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Reinforcement Learning Based Scheduling for the

Next-Generation Astronomy Observation

December, 2024

Abstract

The next-generation Very Large Array (ngVLA), as the next-generation
radio/mm telescope operated by the National Radio Astronomy Observa-
tory (NRAO), has ten times the sensitivity and spatial resolution of the
previous generations of telescopes and can operate at frequencies span-
ning up to 116 GHz, which can provide large scale astrophysical imaging
for new discovery. There are five ngVLA key science goals: i) unveiling
the formation of solar system analogues, ii) probing the initial conditions
for planetary systems and life with astrochemistry, iii) charting the as-
sembly, structure, and evolution of galaxies from the first billion years to
the present, iv) using pulsar in the galactic center as fundamental tests
of gravity, v) understanding the formation and evolution of stellar and
supermassive black holes in the era of multi-messenger astronomy.

To achieve the scientific goals, the next step is to extend the scheduling
algorithm from the previous generation telescope to perform optimal or
near-optimal scheduling solutions for ngVLA. Given antennas, subarrays
were created that can be sufficient to cover all high-priority observation
requests, then given the selected Scheduling Blocks (SBs) as observation
task instances with multiple attributes including frequency, local standard
time (LST), Phase Root Mean Square (RMS), weather-related attributes,
angular resolution, largest angular scale, etc, the scheduling system ar-
ranges them with optimal or near-optimal performance to execute in the
given observation time window. The system may first find eligible SBs and
corresponding SAs according to the current and forecast weather condi-
tions, then use a scheduling algorithm to generate subarrays eligible for
selected SBs and a schedule that considers priorities. Previous scheduling
approaches are not sufficiently efficient for ngVLA. Take the brute force
method as an example. Searching all possible scheduling combinations
is guaranteed to find the optimal scheduling plan, however, the schedul-
ing overhead increases exponentially when the number of SBs increases
and the searching is even more complex with the searching of all possible
subarray combinations. To have an efficient solution in the long run, we
compare multiple scheduling algorithms from the literature and propose to
explore the use of abstract structure with policies to generate optimal or
near-optimal algorithms, and leverage the off-line Reinforcement Learning
(RL) method to solve the scheduling problem. In this work, we propose
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using Action Space, which generates all possible scheduling options given
the states rather than comparing each SB. We also provided two conven-
tional methods that have optimal or near-optimal performance with three
metrics: throughput, cost, and job latency. Lastly, we leverage the RL
method to achieve near-optimal or optimal performance compared to the
conventional method. When scaling the number of antenna subsets, we
find the prediction time of the RL method stays nearly constant while the
conventional method has a prediction time that grows exponentially, we
found the RL method can greatly reduce execution time compared to con-
ventional methods starting 8 or more antenna subsets while maintaining
the highest average performance.

1 Introduction

The National Radio Astronomy Observatory (NRAO) has been building the
next-generation Very Large Array (ngVLA). It uses radio interferometers that
use interference of superimposed waves to extract astronomy information [36].
It operates at frequencies of 1.2 GHz to 116 GHz and can provide large-scale
astrophysical imaging with an order magnitude greater sensitivity and spatial
resolution than previous instruments [65]. Previous instruments include Very
Large Array (VLA), Expanded VLA (EVLA) (or Jansky Very Large Array
(JVLA)), and Atacama Large Millimeter/submillimeter Array (ALMA). VLA,
the first generation of radio telescope developed by NRAO scientists, was able
to make images with an angular resolution comparable to the best optical tele-
scopes [49]. Later, the expansion of the original VLA resulted in JVLA. The
improved version brought two more frequency bands (S and Ka) to provide
100% frequency coverage from 1 to 50 GHz. Compared to VLA, JVLA im-
proved the instantaneous bandwidth up to 8 GHz, which is two orders of mag-
nitude increase from VLA. Most importantly, JVLA started Routine Dynamic
Scheduling for almost all observations, allowing scientists to match projects with
their required atmospheric conditions with much more efficient use of telescope
time [70]. ALMA, on the other hand, started its operations in March 2013. Its
receivers can detect wavelengths from 8.5 to 0.3 mm (35 GHz to 950 GHz), and
the antennas function as a whole of up to 66 antennas with miles of distance
across. In addition, every interferometer is equipped with a correlator that is a
supercomputer operating at speeds of 17 quadrillion mathematical operations
per second to correlate the antennas’ signals and divide the signals by frequency
from all instruments to form high-resolution images [4].

Besides the instrument itself, VLA, JVLA, and ALMA use schedule algo-
rithms to select appropriate observing programs to ensure the efficient use of
radio telescopes. VLA specifically considers telescope slew rate, source separa-
tion, atmospheric opacity, and SB rank priority as necessary input for dynamic
scheduling [16]. All observatories use a Dynamic Scheduling Algorithm (DSA) or
similar algorithm to break down factors that determine whether a given source
of Scheduler Block (SB) can be observed at all at the current time and use the
overall score of all factors to decide the highest-score SB to observe. There are
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also different scheduling policies to use at different times to fit the scientific and
operational needs [20]. However, for ngVLA, previous scheduling algorithms
are not suitable as they do not schedule multiple observation tasks simultane-
ously while the ngVLA array can be logically divided into multiple subarrays
with the ability to operate independently. Therefore, additional improvement is
needed on previous scheduling policies as well as the ngVLA subarray allocation
method to achieve high efficiency in ngVLA operation.

The previous DSA on VLA, JVLA, and ALMA focused on balancing factors
to choose appropriate observing programs. In general, the goal of any sched-
uler assigning resources to perform tasks aims at one or more goals. The goals
include fairness, efficiency, high throughput, low response time, predictive, low
overhead, high resource utilization, no indefinite postponement, enforcing prior-
ities, etc. Fairness measures the difference between the desired load which each
job or process runs in a reasonable amount of time and the actual load where
how each job and process runs. The maximum of unfairness is when one job
or process uses all the resources at all times [3]. Efficiency, similar to fairness,
measures the resource occupancy of a job and process in run time. Maximum
efficiency is achieved when the job or process uses the maximum resource pos-
sible, and minimum efficiency occurs at the idle state [114]. The measure of
throughput is the completion rate of jobs and processes [14]. Throughput on
high-priority SBs is one of the few key attributes in the scheduling algorithm for
this work which we would like to maximize the number of A grade observation
tasks to be scheduled during an observing season.

In general, a well designed scheduling wants tasks to be predictable, maxi-
mize resource utilization, enforce priorities. For jobs and tasks to be predictable
means given tasks should take the same amount of time and resources in a given
condition [17]. However, in a real scheduling scenario, both the observation tasks
and the weather conditions have high variance, for the tasks to be predictable
will require a large amount of effort in forecasting the weather conditions and
simulating the observation tasks. Resource utilization, in general, is maximized
when running jobs or processes fully utilize the underutilized resources as it will
achieve high resource utilization by keeping the instrument busy at all times [42].
A scheduler that enforces priorities will allows the job or process with the highest
priority score to have a better chance to run earlier because of its influence [69].

