) had similar initial CSA means, but 

these were distinct from one another at 14 days and remained significantly different out to 28 days 

(Wilcoxon rank-sum test, p<0.01). In contrast, the flexor carpi ulnaris (FCU) and flexor carpi radialis 

(FCR), which had initial mean CSAs similar to one another, had similar changes in mean CSA throughout 

the 28 day simulation (Figure 2.3B; failed Wilcoxon rank-sum test). Additionally, the wrist flexors 

experienced less normalized atrophy than the plantarflexors (Figure 2.3, lower panels).  
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Figure 2.3: Initial CSA and fiber type distribution influences the severity of muscle atrophy. We 
simulated atrophy in two groups: plantarflexors (soleus, gastrocnemius (GM), panels A and C) and wrist 
flexors (carpi ulnaris (FCU), Flexor carpi radialis (FCR), panels B and D) for 28 days. The shaded regions 
represent one standard deviation, while bold lines are the means. Initial CSA and fiber type distributions 
were taken from Delp and Duan [164] 

 

When the ABM was challenged to simulate changes in mean CSA over 14 days for 45 additional 

muscles, it generated a range of different normalized atrophies from 51% to 32% (Figure 2.4). To 

determine if there was a relationship between atrophy severity and initial muscle tissue architecture, we 

clustered all 49 muscles based on a Euclidean shortest distance analysis within an eight-dimensional 



30 
 

space, where each dimension was either a percentage of a given fiber type or the starting mean CSA of a 

given fiber type (i.e. two parameters for each of the four different fiber types). Clustering muscles 

according to literature derived healthy architectures revealed multiple muscle groups, with the forearm 

being the only anatomical region that completely grouped together (Figure 2.4). Muscles within each 

group experienced a similar degree of in silico atrophy. While most muscles atrophied to the same 

extent, only the hindlimb muscles experienced increased atrophy (black, Figure 2.4) and only forelimb 

muscles experienced decreased atrophy (green, Figure 2.4). Interestingly, the soleus had the longest 

Euclidean distance and the most atrophy compared to every other muscle, which suggests that this 

muscle has the most unique tissue architecture and the most extreme disuse response.   

Our analysis comparing muscle tissue architecture to ABM simulations of atrophy suggested that 

different muscles atrophy to varying degrees, and that atrophy responses are related to the parameters 

that describe tissue architecture at the initial time point (i.e. percent composition of different fiber types 

and initial mean CSA of the different fiber types). In order to determine if any one of the eight 

parameters was more predictive of atrophy than the others, we plotted the simulated percent atrophy 

for each muscle against mean CSA and against fiber type percentage for each of the four different fiber 

types. This analysis generated eight total scatter plots, but we show only four representative plots 

(Figure 2.5) because none of the individual tissue architecture parameters showed any predictive power 

in determining extent of muscle atrophy (Figure 2.5; others not shown). Linear regression analysis on 

each of the eight scatter plots revealed no R2 values greater than 0.35 for any individual tissue 

architecture parameter. Lumping parameters of fiber types with identical rules together (I with IIA and 

IIB with IID, graphs not shown) did not increase the predictive power above the graphs shown in Figure 

2.5. Therefore, while overall muscle tissue architecture is an important indicator of atrophy in the 

computational model, it is the unique combination/integration of the eight tissue architecture 

parameters for a given simulated muscle that determine the extent of atrophy in that muscle. 
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Figure 2.4: Forearm muscles atrophy similarly and cluster together. We modeled muscle atrophy in 49 
forelimb and hindlimb muscles. On the left is a Euclidean shortest distance clustering based on cross 
sectional area and fiber type distributions (data from Delp and Duan [164]). On the right is the percent 
atrophy after 14 days of disuse simulation. An anatomical key is added to easily identify the location of 
each muscle, and an atrophy key was used to indicate increased or decreased atrophy. 

 

 

 

 

Figure 2.5: Atrophy is poorly correlated to any one metric of tissue architecture. Scatter plots of starting 
CSA (panels A and C) or population percentage (panels B and D) vs simulated atrophy (y axis) color 
coded by regions (only two fiber types of each group are shown). Linear regression analysis produced R2 
values below 0.35 for each metric (performed on 8 graphs, only 4 shown). 
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Figure 2.6: Atrophy profiles can differ in artificially generated muscles. Muscles of either pure type IIB 
(solid line) or pure type I (dashed lines) were atrophied. Muscles with the same starting CSA experienced 
dramatically different amounts of atrophy (35% more for Type I, panel A). Decreasing initial CSA for type 
I fiber muscles reduced the amount of percent decrease in CSA (panel B). Shaded regions are one 
standard deviation. 

 

The ABM supports the hypothesis that atrophy is sensitive to fiber type and fibroblast behaviors 

Simulations of hypothetical muscle with homogenous fiber types demonstrate how different fiber types 

in the ABM respond to atrophy (Figure 2.6) in our model. Given the same initial CSA (4500 um2), a 

muscle comprised of purely type IIB fibers experienced less atrophy than a muscle comprised of purely 
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type I fibers after 14 days (40% vs 55%) and 28 days (61% vs 74%) of simulated disuse (Wilcoxon rank-

sum test, p<0.01). Decreasing the initial CSA in simulated purely type I muscle fibers to 2,500 μm2 

generated normalized atrophy responses that were similar to type IIB fibers, but decreasing initial CSA 

further to 1,500 μm2 generated atrophy responses that were less than type IIB fibers (Figure 2.6, dashed 

lines).  

A one-dimensional sensitivity analysis on the size of the initial fibroblast population in the ABM 

reveals that increasing the number of initial fibroblasts elevated atrophy in all fiber types, whereas 

decreasing the number of initial fibroblasts diminished atrophy in purely type I and purely IIB fibers 

(Figure 2.7A; One-way ANOVA, p<0.01). Additionally, the muscles that were most and least affected by 

atrophy (soleus and EDC, respectively) were sensitive to fibroblast population size.  However, statistical 

differences between fold-changes and baseline were only seen in the soleus because of the uniformity 

in tissue architecture (Figure 2.7D), and modulating fibroblast population only altered atrophy by less 

than 10% from baseline in all simulations. Increasing the amount of TNF-α produced by fibroblasts in the 

ABM tended to increase the amount of atrophy. Furthermore, a 4-fold decrease in TNF-α production led 

to a slight reduction in muscle atrophy in the purely type IIB fibers (Figure 2.7B). Modulation of IGF-1 

production by fibroblasts and muscle fibers had no effect on atrophy in the ABM (Figure 2.7C and F). 
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Figure 2.7: Muscle atrophy increases with elevated initial fibroblast population or increased TNF-α 
secretion. A sensitivity analysis of fold changes in starting fibroblast population (14 days) shows pure 
type I muscle, pure type IIB muscle (A), and soleus (D) experience increased atrophy with larger starting 
fibroblast populations (one-way ANOVA, # = p < 0.01, relative to baseline (0 on the x-axis)). Increased 
production of TNF-α also generated enhanced muscle atrophy across both fiber types (B) and the soleus 
(E). The extensor digitorum communis (EDC) experienced no change in atrophy (D-F). Altering IGF-1 by 4 
and -4 fold had no effect on muscle atrophy (C and F). 

 

2.5 Discussion 

The goal of our study was to develop an agent-based model of skeletal muscle in order to investigate: 1. 

to what extent differences in fiber type and fiber size across muscles influence susceptibility to disuse-

induce atrophy, and 2. to what extent fibroblasts (and their secreted factors) could contribute to muscle 

atrophy. We developed a set of literature inspired equations to describe muscle fiber protein turnover, 

and we incorporated them into an ABM where simulated fibroblasts exhibited migratory behaviors and 

secreted proteins that dictated the muscle milieu. The ABM generated changes in mean muscle fiber 
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CSA over time consistent with published atrophy experiments from various muscles. ABM simulations 

across 49 different muscles generated atrophy levels ranging from 32% to 51% after 14 days of disuse. 

Analysis of these simulations revealed that in silico atrophy rates were influenced by a combination of 

eight parameters describing muscle tissue architecture (i.e. muscle fiber size and fiber type distributions 

for each of the four simulated fiber types), even though no single tissue architecture parameter in 

healthy muscle correlated with changes in mean CSA. Lastly, ABM simulations were performed to 

explore how fibroblast agent behaviors influence the extent of simulated muscle fiber atrophy through 

their initial population and influence on the muscle milieu. These results of these simulations suggest 

that fibroblast populations and secreted factors have the potential to modify muscle-specific atrophy, an 

avenue yet to be investigated in wet-lab experimentation. 

Our model generated atrophy similar to studies done in rats. For many atrophy studies, the 

soleus has been the primary muscle of choice. Short durations of hindlimb suspension (7-10 days) have 

been reported to induce atrophy ranging from 30% to 48% in soleus muscle fibers [33], [170], and our 

ABM generated 30% to 40% atrophy at this time point. Atrophy levels have been reported to vary 

between 33–60% by day 14 [33], [161], [171]–[173], and our ABM’s prediction of 51% resides within this 

range (Figure 2.3). Disuse for 4 weeks has been reported to cause 50-67% atrophy [42], [173], and our 

ABM generated 71% atrophy at this time point. The ABM’s over-prediction of atrophy at the late time 

point may be due to varying ages and genders utilized in these studies, while we optimized our model 

using the adult male rat [162]. 

Other muscles have been investigated during atrophy, including the extensor digitorum longus 

(EDL) [33], [163], GM [30], [171], tibialis anterior (TA) [30], plantaris [173], and adductor longus [174]. 

Every study that observed both the soleus and another muscle reported more atrophy in the soleus [33], 

[171], [173], as was suggested by our ABM. However, some of the muscles evaluated in prior studies 
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experienced less atrophy than was simulated in silico. For instance, the TA and EDL have been shown to 

be unaffected by 4 weeks of hindlimb suspension [30], [33], whereas our ABM simulated a 40% and a 

38% decrease in CSA in these muscles, respectively, following just 14 days of disuse. One possible 

explanation for this discrepancy is passive stretch [175]–[177]. The TA has been shown to remain 

unaltered during disuse in plantar flexed positions, while the soleus exhibits atrophy resistance during 

dorsiflexion [178]. Our ABM assumed that there was no passive stretch during the duration of simulated 

disuse. 

While hindlimb atrophy data is abundant, there exists less data to describe disuse-induced 

atrophy in the forelimb muscles. Given the initial CSA and fiber type distribution [164], the ABM was 

able to simulate and compare forelimb muscles to hindlimb muscles (Figure 2.4). Since in silico atrophy 

was poorly correlated with any single muscle tissue architecture parameter (fiber type percentage or 

initial CSA for each of the four simulated fiber types, Figure 2.5), we performed a Euclidean shortest 

distance clustering with the 49 simulated muscles using all eight tissue architecture parameters. Our 

clustering grouped muscles within anatomical regions, most notably the muscles in the forearm and 

shoulder. Interestingly, clusters of muscles exhibited similar rates of atrophy. For instance, the forearm 

muscles all clustered with one another, and the ABM generated diminished atrophy in all but one of 

them. Even clusters of muscles from diverse anatomical locations (such as three leg muscles and 

infraspinatus or four shoulder muscles, brachialis, and obturator exernus) were predicted to have 

identical degrees of atrophy. Therefore, our ABM suggests that tissue architecture, as defined by the 

combination of eight parameters, independent of anatomical location, determines the severity of 

atrophy during disuse. While many muscles atrophied to the same extent, we found that hindlimb 

muscles were the only muscles to experience elevated levels of atrophy. Conversely, the forelimb 

muscles were the only muscles to experience diminished atrophy when compared to the entire group. 

Interestingly, limb specific responses to disuse have been observed in humans after bed rest [134]. Our 
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model allows us to speculate that these differential muscle responses to disuse-atrophy could arise from 

general rules that govern all muscles regardless of their anatomical location.  

Currently, there is limited understanding of how cellular interactions contribute to muscle 

atrophy at the tissue level. Although fibroblast behavior has not yet been studied during muscle disuse, 

fibroblasts have been shown to interact and assist satellite stem cells during muscle regeneration [10]. 

While satellite cells are critical for muscle health, their depletion has been shown to have no effect on 

disuse-induced muscle atrophy [179]. By modeling cytokines and growth factors produced by 

fibroblasts, we were able to hypothesize putative fibroblast-dependent contributions to muscle atrophy. 

In particular, increasing the initial number of fibroblasts in silico (Figure 2.7) slightly increased atrophy in 

all tested fiber types and muscles, although our statistical tests did not show significant increases in the 

EDC. Fibroblast populations across muscles of healthy rats (or other animals) have not been reported in 

the literature, making it difficult to benchmark the ABM’s predictions against empirically measured 

values. Simulated fibroblasts in the ABM produced levels of TNF-α that were able to affect muscle fiber 

size, whereas simulated IGF-1 secretion by fibroblasts had comparatively little effect (Figure 2.7). 

Genetic overexpression of IGF-1 in mice during hindlimb suspension showed a similar inability to alter 

the extent of muscle atrophy [180], consistent with our in silico observations.   

It is important to consider the limitations of our model, both with the assumptions made and the 

viable outputs generated. Many fibroblast parameters in the ABM were informed by ex vivo or in vitro 

experiments involving non-muscle fibroblasts or non-rat fibroblasts. We limited the number of secreted 

factors in the ABM, focusing on what emerged in the literature as important factors in the muscle 

milieu. While satellite stem cells and macrophages are not currently modeled, their behaviors and 

contributions to the muscle milieu are important for future models, especially when simulating muscle 

repair and regeneration [10]. While our primary model output was muscle fiber CSA, our fiber agents do 
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not always maintain physiological shapes. The 14 and 28 day simulations (Figure 2.1) exemplify the 

jagged, concave fiber agents with gaps or splits in them. These defects are exacerbated the closer the 

fiber is to the edge of the simulation space. Physiologically, atrophied muscles maintain their packed, 

rounded configuration [33], [152], although fiber fusion has been suggested [160]. We hypothesize that 

mechanical interactions between muscle fibers and the ECM play a key role in maintaining fiber packing 

and shape during atrophy, suggesting future model iterations would benefit from rules governing ECM-

fiber mechanical interactions. Furthermore, the ABM displayed non-biomimetic levels of fibroblasts 

(increases 10-fold or higher, data not shown) in the extreme condition when IGF-production was 

increased by 4 fold, suggesting that the balance between growth factors and cytokines is important for 

regulating fibroblast populations. 

Our ABM provides a novel tool for simulating muscle atrophy on the tissue level, with insights 

into contributing cellular interactions at the microscopic level. The ABM generated atrophy responses 

consistent with independent published experimental data. A novel suggestion by the ABM was the 

extent to which different muscles atrophy depends uniquely on the initial CSA of fibers and fiber type 

composition. Importantly, the integration of these tissue architecture parameters by the model was 

necessary to reveal specific relationships between muscle groups and atrophy levels, and no single 

parameter sufficiently explained the variance in atrophy of simulated muscles. Finally, our results 

provide an important first step in exploring fibroblast activity and their secreted factors during disuse-

induced muscle atrophy. This computational model will serve as a platform for exploring other cellular 

behaviors/environments and elucidate yet-to-be discovered mechanisms of atrophy in skeletal muscle. 

We believe new synthesis and degradation terms, fitted to activity induce protein turnover, could be 

generated to capture muscle hypertrophy. Additionally, homeostasis could be modeled as discrete 

periods of activity and inactivity (disuse), allowing us to investigate minimum activity levels to maintain 

muscle mass for various muscles. Our model can also serve as a tool for connecting mechanical models 
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to biochemical models capable of quantitatively predicting complex muscle adaptations in both 

physiological and pathological conditions. 
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Chapter 3 

 

Agent-based computational model investigates muscle-specific responses to 
disuse-induced atrophy 
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3.1 Abstract:  

Skeletal muscle has an exceptional ability to regenerate and adapt following injury. Tissue engineering 

approaches (e.g. cell therapy, scaffolds, and pharmaceutics) aimed at enhancing or promoting muscle 

regeneration from severe injuries are a promising and active field of research. Computational models 

are beginning to advance the field by providing insight into regeneration mechanisms and therapies. In 

this paper, we summarize the contributions computational models have made to understanding muscle 

remodeling and the functional implications thereof. Next, we describe a new agent-based 

computational model of skeletal muscle inflammation and regeneration following acute muscle injury. 

Our computational model simulates the recruitment and cellular behaviors of key inflammatory cells 

(e.g. neutrophils, M1 macrophages, and M2 macrophages), and their interactions with native muscle 

cells (muscle fibers, satellite stem cells, and fibroblasts) that result in the clearance of necrotic tissue 

and muscle fiber regeneration. We demonstrate the model’s ability to track key regeneration metrics 

during both unencumbered regeneration and in the case of impaired macrophage function. We also use 

the model to simulate regeneration enhancement when muscle is primed with inflammatory cells prior 

to injury, which is a putative therapeutic intervention that has not yet been investigated experimentally. 

Computational modeling of muscle regeneration, pursued in combination with experimental analyses, 

provides a quantitative framework for evaluating and predicting muscle regeneration and enables the 

rational design of therapeutic strategies for muscle recovery. 

 

3.2 Background 

Skeletal muscle is a highly adaptive and complex tissue with the ability to quickly alter its 

structure and function in response to use, disuse, damage, and disease.  However, loss of functional 

skeletal muscle, whether through injury or a disease, can be highly debilitating. The field of muscle 
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tissue engineering/regeneration has made significant strides in the development of technologies to 

repair muscle. Current technologies focus on restoring functional muscle through pharmacological 

interventions, cell-based therapies, and/or artificial scaffolds [181], [182]. While the promise is strong 

for these therapies, muscle tissue regeneration involves several complex biological processes – e.g. 

inflammation, fibrosis, vascularization, and hypertrophy – which affect the efficacy of each technology. 

Moreover, these biological processes have interconnected signaling mechanisms with complex feedback 

between them [10], [183], [184], and many cause-and-effect relationships are unclear. The current 

critical challenge in the field is the design of therapeutic interventions that exploit the interplay between 

these remodeling mechanisms to maximize functional muscle regeneration.    

For example, it is clear that biomimetic scaffolds for structural support are needed to regenerate 

muscle tissue following substantial muscle volume loss [185]; however, it is less clear how best to 

modulate the inflammatory process in order to appropriately recruit muscle satellite stem cells and 

provide functional muscle regeneration with minimal scar tissue formation. Numerous studies have 

demonstrated the critical role that inflammation plays during muscle regeneration (Tidball 2005; Turner 

and Badylak 2012). Additionally, muscle fibers play an active role in the inflammation process through 

cytokine secretion [187]. While muscle tissue engineering technologies are likely to benefit from 

addressing the role of inflammation, exploring all the possible scenarios through experimental trial-and-

error would require extensive time and resources. We submit that muscle tissue regenerative 

technologies will be advanced by the development and use of computational models that incorporate 

biological detail at the cellular/molecular levels and tracks their effect on macro-scale function of 

muscle. As discussed and exemplified in this paper, computational models can reveal cause-and-effect 

relationships between key mechanisms, enable in silico experimentation, and provide a tool for the 

rationale design of muscle regeneration strategies.  
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Historically, muscle models have focused on predicting and exploring the mechanics of force 

generation.  Computational and mathematical models are used to predict muscle force generation at 

multiple biological scales, including cross-bridge dynamics [188], [189], sarcomere and half sarcomere 

dynamics [190], [191], muscle fiber excitation/contraction coupling [192], multi-fiber and muscle tissue 

dynamics [193], [194], whole muscle dynamics [195], as well as limb and body locomotion [196].  These 

models revealed important relationships between force production and skeletal muscle structure at 

different length scales. In so doing, these models move the field of muscle tissue engineering forward by 

serving as quantitative and predictive tools for relating the degree of structural changes (e.g. following 

regeneration) to changes in biomechanical function. However, the majority of published computational 

models of muscle fall short of predicting how muscle regenerates, and we believe that the use of other 

computational modeling approaches, such as agent-based modeling (ABM), will enable deeper 

understanding of the mechano-biochemical underpinnings of muscle regeneration. 

The central objective of this paper is to summarize and exemplify the utility of computational 

models in studying the multi-scale mechanisms of muscle adaptation and regeneration. Specifically, we 

will (1) summarize the current literature with regards to modeling of muscle adaptation, and (2) present 

a novel computational model of muscle injury that facilitates investigation into mechanisms of skeletal 

muscle remodeling.  

3.3 Introducing a new agent-based model of inflammation during muscle regeneration 

 Building upon prior published work described in the previous section, we sought to develop a 

new agent-based model capable of predicting many of the key degeneration, inflammation, and 

regeneration processes associated with muscle injury.  This new computational model includes spatial 

complexity, as seen in Martin et al, and incorporates over 100 rules associated with 7 cell types that all 

play major roles in the muscle injury response. This work was motivated by the fundamental questions 

of: (1) what is the role of acute muscle inflammation in the muscle regeneration process, and (2) how 
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does modulation of inflammation affect the fate of the regenerating muscle?  We believe that these 

questions are timely, given several studies in the muscle tissue regeneration field that have pointed to 

the pivotal role of acute inflammation for the functional recovery of muscles [91], [197]–[199]. 

Numerous published ABMs have been used to study the dynamic interplay of inflammatory cells during 

injury recovery in several other tissues [119], [125]; however, there is a paucity of models that explore 

acute inflammation and injury recovery in skeletal muscle tissue. Herein, we describe the development 

of a new agent-based model of skeletal muscle that incorporates the biological processes involved in 

wound healing and allows us to track cellular interactions that lead to damaged tissue removal and 

muscle regeneration. This new model incorporates biological complexity by accounting for biochemical 

factors and cellular interactions in a spatially explicit and dynamic manner. 

3.4  ABM Design and Implementation 

ABM design 

Agent-based modeling is a type of computational modeling where individual, autonomous 

agents interact with one another through literature-derived rules. In our implementation of agent-based 

modeling, every biological cell is modeled as an agent. Our ABM is a two-dimensional cross-section of 

one fascicle containing 14 muscle fibers of defined type and cross-sectional area (Figure 3.1A). Rules 

governing agent behavior were based on our previously developed ABM of disuse-induced muscle 

atrophy (Chapter 2) and new parameters were added to account for regeneration. Acute inflammation 

and muscle regeneration are dynamic processes that result from many cell behaviors and molecular 

mechanisms, and we specified the additional, key cells and factors to include in our model based on an 

extensive literature review (Figure 3.1B). In particular, the ABM simulated the behaviors of neutrophils, 

resident macrophages, pro-inflammatory macrophages (M1 or ED1+), anti-inflammatory macrophages 

(M2 or ED2+), and satellite stem cells. Many parameters in our model were not well described in vivo 
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(such as secretion rates, macrophage transition times, proliferation and apoptosis probabilities), so we 

performed a set of sensitivity analyses and a genetic algorithm to identify parameter sets that generated 

outputs which mimicked biological data (see parameterization section below). Our ABM was 

implemented in NetLogo 5.0, and the code is posted here: https://simtk.org/home/regenerationabm.  

 

Figure 3.1.  Graphic representation of our ABM injury simulation. (A) Screen captures of our 2D muscle 
injury and regeneration ABM at three stages of inflammation (12 hours, 2 days, and 5 days). Each 
snapshot has a schematic representation (B) of key cellular and molecular interactions dominant during 
that stage. 
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Agent behaviors 

Simulated inflammatory cells were programmed to exhibit several behaviors that have been 

observed by actual inflammatory cells in vivo, including apoptosis, proliferation, and secretion of growth 

factors / chemokines (Table 3.1, Figure 3.1). Neutrophil apoptosis, in particular, is a critical cell behavior 

in wound healing. Many studies have shown that neutrophils undergoing apoptosis promote 

macrophage recruitment and deter further neutrophil recruitment [64], [200], [201]. In our ABM, all 

inflammatory agents had secretion, recruitment and resolution rules inspired from literature (Table 3.1). 

Studies have shown macrophage secretion of chemokines and growth factors depends on their 

exposure to apoptotic neutrophils and lysed neutrophils [65]. Therefore, we programmed the simulated 

macrophages to secrete these soluble factors based on interactions with apoptotic neutrophil agents 

and lysed / damaged tissue according to published literature (Table 3.1). In the ABM, new M1 

macrophage agents phagocytosed either cellular debris or apoptosed neutrophils, depending on what 

the M1 macrophage agent encountered first. Since phenotype switching of M1 to M2 macrophages has 

been shown to occur during muscle regeneration [91], M1 macrophage agents that had phagocytosed 

one or more neutrophils transitioned to M2 macrophage agents. The transition time for M1 macrophage 

agents was explored during model parameterization (see parameterization section below). 

The behaviors of satellite stem cell agents in the ABM were also prescribed by literature-

inspired rules. Satellite cell agents were activated by HGF and became quiescent when HGF left the 

system. Activated satellite stem cells have been shown to attract M1 macrophages during injury 

recovery through secretion of chemokines [9] (Table 3.1). The attracted M1 macrophages promote 

proliferation and decrease the chance of apoptosis of activated satellite stem cells. We incorporated 

these effects into the ABM by prescribing satellite stem cell agent proliferation and differentiation 

probabilities as a function of cell-to-cell interactions between macrophage and activated satellite stem 
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cell agents. Differentiated satellite cells were programmed to incorporate (i.e. contribute their nucleus) 

into the nearest muscle fiber agent. If a simulated fiber had been completely damaged, the satellite cell 

agent would initiate the formation of a healthy muscle fiber. 

