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Abstract 

Soil moisture is an important measure of the exchange of water and energy between the land and 

the atmosphere. Passive microwave remote sensors onboard Earth observation satellites have 

served as the most promising tool for quantifying the water content stored in the surface soil 

layer at a quasi-global scale. In recent decades, the utilization of satellite-based soil moisture 

retrievals has benefited a variety of applications, including the detection of extreme climate 

events, water resource and irrigation management, and numerical weather predictions. However, 

the available passive microwave soil moisture datasets are still unable to entirely satisfy the 

needs of climatological studies and applications due to the insufficient retrieval quality over 

certain land surface conditions, the coarse spatiotemporal resolution, the absence of information 

associated with nonuniform vertical moisture gradients, and the unavailability of a consistent 

long-term satellite-based soil moisture data record. Given these limitations, this dissertation aims 

to enhance the quality and utility of current passive microwave-based surface soil moisture data 

by attempting to resolve the above-mentioned issues.  

This dissertation first outlines the analyses for soil moisture retrievals that are impacted by water 

bodies (i.e., lakes) and soil organic matter to provide clues for refining the operational algorithm 

of deriving soil moisture from observed brightness temperatures at L-band (1.41 GHz). 

Specifically, this dissertation identified the lake mix-layer temperature from ERA5 Land and the 

dielectric mixing model of Mironov 2019 as the preferred options to mitigate water 

contamination and the effects of SOM in the passive microwave remote sensing retrieval of soil 

moisture. Their utilization will greatly improve the accuracy of the next-generation L-band soil 

moisture dataset.  
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Subsequently, the thesis describes the study that fills temporal gaps in Soil Moisture Active 

Passive (SMAP) data over the conterminous United States (CONUS) by incorporating a satellite-

based precipitation product and a data-driven loss function approach. Validation of this SMAP-

based 12-hourly soil moisture product not only exhibited great accuracy but also successfully 

captured most soil moisture peaks caused by heavy rainfall. The proposed loss-function approach 

could quantitatively characterize local-scale hydrologic losses near the land surface and can be 

used for back-extension and forecasts of soil moisture estimates through the incorporation of 

precipitation measurements. 

After that, a global-scale comparison of three advanced satellite-based products was conducted 

to identify their relative strengths in capturing temporal variability of regional-scale soil 

moisture. As a result, a global complementarity of the areas was observed where each satellite-

based soil moisture product showed its respective advantage in capturing soil moisture 

variations. Such an evaluation can serve as a guideline for data users to select proper soil 

moisture datasets for their research and applications. In the appendix (p.141-164), the 

formulations of a layered radiative transfer model have been presented, which inversions can be 

used to infer vertically heterogeneous moisture profiles from passive microwave observations. 

In summary, this dissertation is dedicated to improving the scientific quality and utility of state-

of-the-art SMAP soil moisture retrievals by addressing several identified drawbacks. The 

outcomes of this dissertation hold great promise for changing how radiometer observations are 

interpreted in the future while the newly yielded soil moisture data with temporal continuity and 

higher accuracy will help researchers quantitatively understand the linkages between water 

balance components and deepen the understanding of the terrestrial-atmosphere interactions in 

the context of climate change.  
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Chapter 1. Introduction 

Soil moisture is a vital component of Earth’s system as it plays a crucial role in controlling 

energy fluxes at the land-atmosphere interface and in regulating precipitation into surface runoff 

and storage as part of the water budget (Koster et al. 2004; Petropoulos 2013; Wagner et al. 

2003). Of late, soil moisture has been acknowledged as an Essential Climate Variable (ECV) by 

the Global Climate Observing System (GCOS) (Dorigo et al. 2015). An accurate understanding 

of soil moisture distribution and dynamics could advance our comprehension of the water, 

energy, and carbon cycles. Additionally, detailed knowledge about the state of soil moisture, 

including its spatial and temporal dynamics, is of exceptionally beneficial for various 

meteorological, climatological, and ecohydrological applications, such as precipitation 

estimations, agricultural management, flood prediction, drought monitoring, and improved 

weather forecast skills (Koster et al. 2010; Robock and Li 2006; Seneviratne et al. 2010; 

Vereecken et al. 2014). 

In general, gravimetric weighing of soil samples and installation of in-situ electromagnetic 

probes are regarded as the most reliable means to quantify soil water content (Babaeian et al. 

2019). However, in-situ measurements can be subject to uncertainties due to a variety of factors, 

such as high salinity level and inadequate calibration (Babaeian et al. 2019). In addition, 

implementation of such methods is invasive (e.g., requiring the extraction of soil samples), costly 

and laborious. Moreover, in-situ sensors typically provide only point-scale measurements and 

may not accurately represent soil moisture variations over a larger area. As a result, they are 

often limited to small-scale experiments or local monitoring sites, making it challenging to 

obtain a comprehensive view of soil moisture dynamics over large areas.   
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Remote sensing techniques that adopt sensors mounted on aircraft and satellite platforms have 

been identified as a feasible alternative to quantifying and mapping soil moisture across the 

globe (Petropoulos et al. 2015). Compared to sensors operated in visible and infrared spectra, 

microwave remote sensing has several remarkable advantages, including the ability to detect 

changes in dielectric properties of the soil-water medium, the negligible influence of the 

atmosphere, and independence from solar illumination (Jackson 1993; Karthikeyan et al. 2017). 

As such, a variety of spaceborne passive and active microwave sensors have been developed and 

utilized to analyze soil moisture patterns at various scales (Karthikeyan et al. 2017). Passive 

sensors (radiometer) detect the soil moisture variations by measuring the naturally thermal 

emissions from the land surface in the form of brightness temperature. On the other hand, active 

microwave sensors (radar) capture the backscattered coefficients from the Earth’s surface. Over 

the sparsely vegetated areas, soil moisture retrievals from passive microwave remote sensing are 

prone to higher accuracy relative to those from the observations of active sensors as the former 

measurements are of less disturbance from the surface roughness. In practice, the exceptional 

performance of soil moisture retrievals from the L-band (0.5 – 1.5 GHz) spaceborne microwave 

radiometers has been confirmed by a number of validation studies, e.g., Soil Moisture and Ocean 

Salinity (SMOS) and Soil Moisture Active Passive (SMAP) (Al-Yaari et al. 2017; Chan et al. 

2018; Chan et al. 2016). 

However, the available passive microwave soil moisture datasets are still unable to entirely 

satisfy the needs of climatological studies and applications due to 1) the insufficient retrieval 

quality over particular land surface conditions, 2) the absence of information associated with 

vertical moisture gradients, 3) the coarse spatiotemporal resolution, and 4) the unavailability of a 

consistent long-term satellite-based soil moisture data record. Specifically, there are various 
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regions diagnosed as unfavorable for retrieving soil moisture. Densely vegetated areas, for 

example, could significantly attenuate the signals transmitting from the underlying soil, causing a 

severe deviation from the true soil moisture magnitude (Karthikeyan et al. 2017). In addition to 

those naturally adverse conditions, anthropogenic processes like radio frequency interference 

(RFI) could also contaminate the radiometer measurements and degrade the retrieval quality 

(Kerr et al. 2012). Notably, soil moisture data derived from the SMOS and SMAP missions are 

assumed to be an average moisture content within a 5-cm soil layer (O'Neill et al. 2021a). 

Although such an assumption could largely simplify the retrieval procedure, the alignment of the 

assumed and actual emission depths, and the applicability of this 5cm-depth assumption over a 

global range remain to be further investigated. Moreover, the constant soil moisture over the 

tens-of-kilometers scale sometimes cannot fully reflect the spatial variability of fine-scale soil 

wetness, while a revisit frequency of 2 – 3 days might fail to record the fluctuation of surface soil 

moisture responses to short-term intensive precipitation events (Peng et al. 2021; Zhang et al. 

2021a). Furthermore, the period of available passive microwave remote sensing soil moisture 

datasets from the mentioned missions is shorter than 15 years, thereby not meeting the needs of 

climatology studies and related applications that require consistent long-term soil moisture 

observations. 

Therefore, the objective of this dissertation is three-fold: 1) to advance and improve the current 

retrieval algorithm to enhance the accuracy of soil moisture estimations, 2) to increase the 

temporal availability of soil water variations into a 12-hourly scale, and 3) to investigate and 

construct a layered radiative transfer model capable of accurately modeling the incoherent 

microwave emissions from the natural soil media, which is characterized by heterogenous 

moisture and temperature profiles. These objectives will result in soil moisture retrievals that 
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more accurate, complete and immune to certain confounding factors (e.g., soil organic matter). 

Beyond the water balance perspective, the outcomes from this thesis will build the foundation for 

advancing the interpretation of future radiometer observations, and deepen the understanding of 

the linkages between water, energy, and carbon fluxes in the context of climate change. It should 

be noted that the scope of this thesis is primarily focused on the state-of-the-art soil moisture 

retrievals derived from the National Aeronautics and Space Administration (NASA) SMAP 

mission (Entekhabi et al. 2010a). 

The structure of this dissertation is organized as follows. Works related to the water 

contamination and the degraded performance over organic-rich soils of the existing SMAP soil 

moisture retrievals have been investigated in Section 2 and Section 3. Section 4 illustrates the 

topic of temporally gap-filling SMAP soil moisture product through water balance budgeting. 

Section 5 describes the construction of a layered radiative transfer model for use in non-uniform 

subsurface soil medium. In Section 6, the adequacy of three advanced satellite-based soil 

moisture products in capturing temporal dynamics is evaluated and discussed. Finally, 

conclusions followed by a summary present in Section 7.  
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Chapter 2. Evaluation of Global Surface Water Temperature 

Data Sets for Use in Passive Remote Sensing of Soil Moisture 

R. Zhang, S. Chan, R. Bindlish, and V. Lakshmi (2021). Evaluation of Global Surface Water 

Temperature Data Sets for Use in Passive Remote Sensing of Soil Moisture. Remote Sens. 2021, 

13, 1872. https://doi.org/10.3390/rs13101872  

Abstract 

Inland open water bodies often pose a systematic error source in the passive remote sensing 

retrievals of soil moisture. Water temperature is a necessary variable used to compute water 

emissions that is required to be subtracted from satellite observation to yield actual emissions 

from the land portion, which in turn generates accurate soil moisture retrievals. Therefore, 

overestimation of soil moisture can often be corrected using concurrent water temperature data in 

the overall mitigation procedure. In recent years, several data sets of lake water temperature have 

become available, but their specifications and accuracy have rarely been investigated in the 

context of passive soil moisture remote sensing on a global scale. For this reason, three lake 

temperature products were evaluated against in-situ measurements from 2007 to 2011. The data 

sets include the lake surface water temperature (LSWT) from Global Observatory of Lake 

Responses to Environmental Change (GloboLakes), the Copernicus Global Land Operations 

Cryosphere and Water (C-GLOPS), as well as the lake mix-layer temperature (LMLT) from the 

European Centers for Medium-Range Weather Forecast (ECMWF) ERA5 Land Reanalysis. 

GloboLakes, C-GLOPS, and ERA5 Land have overall comparable performance with Pearson 

correlations (R) of 0.87, 0.92 and 0.88 in comparison with in-situ measurements. LSWT products 

exhibit negative median biases of −0.27 K (GloboLakes) and −0.31 K (C-GLOPS), whereas the 

https://doi.org/10.3390/rs13101872
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median bias of LMLT is 1.56 K. When mapped from their respective native resolutions to a 

common 9 km Equal-Area Scalable Earth (EASE) Grid 2.0 projection, similar relative 

performance was observed. LMLT and LSWT data are closer in performance over the 9 km grid 

cells that exhibit a small range of lake cover fractions (0.05–0.5). Despite comparable relative 

performance, ERA5 Land shows great advantages in spatial coverage and temporal resolution. In 

summary, an integrated evaluation on data accuracy, long-term availability, global coverage, 

temporal resolution, and regular forward processing with modest data latency led us to conclude 

that LMLT from the ERA5 Land Reanalysis product represents the most optimal path for use in 

the development of a long-term soil moisture product. 

Keywords: Lake Mix-Layer Temperature (LMLT); Lake Surface Water Temperature (LSWT); 

ERA5 Land; Global Observatory of Lake Responses to Environmental Change (GloboLakes); 

Copernicus Global Land Operations Cryosphere and Water (C-GLOPS) 
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2.1. Introduction 

Soil moisture is a critical component of the Earth’s systems, mainly because of its capability to 

control surface energy fluxes, potentially exchange with the atmosphere, and partitioning 

precipitation into infiltration and surface runoff in terms of water budget (Dai et al. 2004; 

Entekhabi et al. 2010a; Koster et al. 2004; Petropoulos 2013). Given its relatively slow variance, 

soil moisture has been recognized as an essential variable in climatic studies and numerical 

weather predictions (Entekhabi et al. 2010a; Koster et al. 2004). Knowledge of accurate soil 

moisture measurements could benefit a variety of applications, ranging from drought monitoring, 

flood and landslide prevention, agricultural productivity improvements, and weather forecasts 

(Dai et al. 2004; Entekhabi et al. 2010a; Koster et al. 2004). However, a global coverage of long-

term soil moisture monitoring by in-situ measurements is impractical only from the perspectives 

of expenditure and manpower required by the operation and maintenance of the associated 

facilities. 

In recent decades, satellite-based surface soil moisture products have created extensive 

opportunities to study terrestrial-atmosphere interactions and hydrological cycles at a global 

scale. Compared to optical and active microwave sensors, passive microwave sensors are more 

sensitive to surface soil moisture in the presence of the same confounding factors (e.g., clouds, 

vegetation, surface roughness, etc.) (Al-Yaari et al. 2014; Kim et al. 2019) while offering more 

frequent repeat global coverage of about 2–3 days, as compared to more than 10 days by active 

sensors. These advantages of passive microwave remote sensing of soil moisture have been the 

principal driving force behind the application of various spaceborne radiometers (e.g., Special 

Sensor Microwave Imager (SSMI) (Lakshmi et al. 1997), Advanced Microwave Scanning 
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Radiometer (AMSR-E) (Njoku et al. 2003), Soil Moisture and Ocean Salinity (SMOS) (Kerr et 

al. 2010) and Soil Moisture Active Passive (SMAP) (Entekhabi et al. 2010a)) for soil moisture 

retrieval over the last decade. Lately, there has been tremendous progress in the area of 

improving the spatial resolution of satellite derived soil moisture to 1 km (Fang et al. 2018; Fang 

et al. 2013; Fang et al. 2020) and 400 m (Fang et al. 2021b). 

However, the accuracy of soil moisture retrieved from satellite observations can be influenced by 

several factors (O'Neill et al. 2021a), such as vegetation, topography, surface roughness etc. 

Inland open water bodies (e.g., lakes, rivers, wetlands, etc.) are also an important error source for 

passive remote sensing of soil moisture (Fernandez-Moran et al. 2017b; Kerr et al. 2012; O'Neill 

et al. 2021a). Specifically, signals detected by satellite sensors include both emissions by land 

areas as well as water bodies. Without proper correction procedures, the contribution of the 

microwave emissions of water can add to microwave emissions from adjacent land, resulting a 

systematic wet bias in soil moisture estimates (O'Neill et al. 2021a). To mitigate this 

contamination, it is necessary to separate the mixture of land-water brightness temperature and 

remove the partial emissions contributed by water bodies. This can be achieved through 

subtraction of water emissions from the total brightness temperatures. Water temperature 

representative of inland water bodies is thereby a required variable in the estimation of water 

radiation within the field-of-view (FOV) of the radiometer upon antenna gain pattern correction, 

in addition to the fractions of water cover. 

Recently, a number of assimilation and reanalysis data sets that describe long-term variations of 

water temperatures have been released (Carrea and Merchant 2019, 2020b; Muñoz-Sabater et al. 

2021a). These data sets include lake surface water temperature (LSWT) from the Global 

Observatory of Lake Responses to Environmental Change (GloboLakes) (Carrea and Merchant 
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2019) and the Copernicus Global Operations Cryosphere and Water (C-GLOPS) (Carrea and 

Merchant 2020b), as well as the lake mix-layer temperature (LMLT) from the European Centers 

for Medium-Range Weather Forecast (ECMWF) ERA5 Land Reanalysis (Muñoz-Sabater et al. 

2021a; Sabater 2019). These recent LSWT products have adopted the algorithms used in 

estimating sea surface temperature but with modifications of processing procedures and 

additions of lake-related parameters (Carrea and Merchant 2020a; MacCallum and Merchant 

2012), thus yielding more reliable estimations of water temperature specific to inland water 

bodies (compared to those derived from algorithm designed for sea surface temperature). In 

addition, the above LSWT and LMLT data sets are expected to provide data over the open water 

adjacent to land, given that they are projected in regular latitude-longitude grids, which is 

especially helpful for the water correction in passive soil moisture retrieval algorithms. However, 

these water temperature data sets are supplied at vastly different spatial and temporal resolutions 

because of diverse computational procedures and input sources (Carrea and Merchant 2019, 

2020b; Muñoz-Sabater et al. 2021a). 

Lake temperature data sets that incorporate long-term satellite remote sensing observations have 

been widely investigated, evaluated and applied, since LSWT is considered as an important 

indicator of climate change and highly related to the chemical and physical process within the 

water bodies (Lieberherr and Wunderle 2018; Samuelsson et al. 2010). In order to study lake 

responses to climate change, validation efforts of LSWT products are generally carried out at the 

lake scale or at a coarse temporal resolution (Crosman and Horel 2009; Layden et al. 2015; 

Lieberherr and Wunderle 2018; Njoku and Kong 1977; O'Reilly et al. 2015; Schaeffer et al. 

2018; Wan et al. 2017). For example, Lieberherr and Wunderle (2018) evaluated the LSWT 

derived from the Advanced Very High-Resolution Radiometer (AVHRR) with in-situ 
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measurements over 26 European Lakes where AVHRR LSWT data have absolute biases within 2 

K and Pearson Correlations (R) of more than 0.9. In addition, LSWT data provided by Landsat 5 

and 7 were evaluated in 59 water bodies (Schaeffer et al. 2018), and their mean absolute error is 

1.34 K for those grids away from the land areas more than 180 m. Moreover, studies of intra- and 

inter-annual variability of LSWT as a response to climate change normally requires long-term 

LSWT data with a coarse temporal resolution (Lieberherr and Wunderle 2018; Maberly et al. 

2020). The authors of Maberly et al. (2020) analyzed seasonal patterns of LSWT and constructed 

global lake thermal regions based on the LSWT data at a half-monthly time step. 

However, requirements for water temperature data of inland water bodies are greatly different in 

the application of water correction in the derivations of soil moisture from passive remote 

sensing observations. Water temperature data are expected to be representative over a large but 

fixed spatial scale, such as the 9 km Equal-Area Scalable Earth (EASE) Grid 2.0 (Brodzik et al. 

2012) which is a typical satellite-based Level 2 passive soil moisture retrieval setting (e.g., 

SMAP). Data sets with a higher temporal frequency are more optimal and conform to the 

instantaneous satellite observations of soil moisture given that the surface temperature variations 

in time can greatly impact soil moisture retrieval. Assessments and inter-comparisons of lake 

water temperature data sets in the frame of soil moisture are insufficient. 

LMLT data of ERA5 Land represent the average temperatures for the top layer of lakes, which 

are different from surface skin temperatures (on the orders of micrometers and millimeters) 

illustrated by satellite based LSWT products. A default depth of 25 m has been widely used in 

the derivation of ERA5 Land LMLT given the unavailability of water depths over most inland 

water bodies (Sabater 2019). Therefore, systematic discrepancies between LMLT and LSWT 

data sets are expected as they reflect the lake thermal conditions at different depths, but this is 
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rarely investigated. Research from Muñoz-Sabater et al. (2021a) updated the depth information 

and compared LMLT data with in-situ measurements (with only one station having hourly data), 

and concluded that the mean absolute errors of ERA5 Land are from 2.25 to 3.22 K. 

Nevertheless, the representative depth (about 1 m) of in-situ observed temperature is also 

different from GloboLakes and C-GLOPS LSWT products. Moreover, inter-comparisons 

between areal LSWT and LMLT data sets could also be useful to more or less indicate their 

quality over a wider geographical coverage. 

In light of these, three lake temperature data sets were selected for evaluation and inter-

comparison over a five-year period from 2007 to 2011, including LSWT from GloboLakes and 

C-GLOPS, and LMLT from ERA5 Land. Since the assessments of the above products emphasize 

their usefulness in providing correction for microwave emissions from open water for passive 

soil moisture retrieval, performance evaluation was conducted at their native spatial scales and 

on the 9 km EASE Grid as an illustration. The latter was used to demonstrate how these data sets 

perform in a larger spatial extent common in passive soil moisture retrieval products. In addition 

to data accuracy, several aspects were also examined in this study, which are long-term 

availability, global coverage, temporal resolution, regularity in data maintenance and extension. 

2.2. Study Regions and Lake Temperature Data Sets 

2.2.1. Study Regions 

In this study, the buoys used to represent the in-situ measurements of lake water temperature are 

distributed over 11 lakes in the North America as shown in Figure 2.1. Most available stations 

are concentrated on the Great Lakes region composed of Lake Superior (47.7º N, 87.5º W), Lake 

Huron (44.8º N, 82.4º W), Lake Erie (42.2º N, 81.2º W), Lake Michigan (44.0º N, 87.0 W), and 
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Lake Ontario (43.7º N, 77.9º W). Along the border of the United States and Canada, the total 

surface area of these five lakes is around 244106 km2. Additionally, the Great Lakes have 

abundant freshwater resources, approximately 21% of the global surface freshwater volume. 

There are also several stations within the Great Lakes area, including Lake Saint Clair (42.5º N, 

82.7º W), Lake Nipissing (46.3º N, 79.8º W), and Lake Smicoe (44.4º N, 79.3º W). The 

remaining three lakes are Lake Great Slave (61.5º N, 114.0º W), Lake Winnipeg (52.1º N, 97.3º 

W), and Lake of the Woods (49.2º N, 94.8º W) that are located in the further north regions. 

According to the classification of lake thermal regions developed by Maberly et al. (2020), these 

lakes could be grouped into Northern Temperate and Northern Cool with average temperatures 

around 282.95 K and 279.25 K, respectively. 

2.2.2. Lake Temperature Data Sets 

Three lake temperature products consisting of two satellite-based LSWT and one-model based 

LMLT were examined in this study. The specifications of these data sets are summarized in 

Table 2.1. In-situ measurements from buoys available within the studying period were used as 

the reference in the validation. 

2.2.2.1. Global Observatory of Lake Responses to Environmental Change (GloboLakes) 

GloboLakes LSWT version 4.0 provides daily averages of surface water temperature for around 

1000 lakes mostly extracted from the Global Lakes and Wetland Database (GLWD) Level 1 

product (Carrea and Merchant 2019; Politi et al. 2016). The retrievals of LSWT were derived 

using the same algorithms on satellite observations from various types of sensors and platforms, 

including the Along Track Scanning Radiometer (ATSR-2) on European Remote Sensing 

Satellite (ERS-2), Advanced Along Track Scanning Radiometer (AATSR) on Envisat, and 
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AVHRR on MetOpA (Carrea et al. 2015). This data set contains a long-term daily LSWT data 

ranging from 1995 to 2016 with a spatial resolution of 0.05°. 

In this study, daily files with a regular latitude-longitude grid were used. In addition to skin 

temperature of lakes’ surface, the information of uncertainty estimations and quality level related 

to LSWT retrievals is also included in the data set. Quality level is considered as a flag to 

quantify the confidence of LSWT retrievals, such as the degree of interference caused by cloud 

contamination and is unable to necessarily represent the accuracy level. Data with all quality 

levels were retained in order to satisfy the need of high temporal frequency in water correction of 

soil moisture retrievals. It should be noted that a static land-water mask based on the European 

Space Agency Climate Change Initiative (ESA CCI) Land Cover map with a spatial resolution of 

300 m for the time period 2005–2010 has been applied to identify and delineate the lake pixels, 

which could lead to inappropriate estimations of LSWT over water bodies with dynamic surface 

extensions (Carrea et al. 2015). In addition, the combined use of observations from different 

satellite sensors will inevitably introduce more error sources despite the increase of available 

samples and the harmonized processing. 

2.2.2.2. Copernicus Global Land Operations (C-GLOPS) 

LSWT of C-GLOPS contains gridded 10-day mean surface water temperature over more than 

1000 lakes composed of the world’s largest and those water bodies of particularly scientific 

interest (Carrea and Merchant 2020b). Specifically, the 10-day LSWT data of C-GLOPS are 

temporally aggregated and generated via calculating the weighted average of Level 3 gridded 

daytime files partitioned by the 1st to 10th, and 11th to 20th, and 21st to the end of each month. 

Three types of LSWT are included in this data set, which are historical (v1.0.2), reprocessed 

(v1.0.2), and near real-time products (v1.0.1 and v1.1.0), depending on the timeliness and 
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completeness of the Level 1b inputs during processing (Carrea and Merchant 2020c). Since the 

LSWT retrievals at a regular 1/120° resolution grid are originally derived from the visible and 

infrared from the AATSR and Sea and Land Surface Temperature Radiometer (SLSTR) onboard 

Envisat, and Sentinel 3A and 3B, the temporal coverage of this data set was separated into two 

periods: May 2002 to April 2012, and November 2016 to present. This data set can be freely 

accessed and downloaded through the Copernicus Global Land Portal 

(https://land.copernicus.eu/global/products/lswt, accessed on March 9, 2021). Similar to 

GloboLakes LSWT, the uncertainty information and quality levels are also available, and all 

quality-level data were adopted in this work. 

According to Carrea and Merchant (2020c), the accuracy of C-GLOPS overall fulfills the 

uncertainty requirement of 1 K comparing against in-situ measurements. However, the utilization 

of LSWT with a quality level lower than 3 should be handled carefully (Carrea and Merchant 

2020a). Again, one common factor that could influence the observations is the presence of clouds 

given that the AATSR and SLSTR operate at visible and infrared bands (Carrea and Merchant 

2020a). Additionally, the application of a uniform threshold standard has risks in the 

identification of water and non-water grid cells (Carrea and Merchant 2020a). Contamination 

from land associated signals could affect the retrieval quality. As a result, LSWT retrievals in the 

areas near the land are more likely to have lower performance. Moreover, the numbers and 

observation times used in the temporal aggregation varies from place to place, possibly leading 

to spatially or temporally inconsistent thermal conditions, even for the same lake (Carrea and 

Merchant 2020a). Furthermore, a static mask representing the maximum surface water extent of 

lakes from 2015 to 2010 was adopted (Carrea and Merchant 2020a), which is improper for those 

water bodies with evident changes in areas at the 1 km2 scale. 
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2.2.2.3. ERA5 Land 

ERA5 Land is a reanalysis product containing a series of variables that describe the state of 

various land components from 1981 to the current time (Muñoz-Sabater et al. 2021a; Sabater 

2019). Although ERA5 Land utilizes ERA5 atmospheric forcing as inputs to derive the land 

components, the ERA5 Land data set has a higher spatial resolution at 0.1° compared to its 

predecessor at 0.25°. Without coupling with the atmospheric module of ECMWF’s Integrated 

Forecasting System and ocean wave models as well as data assimilation, the processes related to 

the computation and delivery of ERA5 Land are expected to be more efficient. The core of 

ERA5 Land is the Tiled ECMWF Scheme for Surface Exchanges over Land incorporating land 

surface hydrology (H-TESSEL) (version CY45R1). 

In this study, hourly LMLT from the ERA5 Land data set was selected to reflect the thermal 

conditions over various inland water bodies. The ECMWF Integrated Forecasting System 

separates the vertical structure of inland water bodies into two levels: the upper (mix layer) and 

lower (thermocline layer) layers given the implementation of the Flake model (Mironov 2008; 

Mironov et al. 2010). In light of this, LMLT represents the average water temperature at the 

uppermost layer of lakes and differs from skin temperature at the water surface. Lake-related 

variables can be calculated for each pixel so as to incorporate the sub-grid features of the small 

to medium-size lakes (Manrique-Suñén et al. 2013; Mironov et al. 2010; Muñoz-Sabater et al. 

2021a). ERA5 Land data set provides a spatially complete temperature map for both inland water 

bodies and coastal waters, but it is necessary to use an auxiliary data set that describes the water 

fraction within the grid cell simultaneously with LMLT. This static map of lake cover is provided 

by the reanalysis product of ERA5 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview, 
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accessed on November 15, 2020) at 0.25° and then interpolated into 0.1° and the 9 km EASE 

grid. For inland water bodies where lake depths are not available, a default value of 25 m has 

been used (Sabater 2019), which is likely to result in unreasonable LMLT retrievals, especially 

for those lakes with shallow depths. 

2.2.2.4. In-Situ Measurements of Lake Surface Temperature 

In-situ lake surface temperatures collected by the moored buoys from fixed locations were used 

to benchmark the performance of assimilated and reanalysis products. Based on the stations 

considered in the Quality Validation Report of C-GLOPS (Carrea and Merchant 2020c), 34 

buoys (Table A1) over lakes in Northern America were selected. These measurements are from 

either the National Data Buoy Center (NDBC) (https://www.ndbc.noaa.gov/, accessed on March 

14, 2021) or Fisheries and Ocean Canada (FOC) (https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-

gdsi/waves-vagues/data-donnees/index-eng.asp, accessed on March 14, 2021). Figure 2.1 

describes the geographical locations of in-situ measurements. Historical files of hourly water 

temperature can be used in validation for remotely sensed and modelled lake temperature data 

sets. 

Table 2.1. Summary of lake temperature data sets used in this study.  

Datasets GloboLakes C-GLOPS ERA5 Land 

Variable LSWT LSWT LMLT 

Spatial Coverage 991 inland waters 1018 inland waters Global inland water bodies and coastal waters 

Spatial Resolution 0.05° × 0.05° 1 km × 1 km 0.1° × 0.1° 

Temporal Coverage June 1995–December 2016 May 2002–March 2012; June 2016–present January 1981 to present 

Temporal Resolution Daily 10-day interval Hourly 
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Figure 2.1. Distribution of in-situ buoys (red points). 

2.3. Methodology and Assessment Metrics 

2.3.1. Validation against In-Situ Measurements 

Evaluation of lake temperature data sets were firstly assessed by comparing against 34 in-situ 

buoys distributed in the North America at their native spatial and temporal resolutions. LSWT 

data of all quality levels from GloboLakes and C-GLOPS were retained in the assessments to 

incorporate as many observations as possible. Although low-quality-level samples does not 

necessarily represent inferior accuracy, the overall better statistic metrics for LSWT data at 

quality levels of 4 or 5 have been obtained (Carrea and Merchant 2020c). Despite that, the 

degradation on the performance of LSWT data sets is expected to be limited as the majority of 

LSWT data with quality levels of 4 and 5 (Carrea and Merchant 2020c). Following a similar 
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manner used in Kerr et al. (2012), data with water temperature below 275.15 K (2 ºC) were 

screened out to avoid unreliable observations near the freezing point. 

Given that in-situ data were collected from different sources (Table A1), quality control 

measures have been adopted to filter out those abnormal and suspicious observations. A pre-

determined threshold (in addition to 275.15 K mentioned above) and manual inspection were 

used. Firstly, a threshold of 306.55 K was employed and those in-situ observations with 

temperatures above this value were removed. This boundary value represents the maximum 

temperature for lakes under Northern Temperate and Northern Cool classifications (all in-situ 

stations are within these areas) (Maberly et al. 2020). Then, some sudden spikes or extremely 

low temperatures described by the in-situ time series were manually masked. 

Since the temporal resolutions of in-situ observation, LMLT and LSWT data sets vary from sub-

hourly to 10-day intervals, temporal averaging procedures were re-quired before assessments. 

Similar to the steps applied in Carrea and Merchant (2020c), for example, 10-day averages of in-

situ observations were computed for evaluating C-GLOPS LSWT. In addition, it should be noted 

that data from in-situ observations, ERA5 Land, GloboLakes, and C-GLOPS reflect water 

temperature at different depths. Generally, LSWT data measured by satellite instruments could 

represent the water temperature from many micrometers to a few millimeters depending on the 

instrument frequencies, whereas the in-situ buoys usually detect the water temperature at around 

1 meter (as described in Table A1) under the water surface and without significant effects from 

diurnal cycles. In terms of ERA5 Land, LMLT reflects the average temperature for the top-most 

layers of lakes and its corresponding depth is dependent on lake depth used in the Flake model 

(Mironov et al. 2010). However, a default depth of 25 meters was used in the derivations of 

LMLT over most inland water bodies due to the common unavailability of depth information 
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(Sabater 2019). Therefore, discrepancies between LMLT and LSWT are expected to exist but 

have not been widely investigated yet. Regarding the LSWT and in-situ observations, skin effect 

could account for the -0.2 K error mainly generated by the different observing depths between 

in-situ measurements and satellite sensors (Carrea and Merchant 2020c). The remaining residuals 

could be contributed by other unquantified factors, such as the near-surface stratification, 

underestimating atmospheric attenuation or overestimating surface emissivity (Carrea and 

Merchant 2020c; Crosman and Horel 2009). 

