

Novel Grading Tool Based on Open Source Software

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Philip Hart

Spring, 2023

Technical Project Team Members

Ishan Mahur

Marcus Mann

Ketian Tu

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Panagiotis Apostolellis, Department of Computer Science

Novel Grading Tool Based on Open Source Software

CS 4980 Capstone Report, 2023

Philip Hart

Department of Computer Science

University of Virginia

Charlottesville, VA, US

ph9aa@virginia.edu

Abstract—Developing open source software is prominent

among programmers around the world. Examining and

exploring the technology stack of open source applications make

for a more informed product manager and more skilled

programmer. Further, practicing open source development

offers exposure to new methods and diverse ideas. Throughout

the development of a grading tool, several different open source

software tools were engaged with, learned from, and used to

modify components of the application to support the grading

process for Project-Based Learning (PBL) assignments.

Information regarding the processes of these open source

software tools was consolidated and detailed.

Keywords—open source, grading software, annotation

technology, application development, technology stack

I. INTRODUCTION

Since the inception of the modern computer, the means of
designating source code ownership has resulted in a diverse
set of software. While businesses compete to deliver the best
online platforms and reap the most rewards, other groups of
programmers collaborate to produce code that anyone can use
and distribute. Advocates of this ‘open source’ idea claim that
it results in more robust software and more diverse business
models [1]. The idea of open source software originates from
Richard Stallman, who proposed it in 1984 with the launch of
the Free Software Foundation (FSF) [2]. Raymond, an open
source advocate, and a software developer wrote ‘The
Cathedral and the Bazaar’, an essay that argues that when
programmers work on source code, sending files to other
programmers inevitably improves the code [3]. Open source
software is not a new concept and has been applied in
countless fields and has been proven to deliver faster and
better results than proprietary technology. The open source
idea is crucial to consider whether in business or as a
programmer. Further, open source technology seeks to be
compatible with other relevant technology, such as massive
tech companies such as Apple, Microsoft, and IBM seeking to
make their products compatible with powerful open source
software [2].

Due to the importance of open source software, I chose to
explore technology that has been built on its principles. In
2015, a non-profit named The Hypothesis Project released
their annotation tool for the web named Hypothesis [4]. The
tool reached 20 million annotations in 2021, proving to be a
scalable software system. User interaction with the tool’s
features includes highlighting text, annotating text, joining
groups, and replying to other annotations in your groups.

In this paper, the Hypothesis tool’s web framework and
technology stack will be detailed in section II, followed by
requirements for repurposing the tool for grading in section
III. Section IV details the design of the developed grading tool

and Section V explores the limitations and potential features
for the tool based on what has currently been developed.
Lastly, section V concludes the technical report and argues for
the benefits of this project.

II. HYPOTHESIS TECHNOLOGY AND OVERVIEW

Hypothesis is an open source software tool for

annotating documents while surfing the web [5]. There are

two user interfaces for the tool, a website server for account,

group, and annotation management, and a Chrome extension

for annotating web pages. The official Hypothesis build on

the Chrome Web Store is set up in a specific way. After

signing up for an account, the user joins the public group, a

group where all Hypothesis users are part of. To avoid

confusion, the developed grading tool does not support a

public group. Users can set up their own groups, invite other

users to their group through a link, and begin annotating.

This is a high level overview of how a user interacts with

the Hypothesis tool. However, the services and processes

that allow the tool to operate are complicated and will now

be explained in further detail. The technology described is

only relevant to H, the source code that builds and runs the

Hypothesis back-end and web portal.

A. Application Development and Management

The H application is built using Docker, a software that
virtualizes an operating system in order to package source
code, dependencies, and resources into a Docker Container.
This method is very powerful, as containers package
applications together, guaranteeing successful execution from
one computing environment to another [6]. Further
application management includes GNU make, just one utility
of the vast quantity of open source software that the FSF has
produced. The MakeFile contains various commands useful
for code contributors, such as how to start the necessary
services in Docker and how to run H. There are various other
useful commands in this file that formats code, enters the
server shell of H, and run developed tests.

