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Abstract 
 

Massively parallel computation in GPUs significantly boosts the performance of 

compute-intensive scientific and engineering applications due to improved floating point 

performance, but creates power and thermal issues that could limit further performance 

scaling. The high power consumption for general purpose computation in GPU (GPGPU) 

majorly comes from two sources: the memory system and the computation units, which 

can reach as much as 250W for high end GPUs due in large part to the sheer complexity 

of the IEEE-754 compliant hardware and its high activity factors during floating point 

operations. This thesis focuses on lowering GPGPU computation power consumption by 

using the imprecise hardware (IHW) methodologies. Imprecise Hardware is an emerging 

design paradigm that targets at high power computation units and seeks to improve power, 

area, latency, and related nonfunctional metrics through the use of quality tradeoffs in 

application domains that can tolerate relaxed correctness specifications. Power saving 

techniques such as dynamic voltage frequency scaling (DVFS) and power gating are 

capable of effectively reducing power consumption, but these approaches essentially trade-

off between power and performance. The use of imprecise hardware (IHW) effectively 

shifts the design paradigm from a power-performance tradeoff to a power-quality tradeoff 

with little or no degradation in performance. The use of IHW is orthogonal to DVFS, power 

gating, and other hardware or software power optimization techniques, and can be 

combined with these techniques to further reduce the power consumption for GPGPU 

computation.  
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This thesis demonstrates significant GPGPU power savings by relaxing application 

accuracy requirements and enabling the use of low power imprecise floating point and 

special function units, which are typically the most frequently exercised and the most 

power hungry arithmetic components in many high performance (high power) GPGPU 

computations. A set of novel imprecise floating point arithmetic units is presented and their 

non-functional metrics are obtained through post-layout SPICE level simulations. GPU 

performance simulator GPGPU-Sim and power-energy model GPUWattch are used to 

estimate the impacts of IHW units on output quality as well as the GPU system-level power 

consumption, providing a power-quality tradeoff framework for application-specific power 

optimizations on GPGPU platform. Experimental results in a 45nm process show up to 32% 

power savings with negligible impacts on output quality. 
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Chapter 1 Introduction 
 

1.1 An Opportunity to Relax Quality for Lower Power in GPGPU 

Computation 
 

 

Many scientific and engineering applications can achieve significant gains in 

performance by migrating from conventional multi-core CPUs to general purpose GPUs 

(GPGPU). This performance gain comes from the massively parallel computation units or 

processing cores with shared front end in a SIMD architecture. As significant amount of 

hardware resources are dedicated computation units for parallel computation, the 

performance gain can be easily scaled up for more than an order of magnitude. Figure 1 

shows the significant floating point performance (in peak double precision throughput) 

increase in terms of GFLOPS between a high-end CPU and two generations of GPUs. 

However, the price for this performance boost comes as a dramatic increase in the power 

consumption, reaching as much as 250 W for some high-end GPUs. In addition, as 

technology scales, GPUs are inevitably hitting the infamous “power wall”, which prevents 
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GPU vendors from integrating more compute cores and hardware resources or increasing 

operating frequency to further improve the performance.  

GPU architecture consists of a large number of homogeneous processing cores that 

can perform concurrent thread execution, and unlike CPUs, contains significantly more 

arithmetic circuits per unit area. For instance, NVIDIA’s Fermi architecture contains up to 

512 general purpose CUDA cores, with each core consisting of an ALU and FPU. These 

homogeneous cores are grouped into 16 streaming multiprocessors (SM) [1]. Each SM also 

contains schedule, dispatch, load/store, and four special function units (SFU) for 

performing fast floating point elementary functions. Our preliminary study (results in 

Figure 2) revealed that the portion of power consumed by floating point arithmetic 

operations in compute-intensive benchmarks can reach more than 70% of the total GPU 

power consumption. As shown in Figure 2, the most power hungry components in GPU 

computation units comes from floating point computations in floating point units (FPUs) 

and special function units (SFUs), while the integer units consumes less than 10% of total 

GPU power consumption.  