Subsequently, ERA5 Land, GloboLakes, and C-GLOPS were resampled into the EASE 9km 

scale by bilinear interpolation in order to quantify the performances of these data sets in the 

context of soil moisture retrievals as well as analyze the influences on their data accuracy by 

rescaling processing. Again, in-situ measurements were used as reference to assess the 

performances of three lake temperature products at the 9km EASE grid after temporal averaging. 

It should be noted that statistical metrics were considered to be effective and calculated only if 

there are at least 30 paired data between two data sets (Hogg et al. 2010; Pallant 2011; Woolway 

and Merchant 2019). In addition to the uncertainty of products, seasonal trends captured by lake 

temperature data sets were also illustrated and examined by time series over Lake Superior and 

Lake Huron. Furthermore, dependency of errors between the above data sets and in-situ 

measurements on temperature ranges were also investigated. 

2.3.2. Inter-comparisons among Lake Temperature Products at the 9km Scale 

Due to the fact that in-situ measurements are only available in the limited geographical regions, a 

global-scale assessment based on in-situ observations is difficult to achieve. Therefore, inter-

comparisons among different lake temperature products could be an effective alternative to 

corroborate their relative performances. It is particularly feasible when the LSWT retrieval 
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algorithm is found on physics (Carrea and Merchant 2020c) to guarantee the consistency of 

derived LSWT values. The EASE 9km grid cells with lake fractions smaller than 0.05 were not 

considered in accordance the requirements of passive remote sensing soil moisture retrieval 

algorithm. 

Following similar steps adopted in the Section 2.3.1, overlapped pixels among three lake 

temperature data sets were firstly determined and then temporal averaging was separately applied 

before three groups of pairwise comparisons (Figure 2.2). For example, EAR5 Land hourly 

LMLT data were temporally aggregated at a 10-day scale prior to comparing with C-GLOPS 

LSWT. The general workflow adopted for the assessments and comparisons of performances of 

considered water temperature data sets has been described in Figure 2.2, and different filling 

colors correspond to various temporal scales. Additionally, differences and correlations among 

LMLT and LSWT products were studied conditioned by lake cover fractions. More importantly, 

the numbers of available pixels and data during the studying period were investigated and 

compared given that the requirements of high temporal resolution and wide spatial coverage in 

the soil moisture retrievals. 
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2.3.3. Assessment Metrics 

Six statistical metrics were adopted to reflect the accuracy of assessed products, which are mean 

bias, standard deviations of bias, root mean square error (RMSE), the Pearson correlation 

coefficient (R), median bias, and robust standard deviation (RSD). Standard deviation and RSD 

describe the dispersion of mean bias and median bias, respectively. Robust statistical metrics 

(i.e., median bias and RSD) were considered because they are less susceptible to outliers due to 

extreme observations (Carrea and Merchant 2020c). However, unreliable estimations of water 

temperature over inland water bodies are inevitable, possibly due to the undetected clouds or 

horizontal variability at water surface caused by winds (Carrea and Merchant 2020c; MacCallum 

and Merchant 2012). RSD is calculated as the following steps: (1) calculate the absolute 

differences between the biases and median bias (2) determine the median value of those prior 

absolute differences (3) multiply a factor (1.5) with the median value obtained in Step (2) as 

Figure 2.2. Schematic diagram that describes the workflow adopted in this study for evaluating the performance of 

lake temperature data sets. Different colors of the boxes indicate different temporal scales of data sets. 
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RSD (Carrea and Merchant 2020c). Here, water temperatures from the evaluated data sets and 

in-situ measurements are denoted as 𝑇𝑒𝑠𝑡 and 𝑇𝑡𝑟𝑢𝑒. The formulas of those statistical metrics are 

given in Equations (1) to (6), where E […], M […], σ, μ, and N represent the arithmetic mean, 

median, standard deviation, mean bias, and the number of samples, respectively. 

𝑚𝑒𝑎𝑛 𝑏𝑖𝑎𝑠 = 𝐸[𝑇𝑒𝑠𝑡] − 𝐸[𝑇𝑡𝑟𝑢𝑒] (1) 

𝜎 =  √
(𝑥𝑖 − 𝜇)2

𝑁
 (2) 

𝑅𝑀𝑆𝐸 =  √𝐸[(𝑇𝑒𝑠𝑡 − 𝑇𝑡𝑟𝑢𝑒)2] (3) 

𝑅 =  
𝐸[(𝑇𝑒𝑠𝑡 − 𝐸[𝑇𝑒𝑠𝑡])(𝑇𝑡𝑟𝑢𝑒 −  E[𝑇𝑡𝑟𝑢𝑒])]

𝜎𝑒𝑠𝑡𝜎𝑡𝑟𝑢𝑒
 (4) 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑏𝑖𝑎𝑠 = 𝑀[𝑇𝑒𝑠𝑡 − 𝑇𝑡𝑟𝑢𝑒] (5) 

𝑅𝑆𝐷 = 𝑀[|(𝑥𝑖 −𝑀[𝑥𝑖])|] × 1.5 (6) 

2.4. Results 

In this section, assessment results of LMLT from ERA5 Land and LSWT from GloboLakes and 

C-GLOPS are presented. Firstly, validations against their corresponding temporal averaged in-

situ measurements were conducted to reflect their innate performances at native scales. Time 

series and scatter plots were applied to describe the consistency in terms of the seasonal trends 

and proximity of absolute values among different products. In the framework of passive remote 

sensing soil moisture retrievals, the performances of ERA5 Land, GloboLakes and C-GLOPS at 

the EASE 9 km pixels were further analyzed, and the effects of the errors along the increased 

temperatures were also investigated. Additionally, spatial coverages, temporal resolutions, and 

overlapped pixels of LMLT and LSWT data sets were studied and prepared for inter-comparisons 
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over wider areas where in-situ measurements are scarce or unavailable. Discrepancies between 

LMLT and LSWT products were then examined across various lake cover fractions. 

2.4.1. Overall Performance of Lake Temperature Products at Their Original 

Resolutions 

Figure 2.3 describes the boxplots of median bias, RMSE and R for hourly LMLT of ERA5 Land, 

daily LSWT of GloboLakes, and 10-day aggregated LSWT from C-GLOPS, relative to the lake 

temperature from in-situ observations. In terms of median bias and RMSE, LSWT from 

GloboLakes and C-GLOPS is closer to in-situ measurements than LMLT from ERA5 Land. 

LSWT products tend to underestimate while ERA5 Land product is inclined to overestimate. 

Additionally, all three data sets have exhibited a strong capacity to capture the temporal 

variations because their R values are consistently higher than 0.8. In general, marginally inferior 

accuracy of ERA5 Land is expected because LSWT data from GloboLakes and C-GLOPS are 

able to reflect the thermal conditions over smaller areas by mapping at finer spatial resolutions 

and thereby correspond better to point in-situ measurements. 

 

Figure 2.3. Boxplots of median bias (a), RMSE (b), and R (c) for hourly LMLT of ERA5 Land, daily 

LSWT of GloboLakes, and 10-day LSWT of C-GLOPS at their native spatial resolutions. N represents 

the number of in-situ stations used to calculate the metrics. 
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As mentioned in Section 2.3.3 median bias and RSD are considered to be more reliable in the 

assessments of water temperature data sets by reducing the impacts of possibly contaminated 

observations, compared to mean bias and its standard deviation (Carrea and Merchant 2020c). 

According to Table 2.2, differences between the conventional and robust statistical metrics are 

straightforward. RSD values of LSWT products are around half of their standard deviations 

whereas the discrepancies of two types of metrics are minor for LMLT from model based ERA5 

Land data set. 

Comparisons of time series have been carried out over Lake Superior and Lake Huron, where 

several buoys are available during the studying period to further assess the seasonal consistency 

between in-situ measurements and lake temperature data sets. As shown in Figure 2.4 and 

Figure 2.5, seasonal trends of lake water temperature are relatively stable, and the maximum and 

minimum water temperatures occur in late summer (August or September (O'Reilly et al. 2015)) 

and spring (April or May) regardless of ice cover periods. Overall, seasonal patterns and 

averages of lake water temperatures in Lake Superior and Lake Huron are highly similar. The 

ERA5 Land product has shown noticeable overestimation, especially during summer seasons 

compared to GloboLakes and C-GLOPS. 
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Figure 2.4. Variations of lake water temperature on Lake Superior from 2007 to 2011 (a: Station 45001 

48.06ºN, 89.79ºW; b: Station 45004 47.59ºN, 86.59ºW; c: Station 45006 47.34ºN, 89.79ºW; d: Station 

45136 48.54ºN, 86.95ºW; e: Station 45023 47.27ºN, 88.61ºW; f: Station 45025 46.97ºN, 88.40ºW; g: 

Station 45027 46.86ºN, 91.93ºW; h: Station 45028 46.81ºN, 91.83ºW). 
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Figure 2.5. Variations of lake water temperature on Lake Huron from 2007 to 2011 (a: Station 45003 

45.53ºN, 82.84ºW; b: Station 45008 44.28ºN, 82.42ºW; c: Station 45137 45.54ºN 81.02ºW; d: Station 

45143 44.94ºN, 80.63ºW; e: Station 45149 43.54ºN, 82.08ºW; f: Station 45154 46.05ºN, 82.64ºW). 

According to Figure 2.6a, c, and e, most data from lake temperature data sets and in-situ 

measurements are consistent and distributed along the 1:1 line. Again, ERA5 Land tends to 

overestimate, and LSWT values from GloboLakes and C-GLOPS have smaller biases relative to 

in-situ measurements. Over the locations where in-situ stations are considered in this study, lake 

water temperature data are mostly concentrated on the interval from 290 to 295 K. Deviation 

extents between in-situ observations and lake temperature data sets are relatively stable with the 

increase of water temperature (Figure 2.7a, c, and e). Moreover, the ranges of differences seem 

to become larger under warmer conditions. 
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Figure 2.6. Scatter plots of data from lake temperature data sets at their original resolutions (a, c, e) and 

at the 9 km EASE grid (b, d, f) compared to in-situ measurements. The number on the color bar 

represents the number of available data samples within each assigned temperature interval. Points closer 

to yellow mean more samples lie in that temperature range whereas these closer to blue mean less 

samples lie in that temperature range. 
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Figure 2.7. Variations of errors between lake temperature data sets and in-situ measurements with the 

increase of water temperature at their original resolutions (a, c, e) and at the 9 km EASE grid (b, d, f). 

The number on the color bar represents the number of available data samples within each assigned 

temperature interval. Points closer to yellow mean more samples lie in that temperature range whereas 

these closer to blue mean less samples lie in that temperature range. 

2.4.2. Overall Performance of Lake Temperature Products at the 9km EASE 

Resolution 

Lake temperature data sets were resampled to the 9 km EASE resolution and compared with in-

situ measurements to measure the effects of changing spatial resolution on the estimations of 

lake temperature. Similar to the results obtained at their original resolutions, LSWT values from 

the GloboLakes and C-GLOPS have smaller bias and RMSE than LMLT from ERA5 Land 
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(Figure 2.8). In terms of temporal correlations, all three data sets have comparable performances 

with R values of 0.89, 0.88, and 0.94 (Figure 2.8 and Table 2.2). 

According to Table 2.2, the median bias (mean bias) of ERA5 Land, GloboLakes, and C-GLOPS 

are 1.36 K (1.40 K), −0.29 K (−0.90 K), and −0.36 K (−0.69 K). RSD values of LSWT products 

are smaller than the standard deviations of mean bias. Lake water temperatures provided by the 

resampled products were matched and compared with in-situ measurements at various 

corresponding temporal resolutions (Figure 2.6b, d, f). LSWT data of GloboLakes and C-

GLOPS at the 9 km EASE resolution still have a good agreement with in-situ observations but 

the numbers of paired samples decrease compared to those at their native resolutions. As shown 

in Figure 2.7d, f, the errors between LSWT products at the coarser resolution and in-situ 

measurements are negatively extended. 

Table 2.2. Statistical metrics between in-situ measurements and lake temperature products at their native 

resolutions and the 9 km EASE grid. 

Resolution Native Resolution 9 km EASE Grid  

Data sets/Metrics 
Median 

Bias 
RSD 

Mean 

Bias 
STD* RMSE R 

Median 

Bias 
RSD Mean Bias STD * RMSE  R 

ERA5 Land 1.56 2.76 1.64 2.76 3.41 0.88 1.36 2.68 1.40 2.68 3.34 0.89 

GloboLakes −0.27 0.86 −0.97 2.77 2.91 0.88 −0.29 0.83 −0.90 2.82 2.97 0.88 

C-GLOPS −0.31 0.93 −0.60 2.18 2.33 0.92 −0.36 0.92 −0.69 2.15 2.24 0.94 

* STD: Standard Deviation. 

 

Figure 2.8. Boxplots of median bias (a), RMSE (b), and R (c) for hourly LMLT of ERA5 Land, daily 

LSWT of GloboLakes, and 10-day LSWT of C-GLOPS at the 9 km EASE grid. N represents the number 

of in-situ stations used to calculate the metrics. 
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2.4.3. Matchup Intercomparisons of Lake Temperature Products 

Comparisons of resampled lake temperature data sets have been performed on all their 

overlapping regions across the world to comprehensively assess the performance of ERA5 Land 

LMLT, GloboLakes LSWT, and C-GLOPS LSWT. Since all three lake temperature products 

gridded on the 9 km EASE map still have different temporal resolutions, temporal averaging is 

required before their inter-comparisons. As mentioned earlier, a lake cover fraction threshold of 

0.05 was used to screen out some land grids. On one hand, this percentage of lake cover 

conforms to the threshold of static water fraction considered in SMAP in which the quality of 

soil moisture retrieved in areas with a water fraction of more than 5% may be unreliable (O'Neill 

et al. 2021a). On the other hand, compared to 0.5, a smaller threshold is conducive to involving 

as many inland water bodies as possible, especially for narrow bodies and minor water areas. The 

inclusion of such water bodies is essential and critical in soil moisture retrievals because small-

scale shallower lakes commonly have more distinct diurnal variations in temperature than sea 

water or deeper lakes (Mironov et al. 2010). 

The number of grids with ERA5 Land product exceeds, by an order of magnitude, the 

GloboLakes and C-GLOPS products, which have 12781 and 11722 available pixels, respectively 

(Table 2.3). Although the temporal resolutions of GloboLakes and C-GLOPS are nominally 

daily and 10 days, they actually have effective LSWT data around every 4 days and 26 days, 

respectively. However, the ERA5 Land product has the ability to continuously update LMLT as 

long as the input data are available. There are a total of 10111 grids where all three products have 

available temperature data that are necessarily obtained in coincidence. It should be noted that 

there may be only one effective LSWT in certain overlapped grids. Those pixels are distributed 
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over various locations spanning from the Arctic region to Africa. Long-term frozen conditions 

could be one possible reason leading to very few observations for high-latitude grids. 

Table 2.3. Spatial and temporal characteristics of lake temperature data sets. 

Datasets ERA5 Land GloboLakes C-GLOPS 

Available Pixels 171,969 12,781 11,722 

Average Temporal Resolution per available pixel (day) 1/24 ~4 ~26 

Overlapped pixels 10,111 

Based on the available overlapping pixels between any two lake temperature products, 5-year 

averages were calculated to represent the grid-scale water temperatures. According to Figure 2.9, 

lake water temperatures from all three products are close to each. 5-year averages of LMLT are 

overall higher than 5-year averages of LSWT, with the results comparing consistently against the 

in-situ measurements. At the range from 280 to 285 K, 5-year averages of LSWT from C-

GLOPS are slightly higher than those from GloboLakes, partially due to a small number of C-

GLOPS LSWT samples over some pixels. 

 

Figure 2.9. Scatter plots of 5-year averages lake temperature data. (a): GloboLakes versus ERA5 Land (N 

= 10111); (b). C-GLOPS versus ERA5 Land (N = 10111); (c). GloboLakes versus C-GLOPS (N = 

10111). N represents the number of pixels with paired data. The number on the color bar represents the 

number of available data samples within each assigned temperature interval. Points closer to yellow mean 

more samples lie in that temperature range whereas these closer to blue mean less samples lie in that 

temperature range. 

As shown in Figure 2.10, those statistical metrics were computed based on Figure 2.10a, d: 

daily ERA5 Land LMLT and daily GloboLakes LSWT, Figure 2.10b, e: 10-day ERA5 Land 
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LMLT and 10-day C-GLOPS, and Figure 2.10c, f: 10-day GloboLakes LSWT and 10-day C-

GLOPS. In addition, their discrepancies were further conditioned by the lake cover fractions. 

Again, the composite 10-day LSWT from GloboLakes and C-GLOPS have shown great 

consistency in both absolute values and temporal variations because of the utilization of 

observations from AATSR (Figure 2.10c, f). In addition, ERA5 Land products have also 

exhibited high correlations with GloboLakes and C-GLOPS on R values near or even more than 

0.9 (Figure 2.10d, e). LMLT tend to be lower than LSWT in the regions with low water coverage 

(0.05–0.25) whereas the scenarios are opposite over areas with more water bodies (Figure 2.10a, 

b). In terms of differences and R, data of ERA5 Land are closer to LSWT products when the lake 

cover fraction ranges from 0.05 to 0.5. 

 

Figure 2.10. Boxplots of differences and R between lake temperature data sets at the 9 km EASE grid 

conditioned by lake cover (LC) fractions. ‘Dif’ denotes differences between two lake temperature data 

sets. (a): Dif = daily ERA5 Land LMLT–daily GloboLakes LSWT (N = 9925); (b): Dif = 10-day ERA5 

Land LMLT–10-day C-GLOPS LSWT (N = 9044); (c): Dif = 10-day GloboLakes LSWT–10-day C-

GLOPS LSWT (N = 8969); (d): daily ERA5 Land LMLT versus daily GloboLakes LSWT; (e): 10-day 

ERA5 Land LMLT versus 10-day C-GLOPS LSWT; (f): 10-day GloboLakes LSWT versus 10-day C-

GLOPS LSWT. The intervals of lake cover percentage represented by LC1 (0.05–0.25), LC2 (0.25–0.5), 
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LC3 (0.5–0.75), and LC4 (0.75 -1). N represents the number of pixels in which paired data from two 

different data sets are more than 30. 

2.5. Discussion 

The impacts of varying spatial resolutions on the performances of LSWT and LMLT products 

can be studied by comparisons of their statistical metrics at their original resolutions and the 9 

km EASE grids. Generally, metric values at the coarser resolution are within the same magnitude 

and comparable to those at their original spatial resolutions. Therefore, it is expected that any 

given resampling procedure only has limited effects on degrading quality of lake temperature 

data sets, especially for ERA5 Land whose native resolution is close to the 9 km EASE grid. 

Despite that, absolute values of median bias of C-GLOPS and GloboLakes at the 9 km EASE 

grid have slightly increased. This is partly because the resampled LSWT products have a coarser 

resolution, representing the LSWT over broader water areas, and become more deviated from in-

situ data collected at a point scale. 

Underestimations of LSWT products compared to the in-situ measurements conform to previous 

validation results (Carrea and Merchant 2020c; Crosman and Horel 2009; Lieberherr and 

Wunderle 2018; Schaeffer et al. 2018; Zhao et al. 2020). According to Carrea and Merchant 

(2020c), the differences between C-GLOPS with a quality level higher than 3 and in-situ 

measurements are −0.24 K ± 0.88 K, which is comparable to the results shown in Table 2.2 

(−0.31 K ± 0.93 K). A slightly larger bias could be partially caused by the consideration of all 

quality-level data here. In addition, all the lakes with positive biases presented in Carrea and 

Merchant (2020c) are not included in this study, possibly leading to a higher negative median 

bias. A negative 0.2 K error between the LSWT and in-situ data is considered to be normal due to 

the cool skin effect of surface water temperature relative to in-situ measurements of the sub-
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surface (Carrea and Merchant 2020c). Similarly, systematic discrepancies among LMLT and 

LSWT products cannot be ignored since the water depths modeled by ERA5 Land (default 25 m 

(Sabater 2019)), and LSWT products (skin temperature) are different. Moreover, the mean 

absolute error of the ERA5 Land data set (0.1°) here is 2.83 K, close to the results shown in 

Muñoz-Sabater et al. (2021a) (2.25 to 3.22 K). 

Despite LSWT being closer to in-situ observations in terms of absolute values, the spatial 

coverage of ERA5 Land is greater than the LSWT products mainly focusing on larger water 

bodies (Carrea and Merchant 2019, 2020b) given the differences in the available pixel numbers. 

Additionally, as observed in Figure 2.4 and Figure 2.5, the provision of discrete or even 

sporadic satellite observations from GloboLakes and C-GLOPS could be insufficient to 

continuously reflect instantaneous thermal variations of inland water bodies required in the frame 

of soil moisture. As mentioned earlier, the quality of LMLT is less disturbed by the resampling 

procedures as well as the local weather conditions at a certain time. Moreover, ERA5 Land 

LMLT data are available from 1981 to present, compared to GloboLakes (1995–2016) or C-

GLOPS with a gap period. Furthermore, consistently high temporal correlations of hourly LMLT 

and hourly in-situ measurements, daily LMLT and daily LSWT of GloboLakes, and 10-day 

LMLT and 10-day LSWT of C-GLOPS provide confidence in making LMLT closer to in-situ 

measurements by adopting proper rescaling approaches in the future. In light of these, ERA5 

Land LMLT could be the optimal water temperature product used for water correction in soil 

moisture retrievals. 

It should be noted that there are several limitations to this study. Firstly, the obtained evaluation 

results are based on lake temperature products from 2007 to 2011, which is only a partial portion 

of the temporal extent for each data set. In particular, the C-GLOPS product is separated into two 
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intervals using observations from different satellite sensors. There might be a slight 

underestimation related to the quality of the C-GLOPS product, given that the newly reprocessed 

C-GLOPS LSWT is aggregated using the observations from SLSTR instruments with a higher 

temporal frequency (Carrea and Merchant 2020c). 

In addition, in-situ measurements considered here are all distributed in North America and thus 

unable to fully represent lake temperatures globally across various climatic and geophysical 

conditions. However, those areas with in-situ measurements pertain to Northern Cool in terms of 

lake thermal regions, representing more than 40% of total lake areas (Maberly et al. 2020). The 

evaluation results are thereby sufficient to indicate some aspects of the quality of considered 

LMLT and LSWT products. The retrieval method of LSWT products is based on physics and 

their stable performances are expected (Carrea and Merchant 2020a), and therefore the analyses 

of inter-comparison results between LMLT and LSWT data sets are of more importance. 

Nevertheless, it is still challenging to assess those grids with inland water bodies beyond the 

scopes of GloboLakes and C-GLOPS. Further-more, some areas contiguous to oceans have been 

excluded from the ERA5 Land data set. However, those pixels are also critical in the retrieval of 

global soil moisture. Therefore, plenty of products associated with sea surface temperature may 

be evaluated and compared with ERA5 Land LMLT in order to complement those coastal grids 

in future studies. 

2.6. Conclusions 

The accuracy of land surface emissions governs the quality of retrieved soil moisture products, 

and reasonable partitioning of water and land emissions from satellite-based observations 

requires accurate estimations of water temperature. In light of this, three newly released lake 



36 

 

temperature products, ERA5 Land, GloboLakes, and C-GLOPS, have been evaluated by 

comparing with in-situ observations as well as inter-comparisons among them from 2007 to 

2011. Six statistical metrics have been selected to reflect the performance in aspects of temporal 

correlations and the proximity of absolute values. Overall, the LMLT of the ECMWF ERA5 

Land product has been considered as the optimal option to be used in correction procedures of 

passive remote sensing soil moisture retrievals due to its wide spatial coverage, long-term 

consistent performance, less interference from resampling procedures, and the continuous 

provision of hourly updated data. 

Generally, the three lake temperature data sets have comparable performances and adequate 

capacity to capture the dynamic variations of water temperatures (indicated by R values more 

than 0.8). The yielded differences between lake temperature products and in-situ measurements 

are 1.56 K ± 2.76 K, −0.27 K ± 0.86 K, and −0.31 K ± 0.93 K in the original spatial resolutions, 

and 1.36 K ± 2.68 K, −0.29 K ± 0.83 K, and −0.36 ± 0.92 K in the EASE 9-km scale for ERA5 

Land, GloboLakes, and C-GLOPS, respectively. In light of these, the transfer of spatial 

resolution from their native scales to the 9-km EASE grids has not largely affected the 

assessment results. Moreover, the effects of temperatures on biases between lake temperature 

data sets and in-situ measurements are limited. Furthermore, median bias and RSD could be 

more appropriate to represent the quality of lake temperature products compared to the 

conventional metrics. 

Evidently, the ERA5 Land product has advantages in both spatial coverage and temporal 

resolution for satisfying the requirements for soil moisture retrievals in which lake water 

temperatures (for example) at 6 a.m. and 6 p.m. are needed (to coincide with the SMAP 

overpassing time). In terms of 5-year averages over the studying period, LMLT values are overall 
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higher than LSWT data while the estimations of LSWT of GloboLakes and C-GLOPS are closer 

to each other, partially because of the utilization of observations from the same satellite sensor. 

Furthermore, the temporal variations of LMLT and LSWT products are highly correlated while 

their absolute values are closer over pixels with small water fractions in a range of 0.05 to 0.5. 

Although different water depths are considered in LMLT and LSWT products as well as in-situ 

measurements, they exhibit similar patterns in illustrating the seasonal patterns and close values 

within 1.6 K to demonstrate the consistency of various considered data sets. Given those, the 

extensive spatial coverage, hourly updated lake temperature, and long-term availability, ERA5 

Land based on the ECMWF H-TESSEL model is expected to be the best candidate for water 

correction in soil moisture retrievals. Additionally, this study could provide useful information 

related to lake temperature products for data users who are interested in the investigations of the 

thermal conditions of inland water bodies in the context of climate change. 

2.7. Appendix 

Table A1. Summary of in-situ measurements used in this study. 

Index Name/Country Latitude Longitude Start Year Buoy 

Senor Depth 

(Meter Below 

Water Line) 

Organization * 

1 Superior/Canada-USA 48.06 −89.79 1979 45001 1.1 NDBC 

2 Superior/Canada-USA 47.59 −86.59 1980 45004 1.3 NDBC 

3 Superior/Canada-USA 47.34 −89.79 1981 45006 1.3 NDBC 

4 Superior/Canada-USA 48.54 −86.95  1989 45136  MTU 

5 Superior/Canada-USA 47.27 −88.61 2010 45023 3.0 MTU 

6 Superior/Canada-USA 46.97 −88.40 2011 45025 3.0 UMD 

7 Superior/Canada-USA 46.86 −91.93 2011 45027 1.0 UMD 

8 Superior/Canada-USA 46.81 −91.83 2011 45028 1.0 NDBC 

9 Huron/Canada-USA 45.53 −82.84 1980 45003 0.4 NDBC 

10 Huron/Canada-USA 44.28 −82.42 1981 45008 1.3 ECCC 

11 Huron/Canada-USA 45.54 −81.02 1989 45137  ECCC 

12 Huron/Canada-USA 44.94 −80.63 1997 45143  ECCC 

13 Huron/Canada-USA 43.54 −82.08 2000 45149  ECCC 

14 Huron/Canada-USA 46.05 −82.64 1999 45154  NDBC 

15 Michigan/USA 45.34 −86.41 1979 45002  NDBC 

16 Michigan/USA 42.67 −87.03 1981 45007 1.3 UMC 

17 Michigan/USA 45.41 −85.09 2010 45022 1.0 LT 

18 Michigan/USA 41.98 −86.62 2011 45026 1.0 ECCC 

19 Great Slave/Canada 61.18 −115.31 1992 45141  ECCC 
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20 Great Slave/Canada 61.98 −144.13 2004 45150  NDBC 

21 Erie/Canada 41.68 −82.40 1980 45005 1.6 ECCC 

22 Erie/Canada 42.74 −79.29 1994 45142  ECCC 

23 Erie/Canada 42.46 −81.22 1989 45132  ECCC 

24 Winnipeg/Canada 50.80 −96.73 1999 45140  ECCC 

25 Winnipeg/Canada 53.23 −98.29 2004 45144  ECCC 

26 Winnipeg/Canada 51.87 −96.97 2001 45145  NDBC 

27 Ontario/Canada 43.62 −77.40 2002 45012 1.3 ECCC 

28 Ontario/Canada 43.78 −76.87 1989 45135  ECCC 

29 Ontario/Canada 43.23 −79.53 1991 45139  ECCC 

30 Ontario/Canada 43.77 −78.98 2009 45159  ECCC 

31 Woods/Canada 49.64 −94.50 2000 45148  ECCC 

32 Saint Clair/Canada 42.43 −82.68 2000 45147  ECCC 

33 Nipissing/Canada 46.23 −79.72 1999 45152  ECCC 

34 Simcoe/Canada 44.50 −79.37 1999 45151  ECCC 

* Organization represents those institution to install and maintain the corresponding buoys. NDBC: National Data 
Buoy Center; ECCC: Environmental and Climate Change Canada; MTU: Michigan Technological University; 
UMD: University of Minnesota, Duluth; UMC: University of Michigan CILER; LT: Limon Tech. 
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Chapter 3. A Performance Analysis of Soil Dielectric Models 

Over Organic Soils in Alaska for Passive Microwave Remote 

Sensing of Soil Moisture 

R. Zhang, S. Chan, R. Bindlish, and V. Lakshmi (2023). A Performance Analysis of Soil 

Dielectric Models Over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil 

Moisture. Remote Sens. 2023, 15, 1658. https://doi.org/10.3390/rs15061658  

Abstract 

Passive microwave remote sensing of soil moisture (SM) requires a physically based dielectric 

model that quantitatively converts the volumetric SM into the soil bulk dielectric constant. 

Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the 

NASA Soil Moisture Active Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity 

(SMOS) missions. However, Mironov 2009 suffers a challenge in deriving SM over organic soils 

as it does not account for the impact of soil organic matter (SOM) on the soil bulk dielectric 

constant. To this end, we presented a comparative performance analysis of nine advanced soil 

dielectric models over organic soil in Alaska, four of which incorporate SOM. In the framework 

of the SMAP single-channel algorithm at vertical polarization (SCA-V), SM retrievals from 

different dielectric models were derived using an iterative optimization scheme. The skills of the 

different dielectric models over organic soils were reflected by the performance of their 

respective SM retrievals, which was measured by four conventional statistical metrics, calculated 

by comparing satellite-based SM time series with in-situ benchmarks. Overall, SM retrievals of 

organic-soil-based dielectric models tended to overestimate, while those from mineral-soil-based 

models displayed dry biases. All the models showed comparable values of unbiased root-mean-

https://doi.org/10.3390/rs15061658
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square error (ubRMSE) and Pearson Correlation (R), but Mironov 2019 exhibited a slight but 

consistent edge over others. An integrated consideration of the model inputs, the physical basis, 

and the validated accuracy indicated that the separate use of Mironov 2009 and Mironov 2019 in 

the SMAP SCA-V for mineral soils (SOM < 15%) and organic soils (SOM ≥ 15%) would be the 

preferred option.    

Keywords: Soil Moisture; Dielectric Models; SMAP; Soil Organic Matter 
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3.1. Introduction 

Passive microwave remote sensing is considered the most suitable tool to map spatial soil 

wetness, owing to the negligible atmospheric influence and less interference from canopy and 

surface roughness (De Jeu et al. 2008; Njoku and Entekhabi 1996). The remarkable performance 

of soil moisture (SM) retrievals from spaceborne L-band radiometers (i.e., Soil Moisture and 

Ocean Salinity (SMOS) (Kerr et al. 2001) and Soil Moisture Active Passive (SMAP) (Entekhabi 

et al. 2010a)) has been substantiated by a number of validation studies (Chan et al. 2018; Chan et 

al. 2016; Colliander et al. 2017; Kim et al. 2018; Zhang et al. 2019). The mechanism that 

physically bridges the surface emission at microwave bands and surface SM is based on the 

contrasting difference between the dielectric constants of liquid water (~ 80) and dry soil (~ 4) 

(Ulaby et al. 1986a). The dielectric model that quantitatively links the SM with the bulk 

dielectric constant of the soil-water-air system is therefore critical in the retrieval algorithms of 

SMOS and SMAP. 

