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Visualizing Complex-Valued Functions with GPU Computing

Abstract

Complex-valued functions play an important role in physics, electrical engineering, and

many branches of mathematics; however, to visualize such a function in the same way we do

real-valued functions would require four spatial dimensions — a luxury we unfortunately lack.

To address this need, mathematicians have devised alternative methods of visualizing

complex-valued functions, such as domain coloring, conformal mapping, and more. Here, we

explore how to efficiently implement these algorithms on graphics processing units (GPUs),

which allow for greater concurrency than traditional CPUs.

Introduction

The Mandelbrot set consists of the points c in the complex plane for which the sequence

defined iteratively by zn+1 = zn2+ c remains bounded, with z0= 0. Domain coloring this fractal

produces images shown in Figure 1.

Figure 1: Mandelbrot Set

The Mandelbrot set itself consists of the black points; the other points are colored

according to “how quickly” the sequence of zn diverges. Visualizations like the one above are

expensive to compute. For example, the above image has a resolution of 2560x1600, meaning it
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contains over 4 million pixels. For each pixel, on the order of 100 floating point operations are

required to determine that pixel’s color. In an unparalleled program, each of these floating point

operations would be performed sequentially. However, if we parallelize our program, such that

many operations can be performed concurrently, the time to generate the image can be greatly

reduced. On CPUs, one can accomplish this via multithreading or libraries like AVX-512, which

enable arithmetic operations to be vectorized, so that they act on chunks of memory concurrently,

rather than on a single value.

The problem is that on a modern consumer-grade CPU, the ability to multithread is rather

limited. It is unlikely to be able to use more than 20 threads. Likewise, AVX-512 acts on 512 bits

of memory at a time. In C++, 8 double precision floating point numbers can fit in this amount of

memory. Thus, when working with variables of this type, AVX-512 intrinsics are unlikely to

speed up computations by more than 8x. To speed up our computations even further, we must

look to GPUs. In contrast to our CPU’s hypothetical 20 threads, GPUs have on the order of

thousands, which is very promising for applications requiring a high degree of parallelism, such

as domain coloring.

Related Works

The techniques we discuss for visualizing complex-valued functions are not new; Wegert

discusses domain coloring and phase portraiture extensively in (Wegert, 2016). Similarly,

Frederick and Schwartz give an overview of conformal mapping (Frederick & Schwartz, 1990).

However, our work is novel in that we focus not on the mathematics of how these

techniques work, but instead on how to implement them for execution on a GPU. NVIDIA, a

leading GPU manufacturer, maintains a tool kit called CUDA, which enables one to write C++
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style code to be executed on GPUs. The syntax of CUDA is very similar to C++, with some

added decorators on functions one wishes to parallelize. NVIDIA maintains a very informative

introduction to CUDA on their blog for those interested in learning (Harris, 2017).

Project Design

We have so far implemented two flavors of visualization: domain coloring and conformal

mapping. These techniques are similar in that if we wish to visualize a complex-valued function

f, both involve coloring a point z in the complex plane according to the value of f(z). Color is

used because z and f(z) are complex numbers, and therefore each are 2-dimensional, hence

plotting f as we do real functions would require four spatial dimensions.

The distinction between domain coloring and conformal mapping is in how f(z) is used to

determine the color of z. For domain coloring, we use the angle of f(z) to determine the hue of z,

and the magnitude of f(z) to determine the lightness of z. In particular, we use the functions

below to determine an HSL representation of the color of z (Saravanan et al., 2016).

𝐻 = 𝑎𝑟𝑔(𝑧) +  2π
3

𝑆 = 1

𝐿 = 2
π 𝑎𝑟𝑐𝑡𝑎𝑛(𝑧)

However, the pixels in our image are colored using an RGB representation. Therefore, it

is necessary that we convert our HSL values to RGB values. To accomplish this, we use an

algorithm detailed in [3]. Using the above, we can produce domain colorings like that of the

function exp(1 / z), which has an essential singularity at 0 pictured in Figure 2 below.
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Figure 2: Essential Singularity

Intuitively, we can observe how the function behaves by inspecting the image. At the

white portions, the function diverges off to infinity, while the black portions are where it

converges to zero; where the black and white meet is the function’s singularity. How the angles

change is also represented by the changes in hue.