The floating point number system in IEEE-754 format are widely used in most 

scientific and engineering applications. It provides high precision, a wide dynamic range 

of real values, and a much simplified programming model compared to the fixed point 

system. The performance of floating point operations in a system, often represented as 

FLOPS (floating point operations per second), has become one of the most important 

performance metrics in modern computing system such as multi-core CPU processors, 

GPUs, and even supercomputers. For example, a high end Intel Core i7 processor can reach 

around 187 GFLOPS with a designed power consumption of 150W [2]. NVIDIA’s Kepler 
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GK110 architecture contains 192 single precision and 64 double precision IEEE-754 

compliant FPUs for each streaming multiprocessor (SMX, 15 SMX in total), capable of 

achieving 1 TFLOPS double precision throughput, however, with a high power 

consumption of 250W [3]. As GPU architecture contains significantly more floating point 

arithmetic system per unit area with shared front end compared to CPU, the floating point 

system performance are significantly higher but also draws significant amount of power 

consumption. 

Many scientific and engineering applications contain significant amount of floating 

point instructions, as it is desirable to have a wide range of representable values, where 

they would all be represented as the same two extreme values (maximum or minimum) in 

a fixed point number system. However, it is often neglected that the accuracy requirements 

of these applications could be relaxed because they either don’t require a 100% accurate 

result, or the results are acceptable or good enough at certain levels of estimation. For 

example, voice recognition applications are based on approximation algorithms, and 

therefore inherently error tolerant. Image processing and communication algorithms 

usually have to deal with a lot of noises which makes the results probabilistic. Some other 

applications only cares about the relative temporal or spatial differences, therefore an 

erroneous shift in the results have minimum effect on the delta function of interests. In 

addition, the IEEE-754 floating point number system is inherently imprecise. And the 

IEEE-754 standard specifies the requirements of a rounding unit with different rounding 

modes that results in a power hungry component in a floating point unit. The absolute error 

of a floating point number grows exponentially as the exponent of the represented value 

gets larger and larger. These facts present a unique opportunity to utilize power-quality 
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trade-off design methodologies that approximates the individual floating point arithmetic 

result at the instruction and micro-architecture level for significant lower power 

consumptions.   

 

1.2 The Promising Paradigm of Imprecise Hardware 
 

 

Figure 3 Imprecise Hardware (IHW) Conceptual power-quality trade-off design 

space 

 

Imprecise hardware (IHW) is an emerging design methodology that seeks to 

improve power, area, latency, and related nonfunctional metrics through the use of quality 

tradeoffs in application domains that can tolerate relaxed correctness specifications. 

Conventional arithmetic designs often try to achieve “100%” accuracy for general 

computing purposes which result in high power, area, and very limited performance. 

Admittedly, many applications in the scientific and engineering do require extremely high 

accuracies, such as various models in financial engineering where a small error would 
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results in millions of dollars difference. For other applications where there are only limited 

power and area budget, once such strict requirements on computation accuracy are relaxed, 

one could find significant benefits in power, performance, and area (P.P.A) measures with 

negligible and acceptable quality loss. As shown in Figure 3, the imprecise hardware design 

paradigm allows a reasonable amount of quality sacrifices, but in return it gains significant 

improvement on non-functional metrics in power, area, and performance. The quality loss 

sometime can even be negligible to the application, giving imprecise hardware a significant 

advantage comparing against the conventional “precise” hardware. Figure 5 shows an 

example studied in previous work by [4], the proposed IHW adder was used in a JPEG 

decompression algorithm, the resulting image in the middle suffered negligible quality loss, 

while achieving 24% energy delay product (EDP) savings.  

Figure 4 Imprecise hardware taxonomy based on error frequency and magnitude 
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Figure 5 IHW used in JPEG decompression algorithm that results in minimal 

quality loss but significant EDP gain IHW categorized by error frequency and 

magnitude [4] 

However, achieving significant impacts on system level nonfunctional metrics with 

IHW is difficult. Nonfunctional metric improvements are limited by the rate at which 

operations that could be executed on IHW are found in the application. Even if arithmetic 

operations constitute the majority of runtime cycles in an application, the upper bound of 

the system-level impact is set by the collective power contributions of the executing 

hardware modules. While the benefits of applying IHW design methodology are most 

readily realized in specialized ASICs, the heterogeneity of CPU architectures ultimately 

limits the potential success of IHW in these general-purpose platforms. However, the 

massively parallel homogeneous computation cores in GPU provided a tremendous 

opportunity as it contains significantly higher arithmetic units per unit area, and the 

arithmetic computation is a significant power consumer in the GPU architecture.  