Recently, numerous dielectric models were developed and applied for both spaceborne 

microwave radiometers and in-situ electromagnetic sensors (Bircher et al. 2016). An ideal 

dielectric model is envisioned, to accurately account for the dielectric response of wet soils as a 

function of all the relevant factors, including soil compaction, soil composition, the fraction of 

bound and free water, salinity, soil temperature, soil particle size distribution, and observation 

frequency, etc. (Dobson et al. 1985). However, the practical dielectric models are often 

established on a limited set of soil properties and are unable to approximate proper dielectric 

constants for all the surface conditions. Previous studies found that applying mineral-soil-based 

dielectric models over organic soils could lead to a substantial underestimation of SM (Bircher et 

al. 2016). Zhang et al. (2019) revealed a significant drop in the SMAP retrieval quality in regions 
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with soil organic carbon (SOC) exceeding 8.72%. Given that Mironov 2009 (Mironov et al. 

2009) currently used in the SMOS and SMAP operation algorithms, was developed exclusively 

on samples of mineral soils, an update on the dielectric model that incorporates the effect of soil 

organic matter (SOM) is pressingly required for areas with organic-rich soils.  

The influence of SOM on the bulk dielectric constant of the soil-water system is often 

summarized in two aspects. First, organic substrates have larger specific surface areas than 

minerals, indicating that organic soil has a higher fraction of bound water relative to mineral soil, 

when they contain the same amount of water (Bircher et al. 2016; Park et al. 2019; Wigneron et 

al. 2017). As such, at the same moisture, the dielectric constant of organic soil tends to be lower 

than that of mineral soil, as the dielectric constant of bound water is much smaller than that of 

free water. Second, organic soil is often marked with a larger porosity than mineral soil due to its 

complex structure (Bircher et al. 2016; O'Neill and Jackson 1990; Park et al. 2019; Wigneron et 

al. 2017). Based on these principles, several organic-soil-based dielectric models have been 

developed in recent years.  

Although model developers pointed out the potential applicability of their models in the retrieval 

of SM, assessment of the efficacy of these newly developed organic-soil-based dielectric models 

in the derivation of passive microwave remote sensing of SM, has not been widely carried out. In 

light of these considerations, nine advanced dielectric mixing models were selected and tested in 

the context of the SMAP single-channel algorithm at vertical polarization (SCA-V) (O'Neill et al. 

2021a). This study has two major objectives: 1) present the differences between the available 

mineral- and organic-soil-based models, in describing the complex dielectric behaviors of wet 

soils under various SOM conditions, and 2) evaluate their performances in organic-rich soils. 

The latter was achieved by comparing the SCA-V SM retrievals from different models against 
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in-situ measurements scattered over Alaska, where the soils are identified with noticeably higher 

SOM (~ 25%) relative to the global average level (Figure A1). The dielectric models considered 

here have been classified as the mineral-soil-based dielectric models, including Wang 1980 

(Wang and Schmugge 1980), the semi-empirical Dobson 1985 modified by Peplinski 1995 

(Dobson et al. 1985; Peplinski et al. 1995) (hereafter Dobson 1985), the prevalent Mironov 2009 

(Mironov et al. 2009), Mironov 2012 (Mironov et al. 2012), and Park 2017 (Park et al. 2017), 

and organic-soil-based dielectric models, including the natural log fitting model in (Bircher et al. 

2016) (hereafter Bircher 2016), Mironov 2019 (Mironov et al. 2019), Park 2019 (Park et al. 

2019), and Park 2021 (Park et al. 2021).  

As introduced earlier, five mineral-soil-based dielectric models were selected for a 

comprehensive survey of diverse models in the framework of the SMAP SCA-V algorithm over 

organic-rich soils. Two of them, Mironov 2013 and Park 2017, have not been widely examined 

under the SMOS and SMAP schemes. In contrast, the other three classic models have been 

extensively assessed in wide domains covered by mineral soils. However, their performances 

over regions with high SOM proportions have not been well-studied and compared with those of 

dedicated organic-soil-based models. In addition to water volume, mineral-soil-based primarily 

focus on the influence of soil texture, commonly characterized by sand, clay, and silt. Yet, 

organic-soil-based models place a greater emphasis on the SOM effect. Mironov 2019, for 

example, describes all parameters as functions of SOM rather than the clay percentage used in 

Mironov 2009. Therefore, incorporating more mineral- and organic-soil-based models may also 

help to construct an impression of their systematic differences when describing the dielectric 

behaviors of organic soils.
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Table 3.1. Input variables required for nine dielectric models. 

Model Inputs 
Mineral Soil Based Models Organic Soil Based Models 

Wang1980 Dobson1985 Mironov2009 Mironov2013 Park2017 Bircher2016 Mironov2019 Park2019 Park2021 

 

Soil Moisture 

Volumetric 

Soil Moisture 

(m3/m3) 

Volumetric 

Soil Moisture 

(m3/m3) 

Volumetric 

Soil Moisture 

(m3/m3) 

Volumetric 

Soil Moisture 

(m3/m3) 

Volumetric 

Soil Moisture 

(m3/m3) 

Volumetric 

Soil Moisture 

(m3/m3) 

Gravimetric 

Soil Moisture 

(g/g) 

Volumetric 

Soil Moisture 

(m3/m3) 

Volumetric 

Soil Moisture 

(m3/m3) 

Soil Organic 

Matter 

 

/ 

 

/ 

 

/ 

 

/ 

 

/ 

 

/ 
Gravimetric 

Soil Organic 

Matter (%) 

Gravimetric 

Soil Organic 

Matter (%) 

Gravimetric 

Soil Organic 

Matter (%) 

 

Clay 
Gravimetric 

Clay Fraction 

(0-1) 

Gravimetric 

Clay Fraction 

(0-1) 

Gravimetric 

Clay Fraction 

(%) 

Gravimetric 

Clay Fraction 

(%) 

Volumetric 

Clay Fraction 

(0-1) 

 

/ 

 

/ 
Volumetric 

Clay Fraction 

(0-1) 

Volumetric 

Clay Fraction 

(0-1) 

 

Sand 
Gravimetric 

Sand Fraction 

(0-1) 

Gravimetric 

Sand Fraction 

(0-1) 

 

/ 

 

/ 
Volumetric 

Sand Fraction 

(0-1) 

 

/ 

 

/ 
Volumetric 

Sand Fraction 

(0-1) 

Volumetric 

Sand Fraction 

(0-1) 

 

Silt 

 

/ 

 

/ 

 

/ 

 

/ 
Volumetric 

Silt Fraction 

(0-1) 

 

/ 

 

/ 
Volumetric 

Silt Fraction 

(0-1) 

Volumetric 

Silt Fraction 

(0-1) 

Bulk Density 
Bulk Density 

(g/cm3) 

Bulk Density 

(g/cm3) 

/ / / / Bulk Density 

(g/cm3) 

/ / 

Frequency / 
Frequency 

(Hz) 

Frequency 

(Hz) 
/ 

Frequency 

(Hz) 
/ / 

Frequency 

(Hz) 

Frequency 

(Hz) 

Salinity / / / / Salinity (‰) / / Salinity (‰) Salinity (‰) 

Soil 

Temperature 

 

/ 

Soil 

Temperature 

(℃) 

 

/ 

Soil 

Temperature 

(℃) 

Soil 

Temperature 

(℃) 

 

/ 

Soil 

Temperature 

(℃) 

Soil 

Temperature 

(℃) 

Soil 

Temperature 

(℃) 

Total Number 

of Inputs 

 

4 

 

6 

 

3 

 

3 

 

7 

 

1 

 

4 

 

8 

 

8 
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3.2. Data 

3.2.1. SMAP L2 Radiometer Half-Orbit 36km EASE-Grid Soil Moisture, 

Version 8 

Launched on January 31, 2015, the SMAP mission was designed to map high-resolution SM and 

freeze/thaw state by combining the attributes of L-band radar and radiometer. However, the 

SMAP SM products presently rely on the radiometer’s observations alone, due to an unexpected 

malfunction of the SMAP radar in July 2015. With an average revisit frequency of two to three 

days, the SMAP sensors cross the Equator at the local solar time of 6 a.m. and 6 p.m. 

SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8 (SMAP V8) 

(O'Neill et al. 2021b) was adopted in this study. Here, we only used the descending (6 a.m.) SM 

retrievals derived using the SCA-V algorithm. A series of masking procedures were utilized to 

avoid the application of SM retrievals of low accuracy and high uncertainty. Specifically, only 

the retrievals flagged as the ‘recommended quality’ were retained and employed in the later 

analysis. Given Alaska, the focused region of this study, locates at the high-latitude portion with 

a long-term frozen duration, we only considered those qualified SM retrievals within the time 

intervals from June to August between 2015 and 2021. 

One noticeable improvement in the SMAP V8 (relative to an older version) is the update and 

extension of gridded soil parameters, ranging from SOC, silt and sand fractions to bulk density. 

These newly added soil attributes originate from the SoilGrid 250m (Hengl et al. 2017) and 

replace the earlier patched version composed of the National Soil Data Canada (NSDC), the 

State Soil Geographic Database (STATSGO), the Australia Soil Resources Information System 

(ASRIS), and the Harmonized World Soil Database (HWSD) (Das and O'Neill 2020). Since 
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these soil attributes are often necessary inputs for dielectric models of soil, they were also 

extracted from the SMAP V8. 

3.2.2. In-Situ Soil Moisture Measurements 

Ground-based SM measurements over Alaska were employed as benchmarks to assess the skills 

of diverse dielectric mixing models. Historical files of soil water content observed by in-situ 

sensors were first downloaded from the Natural Resources Conservation Service (NRCS), the 

National Water and Climate Center (NWCC) homepage 

(https://www.nrcs.usda.gov/wps/portal/wcc/home, accessed on 7 April 2022). At present, there 

are more than 40 operating stations from the Snow Telemetry (SNOTEL) (Schaefer and Paetzold 

2001) and Soil Climate and Analysis Network (SCAN) (Schaefer et al. 2007). These stations are 

able to monitor the sub-daily variations of SM and many other climatic variables in near-real 

time.  

However, some typical errors (Schaefer and Paetzold 2001) of in-situ SM readings, such as 

breaks and plateaus, have been found before their application. As a response, the other 

authoritative data source of in-situ SM, the International Soil Moisture Network (ISMN) (Dorigo 

et al. 2021; Dorigo et al. 2011a), was also considered, aiming at incorporating its flag 

information. Given the limited stations in Alaska, it is expected that SM data from the above two 

sources (NWCC and ISMN) are mostly from the same set of stations. Additionally, for the same 

station, the observed SM time series from the NWCC and ISMN should be identical, as the 

ISMN only gathers data and harmonizes them in units and time steps, without extra data 

processing. Given the frequent abnormal SM readings (even after adopting the quality flag) and 

the necessity of checking the consistency of SM measurements from two different sources, 

https://www.nrcs.usda.gov/wps/portal/wcc/home
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several rigorous pre-checking procedures were applied (as described in Section 3.1) to filter out 

those suspicious observations where possible in advance. 

3.3. Methodology 

3.3.1. Preliminary Examination of In-Situ Measurements 

The quality of in-situ SM data is of great importance, as these ground measurements are 

generally seen as the benchmark for evaluating remotely sensed and/or modeled SM data sets 

(Chan et al. 2018; Chan et al. 2016; Colliander et al. 2017). However, monitoring SM dynamics 

over high-latitude regions is still challenging due to the long-term frozen periods and harsh 

environments. Such difficulties have been reflected by the flat limbs and breaks frequently 

occurring in the SM time series from the Alaskan stations. Given those, a careful examination of 

in-situ SM measurements is necessary.  

The general workflow of the preliminary examination steps is delineated in Figure 3.1. 

Specifically, the in-situ SM data measured at the local time of 6 a.m. and 6 p.m. (temporally 

align with the SMAP overpass time) were first extracted from the NWCC and ISMN stations. 

SM measurements with the corresponding land surface temperature below 4 ℃ were excluded, 

as Colliander et al. (2017) demonstrates that some sensors begin to behave abnormally under this 

temperature. Meanwhile, the utilization of such a threshold would also be helpful to filter out 

those SM measurements likely obtained during a period of active thawing and re-freezing, where 

SM fluctuations are excessively unstable (e.g., Figure 3c in Dorigo et al. (2013)). Additionally, 

stations with a distance shorter than 36 km to large water bodies or oceans were also masked, as 

the SMAP SM over those regions is likely influenced by water contamination. The flag 

information from the ISMN was also incorporated to filter in-situ data of low quality.  
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The matched SM data of the overlapped stations from the NWCC and ISMN are anticipated, and 

the greater consistency further enhances the reliability of these benchmarks. Therefore, an 

automatic consistency checking procedure constrained by three requirements was applied. Since 

breaks and plateaus still appeared on the SM time series after consistency checking, a manual 

visual inspection was then performed to screen those suspicious measurements. After those, there 

are 21 qualified stations left, and we assume that their SM data from the NWCC and ISMN are 

interchangeable. Furthermore, pairing with the SMAP observations removed 9 stations, and the 

remaining 12 stations (Figure S1) would be used in the later validation steps. 

 

Figure 3.1. The flow chart of the preliminary examination on the Alaskan in-situ soil moisture obtained 

from the NWCC and ISMN 

3.3.2. Derivation of Soil Moisture from Various Dielectric Models 

In the SCA-V algorithm, the SMAP SM value is determined when there is a minimized 

difference between the simulated and the observed reflectivity (𝑟𝑠𝑚𝑎𝑝) (reflectivity = 1 – 
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emissivity) of smooth soil. At each temporal step, the value of 𝑟𝑠𝑚𝑎𝑝 over a pixel is fixed as the 

SMAP SCA algorithm have determined the radiative contribution from the canopy layer and the 

impact of surface roughness before subtracting them from SMAP observed surface brightness 

temperature (𝑇𝐵). Hence, the influence of adopting different dielectric constant models on SM 

retrievals can be examined using the iterative feedback-loop procedure, to minimize the 

difference between the simulated reflectivity (𝑟𝑒𝑠𝑡) and 𝑟𝑠𝑚𝑎𝑝, and without the need to construct 

the whole process from SM to 𝑇𝐵, in consideration of simplicity. 

However, 𝑟𝑠𝑚𝑎𝑝 is an intermediate product and unavailable in the original SMAP data set. Given 

this, the values of 𝑟𝑠𝑚𝑎𝑝 were first estimated leveraging SMAP SM and Mironov 2009. With 

these benchmarks, the SM retrievals of other dielectric models were then acquired based on the 

optimization flow described in Figure 3.2. Notably, the SM retrieval at a given time point is 

reproducible while the identical 𝑟𝑠𝑚𝑎𝑝 and model are used. 
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Figure 3.2. Flow chart that describes the retrieval of soil moisture using different dielectric models based 

on the identical SMAP observations. 

3.3.3. Performance Metrics 

The skill of the remote sensing SM data set has been described by four conventional metrics, 

which are bias, root-mean-square error (RMSE), unbiased root-mean-square error (ubRMSE), 

and the Pearson correlation (R) (Entekhabi et al. 2010b). These metrics could effectively reflect 

the discrepancies in terms of magnitudes as well as the links of the temporal evolutions between 

the SM estimations and the ground truth. The formulas used to compute these metrics are shown 

from Eq 1 to Eq 4 where E […] represents the arithmetic mean; 𝜎𝑜𝑝𝑡 and 𝜎𝑟𝑒𝑓 denote the 

standard deviations of SM retrievals of the respective dielectric model and in-situ measured SM. 

bias = E[smret] − E[smref] (1) 

RMSE = √E[(smret − smref)
2] (2) 

ubRMSE =  √RMSE2 − bias2 (3) 

R =  
E[(smret − E[smret])(smref−E[smref])]

σretσref
 (4) 
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3.4. Results and Discussion 

3.4.1. Simulated Brightness Temperature of Smooth Soil through Synthetic 

Experiments 

Synthetic experiments have the capability to afford complete dielectric responses to a whole SM 

range, by artificially controlling all the inputs required for the dielectric models (Table 3.1). With 

SOM increasing from 0% to 75% at a step of 15%, the differences between the dielectric 

constants estimated by mineral- and organic-soil-based dielectric models were explored. These 

various dielectric responses were further transferred to their corresponding thermal radiations of 

smooth soils, represented by the vertically polarized 𝑇𝐵.  

Figure 3.3 presents the 𝑇𝐵 curves derived using different dielectric models across the range of 

SM from 0 to 0.8 m3/m3. Generally, the 𝑇𝐵 values estimated using organic-soil-based models are 

greater than those derived using the mineral-soil-based models particularly when SOM exceeds 

15% and SM is higher than 0.1 m3/m3. In other words, the SM retrievals from organic-soil-based 

models tend to be wetter than the SM retrievals from mineral-soil-based models (e.g., Mironov 

2009) given the same surface reflectivity (or 𝑇𝐵) of bare, smooth soil. The discrepancies between 

the simulated 𝑇𝐵 magnitudes from mineral- and organic-soil-based models further grow with the 

increase of SOM (Figure 3.3). However, it should be noted that the estimated dielectric 

constants and their subsequent 𝑇𝐵 values from mineral-soil-based models do not vary with SOM. 

The higher SM estimations of organic-soil-based models relative to mineral-soil-based models 

could be attributed to the fact that those organic-soil-based models assume a higher volumetric 

proportion of bound water (Bircher et al. 2016; Park et al. 2019; Wigneron et al. 2017). When 

SOM is at 15% (and below), the simulated 𝑇𝐵 curves from all the considered models are 
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clustered together, bounded by Dobson 1985 and Bircher 2016 (Figure 3.3b). Therefore, SOM 

of 15% might be treated as an appropriate demarcation point for the separate use of mineral- and 

organic-soil-based dielectric models over mineral soils and organic soils.  

Moreover, similar features of the 𝑇𝐵 curves of those considered dielectric models have been 

observed while a sandy sample is tested (Figure S2). Such a stable-magnitude discrepancy 

between the red curves (organic models) and the blue curves (mineral models) under contrasting 

textures (sandy and clay soils) can be attributed to the insensitivity of the organic-soil-based 

dielectric models to soil texture. For example, Mironov 2019 only accounts for the effects of soil 

moisture, SOM, and soil temperature on the dielectric permittivity of organic soils. Although 

Park 2019 and Park 2021 incorporate both textural and SOM information, the differences in their 

estimated 𝑇𝐵 values from sandy and clay samples seem insignificant under the same SOM level.  

Compared to Mironov 2019, the influence of organic content on the simulated 𝑇𝐵 magnitude 

seems more pronounced for Park 2019 and Park 2021. When SOM increases from 0% to 75% 

and SM values are smaller than 0.5 m3/m3, the 𝑇𝐵 curve of Park 2021 jumps from the bottom one 

to the top line, with a varying amplitude on the order of tens of Kelvins (Figure 3.3). In contrast, 

as a response to growing SOM, the estimations from Mironov 2019 slowly move upward 

approaching the 𝑇𝐵 curve of Bircher 2016. According to Figure 3.3e and f, there is a rapidly 

dropping segment on the 𝑇𝐵 curve of Park 2019. Such abnormal dielectric behavior can be 

attributed to the improper formulas used to calculate the wilting point and porosity, with a 

detailed explanation in Section 3.4.4. 
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Figure 3.3. Simulated brightness temperature of a silty clay with various soil organic matter, and the 

accompanied table displays all the input values where most of soil parameters are directly taken from the 

sample of silty clay used in Hallikainen et al. (1985). 

3.4.2. Evaluation of Dielectric Models over In-Situ Sites in Alaska 

Here, SM measurements from 12 sites served as benchmarks to evaluate the skills of multiple 

dielectric models in the setting of SMAP observations and its SCA-V algorithm. Before inter-

comparison, it has been found that the assessment metrics of the satellite-based SM retrievals 

over the same pixel could vary a lot in different years. Using the time series in Monument Creek 

as an instance (Figure 3.4), R values range from 0.18 (2017) to 0.69 (2015). Hence, the obtained 

metrics (Table 3.2, Table 3.3, and Table 3.4) averaged over multiple years of each station might 

be underrated as they may be compromised by abnormal behavior in one year. Additionally, the 

amplitudes and frequencies of in-situ SM variations are often more pronounced relative to the 

SM retrievals as the latter reflects the changes over a coarse spatial extent (Figure 3.4). SM 
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variations at local scales often cannot be captured by the 36 km-scale SM retrievals, due to the 

omission of spatial variability within the footprint-scale area. Spatial mismatching between 

satellite SM retrievals and point-scale in-situ measurements could adversely impact the 

perceived accuracy of SMAP observations. 

Assessment metrics of the SM retrievals derived using identical 𝑟𝑠𝑚𝑎𝑝 values and different 

dielectric models were computed by their temporally paired in-situ measurements. According to 

Table 3.2, SM estimates from mineral-soil-based models tend to underestimate while organic-

soil-based models generally exhibit wet biases compared to ground recordings. In terms of both 

ubRMSE and R (Table 3.3 and Table 3.4), all the models show comparable accuracy levels 

similar to previous results of Mialon et al. (2015) whereas Mironov 2019 displays a slight but 

consistent edge over other models. Compared to other dielectric models, the modest 

Figure 3.4. Time series of soil moisture derived from satellite observations and in-situ measurements at Monument 

Creek (65.18º N, 145.87º W). (a-g) describe the soil moisture variations of SMAP retrievals and ground 

measurements from 2015 to 2021. 
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improvement in R of Mironov 2019 is likely due to its simultaneous consideration of bulk 

density and SOM effects (Mironov et al. 2019) 

Table 3.2. Bias of soil moisture retrievals using various dielectric models over in-situ sites in Alaska 

where biases from mineral- and organic-soil based models tend to underestimate and overestimate relative 

to in-situ measurements. 

Station/Bias 

(m3/m3) 
N 

Mineral Soil Based Models Organic Soil Based Models 

Wang198

0 

Dobson 

1985 

Mironov 

2009 

Mironov 

2013 

Park 

2017 

Bircher 

2016 

Mironov 

2019 

Park 

2019 

Park 

2021 

Gulkana River 72 0.058 0.025 0.046 0.044 0.039 0.195 0.142 0.104 0.085 

Spring Creek 37 -0.108 -0.153 -0.137 -0.137 -0.139 -0.022 -0.051 -0.105 -0.109 

Atigun Pass 81 0.047 -0.002 0.015 0.016 0.009 0.092 0.092 0.044 0.061 

Coldfoot 156 -0.085 -0.133 -0.121 -0.121 -0.124 -0.030 -0.036 -0.083 -0.067 

Eagle Summit 320 -0.028 -0.068 -0.062 -0.061 -0.068 0.014 0.017 -0.033 -0.015 

Gobblers Knob 262 0.031 -0.010 -0.003 -0.003 -0.007 0.096 0.083 0.039 0.055 

Monahan Flat 121 -0.047 -0.093 -0.076 -0.077 -0.081 0.035 0.009 -0.029 -0.029 

Monument Creek 405 0.018 -0.022 -0.014 -0.014 -0.016 0.091 0.073 0.029 0.041 

Mt. Ryan 194 0.114 0.078 0.082 0.082 0.080 0.196 0.172 0.132 0.142 

Munson Ridge 383 0.018 -0.019 -0.015 -0.015 -0.016 0.096 0.075 0.034 0.045 

Tokositna Valley 253 0.014 -0.008 -0.006 -0.008 -0.008 0.147 0.093 0.062 0.046 

Upper Nome 

Creek 

283 
-0.138 -0.180 -0.171 -0.171 -0.176 -0.086 -0.091 -0.138 -0.120 

Mean 214 -0.009 -0.049 -0.038 -0.039 -0.042 0.069 0.048 0.005 0.011 

Where the column of the number tagged by bold font represents the dielectric model with the smallest absolute bias in 
that station or mean. 

Table 3.3. ubRMSE of soil moisture retrievals using various dielectric models over in-situ sites in 

Alaska. 

Station/ubRMSE 

(m3/m3) 
N 

Mineral Soil Based Models Organic Soil Based Models 

Wang 

1980 

Dobson 

1985 

Mironov 

2009 

Mironov 

2013 

Park 

2017 

Bircher 

2016 

Mironov 

2019 

Park 

2019 

Park 

2021 

Gulkana River 72 0.0132 0.0164 0.0156 0.0154 0.0152 0.0209 0.0180 0.0169 0.0138 

Spring Creek 37 0.0460 0.0457 0.0452 0.0454 0.0455 0.0408 0.0428 0.0446 0.0462 

Atigun Pass 81 0.0311 0.0311 0.0311 0.0311 0.0311 0.0317 0.0311 0.0310 0.0310 

Coldfoot 156 0.0736 0.0736 0.0736 0.0736 0.0736 0.0743 0.0737 0.0739 0.0737 

Eagle Summit 320 0.0487 0.0490 0.0487 0.0487 0.0487 0.0480 0.0477 0.0482 0.0481 

Gobblers Knob 262 0.0665 0.0663 0.0660 0.0662 0.0662 0.0622 0.0643 0.0628 0.0637 

Monahan Flat 121 0.0722 0.0721 0.0720 0.0721 0.0721 0.0714 0.0718 0.0715 0.0722 

Monument Creek 405 0.0510 0.0509 0.0508 0.0508 0.0508 0.0505 0.0503 0.0504 0.0503 

Mt. Ryan 194 0.0163 0.0177 0.0173 0.0172 0.0173 0.0262 0.0186 0.0237 0.0187 

Munson Ridge 383 0.0499 0.0492 0.0490 0.0492 0.0492 0.0465 0.0475 0.0467 0.0478 

Tokositna Valley 253 0.1295 0.1296 0.1295 0.1295 0.1296 0.1298 0.1294 0.1296 0.1296 

Upper Nome 

Creek 

283 0.0122 0.0126 0.0124 0.0123 0.0126 0.0196 0.0129 0.0163 0.0160 

Mean 214 0.0509 0.0512 0.0509 0.0510 0.0510 0.0518 0.0507 0.0513 0.0509 
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Where the column of the number tagged by bold font represents the dielectric model with the best ubRMSE in that 
station or mean. 

Table 3.4. R of soil moisture retrievals using various dielectric models over in-situ sites in Alaska. 

Station/R N 

Mineral Soil Based Models Organic Soil Based Models 

Wang 

1980 

Dobson 

1985 

Mironov 

2009 

Mironov 

2013 

Park 

2017 

Bircher 

2016 

Mironov 

2019 

Park 

2019 

Park 

2021 

Gulkana River 72 0.605 0.596 0.607 0.604 0.599 0.608 0.621 0.603 0.601 

Spring Creek 37 0.757 0.737 0.758 0.752 0.745 0.757 0.805 0.752 0.746 

Atigun Pass 81 0.342 0.348 0.344 0.344 0.344 0.341 0.333 0.347 0.347 

Coldfoot 156 0.205 0.205 0.204 0.204 0.205 0.206 0.199 0.202 0.208 

Eagle Summit 320 0.375 0.353 0.372 0.376 0.368 0.376 0.429 0.368 0.372 

Gobblers Knob 262 0.571 0.557 0.571 0.570 0.564 0.571 0.603 0.575 0.577 

Monahan Flat 121 0.276 0.273 0.275 0.274 0.274 0.277 0.275 0.284 0.276 

Monument Creek 405 0.407 0.401 0.406 0.405 0.404 0.409 0.413 0.406 0.418 

Mt. Ryan 194 0.604 0.595 0.604 0.601 0.599 0.605 0.624 0.604 0.601 

Munson Ridge 383 0.608 0.597 0.606 0.604 0.602 0.610 0.624 0.611 0.611 

Tokositna Valley 253 0.177 0.171 0.174 0.172 0.170 0.172 0.176 0.172 0.171 

Upper Nome 

Creek 

283 0.416 0.398 0.418 0.420 0.410 0.416 0.477 0.421 0.416 

Mean 214 0.445 0.436 0.445 0.444 0.440 0.446 0.465 0.445 0.445 

Where the column of the number tagged by bold font represents the dielectric model with the best R in that station or 
mean. 

 

The other aspect that we attempted to evaluate the predictive power of various dielectric models 

was checking the correlations between the SM retrievals of different models and SMAP observed 

vertically polarized 𝑇𝐵. If the higher absolute R values between the time series of SM and SMAP 

vertically polarized 𝑇𝐵 are assumed as a criterion that reflects the better skill of a dielectric 

mixing model, Mironov 2019 presents an overwhelming superiority over other models in the 765 

Alaskan pixels (Figure 3.5). Table S2 displays that in-situ measured SM usually has a lower 

correlation with SMAP vertically polarized 𝑇𝐵 relative to correlations between satellite-based 

SM retrievals and SMAP 𝑇𝐵. However, it should be noted that such correlation-based results 

were inconclusive and functioned as a reference only since the impacts of vegetation disturbance 

and surface roughness were entirely ignored. 
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3.4.3. A Global Intercomparison between Mironov 2009 and Mironov 2019 

Mironov 2009 and Mironov 2019 were selected as the representatives for mineral- and organic-

soil-based dielectric models and were then compared with each other at the global scale using 

one-week SMAP observations from July 2, 2018, to July 8, 2018. The one-week SM retrievals of 

Mironov 2009 and Mironov 2019 were analyzed over more regions with abundant SOM and 

were also used to acquire performance clues for applying Mironov 2019 in mineral soils.  

According to Figure 3.6a and b, satellite-based SM data are usually unavailable in many areas 

characterized by organic-rich soils likely owing to dense boreal forests, harsh surface roughness, 

as well as permanently frozen soils on the land surface (Bircher et al. 2016; Yi et al. 2019). The 

magnitude difference between Mironov 2009 and Mironov 2019 yielded SM retrievals are 

commonly above 0.05 m3/m3 generally when SOM is over 10% (Figure 3.6b and e). In the case 

of extreme dryness (SM < 0.1 m3/m3) over mineral soils (SOM < 5%), SM retrievals from 

Figure 3.5. Boxplots of the absolute correlations between the soil moisture retrievals from various dielectric 

mixing models and the SMAP vertically polarized brightness temperature over the 765 pixels in Alaska. (a) and 

(b) represent the boxplots of absolute R values from 2015 to 2018 and from 2019 to 2021, respectively. 
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Mironov 2019 are likely lower than those from Mironov 2009. As illustrated in Figure 3.6d, 

there is a limb where SM retrievals of Mironov 2019 are nearly constant while those from 

Mironov 2009 vary, possibly because of soil texture. 

 

Figure 3.6. A global intercomparison of soil moisture retrievals from Mironov 2009 and Mironov 2019 

where (a) the spatial distribution of soil organic matter (SOM) in a north polar view, (b) the spatial 

distribution of mean differences between soil moisture estimations using Mironov 2009 and Mironov 

2019 (bias = SM Mironov2019 – SM Mironov2009), (c) the probability distribution function of weekly mean soil 

moistures derived using the above two models, (d) the scatterplot of soil moisture using both models 

across the globe, and the color bar shows the number of pixels, and (e) the boxplot that describes the bias 

variations along with the increase of SOM that was already organized into 6 groups (g1 - g6). The organic 

range of each group is 0% - 5% (g1), 5% - 10% (g2), 10% - 15% (g3), 15% - 20% (g4), 20% - 30% (g5), 

and > 30% (g6). 

3.4.4. Discussion 

3.4.4.1. The Applicable Range of Dielectric Models 

Although the above validation results over in-situ sites in Alaska demonstrated slightly better 

performance of Mironov 2019 over other models, it may be not the best model across all 
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landscapes and climatic conditions. The accuracy of a dielectric model heavily depends on its 

respective applicable range. A dielectric model is likely to acquire a better performance score 

when being applied over samples used to develop it. In other scenarios, potential degradation of 

the model skills can be expected. For instance, when Dobson 1985 is adopted in soils that fall 

beyond the prototypal soils on which Dobson 1985 was established, some unrealistic dielectric 

constants could be yielded (Mironov et al. 2009). According to SMAP configurations and 

parameters, the frequency is confined to 1.4 GHz. Most pixels in Alaska show SOM values 

spanning from 15% to 30%. However, it should be noted that Mironov 2019 is designed for the 

surface soil layer with SOM ranging from 35% to 80% (Mironov et al. 2019). Meanwhile, the 

natural log calibration function from Bircher et al. (2016) is proposed for highly organic soils 

and Decagon 5TE (in-situ sensor) which is operated at 70 MHz. Such imperfect alignments 

between the applicable ranges of dielectric models and the actual settings are surprisingly 

common, possibly leading to underestimations of the quality of these dielectric models. 