On the other hand, conformal mapping involves tiling the complex plane with a “pattern”

image, such as the one pictured in the left of Figure 3 below, then applying f to distort the image

in the plane.

Figure 3: Conformal Map of 2cosh(z)

The general algorithm for implementing domain coloring and conformal mapping on a

GPU proceeds as follows: for each pixel in the output image, we determine which point in the
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complex plane it represents. To this point, we then apply the function we wish to produce a

domain coloring of, which produces another complex number. To this number, we then apply a

function for coloring the pixel depending on whether we are producing a domain coloring or a

conformal mapping. Since for each pixel this process depends on no other pixels, this algorithm

can be parallelized. That is, supposing we had an eight core CPU, we assign every eighth pixel to

each core, so each core does ⅛ of the total work. For a CPU, eight cores is a respectable number.

The code in this project was written to be run on a GTX 3060, which has 3584 CUDA cores.

After having determined the color for every pixel, we write the results to a .ppm file for

output. This image format is simple enough to implement a reader and writer from scratch, and

can easily be converted to more conventional image formats such as .jpg or .png should the user

wish.

Results

The project is still ongoing, however so far we have seen significant speed-ups in the

GPU implementation of the algorithm, especially on large images. The current benchmarking

suite includes visualizations of 61 fractals, each with an image size of 2048x2048 pixels, and

amounting to 778MB of raw RGB values. Our implementations are able to produce these

visualizations in 12 seconds, or about 0.2 seconds per image. We have also started work on a

website (https://elijahkin.github.io/) for documenting each of the visualizations produced.

Conclusion

Students of complex analysis should find the domain colorings and conformal mappings

produced with our implementations pedagogically useful. Moreover, being implemented on a
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GPU, it may eventually be possible to interact with the visualizations live; instead of saving them

as image files, we envision the visualization opening a new window and allowing the user to

zoom and pan as they wish. The fact that our visualizations are generated on a GPU makes this

dream closer to reality.

Future Work

We plan to implement other techniques of visualization going forward. For example,

phase portraiture is a technique similar to domain coloring except caring only about the hue of

f(z), ignoring its magnitude. This is useful for functions, such as the Riemann zeta function,

where ordinary domain coloring is not especially illuminating such as that shown in Figure 4.

Figure 4: Riemann Zeta Domain Coloring

Further, we intend to implement visualizations for escape-time fractals like the

Mandelbrot set and burning-ship fractals. Moreover, we will continue work on the website to

more thoroughly document existing visualizations, as well as uploading new ones.
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Infinite Controversy: Reactions to Cantor’s Theory

Introduction

As mathematics has evolved, different schools of mathematicians have evolved along

with it. In the late nineteenth century, the predominant schools were formalism and

pre-intuitionism, the latter of which influenced or was closely related to schools such as

intuitionism, constructivism, and finitism.

In 1874, a mathematician named Georg Cantor published a proof suggesting that two

sets, each containing infinitely many elements, can be of different “sizes.” Today, this sentiment

is often stated informally as “some infinities are bigger than others” and almost all

mathematicians working today are in agreement with this. However, this was not always the

case; Leopold Kronecker, Cantor’s former teacher, labeled him a “scientific charlatan” and

“corrupter of youth” and Henri Poincaré called his work “a grave mathematical malady, a

perverse pathological illness that would one day be cured.” Conversely, Bertrand Russell

described him as “one of the greatest intellects of the nineteenth century” (Dauben, 1990). In this

paper, we will analyze the responses to Cantor’s theory from several schools of mathematicians

through the lens of the sociology of scientific knowledge (SSK) framework.

Sociology of Scientific Knowledge

The SSK framework emphasizes understanding science as a social activity, and in

particular, that the scientists doing research are humans with their own beliefs and convictions.

For example, the field of cosmology deals heavily with the dating of the universe. In analyzing a

cosmological result through the SSK framework, one might consider whether the scientists
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involved, either spiritual or secular, are biased towards finding results supporting their faith or

lack thereof (Porta et al., 2016).

In the case of Cantor’s theory, we will analyze its detractors and proponents, whose

disagreement stemmed largely from differing views on infinity, God, and the nature of

mathematics.