As ngVLA, the next-generation radio/mm telescope, operated by NRAO
improved ten times the sensitivity and spatial resolution of previous genera-
tions of the telescope, the scheduling algorithm shall be carefully improved or
redesigned to back the telescope operation for efficiency and productivity. The
DSA applied to previous generation VLA is concerned only with selecting one
single sub-array from SBs to execute at any moment. It analyzes SBs with
their attributes including Frequency, LST, Phase RMS, weather attributes like
atmospheric opacity, angular resolution, largest angular scale, and observation
time to filter for capable SBs for current and forecast conditions, then evalu-
ates SBs with weighting algorithm to find the SB with the highest score for
operation. The DSA is well-designed for single SB operation. However, ngVLA
with multi-purpose subarrays can schedule multiple observation tasks simulta-
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neously at one-time step execution. For instance, there are Main Array (MA),
Long Baseline Array (LBS), and Short Baseline Array (SBA), and each subar-
ray can operate independently for multiple observations, in practice, there are in
the order of 20 different subarrays from the ngVLA. Therefore, this work aims
to address the challenge of scheduling methods for ngVLA. We pay attention to
three metrics the most: throughput on high-priority SBs, cost, and job latency,
which will guide us in designing the scheduling algorithms. Here, the cost is the
key metric to optimize refers to the product of the priority score of all SBs and
the time duration that they execute.

In this work, we focus on building an efficient scheduler structure that can
simulate SAs and SBs while being scalable and also leverage Reinforcement
Learning (RL) techniques to improve upon DSA for astronomy observation
scheduling. The scheduler structure is built with a few abstractions, multiple
policies, an RL scheduling method with episode learning, and a policy update
threshold setting. It can generate SBs, output episodes, and end evaluations.
The structure supports a scalable scheduler simulator working along with some
scheduling policies and an off-line RL model. We started from fundamental
blocks like SAs and SBs to final performance evaluation, our simulator has the
capability of creating different numbers of Antenna groups and corresponding
SAs, generating tasks with priority scores, and adopting different policies and
the RL method to perform near-optimal scheduling strategy. There are a few ab-
stractions used to solve the problem efficiently. First, two abstractions adopted
from DSA that have SAs as the power set of antenna groups which will cover all
possible combinations of antenna subsets, and SBs as instance representations
of all observation requests with attributes to map into one of the SAs. The third
one is action space, where each action consists of one or more SAs that are com-
patible to execute simultaneously. Specifically, we use action space abstraction
with policies that can achieve optimal or near-optimal scheduling decisions, then
leverage the off-line Reinforcement Learning (RL) method to train the model to
reach the best policy performance and RL improves scheduling efficiency. The
contribution of the project is as follows: development of a new scheduling model
with scalable input, adding of a new abstraction for multi-scheduling scenarios,
designing a policy with optimal or near-optimal throughput, cost, and job la-
tency, leveraging off-line RL to solve the scheduling problem with competitive
performance, and providing a comprehensive review and analysis of existing lit-
erature in a scheduling problem. We also study the limitations and possible
directions when solving the scheduling problem with more variables. For in-
stance, when there are time variances between SBs, and/or different numbers of
antenna groups available at the beginning, then a generalized solution is needed
for optimal or near-optimal scheduling.

The remainder of this paper is structured as follows. Section 2 presents
related work, providing background information to the astronomy observation
scheduling problem and a literature review on scheduling algorithms in computer
science along with their applications. Section 3 presents the design of our RL-
based scheduling method. Section 4 presents a performance evaluation for a
comprehensive comparison with three scheduling methods and one baseline.
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Section 5 closes this thesis with remarks on our future work.

2 Related Work

In this section, we will first present the previous VLA scheduling algorithms
with pros and cons. Then, we will present a literature review related to work in
job scheduling algorithms as well as using the RL method to solve the problem.
Lastly, we will identify significant applications that are related to ngVLA, and
compare and contrast different methods in order to design the one to be used
in this project.

2.1 Generations of VLAs and Their Scheduling Algorithms

Very Large Array (VLA), as a radio astronomy observatory, consists of tens or
hundreds of massive telescopes across nearly 100 kilometers. It can observe as-
tronomy images with spatial resolution and angular resolution competitive with
the best optical telescope like the Hubble Space Telescope (HST). The first gen-
eration of the VLA operates as an interferometer, which combines signals from
multiple telescopes to achieve high angular resolution with key achievements
such as observation of black holes, protoplanetary disks, and complex gas mo-
tions since operation back in the 1980s. [108]. Karl G. Jansky Very Large
Array (JVLA), as the upgraded version of the VLA, installed new receivers and
digital back-ends, allowing it to achieve higher resolution and sensitivity. As it
covers a broader range of frequencies, from 73 MHz to 50 GHz, JVLA is used
to explore more cosmic phenomena and study magnetic fields [55].

The other two variations of VLAs, ALMA and Very Long Baseline Array
(VLBA), also use radio signals for astronomy observation. ALMA consists of 66
high-precision antennas and can observe in millimeter wavelengths compared to
the centimeter-wavelength of VLA observatory [15]. VLBA uses long baseline
interferometry across 8,611 kilometers in New Mexico and can observe radio
wavelength ranging from three millimeters to ninety centimeters with scientific
achievements including cosmic objects’ spins, shapes, and movements [72].

As indicated by Dr. Hiriart [38], the VLA scheduling algorithm can be di-
vided into three stages: i) filtering eligible observation tasks, ii) assigning a
priority score to each task, and iii) scheduling selected tasks for a given time
horizon. The main contribution of the filter function is fitting the system to
predict the opacities in the near future. One of the arguments is to perform
predictions from measurements of the surface ambient and dew point tempera-
ture [9]. However, the atmosphere is not strictly related to the distribution of
water vapor, so using surface measurements cannot predict opacity well. VLA
instead uses weighted combinations of surface measurement and day of the year
to find the fits for opacity prediction [16]. Then, based on the opacity predic-
tion, ineligible SBs are filtered from the pool of the schedulable blocks. The
second stage is to assign a priority score to each eligible SB. The priority score
is calculated for each SB in criteria such as primary, urgency, science rank, over-
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ride, etc. Each criteria type has its range and weight. The final priority score
is the product of a weighted sum using all criteria: P =

∑n
i=1 wi ∗ ci, where

w denotes the weight and c denotes the criteria. The third stage is assigning
priority scores, the algorithm then creates observation scheduling for all eligible
tasks. First, it adds all selected SBs to the schedule if the time intervals do not
conflict with the schedule window. Second, it sorts SBs by priority, and then fits
or inserts SBs into the schedule. Last, it adds SBs outside of the time interval
to the schedule. In practice, the final schedule is presented to the operator, and
only the first SB in the schedule is accepted. The schedule is rearranged once
execution ends, so the algorithm is guaranteed to produce optimal execution
performance with the setting [38].

For the next-generation VLA such as ngVLA, the previous scheduling algo-
rithms would not be optimal. This is because in ngVLA, a single telescope can
be divided into three primary subsets: Main Array (MA), Long Baseline Array
(LBS), and Short Baseline Array (SBA). MA can be further split into three
sub-arrays: Core, Plains + Core, and Mid-baseline. This architecture allows
ngVLA to execute multiple observatory tasks simultaneously. But DSA that
schedules one task at a time will greatly reduce the performance. Therefore, a
new algorithm to have ngVLA achieve high efficiency while prioritizing the key
science goals with the highest weights is needed [96].

2.2 Scheduling Algorithms in Computer Science

The scheduling problem in the astronomy observation shares similar attributes
as the compute resource (e.g., CPU) scheduling problem with goals such as
minimizing resource starvation and ensuring fairness among parties utilizing
the resource [60] in the Computer Science domain. In computer processes,
scheduling is maintained by policies and mechanisms to select a runnable process
to become the current process. When the current process is interrupted, the
scheduler chooses the process with the highest priority to run [23].