3.4.4.2. Organic-Soil-Based Dielectric Models 

Similar to other empirical dielectric models (Kellner and Lundin 2001; Malicki et al. 1996; 

Paquet et al. 1993; Roth et al. 1992; Skierucha 2000; Topp et al. 1980) accounting for the 

influence of SOM, SOM itself is not treated as a necessary input in Bircher 2016 to derive the 

dielectric constants of organic soils. Mironov 2019, however, incorporates the dielectric impacts 

of SOM and soil bulk density while omitting the clay fraction. In contrast, Park 2019 and Park 

2021 consider both mineralogy and SOM. Though comprehensive, the confidence in 

representing the dielectric interactions among various soil properties and the quality of those 

global-scale soil databases greatly limit the practical uses of Park models. For example, SOM as 

the most critical index to classify mineral and organic soils was estimated by multiplying SOC 
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content with a fixed factor of 1.724 (Mironov et al. 2019; Pribyl 2010) However, the conversion 

factor between SOC and SOM is unlikely a global constant while Pribyl (2010) pointed out that 

this conversion factor would vary from 1.4 to 2.5 across different geographical regions. 

Additionally, mineral-soil-based dielectric models are usually based on the assumption that the 

soil is composed of sand, silt, and clay, and thus the summation of their fractions is 100%. 

However, this assumption is likely inappropriate over organic-rich soils where SOM has a grate 

gravimetric contribution. Here, the texture fractions extracted from the SoilGrids 250m were 

normalized. As a result, the summation of minerals and SOM currently exceeds 100%, while a 

further re-normalization is difficult to proceed with, as the SOM contents (sometimes over 

100%) were empirically estimated. Despite these issues, at this time, these data sets might be the 

most practical sources to support running those dielectric models over a wide spatial coverage. 

Therefore, a soil property data set that can accurately describe the gravimetric relationship 

among sand, silt, clay, and SOM is pressingly needed.  

3.4.4.3. Limitations of In-Situ Benchmarks 

Besides the limits of the model applicable range and the quality of input data sets of soil 

properties, the other critical factor that directly affects the assessment results is the quality of the 

benchmarks, i.e., in-situ SM measurements. As mentioned, breaks, missing values, and jumps 

were commonly found during the examination of in-situ SM time series. Furthermore, many 

calibration functions used to deduce in-situ SM values are designed for mineral soils only due to 

the unavailability of organic-soil-based calibration functions over those regions. As a result, in-

situ SM values might have an underestimation issue.  
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Due to the limited availability of in-situ measurements over Alaska, only one ground station was 

selected as the regional benchmark for each validation pixel. However, the estimated SMAP 

retrieval performance over these areas was likely degraded given the unmatched spatial 

representatives and measuring depths between the passive microwave SM derivations and 

ground measurements. Additionally, inconsistent SM variations from the radiometer snapshot 

and the ground sensors may have arisen during the transition period between two years (e.g., 

from the end of August 2015 to the beginning of June 2016), adversely affecting the validation 

metrics. In spite of these factors, this study presents an evaluation that maximizes the use of 

existing data sets and can serve as a valuable reference for further investigations as more data 

become available. 

3.4.4.4. Characteristics of Park Models 

Compared to other conventional semi-empirical dielectric models (Dobson et al. 1985; Mironov 

et al. 2012; Mironov et al. 2019; Park et al. 2017; Park et al. 2019; Wang and Schmugge 1980), 

Park models describe the fractions of bound water and free water differently (Park et al. 2017; 

Park et al. 2021; Park et al. 2019). First, Park models use the wilting point as the beginning point 

where free water starts to occur whereas other models set that value using an independent term 

named maximum bound water fraction. When the volumetric SM is between the maximum 

bound water fraction and porosity, most dielectric models fix the bound water content and the 

dielectric contribution of bound water. However, in the same SM range, Park models assume that 

the content of bound water and free water alters with the volumetric SM. Specifically, SM is 

treated as a weighted summation of the bound water and free water, where the sum of the 

weights of bound water (𝑤𝑏) and free water (𝑤𝑓) is constrained as one. It is assumed that 𝑤𝑏 is 



62 

 

one when SM is equal to wilting point. On the contrary, 𝑤𝑏 declines to zero when SM reaches 

porosity. 

According to Figure 3.3e and f, there are a few rapid drops in the curves of Park 2019 and Park 

2021 when SOM exceeds 60%. Such scenarios could be explained by the wilting-point and 

porosity calculation equations used in Park 2019 and Park 2021. As shown in Figure S3, the 

porosity equation of Park 2019 could lead to a porosity greater than 1 m3/m3 when SOM ranges 

from 30% to 35%. Meanwhile, in Park 2019, the derived wilting point could surpass the porosity 

when SOM is over 60%. Although the above issues have been substantially mitigated for Park 

2021 with valid magnitudes of its derived porosity and wilting point, an evident bending near the 

wilting point could still be observed in its simulated 𝑇𝐵 curves at highly organic soils. Therefore, 

caution should be paid when applying Park 2019 and Park 2021 over organic-rich soils. 

3.4.4.5. Selection of A Globally Optimal Combination of Dielectric Models 

In general, Mironov 2019 can be concluded as the prime dielectric model for use in the SMAP 

SCA-V algorithm over organic-rich soils. Such a determination was not only yielded from the 

validation results, but also incorporated the input parameters and configurations of various 

models. Specifically, Mironov 2019 requires fewer input parameters compared to Park 2019 and 

Park 2021, making it less susceptible to the uncertainties introduced by different soil property 

data sources, while accounting for the SOM effects. Additionally, Mironov 2019 was developed 

based on a physically refractive mixing dielectric model, where the parameters were calibrated 

and validated across several soil samples, with a SOM ranging from 35% to 80%. In contrast, 

Bircher 2016 was derived from straightforward regression analyses between two measured 

variables, while Park 2019 and Park 2021 lack effective calibration. Furthermore, Mironov 2019 

consistently demonstrated a slight edge over the other models, in terms of the averaged ubRMSE 

and R. This accuracy advantage of Mironov 2019 would likely extend to other regions with 

organic-rich soils, given similar climatic conditions and vegetation types with Alaska. 
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While the operational SMAP retrieval algorithms apply a single dielectric model globally, 

finding a universal dielectric model that outperforms the other models across all possible 

conditions seems overambitious. As described above, mineral-soil-based dielectric models do not 

include the SOM effect on soil dielectric constants, whereas organic-soil-based models often 

ignore the influence of soil texture. Although Park 2019 and Park 2021 consider both soil texture 

and SOM, they are prone to higher errors, due to a few improper formulations and excessive 

uncertainties introduced by various input data sources. Hence, based on the previous studies and 

the results obtained here, the separate use of Mironov 2009 and Mironov 2019 in the SMAP 

SCA-V algorithm over mineral and organic soils is proposed. The selection of utilizing Mironov 

2009 is somewhat arbitrary, as Mironov 2009 has not been comprehensively assessed against 

Mironov 2013 and Park 2017 over mineral soils. The applicability of Mironov 2009 has been 

extensively validated, and the use of Mironov 2009 will not further degrade the current retrieval 

quality. 

The simultaneous use of Mironov 2009 and Mironov 2019 requires a sophisticated SOM 

threshold that can demarcate mineral and organic soils. However, there is presently no rigorous 

set of rules for this threshold. Mironov et al. (2019) states that soil can be categorized into 

organic soil if the SOM is more than 20%, whereas Broll et al. (2006) and Zanella et al. (2011) 

declare that organic soil should contain a SOM of at least 30%. According to the results of the 

synthetic experiments, a SOM of 15% might be an optimal threshold for distinguishing soil 

types, as the 𝑇𝐵 curves of different models are closely clustered and the divergence between 

mineral- and organic-soil-based models seems to start after a SOM exceeding 15%. Such a 

threshold conforms to Huang et al. (2008) who classifies soils into organic soil or highly organic 

soil when the SOM is more than 15%. 

The utilization of an optimal organic-soil-based dielectric model (i.e., Mironov 2019 here) is 

anticipated to improve the overall precision of the SMAP SM retrievals over organic soils. Since 

SM is a crucial factor in determining carbon fluxes in boreal regions, having precise knowledge 

of SM variations can effectively monitor the health of local ecosystems and predict the trends in 

carbon storage. In the current context of global warming, the snow extent has rapidly dropped in 

the Northern Hemisphere. Consequently, more snow-covered regions become bare soils, and the 

period of thawing seasons tends to last longer. Hence, decreasing SM retrieval uncertainties over 
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these high-SOM areas would greatly aid in tracking the potential significant hydrologic shifts 

triggered by climate change and permafrost thawing. 

Meanwhile, the deficiencies in the quality of soil property products and in-situ data sets in the 

Northern environment have been identified. For instance, the universal conversion formula 

between SOC and SOM is still rudimentary, occasionally leading to an estimation over 100%. As 

such, the limitations discovered in this study offer a strong motivation and direction for 

developing soil property data sets with better applicability. Additionally, the necessity for 

accurate SM in high-latitude areas highlights the need for more ground stations and dense SM 

observation networks over the circumpolar zone.  

3.4.4.6. Future Work 

Here, the determination of the SOM threshold at 15%, based solely on synthetic experiments, 

likely caused spatial inconsistencies at the boundary of the mineral and organic soils. Hence, 

location/time-dependent SOM thresholds may be necessary to produce smooth SM maps in high-

latitude regions. An alternative approach would be the mixed use of mineral- and organic-soil-

based models over each pixel, provided that an accurate relative proportion of SOM and clay is 

available in advance. 

Although this study evaluated various dielectric models under the SMAP SCA-V algorithm, their 

use in other radiative transfer model-based algorithms and with observations from different 

polarizations, angles, and frequencies remains to be investigated. Of particular interest is the 

dual-channel algorithm (DCA), the current SMAP baseline algorithm, which exhibited moderate 

edges over agricultural sites. The objective of the DCA algorithm is to achieve the optimal 

vegetation optical depth (VOD) and SM simultaneously, by minimizing the aggregated 

differences between the simulated and observed brightness temperatures at both horizontal and 

vertical polarizations. Thus, the alternation of the dielectric model could indirectly affect the 

derived vegetation water content. In addition to passive microwave remote sensing, the dielectric 

mixing model is also critical for other fields, such as SMAP L4 and the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Community Microwave Emission Model 

(CHEM). Radar sensors also require a dielectric model to simulate the backscatter coefficients. 

However, there is currently no clear consensus on the best dielectric model for these platforms, 

making further investigations necessary and valuable.  
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3.5. Conclusions 

In this study, the skills of nine dielectric models over organic soil in Alaska have been evaluated 

and compared in the context of the SMAP SCA-V algorithm. Four out of nine models carefully 

account for the SOM effect on the complex dielectric constant of the soil-water mixtures while 

the remaining models were designed for use in mineral soils. The dielectric responses (expressed 

in a form of 𝑇𝐵) of those models to the increasing SOM were comprehensively investigated 

through artificially controlling input values. At a given SM over 0.1 m3/m3 and SOM higher than 

15%, the simulated 𝑇𝐵 values from organic-soil-based dielectric models are greater than those 

estimated from mineral-soil-based dielectric models. In other words, relative to mineral-soil-

based dielectric models, organic-soil-based models are inclined to obtain higher SM estimates 

from the identical observed radiations. Furthermore, a SOM threshold of 15% was suggested for 

the separate use of mineral- and organic-soil-based dielectric models in the retrieval algorithm as 

the divergence of 𝑇𝐵 curves of mineral- and organic-soil models was observed when SOM 

exceeds 15%.   

The predictive power of each dielectric model is represented by several statistic metrics 

computed by comparing its SM retrievals with in-situ measurements. Compared to satellite 

products reflecting SM variations over a large spatial extent, in-situ point-based SM 

measurements exhibited more temporal variability. Additionally, even over the same place, the 

annual correlations between satellite-based SM retrievals and in-situ data would fluctuate a lot. 

Consistent with the results from synthetic experiments, organic- and mineral-soil-based models 

tended to induce wet and dry biases. In an integrated evaluation, Mironov 2019 presented a 
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slightly but consistently better performance over other dielectric models, which showed a mean 

ubRMSE of 0.0507 m3/m3 and a mean R of 0.465. 

Furthermore, an inter-comparison between SM retrievals within a one-week time interval from 

mineral- and organic-soil-based dielectric models was conducted at a global scale. Such a 

comparison would be useful to capture clues about the performance of organic-soil-based models 

over mineral soils. Mironov 2009 and Mironov 2019 were elected as the representatives of 

mineral- and organic-soil-based models, respectively. As a result, SM estimates from Mironov 

2019 were at least 0.05 m3/m3 higher than those from Mironov 2009. When SM is below 0.1 

m3/m3, SM retrievals from Mironov 2019 were occasionally smaller than SM retrievals from 

Mironov 2009 in mineral soils. 

It should be noted that the performance of each dielectric model heavily depends on its designed 

application range, the quality of input data sets, as well as the accuracy of in-situ benchmarks. 

Different assessment results might be obtained with the update of dielectric models, in-situ 

measurements, and soil parameters. As such, a routine evaluation study that incorporates all the 

potential dielectric models and the most recent soil auxiliary data sets is recommended. In an 

integrated consideration of model inputs, the model physical foundation, and the practical 

accuracy, the separate use of Mironov 2009 and Mironov 2019 in the SMAP SCA-V algorithm 

for mineral soils (SOM < 15%) and organic soils (SOM ≥ 15%) would be the optimal option at 

this time. Considering the SOM magnitudes at the 36 km scale, developing a sophisticated 

dielectric model accounting for variable SOM from 10% to 30% is expected for passive 

microwave remote sensing of SM.   
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Chapter 4. Temporal Gap-Filling of 12-Hourly SMAP Soil 

Moisture over the CONUS Using Water Balance Budgeting 

R. Zhang, S. Kim, H. Kim, B. Fang, A. Sharma, and V. Lakshmi (2023). Temporal Gap-filling of 

the SMAP-based 12-hourly Soil Moisture Product Over CONUS using Water Balance 

Budgeting. Water Resource Research, major revision. 

Abstract 

The presence of temporal gaps is an inevitable concern in using satellite-based soil moisture 

(SM) products. In this study, an entirely observation-based method has been developed to derive 

volumetric soil water content for filling the existing gaps in Soil Moisture Active Passive 

(SMAP) retrievals. Through a water balance equation, each 12-hour variation of water amount in 

the topsoil layer is ascertained based on the observed precipitation using the Global Precipitation 

Measurement Mission (inflow) and the hydrologic loss function (outflow) built on SMAP dry-

downs. A temporally seamless SM product composed of SMAP dry-downs and the precipitation-

driven moisture approximations (PQD) was generated as a secondary outcome in ascertaining the 

optimal parameters required for water balance budgeting. The PQD dataset preserves the features 

of the original SMAP SM dynamics given the median Pearson correlation (R) at 0.69 and the 

unbiased root-mean-square error (ubRMSE) at 0.05 m3/m3. Next, all the obtained parameters and 

available SMAP observations were used to produce the SMAP-based 12-hourly SM product 

(PQF) over the conterminous United States. By validating against in-situ measurements, the PQF 

not only exhibits good performance given a median R of 0.63 but it also captures most of the SM 

peaks induced by heavy rainfall events. Additionally, the validity of the proposed scheme has 

been further verified by the comparable performance of the exclusive filled-on SM estimates. 
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The availability of a continuous SM dataset (i.e., PQF) and its paired hydrologic losses could 

advance the quantification connections among the hydrologic components and benefit the 

understanding of land-surface hydrology. 

4.1. Introduction 

Soil moisture (SM) is a variable of great importance in its capability of influencing land-

atmosphere interactions and its critical role in the hydrologic cycle (Koster et al. 2004; Koster et 

al. 2010; Petropoulos 2013; Seneviratne et al. 2010). Satellite-based passive microwave remote 

sensing has been identified as a reliable tool to monitor the temporal variations of surface SM at 

global scales, striking a balance between measurement accuracy, geographical coverage, and 

cost-effectiveness. In practice, SM observations from various spaceborne microwave sensors 

have been widely implemented to improve understanding of the process of Earth’s systems (e.g., 

climate variability and drought detection), and to facilitate anthropogenic development strategies 

(e.g., water resource management and agricultural monitoring) (Fang et al. 2021a; Findell et al. 

2011; Ge et al. 2011; Koster et al. 2010; Miralles et al. 2014; Taylor et al. 2012). However, the 

presence of spatiotemporal gaps in satellite-based SM observations is a limiting factor in their 

applications. Such a deficiency is primarily attributed to the intrinsic limitation of sun-

synchronous orbits, instrumental configurations, and the applicable ranges of retrieval algorithms 

(Wang et al. 2012).  

Despite an observation available every 1 to 3 days, and a gradual evolution of SM over a large 

spatial scale, satellite-based SM datasets are often unable to provide a complete picture of 

hydrologic process and likely ignore critical land responses to short-term weather extremes. A 

typical example is depicted in Figure 4.1 where SM from the Soil Moisture Active Passive 
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(SMAP) (Entekhabi et al. 2014) misses a number of positive increments in wetness generated by 

the precipitation relative to in-situ SM records. Previous studies showed that SM sampled at such 

a coarse temporal frequency may bias the modeled water and energy fluxes which follow as well 

as could underestimate its antecedent precipitation volume (Brocca et al. 2019; Crow and Wood 

2002). Therefore, advanced interpretation of SM dynamics and the increased flash hydroclimatic 

extremes (e.g., flash drought and flood events) require a continuous SM dataset at a sub-daily 

time frame.  

Various methods have been developed to derive frequently updated, gapless SM products by 

temporally and/or spatially filling the voids contained in the original satellite observations. Such 

approaches can be broadly assigned into two categories. The first type of gap-filling study 

estimates the missed points by analyzing the varying patterns from the available measurements, 

such as the simple linear interpolation with a short time window (Brocca et al. 2019). Advanced 

statistical modeling techniques, such as the three-dimensional optimization underlying the 

discrete cosine transforms, ordinary kriging, and the convolutional neural network, are often 

adopted to achieve geophysical records of spatially complete and temporally seamless 

(ElSaadani et al. 2021; Kim et al. 2016; Pham et al. 2019; Wang et al. 2012; Zhang et al. 2021a). 

However, gap predictions relying on the spatial or temporal modes from observed SM alone 

could inherit the errors of the original products and incapable of handling unusual meteorological 

events (Zhang et al. 2021a). The second route to increase SM availability is to combine soil 

moisture information from several different satellite sensors, such as the European Space Agency 

Climate Change Initiative (ESA CCI) SM dataset and the SMOSSMAP-IB product (Dorigo et al. 

2017; Li et al. 2022). Additionally, the low-earth orbit satellite constellation mission known as 

Cyclone Global Navigation Satellite System (CYGNSS), which observes L-band GNSS signals 
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of opportunity, has been utilized to retrieve SM with higher temporal repeats (i.e., sub-daily). 

However, CYGNSS-based SM retrievals showed unsatisfactory precision/accuracy compared to 

passive microwave satellite systems, and they were limited to their spatial coverages (38º N to 

38º S) (Kim and Lakshmi 2018; Ruf et al. 2018). 

Precipitation tends to induce an increase in surface SM at a pace greatly faster than the dry-down 

rate. Hence the incorporation of varying synchronous precipitation trends could aid in filling SM 

gaps. Given those, the main objective of this study is to fill SMAP’s temporal gaps over the 

conterminous United States (CONUS) using the temporally high-resolution precipitation 

product, Global Precipitation Measurement Mission (GPM), from 2015 to 2021. Through water 

balance budgeting, the existing SM gaps were filled by the estimations converted from their 

corresponding 12-hour GPM precipitation volumes. This conversion was accomplished with the 

scheme initially proposed by Akbar et al. (2018) where the hydrologic terms other than 

precipitation and SM were treated as the aggregated loss and were quantified via SMAP dry 

downs. Here, we improved that scheme by adding parametric-based loss modeling and advanced 

ancillary datasets for better achieving our research goal rather than deriving the regionally 

hydrologic length scales that were found in Akbar et al. (2018). Through this, these precipitation-

driven SM data preserves the magnitudes of the original SMAP retrievals. Compared to previous 

filling approaches, the proposed scheme is remarkedly simplified for utilization and could 

provide integrated hydrological loss quantifications in addition to high-quality SM estimates. 

Meanwhile, this newly yielded continuous dataset is envisioned to track the footprints of 

precipitation events and manifest as peaks in SM. The feature of totally observation-based 

simulation would be an exceptional benefit.  
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Figure 4.1. An example of the soil moisture time series from SMAP observations and in-situ 

measurements from the station at [40.05º N, 88.37ºW]. The intervals highlighted by the red boxes reflect 

that soil moisture responses to rainfall events on April 6 and April 30, 2016, have been completely missed 

and monotonically decreased. Such scenarios frequently occur due to the temporally sparse sampling of 

SMAP observations and simplify a number of up-and-down variations as dry-down trends. The omission 

of these details will misguide researchers in the process interpretation and result in underestimations of 

hydrologic dynamics. 

4.2. Data 

As summarized in Table 4.1, various datasets covering the period of six years (April 1, 2015 – 

March 31, 2021) have been adopted in this study. These include 1) the National Aeronautics and 

Space Administration (NASA) SMAP SM product, 2) the reanalysis SM dataset of the land 

component of the 5th generation of European Re-Analysis (ERA5-Land) developed by the 

European Centre for Medium-Range Weather Forecast (ECMWF) (Muñoz-Sabater et al. 2021a), 

3) in-situ SM measurements from 1084 stations of the International Soil Moisture Network 

(ISMN) (Dorigo et al. 2021; Dorigo et al. 2013), 4) in-situ SM measurements from 40 stations of 
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the Texas Soil Observation Network (TxSON) (Caldwell et al. 2019), and 5) half-hourly 

precipitation estimates from the Integrated Multi-SatellitE Retrievals for Global Precipitation 

Measurement (GPM IMERG) (Hou et al. 2014).  

Given the objective of building a 12-hourly continuous SM dataset at a UTC timescale, the local-

time-based SMAP retrievals were interpolated into the closest time slots of UTC 00:00 and 

12:00. This adjustment process was constructed on a crucial hypothesis of invariable SM within 

a (+/-) 3-hour interval. Accordingly, the hourly available ERA5-Land and the in-situ SM data 

synchronized with the UTC 00:00 and 12:00 were extracted and retained for validation. After 

temporal processing, the gridded GPM IMERG and ERA5-Land products were then resampled 

into the Equal-Area Scalable Earth (EASE) 9-km scale to be compatible with the SMAP spatial 

resolution. 

Table 4.1. Summary of datasets used in this study. 

Variable Product Name 
Spatial 

Resolution 
Unit Reference 

Volumetric 

Soil Moisture 

SMAP L3 enhanced soil moisture 

product (version 5) 
9 km m3/m3 O'Neill et al. (2021c) 

ISMN Point m3/m3 Dorigo et al. (2021) 

TxSON Point m3/m3 Caldwell et al. (2019) 

ERA5-Land 0-7cm soil moisture 0.1º m3/m3 Muñoz-Sabater et al. (2021a) 

Precipitation 
GPM IMERG Final Precipitation Level-

3 Half-hourly Product (version 06B) 
0.1º mm/hour Huffman et al. (2019) 

 

4.2.1. SMAP Soil Moisture 

The SMAP mission was launched on January 31, 2015, by NASA for quantifying the 

representative water content at the top of a 5 cm soil column and detecting freeze/thaw states at a 

quasi-global scale (Entekhabi et al. 2014). The SMAP sensor crosses the equator constantly at 



73 

 

around 6 a.m. and 6 p.m. (local solar time) and monitors SM variations with a revisit frequency 

of 1 to 3 days (O'Neill et al. 2021c). In order to satisfy the research requirements of 

hydrometeorology and hydroclimatology, SMAP originally intended to incorporate the attributes 

of active and passive microwave sensors to provide high-resolution SM retrievals. However, the 

malfunction of the SMAP radar in July 2015 hampered the initial goals. Alternatively, the 

Backus-Gilbert optimal interpolation technique is adopted on the oversampled measurements of 

the SMAP radiometer to derive an enhanced SM product posted at the 9-km EASE grids (O'Neill 

et al. 2021c).  

In this study, the SMAP Enhanced Level-3 Radiometer Global Daily 9-km EASE-Grid Soil 

Moisture (version 5) product (hereinafter referred to as SMAP) has been selected. The SMAP 

Level-3 product is a daily composite of the half-orbit SMAP Level-2 products where the SM 

retrieval algorithm is conducted. An integrated consideration of both geographical coverage and 

the quality of the filled-in SM estimations, a series of filtering procedures have been adopted 

before being temporally interpolated into the closest UTC 00:00 and 12:00. Specifically, the 

regions of vegetation water content (VWC) below 7 kg/m2 are retained to include more areas of 

eastern CONUS (Akbar et al. 2018). It should be noted that this VWC of 7 kg/m2 is less 

restricted relative to the recommended threshold of 5 kg/m2 (O'Neill et al. 2021a). In contrast, a 

more rigid water fraction threshold of lower than 1% of water bodies within each 9-km pixel has 

been applied. Moreover, the pixel-wise soil porosity values are computed using the bulk densities 

under the SMAP ancillary dataset (Das and O'Neill 2020) as they are required by building the 

loss functions in the later part (Section 4.3.2). 
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4.2.2. In-Situ Soil Moisture Measurements 

In-situ measurements are often acknowledged as the most reliable source and widely performed 

as benchmarks to assess remotely sensed SM retrievals and model estimations. The ISMN 

(Dorigo et al. 2021; Dorigo et al. 2013), as a centralized data platform, regularly compiles and 

reconciles ground SM observations from different networks all over the world. A series of 

filtering procedures on those ground-based SM records have been carried out to guarantee 

validity of the assessment. The TxSON measurements were firstly harmonized into UTC, 

aligning with the ISMN data. Subsequently, those observations symbolized as ‘good’ quality and 

with the measuring depth shallower than 10 cm were retained. Meanwhile, stations with effective 

SM samples of less than 30 were excluded.  

Although the evaluation results based on the sparse networks tend to be slightly inferior to those 

obtained from the core validation sites, they are still of high value due to the wide geographical 

coverage (Chan et al. 2018; Zhang et al. 2019). In combination with the probable unevenness 

introduced by the simultaneous inclusion of assessment metrics from pixels with different 

amounts of stations, for each pixel, only one station candidate would be preserved and presumed 

as the areal delegate. Following the steps adopted by Zhang et al. (2021b), those representative 

stations have been decided by comparing the averaged correlations among the SMAP, ERA5-

Land, and in-situ measurements. Specifically, for each station (STNx) in an identical grid, the 

Pearson Correlation (R) values between any two of the above datasets (i.e., R [SMAP, ERA5-

Land], R [SMAP, STNx], and R [ERA5-Land, STNx]) have been separately computed. The 

station with the highest mean R value is considered to be the pixel representative. 
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4.2.3. GPM IMERG Precipitation 

The half-hourly GPM IMERG precipitation Level-3 half-hourly product (Version 6B) has been 

applied to provide the water inputs to the upper soil system. Its densely temporal availability was 

attained via the simultaneous use of the constellation from multiple passive microwave satellite-

based sensors as well as geosynchronous infrared satellites (Huffman et al. 2019). Here, the 30-

minute Level 3 GPM IMERG Final-run (hereinafter referred to as GPM) precipitation volumes 

were aggregated for the time intervals from UTC 00:00 to 12:00 and UTC 12:00 to 00:00 prior to 

spatially re-gridding. 

4.3. Methods 

4.3.1. Estimation of the Integrated Hydrologic Loss 

The hydrologic process occurring on the topsoil layer has been simplified into three components: 

precipitation (input), hydrologic loss (output), and SM (change in storage) (Eq 1). Since the 

amounts of water inputs are fixed, accurate quantification of hydrologic divergence (𝑄) is critical 

to ensure the quality of predicted SM. Akbar et al. (2018) showed that 𝑄 can be represented by a 

product of the hydrologic length scale (∆𝑍) and the volumetric loss (𝐿) (Eq 2). Further, 𝐿 could 

be roughly estimated via the SMAP dry-down SM. 

∆𝑍 ∙
𝑆𝑀𝑡+∆𝑡 − 𝑆𝑀𝑡

∆𝑡
= 𝑃(𝑡~𝑡 + ∆𝑡) − ∆𝑍 ∙ 𝐿(𝑡~𝑡 + ∆𝑡) (1) 

where 𝑆𝑀𝑡 and 𝑆𝑀𝑡+∆𝑡 (m
3/m3) represent volumetric soil moisture at time points𝑡 and 𝑡 + ∆𝑡, 

respectively. ∆𝑡 (day) is the time interval. ∆𝑍 (mm) denotes the hydrologic depth within which soil 

moisture data have similar dynamics. 𝑃 and 𝑄 are the precipitation (mm/day) and loss rates (mm/day) 

during the time interval.  
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𝑄 = ∆𝑍 ∙ 𝐿 (2) 

where 𝐿 is the water loss in the volumetric unit (m3/m3/day). 

The SMAP observed dry downs can be defined as the monotonically decremental SM segments. 

Each dry-down segment is composed of at least three consecutive SMAP observations having 

zero inter-measurement precipitation (Akbar et al. 2018). In other words, the decreases in these 

SM measurements are completely equivalent to the hydrologic losses. Hence, the SMAP dry-

down segments are first identified (Figure 4.2a) and collected altogether (Figure 4.2b). Then, 

the daily rate of 𝐿 during each dry-down period is estimated (Eq 3). However, it should be noted 

that the dry-down segments with fluctuation amplitudes of magnitudes smaller than 1% of the 

SMAP SM range were excluded. This is because such minor variations are likely caused by 

observation noises and/or retrieval uncertainties (Akbar et al. 2018; McColl et al. 2017). 

𝐿𝑜𝑏𝑠 = −
𝑆𝑀𝐴𝑃𝑑𝑑(𝑡 + ∆𝑡𝑜𝑏𝑠) − 𝑆𝑀𝐴𝑃𝑑𝑑(𝑡)

∆𝑡𝑜𝑏𝑠
 (3) 

where the subscripts 𝑜𝑏𝑠 and 𝑑𝑑 indicate the observation-based derivations, and the SMAP dry-down 

soil moisture measurements.  

However, the above estimations are only applicable for the qualified SMAP dry-down periods, 

and they are unable to reflect the losses over the remaining spans at a routine frequency. A simple 

solution is to assume that the integrated loss over a time interval is a function of the SM value(s) 

at the beginning and/or the end of this period. Such an approach has been proven feasible and 

widely adopted (Akbar et al. 2018; Brocca et al. 2019; Koster et al. 2018). Here, we presumed 

that the loss rate (𝐿𝑒𝑠𝑡) was predominately governed by the initial SM (𝑆𝑀𝑡) of a given time slot 

and that this relation can be sustained for 12 hours (Eq 4). The quantitative relationship between 
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the loss and the initial SM started by regressing the observed moisture losses to SM at the 

beginning of the corresponding dry-down limbs. Here, a dry-down limb is defined as a subpart of 

a dry-down segment, and each limb contains two successively decremental SM observations.  

𝐿𝑒𝑠𝑡(𝑡~𝑡 + 0.5) = 𝑓(𝑆𝑀𝑡) (4) 

where 𝐿𝑒𝑠𝑡(𝑡~𝑡 + 0.5) represent the estimated volumetric water loss between 𝑡 and 0.5 days after 𝑡. 

𝑓() displays the regressed relationship between the loss and initial soil moisture. 

 Specifically, two regression methods, locally weighted linear smoother (LOWESS) with a span 

of 65% (Akbar et al. 2018) and the quantile regression approach with a performance-driven 

percentile (𝛽) have been adopted and compared. Quantile regression can be described by Eq 5 

and models the conditional quantiles of a dependent variable (𝑦) for an independent variable (𝑥). 

The objective of quantile regression is to minimize the summation of two aggregated absolute 

error terms separately multiplied by 𝛽 for underprediction and (1 − 𝛽) for overprediction (Eq 6), 

different from linear regression that minimizes the sum of squared errors (Magan et al. 2020; 

Wasko and Sharma 2014). The specific value of 𝛽 is determined through an optimization 

procedure described in Section 3.2 (Figure 4.2c). In general, the loss amounts monotonically 

elevate with the increase of SM. Such a regressed link, however, was derived using the dry-down 

SM alone and it might be inappropriate to apply when the moisture content falls beyond that 

range. As such, this regression relationship (Eq 4) is set to be useful only when SM value is 

between the minimum (𝑝1) and maximum (𝑝2) SMAP dry-downs, and the above range is labeled 

as Segment B of the reconstructed loss function (Figure 4.2c). 
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𝑦𝑖 = 𝑎0
(𝛽)
+ 𝑎1

(𝛽)
𝑥𝑖 + 𝜖𝑖

(𝛽)
 (5) 

where 𝑥𝑖 and 𝑦𝑖 are data elements for the independent variable 𝑥, and dependent variable 𝑦; 𝛽 is the 

conditional quantile ranging from 0 to 1; and 𝑎0
(𝛽)

, 𝑎0
(𝛽)

, and 𝜖𝑖
(𝛽)

 represent the parameters and error terms 

(zero expectation) under quantile 𝛽. 