Cantor’s Theory

To understand the disagreement, it is necessary to first familiarize oneself with Cantor’s

theory that “infinite sets can have different cardinalities.” To understand this statement, it is

necessary to define “set” and “cardinality”; a set is simply a collection of objects. For example,

A = {a, b, c} and B = {α, β, γ, δ} are sets containing three Latin letters and four Greek letters

respectively. Intuitively, the “size” of B is in some sense larger than that of A. Mathematicians

formalize this notion of size as a set’s cardinality. For a finite set, its cardinality is simply the

number of elements it contains. However, many of the most important sets are infinite, such as

the set of non-negative integers, commonly denoted as ℕ. Therefore, we would like to generalize

our definition of cardinality to any (possibly infinite) set, being careful to do so in such a way

that this generalization is consistent with our definition of cardinality for finite sets.

This is accomplished via surjections; a surjection from a set X to a set Y is a function f

such that for every element y of Y, there exists an element x of X such that f(x) = y. Colloquially,

f is a surjection if given an arbitrary element of Y, we can find an element of X that maps to it. If

there exists a surjection from X to Y, we say that the cardinality of X is at least as large as the

cardinality of Y, since the surjection suggests we can “cover” Y with elements of X. To illustrate

this concept of surjection, recall the sets A and B discussed previously. We concluded that the
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cardinality of B is at least that of A, since B contains more elements. Hence, for this new

definition of cardinality in terms of surjections to be consistent with our previous one, we should

be able to demonstrate a surjection from B to A, and indeed,

Figure 1: Surjection from B to A

Figure 1 is a surjection because for every element of A, there exists an element of B that

maps to it. Thus, there exists a surjection from B to A, so we may conclude that the cardinality of

B must be at least the cardinality of A.1 For finite sets, it turns out that this definition is exactly

the same as a set having more elements than another, however, it also allows us to measure the

cardinality of infinite sets, whose elements we cannot count directly.

Cantor’s argument is essentially this: the set of natural numbers, ℕ, is an infinite set.

Were there only one “size” of infinity, then for any other infinite set A, we should be able to find

a surjection from ℕ to A, that is, conclude that the cardinality of ℕ is at least that of A. If we

were to demonstrate that for some set A this cannot happen, then it must be that the cardinality of

ℕ is not at least the cardinality of A, and thus the cardinality of A is “larger” infinity. Cantor’s

proof that there exists no such surjection relies on a line of argumentation known as proof by

contradiction; if one assumes the negation of a statement and is able to derive a contradiction,

then it must be that the statement is true.

1A mathematical idea analogous to Hume’s principle in philosophy.
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In 1891, Cantor published his diagonal argument, which is the version of the proof most

commonly taught to mathematics students today. The argument proceeds by showing there exist

no surjection from ℕ to the closed interval [0, 1], that is, the set of all real numbers between 0

and 1, including both endpoints, and is constructive – by assuming there exists a surjection from

ℕ to [0, 1], one can construct an element of [0, 1] mapped to by no element of ℕ. Hence, there

must be no such surjection, so the cardinality of ℕ is not at least the cardinality of [0, 1], and so

the cardinality of [0, 1] must be a “larger” infinity than the cardinality of ℕ.2

Detractors

The term pre-intuitionism was coined retroactively in 1951 by L. E. J. Brouwer, in order

to distinguish its members from its philosophical successor, intuitionism (Brouwer, 1981). A

primary tenet of pre-intuitionism and its derivatives is a dissatisfaction with proof by

contradiction. To most of the mathematical community, it is acceptable to define a term, for

example group, and prove by contradiction that it cannot be that no objects satisfying the

definition of a group exist. Therefore, one may conclude that group is a useful definition – it

refers to a non-empty set of mathematical objects. However, the pre-intuitionist would find this

argument insufficient; unless one is able to give a concrete example of a group, they would argue

the definition is useless.

This explains why some pre-intuitionist mathematicians may have opposed Cantor’s

theory. His argument relied fundamentally on deriving a contradiction from the assumption that a

surjection exists. While his 1891 proof is constructive, in that he demonstrates a specific element

of [0, 1] that is not mapped to by any element of ℕ, some of his earlier proofs were not, and

therefore unsatisfying to mathematicians with beliefs of a more constructive nature.