The purpose of scheduling algorithms is to make the target system have
fairness, flexibility, reliability, and efficiency in performance by spreading task
load on processors, so each job is scheduled to adaptable resources and adaptable
time, produces the optimal schedule sequence under proper constraints [90, 57].
The objectives of a scheduler usually concern the sequence and length of time
that processes may run and can be summarized as a scheduling algorithm or
policy. The scheduling algorithm or policy generally gives each process a fair
share of the resources to execute [61, 73]. Keeping the CPU or processor busy
all the time will ensure the efficient use of the whole system. High throughput
can be achieved by executing the largest possible number of jobs in a given
amount of time, and at the same time, the response time would be low because
the wait time is short. Being predictable means the finish time of any task
should be nearly constant in the same system so the running time of the task
batch can be predicted. The overhead should be minimized by keeping resource
use efficiency when minimizing scheduling and context switching time [110].
To maximize resource use, processes that will use underutilized resources shall
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be in favor and run more often, which will ensure better performance without
burdening heavily utilized resources [109]. To avoid indefinite postponement,
priorities can be enforced so each process can be scheduled meaningfully with
corresponding scores [115].

The schedulers can be classified as long-term schedulers, short-term sched-
ulers, and medium-term schedulers. When job batches get into the system batch
queue, the long-term scheduler plans the resource scheduling for the batch jobs.
It selects processes from the queue and loads them into memory for execution.
The long-term scheduler achieves the best performance when selecting a good
process mix of I/O-bound and CPU-bound processes. The long-term schedulers
usually ensure that all processes are organized in a fair manner, e.g. allocating
computing resources and accounting for overall performance [59, 83, 112]. A
short-term scheduler selects the processes from the processes that are ready to
execute and changes the processes’ state from ready to running. Compared to
long-term schedulers, short-term schedulers are used more often and are invoked
whenever an event occurs. Such events include time-based interrupts, I/O in-
terrupts or completions, operating system calls, signal sending and receiving,
etc. Short-term scheduling may provide an opportunity to preempt a currently
running process in favor of another [12, 66]. The medium-term scheduler is
responsible for moving suspended or swapped-outed processes back into a pool
of ready queues. Any process can be suspended or swapped out because of
events or system calls. The processes being swapped, are removed from the
main memory and are stored in a swapped queue in the secondary memory, so
the space in the main memory is freed for other processes. Once the suspend-
ing condition for processes is removed, the medium-term scheduler will attempt
to allocate resources for the processes to be ready again [82]. Following, are
different scheduling algorithms used in Computer Science.

First Come First Serve (FCFS), as one of the simplest scheduling algo-
rithms, prioritizes processes based on their arrival time in the queue, ensuring
that those arriving earliest are scheduled first. Consequently, processes arriving
later are scheduled accordingly [28]. It can be easily implemented by using a
FIFO queue. However, FCFS suffers from convey effect; that is if there is one
process requiring intensive resources to complete, all other processes requiring
less resources will be slowed down, increasing the overall wait time [121]. FCFS
is the basic scheduling algorithm used by operating systems and networks in the
single processor with single interrupt line setting [92].

Shortest Job First (SJF) is a scheduling process used in grid comput-
ing [37], CPU scheduling [77, 35], and cloud-based software systems [86]. It
selects the waiting process with the smallest execution time to execute next and
is generally used for long-term scheduling. It has the advantage of having a
minimum average waiting time compared to other scheduling algorithms, but
the demerits include starvation or indefinite blocking of processes, resulting in
prolonged execution times. Additionally, estimating execution length can be
complex in certain scenarios.

Longest Job First (LJF) is as the opposite of SJF, which prioritizes
processes or jobs with the longest execution time first. Applications using LJF
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include Cloud environment load balancing [53] and Job Shop Scheduling [88].
In real-world scenarios, when two processes have different execution times, LJF
schedules the longer one first, but when two processes have the same execution
times, it uses arrival time or priority score to break the tie. The advantage of
LJF is that the finishing times for all processes are approximately equal but the
average waiting time and average turn-around time will be high, and it may
lead to convoy effect as FCFS.

Priority Scheduling is one of the preemptive scheduling algorithms that
works based on the priority scores of processes. It has a function that assigns
each process a priority score, and the processes with higher scores will be ex-
ecuted earlier than those with low scores. If multiple processes have the same
score, SJF, LJF, and FCFS can be the tiebreaker. Priority Scheduling are used
widely for interactive programs [100], cloud computing system [33], and wireless
senor network [45].

Round Robin algorithm can be viewed as a preemptive version of the FCFS
algorithm. In this approach, each process or job is assigned a fixed time slot
for execution, regardless of whether the currently running process or job has
been completed. When the allotted time expires, the current process is halted,
allowing the next one in the queue to execute for a fixed duration. Like FCFS,
Round Robin is simple and easy to use, and because it uses a fixed time slot
for every process, it is also starvation-free and fair to processes in a batch [80].
Round Robin is widely used in cloud computing [76, 102], CPU scheduling [52,
101], and computer networks [89].

Shortest Remaining Time First (SRTF) can be viewed as a preemp-
tive version of SJF, where the processor is allocated to the process or job that is
closest to completion. SRTF and SJF are identical when all processes arrive at
the same time, but when processes arrive at different times, the SRTF scheduler
will compare the remaining time of the current process and the newly-arrived
process. Like SJF, SRTF handles short processes very fast, and it only requires
a small amount of overhead when a process is completed or a new process is
added. However, SRJF may also lead to process starvation where long pro-
cesses are held off indefinitely, and both SJF and SRJF are practically hard
to implement because of the difficulty of predicting the burst time of the pro-
cesses. Application of SRTF includes data center networks [28, 5], Cloud load
balancing [119], and traffic congestion [1, 54].

Longest Remaining Time First (LRTF), as a preemptive version of the
LJF algorithm, is similar to SRTF and SJF. LRTF schedules those processes
that have the longest remaining processing time for completion first. Similar to
SJF, LRTF has the advantage of finishing all jobs around the same time but will
cause a high average waiting time and high average turn-around time, which
leads to a convoy effect. Application of LRTF includes broadcast scheduling [18].

Highest Response Ratio Next (HRRN) is one of the most optimal non-
preemptive scheduling algorithms. The algorithm requires finding the response
ratio of all available processes, which is calculated by (W + S)/S. Here, W is
the waiting time of the process, and S is the burst time of the process. This
algorithm reduces the waiting time for longer jobs while still encouraging short
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jobs, which gives better performance than the SJF algorithm. The demerit of
HRRN is that sometimes it is impossible to know the burst time of every job, and
calculating the response ratio may cause an overload on the processor. HRRN
is applied in some soft real-time systems [10, 50], Cloud Computing Policy [91],
and grid computing environment [56].

Multiple Queue Scheduling is a method that divides the ready queue
into various classes and each class may have its scheduling queue with priority.
For instance, there could be system processes classified as queue 1, interactive
processes as queue 2, and batch processes as queue 3. Queue 1 has higher priority
over queues 2 and 3, and queue 2 has higher priority than queue 3. This way, the
Multiple Queue Scheduling guarantees that the system processes are executed
instantly and followed by interactive processes. The main advantage is having
low scheduling overhead. Multiple Queue Scheduling is applied in telephone call
centers [81, 19], Web services [111, 46], and computer systems [103, 62].