Beyond Docker and the make utility, Hypothesis
developers created custom CLI scripts extremely useful for
future developers contributing and testing code. These scripts
include CLI commands for reindexing Elasticsearch data,
initializing the database and other services, and for populating
the database with data for testing. These scripts proved to be
useful when changing components of the source code.

The web framework used to build the H application is
Pyramid, a Pylons Project product in Python. This web
framework is highly compatible with many other open source
software used in the application, such as SQLAlchemy and
Jinja2. The former is compatible with PostgreSQL and the
latter is an HTML friendly web templating language. Further,

H benefits greatly from using other Pylons Project products
such as Colander and Deform for forms, heavily used for the
creation and editing of group and user information in the H
portal.

B. Services

There are various services used by the H application,
including Elasticsearch, PostgreSQL, and RabbitMQ.

Elasticsearch is an open source search and analytics engine
capable of handling various types of data [7]. In H,
Elasticsearch is where annotations are stored before the H
application fetches some to display either in the Chrome
extension or the H portal. Elasticsearch works by storing data,
called shards, in nodes, which are a crucial component of
scalability in cloud computing. Each node can replicate data
from other nodes to their own if needed, however, an
Elasticsearch index includes only the data in the nodes that are
not replicated. An Elasticsearch cluster is defined by a group
of nodes. The most relevant type of search for the H
application is a text search. This is how annotations based on
group are fetched for a web page. In Elasticsearch, text must
be analyzed before it is stored in a node. The result of the
analysis is stored in data structures that makes searching for a
text attribute more efficient. Elasticsearch uses analyzers for
this preprocessing step which may be customized, but the
default analyzer removes punctuation and makes all letters
lowercase. After the text is analyzed, it is indexed into a
document, which is a JSON object, and mapped to the
corresponding key. In the case of H, each document represents
an annotation object, storing information such the creator,
text, group id, creation date, deletion status, and more.

The application of Elasticsearch in H means that every
annotation shown on a user’s screen comes from an indexed
annotation in the Elasticsearch service. In the back-end portal,
annotations may be filtered by user, group, tags, and URLs.
This filtering mechanism passes a term to the Elasticsearch
engine which initiates a fetch to annotations that contain an
equivalent term in a specified key of the annotation mapping.
This results in a certain subset of annotations displayed on the
user’s screen. In the client, a user will have a group selected
by default, whether it is the public Hypothesis group or any
groups they have joined or created. Upon accessing a specific
webpage, the client makes an API request to the H back-end
to fetch annotations from the Elasticsearch index that contain
a matching group id. This is an example of elasticity, and it
contributes towards high performance since the service does
not need to transmit all annotations to the H service, only the
ones that will be displayed.

PostgreSQL, or Postgres, is an open source object-
relational database system that uses the SQL language to
perform complicated queries safely and securely [8]. A benefit
of relational database systems is that there is much inbuilt fault
tolerance. Thus, Postgres is an excellent choice for an
application that must keep track of users in groups,
annotations in groups, and much more. Further, the choice of
database allows customization to further define how the
application should run. Adding fields to the annotation table
allows for the storage of more data that is incredibly useful for
grading online reports. To change the database in H, Alembic,
a python library for database migration, is used. First, write an
Alembic script, import SQLAlchemy for Python to define
columns in the table, and then use the Hypothesis CLI
commands to initiate the migration.

RabbitMQ is a message broker used for handling requests
to the H application. This is ideal for long running requests to
H as it enables H to manage many at once, providing an
extremely scalable application.