2 Today, we refer to the cardinality of ℕ as countable infinity, and use uncountable infinity for larger varieties.
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The finitists were a related school, whose central tenet was that they accepted only finite

mathematical objects to exist. Their issue with Cantor’s theory is clear – not only did they reject

that the cardinalities of ℕ and [0, 1] were not equal; they rejected the existence of ℕ and [0,1] at

all. For many, the motivation for finitist beliefs was religious – infinitude was an inherently

godly quality such that it would be seen as sacrilege to ascribe it to anything other than the

divine. Cantor himself was a Lutheran and believed his mathematical work to have revolutionary

theological value, saying “From me, Christian philosophy will be offered for the first time the

true theory of the infinite.” (Dauben, 1990). However, not all theists were as eager to explore the

religious consequences of Cantor’s theory. Such was the case for prominent finitist and former

teacher of Cantor’s, Leopold Kronecker, who famously said, “God created the integers; all else is

the work of man.” Moreover, on his student, he wrote, “I don't know what predominates in

Cantor's theory – philosophy or theology, but I am sure that there is not any mathematics here”

(Zenkin, 2004).

Secular mathematicians had reason to be finitist as well. Since the time of Aristotle, there

has been a distinction between potential infinity and actual infinity; potential infinity refers to an

interminable process, for example, one can never finish enumerating the natural numbers

because each one has a successor. Actual infinity, in contrast, would be to speak about the set of

natural numbers, as if it had been completed. In rejecting actual infinity, Aristotle was able to

refute Zeno’s paradox3, and thereby set a precedent for others doing so, which would continue

until quite recently. In this way, one could acknowledge the infinitude of natural numbers, but

reject the existence of ℕ and therefore certainly Cantor’s theory.

3 The paradox states that to walk 1 meter, one must first walk ½ meter, which in turn necessitates one to walk ¼
meter, and so on. Repeating this division ad infinitum, Zeno concludes that to walk 1 meter requires one to complete
infinitely many tasks, and therefore, motion is impossible, contradicting common sensibility.
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Proponents

Among Cantor’s proponents were the formalist school of mathematicians, who were

guided by the idea that mathematics need not be representative of reality, but instead a kind of

game. As Weir writes, “This idea has some intuitive plausibility: consider the tyro toiling at

multiplication tables or the student using a standard algorithm for differentiating or integrating a

function.” These processes are not unlike a chess player searching for the optimal move. In the

formalist view, mathematics is about successively inventing definitions, applying rules, and

exploring the consequences. For example, that every square is a rectangle is a simple

consequence of the standard definitions of square and rectangle. It is unequivocally true from our

definitions, even if no squares or rectangles exist in reality (Weir, 2019).

It is not surprising then that formalists generally embraced Cantor’s theory. David

Hilbert, a prominent formalist, wrote, “No one shall expel us from the paradise which Cantor has

created for us!” (Zenkin, 2004). To them, it must have seemed like a curious, amusing

consequence of his definitions of surjection and cardinality, and would not have concerned

themselves with the philosophical implications of the existence of different infinities.

Conclusion

Most mathematicians working today accept Cantor’s theory. Perhaps this is due to an

increase in secularism, or a shift towards the view that mathematics need not be representative of

reality; perhaps it is due to his ideas no longer seeming as radical, scary, or disruptive after

enduring nearly 150 years of criticism; perhaps it is due to set theory, the natural setting for

cardinality and surjections, becoming the standard foundation of mathematics done today. More

than likely, it is several of the above in combination with other factors I have not realized.
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There is much room for further analysis. In particular, Bertrand Russell was another

prominent figure who supported Cantor’s theory, and one could explore how Cantor’s ideas

influenced later conceptions of infinity, for example Hilbert’s analogy of the infinite hotel. In

contrast, Ludwig Wittgenstein opposed Cantor’s theory, sharing views with the finitists, while

also trying to distance himself from that school. Further, one could explore the development of

more modern schools, such as ultrafinitism, which rejects not only infinite quantities but even

large finite ones. The sociology of scientific knowledge STS framework provides the appropriate

lens through which to analyze the reactions to Cantor’s theory; principally, it emphasizes the

beliefs and convictions of Cantor’s contemporaries to understand why some reacted so

vitriolically while others praised him as a visionary.
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