 

Model initiation 

For every ABM injury simulation, the same fiber composition, size, and geometry were used. 

Upon initiation of the model, a specified percentage of muscle fiber area was randomly damaged (see 

Figure 3.1, blue muscle fiber agents). Simulated damage was assumed to originate at the perimeter of 

the simulated muscle fiber and progress inward toward the center. Unless stated otherwise, the severity 

of muscle damage was set to 50%, meaning that half of the total muscle fiber cross-sectional area was 

replaced with damaged tissue. The model was run up to 15 days with a computational time step of one 

hour.  

Model parameterization 
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 A key step in model construction is determining which parameters generated the greatest 

effects on the outputs of the model. This is typically accomplished by conducting a sensitivity analysis, 

wherein individual parameters (alone or in combination with others) are systematically varied across a 

broad range of values. Afterwards, the model outputs for each parameter level are compared with one 

another. We conducted one-dimensional sensitivity analyses by simulating fold changes (-10, -2, 2, 10) 

of individual parameters in the following areas: secretion rates of factors, cell proliferation rates, 

inflammatory cell recruitment strength, and apoptosis rates. The parameters that had the greatest 

influence on predicted M1 macrophage agent populations are listed in Table 3.2. Since numerous 

studies have explored M1 macrophage population levels following injury [170], [202]–[204], we sought 

to identify which ABM parameters would yield model outputs that best matched M1 population 

dynamics. To accomplish this, we used a genetic algorithm (GA) to identify the combination of 

parameter values (from Table 3.2) that best fit experimental measurements of M1 macrophage 

populations, as described below. 

Genetic algorithms are a type of general randomized search heuristic used for optimization 

[205]. We used a GA to identify model parameter values that minimized the difference between ABM 

derived M1 macrophage agent populations and experimentally measured ED1+ macrophages at 9 time 

points in an acute rat muscle injury model [202]. We utilized a custom-made cross-over and mutation 

genetic algorithm in MATLAB. When using GAs, individuals (parameter value sets) are generated by 

creating random values for each variable being optimized (alpha values, Table 3.2). The ABM outputs 

from each individual are scored using an objective function to determine fitness. The fittest individuals 

are used to generate the individuals for the next set of ABM simulation (the fittest individuals are called 

parents, the new individuals are called children/offspring, and each optimization iteration is called a 

generation). We used 40 individuals every generation for a maximum of 60 generations. Each individual 
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was simulated 4 times in our ABM. The average M1 macrophage agent population dynamics for each 

individual was given a score based on an objective function (Eq. 3.1).  

 

𝑬𝒒 𝟑. 𝟏         𝑆𝑐𝑜𝑟𝑒 =  ∑  
1

𝜎2
(𝑀1𝑇𝑎𝑘𝑎𝑔𝑖 − 𝑀1𝐴𝐵𝑀)

2

  
168 

𝑡=6
 

 

The objective function we implemented was a weighted least squares regression between experimental 

data and simulation results (Eq. 3.1, M1ABM). Since the experimental data was sparse compared to our 

model, we generated a third order polynomial line of best fit (M1Takagi, red “comparison curve” in Figure 

3.2A and B) for the experimental data using a polynomial curve fitting function in MATLAB. The output 

from each GA individual was compared to the line of best fit for the time frame that resided within the 

experimentally observed time points (from 6 hours to 7 days post injury). Each comparison was 

weighted by the variance (1 / σ2) of the experimental data. Variance for fitted time points was 

determined using a linear interpolation between experimental time points. Individuals that had the 

fittest (lowest) scores were used as parents for the next generation of individuals (33% offspring, 67% 

new random individuals). 
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Figure 3.2: GA generated ABM outputs of M1 macrophage numbers that converged on in vivo 
measurements. (A) Progressive generations of the GA (grayscale) reduced the error to real data (red 
comparison curve). (B) The “best” GA run (blue; 95% confidence interval shaded) had the lowest amount 
of error relative to the experimentally-derived comparison curve (red), which was fit to the actual Tagaki 
et al. data (black circles).   
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In silico experiments 

After identifying parameter values that generated model outputs which best matched 

experimental measurements, we ran numerous in silico experiments to explore how different simulated 

cell types affected regeneration. All experimental conditions were simulated 10 times, and 95% 

confidence intervals were generated using MATLAB. First, we performed in silico macrophage depletion 

experiments by prohibiting macrophage agents from entering the system for the first 24 hours of 

simulation time. Next, we varied the degree of simulated muscle damage to explore the effects injury 

intensity had on muscle inflammation and regeneration. In another experiment, we elevated the 

starting concentration of neutrophil and macrophage agents by either 50 or 100. Lastly, we used the 

ABM to explore how nuclear density (nuclei per volume of muscle fiber) altered the extent to which 

individual satellite stem cell agents contribute to regenerating muscle fibers post-injury. 

 

3.5 ABM Simulations 

Genetic algorithm identifies ABM parameters that mimic experimentally observed inflammatory cell 

dynamics 

One of the challenges in constructing computational models is identifying parameter values for 

the model that produce simulation outcomes that mimic biological data. Our muscle injury and 

regeneration model focused on 7 different cell types with over 100 governing rules/parameters. Since 

only a few of these parameters have been measured empirically, we used a GA to identify parameter 

values that produced simulation outcomes consistent with published studies. The GA was stopped after 

48 generations because the objective function score had plateaued for 5 generations (Figure 3.2A). Only 

13% of the experimental data (line of best fit) resided outside the 95% confidence interval of our best 

GA parameter set (Figure 3.2B, fitted values can be found in Table 3.2).  Using the parameters specified 
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by the GA, the ABM simulated additional outputs that describe other inflammatory cell dynamics, 

including the numbers of neutrophils and M2 macrophage agents over time (Figure 3.3A and C, black 

lines). Importantly, while the ABM was parameterized to experimental data that described M1 

macrophage counts, predicted neutrophil and M2 macrophage agent population dynamics also 

emulated time-courses that have previously been reported in the literature [11].  

 

The effects of macrophage suppression on muscle regeneration  

Published experimental studies have reported that suppressing macrophages by injecting 

clodronate liposomes during muscle regeneration impairs recovery [206]. In order to determine if the 

ABM was capable of generating an output that mimicked this result, we simulated macrophage 

suppression in the ABM for the case of 50% initial muscle damage. Specifically, all simulated 

macrophages were removed from the ABM for the first 24 hours of wound healing. Delaying 

macrophages caused a severe reduction in the peak M1 macrophage population (13% of control 

population) and a complete suppression of M2 macrophage agents (Figure 3.3B and C). Our simulations 

also predicted incomplete removal of necrotic tissue that persisted out to 15 days, with dramatic 

differences in necrotic tissue starting after 21 hours (Figure 3.3F). Furthermore, muscle fiber CSA 

recovery was impaired in the delayed macrophage simulations, even though the two models have very 

similar satellite cell population dynamics (Figure 3.3D and E). 
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Figure 3.3: ABM simulations emulate in vivo experimental results where macrophages recruitment was 
impaired. ABM simulations of (A) neutrophil population size, (B) M1 macrophage population size, (C) M2 
macrophage population size, (D) satellite stem cells population size, (E) mean cross-sectional area of 
muscle fibers, and (F) necrotic tissue over a 15-day period post injury (black is baseline injury; grey is 
with impaired macrophage recruitment for 24-hours post injury; 95% confidence intervals shown by 
shaded regions).  
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Muscle damage severity affects inflammatory cell dynamics 

We next used the ABM to study how inflammatory cell dynamics and muscle regeneration is 

affected by the extent of initial damage inflicted on the muscle. As expected, altering the initial amount 

of muscle damage in the ABM affected the timing of simulated inflammatory agent recruitment (Figure 

3.4A - C). Specifically, when the initial amount of muscle damage was increased to either 25% or 50%, 

the ABM simulated more rapid recruitment of neutrophil agents compared to 5% damage. Additionally, 

the duration and peak population of neutrophil agents was decreased in the 25% and 50% damage 

simulations, although the majority of macrophage agent dynamics remained unchanged. Only the timing 

of M2 macrophage recruitment (one day sooner in 5% injury) was changed as a result of altering the 

degree of simulated damage. As expected, the complete clearance of simulated necrotic tissue in the 

ABM required more time with increasing amounts of initial damage (Figure 3.4F). Interestingly, satellite 

cell activation was greatly diminished in the 5% injury experiment, as compared to 25% and 50% (Figure 

3. 4D). Further investigation showed a decrease in apoptotic neutrophil agents during the 5% injury 

experiment (data not shown), which could account for impaired satellite cell recruitment. 
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Figure 3.4: ABM simulations predict changes in inflammatory cell and satellite stem cell populations, as 
well as muscle fiber remodeling for different levels of injury intensity. ABM simulations of (A) neutrophil 
population size, (B) M1 macrophage population size, (C) M2 macrophage population size, (D) satellite 
stem cells population size, (E) mean cross-sectional area of muscle fibers, and (F) necrotic tissue over a 
15-day period post injury (black is 50% injury; blue is 25% injury; red is 5% injury; 95% confidence 
intervals shown by shaded regions). 
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ABM simulations of elevated M1 macrophage and neutrophil agent populations at the onset of muscle 

damage  

Elevated M1 macrophage and neutrophil populations via delivery of the cytokine macrophage 

colony-stimulating factor (M-CSF) after hindlimb suspension have demonstrated improved muscle 

recovery [207]. To test the ameliorative effects of muscle inflammation priming on regeneration, we 

simulated injury recover with M1 macrophage and neutrophil agents (50 or 100 each) present at the 

onset of damage. The ABM predicted an increased rate of tissue regeneration in a dose dependent 

manner, reducing the time it took to clear necrotic tissue by 30% for 50 additional agents and 40% for 

100 additional agents (Figure 3.5F). Also, increasing the initial population of M1 macrophage and 

neutrophil agents increased simulated M2 macrophage counts and accelerated their arrival into the 

muscle by approximately one day, although this had no effect on muscle fiber CSA or the size of the 

satellite stem cell agent population (Figure 3.5 C - E). 
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Figure 3.5: In silico priming of muscle with inflammatory cells leads to more rapid necrotic tissue 
clearance. ABM simulations of (A) neutrophil population size, (B) M1 macrophage population size, (C) 
M2 macrophage population size, (D) satellite stem cells population size, (E) mean cross-sectional area of 
muscle fibers, and (F) necrotic tissue over a 15-day period post injury (black is 50% injury; blue is 50% 
injury with 50 additional M1 macrophage and neutrophil agents; red is 50% injury with 100 additional 
M1 macrophage and neutrophil agents; 95% confidence intervals shown by shaded regions). 
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Figure 3.6: Changing the relative contribution of satellite stem cells to the regenerating muscle fiber 
affects the rate of muscle fiber CSA recovery. ABM simulations of (A) neutrophil population size, (B) M1 
macrophage population size, (C) M2 macrophage population size, (D) satellite stem cells population size, 
(E) mean cross-sectional area of muscle fibers, and (F) necrotic tissue over a 15-day period post injury 
(black, blue, and red curves show the ABM cases where each fusion event of a SSC with a muscle fiber 
constitutes a progressively larger contribution to the muscle fiber’s overall nuclear density; 95% 
confidence intervals shown by shaded regions). 
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Altering nuclear density greatly affects satellite stem cell agent fusion efficiency 

 The role of satellite cells in muscle hypertrophy remains an open question in the field [208], 

[209]. Inspired by this question, we created a parameter in the ABM to account for the extent to which 

individual satellite stem cells contribute to regenerating muscle fibers, termed “nuclear density”. 

Nuclear density is a fiber specific parameter that represents the number of muscle fiber nuclei per a 

given volume of muscle fiber. We assumed that each satellite stem cell fusion event adds to the total 

number of nuclei without adding substantial muscle fiber volume. The higher the starting nuclear 

density value, the less relative increase in nuclear density each satellite stem cell fusion event 

contributes. We performed an in silico experiment where the nuclear density was set to three different 

levels: (1) “high nuclear density,” where each satellite stem cell agent that fused with a regenerating 

muscle fiber increased the nuclear density of that fiber by 0.5%, (2) “medium nuclear density,” where 

each satellite stem cell agent fusion event increased the nuclear density of that fiber by 2%, and (3) “low 

nuclear density,” where each satellite stem cell agent fusion event increased the nuclear density of the 

regenerating muscle fiber by 3%. While all three nuclear density levels experienced CSA recovery post-

injury (Figure 3.6E), low nuclear density lead to near complete CSA recovery by simulation day 15 (90%). 

The ABM’s prediction of muscle fiber CSA recovery was clearly sensitive to this nuclear density 

parameter, as indicated by the separation in the 95% confidence intervals.  

 

 

3.6 Discussion and Conclusions 

In this paper, we have summarized published literature and provided a new model to showcase 

how the combination of computational models with experimental investigations has the ability to 

advance the field’s knowledge of muscle regeneration. Indeed, the coupling of experiments with 

computational models is synergistic in many ways. Computational models rely on experimental data to 
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specify boundary conditions and facilitate independent validation of predictions made by models [118], 

[210], [211]. Likewise, computational models calculate quantitative features of biological systems that 

are impossible to measure empirically, as well as suggest new, relevant hypotheses that may not be 

obvious through the pursuit of experimental studies alone [123], [212]–[214]. Computational models 

also perform in silico experiments to evaluate altered conditions or novel therapeutic interventions in a 

low-cost and high-throughput manner [215]–[218].  

Agent-based model overview: We developed a new ABM to exemplify how modeling molecular 

and cellular level biological mechanisms associated with inflammation can shed new light on 

inflammation and regeneration following muscle injury. Our ABM simulations tracked regeneration 

metrics (necrotic tissue area and muscle fiber cross-sectional area) throughout the early stages of 

muscle recovery (from injury to fifteen days post insult). We first demonstrated how experimental data 

can be used to specify parameters for computational models. Then we mimicked wet-lab experiments 

where inflammatory cell levels had been altered during muscle regeneration. We also showcased how 

the computational model can be used to simulate the effects of changing key variables in the system 

(e.g. those describing macrophage recruitment dynamics and satellite stem cell contributions to 

regenerating muscle fibers) in order to evaluate potential therapeutic interventions that may be 

applicable to the tissue engineering field.  

 Evaluating the role of inflammation during regeneration: We focused our ABM on inflammation 

following injury because of the abundance of experimental studies demonstrating its pivotal role during 

healing. Numerous macrophage depletion or knockdown experiments have shown deleterious effects 

on muscle regeneration [74], [91], [206], [219]–[221]. Our model predicted a diminished M1 

macrophage agent response following the initial 24-hour depletion accompanied by a complete ablation 

of M2 macrophage agents. Many of the published studies report continued presence of necrotic tissue 

and delayed muscle fiber recovery. For instance, Arnold et al. showed comparable amounts of necrosis 
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one day post injury (72% control vs 87% macrophage knockdown), but that difference had increased to 

50% by day 2 [91], and necrosis remained elevated for the duration of the study (7 days) in the 

macrophage depletion experiment. In our ABM simulations, we saw a 7% difference in necrosis at day 1 

and a 33% difference in necrosis at day 2, with the macrophage depletion simulations always having 

more necrosis. Also, necrotic tissue was present for the entire 15 day M1 knockdown simulation (Figure 

3.3F). Finally, the simulated muscle fibers exhibited diminished recovery (CSA reduction from day 5 to 

15, as compared to controls), which is another observed consequence of macrophage depletion [220].  

 While there are a plethora of studies investigating the loss of regeneration with diminished 

macrophages, few studies have looked at delivering macrophages as a therapeutic strategy to enhance 

regeneration. One study, which used a hindlimb unloading/reloading muscle regrowth model, showed 

that priming the muscle with inflammatory macrophages can have positive recovery effects [207]. In this 

study, macrophages and neutrophils were recruited to the muscle by exogenously delivering M-CSF 

prior to reloading. Their experiments showed accelerated recovery of force production and muscle fiber 

CSA. To probe the efficacy of this treatment on muscle injury recovery, we simulated various levels of 

macrophage and neutrophil agent populations at the onset of injury. Our model predicted accelerated 

necrotic tissue removal (~40% decrease in clearance time) with elevated initial inflammation (Figure 

3.5F). Furthermore, our model predicted an earlier onset of M2 macrophages, indicating a faster shift 

into the reparative/remodeling stage of regeneration. Dumont and Frenette reported sustained 

elevations in the total macrophages population for the first 7 days post reloading, and our ABM model 

predicted a similar elevation in M1 macrophage agents for the first 4 simulated days, accompanied by 

elevations in M2 macrophage agents out to 6 days post injury (Figure 3.5B and C). 

 Models allow for investigation of poorly understood phenomenon: Another benefit of 

computational modeling is the ability to investigate the relative contributions of parameters that are 

difficult or impossible to measure empirically. We developed a parameter, nuclear density, for tracking 
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the effects of satellite cell fusion on muscle growth and recovery and then performed a sensitivity 

analysis to understand how changes in this parameter affected the amount of CSA recovery. Nuclear 

density is the number of nuclei per given volume of muscle fiber (which is the inverse of myonuclear 

domain, Allen, Roy, and Reggie Edgerton 1999). In our ABM simulations, each satellite cell fusion event 

added to the number of nuclei in the regenerating muscle fiber, and we performed simulations using 

low, medium, and high values of nuclear density. Our simulations showed that high nuclear density 

caused reduced muscle fiber recovery after 15 days of simulation (24% recovery in CSA) (Figure 3.6E). 

Medium and low nuclear density, however, lead to near complete recovery of the muscle fiber CSA (83% 

and 90%, respectively). Our model suggests that injured muscle fibers possessing a high concentration of 

healthy nuclei are less sensitive to satellite stem cell fusion events post injury. This result implies injured 

muscle fibers with a large concentration of nuclei are less dependent on satellite stem cell fusion for 

regeneration.  

The ABM parameterization efforts focused on M1 macrophage agent population dynamics, 

which had direct effects on the population sizes of simulated neutrophils and M2 macrophages. As a 

result, the dynamics of these three agent populations were consistent with published literature [11], 

[66]. However, not all of our simulated cell agents had appropriate population dynamics. Satellite cells, 

for instance, have been shown to be active during the first 10 days post injury [223], [224]; while the 

programmed satellite stem cell agents in our ABM responded earlier and for a shorter duration. We 

believe this occurred because we did not include enough parameters that influenced satellite stem cell 

activation, proliferation, migration, and differentiation. As the model currently stands, only HGF caused 

the satellite cell agents to become activated, and once HGF left the system, satellite cell agents returned 

to quiescence. Future iterations of the model will incorporate additional growth factors and chemokines 

that have been shown to influence satellite stem cell dynamics, such as IL-6, TNF-α, FGF, and/or IGF-1 
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[89], [225]. These factors will also be parameterized through optimization algorithms to create 

biomimetic simulations of satellite cell dynamics and muscle fiber hypertrophy rates. 

Concluding remarks: Computational models of growth and remodeling facilitate the study of 

fundamental processes during tissue regeneration. These models, like the ABM presented in this paper, 

exemplify what could become the next generation of computational models in the field of skeletal 

muscle injury and disease. The results presented in this paper demonstrate that agent-based models 

provide a powerful framework for predicting tissue degeneration and regeneration, and points to 

several future directions. First: simulation of tissue engineering constructs in the context of these 

models is a natural extension of this work.  For example, simulation of cell-seeded scaffolds, such as the 

TE-MR technology [226], [227], could provide valuable predictions on how various combinations of cells 

might influence the regenerative response of an engineered implant. Second: improving predictive 

power through linking the agent-based models with micro-mechanical [193] and/or macro-mechanical 

[195] computational models of muscle could provide mechanistic information about how biomechanical 

influences affect (and are affected by) biochemical influences (i.e. mechanisms of feedback between 

biomechanical and biomechanical signals). With these two advances, multi-scale modeling will enable 

the prediction of functional muscle recovery, as well as facilitate incorporation of behaviors related to 

cell mechano-sensitivity.  Overall, all of these efforts will enable rational design of therapeutic 

interventions that exploits the complex remodeling processes within skeletal muscle to maximize 

functional muscle regeneration.    
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Chapter 4 

 

In silico and in vivo experiments reveal M-CSF injections accelerate regeneration 

following muscle laceration 
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4.1 Abstract 

This study utilized a combination of in silico and in vivo experiments to investigate how manipulation of 

inflammation dynamics can change the course of recovery following muscle injury. First we monitored 

inflammation following laceration injury in the rat tibialis anterior (TA). Then we optimized an agent-

based model (ABM) of muscle injury and regeneration to mimic the observed inflammation profiles. We 

used our ABM to predict the dynamics of inflammatory cell populations and satellite stem cells (SSCs) 

during regeneration. The ABM simulations suggested that delivering macrophage colony stimulating 

factor (M-CSF) prior to injury would benefit SSCs during the first 10 days following muscle injury. In 

order to validate the prediction made by the ABM, we performed an experimental study wherein one 

day prior to laceration injury the rat TA received an injection of M-CSF. Injured and un-injured 

contralateral TAs were harvested 1, 3, 4, 5, 7, and 10 days post injury (n = 4 rats for each group and time 

point). M-CSF injection increased the number of macrophages during the first 4 days post-injury. 

Furthermore, M-CSF-treated muscles experienced a swifter increase in PAX7+ SSCs, as well as an 

increase in the number of regenerating muscle fibers. Our study suggests that: 1) computational models 

of muscle injury can probe cellular dynamics and their effects on regeneration (i.e. explore therapeutic 

approaches) and 2) priming muscle with factors that alter inflammation dynamics prior to injury can 

accelerate regeneration. 

4.2 Introduction 

Muscle regeneration is a robust biological process involving numerous cell types and structures; 

including muscle cells, satellite stem cells (SSCs), fibroblasts, vasculature, nerves, and inflammatory cells. 

Regeneration follows the three characteristic phases of wound healing; destruction, repair, and 

remodeling [49]. The coordination and collaboration of the diverse populations of cells, both spatially 

and temporally, across the phases of regeneration are vital for muscle recovery. While disruption of 



67 
 

these coordinated cellular events can be deleterious to muscle recovery [10], [91], [198], [199], [228], 

healing can be improved by enhancing key cell populations and their dynamic interactions during 

regeneration [105], [207], [229], [230]. 

Inflammatory cells promote muscle regeneration through diverse cellular interactions. The 

inflammatory process begins within hours of injury with an influx of neutrophils and pro-inflammatory 

(M1 or ED1+) macrophages [66]. ED1+ macrophages phagocytose cellular debris and apoptotic 

neutrophils, which is crucial for altering their secretion profiles of cytokines, chemokines, and growth 

factors [65], [95], [231]. Some of these factors, like TNF-α and IL-6, enhance M1 macrophage activity and 

attenuate neutrophil recruitment [232]–[234]. Macrophage-derived TNF-α also decreases fibroblast 

collagen production [72]. Other factors, like VEGF, are critical for angiogenesis during wound healing 

[68]. Anti-inflammatory (M2 or ED2+) macrophages are the next responders. They arrive in the tissue 

either by transitioning from ED1+ macrophages or by recruitment via microenvironmental cues [233]. 

ED2+ macrophages suppress inflammation through secretion of numerous factors, including PGE2 and 

IL-10 [66], [95]. Other ED2+ secreted factors, such as PDGF and IGF-1, enhance fibroblast proliferation 

and collagen production [72], [235]. Disruption of normal macrophage behavior leads to diminished 

regeneration. Studies utilizing pan macrophage knockdown techniques following injury exhibit 

prolonged muscle damage, severe fibrosis, and diminished force recovery [91], [198], [199].  

Macrophages and native muscle cells both affect satellite stem cell dynamics during 

regeneration. Upon injury, SSCs activate, migrate to the injury site, and proliferate [75], [78], [79]. While 

activated, SSCs contribute to the regeneration microenvironment by secreting numerous factors (VEGF, 

MCP-1, and fractalkine) [9]. Co-culture studies have shown the importance of these factors in attracting 

M1 macrophages. These macrophages decrease apoptosis and enhance proliferation of satellite stem 

cells [9], [91], [197]. When co-cultured with M2 macrophages, SSCs have increased differentiation and 
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fusion [91].  Additionally, numerous studies have demonstrated the beneficial effects that other cells 

have on SSCs. For example, endothelial cells associate with SSCs in vivo, and co-cultures of these two cell 

types promotes SSC proliferation [236]. Muscle fiber-derived insulin-like 6 enhance SSC proliferation 

during regeneration [237]. Ablation of fibroblasts during regeneration has been shown to decrease SSCs 

numbers [10]. Within the same study, ablation of SSCs prior to injury abolished muscle regeneration and 

decreased fibroblast numbers [10].  