Multilevel Feedback Queue Scheduling (MLFQ) brings one step fur-
ther than Multilevel Queue Scheduling, where the process can move between
queues instead of being permanently assigned to a class. By doing so, the
scheduling overhead is increased but the scheduling is more flexible. MFLQ
is the most complex algorithm to design but during the experiment, MFLQ
achieves the smallest average wait time in many cases, maintaining good per-
formance as MLQ and will not have starvation problem [107]. MLFQ is used in
food ordering system [44], and real-time operating system [39, 13].

Based on execution order decisions, these algorithms can be classified as
static scheduling algorithms and dynamic scheduling algorithms. Algorithms
like SJF and LJF are considered static methods because the sequence of task
schedules is set before execution and will not change during runtime. Whereas
HRRN and MLFQ make decisions during the runtime of the system, they are
considered as dynamic since the design is more flexible [69, 97, 106].

2.3 Reinforcement Learning

Reinforcement Learning (RL), as one of the most remarkable branches of
machine learning (ML), has been applied to machine scheduling problems [47].
Compared to traditional deep learning methods, RL does not rely on supervised
output to improve performance. Instead, it uses a reward function to guide the
model towards an optimal solution. As illustrated in Figure 1, given a state S,
the learning agent has the option to perform an action in the action space A.
Each action it takes will result in a reward through the reward function, and
the performance is evaluated by the overall reward it earns [117].

RL algorithms can be divided into model-free RL and model-based RL, de-
pending on whether the learning agent has access to or can learn the model of the
environment, which is a function that predicts state transitions and rewards [41].
We present the model-free RL and model-based RL in the subsequent sections.
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Figure 1: The schedule-action-learning loop. At time t, the State includes all
SBs and accumulated rewards. The policy network takes in the state to choose
an action. Once the action is executed, the state and the reward will be updated
for the next iteration.

2.3.1 Model-Free RL

Within model-free RL, algorithms can be differentiated based on whether they
utilize Policy Optimization or Q-learning techniques. For Policy Optimiza-
tion approaches, the optimal policy can be represented as πθ(a|s) where π is the
policy, θ are the parameters to be optimized in the policy, given action a in state
s. Through gradient ascent on expected return, the policy gradient can find the
best parameters θ to approximate the optimal policy. Gradient ascent is done
iteratively by calculating the gradient from some data to update the weights of
the policy function that maximizes the expected return. The policy objective
J(θ) can be defined as: J(θ) = V πθ (s0), where V πθ is the expected value of a
policy πθ with parameters θ. The search for an optimal policy objective can be
computationally expensive, so using approximation by searching for the local
maximum in J(θ) can be done by ascending the gradient of the policy using
episodic samples. When following the gradient towards the optimal J(θ), we
get: θ ← θ+α∇J(θ), where α is the learning rate, and ∇J(θ) can be expressed
as ∇J(θ) = E

⌊
∇ lnπθ(s, a)Q(s, a)

⌋
.

Q-learning, on the other hand, uses approximatorQθ(s, a) to learn the opti-
mal action-value function Q∗(s, a). The key idea is to leverage a combination of
features and their weights to approximate the Q-function. First, it considers the
features that determine the state representation. Second, it performs updates
based on the weights of features during learning. Lastly, it estimates the opti-
mal action-value function Q∗(s, a) by summing the features and their weights.
The feature vector, f(s, a), is represented by n number of state features, and
|A| number of actions: f(s, a) = (f1(s, a), f2(s, a), ..., fn×|A|(s, a)). The weight
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vector, w, represents the weights for each feature-action pair. Given the feature
vector f and weight vector w, the Q-value of a state can be represented as:

Q(s, a) = f1(s, a) · wa
1 + f2(s, a) · wa

2 + ...+ fn(s, a) · wa
n

=

n∑
i=0

fi(s, a)w
a
i

During learning, the weights are updated using wa
i ← wa

i + α ∗ δ ∗ fi(s, a)
till weights converge.

Compared to the Policy Optimization methods, which directly optimize
for the objective the agent directs, Q-learning methods indirectly optimize an
agent’s performance. Q-learning is more sample efficient when the training is
successful, but the Q-learning method through training Qθ has many failure
modes, which tend to be less stable [67].

Popular Policy Optimization methods includes Policy Gradient [104], A2C/A3C [67],
PPO [93] and TRPO [94]. Q-learning methods includes DQN [68], C51 [11],
QR-DQN [21], and HER [6]. A few algorithms carefully trade-off between
the strengths and weaknesses of either method are DDPG [98], TD3 [27], and
SAC [34].

2.3.2 Model-Based RL

Within Model-Based RL (MBRL), algorithms can be categorized based on
whether the model can be learned or is pre-defined. MBRL improves the sam-
ple efficiency and reduces the amount of trial-and-error throughout the learn-
ing environment. The environment model is refereed as the abstraction of the
environment dynamics which can be learned or given [64]. There are a few
components to achieving the model-based method: planning action purely for
the current state, using the planning algorithm as an ”expert” to assist policy,
creating real and/or simulated episodes to augment the model, and embedding
planning into policy itself.

Model-based Deep RL with Model-Free Fine-Tuning is a promising approach
for simulated quadrupedal robots to produce stable and plausible gaits [71].
The method first initializes a model-free learner to learn the dynamics function
fθ(st, at), and then uses a combined medium-sized neural network dynamics
models with Model Predictive Control (MPC) in a model-based RL algorithm.
It characterizes having a high task-specific performance by using a model-free
method along with sample efficiency by using a model-based method.

Both Alpha-Go [99] and ExIt [7] use sophisticated search techniques like
tree search along with deep neural networks to make actions. Deep neural
networks generalize plans from searches and search is also guided by the neural
network. Feinberg et al. [26] proposed a method that uses data augment to
assist model-free methods. It uses a hybrid approach that contains a dynamics
model to simulate the short-term horizon and an improved Q-learning method
to estimate long-term value. Which provides improved sample complexity on a
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range of continuous action benchmark tasks. Imagination-Augmented Agents
(I2As) [78] uses a novel approach that interprets predictions from a learned
environment model to make predictions as additional context in deep policy
networks, resulting in improved data efficiency, performance, and robustness to
model misspecification.

2.4 Applications of the Scheduling Algorithms

Scheduling problems pervade the computing domain. The effectiveness of a
scheduling algorithm is often assessed based on metrics such as throughput,
wait time, latency or response time, and fairness. Many systems use schedulers
such as operating system schedulers, network schedulers, I/O schedulers, and job
schedulers. The goals of the schedulers may vary depending on their purpose.
In the following, we introduce the applications of the schedulers.