 

𝐹 (𝑎0
(𝛽)
, 𝑎1
(𝛽)
) = 𝛽 ∑ |𝑦𝑖 − 𝑎0

(𝛽)
− 𝑎1

(𝛽)
𝑥𝑖|

𝑦𝑖≥ 𝑎0
(𝛽)
+𝑎1

(𝛽)
𝑥𝑖

+ (1 − 𝛽) ∑ |𝑦𝑖 − 𝑎0
(𝛽)

− 𝑎1
(𝛽)
𝑥𝑖|

𝑦𝑖< 𝑎0
(𝛽)
+𝑎1

(𝛽)
𝑥𝑖

 (6) 

where 𝐹() is the cost function needed to be minimized. 

In the cases where the initial SM values are outside the limits of Segment B, a straightforward 

linear extrapolation technique has been applied for estimating the loss amounts. At the dry end 

(Segment A), the possible minimum SM and its corresponding loss are arbitrarily assumed as 

0.02 m3/m3 and 0 (m3/m3/day) following Akbar et al. (2018). The loss function can then be 

determined through the line connecting [0.02, 0] and [𝑝1, 𝐿𝑒𝑠𝑡(𝑝1)] when SM is under [0.02, 𝑝1] 

(Eq 7). Similarly, the rate of moisture loss can be estimated through the linear fitting between 

[𝑝2,  𝐿𝑒𝑠𝑡(𝑝2)] and [𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (𝛷), 𝐿𝑒𝑠𝑡(𝑝2) + 𝛼 ∙ (𝛷 − 𝑝2)] over Segment C [𝑝2, 𝛷], and 𝛼 is an 

unknown slope parameter (Eq 7). Once the initial SM values reach saturation (Segment D), the 

excessive amounts of water possibly owing to runoff and spillage are partitioned into the loss 

portion for the next 12-hour interval. Moreover, they are quantified through the water balance 

equation on the basis of the hypothesis that SM always returns to the porosity 12 hours after 

oversaturation (Eq 7). Generally, the loss functions can be easily divided into three pieces 

according to the slopes (Figure 4.2c). Compared to the intermediate SM, the losses are more 

sensitive to the magnitudes of SM at the dry and wet ends (Koster et al. 2018; Salvucci 2001). 
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Since the skills of Segments A and C highly depend on Segment B, the number of dry-downs 

used to construct Segment B is critical. Considering this, for any individual 9-km pixel with dry-

down segments of fewer than 117 (i.e., the 25th percentile of the SMAP dry-down numbers of all 

the 9-km grids included here), dry-down segments from the surrounding 4×4 9-km pixels were 

collected for building the Segment B. If the number of aggregated dry-down segments from 16 

grids was still lower than that threshold, the counterpart would be masked out.  

𝐿𝑒𝑠𝑡(𝑡~𝑡 + 0.5) =

{
 
 

 
 (𝑆𝑀𝑡 − 0.02) ∙

𝐿𝑒𝑠𝑡(𝑝1)

(𝑝1−0.02)
0.02 < 𝑆𝑀𝑡 < 𝑝1 Segment A

𝑓(𝑆𝑀𝑡) 𝑝1 ≤ 𝑆𝑀𝑡 ≤ 𝑝2 Segment B

𝐿𝑒𝑠𝑡(𝑝2)+𝛼 ∙ (𝑆𝑀𝑡 − 𝑝2) 𝑝2 < 𝑆𝑀𝑡 ≤ 𝛷 Segment C
𝑃(𝑡~𝑡+0.5)

∆𝑍
−
(𝛷−𝑆𝑀𝑡)

∆𝑡
𝑆𝑀𝑡 > 𝛷 Segment D

  (7) 

where 𝑝1 and 𝑝2 are the maximum and minimum SMAP dry-down soil moisture, and 𝛷 is the 

porosity that is initially estimated via 1 −
𝐵𝐷

2.65
. 𝐵𝐷 is the soil bulk density provided by the SMAP 

ancillary dataset (Das and O'Neill 2020). 
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Figure 4.2. (a) An example of the SMAP soil moisture and the GPM precipitation time series for a pixel 

centered on [36.25ºN,120.58ºW] from November 1, 2016, to January 1, 2017. The red dots represent the 

dry-down soil moisture; (b) All the SMAP soil moisture dry-downs are stacked together after 

preprocessing procedures; (c) The quantitative relationship between the dry-down soil moisture and its 

paired loss. Regression analyses, including the locally weighted linear smoother (LOWESS) with a 

constant span of 65% (black line) and the quantile regression with a to-be-determined percentile (blue 

line), have been performed within the SMAP dry-downs range (Segment B). Lines in Segments A and C 

are linearly extended along the line of Segment B. Again, 𝑝1 and 𝑝2 denote the minimum and maximum 

SMAP dry-down soil moisture while 𝛷 is the soil porosity. 

4.3.2. Forward Simulation of Rainfall-Driven Soil Moisture 

Given that 𝐿 has been described as a function of 𝑆𝑀𝑡, 𝑆𝑀𝑡+0.5 can be predicted as long as 𝑃 and 

𝑆𝑀𝑡 are available (Eq 8). However, there are still at least two unknown parameters (∆𝑍 and 𝛼) 

that could affect the temporal evolution of the water balance cycle. A third parameter, 𝛽, will also 

be required if the quantile regression is used to build Segment B. The values of these pixel-wise 

parameters were determined by performing an optimization procedure with an objective function 

to minimize the root-mean-square error (RMSE) between the rainfall-driven SM simulations and 

the synchronous SMAP observations. 
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𝑆𝑀𝑡+0.5 = 𝑆𝑀𝑡 + 0.5 ∙ [
𝑃(𝑡~𝑡 + 0.5)

∆𝑍
− 𝐿𝑒𝑠𝑡(𝑡~𝑡 + 0.5)] (8) 

Using Eq 8, SM can be continuously simulated by inserting one initiated value for SM at the 

beginning of the study period. Simulated SM products in this way are expressed as PLO (P: 

Precipitation-driven simulation + L: ‘LOWESS’ regression + O: One initiated soil moisture), and 

PQO (P: Precipitation-driven simulation + Q: Quantile regression + O: One initiated soil 

moisture).  

However, these precipitation-reconstructed estimates are prone to suffer from the errors 

accumulated for a six-year simulation interval, resulting in a large deviation between the 

predicted and observed SM in the late or particular stage of simulation. These errors could be 

sourced from the occasional mismatching between rainfall and SM datasets as well as from the 

inappropriate derivations of hydrologic losses. In light of this, the SMAP dry downs were 

adopted for the simulation process. Specifically, each dry-down SM was directly placed into the 

simulated time series to piecewise initiate the precipitation-driven process until the next SMAP 

dry-down. The intent of including those SMAP dry downs is to avoid the unreasonable 

magnitude differences between the simulated and observed SM values. Therefore, the SMAP 

dry-downs could also be labeled as correction points or as lifting-up measures regarding the 

rapidly dropped SM of PLO. The number of SMAP dry-down SM is around 12% of the total 

SMAP observations (4% of 12-hour continuous SM simulations over the six-year period). Thus, 

the precipitation-driven SM products including the original SMAP dry-downs are entitled as 

PLD (PL + D: Dry-down soil moisture) and PQD (PQ + D: Dry-down soil moisture), 

respectively.  
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Finally, PQF (PQ + F: gap-Filled) was generated to supplement the missed SM at a 12-hourly 

scale of the combined descending and ascending SMAP L3 product. Similar to PQD, the 

simulated SM was immediately displaced by the simultaneous SMAP observation. As the 

optimization objective is to minimize the RMSE between the simulated SM data and their 

temporally paired SMAP observations, the benchmark dataset and the optimization process will 

become ineffective when all the SMAP data are involved in the simulation. Hence, PQF was 

derived using the optimal parameters obtained from the PQD, and a rerun of Eq 8. PQF is the 

ultimate product conformed to the major purpose here that solely fills the SMAP temporal gaps. 

A summary of different simulated SM products is described in Table S3 in the supporting 

information (hereafter Figures and Tables in the supporting information use the prefix "S"). 

The optimal methodology flow was determined based on the simulation results from the 

representative 9-km pixel (Figure S4). In order to cover a wide variety of land surface 

conditions, the CONUS matrix (285×644) composed of 9-km grids was first divided into 15×28 

coarse-scale blocks. Each block encompassed 19×23 9-km pixels, and then a pixel was randomly 

selected from each block. Before the random procedure, the pixels with dry-down limbs of fewer 

than 50 and the blocks of fewer than 10 effective pixels were excluded. As a result, 260 pixels 

out of 420 blocks were determined and extracted as the representative points.  

4.3.3. Detection of Rainfall-Induced Soil Moisture Peaks 

At a large spatial scale, the vertical variations of hydrologic components are often assumed to be 

dominant relative to lateral hydrologic exchanges (Akbar et al. 2018). Hence, an increase in 

surface SM could be attributed to the precipitation input alone, and in turn, the occurrence of 

each SM peak corresponds to a rainfall event. Again, identifying those peaks and their causes is 

important for characterizing SM dynamics and runoff predictions. In order to detect the rainfall-
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induced peaks, the precipitation intervals were first determined. A precipitation threshold of 0.5 

mm/day was applied to exclude spurious events. Multiple precipitation events in consecutive 12-

hour time intervals were merged and treated as one precipitation interval. Then, the preliminary 

SM peak intervals were established by adding a 12-hour lagging slot to each precipitation 

interval (the interval has the same width as the precipitation one but moves forward one more 

time step). A rainfall-induced SM peak interval can be ultimately determined if the detected 

peaked SM value(s) falls into the preliminary slots. It should be noted that SM peaks are not 

always detected after rainfall events. From the same precipitation dataset, the peak occurrences 

from different SM data sources were collected and compared to assess their abilities in capturing 

rainfall-induced SM peaks. 

4.3.4. Statistical Metrics 

Statistical metrics are required to reflect the quality and accuracy of different datasets. Here, the 

quantitative metrics, i.e., unbiased root-mean-square error (ubRMSE) and R, were adopted to 

describe the discrepancies in magnitudes and temporal correlations between the precipitation-

based SM and the benchmark datasets. Specifically, the SMAP observations and in-situ 

measurements were selected as the reference to separately validate PQD and PQF.  

For purposes of capturing rainfall-induced SM peaks, three categorical scores, i.e., the 

probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) have 

been computed. POD refers to the fraction of correctly identified rainfall-induced soil moisture 

peaks while FAR is the fraction of identified peaks that are not observed by in-situ 

measurements. CSI provides an integrated performance score. The formulas of all the statistical 

metrics are shown in Table 4.2. 
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Table 4.2. Statistical metrics used for product assessment. 

Statistical Metrics Equation Minimum Maximum 

ubRMSE √𝐸[(𝜃𝑠𝑖𝑚 − 𝜃𝑟𝑒𝑓)
2] − 𝐸[(𝜃𝑠𝑖𝑚 − 𝜃𝑟𝑒𝑓)]

2 0 (optimal)  

R 
𝐸[(𝜃𝑠𝑖𝑚 − 𝐸[𝜃𝑠𝑖𝑚])(𝜃𝑟𝑒𝑓 − 𝐸[𝜃𝑟𝑒𝑓])]

𝜎𝑠𝑖𝑚𝜎𝑟𝑒𝑓
 -1 (optimal) 1 (optimal) 

POD 
𝐻

𝐻 +𝑀
 0 1 (optimal) 

FAR 
𝐹

𝐻 + 𝐹
 0 (optimal) 1 

CSI 
𝐻

𝐻 + 𝐹 +𝑀
 0 1 (optimal) 

where 𝐸[] represents the expectation value; 𝜃𝑠𝑖𝑚 and 𝜃𝑟𝑒𝑓  denote the soil moisture from simulation product and 

reference dataset; 𝜎𝑠𝑖𝑚 and 𝜎𝑟𝑒𝑓 refer to the standard deviations of simulated and referenced soil moisture data; H is 

the number of rainfall-induced soil moisture peaks simultaneously detected by a simulated dataset and in-situ 
measurements; F is the number of rainfall-induced soil moisture peaks detected by a simulated dataset but not 
observed by in-situ measurements; and M is the number of rainfall-induced soil moisture peaks observed by in-situ 
measurements but not detected by the simulated product. 

4.4. Results and Discussion 

4.4.1. Determination of Optimal Simulation Flow 

The performance of the precipitation-driven SM dataset primarily depends on the accuracy 

degree of loss estimations. A preliminary examination of the PLO generally exhibited an over-

rapidly drying down rate compared to the SMAP observations. Such speedy declines could be 

attributed to the loss overestimations. As shown in Figure 4.2c, hydrologic losses of similar-

magnitude SM values scatter across a wide range. Hence, the use of a constant smoother (i.e., 

65%) seems improper, especially for SM values near 𝑝2 with a limited number of corresponding 

losses. As such, we introduced 𝛽 for quantile regression. Despite being more or less arbitrary, the 

performance-driven parameter 𝛽 is expected to return more suitable loss estimations for SM 

predictions. Additionally, the lifting-up measure (as mentioned in Section 4.3.2) was also 

adopted to prevent inordinate deviations of precipitation-reconstructed SM estimates away from 
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the SMAP retrievals. Therefore, an investigation of the efficiency and effectiveness of different 

methodology flows (i.e., PLO, PLD, and PQD) was conducted.  

The common parameters (∆𝑍 and 𝛼) (Figure 4.3a and b) and performance metrics (ubRMSE and 

R) (Figure 4.3c and d) of precipitation-driven simulations from three different methodology 

flows (i.e., PLO, PLD, and PQD) are illustrated below. Simulations are only performed over the 

representative pixels (Figure S4), and the metrics were obtained by comparing them against the 

SMAP observations. The PQD shows a pronounced superiority over the PLO and PLD (Figure 

4.3c and d). Such an improvement demonstrated that the introduction of variable 𝛽 availed more 

accurate loss estimations. Additionally, the incorporation of lifting-up measures seemed useful to 

insignificantly upgrade the overall performance of the simulated SM datasets. Therefore, PQD 

was decided as the operated methodology flow for the precipitation-reconstructed SM 

simulations and parameters’ derivations for the rest portion. The inclusion of quantile regression 

and correction points was used to produce better 12-hourly SM with a near-SMAP accuracy. 



86 

 

 
Figure 4.3. Boxplots of the optimal parameters (a) ∆𝑍 (mm) and (b) 𝛼, and performance metrics of (c) 

ubRMSE (m3/m3) and (d) R calculated by separately comparing the PLO, PLD, and PQD against the 

SMAP retrievals. 

4.4.2. Comparison between SMAP and PQD Soil Moisture  

The spatial distributions of R between the precipitation-reconstructed SM derivations (PQD) and 

the SMAP retrievals are illustrated in Figure 4.4a, c, and d. The median R of 0.69 indicates that 

temporal variations described by the PQD agree well with the SMAP observations across the 

entire study period. However, there is a notable degradation in the performance of SM 

simulations over cold seasons (November to April) relative to warm seasons (May to October) 

(Figure 4.5b). In the high-latitude areas, R values quickly drop from 0.7 to 0.5 (Figure 4.4c and 

d). Such a large seasonal difference could be attributed to the low availability of the SMAP 

benchmarks during winter as a result of long frozen periods and/or frequent snowfall events. The 

sparse SMAP sampling during cold seasons likely led to the optimal parameters (i.e., ∆𝑍, 𝛼, and 

𝛽) being more beneficial for simulating SM in warm seasons. It was corroborated by the close 
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magnitudes of the median ∆𝑍 (139 mm) and the median ∆𝑍 (135 mm) obtained by Akbar et al. 

(2018) that only used the SM from May to September. On the contrary, an improvement of R 

values in the western CONUS during cold seasons can be observed (Figure 4.4d), probably due 

to the seasonal rainfall patterns over these domains (i.e., rare rainfall during summer). In view of 

R, the simulation scheme proposed here is more feasible for periods with sufficient SM 

observations and with adequate rainy days.  

 
Figure 4.4. Spatial distribution of R between the SIMU-PQD simulations and the SMAP observations 

over the CONUS, where (a), (c) and (d) represent the metrics obtained using the soil moisture data of the 

entire study period, warm seasons (May to October), and cold season (November to April). 

The ubRMSE describes the discrepancies in absolute magnitude between the PQD and the 

SMAP retrievals. Overall, there is an east-west gradient in the distribution of the ubRMSE map 

(Figure 4.5a, c, and d). The relatively higher deviations of the PQD in eastern CONUS could be 

partly attributed to the generally larger SM values due to more precipitation volumes. 

Additionally, the SMAP SM data in the eastern sides were mostly retrieved under the VWC of 

more than 5 kg/m2 which is a threshold commonly used to screen the low-quality SM estimations 
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from densely vegetated areas out (O'Neill et al. 2021a). Therefore, the loss estimations from the 

dry downs of inferior SMAP SM data may not quantitatively function as well as the regions with 

VWC below 5 kg/m2. Overall, an integrated consideration of the ubRMSE (0.05 m3/m3) and R 

(0.69) could indicate the comparable performance of the PQD relative to the SMAP retrievals as 

well as the validity of the derived parameters. Those parameters are necessary for cycling the 

water balance budgeting (Eq 7 and Eq 8). 

 
Figure 4.5. Spatial distribution of ubRMSE (m3/m3) between the SIMU-PQD simulations and the SMAP 

observations over the CONUS, where (a), (c) and (d) represent the metrics obtained using the soil 

moisture data of the entire study period, warm seasons (May to October), and cold season (November to 

April). 

4.4.3. Validation of Gap-filled Soil Moisture Products 

The effectiveness of the optimized parameters (i.e., ∆𝑍, 𝛼, and 𝛽) was proven by the near-SMAP 

accuracy of the PQD. To proceed, the gaps of the SMAP combined descending and ascending 

product were supplemented by re-running the simulations using the obtained parameters, 

precipitation inputs, and all the available SMAP observations (Eq 8). Again, this temporal gap-

filled SM dataset is abbreviated as PQF.  
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Time series examples of the PQD and PQF from three contrasting locations over the CONUS are 

displayed in Figure 4.6. Estimations from those two sources (i.e., PQD and PQF) are overall 

consistent and exhibit incremental responses to precipitation events. However, the PQF presents 

more temporal variability during dry periods. During the long-term drying periods of zero or 

extremely low precipitation, the PQD SM shows monotonically decremental trends given the use 

of Eq 8 (Figure 4.7). In contrast, PQF data present frequent fluctuations forcedly modulated by 

the inserted SMAP observations (Figure 4.7). Such a difference disclosed the limitations of this 

parsimonious scheme without adequately considering the physical variations, such as dew in the 

morning, into account.  

 
Figure 4.6. Example time series of the PQD and PQF soil moisture simulations. 

The performances of the PLO, PQD, and PQF were further evaluated by comparing them against 

in-situ measured SM over 526 CONUS pixels (Figure S6). Additionally, assessment metrics of 

another two SMAP-based continuous SM datasets yielded using the three-dimensional discrete 
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cosine transform-penalized least square regression (DCT) (Wang et al. 2012), and the simple 

linear interpolation (LIP), were also calculated. The ability of the DCT algorithm to completely 

overlap its reconstructed and the original data was highlighted by Wang et al. (2012) . Here, 

rather than using the entire three-dimensional SMAP array within the study domain, only 

observations from the neighboring grids surrounding the targeted pixel (as a center of a 9×9 

matrix) have been included for conducting a local DCT gap filling.  

The PQF, DCT, and LIP display comparable ubRMSE and R medians (Figure 4.7a and b) as 

they are largely framed by identical SMAP observations. As discussed above, the parsimonious 

scheme smoothed SM variations of the PQD relative to PQF, likely leading to a minor degraded 

performance of PQD. Given this, a sufficient number of satellite-based SM observations are 

necessary to mitigate the errors accumulated during simulations. Consistent with the results of 

Section 4.4.1, the distinct inferiority of the PLO is more attributed to the improper loss 

estimations. Compared to the metric scores of the SMAP observations, the gap-filled portions 

show comparable performances (Table S4). Although the ubRMSE values of SMAP 

observations slightly outperform the filled-in SM (when more digits are examined), the R values 

of filled-in SM of the DCT and LIP products are unexpectedly higher than those of the SMAP 

data (Table S4). Such small discrepancies between the performances of the SMAP retrievals and 

those exclusive filled data are adequate to demonstrate the validity of the proposed scheme and 

the derived ancillary parameters. It should be noted that the average number of filled-in SM data 

was around two times relative to that of the SMAP available samples. 



91 

 

 
Figure 4.7. Boxplots of the quantitative performance metrics of (a) ubRMSE (m3/m3) and (b) R estimated 

by comparing five SMAP-based gap-filled products through five different ways against in-situ 

measurements. 

In terms of land response to incoming precipitation, the consistency of rainfall-induced SM 

peaks between each gap-filled dataset and in-situ measurements was separately analyzed. Those 

peaks caused by heavy rainfall were majorly investigated given their importance. The POD 

refers to the ratios of peaks successfully detected by the simulation products to all the peaks 

caught by in-situ measurements, and the optimum POD is 1. Figure 4.8a shows that the POD 

medians of the PLO and PQD are near 1, suggesting that those two products could capture 

almost all heavy rainfall-induced peaks. The FAR (optimal FAR is 0) represents the fractions of 

peaks identified by the simulation dataset but not observed by in-situ measurements, and it is 

described in Figure 4.8b. In contrast, it reveals that the PLO, PQD, and PQF hold excessive 

peaks. Such frequent peak occurrences can be attributed to the forward simulation procedure. 

Generally, a precipitation event is bound to produce one immediate SM peak at the end of the 

precipitation event (Eq 8). In nature, however, the peak responses of SM to rainfall are not 

limited by a strict 12-hour interval and they might occur within the 12-hour interval and shortly 
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return to normal. Furthermore, the CSI (optimal CSI is 1) reflects an integrated ability of the 

simulation product to capture rainfall-induced SM peaks. The PLO, PQD, and PQF have better 

CSI values than the DCT and LIP (Figure 4.8c). 

Although the PQF, DCT, and LIP exhibited similar values of ubRMSE and R, the gradient CSI 

values indicate the latter two gap-filled products missed some critical SM increases. The POD 

and CSI of the PQF improved by around 35% and 32% relative to LIP whereas the FAR declined 

by 51% given the extremely small magnitude. The DCT could partially compensate for the 

temporal missing by incorporating spatially surrounding observations but cannot compete with 

the PQF in capturing SM peaks induced by heavy rainfall. When considering the categoric 

metrics of capturing SM peaks induced by all the rainfall, the advantages of the PQF over the 

DCT and LIP can be still observed (Figure S7) in a similar manner shown in Figure 4.8a and c. 

Therefore, an integrated consideration of both accuracy and peak-capturing capacity could 

conclude that the PQF provides continuous SM observations of the best quality. 

 
Figure 4.8. Boxplots of the categorical performance metrics of (a) POD, (b) FAR and (c) CSI for five 

different SMAP-based gap-filled soil moisture datasets in capturing soil moisture peaks caused by the 
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heavy rainfall events (exceeding 95% locally non-zero 12-hour precipitation volumes). Those soil 

moisture peaks observed by in-situ soil moisture measurements are used as the benchmarks. 

4.4.4. Caveats and Future Works 

In addition to supplying reasonable estimations for the missing data in SMAP, the proposed 

scheme could also provide quantification for other hydrological components of the simplified 

water balance equation. Yet, the conventional gap-filling methods are usually unable to afford 

such information. Those ancillary estimations could be critical for many hydrologic-related 

studies. The hydrologic length scale (∆𝑍) could be an important factor in learning SM dynamics. 

∆𝑍 is defined as the depth within which SM variations are temporally analogous (Akbar et al. 

2018). In other words, surface SM has a strong correlation with the subsurface soil moisture 

above the depth of ∆𝑍. Figure S5 depicts the spatial distribution of ∆𝑍 across the CONUS, 

showing consistent east-west gradients and a similar median ∆𝑍 relative to Akbar et al. (2018). 

Since ours ∆𝑍 was estimated by introducing the optimization parameter 𝛽, it can be seen as more 

in line with the natural process than the value of Akbar estimated by applying an arbitrary 

LOWESS parameter. The stored precipitation fraction (McColl et al. 2017), an index of SM 

memory, was computed using the SMAP observations and a constant ∆𝑍 of 50 mm. The retained 

rainfall proportions will increase, and its spatial patterns will also alter if the map of the diverse 

∆𝑍 with values generally deeper than 50 mm is incorporated. In addition to ∆𝑍, the availability 

of loss estimates could also be useful for other research, such as the Soil Moisture to Rain 

algorithm (SM2RAIN) (Brocca et al. 2014; Brocca et al. 2019). The completely observation-

driven processes and the simplicity are the additional advantages of this approach.  

Despite those, the limitations of the precipitation-driven SM estimation cannot be fully ignored. 

The varying patterns of the PQD and PQF are more abrupt than the observations, which could be 
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partly ascribed to omitting information from the diurnal cycle of SM, such as the nighttime re-

moistening (O'Neill et al. 2021a). Additionally, SM simulations tend to have a wider magnitude 

range than observations, and those extremely large and occasionally negative SM estimations are 

likely due to the inappropriate parameters and loss underestimations under extreme precipitation 

scenarios. Furthermore, a greater uncertainty within the simulations that fill the gap interval of a 

longer duration is expected. Hence, a flag file has also been generated to mark those filled-in SM 

for long-term gaps and with impractical values. Yet, it should be noted that we only focus on 

filling the temporal gaps left in the existing SMAP dataset. Extension from the available data-

covered regions to other spatial gaps is out of scope. Since the spatial gaps of satellite-based SM 

products are often caused by filtering procedures and land-water masks, arbitrary supplements 

via surrounding information may be inappropriate. 

In this study, an important assumption that soil water content hardly varies within a 3-hour time 

interval has been adopted. The selection of a 3-hour duration is based on a preliminary 

examination of the time differences between the actual SMAP overpass moments, and the UTC 

00:00 and 12:00. This assumption made it possible to express SMAP data in the fixed UTC 

timeframe before extracting dry downs. However, such a 3-hour deviation could be a concern to 

cause the mismatching between rainfall and SM responses. 

The combined consideration of the novel features and deficiencies of this study spurs and 

outspreads topics for future work. A fine-spatial-scale precipitation dataset is required by many 

hydrologic analyses at catchment scales, but it is often restricted by the availability (Lobligeois 

et al. 2014; Sadeghi et al. 2021; Sharifi et al. 2019). Given the development of SM downscaling 

frames and the SM2RAIN algorithm in recent years, the generation of high spatial-resolution 

rainfall products using 1 km SM data become feasible (Fang et al. 2018; Fang et al. 2020; Fang 
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et al. 2022; Fang et al. 2021c; He et al. 2022; Peng et al. 2021). However, the 1-km SM2RAIN-

based precipitation may also suffer from underestimation and heavily depends on the availability 

of high-resolution SM products. The PLO and PQO estimations can be roughly seen as the 

quantified water indexes converted from the precipitation (rainfall → soil water content). The 

SM spatial downscaling scheme, for example, the thermal-inertia-theory-based algorithm 

proposed by Fang et al. (2022), could be conducted to re-distribute those partitioned rainfall 

water volumes on land (at 9-km) using the local (1km) vegetation and land surface temperature. 

Through SM2RAIN, the above obtained 1-km rainfall water indexes on land could be 

transformed back to 1-km rainfall (soil water content → rainfall). Such a full cycle flow (rainfall 

→ soil water content → rainfall) is expected to alleviate the underestimation concern by running 

the half-cycle-based SM2RAIN (i.e., soil moisture → rainfall) for spatial disaggregation of the 

coarse-scale rainfall datasets. Meanwhile, the non-gapped 12-hour 9-km SM simulations increase 

the available samples in the downscaled datasets. 

Additionally, the other promising direction would be a further improvement of the re-constructed 

SM simulations by incorporating machine learning and data assimilation techniques, as well as 

adding considerations related to the diurnal cycle of SM. These measures are anticipated to 

return more accurate SM values principally because of better loss estimations. The combined use 

of the improved loss model and the long-term precipitation dataset, such as Multi-Source 

Weighted-Ensemble Precipitation (MSWEP) (Beck et al. 2019b), makes it possible to yield a 

consistent SM dataset spanning 40 years. Moreover, the regionally available high-resolution 

precipitation observations (e.g., 4 km) (Beck et al. 2019a; Lin and Mitchell 2005; Sadeghi et al. 

2021) could also be used to derive soil water content at the same resolution if assuming a 

homogeneous loss at the large spatial scale (e.g., 9-km). In practice, those 30-minute 
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precipitation datasets have the potential to infer the moisture content at the sub-hourly step. It is 

also feasible to produce the global-scale PQO, PQD, and PQF if desiring a local-time-based 

dataset.  

4.5. Summary and Conclusions 

In this study, a 12-hourly continuous SM product (PQF) from 2015 to 2021 was generated. This 

newly yielded dataset is composed of SMAP retrievals and filled-in SM estimates derived 

through water balance budgeting. Specifically, the existing gaps of the combined descending and 

ascending SMAP dataset were supplemented by SM predictions using the precipitation and 

hydrologic loss in their antecedent 12-hour slots. The whole simulation procedure was purely 

observation-based using the satellite-based precipitation product (i.e., GPM) and the loss 

approximations established on the SMAP dry-downs. Compared to the LOWESS with a fixed 

smoother, the quantile regression with a to-be-determined parameter was introduced to bridge the 

relationship between the losses and initial SM from the SMAP observations given the scattered 

loss ranges at similar wetness. The magnitudes of all the parameters for driving the water balance 

cycle were then determined by minimizing the RMSE between the precipitation-derived SM 

simulations and the synchronous SMAP observations. In addition to the PQF, the precipitation-

reconstructed SM product (PQD) that combined the SMAP dry-down SM and precipitation-

based filled-in SM, was also developed. 

The superiority of the parametric regression in building Segment B has been highlighted by a 

better performance of the PQD relative to the PLD over the CONUS representative pixels. 

Additionally, the inclusion of the SMAP dry-downs in gap-filling would be somewhat helpful to 

mitigate the overly rapid drying rates observed in PLO. Using the certified methodology flow, 
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the PQD was produced over the CONUS. Validation results showed that the PQD overall 

resembled the SMAP retrievals despite an overall performance degradation during cold seasons. 

Moreover, the median R of 0.69 and the median ubRMSE of 0.05 m3/m3 proved the validity of 

the derived parameters. It should be noted that all the above assessments were conducted by 

comparing the simulations with the SMAP product. Subsequently, the PQF was generated by 

rerunning the water balance equation with the obtained parameters. In-situ SM measurements 

were selected as the benchmarks to evaluate the PQF and the SMAP-based seamless SM datasets 

through the other filling approaches (i.e., DCT and LIP). The assessment results revealed that the 

PQF not only displayed good accuracy (ubRMSE: 0.06 m3/m3; R: 0.63) comparable with that of 

the DCT and LIP but also exhibited a greatly stronger ability to reflect positive responses to 

heavy rainfall events. The similar performance of exclusively filled-in SM to the original SMAP 

retrievals convinced the effectiveness of the proposed scheme. The superior integrated 

performance of the PQF provides an alternative option for researchers interested in studying sub-

daily SM variations. Besides, the availability of the hydrologic parameters and the quantified 

loss estimations could directly benefit other related studies and serve as the foundations for 

further investigations.  
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Chapter 5. Identifying Relative Strengths of SMAP, SMOS-

IC, and ASCAT to Capture Temporal Variability 

R. Zhang, S. Kim, A. Sharma, and V. Lakshmi (2021). Identifying Relative Strengths of SMAP, 

SMOS-IC, and ASCAT to Capture Temporal Variability. Remote Sensing of Environment. 2021, 

252, 112126. https://doi.org/10.1016/j.rse.2020.112126  

Abstract 

This study evaluates the relative strengths of three remotely sensed soil moisture (SM) products 

to capture temporal variability at a global scale, the products being the Soil Moisture Active 

Passive (SMAP), Soil Moisture Ocean Salinity INRA-CESBIO (SMOS-IC) and Advanced 

Scatterometer (ASCAT). For this, the conventional reference-based Pearson correlation (R) and a 

statistical technique called Triple Collocation (TC)-based R are calculated. In addition, two 

alternatives for linear combination of the three data sources for maximizing R against the truth 

are evaluated, the first using a reference product (i.e., assumed truth) and the second based on TC 

where three data sources are combined without the need for an underlying reference or assumed 

truth. The estimated optimal combination weights represent quantitative contributions of the 

three products in forming the new combined product having the maximized R. Two reanalysis 

products: the European Centre for Medium-Range Forecast (ECMWF) Interim product (ERA-

Interim) and the Modern-Era Retrospective Analysis for Research and Application Land version 

2 reanalysis product (MERRA2), are used as the references as well as data alternatives to 

calculate the conventional reference-based R and the TC-based R combinations. Both types of R, 

and their derived optimal weights are then compared globally and analyzed under various 

climate, land cover, and vegetation conditions. Despite the differences between the conventional 

https://doi.org/10.1016/j.rse.2020.112126


99 

 

R and the TC-based R, both metrics displayed consistent spatial distributions and can reflect the 

temporal variations of each studied dataset without considerable impact from adopted references. 