Clearly, the dynamic interactions between different cell populations in muscle affect the timing 

and extent of regeneration following injury. However, these interactions are complex and difficult to 

untangle using experimental approaches alone. To address this challenge, we utilized our muscle 

regeneration agent-based model from Chapter 3. ABMs are a platform for simulating behaviors of 

autonomous agents and their interactions with one another and with their surroundings. A common 

implementation of ABMs is to simulate cellular behaviors/dynamics [120], [129], [155], [158]. Our 

muscle ABM incorporates numerous interactions between inflammatory cells (neutrophils and 

macrophages) and native muscle cells (fibroblasts, muscle fibers, and SSCs). In addition to tracking cell 

proliferation, migration, and apoptosis, the ABM simulates changes in the microenvironment (e.g. levels 

of growth factors, cytokines, etc.) and cell-cell interactions following injury on an hourly basis. 

 Herein we describe the use of computational modeling to explore therapeutic manipulation of 

macrophages during regeneration. These simulations subsequently informed the design of an in vivo 

experiment aimed at improving muscle regeneration. First we performed rat tibialis anterior (TA) 

laceration experiments to assess inflammatory cell populations following injury. Then we calibrated our 

model to mimic the observed inflammation dynamics. Using our calibrated model, we simulated 

pharmacological manipulation of macrophage dynamics prior to and during regeneration. Our model 

predicted that therapeutic intervention prior to injury would improve SSC recruitment and proliferation. 
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Finally, we validated the ABM’s prediction of therapeutic intervention with experimental results 

obtained using the rat TA laceration model.  

4.3 Methods 

Agent-Based Model 

We developed an ABM of muscle inflammation and regeneration post-injury (Chapter 3). In this 

study, we utilized the inflammation data acquired from the control muscle laceration animals (see 

below) to tune our model. We optimized our model through the use of a cross-over and mutation 

genetic algorithm (GA) (Chapter 3). The GA minimized the difference between ABM macrophage 

populations predicted by the model and the experimentally measured ED1+ and ED2+ macrophage 

dynamics (see Figure 4.1). Each generation had 40 individuals with 16 variables. The objective function 

was a weighted sum of squared differences between experimental data (subscript EXP) and simulation 

results (subscript ABM) (Eq. 4.1). To compare our continuous model predictions with the discrete 

experimental observations, we fitted the experimental macrophage population dynamics with a third 

order polynomial equation (using fit in MATLAB) (see Figure 4.2, red line). Each comparison was 

weighted by the variance (1 / σ2) of the experimental data. Variance for fitted time points was 

determined using a linear interpolation between experimental time points. Individuals that had the 

lowest objective function scores were used as parents for the next generation of individuals (33% 

offspring, 67% new random individuals). We ran the GA for 130 generations. 

𝑬𝒒 𝟒. 𝟏 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑  
1

𝜎2
(𝐸𝐷1𝐸𝑋𝑃 − 𝐸𝐷1𝐴𝐵𝑀)2  

240 
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𝜎2
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Figure 4.1: ED1 and ED2 macrophage populations following TA laceration. Transverse muscle sections 
were stained for ED1, ED2 and nuclei (A). Positively stained macrophages in injured areas were counted 
(n = 4 rats per time point, mean ± SEM, B).  

 

In silico experiments of M-CSF injection 

The parameter set that best emulated the experimental data was used to probe the timing of 

M-CSF injections during simulated muscle injury. M-CSF modulates the function of numerous 

inflammatory cells [238], [239]. To simplify its effects in our model, we had each M-CSF injection 

temporarily elevate macrophage proliferation (24 hours following injection) as well as increase the M1 

macrophage recruitment (from 24 to 48 hours post injection). Each in silico experiment represented a 

single M-CSF injection, and injections were simulated for each day following injury (starting at day 0 and 

ending at day 9). We also simulated the effects of M-CSF injection prior to injury by elevating 

macrophage recruitment during the first 24 hours following injury. Simulations predicted regeneration 

over 11 days with a 1-hour computational time step. All in silico experiments were repeated 10 times. 

 We monitored macrophage populations and secreted factor dynamics during each M-CSF 

injection experiment. To monitor the effects M-CSF injections had on SSC dynamics, we tracked the 



71 
 

levels of secreted factors that have been implemented in SSC migration, differentiation, proliferation, 

and activation [78], [87], [89], [236], [240]–[248]. We used these factors to assess the 

microenvironmental pressures SSCs experienced following injury. Each pressure was determined using 

the following equations (Eqs. 4.2 – 4.5). Each factor was normalized to a control experiment (no 

injection) before being used in pressure calculations. Cumulative values were also generated by 

summing the pressures from each time step across the 11 day simulation period. 
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𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 𝟒. 𝟐 − 𝟒. 𝟓  

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑡) =  𝐻𝐺𝐹(𝑡) 

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑡) =  𝐻𝐺𝐹(𝑡) + 𝑉𝐸𝐺𝐹(𝑡) + 𝐼𝐺𝐹1(𝑡) + 𝐼𝐿6(𝑡) − 𝑇𝐺𝐹𝛽(𝑡) − 𝑃𝐷𝐺𝐹(𝑡) 

𝑃𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑡) =  𝐻𝐺𝐹(𝑡) + 𝐼𝐿6(𝑡) +  𝑉𝐸𝐺𝐹(𝑡) + 𝐼𝐺𝐹1(𝑡) + 𝑃𝐷𝐺𝐹(𝑡) + 𝐺𝐶𝑆𝐹(𝑡) − 𝑇𝐺𝐹𝛽(𝑡) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑡) =  𝐼𝐿6(𝑡) + 𝐼𝐺𝐹(𝑡) + 𝐼𝐿10(𝑡) + 𝑃𝐷𝐺𝐹(𝑡) − 𝑇𝑁𝐹𝛼(𝑡) − 𝑇𝐺𝐹𝛽(𝑡) − 𝐻𝐺𝐹(𝑡)  

 

Animals  

All muscle laceration experiments were performed with female Lewis rats from Charles River 

aged 12-13 weeks at the initiation of injury (52 animals total). All animal procedures were approved by 

the University of Virginia IACUC. 

Surgical procedures 

20 to 24 hours prior to TA laceration, animals in the M-CSF group received an injection of M-CSF 

into their TA using a 27.5 gauge needle (40 μL, with a concentration of 10 μg/mL diluted in PBS, Sigma 

Aldrich). To confirm elevated inflammation, rat TAs were harvested 24 hours post M-CSF injection (n=4). 

 Surgical creation of the laceration injury was modified from volumetric muscle loss studies 

[249]. Briefly, rats were anesthetized (1.5 – 2.5% isoflurane) and their lower left leg shaved and 

sterilized. A longitudinal incision was made along the lateral aspect of the lower left leg. After the skin 

was separated from the fascia, an incision was made through the fascia into the anterior compartment. 

To prevent synergistic hypertrophy, the extensor digitorum longus (EDL) and extensor hallicus longus 

(EHL) were ablated [249]. Three 4-5 mm deep transverse lacerations were created in the middle of the 

TA using a scalpel. Each laceration was spaced 3-4 mm from each other. After injury, the fascia was 

sutured using 6-0 VICRYL sutures and the skin was sutured using 4-0 PROLENE sutures. Following 
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surgery, buprenorphine (.05 mg/kg; subcutaneous) was administered twice a day for three days. Injured 

and un-injured contralateral TAs were harvested 1, 3, 4, 5, 7, and 10 days post injury (n = 4 rats for each 

group and time point). 

Histology and immunohistochemistry 

TA muscles from all groups were frozen in liquid nitrogen cooled isopentane and stored in a -

80°C freezer until sectioning. Transverse muscle sections (7 um thick) were cut from the injury region of 

the muscle (between the first and last laceration). We prepared the slides for immunohistochemistry by 

fixing the tissue (4% PFA in PBS) for ten minutes followed by a 10 minute permeablization (0.3% Triton 

X-100 in PBS). One set of muscle sections were stained for with ED1 and ED2 antibodies (M1 and M2 

macrophages, AbD Serotec, 1:300 dilution) and SYTOX orange (Molecular Probes inc, 1:50,000 dilution). 

Macrophages (ED1+, ED1 & ED2+, and ED2+) were counted in regions of muscle damage. A minimum of 

5 images were taken from each animal, and the counts were normalized based on tissue volume.  

Another set of sections was stained for Laminin (Sigma-Aldrich, 1:300), PAX-7 (Developmental Studies 

Hybridoma Bank, 1:50), and SYTOX green (1:50,000). All images were acquired using confocal 

microscopy (Nikon; Model TE200-E2; 20x and 60x objectives). Cell counts were conducted using ImageJ 

(NIH) imaging software. Centrally located nuclei and satellite stem cells (PAX-7+) were counted within 

regions of injury for all muscle laceration groups. Central nuclei and SSCs were also counted in the 

healthy tissue for determining the effects of M-CSF injection on healthy muscle. 

Statistical analysis 

Confidence intervals for in silico experiments were calculated using MATLAB. Comparisons of 

cell counts and regenerating fibers between control and M-CSF injections (no injury) were performed 

using Student’s t-tests. Comparisons of control vs M-CSF muscles following laceration were performed 
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using two-way ANOVAs (time and treatment) with a Holm-Sidak post-hoc pairwise multiple comparison 

(SigmaStat). 

4.4 Results 

Genetic algorithm reveals behaviors needed to improve inflammation dynamics 

 One of the challenges in constructing computational models is identifying model parameter 

values that generate simulations that mimic biological data. The challenge is especially difficult when 

optimizing two interconnected phenomena, such as M1 and M2 macrophage dynamics during wound 

healing. Our initial GA started with 15 parameters per individual, but was increased to 16 after 

simulated M2 populations failed to appear prior to day 4. The additional parameter focused the ability 

of M1 macrophages to switch to a M2 phenotype regardless of the presences of apoptotic neutrophils. 

Our GA concluded after 129 generations.  The model parameter set that best mimicked the fitted data 

from our laceration experiment was used in all subsequent experiments (Figure 4.2). 

 

Figure 4.2: GA directed calibration of the regeneration ABM to ED1 (A) and ED2 (B) macrophages. 
Experimentally counted ED1 and ED2 macrophages (circles, mean ± SEM) were used to generate lines 
for comparison with ABM simulations (red lines). The simulation that produced the lowest difference 
between fitted experimental data and simulated M1s are shown in black lines. 
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Simulated M-CSF injections probed the timing of pharmacological intervention during muscle 

regeneration 

 M-CSF is a potent cytokine that effects many inflammatory cells [238], [239]. We chose this 

molecule because it enhances macrophage recruitment and survival [238], which has led to enhanced 

healing in skin wounds and atrophied muscle [207], [250]. M-CSF injection simulations led to an 

elevation in M1 and M2 macrophages, with noticeable increases corresponding to the injection times 

(Figure 4.3A and B). Since injection time points that occurred after day 6 post injury had minimal impact 

on macrophage dynamics (data not shown), we focused on experiments with earlier injection times for 

all subsequent comparisons. In particular, pre-injection of M-CSF elevated M1 macrophages for the first 

four days following injury (Figure 4.3C, pre vs control) while only shifting the onset of M2s (but not the 

population size).  

The earliest injection times (Pre-injury, day 0 and day 1) exhibited beneficial effects on SSC 

pressures compared to control. In particular, pre-injection with M-CSF generated the greatest migration 

pressure, peaking at post-injury day 2 (Figure 4.4B), which caused the largest overall increase in 

migration pressure (68% cumulative increase vs control at day 11, Figure 4.5B). The three earliest 

injection times all had elevated initial SSC proliferation pressures (first two days post injury, figure 4.4C), 

leading to a cumulative increase of 10-20% compared to control, with pre-injection again causing the 

greatest overall increase (Figure 4.5C). Based on these data, we chose to inject the rat TA with M-CSF 24 

hours prior to injury. 
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Figure 4.3: Changes in macrophage dynamics following in silico M-CSF injection experiments. All 
injection experiments experienced an elevation in M1 macrophages corresponding to time of 
administration. Pre-injury injection produced the most change in M1 macrophages (A), with separation 
of confidence intervals during the first two days, and numerous times prior to day 6 (C, Pre-injury vs 
Control). M2 macrophages were more dramatically altered by later injection times (B). In particular, Day 
4 injection lead to the largest increase in M2 macrophages compared to control.   
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Figure 4.4: Satellite stem cell pressures during in silico M-CSF injection experiments. With minimal 
differences in activation kinetics (A), Pre-injury and Day 0 injections had enhanced migration pressure 
during the first two days of simulation (B). All early injection times (pre-injury, Days 0 and 1) had 
increased proliferation during the first 2 days of simulation as well (C). 
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Figure 4.5: Cumulative satellite cell pressure emphasizes enhanced migration and proliferation from M-
CSF injections. Looking at the cumulative pressure over time, all of the early injection times (pre-injury, 
Days 0 and 1) exhibit elevated proliferation, migration, and differentiation compared to control (B - D). 
Most notably, Pre-injury injections had the greatest overall increase in migration pressure.  

 

Confirmation M-CSF injection increases inflammatory cells in muscle prior to injury 

  Before performing our full treatment experiment, we wished to confirm the inflammatory 

effects of M-CSF injections directly into a muscle. We injected 4 TAs with M-CSF and harvested them 

after a minimum of 24 hours (24 to 28 hours). Counts of macrophages stained with ED1 and ED2 
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confirmed a significant difference between control and injected muscles. Specifically, M-CSF injections 

increased the total number of macrophages, as well as ED1+ and ED1+/ED2+ macrophage populations 

(Table 4.1, Students t-test, p <= 0.01). Additionally, injections did not lead to any significant changes in 

PAX7+ SSCs or fibers with centrally located nuclei (Table 4.1) at the 24-28 hour time point. 

 

 

 

 M-CSF injected muscle experienced elevated inflammation and accelerated initiation of regeneration 

 Following the same post-injury time course as the control laceration group, we investigated 

macrophage dynamics at 1, 3, 4, 5, 7, and 10 days post-injury. M-CSF injections lead to an increase in 

total macrophages during the first four days of wound healing (Figure 4.6, black asterisk). Days 3 and 4 

experienced significant increases in all three subsets of macrophage staining (ED1+, ED1+/ED2+, and 

ED2+), leading to a ~280% increase in macrophages at day 3 and ~220% increase at day 4. There were no 

time points in which any M-CSF macrophage population (total or subset) was significantly less than the 

control group. 

 We examined two hallmarks of muscle recovery, regenerating fibers, as indicated by the 

centrally located nuclei, and number of PAX7+ SSCs (Figure 4.8). M-CSF injections caused an overall 

increase in PAX7+ cells seen in the injury area (control vs M-CSF injection, two-way ANOVA), with a 

Holm-Sidak post hoc revealing a significant difference at day 4 post injury (p<= 0.05, Figure 4.8B). A two 

way ANOVA also revealed a significant treatment effect (control vs. M-CSF injection) with the number of 
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regenerating fibers per area of injured tissue. As was seen with PAX7+ SSCs, we observed an earlier 

increase in regenerating fibers (day 4 post injury, Figure 4.8C). 

 

Figure 4.6: Injecting M-CSF into the rat TA prior to injury elevates early macrophage populations. 
Macrophage counts for each post-injury time point are stacked in green (ED1+), red (ED1+ & ED2+), and 
blue (ED2+). M-CSF treated muscles are indicated by the lighter shade of the corresponding colors. A 
two-way ANOVA with a Holm-Sidak post-hoc pairwise multiple comparison determined time points with 
significant differences between control and M-CSF treated macrophage counts (*, p < 0.05, colors 
indicate the corresponding macrophage group, with black indicating a significant difference between 
total macrophages counted, n = 4 animals per group). 
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Figure 4.7: Comparison between predicted in silico macrophages and observed in vivo macrophages 
following M-CSF injection. Macrophage counts from control and M-CSF treated lacerated muscle were 
scaled to the dimension of the model (black or colored dots, mean ± SEM, green for ED1 (A) and blue for 
ED2 (B)). Model outputs for control and M-CSF pre-injury injection (black or colored lines, shaded region 
95% Confidence interval) are plotted to allow direct comparison between in silico and in vivo 
macrophage dynamics. 
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Figure 4.8: Markers of regeneration appear earlier in muscles injected with M-CSF prior to laceration. 
Confocal images of muscle injury area show groups of regenerating muscle fibers (central nuclei) and 
locations of satellite stem cells (PAX7) (A). Quantification of these two regeneration markers within the 
injury area reveals earlier increases in SSC populations (B) as well as earlier increases in regenerating 
fibers (C). Significance was determined using a two-way ANOVA with a Holm-Sidak post-hoc pairwise 
multiple comparison (*, p < 0.05, n = 4 animals per group). 

 

4.5 Discussion  

Muscle regeneration is a complex phenomenon involving the intricate interactions of many cells. 

Numerous studies have pharmacologically modulated the muscle milieu in the hopes of promoting 

muscle regeneration; however, the timing and duration of these interventions have not been fully 

explored. Some studies inject a single therapeutic [207], [229], [251]–[253], sometimes exploring 

concentration dependent treatment effects [254], [255]. Other studies evaluate injured muscles that 

have been treated with multiple factors to assess their combined effect on healing [105], [230], [256]. 

Treatments have been delivered once [207], [229], [230], [253], [255],  multiple times [105], [254], [256] 

or administered continuously [252]. While many of these studies have explored treatment and 
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concentration effects in vitro prior to evaluating them on injured muscle, the optimal timing of 

treatment has been difficult to assess using only experimental tools.  

We have previously developed a computational method for simulating cell behaviors during 

muscle regeneration (many of which are the targets of the treatments mentioned above) using agent-

based modeling (see Chapter 3). In this study, we have described the process by which we tuned our 

model to the cellular dynamics of a specific muscle injury, laceration of the rat TA. Subsequently, we 

performed in silico experiments to assess the therapeutic effects of a single administration of M-CSF on 

muscle inflammation and regeneration. Most importantly, we were able to vary the onset of treatment 

over a wide range of therapeutically viable times and monitor subsequent cellular dynamics on an 

hourly basis. The in silico experiments predicted elevation M1 macrophages by the early injection times 

of M-CSF. The most sustained M1 increase was produced by pre-injection of M-CSF (Figure 4.3). These 

macrophages produced many of the factors critical in SSC recruitment and proliferation. We believe this 

transient elevation lead to the increases in SSC migration and proliferation pressure predicted in our 

simulations. The in silico experiments suggested that administration of M-CSF prior to injury would have 

the most beneficial effect on regeneration, as indicated by the enhanced satellite stem cell migration 

and proliferation pressures.  

 In an independent set of in vivo experiments designed to validate the ABM’s predictions, we 

administered M-CSF prior to TA laceration. Foremost, our in silico experiments predicted that M-CSF 

would increase the overall microenvironmental pressures for SSCs to migrate to the injured muscle and 

proliferate (Figure 4.5B and C). In silico M-CSF injection had a large impact on early SSC migration 

pressure (25% more cumulative pressure by day 4, pre-injection vs control, Figure 4.5B). In our rat TA 

laceration model, PAX7+ SSCs increased in population size earlier and to a greater extent (day 4, Figure 

4.8B). Concurrently, there was an increase in the number of observed regenerating muscle fibers (Figure 
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4.8C) within injured areas. Other experiments have shown muscle treatments that generate increased 

or earlier onset of satellite stem cell populations also had improved regeneration (regenerating fibers, 

cross sectional area recovery, decreased fibrosis) as far as 7 weeks post injury [230], [257]. 

 The GA improved simulated macrophage dynamics while providing insight into missing 

behaviors. Optimizing the muscle regeneration model to two interconnected cell populations was 

difficult with the current parameter set. Initial optimizing setbacks in M2 macrophages lead to the 

enhancement of macrophage phenotype switching rules. While the altered phenotype switching 

allowed for M2 populations to increase before day 4, the simulated M2 population was underestimated 

by an average of 20% (Figure 4.2). M1 macrophages fared slightly worse, with an average difference of 

28% between the fitted experimental data and GA model output. Future iterations of the model would 

include new rules, such as macrophage type-specific proliferation or apoptosis, which could be 

optimized to reduce error between model predictions and in vivo measurements. On the experimental 

side, more observation times would lead to better fitted data for comparison with the GA. This would be 

vital during times of large population changes, such as numerous observations during the first 3 days 

following muscle injury.  

Comparison of in silico and in vivo M-CSF injection experiments highlights areas for model 

improvement (Figure 4.7). M-CSF induced elevated ED1 macrophages during the first 4 days of 

regeneration were predicted in ABM simulations. Additionally, 4 of the 7 M-CSF injected TA laceration 

time points were within the models 95% confidence interval, the best of any in silico experiment (M-CSF 

injection, figure 4.7A). On the other hand, the model failed to predict the substantial increase in ED2 

macrophages during the first 4 days of regeneration (M-CSF group, figure 4.7B). One explanation is the 

lack of direct M-CSF interactions on simulated M2 dynamics. This failure also highlights, for a second 

time, the need to specify phenotype-specific rules that govern M1 and M2 macrophages, as opposed to 
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assuming the similar behaviors between the two phenotypes. Future M-CSF experiments would 

incorporate rules that allow for M-CSF to directly effects M2 behaviors, such as recruitment or reduction 

in apoptosis. 

 Through cell-centric muscle regeneration modeling, we were able to garner insight into 

therapeutic interventions that could accelerate muscle regeneration. We referenced papers that had 

treated regenerating muscles with IGF-1, MMP-1, HGF, Suramin, Decorin, VEGF, FGF, NGF and anti-IL-6 

[105], [207], [229], [230], [251]–[256], and many of these factors are already included in our model. The 

in silico experiments could be expanded to evaluate temporal changes in inflammation and SSC 

dynamics arising from any combination of these factors (as well as dose and treatment timing). While 

we focused on regeneration in healthy muscle, the ABM developed has a wide variety of clinical 

applications. For example, this ABM could be easily adapted to emulate degenerative muscle diseases, 

such as Duchenne muscular dystrophy or inflammatory myopathy. The ABM could provide unique 

insight into new strategies for modulating inflammation dynamics in these diseases as well. In this study, 

we have demonstrated the utility of muscle agent-based modeling in evaluating the potential efficacy, 

timing, and dose of pharmacological intervention. We showed how iteration between wet lab 

experimentation and in silico simulations can yield testable hypotheses and guide both experimental 

design and model improvement. 
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Chapter 5 

 

5.1 Overview 

 This body of work was motivated by the desire to predict and direct skeletal muscle adaptation. 

By examining the current knowledge behind muscle adaptation, in particular how whole organ changes 

are driven by individual cell behaviors, I was motivated by the need to simulate tissue level interactions. 

In order to predict adaptation, I turned to computational modeling. The current field of skeletal muscle 

models has, by and large, focused on functional aspects of muscle. I discussed the few existing muscle 

adaptation models in Chapter 1, highlighting their contributions to the field. However, I was faced with 

the new challenge of simulating stochastic cellular behaviors in muscle. This is when I looked to agent-

based modeling, a powerful framework for modeling cells and their stochastic interactions with one 

another and their environment. Since ABMs have been used extensively in many other fields to study 

dynamic changes in tissues (e.g. angiogenesis, inflammation, etc.) [119], [120], [126], [129], applying this 

modeling approach to the study of muscle adaptation was a natural extension.  

 My first iteration of skeletal muscle agent-based modeling focused on the well-studied 

phenomenon of disuse muscle atrophy. This proved beneficial in many ways. First, it gave me a wealth 

of knowledge to access for constructing the model. Parameter identification (like growth factor 

secretion rates on a per cell basis) and the experimental data necessary for independent model 

validation were readily available. Additionally, the process of atrophy involves a limited number of cells 
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and cell behaviors (compared to injury and regeneration), but includes unexplored cell dynamics that 

are amenable to stochastic modeling. I chose to focus on fibroblasts and muscle fibers, which are both 

important in muscle health and are also involved in other forms of muscle adaptation. Hence, muscle 

atrophy represented an ideal scenario for establishing an initial model upon which to expand to more 

complex forms of adaptation. 

The key findings from the muscle atrophy ABM highlighted its novel cell-centric modeling 

approach. First the model explored the contributions of fiber type and size composition to disuse 

atrophy. Comparisons across 49 rat forelimb and hindlimb muscles isolated the soleus as a unique 

muscle in terms of both its tissue architecture and susceptibility to disuse atrophy. These comparisons 

also exhibited increased atrophy in hind limb muscles compared to forelimb muscles, results that have 

been seen in human studies. Furthermore, the model allowed me to investigate the potential role of 

fibroblasts during disuse. In particular, fibroblast population size and cytokine secretion rates could alter 

the extent of muscle atrophy. These cells are poorly studied, especially in skeletal muscle, and could 

prove to be a new avenue to explore in the data rich field of muscle disuse atrophy. 

Throughout these research efforts, my tools and techniques to create models matured. Atrophy 

simulations were able to emulate decreases in CSA through the optimization of only two parameters, 

lending it to two-dimensional parameter sweeps. While later models required optimization algorithms 

(see genetic algorithms in Chapters 3 and 4), all the parameters used in those situations were first tested 

using simple parameter sweeps. Given the chance to revisit the atrophy model, genetic algorithms 

would be a useful tool. Many temporally varying outputs, such as fiber type switching or capillary to 

fiber ratios, were simply omitted from the model. Dynamic inputs, such muscle specific EMG readings, 

would also be valuable additions to the model. The genetic algorithms used in subsequent chapters 

were specifically implemented to calibrate temporally complex phenomenon (cell population dynamics 
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during regeneration). These same techniques could be used to parameterize endothelial cells or muscle 

fiber type switching during atrophy. 