There are different design techniques and design spaces for IHW depending on its 

error characteristics. Figure 4 shows a taxonomy of IHW from a quality perspective based 

on its relationship between error magnitude and error frequency. In general, an IHW with 

its error characteristics can fall into one of these four categories: Frequent Small Magnitude 

(FSM), Frequent Large Magnitude (FLM), Infrequent Small Magnitude (ISM), and 
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Frequent Large Magnitude (FLM). Among these four categories, FLM usually produces 

the worst quality, but it tends to be the most powerful in the power saving domain. 

Infrequent small and large magnitude IHW designs has the characteristics that the error 

tends to be sparsely distributed depending on the input distribution, such as the work in [5]. 

This thesis focuses on floating point designs where errors happen frequently due to the bit-

truncation wise techniques, and the error magnitude can be both small and large. Huang’s 

dissertation contains a more complete taxonomy on IHW based on various characteristics 

[6].    

Conventional IHW design and methodology explorations have been focused on 

integer hardware[4][5]. However, many floating point applications in multimedia and 

scientific computing can tolerate imprecise computations, and the large power 

consumption of floating point multipliers presents an opportunity for significant power 

savings. In fact, many floating point applications can operate with either double or single 

precision and even with bit truncations [8]. This provides a significant opportunity for 

applying imprecise hardware methodologies to make floating point operations imprecise 

and even accuracy-configurable so that dramatic power reductions could be achieved by 

adopting the lowest accuracy configuration that still meets the application specific quality 

constraint with no loss in the wide range of representable real values which is one of the 

most important benefits from using a floating point number system.  

1.3 Major Contributions 

 

The main contributions of this thesis are summarized as follows: 
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 A set of novel imprecise FPUs and SFUs with improved nonfunctional metrics is 

presented and evaluated in a 45 nm process. 

 A methodology for error analysis and characterization is presented and is applied 

to guide the selection of imprecise components based on application specific quality 

requirements. 

 A power-quality evaluation framework is presented to efficiently determine the 

quality impact and estimate the system level power savings for compute-intensive 

GPGPU applications. Results of the developed evaluation framework are presented 

for several compute-intensive scientific applications, demonstrating power-quality 

tradeoffs with IHW components. 

 A novel design of low-power accuracy-configurable floating point multiplier is 

proposed and is capable of achieving significant same-delay power reductions for 

single and double precisions compared to the IEEE-754 compliant counterparts. 

 An analysis demonstrates that it is suboptimal to directly apply bit truncation 

schemes, which is the conventional technique in floating point multiplication, to 

the power hungry mantissa multiplication in the power-quality trade-off design 

space. 

 Studies on a set of CPU and GPU Benchmarks that demonstrate the significant 

opportunities to leverage the proposed imprecise floating point multiplier for 

dramatic power savings with minimal application-level quality impact. 



 

Chapter 2 Related Work  

 
Various studies on imprecise arithmetic designs [4] [5][7][9][10] have shown that 

significant power savings and performance improvement can be achieved over traditional 

“precise” designs with acceptable impact on output quality. In [5], the authors proposed a 

variable latency speculative adder called Almost Correct Adder, it assumes that the carry 

propagation chain along the datapath of a Kogge-Stone adder is less than a certain threshold. 

The adder therefore is probabilistic in nature and can achieve log(log𝑛)performance 

compared to log𝑛of traditional high performance Kogge-Stone adder, where n is the 

number of bits in operands. In [4], the authors proposed an error balancing adder with 

dynamic error mitigation capabilities to push the Pareto optimal surface in the energy-

quality design paradigm. The proposed adder is studied with a common JPEG image 

decompression algorithm and demonstrates minimum quality degradation with 24% 

energy delay product (EDP) savings. An imprecise integer adder was also proposed in [7] 

such that the design utilizes multiple copies of smaller adders to configure different 

datapath with speculated carry-in values. This accuracy configurable integer adder 

achieves approximately 30% of power reduction compared to the conventional pipelined 

adder.  

   The emergence of various imprecise integer units and their novel designs 

significantly stimulated the research in the imprecise hardware designs and methodologies. 