III. GRADING TOOL REQUIREMENTS

Design requirements for the grading tool were developed
using the H code base by the lead researcher through his
experience in grading web-based reports hosted on webpages
such as Google Sites for a Human-Computer Interactions
course (HCI). Further requirements were detailed from
colleagues and teaching assistants in his course. The
requirements were developed in the context of Project-Based
Learning (PBL), where students are encouraged to tackle
complex open-ended design problems. PBL is being
increasingly applied in design-based engineering courses [9].
This form of assignment challenges students to prototype, test,
and refine their solution to a problem. This may result in an
online deliverable that includes all text and media detailing the
progress on their project. Providing feedback at regular
intervals over the course of a project is much more effective
for a student’s learning process during such a project.

A. Within-context feedback and grading. For feedback to be

efficient for the grader and most useful to the student, its

placement in student work should be where deductions

are merited in the document.

B. Personalized adjustments of score and feedback. A fixed

rubric, which has defined point deductions when student

work does not meet a certain learning objective, does not

adequately capture the quality of student work.

Deductions should be personalized to the match student

accomplishment.

C. Collaborative grading. Not all graders in a higher level

education course have the same knowledge or skills as

the professor. Thus, collaborative grading is the best way

to learn the best strategies of giving feedback and to

communicate with other graders for increased grading

consistency.

D. General feedback and regrade requests. An overall

summary of feedback for student work is helpful for the

learning process. Should a component of the work be

misunderstood, the student should be able to submit a

regrade request to explain their rationale and earn points

back.

Using the above requirements, the H code base, along with
the client (Chrome extension) code base were repurposed for
grading online deliverables in an undergraduate HCI course.

IV. DESIGN OF E2LOGOS

The tool e2logos, for Evaluating Electronic Logos (from the

Greek word λόγος for word), was developed with the

requirements detailed in section III and applied to a course to

assist in the evaluation of online deliverables for PBL

assignments.
The H code base implemented groups, an abstract idea that

could be interpreted as project groups. Thus, users that are
instructors or graders must have certain permissions to grade
within these groups while students should not be able to view
their grade until the assignment is released. Thus, user roles

needed to be defined via an invite link for joining a group. The
instructor of a course would create group, which defines them
as the group creator in Hypothesis, but an instructor in e2logos.
The grader and student role have little permissions in the back-
end portal since they should not be able to manage course
materials. Changes to the H back end included the addition of
assignments and courses. Thus, only relevant annotations
from the selected assignment or course would appear in the
dashboard. The implementation of these two components
contributed to rapid progress in using Hypothesis for a grading
and feedback tool.

First, custom rubrics could now be requested by the client
from the Postgres database and displayed dynamically. The
rubric is located in the Hypothesis sidebar which overlays the
web page that is being graded. This is optimal for grading and
reduces the overhead of switching tabs during grading. This
fulfills requirement A, and allows graders to read, interact, and
write in the connected system of the web page and the e2logos
Chrome extension.

Second, the database schema of annotations was altered to
support grade annotations that contained either point
deductions or bonus points. In the client, Graders are able to
highlight text on a page, select a rubric item, and create an
annotation with personalized feedback and point adjustment.
The development of this feature fulfills requirement B, one of
the most crucial requirements not completely supported by
Hypothesis.

Third, while Hypothesis already supports live updates of
new annotations, a feature was added to increase the
communication between graders. Graders may make a regular
annotation describing their thought process on how to grade a
student’s online deliverable. Currently, it is still possible to see
this annotation in a group if it is not attached to a course
assignment. Random annotations like these may be made at
different points in a semester, so a solution was derived to
implement a grader’s only option for posting comments. This
restricts the annotation to users in the group that have the role
of a grader. This same concept applies to an annotation reply,
which may make it easier to debate certain deduction and
increase grading consistency. Thus, this feature fulfills
requirement C.

Lastly, Hypothesis fully supports general feedback
through the use of a regular annotation. However, requirement
D is not fully fleshed out on the e2logos system. Of course,
enabling student replies to annotations is possible, but the best
way of displaying those replies to an instructor or grader is
difficult given the context of Hypothesis. The back end portal,
or course dashboard, is likely the best place to aggregate
student replies to grade annotations and allow instructors or
graders to reject the appeal or adjust the feedback accordingly.