A second tool that deserves mention is parallel processing. While Netlogo has built in programs 

to facilitate parallel processing, my initial models were computationally lite. The entire set of atrophy 

simulations (once the model was built) required a total computational time of less than 6 days. Moving 

forward, rough calculations of computational time needed to perform the genetic algorithm were on the 

order of months to years. It was during these calculations that I developed code that could execute 

simulations on a server and retrieve the output data. In contrast with the estimated 15 months to 

perform the genetic algorithm described in Chapter 4, the entire process took 37 days to run using a 64 

CPU server. Ultimately, the switch to using a server accelerated my ability to iterate and explore my 

regeneration model. 

 Transitioning to simulate muscle inflammation and regeneration proved to be a challenging yet 

fruitful endeavor. The field of muscle regeneration has been heavily investigated; many aspects of these 

processes have been observed, pharmacologically manipulated, and/or genetically disrupted. Studies 

have utilized numerous animal models to track muscle recovery following a plethora of injury types 

(overloading, laceration, freeze injury, toxin, hypoxia, never damage, etc). While the general phases of 

regeneration remain the same, the durations and intensities of those phases vary across insult, species, 

and age. And while the cellular phenomena are well studied, it is difficult to find direct measurements, 

like secretion or proliferation rates, in vivo. And in vitro studies of individual cell types, or groups of cells, 

fails to recapitulate the microenvironmental conditions seen in living tissue. This is where optimization 

algorithms proved vital. The first step was assigning the simulated cells relative values for numerous 

behaviors (secretion rates, proliferation and apoptosis chances, etc.). This enabled me to tune these 

parameters to match observed cell dynamics, such as duration and onset of M1 and M2 macrophages 
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following a muscle injury. It also allowed for the use of unsupervised optimizing techniques, like the 

genetic algorithms I ultimately implemented. 

 The current model of muscle regeneration allowed for the monitoring and probing of muscle 

healing dynamics. Chapter 3 outlined the ability to track numerous cell types and tissue conditions (like 

necrotic tissue), which can be used to describe transitions between the phases of regeneration. 

Simulations were also able to emulate key experiments in the field, like macrophage knockout 

experiments. Chapter 4 expanded the in silico experiment capabilities by exploring the effects of 

pharmacological manipulation on muscle recovery. The model predictions of macrophage and SSC 

dynamics following M-CSF injection lead to a testable hypothesis, which was proven in a rat muscle 

laceration model. Chapter 4 also exemplified the ideal modeling loop. First experimental data is used to 

build/tune a model. Then the model makes predictions on altered conditions or a therapeutic 

treatment. Finally, experimentation of the predicted treatment confirms the model’s prediction.  

 In summary, I have developed a useful modeling framework for exploring cellular interactions 

during muscle adaptation. To accomplish this, I utilized numerous tools to facilitate and refine these 

models. Genetic algorithms, for instance, were vital in creating model outputs that mimicked 

experimentally derived data. These agent-based models generated valuable insight into muscle 

remodeling and provided a platform for rapid in silico manipulation of adaptation. This body of works 

shows the clear progress of a model as it is improved and iterated upon. But those improvements and 

iterations are not over, as I will discuss in the following section.  
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5.2 Contributions 

Cellular model of muscle adaptation 

 I have generated the first cell-centric agent-based model of muscle adaptation. My works 

outline the use of this model in two distinct forms of muscle remodeling, disuse atrophy and 

injury/regeneration. I have extended the field by enabling the prediction of key cellular events (muscle 

fiber protein turnover, cell population dynamics, ECM turnover, protein secretion) that constitute the 

foundation of muscle remodeling. Additionally, as was seen with the improvements made to simulate 

inflammation, my model can be readily expanded/modified to incorporate numerous cell types, cellular 

phenomenon, and muscle adaptation conditions. For instance, the same modeling framework could be 

updated to probe capillary recruitment during exercise, investigate fiber type switching during 

injury/atrophy/hypertrophy, or explore the function of each SSC subpopulation during regeneration.   

Insight into muscle fibroblasts 

 Muscle fibroblasts are poorly researched. Even though they are implicated in muscle fibrosis and 

ECM remodeling, few studies have investigated their role in either atrophy or muscle regeneration [10]. 

While numerous other cells have been investigated during muscle disuse atrophy (capillaries, muscle 

fibers, satellite stem cells), I used the atrophy ABM to probe the possible contributions fibroblast could 

make during disuse atrophy. These cells have the capability of producing both IGF-1 and TNF-α, two key 

regulators of muscle protein turnover [258]. Sensitivity analysis of secretions and population size 

predicted altered muscle atrophy, suggesting fibroblasts have the ability to modulate muscle fiber 

atrophy. These predictions provide the impetus for investigating differences between fibroblasts across 

muscle beds as well as highlight the need to exploring fibroblast dynamics during disuse (proliferation 

rate, IGF-1 and TNF-α production). 
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Predictive model of muscle atrophy 

 In Chapter 2, I used my muscle ABM to predict disuse atrophy across 49 muscles. While not all 

muscles respond to disuse in the same way [30], [33], we decided to keep the CSA turnover parameters 

for all our simulations identical. This allowed us to ask the question; how does muscle architecture affect 

disuse atrophy? Additionally, we were able to simulate atrophy in muscles never before tested in vivo 

and as well as directly compared atrophy across hindlimb and forelimb muscles. Our predictions showed 

a prevalence of atrophy resistant architectures in the forelimb coupled with a prevalence of atrophy 

prone architectures in the hindlimb. Furthermore, differences between in silico atrophy rates and 

measured disuse atrophy in vivo allows us to identify muscles that have compensatory mechanisms that 

prevent or reduce disuse atrophy. In future model iterations, we can incorporate new rules to more 

accurately capture the atrophy dynamics in these resistant muscles. 

Muscle regeneration therapeutics 

 Enhancement of muscle regeneration via pharmacological treatment is a promising and active 

field of research [105], [230], [252], [254], [255], [259]–[261]. In Chapter 4, my model simulated the 

effect of time dependent pharmacological manipulation following injury. The M-CSF injection 

simulations predicted altered macrophage and SSC behaviors, which were observed in subsequent rat 

TA laceration experiments. The injury and inflammation ABM provides a novel platform for rapidly 

testing therapeutics. In silico experiments can be performed to test the duration and timing of growth 

factor or cytokine administration. The model can also be used to analyze pharmacological treatment in 

altered physiological states. For instance, age-related alterations in muscle physiology and cell functions 

can result in prolonged healing time with only partial functional recovery following injury [262]–[265]. 

Calibrating the model to these age-related cellular changes would provide a useful platform for 

exploring therapeutic enhancement of regeneration. In this regard, the model is well suited for 
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predicting the effects of treatments that are time-consuming, costly, or currently infeasible to perform 

in vivo.  

 

5.3 Current and future applications 

Coupling with a micromechanical model 

 An ideal extension of this model is to couple it with a micro-mechanical model of muscle tissue. 

Muscle fibers and fibroblasts, as well as many other muscle cells, modulate their behavior in response to 

mechanical cues (changes in stretch or shear) [62], [266], [267]. While agent-based models are perfect 

for simulating cellular dynamics, they have a limited ability to solve the mechanical behavior of tissue 

(displacement, stress and strain). Incidentally, finite element (FE) modeling techniques have the 

opposite problem, being well suited for mechanics but poor platforms for stochastic behaviors. By 

coupling these two models together, the critical flaws of one can be calculated by the reciprocal model 

(Figure 5.1). The input to the ABM is the strain profile, which informs cellular behaviors. The ABM 

predicts changes in the tissue structure, such as changes in ECM composition or muscle fiber 

hypertrophy/atrophy. The FE model inputs these changes in tissue properties to recalculate the 

mechanical forces in the tissue.  

Recently, Kelley Virgilio and colleagues took the initial steps towards multi-scale modeling [193]. 

Virgilio developed a micromechanical model of muscle fascicles. In order to create large numbers of 

unique fascicle geometries, she used my agent-based model to construct them. This allowed her to 

rapidly analyze the mechanical properties of a variety of muscle states, such as fibrosis or fatty 

infiltration. These comparisons were useful in understanding the effects of muscular dystrophy on 

muscle tissue micromechanics. Her current work continues to increase the model cross-talk, with the 
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ultimate goal of creating a multi-scale model system that includes the mechanical and biological changes 

caused by muscular dystrophy. 

   

Figure 5.1: Framework for multi-scale modeling. ABMs output the composition of the muscle while 
FEMs output strain distributions.  

 

Muscle hypertrophy due to exercise would be another ideal adaptation to tackle with the FE-AB 

multi-scale model. Exercise inputs could be prescribed to the FE model as boundary conditions 

(displacement). The FE model would inform the agent-based model how much strain each fiber or cell 

experiences. New strain-dependent rules governing protein turnover as well as secretion and 

proliferation rates would be introduced to utilize the new input data. Completely novel rules governing 

muscle fiber type switching (discussed in Chapter 1) and completely new agent types (such as capillaries) 

could be included as well. As mentioned above, the ABM would output changes in muscle fiber size and 

ECM content. These material property changes would be fed back into the FE model, completing a single 

modeling cycle.  
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Experimental design 

An important use of models is to develop and evaluate therapeutic targets. In silico 

experimentation is perfect for exploring the duration or onset of a therapeutic intervention [118], [125], 

[268], [269]. In Chapter 3, I simulated inflammatory knockdown. In Chapter 4, I used the muscle injury 

and regeneration ABM to explore the timing of growth factor manipulation following injury. The insights 

generated from the model were vital in planning the subsequent rat TA laceration experiment. While 

the model emulated M-CSF injections, therapeutic targets are not limited to secreted factors. The model 

could be used to explore cell specific behavior like TGF-β secretion or proliferation/apoptosis. These 

manipulations can be applied across all cell types, or specifically to a subset of cells (such as M1 

knockdown of TNF-α, but not neutrophil or M2).  

In silico experiments can also target cell behaviors not readily manipulated in vivo. These could 

be poorly understood behaviors, like macrophage phenotype switching. We know phenotype switching 

occurs, and that it can be triggered by apoptotic neutrophils and activated T cells [95], [270]. We can 

target one or all avenues of phenotype switching in silico to examine the relative contribution each 

makes to inflammation dynamics as well as determine the subsequent changes to muscle regeneration. 

The ABM can also manipulate behaviors that have either poor therapeutic targets, or behaviors for 

which there are no current pharmacological interventions. In this capacity, the model could be used to 

identify potential targets for future development. 

 Another application of computational models is as a bridge between animal model systems. A 

perfect example of this is the field of Duchenne muscular dystrophy. The well-studied and extensively 

used animal model, the mdx mouse, is the backbone of treatment efficacy research. However, 

treatments that work in the animal model have proven to be minimally beneficial in treating Duchenne 

muscular dystrophy [271]–[273]. This could be due to the biological differences between mice and 
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humans, or a difference in response to muscular dystrophy, or a difference in the lifespan of each 

animal. First, the muscle ABM (or better yet the suggested multi-scale FE-AB model) can be developed 

to predict muscular dystrophy. Then, the same model can be used to test purported causes of disease 

digression between mice and humans. Identifying the cause of the discrepancy could lead to better 

therapeutic screening as well as the development of a more suitable animal model of muscular 

dystrophy. 

5.4 Final remarks 

The field of biomedical engineering strives to develop tools to investigate and solve complex biological 

phenomenon. As a biomedical engineer, I have developed the first agent-based model of muscle 

adaptation. I used my model to probe cellular dynamics during disuse atrophy and regeneration, as well 

as explored the efficacy of therapeutic intervention during regeneration. My ABM is already being 

utilized in conjunction with finite element micromechanical models to simulate new diseases, like 

muscular dystrophy.  I wish to clearly state that my model is not complete. I would say this is a maxim 

applicable to all models. Models can always be expanded and refined. Ultimately, the process of 

constructing a model is a useful endeavor in many ways. The act of building a model requires extensive 

research and sheds light on gaps in the fields. Refining the model develops tools applicable to many 

aspects of research. Analyzing model outputs generates novel interpretations and develops new ways of 

presenting data. And finally, functional models can be explored to generate hypotheses and inform 

experimental design. 
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Appendix I 
Netlogo code, version 5.0 

 

globals [totalfibers totalnodes currentfiber currentnodes moved 
dimension alpha beta elapsed anchor swap1 swap2 Synth Degrad 
collagenturnover meancollagen Gamma Activity G-CSF Lipoxins 
Resolvins MMP12 Lactoferins CXCL2 CXCL1 IL4 IL13 NO PGE2 
VEGF CCL2 CCL4 CCL3 CCL6 Azurocidin LL37 CathepsinG IFN CCL17 
CCL22 collagen4 CX3CL1 HGF] 
patches-own [collagen colx coly colz strain strainx strainy strainz 
patfiber# edge boundary MMP PDGF TNF IL1 TGF IGF1 MCP 
DAMPs ROS IL6 IL10 IL8 FGF marked totalprotein distanchor shiftx 
shifty fibertype necrotic DAMPcounter] 
breed [fibroblasts fibroblast] 
breed [fibers fiber] 
breed [macrophages macrophage] 
breed [satellites satellite] 
breed [deadcells deadcell] 
breed [neutrophils neutrophil] 
undirected-link-breed [membranes membrane] 
fibroblasts-own [activated durax duray durapersist tensox tensoy 
tensopersist TNFmax IL1max PDGFmax IGF1max TGFmax speed 
stay taxisx taxisy taxispersist still proliferation apoptosis 
proliferating] 
satellites-own [activated proliferation apoptosis fiber# linked 
differentiation quiescence ftype] 
neutrophils-own [phagocytosis speed stay taxisx taxisy apoptosed 
age] 
macrophages-own [mtype speed stay taxisx taxisy phagocytosis 
linked age buddy] 
fibers-own [node# fiber#] 
membranes-own [memfiber#] 
deadcells-own [deathtype]   ;necrotic vs apoptotic, makes a 
difference 
 
 
to Collagen-import      ;this routine simply reads in collagen 
amounts from a text file 
 
     ask patches with [pxcor > 0 and pxcor <= 30 and pycor > 0 and 
pycor <= 30] 
     [ 
       ifelse (patfiber# < 1) or (edge = 1) 
       [ 
       set collagen dimension ^ 3 * 1.059 + (random-float dimension 
- dimension * 0.5) * 1.059   ;average collagen density is 1.059 
ng/um^3 
       if pcolor != red 
         [ 
         set pcolor (collagen * 5)  ;only non edge patches change 
color 
         ] 
       set strain 0 
       ] 
       [ 
         set collagen 0 
         set strain 0 
       ] 
        
      ] 

      
      
  ask patches with [collagen = 0 and patfiber# = 0] 
  [ 
    set boundary 1 
  ] 
end  
 
to reset 
  clear-all 
  ask patches [set collagen 0  
               set pcolor 0 
               set strain 0] 
  set dimension 3 
  file-close-all 
  ;set-current-directory 
"C://Users/Kyle/Desktop/experiments/Tendon Transfer/ABM" 
end 
 
to startup2 
  let tCSA_Floor CSA_Floor 
  let tFibroblast_to_fiber_ratio Fibroblast_to_fiber_ratio 
  let timeframetemp timeframe 
  let timesteptemp timestep 
  let degradtemp Degradation-Coeff 
  let Percent_Slow_Twitchtemp Percent_Slow_Twitch 
  let Percent_FOGtemp Percent_FOG 
  let tSO_CSA_mean SO_CSA_mean 
  let tSO_CSA_SEM SO_CSA_SEM 
  let tFG_CSA_mean FG_CSA_mean 
  let tFG_CSA_SEM FG_CSA_SEM 
  let tFOG_CSA_mean FOG_CSA_mean 
  let tFOG_CSA_SEM FOG_CSA_SEM 
  let tIID_SEM IID_SEM 
  let tIID_mean IID_mean 
  let tSeverity Severity 
  let tPercent_IID Percent_IID 
  ;set-current-directory 
"C://Users/Kyle/Desktop/experiments/Tendon Transfer/ABM" 
  import-world "2215.csv" 
  set dimension 3 
  set anchor patch 44 24 
  set swap1 patch 0 0 
  set swap2 patch 0 1 
   
  set timeframe timeframetemp 
  set timestep timesteptemp 
  set Degradation-Coeff degradtemp 
  set CSA_Floor tCSA_Floor 
  set Degrad e ^ (-1 * Degradation-Coeff * timestep)   ;Degradation 
is based on protein half-life 
  set Synth (CSA_Floor * 3 * Degrad) / timestep             ;synthesis is 
based on number of nuclei, so its more linear this is the inactivity 
Synthesis rate 
  set Percent_Slow_Twitch Percent_Slow_Twitchtemp  
  set Percent_FOG Percent_FOGtemp 
  set SO_CSA_mean tSO_CSA_mean 
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  set SO_CSA_SEM tSO_CSA_SEM 
  set FG_CSA_mean tFG_CSA_mean 
  set FG_CSA_SEM tFG_CSA_SEM 
  set FOG_CSA_mean tFOG_CSA_mean 
  set FOG_CSA_SEM tFOG_CSA_SEM 
  set Fibroblast_to_fiber_ratio tFibroblast_to_fiber_ratio 
  set IID_SEM tIID_SEM 
  set IID_mean tIID_mean 
  set Percent_IID tPercent_IID 
  set Activity 0 
  set Severity tSeverity 
  random-seed new-seed 
  set elapsed 0 
  reset-ticks 
   
  let counter 0 
  while [counter < totalfibers]            ;randomly assinging a fiber 
type (1/slow/oxidative or 2/gylcolytic/fast) to each fiber at the 
start 
  [ 
    set counter counter + 1 
    let fibertypeprobability random-float 1    ;for plantaris, 59% of is 
slow twitch    
    ifelse fibertypeprobability < Percent_Slow_Twitch / 100      ;this 
gets all 3 fiber types 
    [ 
      ask patches with [patfiber# = counter]    
      [set fibertype 1]         ;SO 
    ] 
    [ 
      ifelse fibertypeprobability < (Percent_Slow_Twitch + 
Percent_FOG) / 100 
      [ 
         ask patches with [patfiber# = counter] 
         [set fibertype 2]           ;FOG 
      ] 
      [ 
        ifelse fibertypeprobability < (Percent_Slow_Twitch + 
Percent_FOG + Percent_IID) / 100 
        [ 
         ask patches with [patfiber# = counter] 
         [set fibertype 4]       ;IID 
        ] 
        [ 
         ask patches with [patfiber# = counter] 
         [set fibertype 3]       ;FG 
        ] 
      ] 
    ] 
   
  ] 
end 
 
 
to createfibroblast 
  while [count fibroblasts < ceiling (Fibroblast_to_fiber_ratio * 
totalfibers)] 
  [ 
  create-fibroblasts 1  
    [ 
      setxy random-xcor random-ycor  
      while [([collagen] of patch-here = 0) or (count fibroblasts in-
radius 4 > 1)] 
      [ 
        setxy random-xcor random-ycor 
 

      ] 
      set size 2 
      set color yellow 
    ] 
  ] 
end 
 
;to Durasense    ;Fibroblasts sense surroundings for collagen 
content 
;    let dura max-one-of neighbors [collagen] 
;    ifelse [collagen] of dura > [collagen] of patch-here     ;if a 
neighbor has more collagen than the current patch, The fibroblast 
stores the direction and magnitude 
;    [ 
;      set durax ([pxcor] of dura - [pxcor] of patch-here)  ;stored as a 
-1 0 or 1 relative to the fibroblast 
;      set duray ([pycor] of dura - [pycor] of patch-here) 
;      set durapersist ([collagen] of dura - [collagen] of patch-here) ; 
storing difference between patches 
;    ] 
;    [                            ; If the patch max is not bigger than current 
patch, the fibroblast stores it as 0s and adds to the magnitude of 
'staying' 
;      set durax 0 
;      set duray 0 
;      set durapersist 0  
;      set stay stay + ([collagen] of patch-here - [collagen] of dura) 
;    ] 
;end 
 
to Tensosense       ;Fibroblasts sense surroundings for strain 
profile 
  let tenso max-one-of neighbors [strain] 
    ifelse [strain] of tenso > [strain] of patch-here 
    [ 
      set tensox ([pxcor] of tenso - [pxcor] of patch-here)  ;stored as 
a -1 0 or 1 relative to the fibroblast 
      set tensoy ([pycor] of tenso - [pycor] of patch-here) 
      set tensopersist ([strain] of tenso - [strain] of patch-here) ; 
storing difference between patches to get a strength value 
    ] 
    [ 
      set tensox 0 
      set tensoy 0 
      set tensopersist 0  
      set stay stay + ([strain] of patch-here - [strain] of tenso) 
    ] 
     
    
   
end 
 
 
to Taxis     ;Fibroblasts figure out if and where to move 
if durapersist > 0 
[    ;If there x and y values are 2, we need to multiply them by the 
strength sqrt2  
  ifelse abs(durax) + abs (duray) = 2 
  [ 
   set durax durax * durapersist * sqrt(2) 
   set duray duray * durapersist * sqrt(2) 
  ] 
  [ 
   set durax durax * durapersist 
   set duray duray * durapersist 
  ] 
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  set taxisx durax                                      ;sets taxis direction, more 
checks later to combine directions 
  set taxisy duray 
] 
 
if tensopersist > 0 
[    ;If there x and y values are 2, we need to multiply them by the 
strength sqrt2  
  ifelse abs(tensox) + abs (tensoy) = 2 
  [ 
   set tensox tensox * tensopersist * sqrt(2) 
   set tensoy tensoy * tensopersist * sqrt(2) 
  ] 
  [ 
   set tensox tensox * tensopersist 
   set tensoy tensoy * tensopersist 
  ] 
  set taxisx tensox 
  set taxisy tensoy 
] 
 
if (tensopersist > 0) and (durapersist > 0)      ; combines the 
vectors if there is both a dura and tenso signal 
[ 
  set taxisx (tensox + durax) / 2          
  set taxisy (tensoy + duray) / 2 
] 
 
set taxispersist sqrt(taxisx ^ 2 + taxisy ^ 2)    ;figuring out the 
strength of taxis based on the resultant vector 
 
 
ifelse random-float (taxispersist + stay) <= stay    ;random decide 
between going and staying based on the relative strengths of each 
[ 
  set still still + 1 
] 
[ 
  facexy (xcor + taxisx) (ycor + taxisy) 
  fd 1 
  set still 0 
] 
   
end 
 
to createfibers 
     
  if mouse-down?  
  [ 
    ask patch mouse-xcor mouse-ycor 
    [ 
       
    if count fibers with [(fiber# = totalfibers + 1)] in-radius 1.5 = 0  
;if there are no fibers here of this type, make one 
    [  
    sprout-fibers 1 
      [ 
      setxy mouse-xcor mouse-ycor  
      set shape "circle"  
      set color cyan 
      set size .8 
      set node# totalnodes + 1 
      set fiber# totalfibers + 1 
      if node# > 1   ; if statement links nodes of the fiber together 
       [ 

         create-membranes-with fibers with [(node# = totalnodes) 
AND (fiber# = totalfibers + 1) ]  
         [  
           set color cyan 
           set memfiber# totalfibers + 1 
         ] 
       ] 
      set totalnodes totalnodes + 1 
      ] 
    ] 
       
     if any? (fibers with [(fiber# = totalfibers + 1) AND (node# = 1) 
and totalnodes > 2] in-radius 1) and totalnodes > 1  ;if you click 
near the starting node, it will connect the first and last nodes 
      [ 
      ask fibers with [(fiber# = totalfibers + 1) AND (node# = 
totalnodes)] 
      [ 
         
       create-membranes-with fibers with [(fiber# = totalfibers + 1) 
AND (node# = 1)] 
         [  
         set color cyan 
         set memfiber# totalfibers + 1 
         ] 
         set totalfibers totalfibers + 1 
         set currentfiber totalfibers 
         set currentnodes totalnodes 
         Markfiberedges   ;this will mark patches as being part of this 
fiber 
         insidepatches 
         print area fiber# * dimension * dimension 
         ask patches with [pcolor = pink] 
         [set collagen 0]  
         set totalnodes 0 
    
      ] 
 
    ] 
     
  ] 
        wait .2 
  ] 
end 
 
to Move-Cell 
  let counter true 
  while [counter][ 
    if mouse-down? [ 
      ask patch mouse-xcor mouse-ycor [ 
        carefully[ 
          ask one-of turtles in-radius 1 [ 
            while [mouse-down?] 
            [ set xcor mouse-xcor set ycor mouse-ycor] 
          ] 
        ] 
        [] 
      ] 
      set counter false 
    ] 
  ] 
end 
 
 
to Markfiberedges   ;this routine marks all the patches within the 
fiber as fiber patches and removes their collagen and strain 
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 ask patches with [patfiber# = currentfiber and edge = 1] 
 [ 
   set pcolor black 
   set edge 0 
   set patfiber# 0 
   set fibertype 0 
 ] 
 ask fibers with [fiber# = currentfiber] 
   [ 
     hatch 1   ;first it marches cells along the links to find the edges 
of the fiber 
     [ 
       hide-turtle 
       set shape "arrow" 
       face one-of fibers with [(node# = (remainder ([node#] of 
myself) currentnodes) + 1) AND (fiber# = [fiber#] of myself) and 
shape = "circle"] 
       ask patch-here [set patfiber# currentfiber set edge 1 set 
pcolor red] 
       while [not any? fibers with [(node# = (remainder ([node#] of 
myself) currentnodes) + 1) and fiber# = [fiber#] of myself] in-
radius 1] 
         [ 
           fd .2 
           ask patch-here [set patfiber# currentfiber set edge 1 set 
pcolor red] 
         ] 
         die 
     ] 
      