All products had difficulty in retrieving SM over arid and polar regions while exhibiting good 

performance in areas such as South America and Australia. While ASCAT presented higher R 

values over tropical, savannas, and the vegetation water content interval of 2–5kg/m2, SMAP and 

SMOS-IC displayed overall comparable and continually high temporal performances across 

almost all conditions. In the case of the derived optimal weights, a global complementarity of the 

areas was observed where each satellite-based observation product showed its respective 

advantage in capturing SM variations in different geographic areas.  

Keywords: Soil Moisture, SMAP, SMOS-IC, ASCAT, correlation coefficients, optimal weights 
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5.1. Introduction 

Soil moisture (SM) is an important factor modulating both terrestrial-atmosphere interactions 

and hydrological circulation (Kerr et al. 2016; Srivastava et al. 2013; Van den Hurk et al. 2002). 

Given that SM provides useful information for many real-world applications, including flood and 

weather forecasting, there is an added significance of accurately estimating SM in both space and 

time (Entekhabi et al. 1999; Entekhabi et al. 1996).  

Remote sensing has been considered as a promising technique for providing regional SM 

information at a global scale (De Jeu and Owe 2003; Kim et al. 2019; Petropoulos et al. 2015). 

Microwave remote sensors can measure the soil dielectric constant which is strongly correlated 

to the water content within the topsoil layer (Kerr et al. 2016; Pellarin et al. 2003). In comparison 

to optical/infrared radiation and analogous remote sensing alternatives (Kerr 2007; Petropoulos 

et al. 2015), microwave remote sensing can operate under all-weather conditions and during 

nighttime (Srivastava et al. 2015). Additionally, microwave systems are less sensitive to surface 

roughness and can penetrate vegetation canopy (Ulaby et al. 1986b; Wigneron et al. 1998). Due 

to their greater temporal resolution and lower influence by roughness disturbances than active 

sensors, passive microwave radiometers have been widely used to estimate SM since late the 

1970’s and form the focus of our investigation (Al-Yaari et al. 2014; Bertoldi et al. 2014; Kim et 

al. 2019). 

Understanding error characteristics and limitations of SM retrievals is an important step to 

improve retrieval algorithms. Given that, validation studies that evaluate the accuracy of the 

remotely sensed SM products have been widespread and useful (Al-Yaari et al. 2019; Ma et al. 

2019; Zhang et al. 2019). Errors in satellite SM data can be presented by statistical metrics (e.g., 
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bias and root mean squared error). These errors generally result from uncertainties in the retrieval 

process and/or limitations of the satellite instruments, with uncertainties inevitably inducing 

biases and/or unreasonable dynamic ranges of the retrievals. Moreover, it is often hard to exactly 

evaluate satellite products due to the absence of references at spatial scale corresponding to those 

of the satellite data (Clewley et al. 2017; Crow et al. 2012). Consequently, the temporal Pearson 

correlation coefficient (R) has been considered as a comparatively reliable metric in the 

performance comparisons of spatially mismatched SM products (e.g., in-situ and remotely 

sensed SM retrievals). This is because it is less sensitive to the bias or amplitude of variations 

(Entekhabi et al. 2010b), and the temporal dynamics of SM is relatively stable over a large area 

compared to absolute values that are affected by the high variability of local SM (Brocca et al. 

2009a). In addition, in many applications, the temporal variability in geophysical variables has 

been considered as an important statistic (Guillod et al. 2015; Gupta et al. 2006; Koster and 

Suarez 2001) and scaling has been subsequently applied to adjust the range of variables before 

use in applications (Brocca et al. 2009b; Reichle et al. 2004; Yilmaz and Crow 2013).  

In view of this, this study uses Pearson correlation (R) to assess the temporal performances of 

SM retrievals derived from various satellite instruments. Two types of R including the 

conventional R calculated based on the arbitrary references and the R values derived using the 

triple collocation (TC) approach were used and compared. For the conventional R, three different 

reference products have been selected, which are the in-situ measurements, and two reanalysis 

products: European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim SM 

product and Modern-Era Retrospective Analysis for Research and Application Land version 2 

reanalysis product (MERRA2).  
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Together with estimating R, we also evaluate the relevance of one data source compared to 

another using an optimal weight (w), to identify relative contributions of individual SM products 

to capture the temporal variability. Here, the optimal weight is defined as the weight (within its 

constrained range) of the parent product being linearly merged to maximize R between the 

combined product and an objective reference dataset (Hagan et al. 2020; Kim et al. 2018; Kim et 

al. 2015). In the linear combination scheme, the optimal weight can be interpreted as the 

quantitative contribution of each parent product.  

Different from the R that indicates the absolute performance of the product with regard to the 

reference datasets, the optimal weight can reflect the dependent performances among the parent 

products relative to each other. Additionally, the optimal weight is expected to contain the unique 

strength of each parent product. This has been demonstrated by the improved performances of 

the combined product compared to individual parent product (Kim et al. 2015). In other words, 

when two parent products contain much overlapped information, the contribution from one 

product tends to largely reduce. In light of this, it is critical to investigate the relationship 

between the R and the optimal weights for further enhancing the quality of the combined 

products. 

Using the two metrics, R and optimal weight, this study compared three high-quality SM 

products at a global scale: Soil Moisture Active Passive Level 3 (SMAP); Soil Moisture Ocean 

Salinity INRA-CESBIO (SMOS-IC); Advanced Scatterometer (ASCAT). Here, the study period 

is from April 2015 to March 2018, nearly double of recent related studies, providing more 

confidence in the conclusions made (Al-Yaari et al. 2019; Ma et al. 2019).  
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5.2. Methodology 

5.2.1. Triple Collocation-Based Data-Truth Correlation 

Together with using the conventional R calculated based on the specified reference products, this 

study applied Triple Collocation (TC) to estimate the data-truth R. TC is an inter-comparison 

between three independent products which allows approximate estimation of the error variance 

of each product along with the correlation between each product and the unknown truth. The 

approximation in TC becomes possible with four assumptions: 1) linearity between the truth and 

the errors; 2) stationarity for both the truth and the error; 3) zero error cross-correlation; 4) error-

truth orthogonality. Detailed equations and their derivations are available in Stoffelen (1998); 

McColl et al. (2014); Gruber et al. (2016). In this study, the data-truth correlations are estimated 

using Equation Error! Reference source not found.. 

 RX,T = √
Cov(XY)Cov(XZ)

Cov(XX)Cov(YZ)
 (1) 

where RX,T represents the correlation between the product X and the TC-derived data truth (T). 

X, Y, and Z represent the different datasets within the triplet, and Cov means the covariance of 

any two studied products.  

Following a typical combination of datasets used in TC approach (i.e. active, passive and 

modeling products) (Chen et al. 2018; Kim et al. 2018), we adopted two data triplets to estimate 

the TC-derived data-truth R of the satellite-based products, which are 1) SMAP, ASCAT and a 

reference product (i.e. in-situ observation, ERA-Interim and MERRA2 in this study), and 2) 

SMOS-IC, ASCAT and a reference product. For consistency in estimating the TC-based R, those 
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for SMAP and ASCAT were extracted from the first triplet and that for SMOS-IC was estimated 

from the second triplet. 

5.2.2. Estimating Optimal Weights for Maximizing R  

In this study, the relative contribution in capturing temporal SM variations was represented and 

compared using optimal weights in a linear combination scheme. The linear combination can 

effectively incorporate the advantages of each parent product and potentially generate a new 

product with better performance than any individual dataset being merged (Kim et al. 2015, 

2016).  

The SM dataset (n data length × p datasets) are linearly combined by assigning a weight vector w 

(p×1) to the dataset to generate a combined product 𝐒𝐌𝑐 (n×1) using Equation (2). 

 𝐒𝐌c = 𝐒𝐌 × 𝒘 (2) 

The optimal weight (𝒘∗) can be obtained by solving a constrained optimization problem of 

maximizing the correlation between 𝐒𝐌c and the reference, i.e., Rcr, as 

 

𝒘∗ = argmax
𝒘
Rcr(𝒘) 

subject to 0 ≤ w𝑖  ≤ 1, ∑ 𝑤𝑖
p
𝑖=1 = 1 

(3) 

The weight is able to effectively reflect the sensitivity of the combined product to the 

corresponding parent product, or the contribution an individual dataset makes in forming the 

combination. 
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In case of merging two products (𝐒𝐌1 and 𝐒𝐌2) for which standard deviations are the same (i.e. 

scaled to each other or a reference), the optimal weights (𝑤1 and 𝑤2) are affected by R between 

the two products (R12) and the data-reference R (R1R and R2R) (Kim et al. 2015). 

 

𝑤1 =  
R1R − R12R2R

(R2R − R12R1R) + (R1R − R12R2R)
 

𝑤2 = 1 − 𝑤1 

(4) 

In this study, when considering three products being merged for maximizing R, Equation (5) was 

extended as per Kim et al. (2015). 

 

𝑤1 = 
𝐴𝑆2𝑆3

𝐶𝑆1𝑆2 + 𝐵𝑆1𝑆3 + 𝐴𝑆2𝑆3
 

𝑤2 = 
𝐵𝑆1𝑆3

𝐶𝑆1𝑆2 + 𝐵𝑆1𝑆3 + 𝐴𝑆2𝑆3
 

𝑤3 = 
𝐶𝑆1𝑆2

𝐶𝑆1𝑆2 + 𝐵𝑆1𝑆3 + 𝐴𝑆2𝑆3
 

where, 

A = R12R2R − R1R + R13R3R + R23
2 R1R − R12R23R3R − R13R23R2R 

B = R12R1R − R2R + R23R3R + R13
2 R2R − R12R13R3R − R13R23R1R 

C =  R13R1R − R3R + R23R2R + R12
2 R3R − R12R13R2R − R12R23R1R 

(5) 

where the subscripts, 1, 2, 3 and R, represent the parent products being merged and the reference, 

and 𝑆𝑖 represents the standard deviation of a given candidate. 

In order to directly evaluate the product’s contribution to capture temporal variability by 

removing effects from differences in standard deviations, all parent products were rescaled 
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against a reference using Equation (6) before calculating the optimal weights. Note that the R 

values among the newly yielded datasets and references would not be affected by the rescaling 

process. 

 𝐒𝐌rescaled = (𝐒𝐌raw − 𝐒𝐌raw
̅̅ ̅̅ ̅̅ ̅̅ ̅)  ×  

std(𝐒𝐌ref)

std(𝐒𝐌raw)
+ 𝐒𝐌ref
̅̅ ̅̅ ̅̅ ̅ (6) 

where 𝐒𝐌rescaled, 𝐒𝐌raw and 𝐒𝐌ref represent the SM values of rescaled product, raw product, 

and reference, respectively. 𝐒𝐌̅̅ ̅̅  and std(𝐒𝐌) are the average and standard deviation values of 

SM data.  

As mentioned, the TC-based data-truth R has the ability to represent the correlation between the 

product and the SM truth. When the SM truth is identified as the objective dataset for the linear 

combination, the relative contribution of each parent product can be reflected by the optimal 

weights derived from the TC-based data-truth R. To distinguish the optimal weights obtained by 

adopting the arbitrary reference products and the SM truth as the targets of the combination 

products, the optimal weights computed from the conventional R and the TC-based R are 

referred to be as 𝑤𝑐𝑜𝑛 and 𝑤𝑇𝐶, respectively. While the TC assumptions are satisfied and the 

parent products have been processed by the rescaling process, Equation (5) can be further 

simplified as: 

𝑤𝑇𝐶1 = 
𝑅𝑇𝐶1(1 − 𝑅𝑇𝐶2

2 )(1 − 𝑅𝑇𝐶3
2 )

𝑆
 

(7) 𝑤𝑇𝐶2 = 
𝑅𝑇𝐶2(1 − 𝑅𝑇𝐶1

2 )(1 − 𝑅𝑇𝐶3
2 )

𝑆
 

𝑤𝑇𝐶3 = 
𝑅𝑇𝐶3(1 − 𝑅𝑇𝐶1

2 )(1 − 𝑅𝑇𝐶2
2 )

𝑆
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𝑆 = 𝑅𝑇𝐶1(1 − 𝑅𝑇𝐶2
2 )(1 − 𝑅𝑇𝐶3

2 ) + 𝑅𝑇𝐶2(1 − 𝑅1𝑇𝐶
2 )(1 − 𝑅𝑇𝐶3

2 )

+ 𝑅𝑇𝐶3(1 − 𝑅𝑇𝐶1
2 )(1 − 𝑅𝑇𝐶2

2 ) 

R𝑇𝐶𝑖 denotes Pearson correlation coefficients between product 𝑖 and the SM truth using the TC 

approach.  

According to Equation (7), 𝑤𝑇𝐶 represents the contribution each product makes to the 

combination, expressed as a function of the various correlations needed in its specification. 

When considering Equation (5) and Equation (7) together, however, this compatibility between 

the TC-based data-truth R and 𝑤𝑇𝐶 can be distorted for the following two reasons: 1) R’s 

occurring with opposite signs; and 2) violations of the independence between the selected 

datasets (e.g., non-zero error cross-correlations). It should be noted that Equation (7) cannot 

directly be used to derive 𝑤𝑇𝐶 when any of the underlying TC assumptions is not satisfied. In 

practice, these factors can also affect the consistency between the conventional R and 𝑤𝑐𝑜𝑛. As 

such, the consistency between the optimal weights and the R values and the impacts of the error 

cross-correlations on their consistency were further explored by a set of synthetic experiments 

described in Appendix. 

5.2.3. Evaluation Strategy 

To identify the areas of relative performance for each parent product, evaluations and 

comparisons were performed at two levels: overall and conditioned by surface conditions. In 

addition, the consistency between the TC-derived data-truth R and the conventional R, and 

between the R values and the corresponding optimal weights in performance sequence has been 

separately assessed to increase the reliability of obtained results. 
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Specifically, we first compared the distributions of the conventional R and the TC-based R for all 

the parent products at a global scale. The characteristics of the temporal performance for each 

satellite-based SM dataset were further investigated across various static conditions including 

climate and land cover classes, and mean vegetation water contents. The reasons behind the 

similarity and difference of temporal performances described by the above two R types were 

studied and discussed. It should be stressed that the comparisons about the conventional R and 

the TC-based R are performed and summarized by applying three different reference products 

(in-situ measurements, ERA-Interim, and MERRA2 in supplementary material).  

Given the SM retrievals derived from the discrete satellite observations over the studying period, 

the evaluation results for the remotely sensed products are prone to certain uncertainties resulting 

from sampling errors. Due to the strong autocorrelation in the SM data, the optimum block 

lengths commonly used in the moving block bootstrapping are almost identical to the study 

period while that of SM anomalies becomes to several days (Chen et al. 2018). Therefore, we 

calculated the confidence intervals (CI) by simply using randomly selected 100 of 1-year blocks 

over the study period by which the seasonality effects on the uncertainty can be ignored. For this 

we assumed that the interannual variability over the 3-year period is ignorable. Here, the CIs 

were still estimated using the differences between the 97.5th and 2.5th percentiles of the R values 

obtained in the repeated simulations to demonstrate the reliability of results. 

In terms of the relative performance, the consistency between the R and its derived optimal 

weight was analyzed via a set of synthetic experiments and the results are available in Appendix. 

Additionally, the impacts of the error cross-correlations on the numerical values of the optimal 

weights were also investigated to improve the interpretation of the relationship between the 

optimal weight and the R. Using the reference products and the SM truth as the combination 
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objectives, the global distributions of the optimal weights calculated using the conventional R 

and the TC-based R were demonstrated and compared.  

5.3. Data 

As summarized in Table 5.1, various datasets covering the 3-year study period (April 1, 2015- 

March 31, 2018) have been used in this study. These include 1) three satellite-derived SM 

products as parent products: SMAP, SMOS-IC, and ASCAT; 2) two reanalysis products as 

references: ERA-Interim and MERRA2; 3) three static conditions: climate zone (CZ), land cover 

(LC) and mean vegetation water content (VWC). Additionally, in-situ SM measurements from 

191 stations of the International Soil Moisture Network (ISMN) (Dorigo et al. 2011b) were also 

selected as the reference dataset (Table 5.3 and Figure 5.1).  

Table 5.1. Summary of datasets used in this study. 

Data Data source and/or product name Reference 
Resolution 

(temporal/spatial) 
Unit 

Satellite 

SM 

SMAP L3 soil moisture product 

(Version 5) 
O'Neill et al. (2018) 

Daily, overpass (asc/des) at 

6 PM/AM LST  

/36-km EASE-Grid 

m3/m3 

SMOS-IC L3 soil moisture 

product (Version 105) 

Fernandez-Moran et al. 

(2017a); Fernandez-

Moran et al. (2017b) 

Daily, overpass (asc/des) at 

6 AM/PM LST  

/25-km EASE-Grid 

m3/m3 

ASCAT L2 soil moisture index 

product (Version 5) 

Wagner et al. (2013); 

Naeimi et al. (2009) 

Daily, overpass (asc/des) at 

9:30 PM/AM LST /25km 

degree of 

saturation 

(0–100%) 

Reference 

SM 

MERRA2 topsoil layer soil 

moisture consent SFMC 

(M2T1NXLND)  

* in supplementary materials 

Reichle et al. (2017) 
Hourly(time-

averaged)/0.5°× 0.625° 
m3/m3 

ERA-Interim volumetric soil 

water layer 1 
Dee et al. (2011) 6-hourly/25 km m3/m3 

131 stations from the ISMN 

 
Dorigo et al. (2011b) Hourly/point m3/m3 

CZ 

Updated world map of the 

Köppen-Geiger climate 

classification 

Peel et al. (2007) -/0.25° - 

LC MODIS(MCD12Q1) NASA-LP-DAAC (2012) Yearly/0.05° - 

VWC SMAP VWC (SPL3SMP_E) Chan et al. (2013) Daily/9km kg/m2 
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where asc/des: ascending/descending; LST: local solar time; EASE: Equal-Area Scalable Earth. SMAP, 
MERRA2 and MODIS products are available from the NASA Earthdata website (https://earthdata.nasa.gov/); 
SMOS-IC:https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC; ASCAT: 
https://www.eumetsat.int/website/home/Data/index.html; 

 

Note that a common spatial resolution of 36km × 36km was adopted for all datasets used in this 

study based on the global cylindrical 36km Equal-Area Scalable Earth, version 2 (EASEv2) 

(Brodzik et al. 2012). To this end, all data from the products where spatial resolutions do not 

conform with the common resolution, were resampled using bilinear interpolation unless 

otherwise stated. Additionally, the minimum number of corresponding observations over the 

studying period has been set as 50. For the SM data from the hourly updated reference datasets 

(i.e., ERA-Interim, MERRA2, and the in-situ observations), only the data that are closest to 6 

a.m. local solar time (LST) were retained. Given that the ASCAT SM retrievals are based on the 

observations collected at 9:30 a.m. LST, the assessment of the performance of the ASCAT 

product is likely to be partially underestimated.  

5.3.1. Satellite Soil Moisture Products 

5.3.1.1. SMAP 

With the aim of mapping the global SM and monitoring the landscape freeze/thaw conditions, 

the SMAP satellite was launched in January 2015 by National Aeronautics Space Administration 

(NASA) (Entekhabi et al. 2010a). To incorporate advantages of both active and passive 

microwave sensors, SMAP satellite carries a radar (1.26 GHz) and a radiometer (1.41 GHz) 

operated at the L-band frequency, but its radar stopped working in July 2015 due to a hardware 

malfunction. The nominal spatial resolution of the SMAP radiometer that observes the brightness 

temperature at the constant 40 ̊ incidence angle. Orbiting in a near-polar sun-synchronous track at 

the altitude of 685km, the scanning time of the SMAP radiometer is around 6 a.m. LST 

https://earthdata.nasa.gov/
https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC
https://www.eumetsat.int/website/home/Data/index.html
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(descending) and 6 p.m. LST (ascending). In addition to surface SM products, the SMAP mission 

can also provide root-zone SM, freeze/thaw conditions, and the net exchange of carbon.  

In this study, a descending SMAP L3 Radiometer Global Daily 36 km Equal-Area Scalable Earth 

(EASE) Grid Soil Moisture (SPL3SMP, hereafter simply referred to as SMAP) has been used. 

Using the similar criteria applied in previous studies (Zhang et al. 2019), the SMAP SM data 

retrieved under the following conditions were consistently filtered out: 1) the SM retrievals 

within the grids where the percentages of the open water area are larger than 10%; 2) SM data 

obtained from the areas where VWC higher than 5 kg/m2; 3) the SM retrievals in the pixels 

where the fraction of the frozen condition (LST < 273.15 K) is larger than 10%; 4) not 

recommended by the retrieval quality flag.  

5.3.1.2. SMOS-IC 

The SMOS satellite launched by European Space Agency carries the first L-band (1.4 GHz) 

interferometric radiometer to provide multi-angular and dual-polarization measurements of 

brightness temperature for global SM and vegetation optical depth mapping (Kerr et al. 2001). 

The spatial resolution of the SMOS sensor is around 43km (Kerr et al. 2012). Operating in a sun-

synchronous orbit, the crossing times at the equator of the satellite are 6 a.m. LST for ascending 

pass and 6 p.m. LST for descending pass (Fernandez-Moran et al. 2017a). Based on the L-band 

Microwave Emission of the Biosphere model (Wigneron et al. 2007), the gridded SM retrievals 

and vegetation optical depths can be estimated by a cost function to minimize the difference 

between the modeled and observed brightness temperatures (Wigneron et al. 2000). 

The SMOS-IC product developed by INRA (Institute National de la Recherche Agronomique) 

and CESBIO (Centre d’Etudes Spatiales de la BIOsphere) provides surface SM retrievals posted 
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into the 25km EASE grids at a global scale (Fernandez-Moran et al. 2017b). There are four main 

differences in the processes of retrieving SM and vegetation optical depth data for the previous 

SMOS products (i.e. SMOS L2 and L3 datasets) and the SMOS-IC (Fernandez-Moran et al. 

2017b). Firstly, the SMOS-IC algorithm assumes that each pixel is homogeneous instead of 

considering the LC details (4km × 4km) within the grid as the SMOS-L2 and L3 algorithms did. 

By retrieving the SM and vegetation optical depth over a homogeneous grid rather than deriving 

the representative pixel SM from the dominant fraction part, SMOS-IC retrievals become 

independent from the auxiliary datasets including European Centre for Medium-Range-Weather 

Forecast (ECMWF) SM and Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf 

Area Index (LAI) to reduce the excess error propagations. Thirdly, new values of effective 

vegetation scattering albedo and soil roughness parameters (Parrens et al. 2016) based on the 

International Geosphere-Biosphere Programme (IGBP) classification have been used in the 

SMOS-IC algorithm after deliberated calibrations and validations (Fernandez-Moran et al. 

2017a). Furthermore, the SMOS-IC algorithm selects the SMOS L3 brightness temperature 

product as the main input for SM and vegetation optical depth retrievals. The adoption of this 

optimized brightness temperature dataset does not account for the corrections of antenna patterns 

associated with the viewing angles and azimuth thus improving the computing efficiency 

(Fernandez-Moran et al. 2017a). To guarantee the quality of SMOS-IC SM retrievals, only the 

data with ‘recommended quality’ were retained and adopted here. In addition, the scene flags no 

more than 1 (SF ≤ 1) and the TB-RMSE ≤ 8 K have also been applied to further remove 

uncertain SMOS-IC data possibly interfered by the local conditions and strong RFI (radio 

frequency interference) impacts.  
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5.3.1.3. ASCAT 

ASCAT is a real aperture radar currently flown onboard the Meteorological Operational A and B 

satellites (MetOp-A and MetOp-B) which fly in a near-polar sun-synchronous orbit at the altitude 

of 817 km (Wagner et al. 2013). With a spatial footprint varying from 25 km to 34 km, ASCAT 

sensors are operated at the C-band (5.255 GHz) in a VV polarization. Three antennas (on each 

side of the satellite) illuminate a wide swath of 550km and receive quasi instantaneous 

backscatter power measurements at 3 different azimuth angles and two different incidence angles 

(Wagner et al. 2013). The equatorial overpass time of the ASCAT is 9:30 a.m. and 9:30 p.m. for 

the descending and ascending orbits, respectively. The retrieval of the relative SM (i.e. degree of 

saturation) from ASCAT measured backscatter coefficients is based on a semi-empirical change 

detection method (Hahn 2016; Naeimi et al. 2009). Here, the descending MetOp-B ASCAT soil 

moisture 25 km sampling Near Real-Time (Version 5) within the grids where the probability of 

snow and frozen ground below 10%, and the SM estimated retrieval errors below 50%, were 

selected (Chen et al. 2018). 

5.3.1.4. Key Differences in Soil Moisture Retrieval Algorithms 

Regarding the three candidates being compared, SMAP and SMOS-IC use brightness 

temperatures observed from the L-band passive microwave sensors and retrieve SM values using 

the zero-order radiative transfer model (Mo et al. 1982; Wigneron et al. 2017). ASCAT with 

active C-band radar can measure the backscatter coefficient and derive the relative SM content 

using a semi-empirical changing detection method (Wagner et al. 1999). As summarized in 

Error! Reference source not found., in this study, the key differences in the retrieval algorithms 

of the SMAP, SMOS-IC and ASCAT are categorized into parameterizations of physical 
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temperature, surface roughness, vegetation, and dielectric mixing models used convert obtained 

dielectric constants to SM values. 

Table 5.2. Summary of key differences among the SMAP L3, SMOS-IC, and ASCAT retrieval 

algorithms 

Algorithm SMAP L3 (SCA-V) SMOS-IC (L-MEB) 
ASCAT  

(TU Wien Change Detection) 

Observation 
TB (V-polarization) at a fixed 

incidence angle of 40  ̊

Multi-angular and dual 

polarization SMOS L3 TB 

Multi-angular and VV-pol 

backscatter coefficient σ0 

Physical 

Temperature 

Ts = Tc, derived from GEOS-5 

model surface and depth 

products. 

CT = 0.246 

Ts(Tc) derived from ECMWF 

skin temperature (soil 

temperature of 0-7 cm topsoil 

layer). 

CT = (
SM

W0
)b0 ,W0 = 0.3 m

3/

m3;  b0 = 0.3  

 

Roughness 

Parameter 

HR values from an IGBP class 

look-up table 

NR = 2 

QR = 0 

HR values from Parrens et al. 

(2016) 

NRP = −1 (P = H, V) over low 

vegetation 

NRV = −1,NRH = 1 over 

forests 

QR = 0 

Roughness conditions are 

assumed to be stable over time 

Slope σ′ and curvature σ′′  

Vegetation 

τ = b ∙ VWC 

ω and b vary with land cover 

classes (IGBP) 

VWC derived from MODIS 

NDVI values 

τ simultaneously computed with 

SM and its initial value is 0.5 

ω calibrated based on IGBP 

classifications 

Vegetation effects are 

considered on a seasonal scale-

cross over angles θd and θw 

Slope σ′ and curvature σ′′ on a 

time-window basis 

Land cover conditions are 

assumed to be stable over time 

Dielectric 

mixing model 

Mironov et al. (2009) Mironov et al. (2009)  

𝑇𝐵= brightness temperature; 𝑇𝑠=soil surface temperature; 𝑇𝑐=vegetation canopy temperature; GEOS-5: 
Goddard Earth Observing System Model, Version 5; 𝐶𝑇 = parameters (Choudhury effective temperature 
scheme); 𝑊0, 𝑏0 = fitting parameters (Wigneron effective temperature scheme);𝜏=vegetation optical depth; 
b=vegetation parameter; 𝑄𝑅 = polarization mixing coefficient; 𝐻𝑅 = roughness parameter; 𝑁𝑅𝑃 = roughness 
parameter accounting for polarization dependency; NDVI=normalized difference vegetation index; 
𝜔=effective scattering albedo; ECMWF: European Centre for Medium-Range-Weather Forecast; 𝜎′ = slope 
parameter; 𝜎′′ = curvature parameter; 𝜃𝑑 = reference angle for dry condition; 𝜃𝑤 = reference angle for wet 
condition. 

5.3.2. ISMN Soil Moisture Data 

The in-situ SM data of 131 stations from 11 networks were used in this study as a reference to 

calculate the conventional R and as a critical component of the triplets to estimate the TC-

derived data-truth R. These stations are mostly distributed over North America, Alaska, Europe, 

and Asia. Following the same filtering procedures used in Zhang et al. (2019), the stations where 

in-situ SM measured at  a shallowest depth smaller than 10 cm and symbolized as ‘good’ in the 
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quality flag were retained. Additionally, the pixels in which the proportions of the topographic 

complexity and wetland fraction are less than 10% were considered. To avoid an uneven high 

weight for the pixels, only in-situ SM data from one station was selected to represent SM 

variations in one grid. In light of this, the stations with the highest average conventional R with 

the satellite-based SM products considered here were used when multiple stations locate in the 

same grid (Dorigo et al. 2015). Given that Colliander et al. (2018) has shown that SM 

observations over 9km and 33km are approximated in depicting the SM temporal variations, the 

SM averages of in-situ measurements are assumed to be able to represent the areal SM variations 

at 36 km and have marginal effects on the estimated correlations with the satellite-based 

products. 

Figure 5.1. The distribution of the 131 ISMN stations was used for this study. 

  

Table 5.3. Summary of in-situ SM used in this study. 

Network Country (Number of stations) Reference 

COSMOS  USA (1 station) Zreda et al. (2008) 

FMI  Finland (1 stations) http://fmiarc.fmi.fi/ 

HOBE  Denmark (1 stations) Bircher et al. (2012) 

REMEDHUS  Spain (2 stations) Sanchez et al. (2012) 

RISMA  Canada (2 stations) (Ojo et al. 2015) 

RSMN Romania (17 stations) http://assimo.meteoromania.ro 

SCAN  USA (52 stations) http://www.wcc.nrcs.usda.gov/ 

SMOSMANIA  France (7 stations) Albergel et al. (2008) 

http://assimo.meteoromania.ro/
http://www.wcc.nrcs.usda.gov/
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SNOTEL  USA (17 stations) Leavesley et al. (2008) 

SOILSCAPE  USA (2 stations) Moghaddam et al. (2010) 

USCRN  USA (29 stations) Bell et al. (2013) 

Total 131 stations  

* ISMN data are available from: https://ismn.geo.tuwien.ac.at. Where, Unit = m3/m3, Resolution 
(temporal/spatial) = Hourly/point. 

5.4. Results and Discussion 

5.4.1. Comparisons of Conventional and TC-Based R over In-Situ Stations 

The in-situ SM data were used as the reference to calculate the conventional R for each parent 

product. In addition, two triplets containing the in-situ SM data (i.e., SMAP, ASCAT, in-situ SM; 

SMOS-IC, ASCAT, in-situ SM) were also adopted to derive the TC-based data-truth R of the 

satellite-based products. The above two types of R values were referred to as ‘in-situ conR’ and 

‘in-situ TCR’ to distinguish from the conventional R (conR) and the TC-based data-truth R 

(TCR) calculated based on the reanalysis products (ERA-Interim, here). Using the in-situ conR 

as the benchmark, the absolute values of the differences (∆𝑅) between different types of R values 

and the in-situ conR were separately computed over the pixels with the in-situ stations.  