Regarding other back end updates, the bucketing system
was altered to bucket by assignment then by group. So each
assignment section has multiple group buckets with
annotations relevant to the group and assignment. A feature
was implemented with these buckets to display the score of an
assignment on a group bucket header. This shows a quick
calculation of the group’s grade from the back end portal
without having to navigate to the page.

V. LIMITATIONS AND FUTURE WORK

 While e2logos offers a novel system for evaluating online
student work, there are still many useful course management
features that the tool lacks.

 The definition of a user’s role in e2logos is dependent on a
specific group. This causes a few issues. First, the back-end
portal is not aware of a user’s role when any non-group filter
is applied. Upon login, the default filter is no filter, meaning
all of the relevant annotations in a user’s groups are displayed.
Since all groups are accounted for, the system is unable to
assign a user a specific role, since it may vary from semester
to semester. Thus, elevated permissions, such as creating
assignments, groups, and courses are restricted to admins and
staff of e2logos. Future iterations of this tool may benefit
greatly from role definition upon account signup. However,
the flexibility of roles from group to group does serve a good
purpose in the context of higher education courses. An
alternative and perhaps more powerful solution would be to
implement a user management page, where the admin of the
site (the instructor in this case) is able to set the role of each
user that has joined a group in their course.

 Compared to other grading tools, which display statistics
such as the mean, median, and standard deviation of an
assignment’s grade, e2logos does not offer in-built features for
tracking and analyzing individual and overall student learning.
A future goal is to implement these statistics for the
assignment filter page, which displays annotations from
multiple groups for one assignment. One aspect of e2logos that
may help track student learning objective is analyzing the
rubric sections for deductions shared among multiple groups.
This is a form of tagging, shown to help assist the learning
process by informing the instructor of what concepts to focus
on [10].

 Another limitation is the overall design of the dashboard
located at the H portal. For one, Hypothesis was designed to
bucket annotations by URL, which is rationale because that is
how the web is traversed. However, it is more logical for
annotations to be grouped together by the group and
assignment that they belong to. This enables the instructors to
aggregate only annotations that are relevant to their grading
review in their dashboard. Thus, the bucketing of annotations
on the dashboard is currently limited since the same
annotations from the same assignment and group may appear
on two different pages. The ideal implementation would be to
paginate per assignment if the number of annotations per
assignment is large but would only populate one page if the
number of annotations per assignment is small. Thus, I believe
future logic must be designed to accommodate these two
cases, as instructors who are users may have different course
contexts. Another issue is grouping annotations by their
document in a bucket. Although, this could be easily
implemented by sorting the annotations based on document id
and then designing the UI which would show separation
between annotations within a single expanded bucket. An
extremely helpful component in testing changes to the
bucketing system is a mirror of the HCI course database. This
mirror allows for testing of code with a massive number of
copied annotations.

 As mentioned in section IV, there is no regrade request
management system in the back end portal, which make
processing regrade requests for the instructor difficult. Future

iterations of the tool would benefit the instructor and graders
greatly by including a regrade request management system.

 Within the back end, relevant annotations must be easily
accessible, or else the usefulness of aggregated annotations is
lost. Therefore, much UI improvement and data organization
must go into customizing the back end portal. Hypothesis was
built for a different purpose, and user engagement with the
portal will suffer if it contains no features beneficially to the
grading process and managing the course.

VI. CONCLUSION

 Throughout the development of this project, I have been
exposed to various open source software tools and learned
more about how they interact with other applications on the
internet. I was also able to contribute to software that is
actively being used to grade online deliverables in a higher
education course. Through this, I gained more insight on the
open source programming mindset and collaboratively with
other developers. Fully understanding the technology that
enables various features of an application is essential to
experimenting with it effectively. Further, updating and
defining queries in the database helped me understand how
complex object relationships can get within an application and
is a good lesson to learn from for future design problems.