    
   ] 
   
end 
 
to insidepatches       ;this is a labourous way to do this 
   ask patches with [patfiber# = currentfiber and edge = 0] 
 [ 
   set pcolor black 
   set patfiber# 0 
 ] 
  ask patches with [edge = 1 and patfiber# = currentfiber] 
  [ 
    ask neighbors4 with [edge != 1 and patfiber# = 0] 
    [ 
    if any? patches with [pxcor > [pxcor] of myself and pycor = 
[pycor] of myself and edge = 1 and patfiber# = currentfiber] 
    [ 
    if any? patches with [pxcor < [pxcor] of myself and pycor = 
[pycor] of myself and edge = 1 and patfiber# = currentfiber] 
    [ 
    if any? patches with [pycor > [pycor] of myself and pxcor = 
[pxcor] of myself and edge = 1 and patfiber# = currentfiber] 
    [ 
    if any? patches with [pycor < [pycor] of myself and pxcor = 
[pxcor] of myself and edge = 1 and patfiber# = currentfiber] 
    [set patfiber# currentfiber set pcolor pink] 
    ]]] 
    ] 
  ] 
  while [any? patches with [pcolor = pink and patfiber# = 
currentfiber and any? neighbors4 with [patfiber# != currentfiber]]] 
  [ask patches with [pcolor = pink and patfiber# = currentfiber] 
    [ask neighbors4 with [patfiber# != currentfiber] 
      [set pcolor pink set patfiber# currentfiber] 
    ] 

  ] 
end 
 
 
to create_macR                  ;resident macrophages 
  create-macrophages 1  
    [ 
      setxy random-xcor random-ycor  
      while [[collagen] of patch-here = 0] 
      [ 
        setxy random-xcor random-ycor  
      ] 
      set shape "circle" 
      set size 1.2 
      set color violet 
      set mtype 3       ;1 is pro, 2 is anti, 3 is resident 
    ] 
   
end 
 
to create_M1                  ;resident macrophages 
  sprout-macrophages 1  
    [ 
      set shape "circle" 
      set size 1.2 
      set color 12 
      set mtype 1       ;1 is pro, 2 is anti, 3 is resident 
      set buddy nobody 
    ] 
   
end 
 
to create_M2 
sprout-macrophages 1  
    [ 
      set shape "circle" 
      set size 1.2 
      set color blue 
      set mtype 2       ;1 is pro, 2 is anti, 3 is resident 
      set buddy nobody 
    ] 
end 
;; this area calculation is based on the formula found here: 
;; http://mathworld.wolfram.com/PolygonArea.html 
to-report area [fibernum] 
  let nodes count fibers with [fiber# = fibernum] 
  let result 0 
  ask fibers with [fiber# = fibernum] [ 
    let nextfiber one-of link-neighbors with [(node# = (remainder 
([node#] of myself) nodes) + 1)] 
    let addend ((xcor * [ycor] of nextfiber) - 
        (ycor * [xcor] of nextfiber)) 
    set result result + addend 
  ] 
  report abs (result / 2) 
end 
 
  ;              +++++++++++++++++++++++++++++++++++++++++++  
Main sequence  
+++++++++++++++++++++++++++++++++++++++++++++ 
   
to Atrophyroutine 
  tick 
  let totalcollagen sum [collagen] of patches 
  strainprofile 
  fiberadapt 
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  cellshift       ;this causes fibroblasts to move to the ECM if they 
accidentally got into a muscle fiber 
  set collagenturnover 0 
  Fibroblastbehaviors 
   ask patches with [marked < 0] 
   [ 
     if collagen > meancollagen / 5 [set marked 0]     ;if there is 
enough collagen, dont stay a hole 
   ]   
   shrinkingholes 
   fixspikes/divits 
   smoothcollagen 
   compactcollagen 
   ask patches with [collagen > 0] [set pcolor grey set edge 0 set 
patfiber# 0 set fibertype 0] 
   let counter 1 
   while [counter <= totalfibers] 
   [ 
     set currentfiber counter 
     fiberedges 
     let tempTP 0 
     ask one-of patches with [patfiber# = currentfiber and 
totalprotein > 0] [set tempTP totalprotein] 
     ask patches with [patfiber# = currentfiber] [set totalprotein 
tempTP] 
     let currentedge patches with [patfiber# = currentfiber and edge 
= 1] 
     if any? currentedge 
     [ 
     let IGF1secrete (.8 * (10 ^ 3) / (dimension ^ 3)) * timestep / 
count currentedge   ;fibers make IGF1, much less than fibroblasts 
     ask currentedge [set IGF1 IGF1 + IGF1secrete] 
     set counter counter + 1 
     ;asking satellite cells to stay with fibers 
     ask satellites with [fiber# = currentfiber] 
     [ 
       ifelse member? patch-here currentedge 
       [] ;if patch-here is in the current edge, its good to go 
       [    ;if not, move to a currentedge, the closest one 
         move-to one-of currentedge with-min [distance myself] 
       ] 
     ] 
     ] 
   ] 
   diffusion 
   ; show collagenturnover / sum [collagen] of patches 
   set elapsed elapsed + timestep 
   if elapsed >= timeframe 
   [ 
  stop 
   ] 
end   
 
 ;                                              +++++++++++++++++++++++++++    
+++++++++++++++++++++++++ 
  
;                                  ********        PDGF-BB       ******** 
 
to  Fibroblastbehaviors 
  ask fibroblasts 
   [ 
     set taxisx 0 
     set taxisy 0 
     set stay 0    ;resets the stay command 
     set speed .417   ;um/min, basal rate 

     set proliferation 100 ;100 out of 24000/timestep or once every 
10 days 
     set apoptosis 100      ; currently much less likely 
     randomsense 
     ;Tensosense 
     ;Durasense          ; Sense is for directions when doing migration 
     PDGFsense 
     IGF1sense 
     PDGFprolif 
     TNFprolif         ;Prolifs are for proliferating and apoptosis 
     IL1prolif 
     TGFprolif 
     IGF1prolif 
     proliferate 
     fmigrate 
   ] 
   ask fibroblasts 
   [ 
     fibroblastsecretions 
     producecollagen 
   ] 
end 
   
to PDGFsense 
  set PDGFmax 0 
  let milieu neighbors with [PDGF > 0 and (collagen > 0 or marked 
< 0)]     ;looks for the local environment, only collagen or holes 
  If any? milieu or [PDGF] of patch-here > 0   ;is there even any 
PDGF present? If so, continue 
  [ 
  let PDGFx 0 
  let PDGFy 0 
  let PDGFpersist 0 
  let miliumax 0 
  if any? milieu 
  [ 
  set miliumax max-one-of milieu [PDGF]   ;finds the local 
maximum concentraiton of PDGF 
  set PDGFmax [PDGF] of miliumax 
  ] 
  Ifelse PDGFmax < [PDGF] of patch-here  ;Is the fibroblast sitting 
on the local highest PDGF, if so the urge to stay is high 
  [ 
    set PDGFmax [PDGF] of patch-here 
    If PDGFmax < 1 and PDGFmax > .1 
    [ 
      set PDGFpersist 25.9 
    ] 
    If PDGFmax >= 1 and PDGFmax < 1000 
    [ 
      set PDGFpersist (-0.864 * (log PDGFmax 10) ^ 2 + 2.592 * (log 
PDGFmax 10) + 25.92)    ;from one of my rules 
      set speed speed + -0.0692 * (log PDGFmax 10) ^ 2 + 0.2947 * 
(log PDGFmax 10) + 2E-16 
    ] 
    set stay stay + PDGFpersist 
  ] 
  [  ;puts the taxis vectors towards the highest concentration of 
PDGF 
    If PDGFmax < 1 and PDGFmax > .1 
    [ 
       set PDGFpersist 25.9 
    ] 
    If PDGFmax >= 1 and PDGFmax < 1000 
    [ 



118 
 

      set PDGFpersist (-0.864 * (log PDGFmax 10) ^ 2 + 2.592 * (log 
PDGFmax 10) + 25.92)    ;from one of my rules 
      set speed speed + -0.0692 * (log PDGFmax 10) ^ 2 + 0.2947 * 
(log PDGFmax 10) + 2E-16 
    ] 
    set PDGFx ([pxcor] of miliumax - [pxcor] of patch-here) 
    set PDGFy ([pycor] of miliumax - [pycor] of patch-here) 
    set taxisx taxisx + PDGFx * sqrt(abs (PDGFx) + abs (PDGFy)) * 
PDGFpersist   ;Adds persist vectors to current directional vectors 
    set taxisy taxisy + PDGFy * sqrt(abs (PDGFx) + abs (PDGFy)) * 
PDGFpersist 
  ] 
  ] 
end 
 
to PDGFprolif 
  If PDGFmax > .1 and PDGFmax < 100 ;from rules, PDGF increase 
proliferation starting at .1 ng/ml 
  [ 
    set proliferation proliferation + ((log PDGFmax 10) + 2) * 100 - 
100 
  ] 
  If PDGFmax >= 100 
  [ 
    set proliferation proliferation + ((log 100 10) + 2) * 100 - 100 
  ] 
   
  If PDGFmax > .5 and PDGFmax < 50        ;apoptosis rules 
  [ set apoptosis apoptosis + (-.25 * (log PDGFmax 10) + .92) * 100 
- 100] 
  if PDGFmax >= 50 
  [set apoptosis apoptosis + (-.25 * (log 50 10) + .92) * 100 - 100] 
end 
 
;                                  ********IGF-1******** 
 
to IGF1sense 
  set IGF1max 0 
  let milieu neighbors with [IGF1 > 0 and (collagen > 0 or marked < 
0)] 
  If any? milieu or [IGF1] of patch-here > 0   ;is there even any 
PDGF present? If so, continue 
  [  
  let IGF1x 0 
  let IGF1y 0 
  let IGF1persist 0 
  let miliumax 0 
  if any? milieu 
  [ 
  set miliumax max-one-of milieu [IGF1]   ;finds the local maximum 
concentraiton of PDGF 
  set IGF1max [IGF1] of miliumax 
  ] 
  Ifelse IGF1max < [IGF1] of patch-here  ;Is the fibroblast sitting on 
the local highest IGF1, if so the urge to stay is high 
  [ 
    set IGF1max [IGF1] of patch-here 
    If IGF1max < 1 and IGF1max > .01 
    [  
      set IGF1persist -0.1145 * (log IGF1max 10) ^ 3 - 0.0186 * (log 
IGF1max 10) ^ 2 + 0.4221 * (log IGF1max 10) + 24.192 
      set speed speed + -0.0284 * (log IGF1max 10) ^ 3 - 0.0124 * 
(log IGF1max 10) ^ 2 + 0.0906 * (log IGF1max 10) + 0.4205  
    ] 
    If IGF1max >= 1 and IGF1max < 320 
    [ 

      set IGF1persist (-0.7332 * (log IGF1max 10) ^ 3 + 2.6171 * (log 
IGF1max 10) ^ 2 - 2.0028 * (log IGF1max 10) + 24.586)     ;from 
one of my rules 
      set speed speed + -0.1087 * (log IGF1max 10) ^ 3 + 0.3878 * 
(log IGF1max 10) ^ 2 - 0.2949 * (log IGF1max 10) + 0.4838 
    ] 
    set stay stay + IGF1persist 
  ] 
  [  ;puts the taxis vectors towards the highest concentration of 
IGF1 
    If IGF1max < 1 and IGF1max > .01 
    [  
      set IGF1persist -0.1145 * (log IGF1max 10) ^ 3 - 0.0186 * (log 
IGF1max 10) ^ 2 + 0.4221 * (log IGF1max 10) + 24.192 
      set speed speed + -0.0284 * (log IGF1max 10) ^ 3 - 0.0124 * 
(log IGF1max 10) ^ 2 + 0.0906 * (log IGF1max 10) + 0.4205  
    ] 
    If IGF1max >= 1 and IGF1max < 320 
    [ 
      set IGF1persist (-0.7332 * (log IGF1max 10) ^ 3 + 2.6171 * (log 
IGF1max 10) ^ 2 - 2.0028 * (log IGF1max 10) + 24.586)     ;from 
one of my rules 
      set speed speed + -0.1087 * (log IGF1max 10) ^ 3 + 0.3878 * 
(log IGF1max 10) ^ 2 - 0.2949 * (log IGF1max 10) + 0.4838 
    ] 
    set IGF1x ([pxcor] of miliumax - [pxcor] of patch-here) 
    set IGF1y ([pycor] of miliumax - [pycor] of patch-here) 
    set taxisx taxisx + IGF1x * sqrt(abs (IGF1x) + abs (IGF1y)) * 
IGF1persist   ;Adds persist vectors to current directional vectors 
    set taxisy taxisy + IGF1y * sqrt(abs (IGF1x) + abs (IGF1y)) * 
IGF1persist 
  ] 
  ] 
end 
 
to IGF1prolif 
  If IGF1max > 1 and IGF1max < 100 ;from rules, IGF1 increase 
proliferation starting at .1 ng/ml 
  [ 
    set proliferation proliferation + (1.15 * (log IGF1max 10) + 1) * 
100 - 100 
    if apoptosis > 100 
    [                                                                        
    set apoptosis (-.14 * (log IGF1max 10) + 1) * apoptosis 
    ]   
  ] 
  If IGF1max >= 100 
  [ 
    set proliferation proliferation + (1.15 * (log 100 10) + 1) * 100 - 
100 
    if apoptosis > 100 
    [ 
    set apoptosis (-.14 * (log 100 10) + 1) * apoptosis 
    ]   
  ] 
   
end 
 
; Random direction 
 
to randomsense 
  let randomx random-float 2 - 1     ;cells have an inherent random 
direction of motion without any aid. this sets the x,y and 
persistance of that 
  let randomy random-float 2 - 1 
  let dummy 0 
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  let randompersist 5     ;basal persistance 
  ifelse (randomx = 0)   ;atan errors if x is 0, so I check for that 
  [ 
    set dummy 0 
  ] 
  [ 
    set dummy atan randomx randomy 
  ] 
    set taxisx cos dummy * randompersist 
    set taxisy sin dummy * randompersist 
end 
 
to Durasense 
   
   
end 
 
to proliferate 
  ifelse proliferating > 0 
  [ 
    set proliferating proliferating + timestep 
    if proliferating > 8 
    [set proliferating 0 hatch 1]  ;after 8 hours, a new baby 
fibroblast is born! 
  ] 
  [ 
    let chance random (24000 / timestep) 
    if chance < proliferation 
    [set proliferating proliferating + timestep] ; if it starts 
proliferating, good! it will also no longer migrate 
  ] 
  let chance random (36000 / timestep)  ;once every 15 days? 
  if chance < apoptosis and count fibroblasts > 1 
  [die]                         ;100 out of 24000/timestep or once every 10 
days 
  set proliferation 0 
  set apoptosis 0 
end 
 
to fmigrate 
  let P 0 
  let dummy 0 
  let t 0 
  let dist 0 
  if proliferating = 0       ;no migration for dividing cells 
  [ 
  ifelse taxisx = 0 
  [ 
    ifelse taxisy > 0 
    [set heading 0] 
    [set heading 180] 
  ] 
  [ 
    set heading atan taxisx taxisy 
  ] 
  set P sqrt(taxisx ^ 2 + taxisy ^ 2) 
  set t timestep * 60 
  set dist floor (sqrt(2 * (speed ^ 2) * P * ( t - P * ( 1 - e ^ (-1 * t / P) 
))) / dimension)  ;this is how far my fibroblast has to travel 
  let check random-float (P + stay) 
  if check < stay 
  [set dist 0     ;the cell is hanging out where it wants to be due to 
chemical ques, and so it doesnt move 
   if random 3 = 2     ;random chance to randomy appear 
somewhere else 
   [ 

   setxy random-xcor random-ycor 
   while [[collagen] of patch-here = 0] 
      [ 
        setxy random-xcor random-ycor 
 
      ] 
  ] 
  ] 
  set stay 0 
  while [dist > 0 and stay <= 0] 
  [ 
    fd .5 
    set dist dist - .5 
  if [boundary] of patch-here = 1 
  [while [[collagen] of patch-here = 0] 
      [ 
        setxy random-xcor random-ycor 
 
      ] 
   set dist 0 
   ] 
  if [collagen] of patch-here <= 0    ;basically keeps going until 
there is no collagen down, aka inside a cell or boundry 
  [bk .5 
  set dummy dummy + 1 
  set dist dist + .5 
  set taxisx 0 
  set taxisy 0 
  randomsense 
  PDGFsense 
  IGF1sense 
  ifelse taxisx = 0 
  [ 
    ifelse taxisy > 0 
    [set heading 0] 
    [set heading 180] 
  ] 
  [ 
    set heading atan taxisx taxisy 
  ] 
  ] 
  if dummy > 5 
  [set dist 0] 
  ]] 
end 
 
to TGFprolif 
  set TGFmax [TGF] of max-one-of neighbors [TGF] 
  if TGFmax < [TGF] of patch-here 
  [ set TGFmax [TGF] of patch-here] 
  if TGFmax > .1 and TGFmax < 10 
  [ 
    set proliferation (-.25 * (log TGFmax 10) + .75) * proliferation 
  ] 
  if TGFmax >= 10 
  [ 
    set proliferation (-.25 * (log 10 10) + .75) * proliferation 
  ] 
  if TGFmax > .05 and TGFmax < 5 
  [ 
    set apoptosis apoptosis + (.5 * (log TGFmax 10) + 1.65) * 100 - 
100 
  ] 
  if TGFmax >= 5 
  [ 
    set apoptosis apoptosis + (.5 * (log 5 10) + 1.65) * 100 - 100 
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  ] 
   
end 
 
to TNFprolif 
  set TNFmax [TNF] of max-one-of neighbors [TNF] 
  if TNFmax < [TNF] of patch-here 
  [ set TNFmax [TNF] of patch-here]     ;like before, just getting max 
TNF in local area, including current patch 
  if TNFmax > .1 and TNFmax < 10 
  [ 
    set proliferation proliferation + (.43 * (log TNFmax 10) + 1.43) * 
100 - 100 
  ] 
  if TNFmax >= 10 
  [ 
    set proliferation proliferation + (.43 * (log 10 10) + 1.43) * 100 - 
100 
  ] 
  if TNFmax > .2 and TNFmax < 20 
  [ 
    set apoptosis apoptosis + (2.5 * (log TNFmax 10) + 2.75) * 100 - 
100 
  ] 
  if TNFmax >= 20 
  [ 
    set apoptosis apoptosis + (2.5 * (log 20 10) + 2.75) * 100 - 100 
  ] 
end 
 
 
to IL1prolif 
  set IL1max [IL1] of max-one-of neighbors [IL1] 
  if IL1max < [IL1] of patch-here 
  [set IL1max [IL1] of patch-here]     ;like before, just getting max 
IL1 in local area, including current patch 
  if IL1max > .1 and IL1max < 10 
  [ 
    set proliferation proliferation + (.143 * (log IL1max 10) + 1.143) 
* 100 - 100 
    set apoptosis apoptosis + (.71 * (log IL1max 10) + 1.71) * 100 - 
100 
  ] 
  if IL1max >= 10 
  [ 
    set proliferation proliferation + (.143 * (log 10 10) + 1.143) * 
100 - 100 
    set apoptosis apoptosis + (.71 * (log 10 10) + 1.71) * 100 - 100 
  ] 
end 
 
 
 
 
;        0000000000000000      for trying out new pieces of code      
000000000000000000000 
 
to fibroblastsecretions    ;this covers all the soluble factors 
including mmp 
  ;First getting MMPs 
let PDGFcon 1 
if [PDGF] of patch-here > .1 
[set PDGFcon ((log [PDGF] of patch-here 10) * -.26 + .73) 
 if [PDGF] of patch-here > 10  
 [set PDGFcon ((log 10 10) * -.26 + .73)] 
] 

 
let IL1con 1 
if [IL1] of patch-here >= .01 
[set IL1con ((log [IL1] of patch-here 10) * .46 + 1.92) 
 if [IL1] of patch-here > 1 
 [set IL1con ((log 1 10) * .46 + 1.92)] 
] 
 
let TNFcon 1 
if [TNF] of patch-here >= .1 
[set TNFcon ((log [TNF] of patch-here 10) * .83 + 1.83) 
 if [TNF] of patch-here > 10 
 [set TNFcon ((log 10 10) * .83 + 1.83)] 
] 
 
let strainmax max-one-of neighbors [strain] 
set strainmax [strain] of strainmax 
if [strain] of patch-here > strainmax [set strainmax [strain] of 
patch-here] 
let strainmin min-one-of neighbors [strain] 
set strainmin [strain] of strainmin 
if [strain] of patch-here < strainmin [set strainmin [strain] of 
patch-here] 
let sprox strainmax - strainmin 
let straincon .047 * (sprox ^ 2) - .19 * sprox + .985 
if sprox > 8 
[set straincon .047 * (8 ^ 2) - .19 * 8 + .985] 
 