2.4.1 Process Schedulers

The process scheduler, as the component in the operating system, can deter-
mine when and which processes should be running. Four events include I/O
request, termination, interrupt, and I/O complete, requiring the scheduler to
kick in and make a decision [63]. The nature of the process and events are likely
to be random in real scenarios, which means a new process or request can come
in at any point and the resource use of each process varies. There are multiple
goals from throughput to resource allocation so each algorithm cannot satisfy all
goals but only favor some over others. The First Come First Serve Scheduling
(FIFO) is the most straightforward approach. It is simple and intuitively fair.
However, it is not preemptive and a long-running job will delay all other jobs.
The round-robin scheduling dispatches processes in the FIFO sequence but only
for a limited amount of time. The advantage of the round-robin method is that
every process gets an equal share of the CPU, but it cannot prioritize highly
interactive processes. Other popular scheduling methods include shortest re-
maining time first scheduling, priority scheduling, multilevel queues, multilevel
feedback queues, lottery scheduling, etc. These methods usually are used in
environments where a single process gets to run at one time, but fine-tuning
of each method is needed in the multiprocessor environments, where multiple
processes are scheduled at once [40]. There is an RL-based priority assign-
ment method for multi-processor real-time scheduling [58] that consists of the
task set embedding mechanism, response time analysis-based policy gradient
RL, and guided learning schemes. This method achieves 7.7% enhancement in
schedulability ratio in 64-sized task sets and an 8-processor platform, where the
schedulability ratio is a metric used to evaluate the effectiveness of a guarantee
test for real-time scheduling algorithms.
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2.4.2 Network Traffic Schedulers

A network scheduler manages network packets in the transmission. It uses a
queuing system to store network packets temporarily until they are dispatched.
The core responsibility of network schedulers is reducing network congestion,
latency, and packet loss while achieving quality of service (QoS) [24]. Algorithms
in network schedulers can broadly fall into classful or classless. Classful queuing
disciplines allow the creation of classes and filter packets into each class and
queuing corresponds to their class, whereas classless queuing keeps the queuing
discipline simple [79]. There exists an RL agent-based network controller [32],
which demonstrates comparable performance to established heuristics such as
Earliest Deadline First (EDF), achieving optimal results. The study shows that
the RL-agent can equally share bottleneck link capacity among the competing
flows, resulting in better performance than the idealized TCP protocol.

2.4.3 I/O and Job Schedulers

An I/O scheduler is similar to a process scheduler in many ways with the high-
level goal of minimizing time waste, prioritizing certain requests, giving a fair
share of disk bandwidth to each running process, and guaranteeing request
issues before the deadline [95]. A job scheduler controls the execution of jobs in
a computer at a higher level, provides an interface, automates the job process,
and prioritizes queues to control jobs [2].

2.4.4 Job-Shop Scheduling Problem (JSSP)

JSSP is a well-known schedule optimization problem in computer science. Just
like the traveling salesman problem (TSP), JSSP with the sequence-dependent
setup is also NP-hard because TSP is a special case of JSSP with a single
job [116]. In general JSSP setup, there are n jobs J1, J2, ..., Jn with corre-
sponding processing times, and there are m machines with varying processing
power. The goal is to minimize the total length of the processing to finish all n
jobs [29]. There are approaches using genetic algorithms [22, 31, 116], conven-
tional heuristics [25, 30, 87] and hybrid approaches [74, 113, 118] using both to
solve JSSP.

2.4.5 Other Real-World Schedulers

Other real-world scheduling problems include urban transit schedule problems [105],
NASA space shuttle payload processing tasks [120], and machine scheduling
problems [51, 84, 8, 75]. The RL-based scheduling methods show promis-
ing performance and can achieve better results than conventional scheduling
methods [48].Reinforcement Learning (RL), as one of the most remarkable
branches of machine learning (ML), has been applied to machine scheduling
problems [47]. Compared to traditional deep learning methods, RL does not
rely on supervised output to improve performance. Instead, it uses a reward
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function to guide the model towards an optimal solution. As illustrated in Fig-
ure 1, given a state S, the learning agent has the option to perform an action
in the action space A. Each action it takes will result in a reward through
the reward function, and the performance is evaluated by the overall reward it
earns [117].

3 RL based Scheduling for the Next-Generation
Very Large Array

VLA, JVLA, and ALMA use the DSA scheduling algorithms known to be dy-
namic and select appropriate observing programs while ensuring efficient use of
radio telescopes each cycle. However, owing to the design constraints of conven-
tional telescopes, they are limited to executing a single observation task at any
given time. In contrast, the ngVLA can be strategically segmented into five
subsets, each offering diverse sensitivities and angular resolutions. This modu-
lar design enables independent operation for multiple observations, catering to
a range of scientific objectives simultaneously. With these subsets, researchers
can request astronomy observation with specified subsets they intend to use.
Therefore, ngVLA cannot adopt DSA directly from VLA, JVLA, and ALMA,
which cannot schedule multiple observation tasks simultaneously. Additional
improvement is needed in DSA for efficiency in ngVLA operation.

The ngVLA can be divided into three main subsets: Main Array (MA),
Long Baseline Array (LBS), and Short Baseline Array (SBA) [65]. The MA
subset consists of 214 x 18m antennas [85] with a 1005.4km maximum baseline
distance and the LBA subset consists of 30 x 18m antennas with a maximum
baseline distance of 8856.4km. The MA and LBA subsets drive the sensitivities
and angular resolutions offered by the ngVLA. The SBA subset consists of 19 x
6m antennas [96] and will be sensitive to a portion of the larger angular scales
poorly sampled by the MA subset. On top of that, MA can be further split into
three subsets: Core, Plains, and Mid-baseline for different observation purposes.
Theoretically, there are use cases for all combinations of the five antenna subsets
and each observation request will fall into one or multiple of the five subsets.
Based on the observation needs, the subsets then calibrate the antennas so the
observation program can be executed for a certain period.

The subsets which consist of tens or hundreds of antennas can be viewed as
abstract units since antennas work in groups. There are five subsets in ngVLA.
Therefore, the scheduling problem can first be simplified by using five subsets to
create SAs using subset combinations. There are a total of 63 SA combinations
representing the power set of the subsets and the empty set. For instance,
subset 1 can be seen as Core, subset 2 is Plains, subset 3 is Mid-baseline, and
the Combination of subset 1, 2, and 3 is MA. Subtests 4 and 5 will correspond
to LBS and SBA. With these five subsets, there can be combinations like SA-12
Core and Plains, SA-13 Core and Mid-baseline, SA-14 Core, Mid-baseline and
LBS, etc.
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SBs can be used to represent individual observation tasks. In addition to
the required subsets, each SB has its own characteristics and relative priorities.
An additional attribute of each request other than sub-array is the scientific
importance of the observation task with a priority weight; a request with higher
priority implies that it be scheduled earlier than another with a lower priority
score. It is also noted that some observations require certain weather conditions;
when a weather condition is met, these requests should be scheduled immedi-
ately. In this work, to formalize the scheduling problem, the algorithm in the
approximation only considers the priority score as weight and needed subsets
as features of all SBs.

The problem of the ngVLA observation scheduling can be mapped into the
problem of scheduling the 5 classes of subsets to SBs. The scheduling problem
then can be constructed as follows. Given a batch of SBs with each SB specifying
SA, the SBs are mapped to their requested SAs offline. Each SA inherits the
priority score of the highest SB in the SA. By using this method, each SB
that uses one subset or multiple subsets can be mapped into one of the 31
SAs and each SA can hold multiple SBs using the same subsets. During the
online scheduling, at each time step, each SA chooses its mapped SB with the
highest priority and the scheduler selects SAs to run simultaneously at the time
step. To choose which SA to run, the scheduler uses a scheduling policy such as
the Size-Prioritized policy or Cost-prioritized policy to select SAs in sequence.
The selected SAs (forming an action) should have no subset overlapping. For
instance, there are SA-12 (SA using subset 1 and subset 2) and SA-23 (SA
using subset 2 and subset3), because both SAs will request the use of subset 2,
therefore the two SBs in the SAs cannot be scheduled or executed at the same
time and we call it has overlapping subsets. By scheduling, the scheduler aims
to improve the performance on throughput, cost, and job latency. For instance,
if there is an SB that requires SA-145 consisting of subsets 1, 4, and 5, then the
SB is mapped into SA-145 which only consists of subsets 1, 4, and 5. If the SB
has the highest weight among the SBs mapped to SA-145, SA-145 will pop the
SB to execute. When SA-145 is scheduled to execute, this SB is executed.