 I believe this project has much value for benefitting
student learning. The consolidation of information on one
page is timesaving for graders and more influential for a
student’s learning. Collaborative grading is easy and
annotation syncing can be initialized with the press of a
download button. Communication between instructors,
graders, and students is optimized by overlaying the e2logos
sidebar on the submission site and enabling inter-grader
annotations. Finally, the dashboard serves as an aggregation
of feedback for students and grades, supporting teaching
practices by providing data on how the projects are going.

 Open source software is powerful and easily integrated
with other software with its likeness. Examining this
technology through the implementation of grading features
provided me with a foothold for understanding the
programming design, as well as computing and network
resources, required to build open source software

REFERENCES

[1] M. W. Wu and Y. D. Lin, “Open source software

development: An overview,” Computer (Long

Beach Calif), vol. 34, no. 6, pp. 33–38, Jun. 2001,

doi: 10.1109/2.928619.
[2] A. Bonaccorsi and C. Rossi, “Why open source

software can succeed,” Res Policy, vol. 32, no. 7,

pp. 1243–1258, Jul. 2003, doi: 10.1016/S0048-

7333(03)00051-9.

[3] E. Raymond, “The cathedral and the bazaar,” Oct.

2005. doi: 10.1007/S12130-999-1026-0.

[4] R. Shaikh-Lesko, “Web annotation tool Hypothesis

hits a milestone,” Nature, vol. 569, no. 7755, p. 295,

May 2019, doi: 10.1038/D41586-019-01427-9.

[5] “Home : Hypothesis.” https://web.hypothes.is/

(accessed May 08, 2023).

[6] “What is a Container? | Docker.”

https://www.docker.com/resources/what-container/

(accessed May 08, 2023).

[7] N. Kathare, O. V. Reddy, and V. Prabhu, “A

Comprehensive Study of Elasticsearch,”

International Journal of Science and Research, doi:

10.21275/SR21529233126.

[8] “PostgreSQL: About.”

https://www.postgresql.org/about/ (accessed May

08, 2023).

[9] M. C. English and A. Kitsantas, “Supporting

Student Self-Regulated Learning in Problem- and

Project-Based Learning,” Interdisciplinary Journal

of Problem-Based Learning, vol. 7, no. 2, p. 6, Sep.

2013, doi: 10.7771/1541-5015.1339.

[10] T. Im, T. Im, and V. Dennen, “Building a

Collaborative Knowledge Base in Diigo: %How

Links, Tags, and...,” in E-Learn: World Conference

on E-Learning in Corporate, Government,

Healthcare,..., Chesapeake, VA: AACE, Oct. 2013,

pp. 794–797.

	I. Introduction
	II. Hypothesis Technology and Overview
	Hypothesis is an open source software tool for annotating documents while surfing the web [5]. There are two user interfaces for the tool, a website server for account, group, and annotation management, and a Chrome extension for annotating web pages....
	A. Application Development and Management
	B. Services

	III. Grading tool Requirements
	A. Within-context feedback and grading. For feedback to be efficient for the grader and most useful to the student, its placement in student work should be where deductions are merited in the document.
	B. Personalized adjustments of score and feedback. A fixed rubric, which has defined point deductions when student work does not meet a certain learning objective, does not adequately capture the quality of student work. Deductions should be personali...
	C. Collaborative grading. Not all graders in a higher level education course have the same knowledge or skills as the professor. Thus, collaborative grading is the best way to learn the best strategies of giving feedback and to communicate with other ...
	D. General feedback and regrade requests. An overall summary of feedback for student work is helpful for the learning process. Should a component of the work be misunderstood, the student should be able to submit a regrade request to explain their rat...

	IV. Design of E2Logos
	V. Limitations and future work
	VI. Conclusion
	References