 

Figure 5.2. Boxplot of ΔR, the absolute values of differences between in-situ conR and the three types of 

R: in-situ TCR (D1=|in-situ TCR – in-situ conR|), conR (D2 = |conR- in-situ conR|) and TCR (D3 = 

|TCR–in-situ conR|). 

https://ismn.geo.tuwien.ac.at/
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As shown in Figure 5.2, ∆𝑅 values are generally distributed around 0.2 for each parent product. 

Despite the inclusion of the in-situ SM data in the triplet, it is to be noted that ∆R values for the 

in-situ TCR (D1 in Figure 5.2) tend to be similar or even higher than those for the TCR (D3 in 

Figure 5.2) across all SM products. The analogous performances of the in-situ TCR and the TCR 

could be attributed to the similar SM variations captured by the ERA-Interim and the in-situ SM 

data, which is also demonstrated by the smaller differences (~ 0.1) between the conR and the in-

situ conR (D2). As shown in Figure 5.2, the conR is expected to be more reliable over the 

studying places due to the smaller bias with the in-situ conR while directly using the raw SM 

data. 

The TCR is theoretically more reliable than the conR because the conR is highly dependent on 

the quality of the references (Gruber et al. 2016). However, the results in Figure 5.2 indicate that 

the superiority of TCR is not always guaranteed in practice. The TCR based on a triplet can be 

also degraded because of several factors. In addition to violating some of the TC assumptions 

(e.g., zero error cross-correlation), different signs and considerably different qualities of the 

datasets collocated in the triplet could also degrade the quality of the TCR. Rather, if the quality 

of the references is good enough, the conR could be even better than the TCR as D2 < D1 and 

D3 in Figure 5.2. 

5.4.2. Global Maps of Correlation 

The global distributions of conR (Figure 5.3a–c) and TCR (Figure 5.3d–f) are generally 

consistent in their respective spatial patterns. In view of the areas where both types of R are 

commonly noted, all three products exhibit good temporal performance over North America, 

South America, the middle and southern parts of Africa, and most parts in Australia. Compared 
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to the passive remote sensing SM (SMAP and SMOS-IC), the ASCAT product has considerably 

low conR values (Figure 5.3c) over part of the Middle East where the TCR values of ASCAT are 

almost at the same magnitudes as SMAP and SMOS-IC’s. When using the MERRA2 as the 

reference (Figure S9 in supplementary material), similar distribution patterns of its conR and 

TCR can be found for those satellite-based products. 

 

Figure 5.3. Global distribution of conventional R for SMAP, SMOS-IC, and ASCAT using ERA-Interim 

as reference (a-c), and the TC-based R using ERA-Interim as the component of triplets (d-f). The second 

column “minus” the first column (g-i). 

However, regardless of the conR or the TCR, the temporal performance of SMAP, SMOS-IC, 

and ASCAT is relatively low in North Africa which is typically defined as arid and semi-arid 

environments. Over such regions, microwave sensors are likely to suffer challenges in observing 

relevant signals (Dorigo et al. 2010; Kim et al. 2018). One possible error is the inaccurate 

estimation of the radiating soil depth and the effective temperature since low-frequency 

microwave radiation could penetrate deeper soil layer (Holmes et al. 2006; Kim et al. 2018). 

Moreover, the SM variations within the extremely dry regions are too small to detect by the 
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scanning instrument or even interfere with the instrument noises. Compared to the SM retrieved 

from the passive observations, the ability of ASCAT to capture the SM temporal variability over 

arid and semi-arid areas is relatively lower (more blue areas). The opposing correlations between 

the modeling products and the active SM retrievals can be attributed to the backscatter returns 

dominated by the local sub-surface structure and collection geometry in the arid environment 

(Morrison and Wagner 2019). 

In the high latitude areas (i.e., north part of North America, northern Europe, and northeastern 

Asia), the parent SM products do not have good agreements, especially for the conR values 

shown in Figure 5.3a–c. Similarly, the TCR values of SMAP, SMOS-IC, and ASCAT also 

moderately reduced. The relatively higher density of soil organic matter over the high latitude 

areas may account for the low correlations (De Lannoy et al. 2014). The temperature might not 

be the primary factor to reduce the correlations between the SM retrievals derived from passive 

microwave observations and the reference products because ECMWF and Goddard Earth 

Observing System Model, Version 5 (GEOS-5) surface temperature products have been validated 

with high temporal correlations with the in-situ measurements over almost all climate conditions 

(Ma et al. 2019). Moreover, the retrieval of SM from active microwave observations is less 

sensitive to surface temperature variations.  

However, differences between the conR and the TCR commonly exist and are around positive 

0.2 over most regions (Figure 5.3g–i). The larger deviations in the high-latitude areas and North 

Africa are possibly caused by the opposite signs of R values. In addition, the distributions of the 

products with the highest TCR and conR values are different overlapping pixels. For example, 

the proportion of grids in which the ASCAT product has a relatively superior temporal 

performance than SMAP and SMOS-IC are around 27% (for TCR) and 15% (for conR). 
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Moreover, the number of grids with effective TCR is only around 40% of that of pixels with the 

valid conventional R, which can also be clearly observed in Figure 5.3. Furthermore, the number 

of pixels with the highest TCR values of SMOS-IC is half of the number of grids with the 

highest conR values of the same product. Such discrepancies are partly caused by the reversed 

correlation signs of the TCR and the conR values, especially in the high-latitude regions for 

ASCAT. In light of this, for ASCAT, the spatial correlation between the TCR and conR is only 

0.56 while those for SMAP and SMOS-IC are moderately higher (0.62 for SMAP; 0.71 for 

SMOS-IC). 

The possible reasons that lead to the differences between the conR and TCR values can be 

summarized as the violation of TC assumptions, the sign effect, and sampling numbers. 

Theoretically, while the TC assumptions are fully satisfied, the TCR is expected to be more 

accurate because the use of conR involves added contribution from the reference product 

(Gruber et al. 2016). In practice, however, the TC related assumptions are more or less violated 

in particular when the data from satellite-observation datasets and the land surface modeling 

products are directly adopted. In terms of calculation equations related to TCR (Gruber et al. 

2016; McColl et al. 2014), the non-zero error cross-correlations can straightforwardly affect the 

R values (Yilmaz and Crow 2014).  

The sign compatibility between the observation products and the truth needs to be carefully 

considered. Additionally, when the SM temporal variations described by one dataset are largely 

different from the other two products, the unreliable estimations of the TCR, such as the square 

TCR values larger than 1, would occur. Although the pixels with either negative or more than 1 

square TCR values are commonly filtered out, the cases where two products are negatively 

correlated with the third one likely exist and generate unsound TCR. 
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In addition, the reduction of the sample numbers due to the data collocation can also affect the 

TCR. The effective time-series data of the satellite-based SM product have to be curtailed to 

accommodate the TC requirements. Nevertheless, the previous study has shown that the temporal 

sampling frequency can also influence evaluating the quality of SM retrievals (Al-Yaari et al. 

2019).  

 

Figure 5.4. Global distribution of the confidence intervals (CI) of the conventional R using 

ERA-Interim for (a) SMAP, (b) SMOS-IC, and (c) ASCAT, as well as the TC-based R for (d) 

SMAP, (e) SMOS-IC, and (f) ASCAT via resampling. To demonstrate the reliability of the conR 

and the TCR derived here in terms of the impacts from the sampling, the CI were estimated and 

analyzed by estimating the CI via the resampling based on the randomly one-year blocks. As 
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shown in Figure 5.4, the CIs for the conR and the TCR in this study are mostly around 0.1 

except the high-latitude regions. Compared to the passive remote-sensing SM products, the CIs 

of the ASCAT are relatively larger. Generally, the conR and the TCR values used here are 

affected by sampling procedures to a limited extent when the minimum observations over one-

year period is set as 30.  

5.4.3. Correlations across Selected Conditions 

Since the performances of the SM retrievals from remotely sensed observations vary under 

different spatial settings, an investigation of the temporal performances of different datasets over 

specific regions is necessary. In addition to recognizing the accuracy of SMAP, SMOS-IC, and 

ASCAT in a particular class of areas, this facilitates the exploration of reasons leading to the 

performance difference. Given that the different amplitudes of variations of the R values and the 

optimal weights may complicate the understanding of the evaluation results, the main text only 

focuses on the TCR and the conR. The distributions of their derived highest optimal weights are 

consistent with the R values and are provided in the Supplementary Materials. Here, three 

important static factors related to the algorithm parameters and SM variations are considered, 

which are climate zone (CZ), land cover (LC), and mean vegetation water content (VWC). 

5.4.3.1. Climate Zone 

Firstly, global CZ is provided by an updated global map of the Koppen-Geiger climate 

classification (Peel et al. 2007). The climate classifications in this map involve five major 

climatic types including Tropical, Arid, Temperate, Cold, and Polar, and can be further 

categorized into 30 sub-classes according to the local status of temperature and precipitation. The 

secondary classification of CZ has been adopted here: Tropical (Af: rainforest, Am: tropical 
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monsoon, Aw: tropical savannah); Arid (BW: arid desert; BS: arid steppe); Temperate (Cs: 

temperate with dry summer; Cw: temperate with dry winter; Cf: temperate without dry season); 

Cold (Ds: cold with dry summer; Dw: cold with dry winter; Df: cold without dry season); Polar 

(ET: polar tundra, EF: polar frost). Figure 5.5Error! Reference source not found. describes the 

distributions of R values under different climate conditions. Note that the rainforest regions (Af) 

are only shown for the conventional R because of the small number of samples in the TC-based 

R.  

 

Figure 5.5. Boxplots show variations in the conventional R (a) against ERA-interim and TC-based R (b) 

under different climate zones. Tropical (Af: rainforest, Am: tropical monsoon, Aw: tropical savannah). 

Arid (BW: arid desert; BS: arid steppe). Temperate (Cs: temperate with dry summer; Cw: temperate with 

dry winter; Cf: temperate without dry season). cold and polar (Ds: cold with dry summer; Dw: cold with 

dry winter; Df: cold without dry season; ET: polar tundra). 
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In general, the TCR values (Figure 5.5b) are overestimated compared to those from conR 

(Figure 5.5a), but their ranking patterns are similar to each other. It should be noted that negative 

signs in the conR broadly appear while the signs of the TCR are generally positive. In particular, 

the interquartile range of ASCAT is fairly well distributed in the regions exhibiting negative 

values over Arid, Cold and Polar climate conditions. Therefore, together with estimating the 

magnitude of R, the sign of the TCR should be reasonably determined by which the optimal 

weight can be estimated more accurately.  

In case of the conR (Figure 5.5a), the SMAP and SMOS-IC products display comparable and 

better R values higher than 0.6 over most climatic regions. Nevertheless, all three SM products 

present relatively low correlations in the BW (arid desert) and ET (polar tundra) regions. ASCAT 

has marginally but consistently better performance than SMOS-IC and SMAP products over 

tropical areas. This result is consistent with the previous study that demonstrates ASCAT has 

better correlations with the in-situ measurements over the Equatorial climate (Al-Yaari et al. 

2019). For the BW condition (desert), SMOS-IC and SMAP can better capture the SM dynamics, 

which conforms with the conclusions of Wagner et al. (2013). Although the derivation of SMOS-

IC relies on the multi-angular and dual-polarization brightness temperatures and has potential of 

error propagation from the measurement inaccuracy (O’Neill et al. 2015), over the temperate and 

cold regions, SMAP and SMOS-IC exhibit overall comparable and better performances than 

ASCAT except for Cw (temperate with dry winter). Furthermore, the temporal performance of 

ASCAT is sharply degraded over the cold and polar regions.  

5.4.3.2. Land Cover 

Figure 5.6Error! Reference source not found. presents the distribution of R values of SMAP, 

SMOS-IC, and ASCAT under various LC conditions using boxplots. Here, the map of vegetation 
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types is represented by an MCD12C1 (Version051) product (Friedl et al. 2010) based on the 17-

class IGBP classification (Loveland and Belward 1997) from MODIS observations. Specifically, 

the IGBP classification includes: ENF (evergreen needleleaf forests); EBF (evergreen broadleaf 

forests); DNF (deciduous needleleaf forests); DBF (deciduous broadleaf forests); MF (mixed 

forests); CS (closed shrublands); OS (open shrublands) (OS); WS (woody savannas); S 

(savannas); PW (permanent wetlands); G (Grassland); C (croplands); UBL (urban and built-up 

lands); CNV (cropland and natural vegetation mosaics); SI (snow and ice); BSV (barren and 

sparsely vegetated areas); W (water).  

 

Figure 5.6. Boxplots show variations in the conventional R (a) against ERA-interim and TC-based R (b) 

under different land cover conditions. EBF (evergreen broadleaf forests); ENF (evergreen needleleaf 

forests); DNF (deciduous needleleaf forests); DBF (deciduous broadleaf forests); MF (mixed forests); CS 

(closed shrublands); OS (open shrublands) (OS); WS (woody savannas); S (savannas); G (grassland); C 

(croplands); CNV (cropland and natural vegetation mosaics); BSV (barren and sparsely vegetated areas). 
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Similarly, the characteristics of the temporal performances represented by the TCR and conR, are 

overall consistent. Due to the sufficient samples spanning across various LC types, more forest 

regions are included in Figure 5.6a. In general, SMAP and SMOS-IC have superior performance 

than ASCAT over most LC conditions. However, ASCAT exhibits advantages in savannas 

regions (WS and S) that typically correspond to the tropical zone. The strength of ASCAT in 

savannas can be attributed to the high sensitivity of the active microwave instrument to SM over 

sparsely vegetated areas (Wagner et al. 2013). It seems that all products have difficulty to capture 

the temporal SM variations over the DNF (deciduous needleleaf forest) and BSV (barren and 

sparsely vegetated) areas. The poor temporal performances in the regions of DNF may partly 

account for the lower R values in the high-latitude areas. In contrast to the SM retrievals from 

ASCAT of which R values greatly fluctuate with varying LC types, the temporal performances of 

the passive remote sensing SM data are relatively stable and comparable. Dong et al. (2020) 

showed that SMOS-IC has a stronger ability in capturing the temporal variations of the SM 

climatology than several land surface modeling products over cropland. In light of this, the conR 

values of SMOS-IC and even SMAP over certain LC terrains may be slightly underestimated 

when selecting the modeling products as references.  

5.4.3.3. Mean Vegetation Water Content 

Figure 5.7 illustrates the distribution of R values of the satellite-based observation products 

across various VWC intervals. The average VWC values over the study period have been 

computed and mapped using the VWC data from the SMAP ancillary datasets (Chan et al. 2013). 
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Figure 5.7. Boxplots show variations in the conventional R (a) against ERA-interim and TC-based R (b) 

under different mean VWC ranges in kg/m2. 

SMAP and SMOS-IC have better temporal performances than ASCAT product from 0–2 kg/m2. 

However, the superior magnitudes change with the variations of VWC. The largest discrepancies 

between the passive and active remote sensing SM data occur in the VWC intervals of 0–0.4 

kg/m2 and 1.2–1.6 kg/m2. Such abrupt performance degradation of ASCAT over the moderate 

vegetation regions (1.2–1.6 kg/m2) is consistent with Al-Yaari et al. (2019) which indicated that 

the performance of ASCAT would degrade over the vegetation range with Leaf Aare Index (LAI) 

from 0 to 3 m2/m2. Here, 3 m2/m2 of LAI can be approximated to 1.5 kg/m2 of VWC (Wigneron 

et al. 2006),  corresponding to the ASCAT decline interval in this study.  However, ASCAT is 

more advantageous than SMAP and SMOS-IC over regions with 2–5 kg/m2 of VWC. This result 

matches Kim et al. (2018) claiming that ASCAT data have the capacity to accurately reproduce 
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the SM temporal pattern in areas with high vegetation density, considering vegetation optical 

depth (VOD) from 0 to 0.6. Here, the VOD range from 0 to 0.6 can be approximately as the 

VWC ranging from 0 to 6 kg/m2. Lastly, the R values of SMAP, SMOS-IC, and ASCAT become 

closer over 4–5 kg/m2 of VWC. 

5.4.4. Global Maps of Optimal Weight 

Figure 5.8 illustrates the spatial distribution of the best product with the highest optimal weight 

(w) in terms of maximizing R using ERA-Interim (𝑤𝑐𝑜𝑛) and the SM truth (𝑤𝑇𝐶) as the objective 

products. The line plots in the right-hand panel present the variations of zonal mean and one 

standard deviation of the optimal weights along with the latitude for each parent product. It 

should be stressed that the 𝑤𝑇𝐶 was calculated based on Equation (5) rather than Equation (7) 

since the underlying TC assumptions cannot be fully satisfied while directly using the SM raw 

data. 
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Figure 5.8. Global maps indicating areas exhibiting the highest optimal weight (𝑤) for SMAP, SMOS-IC 

and ASCAT based on (a) 𝑤𝑐𝑜𝑛 and (b) 𝑤𝑇𝐶. The line plots in the right-hand panel present variations of 

zonal mean optimal weights with ± 1 standard deviation. 

Before analyzing their relative temporal performances, the consistency between the optimal 

weights and the R values has been examined. The Spearman correlations between the 𝑤𝑇𝐶 

(𝑤𝑐𝑜𝑛)  and the TCR (conR) are 0.83 (0.71), 0.75 (0.72), and 0.77 (0.65) for SMAP, SMOS-IC, 

and ASCAT. Compared to the results from the synthetic experiments in the Appendix, the 

correlations have slightly declined. In terms of the relatively lower Spearman correlations under 

the reference condition, this could be caused by the simultaneous use of the positive and negative 

conR values, resulting in the unpredictable performance sequences reflected through the 𝑤𝑐𝑜𝑛. 

Moreover, the correspondences between the highest R and the highest optimal weights are 
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separately 93% (𝑤𝑇𝐶 and TCR) and 86% (𝑤𝑐𝑜𝑛 and conR). Therefore, the highest optimal weight 

can represent the best dataset with the highest contribution to capture the temporal variability of 

SM. 

The complementarity among the SM products can be observed across the geographical areas. 

The spatial patterns of the highest 𝑤𝑐𝑜𝑛 and 𝑤𝑇𝐶 are overall consistent. The advantageous areas 

of SMAP include the middle part of North America, most areas in Eurasia, western South 

America, and southern Africa while SMOS-IC has relatively better performance over eastern 

North America, several regions in Asia as well as middle Australia. Additionally, ASCAT shows 

superior performance in eastern South America and most regions in Africa. The latter result is 

consistent with Al-Yaari et al. (2019) indicating that ASCAT has higher correlations against the 

in-situ measurements (9 stations) in Africa than SMAP and SMOS products. Furthermore, the 

advantageous areas of SMAP and ASCAT showing in Error! Reference source not found. are 

similar to Kim et al. (2018) that compared the performance of SMAP, AMSR2, and ASCAT 

using the TC approach.  

According to Table 5.4, SMAP and ASCAT have more the highest 𝑤𝑇𝐶 than SMOS-IC. In terms 

of the  𝑤𝑐𝑜𝑛, the amounts of grids where the SMAP, SMOS-IC, and ASCAT have the highest 

optimal weights are comparable. The high proportion of ASCAT with the highest optimal 

weights can be partially attributed to its negatively high R values distributed over the high-

latitude regions and North Africa. In light of this, containing certain areas where all three 

products have poor or contrasted performances is likely to affect the overall performance 

evaluation of a dataset. In a view of visual inspection, however, the advantageous regions of 

SMAP product cover more diverse areas on a global scale.  
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Table 5.4. Proportions (%) of highest weights of three parent products by different references, where the 

numbers in brackets are the number of pixels. 

Reference or its 

corresponding triplets 
SMAP SMOS-IC ASCAT Total 

ERA-Interim ( 𝑤𝑐𝑜𝑛) 
34 

(18614) 

32 

(17495) 

34 

(18653) 

100 

(54762) 

TC (ERA-Interim) 

(𝑤𝑇𝐶) 
47 

(8935) 

21 

(3953) 

32 

(6128) 

100 

(19016) 

MERRA2 

(𝑤𝑐𝑜𝑛) 
30 

(16243) 

31 

(16879) 

39 

(21651) 

100 

(54773) 

TC (MERRA2) 

(𝑤𝑇𝐶) 
41 

(6619) 

18 

(2899) 

42 

(6788) 

100 

(16306) 

Average 38 26 37 100 

If similar performances of a product (e.g., SMAP) over a certain geographical area or an 

equivalent static condition were found using different products (ERA-Interim and the SM truth), 

the results are expected to be more reliable. Here, similar performances can be roughly evaluated 

from the degree of proximity in the obtained R or optimal weight, and their rank-order variations 

or one dataset compared to the other two products. Both the conR and TCR values derived based 

on the ERA-Interim (Figure 5.3) and MERRA2 (Figure S9) are also close. In terms of the zonal 

mean optimal weights (the right panels of Figure 5.8 and Figure S13), the varying patterns of 

the zonal optimal weights and their standard deviations are similar in the two cases that applied 

MERRA2 and ERA-Interim as the references.  

When it comes to rank-order variations using MERRA2, the advantaged regions of SMOS-IC are 

further extended to partial Asia and western Australia (Figure S13: both conR and TCR 

calculated using the MERRA2). Given the highly consistent spatial distributions of 𝑤𝑐𝑜𝑛 and 

𝑤𝑇𝐶 derived using the same reanalysis product (reference or triplet component), such dissimilar 

performances are mainly due to the inherent differences in the two reanalysis products. However, 

for each parent product, the degree of differences between the advantageous regions described by 

the 𝑤𝑐𝑜𝑛 and 𝑤𝑇𝐶  calculated using the ERA-Interim and MERRA2, is expected to be acceptable. 

SMAP and SMOS-IC displayed highly comparable and stable temporal performances at a global 
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scale and therefore, the rank order of their approximate R values possibly altered when applying 

different reanalysis products.  

5.4.5. Limitations and Outlook 

It should be noted that there are some limitations to this study. Firstly, the above results and 

discussions are based on SM datasets over a full three-year period from April 1, 2015, to March 

31, 2018. SM data covering longer periods are required to evaluate the performance of remotely 

sensed SM products more accurately and prove the consistency of the results, especially for the 

TC estimation. 

In addition, the SMOS-IC and ASCAT products being compared were first resampled to the 

SMAP standard spatial resolution (36-km EASE here), and then all products rescaled to the 

references by a linear normalization approach (Draper et al. 2009). The implementations of these 

processes inevitably impact the results of inter-comparisons. Furthermore, for the references, 

only the data nearest to 6 a.m. were selected and used. Hence, the performance of ASCAT in 

which ascending SM retrievals are normally obtained at 9:30 a.m. may be slightly degraded.  

Lastly, this paper only investigated the impacts on the temporal performances of parent products 

for static conditions without considering influences caused by dynamic factors. Static conditions 

are mostly defined by average values and cannot reflect the dynamic quality of SM retrievals 

precisely (Zhang et al. 2019). Given this, the effects on temporal correlations and their derived 

optimal weights by dynamic factors such as land surface temperature and soil wetness should be 

investigated in future studies. Moreover, for each grid, the numerical relationship between the 

optimal weights and dynamic conditions has the potential to combine near-real-time merged 

products that effectively leverage the strengths of various SM products over certain pixels. 
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5.5. Summary and Conclusions 

This study compared three advanced satellite-based SM products (SMAP, SMOS-IC, and 

ASCAT) at a global scale in terms of temporal correlations against the reference products (in-situ 

SM, ERA-Interim, and MERRA2) using the conventional R, TC-based data-truth R values, and 

their derived optimal weights (𝑤𝑐𝑜𝑛 and 𝑤𝑇𝐶). Compared to the R values that independently 

reflect the temporal performances of the satellite-based SM products with respect to reference 

products, the optimal weights represent the relative performance of one dataset dependent on the 

other considered parent products in a comparable manner using normalization. In addition to 

demonstrating the temporal performances on the rank order, the numerical values of the optimal 

weights show a wide range of change with the unique information contained in the observation 

products. Specifically, the high error cross-correlation between two observation products with 

approximate R values can purposely reduce the contribution from the product with poorer 

temporal performance to inhibit the impacts from the overlapped errors.  

Firstly, the conventional R and the TC-based R calculated using the in-situ measurements and 

ERA-Interim were compared and the differences between both types of R commonly exist. 

Theoretically, the TC-based R is expected to be able to reflect the correlations between the 

satellite-based SM datasets and the SM truth and thus more accurate than the conventional R 

strongly dependent on the quality of the references. In practice, however, the accuracy of the TC-

based R could be influenced by several factors including the violation of TC assumptions, the 

sign effects as well as the sampling procedures. As such, the conR is expected to be more reliable 

than the TCR and in-situ TCR over the pixels with the in-situ stations due to the smaller bias 

with the in-situ conR. Despite that, for each satellite-based SM product considered here, its 
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temporal performances exhibited by the conR and the TCR are highly consistent in terms of the 

spatial distribution even adopting different references (ERA-Interim and MERRA2). 

Regarding the temporal performance, three datasets suffer challenges in retrieving SM over the 

arid environment and high-latitude regions. Meanwhile, there are some areas where the temporal 

performances of the studied products are commonly good, such as the most available regions in 

North America, South America, and Australia, as well as the middle and south parts of Africa. 

Compared to ASCAT, the SM retrievals from SMAP and SMOS-IC have shown good abilities to 

reproduce the SM variations over large areas of Eurasia.  

Furthermore, global assessment and inter-comparison of the temporal performances under 

various conditions including climate, land cover, and mean vegetation water content, were 

conducted. Again, the conventional R (conventional R derived optimal weight) and the TC-based 

R values (TC-based R derived optimal weight) have overall consistent distribution patterns 

across diverse static circumstances. In most climate zones, passive remote sensing SM retrievals 

exhibit stable and higher R values than ASCAT. Specifically, SMAP and SMOS-IC data present 

substantial advantages in the desert and polar regions. However, ASCAT shows extremely high R 

values over tropical zones. Concerning the LC, SMOS-IC and SMAP SM retrievals have strong 

capabilities to reproduce SM variations within most LC types except the DNF (deciduous 

needleleaf forest) and BSV (barren and sparsely vegetated regions). Despite the high R values of 

SMAP and SMOS-IC products over WS (woody savannas) and S (savannas) regions, ASCAT 

exhibits even better temporal performances. Furthermore, the temporal performances of passive 

remote sensing SM retrievals have superiority in the regions with the VWC intervals of 0–

2kg/m2, especially in 0–0.4kg/m2 and 1.2–1.6kg/m2 whereas ASCAT generally outperforms 

SMAP and SMOS-IC over the areas with the higher vegetation density (2–5kg/m2). 
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The violation of the underlying TC assumptions, the optimization strategies as well as the 

simultaneous use of R values with opposite signs can account for the decreased matching 

between the R and optimal weight. Therefore, a set of synthetic experiments has been designed 

with the aim of investigating the impacts of the error cross-correlations. According to the results 

of the synthetic experiments, moderate and high error cross-correlations can overly extend the 

distances between the optimal weights of two products with similar R values. Such adjustments 

can avoid incorporating the overlapped error information contained in the parent products but 

possibly distort and underestimate the contribution from the signal portion of the product. 

However, in terms of rank order, the consistency between the R and the optimal weight is rarely 

affected by the error cross-correlations, which is demonstrated by the Spearman correlations 

continuously more than 0.9. In practice, the Spearman correlations between the optimal weights 

and the R values are slightly reduced to around 0.8. Therefore, the highest optimal weights have 

sufficient capacity to represent the performance of the product with the highest R values. As for 

the advantageous areas of relative performance expressed by the highest optimal weights, the 

comparably global complementarity can be noticed even though the advantageous areas of 

SMAP appears to cover more diverse areas from visual observations.  

Through the integrated evaluation of the temporal performances of the three SM products, this 

study can be a guideline for data users to select proper SM datasets for their research. In 

addition, understanding the optimal weights in-depth could be helpful to linearly combine the 

product with improved temporal representations.  
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5.6. Appendix: Results of Synthetic Experiments 

For a further insight on the compatibility between the R and the optimal weight, we implemented 

an experiment using synthetic datasets. Specifically, a group of time-series data representing the 

truth values (T) was first generated using a lag-1 auto-correlation model of which autocorrelation 

coefficient is randomly drawn from a uniform distribution from 0 to 1. Then, three sets of 

observation time-series data (Obs) were created by multiplying with random coefficients (α) 

from 0 to 1 and adding zero-mean Gaussian random errors (ε) to the truth data (Obs = αT + ε). 

The variances of the errors were limited to fall in the interval 0 to 0.5. Here, we applied a range 

of error cross-correlation coefficients from 0 to 0.9 increasing by 0.1 for generating random 

errors while sequentially increasing dependence among the observations. Since the error cross-

correlation coefficients can only be controlled by a product pair, there is an unknown error cross-

correlation left when the three sets of error time-series data are generated using the two 

controlled error cross-correlations. The degree of compatibility degrees between the data-truth R 

and the optimal weight were estimated using the Spearman rank-order correlation. Furthermore, 

the highest values (H) of the R and the optimal weight as well as the differences (ΔD) between 

the highest R (optimal weight) and the second highest R (optimal weight) were compared and 

discussed. To assess the uncertainty in the results, the synthetic experiment was repeated 1000 

times.  
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Figure A5.1. Results of the synthetic experiments under the controlled error cross-correlations (ECC): (a) 

Spearman correlations between the R and the optimal weight (b) boxplot of the highest R (𝐻𝑅) and the 

highest optimal weights (𝐻𝑤) (c) the differences (∆𝐷) between the highest and the second highest R 

values (∆𝐷𝑅) or optimal weight values (∆𝐷𝑤). 

According to the Figure A5.1a, the Spearman correlations between the R and the optimal weight 

are generally higher than 0.9 regardless of the increasing error cross-correlations. Therefore, the 

optimal weight has the ability to represent the relative temporal performance of each parent 

product consistent with the R values. However, the numerical values of the optimal weight can 

be impacted by error cross-correlations. With the increase of the error cross-correlations, the 

highest optimal weights rise to closer to 1 no matter what the highest R values are (Figure 

A5.1b). Additionally, ΔD values of the optimal weights are inclined to rapidly expand once the 

controlled error cross-correlations are larger than 0.3 (Figure A5.1c). In light of this, the optimal 

weights and the combined product are likely to excessively rely on the parent product with the 

best performance. While the controlled error cross-correlations are near 0.9, the optimal weights 
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are mostly concentrated to either 1 or 0. The values under such extreme conditions indicate that 

the optimal weights can accordingly adjust to avoid overlapping error information from different 

parent products. Given that, the signal portions of the parent products are also likely to have 

certain impacts on the optimal weights in a similar manner but at a greatly reduced magnitude. 

However, the exaggerated values of the highest optimal weights are likely to block the signal 

portions of the other parent products and underestimate their respective contributions. As a 

result, the optimal weight can describe the relative temporal performance consistent with the R, 

avoid the overlapping error information from different parent products in the combination, and 

have the potential to perform as an indicator of the error cross-correlations.  
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Chapter 6. Summary and Conclusions 

The ultimate objective of this thesis is to improve the scientific quality and utility of soil 

moisture estimations from passive microwave remote sensing by addressing the identified 

drawbacks of the current satellite-based soil moisture retrievals from the NASA SMAP mission. 

Preliminary studies mainly focus on the retrieval quality of L-band soil moisture retrievals over 

the organic-rich soils and water-included footprints as well as on filling the SMAP temporal gaps 

through precipitation information. Specifically, the performances of nine advanced dielectric 

models have been compared over the organic-rich soils, and the evaluation results suggest the 

separate use of Mironov 2009 and Mironov 2019 in mineral and organic soils could be an 

optimal option for better accuracy. Meanwhile, the study of evaluating the water temperature of 

inland water bodies built the foundation for further research in mitigating the effects of water 

contaminations within the radiometer’s instantaneous field-of-view and the associated wet bias 

when the dynamic water fractions become available.  

In terms of temporal continuity, the gaps between SMAP observations have been supplemented 

through water balance budgeting. Accurately capturing each rainfall-induced soil moisture peak 

is a major motivation behind this study whilst the optimized hydrologic parameters and the 

quantified hydrologic loss are also critical. Based on these, future studies will focus on the 

spatial disaggregation of the satellite-based precipitation product, quality improvement with the 

combined use of uncertainty analysis and advanced mathematic techniques, as well as an attempt 

to establish a long-term soil moisture estimation at a global scale using one state-of-the-art 

satellite-based precipitation product, Multi-Source Weighted-Ensemble Precipitation (MSWEP). 
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In order to acquire more information on soil water content from radiometer observations, one 

ongoing research is concentrated on learning the layered radiative transfer model (Appendix 

from p.141 to p.164) that considers naturally inhomogeneous vertical soil profiles and forward 

simulations of thermal radiations of near-surface soils. In addition to the expectation of more 

accurate soil moisture estimates and validation benefits, the greater promise lies in the inversed 

application of this radiative transfer model for the multifrequency dual-polarization 

measurements to infer vertical gradients of soil moisture and soil temperatures from various 

sensors.  