The scheduling problem can be viewed as JSSP with constraints. SAs cor-
respond to machines in JSSP, SBs represent jobs in JSSP but each SB can only
be executed in one specific SA. Therefore, to evaluate the performance of each
method, we can use the number of SBs executed divided by the finish time
step (i.e., throughput), the sum of the products of all request weights and their
corresponding time duration (i.e., cost) and the sum of response times for all
requests (i.e., job latency) as the conventional metrics similar to the evalua-
tion in JSSP [43]. For the solution to be optimal, it should have the highest
throughput with the lowest cost and job latency. During the evaluation, the av-
erage throughput, overall cost, and job latency will be compared across different
policies and methods.
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Figure 2: The illustration of SAs using 5 subsets and action space using all
possible SAs. Round Robin method without action space will select one of
thirty-one SAs whereas the Round Robin method with action space will select
from two-hundred and two action spaces.

3.1 Simulator Setup

The simulator is constructed as follows. Class SubArray initializes the number
of subsets that will be used, and then creates all possible combinations of sub-
sets to form SubArray that will hold ScheduleBlocks. Class ScheduleBlock
initialize ScheduleBlock instance with required subsets and associated weight.
Class Process will contain the SubArray, and run and record the schedule met-
rics including cost, throughput, and job-latency. During simulation, Process
will generate random ScheduleBlocks and schedule the execution with a se-
lected scheduling method. The methods include Size-Prioritize method and
Cost-Prioritize method and a user can select the methods.

Given a batch of random requests, the simulator first maps SBs into corre-
sponding SAs. For each time step, one or more SAs will be selected to execute
their mapped highest-priority SBs. The cost at each time step is the prod-
uct of the sum of SBs’ weights and the current time duration, which will be
accumulated over time to get the overall cost. The process of executing SAs
will continue until no SB is assigned to SAs. The goal is to increase throughput
(minimize the number of time-steps to complete all SBs) and minimize the over-
all cost and job latency, in which a maximum number of SAs shall be scheduled
and prioritize high-weight instances in each time step.

3.2 Round-Robin Policy

The Round-Robin method randomly selects available SBs to schedule. It does
not account for either the weight of SBs or the available SA combinations that
do not have subset overlap. For instance, when there are two SBs in SA-1
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and SA-2, this method would never combine these two SBs even though they
can be scheduled in parallel. The performance of this method should not be
very efficient for ngVLA. This method is an analog to DSA in VLA, because
it schedules only one SB at a time. The performance will be a baseline for the
next method to compare to.

Action space consists of all actions, each of which does not have overlapped
subsets. Next, we build the action space of the scheduler using all SAs, as
shown in Figure 2. We find all combinations of SAs that do not have overlapped
subsets. For instance, SA-134 can be combined with SA-2, SA-5, or SA-25 to
schedule them in one time step instead of multiple time steps. Then we use
the Round-Robin method with the action space to perform the same schedules.
Figure 2 illustrates the sets of SAs and Action Space where SAs consist of SBs
that use all the subsets they support. For instance, SA-2345 (the SA using
subsets 2, 3, 4, and 5) will hold all SBs that exactly require subsets 2, 3, 4, and
5. Action Space on the other hand consists of one or more SAs that have no
overlap.

The method without action space is analog to the scheduling algorithm used
in the previous VLA where only one observation task can be scheduled in each
time-step. On the other hand, ngVLA allows multiple observation tasks to
be executed simultaneously, which would potentially improve the throughput,
latency, and cost. For instance, there are three SBs in SA-1, SA-23, and SA-45.
Round-Robin method without action space would schedule one each time and
take three time steps total whereas action space abstraction enables scheduling
all three SBs simultaneously in one time step because they have no overlap and
can be scheduled in parallel.

3.3 Size-Prioritized Policy

To further improve overall throughput, we use a size-prioritized policy, which
always selects as many SAs as possible instead of being random. Like the
previous example, there are three SBs in SA-1, SA-23, and SA-45, even though
action space enables the best schedule with all three being executed at the same
time, the Round-Robin method has only one in seven chance of selecting the
best schedule whereas the size-prioritized policy will always select the maximum
number of SAs in the action possible. With the action space abstract, the
size-prioritized policy selects the action with the most SAs. Because each SA
consists of one or less than or equal to N subsets and selected SAs cannot have
overlapping subsets, the maximum SA to be selected equals N .

Given available SBs, the Size-Prioritized policy at each time step then gen-
erates a list of possible scheduling options in the action space and selects the
option with the largest number of SAs. For instance, there are five SAs with
SBs, SA-1, SA-2, SA-3, SA-12, SA-23. All parallel schedules include SA-1 +
SA-2 with 2 SAs, SA-1 + SA-23 with 2 SAs, SA-1 + SA-3 with 2 SAs, SA-1 +
SA-2 + SA-3 with 3 SAs, SA-2 + SA-3 with 2 SAs, SA-3 + SA-12 with 2 SAs.
The Size-Prioritize policy will select the action that executes SA-1, SA-2, and
SA-3 at the same time because it has the highest number of SAs with 3. Because
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multiple SAs will be selected, the throughput is maximized or overall time-step
to complete the batch will be minimized and at the same time, the summed
weight at each step will very likely be higher than other options of using fewer
SAs. Due to the nature of the size-prioritized policy, the maximum throughput
shall be reached, but the cost will not be optimal in case some combinations of
SAs may have the highest sum weight but not a maximum number of SAs. For
instance, there are SA-123 and SA-45 where SA-123 means SA uses subsets 1,
2, and 3, with the highest weight of 7, and there are also SA-1, SA-2, and SA-3
with a weight of 1. The action to schedule SA-123 and SA-45 will get a total
weight of 14 with 2 SAs whereas schedule SA-1, SA-2, SA-3, SA-45 will get a
total weight of 10 with 4 SAs. The size-prioritized policy will be in favor of the
4 SAs option instead of the higher-weight option. Below, we will introduce a
method that considers weight.

3.4 Cost-Prioritized Policy

The Cost-Prioritized policy will take into account the weight associated with
each SA. In each step, it first generates all possible scheduling options as the
action space, then scores each schedule option as the summed weight of each
SA in the option. Note that we do not need to multiple it with the current
time steps since it is the same for all the options. The schedule option with
the highest score will be selected to execute. Compared to the Size-Prioritized
Policy, it may select the option with less number of SAs but it ensures that the
action with the highest summed weight is selected. This policy is optimal in
reducing the cost, but it may not select the schedule with the highest subset
utilization. For instance, three SBs are using one of subsets 1, 2, and 3 all with
weight 1, and another SB is using all subsets 1, 2, 3, and 4 with weight 2. The
Cost-Prioritized Policy will select the SB group instead of SB with more subsets,
which has lower subset utilization.

3.5 RL based Policy

We design an RL-based scheduling method that leverages the RL method to
automatically generate an action plan at each time step. The state S includes
two 1x31 normalized matrices that capture all available SBs that are ready
to schedule, and their associated features including required SAs and priority
weight, and all SAs. The action space A is the two-hundred and two actions
from the RL Neural Network. The reward is evaluated by the action it chose
using the reward function.