Work in [11][12] provides a systematic methodological study of integer imprecise 

arithmetic units in the quality-efficiency design paradigm. The methodology can also be 

applied to floating point imprecise arithmetic units. The error modeling framework for 

imprecise arithmetic circuits proposed in [13] provides a foundation for the error 
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characterization framework in this work. However, a limited amount of work has been 

focused on imprecise floating point or special function units where power consumptions 

can be significantly larger than integer units. Wires et al. [14] proposed an imprecise 

floating point multiplier, which truncates the less significant bits (LSBs) in the 

multiplication matrix, resulting in a less than 1 unit in the last place (ULP) error and 37% 

power savings. A low power probabilistic floating point multiplier that uses combined 

voltage scaling and LSBs truncation techniques achieved 31% energy savings with 

negligible quality degradation in the studied RayTracing application [15]. A bit width 

reduction technique was used for a floating point multiplier in [8]. Even though significant 

power savings were achieved in these studies, we argue that more aggressive power savings 

are necessary to have a big impact at the system level. While some attempts have been 

made on low power floating point adder, divider, and special function units [8][14][15], 

little effort has been spent in the power-quality tradeoff design paradigm.  

At the system level, previous work has shown significant power/energy savings 

from using IHW on DSPs, where arithmetic power/energy consumption dominates, such 

as the work presented in [15]-[16]. An energy-precision tradeoff has been studied for 

mobile graphic processing units, which demonstrates over 23% energy savings with 

acceptable result accuracy [17]. The energy consumption is lowered by reducing the 

precision of arithmetic operations. However, the work is limited to the vertex 

transformation stage in a multi-stage graphics processor pipeline and was not applied to 

the more promising GPGPU paradigm.  

This work uses linear approximation and algorithmic and logic level simplification 

and considers all floating point arithmetic operations as candidates for approximate 
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operations. However, we justify this approach by arguing that it constitutes the best-case 

nonfunctional/worst-case functional tradeoff to facilitate studying the limits of the impacts 

of approximate computing in GPU architectures. This work is the first to consider the 

tradeoffs of relaxed precision floating point operations in the GPGPU paradigm and to 

evaluate the limits of system-level impacts. While some assumptions made in this work 

may limit its practical implementation, its results should be considered as a set of design 

goals to make a significant impact on system level metrics in future GPU designs. 

There are a few previous works that leverage quality as a design knob for reducing 

power consumptions in floating point multipliers [6][8][9][10]. Most of these works use 

intuitive bit truncations and voltage scaling that results in a relatively large percentage of 

power/energy savings. Gupta et al. [8] proposed a low power probabilistic floating point 

multiplier that uses combined voltage scaling and intuitive bit truncation in less significant 

bits (LSBs) of the mantissas, achieving 31% energy savings. The probabilistic nature, 

however, makes the multiplier less predictable in terms of power-quality trade-off. Wires 

et al. [9] also used intuitive bit truncation schemes to directly truncate LSBs in the mantissa 

multiplication matrix, resulting in a less than 1 unit in the last place (ULP) error and 37% 

power savings. Energy quality trade-off using intuitive bit truncations was studied in [6] 

for mobile graphic applications, achieving up to 36% energy savings. The work in [5] 

explored bit truncation schemes more aggressively in the mantissa multiplication block and 

achieved up to 66% power savings. It also studied a variety of floating point applications 

that suffers no quality degradation when up to 12 bits of mantissas were truncated. This 

work presents even more aggressive power reduction techniques that can achieve order of 

magnitude power reductions with graceful quality degradations.  
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Despite the emergence of various imprecise and accuracy configurable integer 

arithmetic units [3][4][11], a limited amount of work has been focused on reconfigurable 

floating point multipliers. Previous work such as [12][13] presents the reconfigurability 

between single and double precisions instead of accuracies. To the best of our knowledge, 

this work presents the first accuracy configurable floating point multiplier that has multiple 

accuracy configurations and is capable of achieving an order of magnitude power 

reductions without any sacrifice on performance and with acceptable impacts on quality. 

 



 

Chapter 3 Imprecise floating point arithmetic units1 
 

3.1 Proposed set of imprecise floating point unit and special function units 
 

Table 1 A set of proposed imprecise hardware function for common floating point 

operations 

 

 

This thesis presents the design and evaluation of a set of imprecise FPU and SFU 

components whose “precise” counterparts are frequently used in compute-intensive 

applications and rank among the highest power consumers in a GPU. Results of a 

preliminary study presented in Figure 2 show that SFU and FPU operations together 

account for approximately 38% on average of total power consumption in a GPU, under 

compute-intensive benchmarks from Rodinia [16] and ISPASS2009 [17]. Additionally, 

these units are especially conducive to IHW design, because they are only used in 

arithmetic operations, meaning that if the output quality of these units is degraded, essential 

control and memory operations will not be affected. In contrast, the integer unit (ALU), 

which is used for such essential operations, accounts for only 4% on average of the total 

                                                           
1 Part of the content in this chapter has been published in [33] and [34] 
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power consumption, and was not modified in this study. The set of imprecise FPU and SFU 

functions developed in this work are shown in Table 1. 