It is expected that the outcomes of this thesis can change how radiometer observations are 

interpreted in the future while the newly yielded soil moisture data with temporal continuity and 

higher accuracy would help researchers to quantitatively understand the linkages between water 

balance components and deepen the interpretation of the terrestrial-atmosphere interactions in 

the context of climate change.  
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Appendix: Near-Surface Soil Moisture Profile Estimation 

Through a Four-Layer Radiative Transfer Model 

A1. Introduction 

Root-zone soil moisture, which represents the water content present in the soil down to tens of 

centimeters below the land surface, plays an important role in several disciplines, such as 

ecohydrology, agriculture and meteorology (Akbar et al. 2018; Babaeian et al. 2019; Njoku and 

Kong 1977). Water content from the deeper layers is directly associated with the transpiration 

rate and photosynthetic activity of plant and affects large-scale weather forecasting and climate 

modeling (Dirmeyer 2000; Fatichi et al. 2016; Koster and Suarez 2001; Reich et al. 2018). 

Unlike readily available surface soil moisture, however, observation-based root-zone soil 

moisture is scarce primarily because of its greater depths and high spatiotemporal variability 

(Brakhasi et al. 2023).  

As an alternative, researchers have developed a variety of techniques that link surface soil 

moisture to deeper soil moisture, including exponential filtering, data assimilation, multiple 

regression, statistical approach, and the use of maximum entropy principle (Baldwin et al. 2017; 

Carranza et al. 2021; Karthikeyan and Mishra 2021; Mishra et al. 2018; Mishra et al. 2020; Qiu 

et al. 2010; Walker et al. 2001; Xia et al. 2022). For example, global scale root-zone soil 

moisture datasets like Soil Moisture Active Passive (SMAP) Level 4 product and the Global 

Land Data Assimilation System (GLDAS) result from the assimilation of surface soil moisture 

into land surface models (Brakhasi et al. 2023). However, the lack of priori information of root-

zone soil moisture measurements often prevents constructing the relationship between the soil 
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moisture at the surface and deeper layers. Moreover, the soil moisture evolution with depth is 

prone to the non-linear variations, largely modulated by atmospheric forcing, as well as 

vegetation cover (Brakhasi et al. 2023; Hirschi et al. 2014). Such an intricate association is 

unlikely to be explained by a few simple regression expressions or exponential formulations 

while the inclusion of multiple inputs of the remaining methods might introduce unanticipated 

uncertainties. 

Microwave radiometry offers a remote sensing tool that is well-suited to the determination of soil 

moisture since the thermal emission of soils is sensitive to the dielectric behaviors of wet soils in 

the microwave range (Njoku and Kong 1977). The satellite-based L-band (1.41 GHz) soil 

moisture products have been widely applied in various hydrological applications and 

meteorological predictions while the validity of P-band (750 MHz) sensors in monitoring soil 

moisture variations within a 10 cm depth has also been verified (Shen et al. 2020). Despite this, 

soil moisture retrievals from the above radiometers typically assume mean soil moisture within a 

5 cm or 10 cm soil layer with uniform soil temperature. Naturally occurring soil systems feature 

heterogeneous subsurface moisture and temperature profiles. Therefore, either the applicability 

of a constant emission depth across the globe or the appropriateness of hypothesizing a 

homogeneous soil property under various terrains remains to be further studied.  

Based on a stratified non-scattering half-space medium, brightness temperature responses to 

subsurface moisture and temperature variations can be described by both the sophisticated 

incoherent model and coherent model (Burke et al. 1979; Njoku and Kong 1977; Schmugge and 

Choudhury 1981; Wilheit 1978). Excluding the perturbing effects of surface roughness, canopy 

cover, and subsurface scattering, the inversion schemes of the above models enable the 

derivation of gradient moisture and temperature in the soil. For instance, Brakhasi et al. (2023) 
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combined the brightness temperatures observed at L-band and P-band frequencies and estimated 

the soil moisture profiles under flat bare soil using a coherent approach. Theoretically, the 

coherent model is considered more accurate than the radiative transfer approach (incoherent) as 

it accounts for the phase-interference oscillation and thereby performs well over regions with a 

rapidly vertical moisture variations (Njoku and Kong 1977; Schmugge and Choudhury 1981; 

Ulaby et al. 2014). However, experimental tests indicated that both types of models have the 

ability to estimate values of brightness temperatures with reasonable accuracy (Schmugge and 

Choudhury 1981). Additionally, in nature, the disturbance of surface roughness and horizontal 

heterogeneity in the soil on the coherent reflections cannot be entirely ignored (Schmugge and 

Choudhury 1981). Regarding these and the utilization simplicity of the incoherent model, the 

applicability investigation of the radiative transfer model in the derivation of soil moisture and 

temperature profiles is necessary.  

The ultimate aim of this research is to estimate the soil moisture profiles by means of a four-

layered radiative transfer model based on the available multi-frequency dual-polarization 

satellite-based microwave brightness temperatures. Such a project will start the forward 

modeling brightness temperatures from a four-layer soil medium. Specifically, layered soil 

moisture and soil temperature from the ECMWF ERA5 Land (Muñoz-Sabater et al. 2021b) 

represent averages from 0 ~ 7 cm, 7 ~ 28 cm, 28 ~ 100 cm, and 100 ~ 289 cm will be used as the 

input for the four-layer radiative transfer model to simulate the brightness temperatures at a 

global scale. Three scenarios will be considered, which are 1) radiation from the uniform soil 

moisture and temperature from a soil layer of 0 ~ 7 cm, 2) the aggregated radiation from four soil 

layers with the uniform soil moisture but nonuniform soil temperature through Lv’s scheme (Lv 

et al. 2014), and 3) the aggregated radiation from four soil layers characterized by varying soil 
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moisture and temperature using a series of analytical formulations. A comprehensive analysis 

will be conducted to compare the discrepancies among the simulated brightness temperatures and 

to distinguish the effects of various inputs. In addition, the analytical formulation of the 

brightness temperatures potentially builds an effective scheme for estimating the representative 

radiating temperature. Such a comparison of global diurnal microwave emissions provides the 

basis for the radiating contributions of each layer across various geographic regions before the 

model inversion.   

A2. Methodology 

A2.1. Banded Matrix Solution of Total Brightness Temperature 

A2.1.1. Theoretical Formulation: A 3-Layer Stratified Medium 

Consider the brightness temperature observed at an angle of 𝜃0. 

The radiative transfer equations that describe the upward intensity 𝐼𝑢1(𝑧) and downward 

intensity 𝐼𝑑1(𝑧) in layer 1 are: 

 

where 𝐾 is the Boltzmann’s constant 1.38 × 10−23 𝐽/𝐾; 𝜆 is the wavelength propagated in the 

medium; 𝜖1 and 𝜖0 separately represent the absolute dielectric permittivity of layer 1 and free 

space, and their ratio reflects the dielectric constant of layer 1; 𝜃1 indicates the propagation 

direction within layer 1 and can be determined through Snell’s law; 𝑅𝑒() means the real part of 
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the term within the parenthesis; 𝑧 denotes the depth within layer 1; 𝜅𝑎1 is the absorption 

coefficient of layer 1; and 𝑇1 is the physical soil temperature of layer 1. 

After integration, the above equations can be written as: 

  

where 𝐴1 and 𝐵1 are coefficients to be determined. 

Similarly, the upward intensity 𝐼𝑢2(𝑧) and downward intensity 𝐼𝑑2(𝑧) in layer 2 are: 

 

with 𝐼𝑢2(𝑧) and 𝐼𝑑2(𝑧) given by: 

    

For layer 3, which is also the last semi-infinite layer, only the upward intensity 𝐼𝑢3(𝑧) contributes 

to the observed brightness temperature: 
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The derivation of Equation 11 will be shown in the later part. 

The above equations describe the upward and downward intensities in each layer as a function of 

𝑧, and their values at the interfaces must match those of the adjacent layers above and below 

through the reflection and transmission coefficients. For example, 𝑟12 and 𝑡12 denote the 

reflection and transmission coefficients at the bottom boundary of layer 1 (or at the top boundary 

of layer 2), where 𝑟12 = 1 − 𝑡12. One important assumption here is that reflectivity values from 

below and from above the same boundary are identical, such as 𝑟12 = 𝑟21. 

For this 3-layer stratified medium, there are 4 unknown coefficients (𝐴1, 𝐵1, 𝐴2 and 𝐵2) and 3 

interfaces along the vertical axis at 𝑧 =  −𝑑0(𝑑0 = 0),−𝑑1, and −𝑑2. 

For the first interface at 𝑧 = 0: 

 

Note that 
𝐼𝑑0

𝐶0
= 0 because it is assumed that there is no downward intensity coming down from 

the air. 

Therefore, 
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At the boundary 𝑧 = −𝑑1 (the bottom of layer 1 and the top of layer 2) 

 

At the boundary 𝑧 =  −𝑑2 (the bottom of layer 2 and the top of the last layer) 

 

Using the expression provided in Equations (4) – (5), and (9) – (11), Equations (14) – (17) could 

be converted into the form of: 

 

Re-arrange Equations (18) – (21) 

 

The above equations can then be cast into the banded-matrix equations: 
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Since the total brightness temperature of the whole stratified medium 𝑇𝐵 =
𝐼𝑢0

𝐶0
(𝑧 = −𝑑0), 

 

Recall 
𝐼𝑑0

𝐶0
= 0 

 

As long as the banded matrix solutions become available, in particular 𝐴1, the total brightness 

temperature 𝑇𝐵 can be simply obtained. The Fresnel reflectivity at the boundary 𝑧 =  −𝑑0 could 

be derived with the knowledge of polarization, the refraction indexes (𝑛𝑙
2 =

𝜖𝑙

𝜖0
, 𝑙 means the layer 

number), as well as the 𝜃0 and 𝜃1 calculated using the Snell’s law as mentioned above. 

A2.1.2. Theoretical Formulation: An N-Layer Stratified Medium 

In general, for an N-layer stratified medium, there are 2𝑁 − 2 equations to solve for 2𝑁 − 2 

unknown coefficients. 

 

For the diagonal elements: 
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For the upper off-diagonal elements: 

 

For the lower off-diagonal elements: 

 

For the matrix 𝑥: 

 

For the right-hand side: 

 

Once the unknown coefficients are solved, Equation (28) can be applied to calculate the total 

brightness temperature. 
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A2.2. Individual Contributions from Sub-Layers to Total Brightness 

Temperature 

In this study, two methods have been adopted to reflect the contributions from individual layers 

within the stratified medium. The first approach attempts to divide the total brightness 

temperature in a form of summations of brightness temperatures contributed by each layer, 

namely 𝑇𝐵 = 𝑇𝐵1 + 𝑇𝐵2 + 𝑇𝐵3 +⋯+ 𝑇𝐵𝑁. In addition, the total brightness temperature of a 

stratified system being expressed in terms of layered physical temperatures was also 

investigated, which is 𝑇𝐵 = 𝑆1𝑇1 + 𝑆2𝑇2 + 𝑆3𝑇3 +⋯+ 𝑆𝑁𝑇𝑁. Here, a 3-layer system has been 

applied as an illustrative example to introduce the derivation processes of the above two methods 

to partition the total brightness temperature. 

A2.2.1. Brightness Temperatures from Individual Layers within a 3-Layer Medium 

During this process, the immediate results (i.e., 𝐵𝑛) obtained from the banded matrix solutions 

have been used. Based on previous derivations, Equation (29) (i.e., 𝑇𝐵 = (1 − 𝑟0)(𝐴1 + 𝑇1)) 

proves that the solution or the way to present 𝐴1 is critical. The integration equation obtained for 

layer 1 and matching boundary condition at the interface between layer 1 and layer 2 (i.e., 𝑧 =

 −𝑑1) provides: 

 

Therefore, 
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As our objective term is 
𝐼𝑢1

𝐶1
(𝑧 = −𝑑0) with its integration equation: 

 

Equation (48) can be re-organized by replacing 𝐴1 by Equation (47) 

 

Recall 𝑇𝐵 = (1 − 𝑟0)
𝐼𝑢1

𝐶1
(𝑧 = −𝑑0) where 

𝐼𝑢1

𝐶1
(𝑧 = −𝑑0) represents that the aggregated upward 

radiation from all the layers below the bottom boundary (𝑧 = −𝑑0) of layer 0 (i.e., air). 

Likewise, 
𝐼𝑢2

𝐶2
(𝑧 = −𝑑1) in Equation (49) reflects the total upward radiation from all the layers 

below the bottom boundary (𝑧 = −𝑑1) of layer 1. Hence, the first two terms on the right-hand 

side of Equation (49) can be considered as the partial total brightness temperature contributed by 

layer 1 alone. 

For those two terms related to layer 1, 
𝐼𝑢1

𝐶1
(𝑧 = −𝑑0) can be adjusted by the immediate constant 

𝐵1. At the top boundary (𝑧 = −𝑑0) and bottom boundary (𝑧 = −𝑑1) of layer 1, the integration 

of downward intensity returns: 
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Put the above expression of 𝐵1 into Equation (50) 

 

Substitute 
𝐼𝑢1

𝐶1
(𝑧 = −𝑑1) in Equation (49) by Equation (53), Equation (49) can be updated in a 

form of: 

 

where 

 

𝑇𝐵𝐿1  can be considered as the part of the total upward emission below the top boundary of layer 1 

(𝑧 = −𝑑0), which is only contributed by the layer 1. 

Following a similar process, the derivation of 
𝐼𝑢2

𝐶2
(𝑧 = −𝑑1) is dependent on the layer constant 

𝐴2. 𝐴2 can be expressed by the transmitted upward radiation from layer 3 and the reflected 

downward emission from layer 2 at the bottom boundary of layer 2 (𝑧 = −𝑑2) because of the 

continuous boundary conditions. 
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Therefore 

 

As our objective term is 
𝐼𝑢2

𝐶2
(𝑧 = −𝑑1) with its integration equation: 

 

Equation (59) can be re-organized by replacing 𝐴2 by Equation (58) 

 

Again, given that 
𝐼𝑢3

𝐶3
(𝑧 = −𝑑2) represents all the upward radiation from the layers below the 

bottom boundary of layer 2 (𝑧 = −𝑑2), the first two terms on right-hand side of Equation (60) 

could be attributed to layer 2 alone, and 
𝐼𝑑2
𝐶2
(𝑧 = −𝑑2) can be adjusted by the immediate constant 

𝐵2. At the top boundary (𝑧 = −𝑑1) and bottom boundary (𝑧 = −𝑑2) of layer 2, the integration 

of downward intensity returns: 
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Put the above expression of 𝐵2 into Equation (61) 

 

Substitute 
𝐼𝑑2
𝐶2
(𝑧 = −𝑑2) in Equation (60) by Equation (64), Equation (60) can be updated in a 

form of: 

 

where 

 

𝑇𝐵𝐿2  can be considered as the part of the total upward emission below the top boundary of layer 2 

(𝑧 = −𝑑1), which is only contributed by the layer 2. In light of these, the total upward radiation 

generated from any sub-layer n alone below its top boundary can be illustrated by: 
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The form of Equation (66) is expected to be always valid because the boundary equations and 

those integration equations of specific intensity are all similar and consistent for all the sub-

layers. However, Burke et al. (1979) indicates that 

 

For both Equation (66) and (67), the first term on the right side of equation is upwelling radiation 

emitted by the layer n itself. The second term on the right side of equation is the upward 

radiation reflected by the downward radiation originated from the layer n. The unique third term 

on the right-hand side of Equation (66) represents the upward reflection of the downward 

radiations at the top boundary of layer n. Such downward radiations could be composed of the 

transmitted downward radiation from the upper layer (n-1) and the reflected upward radiation 

from the layer n, and firstly depart from the top boundary (𝑧 = −𝑑𝑛−1), reflected at the 

boundary (𝑧 = −𝑑𝑛−1) and move upward back to the top boundary of layer n. Unlike the first 

two terms, the third term could therefore be considered as a second-order process, and likely 

have a small magnitude. Nevertheless, it may be not suitable to completely ignore it in terms of 

continuity in the derivation processes. 

In addition, for a general N-layer system, the individual upward radiation from the last layer is 

 

Since 𝑑𝑁 = −∞ and 𝑒−∞ ≈ 0, the above equation can be further simplified as  

 



156 

 

Furthermore, it is known that 

 

For simplicity, Equation (66) can be expressed as 

 

Therefore, in a 3-layer stratified medium, we can obtain that 

 

For the layer 3 (𝑑3 = −∞), based on Equation (54) and (65), we can derive that 

 

Recall the total brightness temperature of a 3-layer medium, 
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Given the above derivation process, even in a N-layer system, the contributions from the 

individual layers to the total brightness temperature can be achieved by continuously partitioning 

the last term in the equation using the integration equations with parameters 𝐴𝑛 and 𝐵𝑛 and 

matching boundary equations until the last layer, along with the accurate products of the 

transmission and absorption coefficients. 

If we placed the 𝑇𝐵𝐿1 , and 𝑇𝐵𝐿2  by Equation (72) and (73), we will get 

 

Similarly, using the explicit terms as shown in Equation (71), the total brightness temperature of 

an N-layer stratified medium can be generalized as: 
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A2.2.2. Derivation of the Relationship between Total Brightness Temperature and Layered 

Physical Temperature in a 3-Layer Medium 

Additionally, the total brightness temperature would also be expressed by the physical 

temperatures of sub-layers in a form of 𝑇𝐵 = 𝑆1𝑇1 + 𝑆2𝑇2 + 𝑆3𝑇3 +⋯+ 𝑆𝑁𝑇𝑁. Instead of 

directly using the immediate coefficients (such as 𝐴𝑁 and 𝐵𝑁), this can be achieved by explicitly 

describing the 𝐴1 term with the information from each layer as well as inversely recurrence 

procedures. 

For a 3-layer medium, recall Equations (18) – (21), a group of equivalent Equations show below: 

 

Based on Equation (79), 

 

Then we replaced 𝐵1 term in Equation (80) by Equation (83) 

 

Similarly, write 𝐵2 in terms of 𝐴1 from Equations (83) and (84) 
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Using Equations (84) and (85), 𝐴1 can be obtained via solving Equation (82) 

 

where 

 

If we assumed that  

 

Recall Equation (29): 𝑇𝐵 = (1 − 𝑟0)(𝐴1 + 𝑇1) 
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A2.2.3. Discrepancy between the above Two Methods 

Section 5.2.2.1 and Section 5.2.2.2 introduce two fashions for the separation of the total 

brightness temperature and thereby linking it with information from each sub-layer. The 

investigation on the discrepancies between the above methods has been conducted here. The 3-

layer stratified medium will continuously use as the illustrative example. For the first method, 

the total brightness temperature is  

 

In terms of the second approach, the total brightness temperature is expressed by 

 

The difference between the above two expressions can be studied by representing 𝐵1 and 𝐵2 

terms by the explicitly layered coefficients and temperatures (i.e., Equations (83) and (85)). 

If we assumed that  
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Recall Equation (92), now 𝑇𝐵1 can be expressed as: 

 

The expression of 𝐵1 in terms of 𝐴1 has been provided in Equation (83), therefore, 𝐵1 + 𝑇1 is 

equal to: 

 

Equation (96) can be further presented as: 

 

Following a similar process conducted from Equation (94) to Equation (98), we can firstly 

obtain: 

 

Recall Equation (82), 𝐵2 can be expressed in term of 𝐴2. 

 

Put Equation (82) where 𝐴2 was represented in terms of 𝐴1 into the Equation (102), and multiply 

with 𝑒−𝜅𝑎2 sec𝜃2𝑑1 



162 

 

 

As a result, 

 

When we substitute 𝐴1 by 𝑄1𝑇1 + 𝑄2𝑇2 + 𝑄3𝑇3. Equation (104) can be simplified (here, we 

separate the derivations for coefficients before 𝑇1, 𝑇2, and 𝑇3 as the background references). 

 

 

Based on the above Equations 
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To summary, contributions from sub-layers to the total brightness temperature derived from the 

approach proposed in Section 5.2.2.1 can be expressed as  

 

 

 

According to Equation (93), the coefficients of the above two approaches having the following 

relationship: 
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Given the identical total brightness temperature on which the above two methods are 

constructed, such a relationship is expected to exist for any N-layer stratified medium (N > 1) in 

forms of the above two fashions. 
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Supplementary Figures 

 

Figure S1. The geographical distributions of all the 12 stations finally used for validation. 
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Figure S2. Simulated brightness temperature of a sandy loam with various soil organic matter, and the 

accompanied table displays all the input values where most of soil parameters are directly taken from the 

sample of sandy loam used in Hallikainen et al., (1985). 
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Figure S3. Variations of wilting point and porosity estimated from Park 2019 and Park 2021 with 

increasing soil organic matter with assumed volumetric textural compositions. 

 

Figure S4. Distribution of 260 representative 9-km pixels used to seek for the optimal method flow for 

the precipitation-incorporated, 12-hour successive soil moisture simulations. 
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Figure S5. Spatial distributions of the optimal parameters (a) ∆Z (mm) (b) α, and (c) β over the CONUS. 

 

Figure S6. Spatial distributions of 526 ground stations used in validation.   
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Figure S7. Boxplots of the categorical performance metrics of (a) POD, (b) FAR, and (c) CSI for five 

different SMAP-based gap-filled soil moisture datasets in capturing soil moisture peaks caused by all the 

rainfall events with the rates over 0.5 mm/day. Those soil moisture peaks observed by in-situ soil 

moisture measurements are used as the benchmarks. 

 

Figure S8. Boxplot of ∆𝑅, the absolute values of differences between in-situ conR and the three types of 

R: in-situ TCR (D1=|in-situ TCR – in-situ conR|), conR (D2 =|conR- in-situ conR|) and TCR (D3 =|TCR- 

in-situ conR|). 
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Figure S9. Global distribution of conventional R for SMAP, SMOS-IC, and ASCAT using MERRA2 as 

reference (a-c), and the TC-based R using ERA-Interim as the component of triplets (d-f). The second 

column “minus” the first column (g-i). 
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Figure S10. Boxplots for variations in the conR (a) against MERRA2 and TCR (b) under different 

climate zones. Tropical (Af: rainforest, Am: tropical monsoon, Aw: tropical savannah). Arid (BW: arid 

desert; BS: arid steppe). Temperate (Cs: temperate with dry summer; Cw: temperate with dry winter; Cf: 

temperate without dry season). cold and polar (Ds: cold with dry summer; Dw: cold with dry winter; Df: 

cold without dry season; ET: polar tundra). 
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Figure S11. Boxplots for variations in the in-situ conR (a) and in-situ TCR (b) under different climate 

zones. The value behind the CZ class is the number of pixels included. 
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Figure S12. Boxplots for variations in the conventional R (a) against ERA-interim and TC-based R (b) 

under different land cover conditions. EBF (evergreen broadleaf forests); ENF (evergreen needleleaf 

forests); DNF (deciduous needleleaf forests); DBF (deciduous broadleaf forests); MF (mixed forests); CS 

(closed shrublands); OS (open shrublands) (OS); WS (woody savannas); S (savannas); G (grassland); C 

(croplands); CNV (cropland and natural vegetation mosaics); BSV (barren and sparsely vegetated areas). 
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Figure S13. Boxplots for variations in the in-situ conR (a) and in-situ TCR (b) under different land cover 

classes. The value behind the LC class is the number of pixels included. 
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Figure S14. Boxplots for variations in the conventional R (a) against MERRA and TC-based R (b) under 

different mean VWC ranges in kg/m2. 
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Figure S15. Global maps indicating areas exhibiting the highest optimal weight (w) for SMAP, SMOS-IC 

and ASCAT based on (a) 𝑤𝑐𝑜𝑛 and (b) 𝑤𝑇𝐶. The line plots in the right-hand panel present variations of 

zonal mean optimal weights with ±1 standard deviation. 
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Figure S16. Boxplot of the error cross-correlations (ECC) used in the synthetic experiments, the subscript 

1,2,3 represents the respective observation product. ECC12 and ECC13 are the controlled ECC increasing 

with a step of 0.1 and ECC23 is the dependent ECC. 

Supplementary Tables 

Table S1. Detailed information of all in-situ stations investigated in this study. 

Index Station Name Network ID Latitude Longitude Available 

Source 

Agreement 

1 Anchor River Divide SNOTEL 1062 59.86 -151.32 NWCC/ISMN / 

2 Aniak SNOTEL 2065 61.58 -159.58 NWCC/ISMN Partially Agreed 

3 Atigun Pass SNOTEL 957 68.13 -149.48 NWCC/ISMN Partially Agreed 

4 Canyon Lake SCAN 1232 59.42 -161.16 NWCC/ISMN / 

5 Checkers Creek SCAN 2213 65.40 -164.71 NWCC/ISMN / 

6 Chisana SNOTEL 1093 62.07 -142.05 NWCC / 

7 Coldfoot SNOTEL 958 67.25 -150.18 NWCC/ISMN Agreed 

8 Eagle Summit SNOTEL 960 65.49 -145.41 NWCC/ISMN Agreed 

9 Exit Glacier SNOTEL 1092 60.19 -149.62 NWCC/ISMN / 

10 Fielding Lake SNOTEL 1268 63.20 -145.63 NWCC / 

11 Galena AK SNOTEL 429 64.70 -156.72 NWCC / 

12 Gobblers Knob SNOTEL 962 66.75 -150.67 NWCC/ISMN Agreed 

13 Granite Crk SNOTEL 963 63.94 -145.40 NWCC/ISMN Agreed 

14 Gulkana River SNOTEL 2222 62.41 -145.38 NWCC/ISMN Agreed 

15 Imnaviat Creek SNOTEL 968 68.62 -149.30 NWCC/ISMN Agreed 

16 Innoko Camp SCAN 2211 63.64 -158.03 NWCC/ISMN Disagreed 

17 Jack Wade Jct SNOTEL 1275 64.15 -141.33 NWCC / 
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18 Kanaryagak Camp SCAN 2208 61.36 -165.12 NWCC/ISMN / 

19 Kanuti Lake SCAN 2212 66.18 -151.74 NWCC/ISMN / 

20 Kelly Station SNOTEL 1175 67.93 -162.28 NWCC/ISMN / 

21 Kenai Moose Pens SNOTEL 966 60.73 -150.48 NWCC/ISMN / 

22 Little Chena Ridge SNOTEL 947 65.12 -146.73 NWCC/ISMN Agreed 

23 Lower Mulchatna SNOTEL 1233 59.82 -156.99 NWCC/ISMN / 

24 May Creek SNOTEL 1096 61.35 -142.71 NWCC / 

25 McGrath SNOTEL 785 62.95 -155.61 NWCC / 

26 Mcneil River SGS SNOTEL 1191 59.08 -154.28 NWCC/ISMN / 

27 Monahan Flat SNOTEL 1094 63.31 -147.65 NWCC/ISMN Agreed 

28 Monument Creek SNOTEL 949 65.18 -145.87 NWCC/ISMN Agreed 

29 Moore Creek Bridge SNOTEL 1176 59.59 -135.21 NWCC/ISMN Agreed 

30 Moose Inc SCAN 2062 59.68 -151.37 NWCC / 

31 Mt. Ryan SNOTEL 948 65.25 -146.15 NWCC/ISMN Partially Agreed 

32 Munson Ridge SNOTEL 950 64.85 -146.21 NWCC/ISMN Agreed 

33 Naknek River SCAN 2209 58.67 -156.57 NWCC/ISMN / 

34 Nenana SNOTEL 2081 64.69 -149.91 NWCC/ISMN Agreed 

35 Nuka Glacier SNOTEL 1037 59.70 -150.71 NWCC/ISMN / 

36 Port Graham SNOTEL 987 59.35 -151.85 NWCC/ISMN / 

37 Prudhoe Bay SNOTEL 1177 70.27 -148.57 NWCC/ISMN / 

38 Rocky Point SNOTEL 973 64.53 -163.42 NWCC/ISMN / 

39 Schor Garden SCAN 2063 59.68 -151.38 NWCC / 

40 Spring Creek SNOTEL 2044 61.65 -149.13 NWCC/ISMN Agreed 

41 Summit Creek SNOTEL 955 60.62 -149.53 NWCC/ISMN Agreed 

42 Susitna Valley High SNOTEL 967 62.13 -150.04 NWCC/ISMN Agreed 

43 Telaquana Lake SNOTEL 1266 60.98 -153.92 NWCC / 

44 Tok SNOTEL 2080 63.35 -142.98 NWCC/ISMN Disagreed 

45 Tokositna Valley SNOTEL 1089 62.63 -150.78 NWCC/ISMN Partially Agreed 

46 Unalakleet SCAN 2221 63.91 -160.75 NWCC/ISMN / 

47 Upper Nome Creek SNOTEL 1090 65.37 -146.59 NWCC/ISMN Agreed 

48 Upper Tsaina River SNOTEL 1055 61.19 -145.65 NWCC/ISMN Agreed 

49 Weary Lake SCAN 1234 59.13 -159.09 NWCC/ISMN / 

50 Hozatka Lake SNOTEL 2210 65.20 -156.64 ISMN / 

51 Ikalukrok Creek SCAN / 68.08 -163.00 ISMN / 

52 Point_Mackenzie SNOTEL 1002 61.39 -150.03 ISMN / 

 

Table S2. Annual R values between soil moisture retrievals from various dielectric models and in-situ 

measurements and the SMAP vertically polarized brightness temperature. 

Dielectric 

Models 
Mineral Soil Based Models Organic Soil Based Models 

Ground 

Measurements 

Year N 
Wang 

1980 

Dobson 

1985 

Mironov 

2009 

Mironov 

2013 

Park 

2017 

Bircher 

2016 

Mironov 

2019 

Park 

2019 

Park 

2021 
in-situ 

2015 9 -0.715 -0.691 -0.716 -0.711 -0.700 -0.715 -0.780 -0.711 -0.709 -0.591 

2016 8 -0.714 -0.689 -0.714 -0.711 -0.701 -0.713 -0.779 -0.711 -0.704 -0.502 

2017 9 -0.786 -0.763 -0.786 -0.783 -0.774 -0.786 -0.841 -0.784 -0.785 -0.438 

2018 7 -0.768 -0.744 -0.768 -0.766 -0.756 -0.769 -0.830 -0.768 -0.763 -0.782 

2019 3 -0.591 -0.553 -0.590 -0.588 -0.573 -0.590 -0.695 -0.586 -0.583 -0.373 

2020 4 -0.741 -0.722 -0.741 -0.733 -0.725 -0.740 -0.775 -0.734 -0.725 -0.472 

2021 4 -0.746 -0.721 -0.745 -0.740 -0.730 -0.747 -0.800 -0.745 -0.737 -0.744 

Mean / -0.723 -0.698 -0.723 -0.719 -0.709 -0.723 -0.786 -0.720 -0.715 -0.557 

where N represents the number of in-situ stations used for the last-column R values, and where the column of the 
number tagged by bold font represents the dielectric model with the highest negative correlations with the SMAP 
vertically polarized brightness temperature. 
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Table S3. Summary of simulated soil moisture products. 

Abbreviation Loss Regression 

Observations Used During Simulation 

Initial Dry-down 
All the 

observations 

PLO ‘LOWESS’  Yes No No 

PLD ‘LOWESS’  Yes Yes No 

PQD Quantile Yes Yes No 

PQF Quantile Yes Yes Yes 

Table S4. Statistic metrics of different gap-filled products by comparing against in-situ measurements 

Validation Type*/Product Metric PLO PQD PQF DCT LIP 

Overall Validation 
ubRMSE 0.08 0.07 0.06 0.06 0.06 

R 0.46 0.59 0.63 0.65 0.65 

SMAP-non-synchronous Validation 
ubRMSE 0.09 0.07 0.06 0.06 0.06 

R 0.46 0.59 0.63 0.67 0.66 

SMAP-synchronous Validation 
ubRMSE 0.08 0.07 0.06 0.06 0.06 

R 0.45 0.59 0.64 0.64 0.64 
*Overall, SMAP-non-synchronous, and SMAP-synchronous validation metrics are computed using all the paired data, all 
the paired simulations non-synchronous with the SMAP observations, and all the paired simulation synchronous with the 
SMAP observations across the five gap-filled datasets, respectively.  

 