The model is initialized to be random. Then, given a batch of SBs, the model
randomly selects SBs to generate training set episodes. Based on the training set
episodes, we train the model off-line with a function F (t) = argmax

∑n
i gcost,step(SBi).

Reward function g accounts for the weight and a number of subsets. This is
because the weight is directly associated with the cost, and we want the cost
to be minimized, and the number of subsets affects the throughput. Then we
randomly sample some episodes and use the reward function to evaluate each
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Figure 3: Flow diagram of the RL method for astronomy scheduling

action. Because the action space is discrete instead of continuous, we cannot
simply explore nearby action. The action with the highest reward will be the
desired option for the episodes. To evaluate the improvement, we first duplicate
the policy model before training and then train one model with random episodes
from the training sets. After training, the trained model will be compared with
the previous duplicated model. Based on the throughput and cost comparison,
if the trained model has surpassed the improvement threshold over the original
model, the new model is saved, and is duplicated. Then, we use the new model
to generate new training examples, train the model with all training examples,
and repeat the process until the model does not seem to improve in a couple
more of the cycles. In the case that the difference between the trained model
and the duplicate model is below the update threshold, the previous duplicated
model will be reloaded to generate a new train set.

Both overall cost and overall throughput are used for guiding the models, so
there are two policies with reward functions that prioritize either throughput
or cost over another. For throughput as the first priority, the reward function
Rthroughput(s) = throughput+α∗summedweight where α∗summedweight < 1
has the throughput as the dominant factor. On the other hand, the reward
function for cost as the first priority Rcost(s) = summedweight+β ∗ thoughput
makes summed weight the dominant factor. Selection of the alpha and beta is
not restricted, as long as the output reward secures the action with the highest
throughput and cost.

On top of the policy reward function, the threshold for updating improved
neural network accounts for cost improvement, step improvement, or both. For
instance, the model after training has improvement of x′ in step, and y′ in cost.
If the threshold only concerns step improvement as x, when x′ > x then the
trained model will be accepted. If the threshold is only concerned about cost
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improvement as y, when y′ > y the model will be replacing the previous one.
Lastly, If the threshold concerns both step and cost improvement xandy, the
model only updates when both x′ > xandy′ > y. With the setting, we explore
the RL method with different values of α and β along with the threshold option
to find the best-performing policy. The detailed flow of the RL method is
represented in Figure 3.

4 Performance Evaluation

As ngVLA can be divided into five subsets: Core Array, Plains Array + Core
Array, Mid-baseline Array, Long Baseline Array (LBS), and Short Baseline Ar-
ray (SBA) [65] that with a variety of sensitivities and angular resolutions and
with ability to operate independently for multiple observations for different pur-
pose, we set the number of subset N = 5 and assume each subset can combine
freely, which will form 25 − 1 = 31 SAs.

We assume each observation task takes 24 hours as default with thousands
of requests/SBs each batch. Then, we take each state as input to generate the
best action as output. We iterate the process until no SB is left. We compare
the overall throughput, cost, and job latency across different methods.

The brute force search can guarantee to find the optimal policy. First, it uses
31 SAs with SBs with 1-7 weight scores which can produce 31*7=217 unique
scored SBs. Then, it searches through the 217 SBs to find combinations that are
eligible to execute simultaneously. There will be a total of 79744 combinations
which account for the 7 weights. Because the weight of SBs is included, a
ranking order of each combination can be assigned. This covers all possible SB
combinations. However, in a real scheduling scenario, there are more variances
regarding the number of SBs under the same SAs as well as several identical
SBs, which may increase the searching space exponentially to guarantee the
optimal scheduling plan with throughput, cost, and job latency. The methods
below are our attempt to reduce the amount of the search by eliminating most
of the obvious cases and using policies to guide the model to produce optimal
or near-optimal solutions with a much lower cost.

The Round-Robin method randomly selects one of the SBs or actions for
each time step. At time-step 0, 300 random SBs with arbitrary weights between
1− 7 are generated and mapped into corresponding SAs. Each SA inherits the
priority score of the highest-priority SB in the SA, so the scheduled SA will
get the weight of the highest-priority score in the SA to calculate the total cost
by multiplying the weight with the time duration. The scheduler continues to
execute the action until no SB is left in the queue. The simulation is repeated
100 times with different random seeds and each simulation is considered as an
instance.

Figures 4, 5 and 6 show the performance comparison between Round-Robin
method with and without the action space when the number of SBs equals to
100, 300 and 1000 in each instance, respectively. The sub-figures on the left are
the performance for each instance, and those on the left side show the summary
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with a box plot with top line as the maximum, bottom line as minimum, top
of the box as 75th percentile, bottom of the box as 25th percentile, and the
middle line the average. The values higher than Q3+1.5xIQR or lower than
Q1-1.5xIQR are considered outliers and they are marked with circles. Here, Q3
stands for the third quartile, Q1 stands for the first quartile, and IQR is inter
quartile range, a measure of the spread of the data as the value of (Q3 - Q1).
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Figure 4: Step, Cost, and Job Latency comparison with Round-Robin method
with and without action space for 100 SBs per batch.
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Sub-figures (A) and (B) show overall throughput to complete each batch are
constantly 1.0 for the Round-Robin without action space, and are 1.34, 1.37
and 1.39 on average for the Round-Robin with action space. In Sub-figure (A),
the overall throughput for Round-Robin with action space range from 1.22-1.59,
1.29-1.46 and 1.34-1.45, respectively. On average, Round-Robin with action
space reduces the overall throughput of Round-Robin without action space by

0 20 40 60 80 100
Instance

1.0

1.1

1.2

1.3

1.4

Th
ro

ug
hp

ut

A

RR w/o AS
RR w/ AS

RR w/o AS RR w/ AS
1.0

1.1

1.2

1.3

1.4

Th
ro

ug
hp

ut

B

0 20 40 60 80 100
Instance

80000

90000

100000

110000

120000

130000

140000

150000

160000

Ov
er

al
l C

os
t

C

RR w/o AS
RR w/ AS

RR w/o AS RR w/ AS
80000

90000

100000

110000

120000

130000

140000

150000

160000

Ov
er

al
l C

os
t

D

0 20 40 60 80 100
Instance

25000

27500

30000

32500

35000

37500

40000

42500

45000

Ov
er

al
l J

ob
 L

at
en

cy

E

RR w/o AS
RR w/ AS

RR w/o AS RR w/ AS
25000

27500

30000

32500

35000

37500

40000

42500

45000

Ov
er

al
l J

ob
 L

at
en

cy

F

Figure 5: Step, Cost, and Job Latency comparison with Round-Robin method
with and without action space for 300 SBs per batch.

23



36.7% on average.
Sub-figures (C) and (D) show the average overall cost is around 17.5k, 145k,

and 1.5M for the Round-Robin without action space, and are 10.9k, 91.5k and
960k on average on average for the Round-Robin with action space. In Sub-
figure (C), the overall throughput for Round-Robin without action space range
from from 14616-21177, 128624-158361 and 1421392-1621711, respectively and
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Figure 6: Step, Cost, and Job Latency comparison with RoundRobin method
with and without action space for 1000 SBs per batch.
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are range from 8525-14316, 82610-105511 and 875826-1056889 with action space.
On average, Round-Robin with action space reduces the overall cost of Round-
Robin without action space by 36.9% on average.