;________________________________And the 
rest!______________________________________________ 
  ask patch-here 
  [ 
    set TGF TGF + (1.65 * (10 ^ 3) / (dimension ^ 3)) * (sprox * .052 
+ 1) * timestep   ;this includes unit conversions to ng/ml. also 
strain increases this 
    set TNF TNF + (4.9 * (10 ^ 3) / (dimension ^ 3)) * (sprox * .117 + 
1) * timestep    ;its per hour, so timestep is needed here 
    set PDGF PDGF + (0.41 * (10 ^ 3) / (dimension ^ 3)) * timestep 
    set IGF1 IGF1 + (8.8 * (10 ^ 3) / (dimension ^ 3)) * (sprox * .146 
+ 1) * timestep     ;I lowered this by a factor of 10 because it was 
really large 
    set MMP MMP + (.000081 * (10 ^ 3) / (dimension ^ 3)) * 
timestep * TNFcon * straincon * IL1con * PDGFcon 
    set collagen collagen - (dimension ^ 3 / 10 ^ 12) * ((18 * 
(collagen * 10 ^ 12 / dimension ^ 3) * MMP) / (2500 + MMP)) * 
timestep      ;lots of conversions but basic enzyme kinetics where 
Km = 1 uM and kcat = 18 h^-1 
    if collagen < 0 [ set collagen .001] 
  ] 
   
end 
 
 
to diffusion         ;also does halflife 
 
  let dummy 0 
  while [dummy <= timestep] 
  [                           ; MCP DAMPs ROS IL6 IL10 IL8 FGF 
    let con .5 
    diffuse TGF con 
    diffuse IGF1 con 
    diffuse PDGF con 
    ;diffuse MMP con 
    diffuse TNF con 
    diffuse DAMPs con 
    diffuse MCP con 
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    diffuse IL1 con 
    diffuse IL6 con 
    diffuse IL8 con 
    diffuse IL10 con 
    ;diffuse FGF con 
    set dummy dummy + .15 
    shiftchemokines  
  ] 
   
   
  ask patches                        ;halflifes 
  [ifelse boundary = 1 
    [set TGF 0 set IGF1 0 set TNF 0 set PDGF 0 set IL1 0 set MMP 0 
set DAMPs 0 set IL6 0 set MCP 0 set IL8 0 set FGF 0 set IL10 0] 
    [ 
   set collagen collagen * (1 / 2) ^ (timestep / (80 * 24))   ;halflife of 
80 days 
   ; basic halflife equations   
   set TGF TGF * (1 / 2) ^ (timestep / 5)  
   set IGF1 IGF1 * (1 / 2) ^ (timestep / 5)  
   set PDGF PDGF * (1 / 2) ^ (timestep / 5)  
   ;set MMP MMP * (1 / 2) ^ (timestep / 5)         
   set TNF TNF * (1 / 2) ^ (timestep / 5) 
   set DAMPS DAMPS * (1 / 2) ^ (timestep / 5) 
   set IL1 IL1 * (1 / 2) ^ (timestep / 5)  
   set IL6 IL6 * (1 / 2) ^ (timestep / 5) 
   set IL8 IL8 * (1 / 2) ^ (timestep / 5) 
   set IL10 IL10 * (1 / 2) ^ (timestep / 5) 
   set MCP MCP * (1 / 2) ^ (timestep / 5)  
   ;set FGF FGF * (1 / 2) ^ (timestep / 5) 
   if TGF < .0001                                  ;This zeros out some values, if 
they get too tiny to matter 
   [set TGF 0] 
   if IGF1 < .0001 
   [set IGF1 0] 
   if PDGF < .0001 
   [set PDGF 0] 
   if MMP < .00000001 
   [set MMP 0] 
   if TNF < .0001 
   [set TNF 0] 
   if DAMPS < .001 
   [set DAMPS 0] 
   if IL1 < .0001 
   [set IL1 0] 
   if IL6 < .0001 
   [set IL6 0] 
   if IL8 < .0001 
   [set IL8 0] 
   if IL10 < .0001 
   [set IL10 0] 
   if FGF < .0001 
   [set FGF 0] 
   if MCP < .0001 
   [set MCP 0] 
    ]  
  ] 
  set CCL4 CCL4 * (1 / 2) ^ (timestep / 5) 
  set CCL3 CCL3 * (1 / 2) ^ (timestep / 5) 
  set CXCL1 CXCL1 * (1 / 2) ^ (timestep / 5) 
  set CXCL2 CXCL2 * (1 / 2) ^ (timestep / 5) 
  set G-CSF G-CSF * (1 / 2) ^ (timestep / 5) 
  set Lipoxins Lipoxins * (1 / 2) ^ (timestep / 5) 
  set Resolvins Resolvins * (1 / 2) ^ (timestep / 5) 
  set MMP12 MMP12 * (1 / 2) ^ (timestep / 5) 
  set Lactoferins Lactoferins * (1 / 2) ^ (timestep / 5) 

  set IL4 IL4 * (1 / 2) ^ (timestep / 5) 
  set IL13 IL13 * (1 / 2) ^ (timestep / 5) 
  set NO NO * (1 / 2) ^ (timestep / 5) 
  set PGE2 PGE2 * (1 / 2) ^ (timestep / 5) 
  set VEGF VEGF * (1 / 2) ^ (timestep / 5) 
  set Azurocidin Azurocidin * (1 / 2) ^ (timestep / 5) 
  set LL37 LL37 * (1 / 2) ^ (timestep / 5) 
  set CathepsinG CathepsinG * (1 / 2) ^ (timestep / 5) 
  set CCL6 CCL6 * (1 / 2) ^ (timestep / 5) 
  set IFN IFN * (1 / 2) ^ (timestep / 5) 
  set CCL17 CCL17 * (1 / 2) ^ (timestep / 4) 
  set CCL22 CCL22 * (1 / 2) ^ (timestep / 4) 
  set HGF HGF * (1 / 2) ^ (timestep / 5) 
end 
 
to shiftchemokines          ;this code will move a third of the 
chemokines off the fibers and back into the collagen 
  let colpatches patches with [collagen > 0] 
  ask patches with [patfiber# > 0 and edge = 0 and necrotic = 0] 
  [ 
    ask one-of colpatches with-min [distance myself] 
    [ 
      set MMP MMP + [MMP] of myself / 3  
      set PDGF PDGF + [PDGF] of myself / 3  
      set TNF TNF + [TNF] of myself / 3 
      set TGF TGF + [TGF] of myself / 3 
      set DAMPs DAMPs + [DAMPs] of myself / 3 
      set IGF1 IGF1 + [IGF1] of myself / 3 
      set IL1 IL1 + [IL1] of myself / 3 
      set IL6 IL6 + [IL6] of myself / 3 
      set IL8 IL8 + [IL8] of myself / 3 
      set IL10 IL10 + [IL10] of myself / 3 
      set FGF FGF + [FGF] of myself / 3 
      set MCP MCP + [MCP] of myself / 3 
    ] 
      set MMP 0 
      set PDGF 0 
      set TNF 0 
      set IL1 0  
      set IL6 0  
      set IL8 0  
      set IL10 0  
      set TGF 0  
      set IGF1 0 
      set DAMPs 0 
      set FGF 0 
      set MCP 0   
    ] 
end 
 
to cellshift   
  let colpatches patches with [collagen > 0 or necrotic > 0] 
  let shiftingcells turtles with [breed != satellites] 
  ask shiftingcells       ;moves fibroblasts if they are inside patches 
  [ 
    while [not member? patch-here colpatches] 
      [ 
        face one-of colpatches with-min [distance myself] 
        fd .2 
      ] 
  ] 
  set colpatches patches with [collagen > 0 or necrotic > 0 or edge 
= 1] 
  if count satellites > 0 
  [ask satellites 
    [ 
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    while [not member? patch-here colpatches] 
     [ 
        face one-of colpatches with-min [distance myself] 
        fd .2 
     ] 
    ] 
  ] 
   
end 
 
to fiberadapt 
 set NO NO + 2 
  let randfiber random totalfibers + 1 
  let counter 0 
  while [counter < totalfibers]    ;this part does all the changes in 
total protein 
  [ 
    set currentfiber remainder (randfiber + counter) totalfibers + 1  
    set counter counter + 1 
    fiberedges 
    let currentedge patches with [patfiber# = currentfiber and edge 
= 1] 
    if count currentedge > 3 
    [ 
    let TNFtot mean [TNF] of currentedge 
    let IGFtot mean [IGF1] of currentedge 
    let straincon max [strain] of currentedge 
    let synthesis Synth + Activity        ;rate of protein synthesis and 
degradation. Activity directly effects basal levels of synthesis 
    let degradation Degrad     ; this will eventually be used to 
distinguish fast and slow twitch fibers 
    let synth-mod 1           ;rate modulators from molecules 
    let deg-mod 1 
    if IGFtot > .2 
    [set synth-mod (.09 * (log IGFtot 10) + 1.1) 
    if IGFtot > 40 
    [set synth-mod (.09 * (log 40 10) + 1.1)] 
    ] 
    If TNFtot > 1 
    [ 
     set deg-mod (.035 * TNFtot + .97) 
     if TNFtot > 6 
     [set deg-mod (.035 * 6 + .97)] 
  ;   if synth-mod > 1 
  ;   [set synth-mod (((1 - synth-mod) / 60) * TNFtot + synth-mod - 
2 * ((1 - synth-mod) / 60))]   ;kinda complex but tnf inhibits IGF 
synthesis 
  ;   if TNFtot > 62 
  ;   [set synth-mod (-.00181 * TNFtot + 1)] 
  ;   if TNFtot > 100 
  ;   [set synth-mod (-.00181 * 100 + 1)] 
    ] 
    let currentprotein 0 
    let FTmodifier 0          ;this is the modifier for fibertype 
differences in synthesis and degradation 
    let FT 0 
    ;the new total protein is a simple equation of protein 
breakdown + synthesis changing the current protein content in a 
muscle 
    ask one-of patches with [patfiber# = currentfiber and 
totalprotein > 0 and fibertype > 0] [set currentprotein totalprotein 
set FT fibertype] 
    ifelse FT <= 2 
    [set FTmodifier 1] 
    [set FTmodifier .66]        ;fast twitch has slower protein synthesis 
and degradation 

    let newtotalprotein currentprotein + synthesis * synth-mod *  
timestep * FTmodifier - currentprotein * deg-mod * degradation * 
FTmodifier 
    ask patches with [patfiber# = currentfiber] 
    [set totalprotein newtotalprotein] 
    ] 
  ] 
   
   
  ; +++++++++++++++++++++++++++++ This while loop is the core 
of how a muscle adapts, it will resize a muscle fiber to +- .5 
squares 
   
  let dummy 0 
  let catchvariable 0 
  while [dummy != totalfibers and catchvariable < 1000] 
  [ 
   set catchvariable catchvariable + 1 
   set dummy 0 
   set counter 0  
   while [counter < totalfibers]  
   [ 
   set counter counter + 1 
   set currentfiber counter 
   let newtotalprotein 0 
   let currentedge patches with [patfiber# = currentfiber and edge 
= 1] 
   ifelse count currentedge < 4 
   [set dummy dummy + 1] 
   [ 
   ask one-of patches with [patfiber# = currentfiber and 
totalprotein > 0 and necrotic = 0] [set newtotalprotein 
totalprotein] 
   fiberedges 
   let border patches with [count neighbors < 8 and boundary = 1] 
   let tempprotein count patches with [patfiber# = currentfiber and 
necrotic = 0] * dimension ^ 3 * 1.059 
   ifelse abs(tempprotein - newtotalprotein) < ( dimension ^ 3 * 
1.059) 
   [set dummy dummy + 1] 
      
   [ 
    ifelse tempprotein > newtotalprotein 
    ; ()()()()()()()()()()()()()()()()()()()()()()()()()atrophy 
    [ 
    ifelse any? currentedge with [count neighbors with [patfiber# != 
[patfiber#] of myself] >= 6] 
    [ 
    set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself] >= 6] 
    ] 
    [ 
      ifelse any? currentedge with [count neighbors with [patfiber# 
!= [patfiber#] of myself or necrotic > 0] >= 3] 
        [ 
          set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself or necrotic > 0] >= 3] 
       
        ] 
        [ 
          set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself or necrotic > 0] >= 1] 
        ] 
        
    ] 
    ask one-of currentedge    ;this is where its erroring 
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    [ 
    set pcolor 2 
    set edge 0 
    set marked -1 * patfiber#      ;this makes it a "hole" 
    set patfiber# 0 
    set fibertype 0 
    set totalprotein 0 
    let bordermax one-of border with-max [distance myself] 
    set bordermax distance bordermax 
    let bordermin one-of border with-min [distance myself] 
    set bordermin distance bordermin 
    let bordertemp one-of border with [distance myself < 
bordermin + (bordermax - bordermin) / 12] 
    set shiftx [pxcor] of bordertemp 
    set shifty [pycor] of bordertemp 
       
    ] 
  ] 
   
    ; ()()()()()()()()()()()()()()()()()()()()()()()()()hypertrophy 
   
  [ 
    
  let bordercheck 7 
  let currenttemp 0 
  let temp 0 
  let currentedge2 currentedge with [count neighbors with 
[collagen > 0] > 0] 
  set currentedge2 currentedge2 with [count neighbors with 
[patfiber# != [patfiber#] of myself] <= 3] 
  while [bordercheck < 8] 
  [ 
   set currenttemp one-of currentedge2  
   if currenttemp = nobody 
   [set currenttemp one-of currentedge] 
  ask currenttemp 
  [ 
    let neighs neighbors with [collagen > 0 or marked < 0] 
    if count neighs = 0 
    [ 
      set neighs neighbors with [collagen > 0 or marked < 0 or 
necrotic > 0] 
    ] 
    set temp one-of neighs with-max [count neighbors with 
[patfiber# = currentfiber]] 
    set bordercheck count [neighbors] of temp 
  ] 
  ] 
  ask currenttemp 
  [ 
    ask temp 
    [redistribute 
     swap 
     set necrotic 0 
    ] 
    zerofactors 
  ] 
  ] 
  resolvetouchingfibers  
  resolvetouchingboundary 
  ] 
   ] 
  ] 
 ] 
   
   

  if active? 
  [let daynight floor (elapsed / 12)   ;Rats sleep 12 hours a day, so 
this is relatively easy for me to calculate when its day or "night" 
for them. Assuming no activity at night 
    ifelse daynight / 2 = int (daynight / 2)    ;This figures out night or 
day 
    [set Activity Activity + 4]   ;four was chosen arbitrarily at first to 
see if it works 
    [set Activity Activity - 4] 
    if Activity < 0 
    [set Activity 0] 
  ] 
 
end 
 
to producecollagen 
let TGFcon 1 
if [TGF] of patch-here > 3.5 
[set TGFcon ((log [TGF] of patch-here 10) * .62 + .67) 
 if [TGF] of patch-here > 1250  
 [set TGFcon ((log 1250 10) * .62 + .67)] 
] 
 
let IGFcon 1 
if [IGF1] of patch-here >= 1 
[set IGFcon ((log [IGF1] of patch-here 10) * .37 + 1) 
 if [IGF1] of patch-here > 100 
 [set IGFcon ((log 100 10) * .37 + 1)] 
] 
 
let IL1con 1 
if [IL1] of patch-here >= .04 
[set IL1con ((log [IL1] of patch-here 10) * -.16 + .78) 
 if [IL1] of patch-here > 4 
 [set IL1con ((log 4 10) * -.16 + .78)] 
] 
 
let TNFcon 1 
if [TNF] of patch-here >= 1 
[set TNFcon ((log [TNF] of patch-here 10) * -.06 + 1) 
 if [TNF] of patch-here > 100 
 [set TNFcon ((log 100 10) * -.06 + 1)] 
] 
 
let straincon (([strain] of patch-here) * .05 + 1) 
if [strain] of patch-here > 5 
[set straincon (5 * .05 + 1)] 
 
;got through all the collagen modifiers 
;.018 pg/cell/hr for the basal rate 
let collagenmade .018 * TGFcon * IGFcon * IL1con * TNFcon * 
straincon * timestep / 1000   ;1000 is to convert to ng from pg 
let distribution count neighbors with [collagen > 0] + 1 
ask patch-here [ set collagen collagen + collagenmade / 
distribution] 
ask neighbors with [collagen > 0] 
[set collagen collagen + collagenmade / distribution] 
set collagenturnover collagenturnover + collagenmade 
end 
 
to strainprofile 
  ;ask patches [set strain 20] 
  ;ask patches [set strain sin (random 180 - 90) * 5 + 15]   ;static 
and constant 5% strain 
 
end 
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to adjustfiber    ;This routine is used currently to adjust muscle 
fiber size 
 
  let counter true 
  let originx 0 let originy 0 
  while [counter][ 
    if mouse-down? [ 
      ask patch mouse-xcor mouse-ycor [ 
        carefully[ 
          ask one-of fibers in-radius 2 with [fiber# = currentfiber]  [ 
            set originx xcor set originy ycor 
            while [mouse-down?] 
            [ set xcor mouse-xcor set ycor mouse-ycor] 
             
            if ([patfiber#] of patch-here != fiber# and [patfiber#] of 
patch-here != 0) or [collagen] of patch-here > 0  
            [set xcor originx set ycor originy] 
            set currentnodes count fibers with [fiber# = currentfiber] 
            markfiberedges 
            insidepatches 
            print count patches with [patfiber# = currentfiber] * 
dimension * dimension 
          ] 
        ] 
        [] 
      ] 
      set counter false 
    ] 
  ] 
end 
 
 
 
 
to Patchify 
markfiberedges 
insidepatches 
ask patches with [patfiber# = currentfiber and edge = 1] 
[ask neighbors with [patfiber# = 0]  
  [ 
    set collagen dimension ^ 3 * 1.059 + (random-float dimension - 
dimension * 0.5) * 1.059    ;this is ng of collagen 
    set pcolor grey 
  ] 
] 
ask fibers with [fiber# = currentfiber] [die] 
let fiberproteins count patches with [patfiber# = currentfiber] * 
dimension ^ 3 * 1.059 
ask patches with [patfiber# = currentfiber] [set totalprotein 
fiberproteins] 
 
end 
 
to resolvetouchingfibers 
  let fiberpatches patches with [patfiber# = currentfiber] 
  set fiberpatches fiberpatches with [count neighbors4 with 
[patfiber# > 0 and patfiber# != currentfiber] > 0] 
  let counter 0 
  while [any? fiberpatches and counter < 10000] 
  [ 
  set counter counter + 1 

  ask one-of fiberpatches                                  ;this is to find fibers 
touching when they shouldn't and to shift the collagen around 
them 
  [ 
      ask neighbors4 with [patfiber# > 0 and patfiber# != 
currentfiber] 
      [if sum [collagen] of neighbors > 0                   ;making sure 
there is collagen to shift around 
        [ 
          let colsum sum [collagen] of neighbors with [collagen > 0] 
          let colcount count neighbors with [collagen > 0] + 1       
;takes collagen from neighbors and redistributes 
          ask neighbors with [collagen > 0] 
          [ 
            set collagen collagen - collagen / colcount  
          ] 
          set collagen colsum / colcount 
          set patfiber# 0 
          set fibertype 0 
          set edge 0 
          set totalprotein 0 
          set boundary 0 
        ] 
     ] 
  ] 
  set fiberpatches patches with [patfiber# = currentfiber] 
  set fiberpatches fiberpatches with [count neighbors4 with 
[patfiber# > 0 and patfiber# != currentfiber] > 0] 
  ] 
end 
   
to resolvegrowth 
  let counter 0 
  while [count patches with [marked > 0] > 0 and counter < 1000] 
  [ 
    ask patches with [marked > 0]   ;this is patch B, which has A's 
stuff, and swap1 is B 
    [ 
      let patchc patch-at shiftx shifty 
      ifelse [patfiber#] of patchc > 0 or [boundary] of patchc > 0 or 
[marked] of patchc < 0  
      [              ;pushes a muscle fiber or boundary with ease 
        ask swap1 [ask patchc [swap 
          set pcolor grey]]  ;C becomes B 
      ] 
      [ 
         
      if [collagen] of patchc > 0 
      [ 
        ask patchc 
        [ 
          ask swap2 [swap]   ;swap2 becomes patch C 
          ask swap1 [ask patchc [swap]]  ;C becomes B 
          set marked 2 ;now we are focused on C being the new B 
          set shiftx [shiftx] of myself 
          set shifty [shifty] of myself 
          set pcolor green 
        ] 
         
      ] 
    ] 
    set marked 0 
    ask swap2  
    [ask swap1 [swap]    ;resets swap1 to swap2  ;so swap1 is C, C is 
now B and has the patchness of A 
      set collagen 0 
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      set colx 0 
      set coly 0 
      set colz 0 
      set strain 0 
      set  strainx 0 
      set DAMPcounter 0 
      set strainy 0 
      set strainz 0 
      set MMP 0 
      set PDGF 0 
      set TNF 0 
      set IL1 0 
      set TGF 0 
      set IGF1 0 
      set ROS 0 
      set IL6 0 
      set patfiber# 0 
      set fibertype 0 
      set boundary 1 
      set edge 0 
      set pcolor black 
      set marked 0 
      set shiftx 0 
      set necrotic 0 
      set DAMPs 0 
      set IL8 0 
      set IL10 0 
      set FGF 0 
      set shifty 0 ]      
    ] 
    set counter counter + 1 
  ] 
end 
 
to fiberedges 
  ask patches with [patfiber# = currentfiber and necrotic = 0] 
  [ 
    ifelse count neighbors4 with [patfiber# != [patfiber#] of myself] 
> 0 
    [ 
      set edge 1 
      set pcolor red 
    ] 
    [ 
      ifelse count neighbors4 with [necrotic > 0 ] > 0 
      [ 
      set edge 1 
      set pcolor red 
      ] 
      [ 
      set edge 0 
      if fibertype = 3 [set pcolor pink + 2] 
      if fibertype = 2 [set pcolor pink] 
      if fibertype = 1 [set pcolor red + 1] 
      if necrotic > 0 [set pcolor sky] 
      ] 
    ] 
  ]     
end 
 
to swap 
      set collagen [collagen] of myself  
      set colx [colx] of myself  
      set coly [coly] of myself 
      set colz [colz] of myself 
      set strain [strain] of myself 

      set strainx [strainx] of myself 
      set DAMPcounter [DAMPcounter] of myself 
      set strainy [strainy] of myself 
      set strainz [strainz] of myself 
      set MMP [MMP] of myself  
      set PDGF [PDGF] of myself  
      set TNF [TNF] of myself 
      set IL1 [IL1] of myself  
      set TGF [TGF] of myself  
      set IGF1 [IGF1] of myself 
      set DAMPs [DAMPs] of myself 
      set boundary [boundary] of myself 
      set patfiber# [patfiber#] of myself 
      set pcolor [pcolor] of myself 
      set fibertype [fibertype] of myself 
      set totalprotein [totalprotein] of myself 
      set necrotic [necrotic] of myself 
      set ROS [ROS] of myself 
      set IL6 [IL6] of myself 
end 
 
to swapall 
      set collagen [collagen] of myself  
      set colx [colx] of myself  
      set coly [coly] of myself 
      set colz [colz] of myself 
      set strain [strain] of myself 
      set strainx [strainx] of myself 
      set DAMPcounter [DAMPcounter] of myself 
      set strainy [strainy] of myself 
      set strainz [strainz] of myself 
      set MMP [MMP] of myself  
      set PDGF [PDGF] of myself  
      set TNF [TNF] of myself 
      set IL1 [IL1] of myself  
      set TGF [TGF] of myself  
      set IGF1 [IGF1] of myself 
      set boundary [boundary] of myself 
      set patfiber# [patfiber#] of myself 
      set pcolor [pcolor] of myself 
      set fibertype [fibertype] of myself 
      set totalprotein [totalprotein] of myself 
      set shiftx [shiftx] of myself 
      set shifty [shifty] of myself 
      set marked [marked] of myself 
      set DAMPs [DAMPs] of myself 
      set necrotic [necrotic] of myself 
      set ROS [ROS] of myself 
      set IL6 [IL6] of myself 
       
end 
to fillhole 
  let counter 0 
  while [any? patches with [marked < 0] and counter < 1000] 
    [ 
      let origin one-of patches with [marked < 0] 
      ask origin 
      [ 
        set pcolor grey 
        ifelse [collagen] of self > meancollagen / 5  and marked <= -1   
;if there is enough collagen here, then the hole is fine 
        [set marked 0] 
        [    
          let filler patch-at shiftx shifty              ;filler is the one going to 
be where the hole is now 
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          ifelse [patfiber#] of filler > 0 or [boundary] of filler > 0       ;if 
its a fiber, job is done 
          [ 
           ask filler [ask origin [swap]] set marked 0 set shiftx 0 set 
shifty 0 ;swaps and sets marked 0 
           if [patfiber#] of filler > 0  
           [set currentfiber [patfiber#] of filler 
           resolvetouchingfibers 
           resolvetouchingboundary ] ;resolves touching fibers as well 
           ]     
           [ 
           ask filler     ;this swaps filler and origin using the swap1 
dummy spot  
           [ ask swap1 [swap] 
             swap  
             set marked -.5  
             set shiftx [shiftx] of origin 
             set shifty [shifty] of origin 
             ask swap1 [ask origin [swap]] 
             ask swap2 [ask swap1 [swap]] 
           ] 
           ] 
         
        ] 
        ] 
      set counter counter + 1 
      ] 
end 
 
 
       
to zerofactors 
      set collagen 0 
      set colx 0 
      set coly 0 
      set colz 0 
      set strain 0 
      set strainx 0 
      set strainy 0 
      set strainz 0 
      set MMP 0 
      set PDGF 0 
      set TNF 0 
      set IL1 0 
      set TGF 0 
      set DAMPs 0 
      set IGF1 0 
      set IL6 0 
      set ROS 0 
      set IL8 0 
      set IL10 0 
      set FGF 0 
end 
 
to assignfibersizes 
; trying to create a unique fiber size distribution 
let counter 0 
  while [counter < totalfibers]            ;randomly assinging a fiber 
size to each fiber at the start based on the type and distribution 
  [ 
    set counter counter + 1 
    let TP 0 
  ask one-of patches with [patfiber# = counter] 
  [ 
    if fibertype = 1 
    [ 

      set TP random-normal SO_CSA_mean SO_CSA_SEM * 
dimension * 1.059 
      while [TP < 0] [set TP random-normal SO_CSA_mean 
SO_CSA_SEM * dimension * 1.059] 
    ] 
    if fibertype = 2 
    [ 
      set TP random-normal FOG_CSA_mean FOG_CSA_SEM * 
dimension * 1.059 
      while [TP < 0] [set TP random-normal FOG_CSA_mean 
FOG_CSA_SEM * dimension * 1.059] 
    ] 
     if fibertype = 3 
    [ 
      set TP random-normal FG_CSA_mean FG_CSA_SEM * 
dimension * 1.059 
      while [TP < 0] [set TP random-normal FG_CSA_mean 
FG_CSA_SEM * dimension * 1.059] 
    ] 
    if fibertype = 4 
    [ 
      set TP random-normal IID_mean IID_SEM * dimension * 1.059 
      while [TP < 0] [set TP random-normal IID_mean IID_SEM * 
dimension * 1.059] 
    ] 
  ] 
  ask patches with [patfiber# = counter] 
  [ 
    set totalprotein TP 
    if fibertype = 4 
    [ 
      set fibertype 3 
    ] 
  ] 
  ] 
   
end 
   
to resizefibers 
  ask patches with [count neighbors with [boundary = 1] > 0 and 
collagen > 0] [set collagen 0 set boundary 1 set pcolor black] 
  let counter 0 
  let dummy 0 
  let border patches with [count neighbors < 8] 
  while [dummy != totalfibers] 
  [ 
   set dummy 0 
   set counter 0  
   while [counter < totalfibers]  
   [ 
   set counter counter + 1 
   set currentfiber counter 
   let newtotalprotein 0 
   ask one-of patches with [patfiber# = currentfiber and 
totalprotein > 0] [set newtotalprotein totalprotein] 
   fiberedges 
   let currentedge patches with [patfiber# = currentfiber and edge 
= 1] 
   let tempprotein count patches with [patfiber# = currentfiber] * 
dimension ^ 3 * 1.059 
   ifelse abs(tempprotein - newtotalprotein) < (3 * dimension ^ 3 * 
1.059) 
   [set dummy dummy + 1] 
   [ 
    ifelse tempprotein > newtotalprotein 
    ; ()()()()()()()()()()()()()()()()()()()()()()()()()atrophy 
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    [ 
    ifelse any? currentedge with [count neighbors with [patfiber# != 
[patfiber#] of myself] >= 6] 
    [ 
    set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself] >= 6] 
    ] 
    [ 
    set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself] >= 3] 
    ] 
    ask one-of currentedge 
    [ 
    set pcolor 2 
    set edge 0 
    set marked -1 * patfiber#      ;this makes it a "hole" 
    set patfiber# 0 
    set fibertype 0 
    set totalprotein 0 
    let bordermax one-of border with-max [distance myself] 
    set bordermax distance bordermax 
    let bordermin one-of border with-min [distance myself] 
    set bordermin distance bordermin 
    let bordertemp one-of border with [distance myself < 
bordermin + (bordermax - bordermin) / 12] 
    set shiftx [pxcor] of bordertemp 
    set shifty [pycor] of bordertemp 
       