Sub-figures (E) and (F) show overall job latency are constantly 4.9k, 45k
and 500k, respectively, for the Round-Robin without action space. Whereas
the method with action space has the average job latency of 3.1k, 27.4k and
299k. In Sub-figure (E), the overall throughput for Round-Robin with action
space range from 2469-3617, 25326-29673 and 281978-311656, respectively. On
average, Round-Robin with action space reduces the overall cost of Round-Robin
without action space by 39.1% on average.

Next, we use the Size-Prioritize policy to select actions with a maximum
number of parallelizable SBs. For instance, there are two actions where the
first has 4 SAs: SA-1, SA-23, SA-4, SA-5, and the second has 3 SAs: SA-
13, SA-24, SA-5, the Size-Prioritize policy will favor the first action since it
covers more SAs than the second action. The Cost-Prioritize policy, is similar
to the Size-Prioritize method but instead of finding maximum SB instances in a
single action, it computes the summed weight for each option at each time step
and selects the one with the highest summed weight. We repeated the same
process 100 times with 1000, 2000 and 4000 SBs, respectively, using identical
random seeds as the Round-Robin method. The experimental results are shown
in Figures 7, 8 and 9.

By looking at the results of the Size-Prioritize policy and RL policy in sub-
figures (A) and (B) of Figures 7, 8, and 9, the RL method achieves similar
throughput as the Size-Prioritize policy, and sometimes outputs higher overall
throughput than the Size-Prioritize method. It is because of the action taken
in some episodes with ties not optimal. One simple example is there are 4 SAs:
SA-23, SA-24, SA-3, and SA-145. With the Size-Prioritize method, both action
SA-23+SA-145 and SA-3+SA-145 has 2 SAs. If it chooses the first one, it can
be done in the second round, but if it chooses the second one, it has to finish
in three rounds. The reason why RL outperforms Size-method is RL considers
SA utilization in the policy to break ties in the corner cases with Size-Prioritize
method.

Sub-figure (A) of the Figure 7, 8, and 9 is the plot of the throughput of
each instance for each method. Cost-Prioritize, Size-Prioritize, and the RL
method have similar performance. Sub-figure (B) of the Figure 7, 8, and 9 is
the box plot of the throughput for each method. Using the Round-Robin w/o
AS method as a baseline, the Round-Robin method has around 39.1% improve-
ment. For the three non-RR methods, the RL method performs comparably
to the Size-Prioritize method, and the Cost-Prioritize method has the lowest
overall throughput. Size-Prioritize method has around 77.4% improvement,
Cost-Prioritize has around 72.6% improvement, RL method has around 74.6%
improvement compared to the baseline method.

Sub-figure (C) of the Figure 7, 8, and 9 shows the overall cost of each instance
for each method. RR w/o AS has the highest overall cost. When comparing
among RL, Size-Prioritize, and Cost-Prioritize methods, the RL method per-
forms slightly below the Cost-Prioritize method, and the Size-Prioritize method
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has the highest overall cost.
Sub-figure (D) of the Figure 7, 8, and 9 shows the box plot of the overall cost

for each method. Compared to the Round-Robin w/o AS method, the Round-
Robin method has around 35.2% improvement. For the three non-RR methods,
the RL method performs slightly below the Cost-Prioritize method, and the
Size-Prioritize method has the lowest overall cost. Size-Prioritize method has

Figure 7: Cost, Steps, Job Latency comparison between methods using 1000
SBs per batch
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around 43.6% improvement, Cost-Prioritize has around 53.6% improvement, RL
method has around 52.4% improvement.

Sub-figure (E) of the Figure 7, 8, and 9 shows the overall job latency of each
instance for each method. Sub-figure (F) of the Figure 7, 8, and 9 shows the box
plot of the overall job latency for each method. Compared to the Round-Robin

Figure 8: Cost, Steps, Job Latency comparison between methods using 2000
SBs per batch
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w/o AS method, Round-Robin method has around 45.6% improvement, Size-
Prioritize method has around 56.5% improvement, Cost-Prioritize has around
54.3% improvement, RL method has around 53.8% improvement.

In average improvement among three metrics: RL performs the best with
60.3% improvement compared to the baseline, the Cost-Prioritize method is

Figure 9: Cost, Steps, Job Latency comparison between methods using 4000
SBs per batch
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0.1% below RL method, and the Size-Prioritize method’s average improvement
is 59.2%.

Figure 10 shows throughput, cost, and job-latency comparison when there
are 100 SBs with 8 antenna subsets available. We see that the RL method
achieved similar or near-optimal performance in all three metrics and overall
performance is the best. The performance on throughput, cost, and job-latency
is also consistent with the setting with 5 antenna subsets in Figure 7, 8, 9.

Figure 10: Cost, Steps, Job Latency comparison between methods using 100
SBs with 8 antenna subsets
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Figure 11: Execution time per step between methods from 3 antenna subsets to
9 antenna subsets

Figure 11 shows the scheduling time of different methods. We measure the
time for predicting the decision as the scheduling time. The scheduling time of
the RL method is constantly below 1 second while other methods grow as the
number of antenna subsets increases. For scheduling time, we found that the
conventional methods have lower scheduling time than the RL method when
the number of antenna subsets is below 8, but starting with 8 or more antenna
subsets, the RL method generates lower scheduling time than the other methods.
The time reduction is better when number of antenna subset is large.However,
the time taken to train the RL model is roughly 24 hours for 8 subsets scenario,
if the number of antenna subsets is 9 or more, training time may take weeks or
more.

5 Conclusion

In this work, we simulated the ngVLA scheduling scenario and designed the
scheduling algorithms that fulfilled all three metrics: throughput, cost, and
job-latency. We compared the difference between single SB and multiple SB
execution performance. We also provided two conventional methods, the Size-
Prioritize method and Cost-Prioritize, with near-optimal performance in cost
and job latency. Because the weight attribute of SBs will affect the cost metric
significantly, we leveraged the action space abstract and Priority Scheduling
method to tackle the problem. From the experiment, action space grants the
Round-Robin method with an average of 32% improvement for throughput, cost,
and job latency over the one without. Using Round-Robin with action space
as a baseline, the Size-Prioritize method has an average of 59.2% improvement,
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the Cost-Prioritize method has an average of 60.2% improvement. Lastly, we
designed an RL-based scheduling method that leverages the offline RL method
to generate an action plan at each time step automatically and achieved the
highest average of 60.3% improvement using throughput, cost and job-latency.

We also show that when scaling the number of antenna subsets to eight
or larger, the RL method outperforms other methods in prediction time while
maintaining the performance. The prediction time of the RL method is constant
while prediction time of heuristic method grow exponentially. However, training
time of the RL is growing exponentially when an increase in the number of
antenna subsets, requires engineering a more efficient training method.

The future work includes but is not limited to searching antenna combi-
nations for various observation needs, assuming that antenna subsets can be
arranged in many more ways instead of being fixed. The scheduling algorithms
can also account for the scenarios in which SBs have varied observation times
or request arrival times are different as in scheduling problems in Computer
Science.

In summary, we designed the two conventional methods: Cost-Prioritized
method and the Size-Prioritize method to improve upon the DSA method for
the ngVLA multi-scheduling and had great and near-optimal performance in
the three metrics. The RL method we implemented has a higher average im-
provement over the conventional method and the performance is consistent with
varying numbers of antenna subsets. We also show that the prediction time of
the RL method shows an advantage over other methods when dealing with a
setting of eight or more antenna subsets.
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