    ] 
    shrinkingholes 
  ] 
   
    ; ()()()()()()()()()()()()()()()()()()()()()()()()()hypertrophy 
   
  [ 
  let bordercheck 7 
  let currenttemp 0 
  let temp 0 
  set currentedge currentedge with [count neighbors with 
[collagen > 0] > 0] 
  set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself] <= 3] 
  while [bordercheck < 8] 
  [   
  set currenttemp one-of currentedge  
  ask currenttemp 
  [ 
    let neighs neighbors with [collagen > 0 or marked < 0] 
    set temp one-of neighs with-max [count neighbors with 
[patfiber# = currentfiber]] 
    set bordercheck count [neighbors] of temp 
  ] 
  ] 
  ask currenttemp 
  [ 
    ask temp 
    [redistribute 
     swap 
    ] 
    zerofactors 
  ] 
  ] 
     
  resolvetouchingfibers  
  resolvetouchingboundary 
  ] 

  ] 
   let ECM patches with [collagen > 0] 
   ask ECM  
   [ 
     set patfiber# 0 
     set pcolor grey 
     set boundary 0 
     set totalprotein 0 
     set edge 0 
   ] 
  ] 
set counter 0 
let totalmuscle 0   ;sums all the protein of my muscle 
  while [counter < totalfibers]  
  [ 
     set counter counter + 1 
     let tempTP count patches with [patfiber# = counter] * 
dimension ^ 3 * 1.059 
     set totalmuscle totalmuscle + tempTP 
     ask patches with [patfiber# = counter]  
     [                                          ;and update the fibersize 
       set totalprotein tempTP 
     ] 
  ] 
  ;also needs that thicker parimesium 
ask patches with [collagen > 0 and count neighbors with 
[patfiber# > 0] = 0] [set collagen 0 set boundary 1 set pcolor black]   
;this gets rid of those islands of collagen 
let thinparimysium patches with [collagen > 0 and count 
neighbors with [patfiber# > 0] > 0 and count neighbors with 
[boundary > 0] > 0] 
if any? thinparimysium 
[ask thinparimysium 
  [ask neighbors with [boundary > 0] 
    [set boundary 0 
      set collagen 1 
      set pcolor gray 
    ] 
  ] 
] 
set meancollagen (totalmuscle * .05 / .95) / count patches with 
[boundary = 0 and patfiber# = 0] 
ask patches with [boundary = 0 and patfiber# = 0] [set collagen 
meancollagen + (random-float .07 * meancollagen  - 
meancollagen * 0.035)]   
    
  ;so this world needs fibroblasts and some basal level of 
chemokines 
  createfibroblast 
  createsatellites 
  ask fibroblasts 
  [fibroblastsecretions 
   fibroblastsecretions 
  ] 
   diffusion 
    
end 
 
to redistribute 
   let neighs neighbors with [collagen > 0 or marked < 0 or necrotic 
> 0] 
   ifelse count neighs > 0 
   [ 
     ask neighs 
     [ 
      set collagen collagen + [collagen] of myself / count neighs 
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      set MMP MMP + [MMP] of myself  / count neighs 
      set PDGF PDGF + [PDGF] of myself  / count neighs 
      set TNF TNF + [TNF] of myself / count neighs 
      set IL1 IL1 + [IL1] of myself  / count neighs 
      set TGF TGF + [TGF] of myself  / count neighs 
      set IGF1 IGF1 + [IGF1] of myself / count neighs 
      set IL6 IL6 + [IL6] of myself / count neighs 
  
      set DAMPs DAMPs + [DAMPs] of myself / count neighs 
      set ROS ROS + [ROS] of myself / count neighs 
      set IL8 IL8 + [IL8] of myself / count neighs 
      set IL10 IL10 + [IL10] of myself / count neighs 
      set FGF FGF + [FGF] of myself / count neighs 
     ] 
   ] 
   [ 
     let ECM patches with [collagen > 0 or marked < 0] 
     ask ECM with-min [distance myself] 
     [ 
      set collagen collagen + [collagen] of myself  
      set MMP MMP + [MMP] of myself   
      set PDGF PDGF + [PDGF] of myself  
      set TNF TNF + [TNF] of myself  
      set IL1 IL1 + [IL1] of myself   
      set TGF TGF + [TGF] of myself   
      set IGF1 IGF1 + [IGF1] of myself 
      set IL6 IL6 + [IL6] of myself 
      set DAMPs DAMPs + [DAMPs] of myself  
      set ROS ROS + [ROS] of myself  
      set IL8 IL8 + [IL8] of myself  
      set IL10 IL10 + [IL10] of myself  
      set FGF FGF + [FGF] of myself  
      ] 
   ] 
end 
 
to resolvetouchingboundary 
  let fiberpatches patches with [patfiber# = currentfiber] 
  set fiberpatches fiberpatches with [count neighbors with 
[boundary = 1] > 0] 
  let counter 0 
  while [any? fiberpatches and counter < 1000] 
  [ 
    set counter counter + 1 
  ask one-of fiberpatches                                  ;this is to find fibers 
touching when they shouldn't and to shift the collagen around 
them 
  [ 
      ask neighbors with [boundary = 1] 
      [if sum [collagen] of neighbors > 0                   ;making sure 
there is collagen to shift around 
        [ 
          let colsum sum [collagen] of neighbors with [collagen > 0] 
          let colcount count neighbors with [collagen > 0] + 1      ;takes 
collagen from neighbors and redistributes 
          ask neighbors with [collagen > 0] 
          [ 
            set collagen collagen - collagen / colcount  
          ] 
          set collagen colsum / colcount 
          set patfiber# 0 
          set fibertype 0 
          set edge 0 
          set totalprotein 0 
          set boundary 0 
          set pcolor grey 

        ] 
     ] 
  ] 
  set fiberpatches patches with [patfiber# = currentfiber] 
  set fiberpatches fiberpatches with [count neighbors with 
[boundary = 1] > 0] 
  ] 
end 
 
 
 
to testing 
  let counter 0  
  let border patches with [boundary = 1] 
   while [counter < totalfibers]  
   [ 
   set counter counter + 1 
   set currentfiber counter 
   fiberedges 
   let currentedge patches with [patfiber# = currentfiber and edge 
= 1] 
    set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself] >= 3]  ;this fins the farthest 
points form the fiber and makes them atrophy first 
  ask one-of currentedge 
  [ 
    set pcolor 2 
    set edge 0 
    set marked -1 * patfiber#      ;this makes it a "hole" 
    set patfiber# 0 
    set fibertype 0 
    set totalprotein 0 
    let bordermax one-of border with-max [distance myself] 
    set bordermax distance bordermax 
    let bordermin one-of border with-min [distance myself] 
    set bordermin distance bordermin 
    let bordertemp one-of border with [distance myself < 
bordermin + (bordermax - bordermin) / 12] 
    set shiftx [pxcor] of bordertemp 
    set shifty [pycor] of bordertemp 
  ] 
  ] 
end 
 
to fixspikes/divits 
  let counter 0  
  while [counter < totalfibers]  
   [ 
   set counter counter + 1 
   set currentfiber counter 
   fiberedges 
   let divets patches with [(collagen > 0 or necrotic > 0) and count 
neighbors4 with [patfiber# = currentfiber and necrotic = 0] = 4] 
   let counter2 0 
   while [any? divets and counter2 < 1000] 
   [ 
     set counter2 counter2 + 1 
     let currentdivet one-of divets 
     ask currentdivet 
     [ 
       let side one-of neighbors4 with-max [count neighbors with 
[collagen > 0]] 
       ask side [ask swap1 [swapall] swapall] 
       ask swap2 [ask swap1 [ask currentdivet [swapall] swapall]] 
     ] 
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     set divets patches with [(collagen > 0 or necrotic > 0) and count 
neighbors4 with [patfiber# = currentfiber and necrotic = 0] = 4] 
   ] 
   fiberedges 
  ] 
   
  let spikes patches with [edge = 1 and count neighbors with 
[patfiber# = [patfiber#] of myself and edge = 0 and necrotic = 0] = 
0] 
  let spikes2 spikes with [count neighbors4 with [edge = 1 and 
patfiber# = [patfiber#] of myself and not member? self spikes] = 0] 
  let counter2 0 
  while [any? spikes2 and counter2 < 1000] 
  [ 
    set counter2 counter2 + 1 
    let currentspike one-of spikes2 
    ask currentspike 
  [ 
    ifelse any? neighbors with [collagen > 0 and count neighbors 
with [patfiber# = [patfiber#] of currentspike and necrotic = 0] >= 
4] 
    [ 
      let currentspot one-of neighbors with [collagen > 0 and count 
neighbors with [patfiber# = [patfiber#] of currentspike and 
necrotic = 0] >= 4] 
      ask swap1 [swapall] 
      ask swap2 [ask swap1 [ask currentspot [ask currentspike 
[swapall] swapall] swapall]]   ;looks odd, but basically swaps then 
resets swap1 
    ] 
    [ 
    let border patches with [count neighbors < 8] 
    set pcolor 2 
    set edge 0 
    set marked -1 * patfiber#      ;this makes it a "hole" 
    set patfiber# 0 
    set fibertype 0 
    set totalprotein 0 
    let bordermax one-of border with-max [distance myself] 
    set bordermax distance bordermax 
    let bordermin one-of border with-min [distance myself] 
    set bordermin distance bordermin 
    let bordertemp one-of border with [distance myself < 
bordermin + (bordermax - bordermin) / 12] 
    set shiftx [pxcor] of bordertemp 
    set shifty [pycor] of bordertemp 
    ] 
  ] 
  shrinkingholes 
  set spikes patches with [edge = 1 and count neighbors with 
[patfiber# = [patfiber#] of myself and edge = 0 and necrotic = 0] = 
0] 
  set spikes2 spikes with [count neighbors4 with [edge = 1 and 
patfiber# = [patfiber#] of myself and not member? self spikes] = 0] 
  ] 
     
end 
   
   
to shrinkingholes    ;this code gets ride of the holes generated 
from atrophy 
  let holes patches with [marked < 0] 
  while [any? holes] 
  [ 
  let currenthole one-of holes 
  let border patches with [boundary = 1] 

  ask currenthole 
  [ 
    ifelse count neighbors < 8 
    [set marked 0 set boundary 1]   ;if its a border its now boundary 
     
    [ 
    set border patch shiftx shifty 
    ask one-of neighbors with-min [distance border] 
    [ 
      ifelse boundary = 0      ;if the closest is boundary, we are done! 
      [ 
        ask swap1 [swapall] 
        swapall 
      ] 
      [set marked 0] 
    ] 
    ] 
  ] 
  ask swap2 [ask swap1 [ask currenthole [swapall] swapall]] ;this 
reset swap1 to get ready for the enxt go 
  set holes patches with [marked < 0]     ;resets 
  ] 
 
let counter 0 
  while [counter < totalfibers]  
  [ 
     set counter counter + 1 
     set currentfiber counter 
     fiberedges 
     resolvetouchingfibers  
     resolvetouchingboundary 
  ] 
 
let ECM patches with [collagen > 0] 
  ask ECM  
   [ 
     set patfiber# 0 
     set pcolor grey 
     set boundary 0 
     set totalprotein 0 
     set edge 0 
   ] 
end 
 
 
to compactcollagen 
let collagenholes patches with [collagen > 0 and count neighbors 
with [collagen > 0] >= 8 and count neighbors with [boundary = 1] = 
0] 
let counter 0 
while [any? collagenholes and counter < 200] 
[ 
  set counter counter + 1 
  ask one-of collagenholes 
  [ 
    let border patches with [count neighbors < 8] 
    set pcolor 2 
    set edge 0 
    set marked -1    ;this makes it a "hole" 
    set patfiber# 0 
    set fibertype 0 
    set totalprotein 0 
    let bordermax one-of border with-max [distance myself] 
    set bordermax distance bordermax 
    let bordermin one-of border with-min [distance myself] 
    set bordermin distance bordermin 



130 
 

    let bordertemp one-of border with [distance myself < 
bordermin + (bordermax - bordermin) / 12] 
    set shiftx [pxcor] of bordertemp 
    set shifty [pycor] of bordertemp 
    redistribute 
    zerofactors 
    shrinkingholes 
  ] 
  set collagenholes patches with [collagen > 0 and count neighbors 
with [collagen > 0] >= 8 and count neighbors with [boundary = 1] = 
0] 
] 
end 
 
to smoothcollagen    ;this finds collagen that has been isolated 
and shifts it 
let rough1 patches with [collagen > 0 and count neighbors with 
[boundary = 1] > 4 and count neighbors with [patfiber# > 0] = 0] 
let counter 0 
while [any? rough1 and counter < 1000] 
[ 
  set counter counter + 1 
  let rough one-of rough1 
  ask rough 
  [ 
  let border patches in-radius 3 with [boundary = 1 and count 
neighbors with [collagen > 0] >= 5]   ;finds the best spot for this 
rough patch to go 
  if not any? border 
  [set border patches in-radius 6 with [boundary = 1 and count 
neighbors with [collagen > 0] >= 5]] 
  if not any? border 
  [set border patches with [boundary = 1 and count neighbors with 
[collagen > 0] >= 4]] 
  let closestborder one-of border with-max [count neighbors with 
[collagen > 0]] 
   
  ask swap1 [swapall] 
  ask closestborder [ ask rough [swapall]] 
  ask swap2 [ask swap1 [ask closestborder [swapall] swapall]] 
  ] 
  set rough1 patches with [collagen > 0 and count neighbors with 
[boundary = 1] > 4 and count neighbors with [patfiber# > 0] = 0] 
] 
end 
 
to createsatellites 
  let dummy 1 
  while [dummy <= totalfibers]   ;I am giving each fiber 1 satellite 
cell for now 
  [ 
    let currentedge patches with [edge = 1 and patfiber# = dummy] 
    ask one-of currentedge 
    [let temp fibertype 
      sprout-satellites 1 [set color white set shape "circle" set fiber# 
dummy set size 1 set ftype fibertype]] 
    set dummy dummy + 1 
     
  ] 
end 
 
to Injury 
  let severityt severity 
  let timeframet timeframe 
  import-world "injury2.csv" 
  reset-ticks 

  set elapsed 0 
  set severity severityt 
  set timeframe timeframet 
  random-seed new-seed 
  set active? false 
  let totalarea count patches with [patfiber# > 0]     ;Getting the 
total area of all the fibers 
  let percentinjury totalarea * Severity / 100         ;What 
percentage of muscle fibers are damaged? 
  let dummy random (totalfibers - 1) + 1 
  let currentdamage 1 
  while [percentinjury > 1]                         ; turning some fiber areas 
into necrotic fibers  
  [ 
    let currentarea count patches with [patfiber# = dummy and 
necrotic = 0]   ;figuring out this muscle fiber's area 
    set currentdamage random percentinjury 
    if currentdamage > currentarea 
    [set currentdamage currentarea]    ;Cannot create more 
damage than the whole fiber 
    set percentinjury percentinjury - currentdamage 
    if currentdamage > 0 
    [ 
      ask one-of patches with [patfiber# = dummy and necrotic = 0 
and edge = 1] [set necrotic 1 set edge 0 set pcolor sky set 
totalprotein 0 set DAMPcounter 1] 
      set currentdamage currentdamage - 1 
    ]  ;sets a seed spot 
    while [currentdamage > 1]    ;This goes through and makes 
muscle necrotic 
    [ 
      ask one-of patches with [patfiber# = dummy and necrotic > 0]   
;pick a random necrotic spot 
      [ 
        if count neighbors4 with [patfiber# = dummy and necrotic = 
0] > 0   ;does it have non-necrotic neighbors? 
        [ 
          ask one-of neighbors4 with [patfiber# = dummy and necrotic 
= 0]     ;if so make that neighbor necrotic 
          [set necrotic 1 set edge 0 set pcolor sky set totalprotein 0 set 
DAMPcounter 1] 
          set currentdamage currentdamage - 1                                 ;one 
less necrotic spot to make 
        ] 
      ] 
    ] 
     
    ask patches with [patfiber# = dummy and necrotic = 0]  
    [ 
      if count neighbors4 with [patfiber# = dummy and necrotic = 0] 
= 0 
      [set necrotic 1 set pcolor sky set totalprotein 0 set edge 0 set 
DAMPcounter 1 ] 
    ] 
    set dummy dummy + 1    ;Cycles through fiber numbers 
    if dummy = totalfibers + 1 
    [set dummy 1]     ;resets itself if it gets too high 
  ] 
  set currentfiber 1 
  while [currentfiber <= totalfibers] 
  [ 
   let tempTP count patches with [patfiber# = currentfiber and 
necrotic = 0] * dimension ^ 3 * 1.059 
   ask patches with [patfiber# = currentfiber and necrotic = 0]  
   [                                          ;and update the fibersize 
     set totalprotein tempTP 
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   ] 
   fiberedges 
   set currentfiber currentfiber + 1 
  ] 
    while [count macrophages < 9] 
  [ 
    ask one-of patches with [collagen > 0 or necrotic > 0] 
[create_M1] 
    ;ask one-of patches with [collagen > 0 or necrotic > 0] 
[create_neutrophil] 
    ask one-of patches with [collagen > 0 or necrotic > 0] 
[create_neutrophil] 
    ask one-of patches with [collagen > 0 or necrotic > 0] 
[create_neutrophil] 
  ] 
    ask one-of patches with [collagen > 0 or necrotic > 0] 
[create_M2] 
end 
 
to Regeneration 
 tick 
 recruit_neutrophils 
 recruit_macrophages 
 recruit_satellites 
 neutrophil_behaviors 
 macrophage_behaviors 
 Fibroblastbehaviors 
 Satellite_behaviors 
 necrosis 
 fiberadapt 
 shrinkingholes 
 fixspikes/divits 
 smoothcollagen 
 diffusion 
 cellshift   
 set elapsed elapsed + timestep 
 if elapsed >= timeframe 
   [ 
  stop 
   ] 
 if elapsed > 72 
 [set active? true] 
end 
 
to create_neutrophil 
  sprout-neutrophils 1 [set color green set shape "circle" set size 
1.1] 
  set Lactoferins Lactoferins + 2         ;neutrophils release 
Lactoferins when they exit the blood 
  set Azurocidin Azurocidin + 2 
  set LL37 LL37 + 2 
  set CathepsinG CathepsinG + 2 
end 
 
to recruit_neutrophils             ;The recruitment/deter SEESAW 
  ;first figure out how strong of a recruitment force there is 
 let recruit sum [IL1] of patches + G-CSF + sum [MCP] of patches + 
CCL4 + CXCL2 + CXCL1 + sum [IL8] of patches 
 let deter Lipoxins + Resolvins + MMP12 + Lactoferins + PGE2 + 
sum [IL10] of patches + sum [IL6] of patches / 2 
 let differential recruit - deter 
 if differential > 0 
 [ 
  

 let neutro_prob random (differential / 2) + differential / 4 ;This is 
saying, some amount of Neutrophils are recruited based on the 
amounts of DAMPs in the area 
 if neutro_prob > 20 
 [set neutro_prob 20 + random (5 * 3)] 
 while [neutro_prob > 0]    ;MAke some neutrophils 
 [ 
   ask one-of patches with [DAMPs > 0]   ;They spawn on areas that 
have DAMPs 
   [create_neutrophil] 
   set neutro_prob neutro_prob - 1 
 ] 
 
]end 
 
to recruit_macrophages                  ;M1 and M2 seesaws 
   
                                        ;----------  macrophage total ----------- 
                                         
 let recruit Azurocidin + LL37 + CCL2 + CCL4 + CCL17 + CCL22 + 
CCL3 + CCL6 + sum [IL6] of patches + CX3CL1  + sum [MCP] of 
patches     ;it has been suggested that CCL2 is super important 
 let deter PGE2 + Lipoxins + NO + sum [TGF] of patches 
 let M_prob 0 
 let differential recruit - deter 
 if differential > 0            ;this is a threshold, how much signal 
needs to be around before M1s start to be recruited 
 [ 
 set M_prob random 15 - 8 + 2 * (8 - alpha_7) ;This is saying, some 
amount of M1s are recruited based on the amounts of DAMPs in 
the area 
 ] 
 if M_prob <= 0 and (recruit * 2) > deter 
 [set M_prob random 5 + (8 - alpha_7) / 2 - 3]                         ;This is 
saying as long as there isn't a HUGE deter signal (twice that of 
recruit), a few macrophages can still get in 
 let M1chance IFN + sum [TNF] of patches / 2 - sum [IL10] of 
patches - sum [TGF] of patches 
 if M1chance < 0 [ set M1chance .01] 
 let M2chance (sum [IL10] of patches * 2) + IL4 + IL13 - IFN 
 if M2chance < 0 [ set M2chance .01] 
 if count macrophages with [mtype = 1] > 1000 or count 
macrophages with [mtype = 2] > 1000 
 [ 
   set M_prob 0 
 ] 
 while [M_prob > 0]    
 [ 
   let chance random-float (M1chance + M2chance) 
   ifelse chance < M1chance                        ;If chance is lower than 
M1, it makes an M1, otherwise it makes an M2 
   [ask one-of patches with [collagen > 0 or necrotic > 0] 
[create_M1]] 
   [ask one-of patches with [collagen > 0 or necrotic > 0] 
[create_M2]] 
   set M_prob M_prob - 1 
 ] 
  
 set gamma recruit 
 set alpha deter                                        
end 
 
to neutrophil_behaviors 
  ask neutrophils 
  [ 
  set age age + 1 
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  ifelse apoptosed = 0                    ;apoptosed = 0 means the 
neutrophil is active and wants to chew up that necrotic tissue 
  [ 
  ifelse [necrotic] of patch-here = 0    ;If the neutrophil is in a 
necrotic spot, it phagocytosis, else it seeks necrotic tissue 
  [nmigrate] 
  [ 
    set phagocytosis phagocytosis + 1     ;If its at a necrotic spot, it 
phagocytosis 
    ifelse NO < 8 
    [ 
      ask patches in-radius 2 
      [set ROS ROS + .5] 
    ] 
    [ 
      ask patches in-radius 1 
      [set ROS ROS + .5] 
    ] 
    ask patch-here 
    [set necrotic necrotic + 1 
     set TNF TNF + 1                  ;They definitely secrete these three 
factors, just unsure if it happens in sterile inflammation, and to 
what extent 
     set IL1 IL1 + 1 
     set IL6 IL6 + 1 
     set IL8 IL8 + 1 
     set MCP MCP + 1.1 * alpha_4 
    ] 
                                    ;They also make these cyto and chemokines 
    set CCL4 CCL4 + 1 
    set CCL3 CCL3 + 1 
    set CXCL1 CXCL1 + 1 
    set CXCL2 CXCL2 + 1 
    set IFN IFN + 1 * 3.5 
  ] 
 
  if (random 3 + 3) <= phagocytosis      ;After enough phagocytoses, 
it either becomes apoptotic or leaves 
  [ 
    set apoptosed 1 
    set shape "square" 
    set age 0 
    if random 3 = 1 
    [die] 
  ] 
  ] 
  [     ;This is when Apoptosed = 1, the promote M1 macrophages 
and deter neutrophils 
    set Lactoferins Lactoferins + 5 
    set HGF HGF + 1 
    set VEGF VEGF + 1 
    if CCL3 > 0 
    [set CCL3 CCL3 - 1] 
  ] 
  if age > 3 + 5 * 2            ;once a neutriphil is 8 hours old, it has a 
chance of leaving, more likely the longer its around 
  [ 
    if random 5 = 1 
    [ 
      die 
    ] 
  ] 
  ] 
end 
 
to nmigrate 

ifelse [boundary] of patch-here = 0 
  [  ;------                     if the macrophage is outside, it gets 
reincorporated. otherwise, it goes up the MCP gradient, unless 
there is no gradient, then it goes somewhere else randomly 
    ifelse [DAMPS] of patch-here > 0 
    [  ;; 
    let move 0 
    while [move < 4] 
    [ 
     uphill DAMPs 
     set move move + 1 
     if any? patches with [necrotic > 0] in-radius 1.5 
     [face one-of patches with [necrotic > 0] in-radius 1.5 
       fd 1 
       set move 5 
     ] 
    ] 
    ]  ;; 
    [ 
      move-to one-of patches with [collagen > 0] 
    ] 
  ]  ;------ 
  [   ;if its outside it comes randomly inside 
    move-to one-of patches with [collagen > 0] 
  ]  
end 
 
to necrosis            ;AKA secondary DAMAGE 
  if count patches with [patfiber# > 0 and ROS > 0 and necrotic = 0] 
> 0 
  [ 
  ask patches with [patfiber# > 0 and ROS > 0 and necrotic = 0 and 
edge = 1]          ;This is saying if a patch as experienced some 
amount of ROS events, it will also become necrotic 
  [ 
    if ROS > 10 [set ROS 10] 
    let necrotic_prob random (20 - [ROS] of self)                      ;higher 
chance of necrosis the more ROS it experiences 
      if necrotic_prob <= 3 
      [ 
        set necrotic 1 set pcolor orange set totalprotein 0 set edge 0 
set DAMPcounter 1 
        let F# patfiber# 
        let temptotal count patches with [patfiber# = F# and necrotic 
= 0] * dimension ^ 3 * 1.059 
        ask patches with [patfiber# = F# and necrotic = 0] [set 
totalprotein temptotal]                ;This updates a necrotic fiber on 
what it size actually is now 
      ] 
  ] 
  ] 
  ask patches with [ROS > 0] 
  [                                                ;ROS is shortlived so this flushes the 
ROS every hour 
    set ROS 0 
  ] 
  ;now put some DAMPs down 
  ask patches with [necrotic > 0 and DAMPcounter > 0] 
  [set DAMPs DAMPs + 4 / (floor (DAMPcounter / 2) + 1) 
   set DAMPcounter DAMPcounter + 1                     ;dampcounter 
causes there to be less damps created over time, necrotic spots 
only generate damps for 5 hours 
   if DAMPcounter > 6 
   [set DAMPcounter 0] 
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   if sum [necrotic] of neighbors4 = 0                    ;This is saying if 
there is a necrotic spot that is isolated it has a chance of simply 
breaking apart 
   [  if random 4 = 1 
        [set necrotic 0 set pcolor grey set collagen .1 set patfiber# 0 
set DAMPcounter 0] 
  ] 
  ] 
  let border patches with [count neighbors < 8 and boundary = 1] 
  ask patches with [necrotic > 2]          ;if the necrotic area has been 
phagocytosed twice, it becomes a hole 
  [ 
    ifelse random 5 < necrotic 
    [ 
    set pcolor 2 
    set edge 0 
    set marked -1 * patfiber#      ;this makes it a "hole" 
    set patfiber# 0 
    set fibertype 0 
    set totalprotein 0 
    let bordermax one-of border with-max [distance myself] 
    set bordermax distance bordermax 
    let bordermin one-of border with-min [distance myself] 
    set bordermin distance bordermin 
    let bordertemp one-of border with [distance myself < 
bordermin + (bordermax - bordermin) / 12] 
    set shiftx [pxcor] of bordertemp 
    set shifty [pycor] of bordertemp 
    ] 
    [ 
      set collagen .01 
      set necrotic 0 
      set DAMPcounter 0 
      set fibertype 0 
      set totalprotein 0 
      set edge 0 
      set patfiber# 0 
      set pcolor grey 
    ] 
  ] 
  ask patches with [necrotic > 0 and collagen > 0] 
  [set necrotic 0] 
end 
 
to create_apoptoticcell 
  sprout-deadcells 1 [set shape "star" set color brown set 
deathtype 1]        ;deathtype 1 is apoptosis, 2 is necrotic 
end 
 
to macrophage_behaviors 
  ask macrophages 
  [ 
    set age age + 1 
    if mtype = 1 
    [ 
      if phagocytosis = 0             ;Hasn't eatten anything 
      [M1_mac] 
      if phagocytosis > 0              ;has eatten a apoptotic neutrophil 
      [M1_apop_eatting] 
      if phagocytosis < 0 
      [M1_debris_eatting] 
    ] 
    if mtype = 2                     ;anti-inflammatory MAC 
    [ 
      M2_Mac 
    ] 

    if mtype = 3                  ;resident macrophages! 
    [ 
    resident_mac 
    ] 
    if random (10 + 5 * alpha_9)  = 1 and count macrophages < 
1000 
      [ hatch 1 [set age 5]] 
    if age > 10 + 5 * alpha_8 
    [if random 5 = 1 
      [if buddy != nobody and buddy != 0           ;this is letting the 
satellite buddy know this macrophage is gone! 
        [ask buddy [set linked 0]] 
       die 
      ] 
    ] 
  ] 
end 
 
to resident_mac            ;this is what residents macs do 
  ifelse [DAMPs] of patch-here > .1     ;if you see DAMPS or IL1 - 
start producing Cytokines 
  [ask patch-here 
    [ 
      set IL1 IL1 + 2 
      set TNF TNF + 1 
      set IL8 IL8 + 1 
    ] 
    set CXCL2 CXCL2 + 1 
    set CXCL1 CXCL1 + 1 
    set CCL3 CCL3 + 1 
    set CCL4 CCL4 + 1 
    set age age - .5 
  ] 
  [ 
  ifelse (random 6) <= 1 
  [                                                     ;Randomly picks a direction to 
travel, one of them could be to leave the plane, if it does another 
reappears somewhere else 
    let newspot one-of patches with [collagen > 0] 
    move-to newspot 
  ] 
  [ 
    let movements 3 
    while [movements > 0] 
    [ 
     let newspot one-of neighbors with [collagen > 0 or necrotic > 0] 
     ifelse newspot = nobody                                               ;if for some 
reason its not near any collagen, it zips to somewhere random 
     [set newspot one-of patches with [collagen > 0] 
       set movements 0 
     ] 
     [ 
     move-to newspot 
     ] 
    set movements movements - 1 
    ] 
     
  ] 
  ] 
end 
 
to M1_mac 
                                  ; Secretions first 
  set MMP12 MMP12 + 2 
  set G-CSF G-CSF + 1 
  set VEGF VEGF + 1 
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  ask patch-here 
  [ 
    set TNF TNF + 1  
    set IGF1 IGF1 + 1 
    set IL1 IL1 + 1 
    set IL8 IL8 + 1 
    set IL6 IL6 + .5 * alpha_2 
    set IL10 IL10 + .5  
  ] 
   
  ifelse [necrotic] of patch-here = 0 and count neutrophils-here 
with [apoptosed > 0] = 0 and linked = 0           ;the macrophage 
migrates unless its linked to a satellite cell or its in a spot where it 
can phagocytose 
  [ 
    m1migrate 
    if random (alpha_1 * 4 + 5) = 1                   ;adding this to say the 
macrophage has a chance of becoming an M2 macrophage just 
randomly 
    [set stay 1 set phagocytosis 1] 
  ] 
  [ 
    ifelse linked = 0 
    [ 
    ifelse [necrotic] of patch-here > 0 and count neutrophils-here 
with [apoptosed > 0] > 0   ;If there is both neutrophils and debris, 
then it has to decide randomly 
    [   ;---- 
      ifelse random 2 = 0 
      [                                      ;Eatting debris 
        set phagocytosis phagocytosis - 1 
        ask patch-here [set necrotic necrotic + 1] 
        ask patches in-radius 2 
        [set ROS ROS + .25] 
        if phagocytosis < -8 
        [if random 3 = 1 [die]] 
      ] 
      [ 
        set phagocytosis phagocytosis + 1 
        ask one-of neutrophils-here with [apoptosed > 0] 
        [die] 
      ] 
    ]  ;---- 
    [  ;++++ 
      if [necrotic] of patch-here > 0      ;Eatting debris 
      [ 
        set phagocytosis phagocytosis - 1 
        ask patch-here [set necrotic necrotic + 1] 
        ask patches in-radius 2 
        [set ROS ROS + .5] 
      ] 
       
      if count neutrophils-here with [apoptosed > 0] > 0 
      [ 
        set phagocytosis phagocytosis + 1 
        ask one-of neutrophils-here with [apoptosed > 0] 
        [die] 
      ] 
    ]  ;++++ 
    ] 
    [                  ;macrophages will move towards its buddy, if there is 
none, its no longer linked 
      ifelse buddy != nobody 
      [ 
      move-to buddy 
      ] 

      [ 
        set linked 0 
      ] 
    ] 
     
  ] 
   
end 
 
 
to m1migrate 
  ifelse [boundary] of patch-here = 0 
  [  ;------                     if the macrophage is outside, it gets 
reincorporated. otherwise, it goes up the MCP gradient, unless 
there is no gradient, then it goes somewhere else randomly 
    ifelse [MCP] of patch-here > 0 
    [  ;; 
    let move 0 
    while [move < 4] 
    [ 
     uphill MCP 
     set move move + 1 
     if any? neutrophils with [apoptosed > 0] in-radius 1.5 
     [face one-of neutrophils with [apoptosed > 0] in-radius 1.5 
       fd 1 
       set move 5 
     ] 
     if any? satellites with [activated > 0 and linked = 0] in-radius 1.5 
     [ 
       set buddy one-of satellites with [activated > 0 and linked = 0] 
in-radius 1.5 
       face buddy 
       fd 1 
       set move 5 
       set linked 1 
       ask buddy [set linked 1] 
     ] 
    ] 
    ]  ;; 
    [ 
      move-to one-of patches with [collagen > 0] 
    ] 
  ]  ;------ 
  [   ;if its outside it comes randomly inside 
    move-to one-of patches with [collagen > 0] 
  ]  
   
end 
 
to M1_apop_eatting 
  set MMP12 MMP12 + 2 
  set Lipoxins Lipoxins + 1                            
  set Resolvins Resolvins + 3 
  set G-CSF G-CSF + 1 
  set VEGF VEGF + 1 
  set CCL17 CCL17 + 1 
  set CCL22 CCL22 + 1 
  ask patch-here 
  [ 
    set IGF1 IGF1 + 1 
    set IL1 IL1 + 1 
    set IL10 IL10 + 1 * alpha_3                               ;Little more IL10 
    set TGF TGF + 2 * alpha_5                                 ;start making TGF 
    set TNF TNF + .5                                  ;less TNF 
  ] 
  ifelse stay > 0 



135 
 

  [set stay stay + 1 
    set age age - 1 
   if stay > random (2 * alpha_11) 
   [ 
    set stay 0 set mtype 2 
   ] 
   ] 
  [  ;oooooooooooooooooooooo 
  ifelse count neutrophils-here with [apoptosed > 0] > 0      
      [ 
        set phagocytosis phagocytosis + 1 
        ask one-of neutrophils-here with [apoptosed > 0] 
        [die] 
      ] 
      [ 
        m1migrate 
      ] 
        if phagocytosis >= 2 
        [ 
          if age > (1 + 8 * alpha_6) 
          [set stay 1 
            set age 0] 
        ] 
  ]  ;oooooooooooooooooooooo 
end 
 
to M1_debris_eatting 
  set MMP12 MMP12 + 2                      ;reduced these because it 
knows there is still debris present 
  set Resolvins Resolvins + 2 
  set Lipoxins Lipoxins + 1 
  set G-CSF G-CSF + 1 
  set VEGF VEGF + 1 
  set IFN IFN + 1  
  ask patch-here 
  [ 
    set TNF TNF + 2  
    set IGF1 IGF1 + 1 
    set IL1 IL1 + 1 
    set IL8 IL8 + 2                                  ;Little more IL8 
    set IL6 IL6 + .5 * alpha_2 
    set IL10 IL10 + .5                              
  ] 
  ifelse [necrotic] of patch-here > 0      ;Eatting debris 
      [ 
        set phagocytosis phagocytosis - 1 
        ask patch-here [set necrotic necrotic + 2 set IL1 IL1 + 1] 
        ask patches in-radius 1.5 
        [set ROS ROS + .1] 
      ] 
      [ 
        ifelse count neighbors with [necrotic > 0] > 0 
        [ 
         move-to one-of neighbors with [necrotic > 0] 
        ] 
        [ 
        nmigrate             ;migrates to DAMPs like a neutrophil 
        ] 
      ] 
end 
 
to M2_Mac 
  set CCL17 CCL17 + 1 * alpha_10 
  set CCL22 CCL22 + 1 
  set collagen4 collagen4 + 1 
  set PGE2 PGE2 + 1 * alpha_12 

  ask patch-here 
  [ 
    set IGF1 IGF1 + 2 
    set IL10 IL10 + 2 * alpha_3                               ;Little less IL10 
    set TGF TGF + 3 * alpha_5                                 ;start making TGF 
  ] 
end 
 
to recruit_satellites 
  let satrecruit 0 
  if HGF > 500 
  [set satrecruit random 2 * 2] 
  if HGF > 700 
  [set satrecruit random 2 * 2 + 2] 
  while [satrecruit > 0] 
  [ 
    let location one-of patches with [necrotic > 0 or collagen > 0] 
    while [[DAMPS] of location < 1 and [collagen] of location = 0 
and [edge] of location = 0 and [necrotic] of location = 0] 
    [set location one-of patches with [necrotic > 0 or collagen > 0]] 
     
    ask location 
    [ 
    sprout-satellites 1 [set color white set shape "circle" set fiber# 0 
set size 1 set quiescence 0] 
    ] 
    set satrecruit satrecruit - 1 
  ] 
end 
 
to Satellite_behaviors 
  ask satellites 
  [ 
      ifelse HGF > 90 
      [set quiescence 0] 
      [set quiescence 1 
        set activated 0 
        set linked 0] 
       
  ] 
  ;This is to figure out if a satellite is activated, its activated if it 
finds a spot it wants to join 
  ask satellites with [quiescence = 0] 
  [ 
    set VEGF VEGF + 1 
    ask patch-here 
    [set MCP MCP + 1] 
    if fiber# = 0 
    [nearbyfiber] 
    ifelse fiber# = 0 
    [uphill TGF 
     uphill TGF 
    ] 
    [ 
      ifelse [patfiber#] of patch-here = [fiber#] of self 
      [set activated 1] 
      [ 
      let fiberpatches patches with [patfiber# = [fiber#] of myself] 
      let closest one-of fiberpatches with-min [distance myself] 
      ifelse closest != nobody 
      [ 
      ifelse distance closest < 3                                    ;this moves the 
satellite cell to the closest of this fiber 
      [move-to closest] 
      [face closest 
       fd 2] 
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      ] 
      [set activated 1] 
      ] 
    ] 
  ] 
   
  ;Proliferating satellites proliferate after 6 hours 
  ask satellites with [proliferation > 0] 
  [ 
    ifelse proliferation >= 6 
    [ 
      set proliferation 0 
      hatch-satellites 1 [set linked 0] 
    ] 
    [  
      set proliferation proliferation + 1 
    ] 
  ] 
   
  ;differentiate after 8 hours 
  ask satellites with [differentiation > 0] 
  [ 
    ifelse differentiation >= 8 
    [ 
       let fnumber fiber# 
       let typeoffiber ftype 
       ifelse count patches with [patfiber# = fnumber and necrotic = 
0] > 0 
       [ 
         ask patches with [patfiber# = fnumber and necrotic = 0] 
         [set totalprotein totalprotein + 3 * dimension ^ 3 * 1.059]        
;adds some protein to a fiber 
         die 
       ] 
       [ 
         ask patch-here  
         [set patfiber# fnumber 
          set collagen 0 
          set necrotic 0 
          set DAMPcounter 0 
          set fibertype typeoffiber 
          ask neighbors 
          [ 
            set patfiber# fnumber 
            set collagen 0 
            set necrotic 0 
            set DAMPcounter 0 
            set fibertype typeoffiber 
          ] 
         ] 
         let tempprotein count patches with [patfiber# = fnumber and 
necrotic = 0] * dimension ^ 3 * 1.059 
         ask patches with [patfiber# = fnumber and necrotic = 0] 
         [set totalprotein tempprotein] 
         die 
       ] 
    ] 
    [ 
      set differentiation differentiation + 1 
    ] 
     
  ] 
  ;This is to figure out if it proliferates, apoptosis, or differentiates 
  ask satellites with [quiescence = 0 and activated = 1 and 
differentiation = 0 and proliferation = 0] 
  [ 

    let differentiationchance 10 
    let proliferationchance 10 
    if HGF > 20 
    [set proliferationchance proliferationchance + HGF / 20] 
    if [IGF1] of patch-here > 4 
    [set proliferationchance proliferationchance + 20] 
     
    ifelse linked = 1 
    [ ;if the satellite cell has a macrophage with it, the cell has a 
higher chance of proliferating than differentiating 
      set proliferationchance proliferationchance + 40 
    ] 
    [ 
      set differentiationchance differentiationchance + 40 
    ] 
    let fate random (differentiationchance + proliferationchance) + 
1 
    ifelse fate <= proliferationchance 
    [ 
      set proliferation 1 
    ] 
    [ 
      set differentiation 1 
    ] 
  ] 
   
   
end 
 
to nearbyfiber             ;satellite cells call this to figure out what 
fiber number they are associated with 
  let nearnumber 0 
  let fibersnearby patches in-radius 2 
  if any? fibersnearby with [patfiber# > 0] 
  [ 
   set fibersnearby fibersnearby with [patfiber# > 0] 
   let nearest one-of fibersnearby 
   set fiber# [patfiber#] of nearest 
   set ftype [fibertype] of nearest 
  ] 
end 
 
to test 
  set NO NO + 2 
  let randfiber random totalfibers + 1 
  let counter 0 
  while [counter < totalfibers]    ;this part does all the changes in 
total protein 
  [ 
    set currentfiber remainder (randfiber + counter) totalfibers + 1  
    set counter counter + 1 
    fiberedges 
    let currentedge patches with [patfiber# = currentfiber and edge 
= 1] 
    if count currentedge > 3 
    [ 
    let TNFtot mean [TNF] of currentedge 
    let IGFtot mean [IGF1] of currentedge 
    let straincon max [strain] of currentedge 
    let synthesis Synth + Activity        ;rate of protein synthesis and 
degradation. Activity directly effects basal levels of synthesis 
    let degradation Degrad     ; this will eventually be used to 
distinguish fast and slow twitch fibers 
    let synth-mod 1           ;rate modulators from molecules 
    let deg-mod 1 
    if IGFtot > .2 
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    [set synth-mod (.09 * (log IGFtot 10) + 1.1) 
    if IGFtot > 40 
    [set synth-mod (.09 * (log 40 10) + 1.1)] 
    ] 
    If TNFtot > 1 
    [ 
     set deg-mod (.035 * TNFtot + .97) 
     if TNFtot > 6 
     [set deg-mod (.035 * 6 + .97)] 
  ;   if synth-mod > 1 
  ;   [set synth-mod (((1 - synth-mod) / 60) * TNFtot + synth-mod - 
2 * ((1 - synth-mod) / 60))]   ;kinda complex but tnf inhibits IGF 
synthesis 
  ;   if TNFtot > 62 
  ;   [set synth-mod (-.00181 * TNFtot + 1)] 
  ;   if TNFtot > 100 
  ;   [set synth-mod (-.00181 * 100 + 1)] 
    ] 
    let currentprotein 0 
    let FTmodifier 0          ;this is the modifier for fibertype 
differences in synthesis and degradation 
    let FT 0 
    ;the new total protein is a simple equation of protein 
breakdown + synthesis changing the current protein content in a 
muscle 
    ask one-of patches with [patfiber# = currentfiber and 
totalprotein > 0 and fibertype > 0] [set currentprotein totalprotein 
set FT fibertype] 
    ifelse FT <= 2 
    [set FTmodifier 1] 
    [set FTmodifier .66]        ;fast twitch has slower protein synthesis 
and degradation 
    let newtotalprotein currentprotein + synthesis * synth-mod *  
timestep * FTmodifier - currentprotein * deg-mod * degradation * 
FTmodifier 
    ask patches with [patfiber# = currentfiber] 
    [set totalprotein newtotalprotein] 
    ] 
  ] 
   
   
  ; +++++++++++++++++++++++++++++ This while loop is the core 
of how a muscle adapts, it will resize a muscle fiber to +- .5 
squares 
   
  let dummy 0 
  while [dummy != totalfibers] 
  [ 
   set dummy 0 
   set counter 0  
   while [counter < totalfibers]  
   [ 
   set counter counter + 1 
   set currentfiber counter 
   let newtotalprotein 0 
   let currentedge patches with [patfiber# = currentfiber and edge 
= 1] 
   ifelse count currentedge < 4 
   [set dummy dummy + 1] 
   [ 
   ask one-of patches with [patfiber# = currentfiber and 
totalprotein > 0 and necrotic = 0] [set newtotalprotein 
totalprotein] 
   fiberedges 
   let border patches with [count neighbors < 8 and boundary = 1] 

   let tempprotein count patches with [patfiber# = currentfiber and 
necrotic = 0] * dimension ^ 3 * 1.059 
   ifelse abs(tempprotein - newtotalprotein) < ( dimension ^ 3 * 
1.059) 
   [set dummy dummy + 1] 
      
   [ 
    ifelse tempprotein > newtotalprotein 
    ; ()()()()()()()()()()()()()()()()()()()()()()()()()atrophy 
    [ 
    ifelse any? currentedge with [count neighbors with [patfiber# != 
[patfiber#] of myself] >= 6] 
    [ 
    set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself] >= 6] 
    ] 
    [ 
    set currentedge currentedge with [count neighbors with 
[patfiber# != [patfiber#] of myself] >= 3] 
    ] 
    ask one-of currentedge 
    [ 
    set pcolor 2 
    set edge 0 
    set marked -1 * patfiber#      ;this makes it a "hole" 
    set patfiber# 0 
    set fibertype 0 
    set totalprotein 0 
    let bordermax one-of border with-max [distance myself] 
    set bordermax distance bordermax 
    let bordermin one-of border with-min [distance myself] 
    set bordermin distance bordermin 
    let bordertemp one-of border with [distance myself < 
bordermin + (bordermax - bordermin) / 12] 
    set shiftx [pxcor] of bordertemp 
    set shifty [pycor] of bordertemp 
       
    ] 
  ] 
   
    ; ()()()()()()()()()()()()()()()()()()()()()()()()()hypertrophy 
   
  [ 
    
  let bordercheck 7 
  let currenttemp 0 
  let temp 0 
  let currentedge2 currentedge with [count neighbors with 
[collagen > 0] > 0] 
  set currentedge2 currentedge2 with [count neighbors with 
[patfiber# != [patfiber#] of myself] <= 3] 
  while [bordercheck < 8] 
  [ 
   set currenttemp one-of currentedge2  
   if currenttemp = nobody 
   [set currenttemp one-of currentedge] 
  ask currenttemp 
  [ 
    let neighs neighbors with [collagen > 0 or marked < 0] 
    if count neighs = 0 
    [ 
      set neighs neighbors with [collagen > 0 or marked < 0 or 
necrotic > 0] 
    ] 
    set temp one-of neighs with-max [count neighbors with 
[patfiber# = currentfiber]] 
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    set bordercheck count [neighbors] of temp 
  ] 
  ] 
  ask currenttemp 
  [ 
 ask temp 
    [redistribute 
     swap 
     set necrotic 0 
    ] 
    zerofactors 

  ] 
  ] 
  resolvetouchingfibers  
  resolvetouchingboundary 
  ] 
   ] 
  ] 
 ] 
End 
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Appendix II 
Extended rules table 

Agent Rules Literature 

Fibroblast Secretions 
Miyazono et al. 1991, Perrone et al. 1995,  
Skutek et al. 2001, Yokoyama et al. 1999 

 
Proliferation 

Battegay et al. 1995, Hetzel et al. 2005,  
Matsuda et al. 1992 

 
Apoptosis 

Alikhani et al. 2004, Mockridge et al. 2000, 
Romashkova and Makarov 1999,  
Yasuda et al. 2003 

  Migration 
Dickinson et al. 1994, Ozaki et al. 2007,  
Shreiber et al. 2001 

Muscle fiber Secretions Perrone et al. 1995 

  Hypertrophy/Atrophy Frost et al. 1997, Li et al. 1998 

Neutrophil Secretions 
Cassatella 1999, Sadik et al. 2011,  
Soehnlein et al. 2008 

  Recruitment Gordy et al. 2011, Sadik et al. 2011 

Resident macrophage Secretions Chen and Nunez 2010, Rock et al. 2007 

M1 macrophage Secretions 
Arnold et al. 2007, Bosurgi et al. 2011,  
Fadok et al. 2001, Stout et al. 2005 

 
Recruitment 

Soehnlein et al. 2008, Bosurgi et al. 2011, 
Mantovani et al. 2004 

 
Transition to M2 

Arnold et al. 2007, Fadok et al. 2001,  
Stout et al. 2005 

  Proliferation Côté et al. 2013 

M2 Macrophage Secretions 
Arnold et al. 2007, Bosurgi et al. 2011,  
Fadok et al. 2001, Stout et al. 2005 

 
Recruitment 

Bosurgi et al. 2011, Deng et al. 2012, 
 Mantovani et al. 2004 

  Proliferation Côté et al. 2013 

Satellite stem cell Secretions Ten Broek et al. 2010, Chazaud et al. 2003 

 
Activation Miller et al. 2000 

 
Proliferation 

Chazaud et al. 2003, Allen and Boxhorn 1989, 
Christov et al. 2007, Serrano et al. 2008,  
Strle et al. 2004, Hara et al. 2011 

 
Differentiation 

Strle et al. 2007,  Allen and Boxhorn 1989,  
Allen and Boxhorn 1987, Shen et al. 2006,  
Muñoz-Cánoves et al. 2013 

 
Migration 

Siegel et al. 2009, Germani et al. 2003,  
Schabort et al. 2011, Bondesen et al. 2007 

 
Association with M1s Chazaud et al. 2003 

 