The proposed imprecise reciprocal, inverse square root, square root, log2, and 

floating point division functions are based on linear approximation with the range reduction 

technique. These functions are commonly grouped in the special function unit of the 

microprocessor, as they could be configured to share hardware resources and using similar 

binary algorithms. In general, there are three approaches for calculating “precise” 

elementary functions, the lookup table based approach, the iterative approximation 

approach based on the Newton-Raphson (NR) method or the Goldschmidt's algorithm and 

a combined table-lookup and approximation approach proposed as the Tang’s method 

[18][19]. Conventional table look-up methods such as multipartite require storing tables in 

the memory and perform an additional multi-operand multiplication and additions. It keeps 

a table of pre-computed values for every subintervals of the operand. The number of table 

entries is exponential in the number of bits representing the subinterval. Iterative methods 

do not need additional memory but require several multiplication-addition iterations. In 

order to achieve a “precise” result that is normally within one unit in the last place (ULP) 

error, both approaches can result in long propagation delay and significantly large power 

consumption [20][21]. 

This thesis aims at achieving significant power savings by sacrificing as much 

accuracy as possible under the constraint that the output quality is still acceptable to the 

application evaluated by application specific quality metrics. To approximate these power 

hungry elementary functions aggressively and achieve significant power savings, a range 

reduction is firstly performed on the operand to fit into a specific range and then the reduced 
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operand is applied onto a linear approximation function with no iterations. The third 

column of Table 1 shows the range of the operand as a result of range reduction. For 

instance, the single operand of the reciprocal function will be reduced to the range of 

[0.5,1). And then the reciprocal of the reduced operand will be approximated using the 

described linear equation. In hardware implementation, this requires minimum overhead 

as only a right shift is needed for reducing the mantissa of the operand which is already in 

the range of [1,2). The range reduction technique is commonly used in approximating 

floating point functions in hardware combined with quadratic approximations for high 

performance and high accuracy requirements [22]. The goal of imprecise hardware designs 

is to minimize power consumption while sacrificing accuracy according to application 

specific error tolerance, therefore, only a linear approximation is used here for best-case 

power reduction and limited accuracies as compared to commonly used quadratic 

approximations using Lagrange or least square approximations with high accuracy but also 

very high power consumption.  

Using IEEE-754 floating point number representation, the range reduction can be 

implemented easily by replacing the exponent with the predefined constant exp_bias – 1 

and a conceptually right shift of the mantissa (in hardware, it is passed through with a 

different alignment of bits), where exp_bias equals 127 and 1023 in single and double 

precision, respectively. In the case of log2, the exponent is replaced with exp_bias. The 

approximation functions can also be used as initial approximation functions for 

conventional iterative methods such as the Newton-Raphson (NR) method or the 

Goldschmidt's algorithm [23]. The simpler linear approximation eliminates the need for 

additional memory in table-based methods or multiple iterations in iterative methods, with 
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a reasonable amount of accuracy sacrifice, as demonstrated in Section 5. The coefficients 

of each linear approximation function are obtained using curve fitting techniques with the 

goal to minimize the mean absolute error.  Also shown in the table is the error information 

related to each imprecise function. For instance, the imprecise reciprocal function has an 

𝜀𝑚𝑎𝑥  of 5.88%, where 𝜀𝑚𝑎𝑥  represents the maximum absolute error percentage. The 

maximum error percentage is an important metric for an imprecise hardware design. It can 

be obtained either by formal mathematical proofs or numerical analysis with significant 

large uniformly distributed random input vectors. The details of error analysis will be 

presented in Chapter 5. 

When designing the imprecise floating point addition, subtraction, and 

multiplication units, we take a different approach by simplifying and restructuring these 

functions at the algorithmic and logic level. An algorithmic-level simplification for floating 

point multiplication 𝑧 = 𝑎 × 𝑏is shown as follows: 

𝑎 = 𝑆𝑎 ×2
expa × (1 +𝑀𝑎);0 ≤ 𝑀𝑎 < 1               (1) 

𝑏 = 𝑆𝑏 ×2
expb × (1 +𝑀𝑏); 0 ≤ 𝑀𝑏 < 1                (2) 

then: 

𝑆𝑧 =𝑆𝑎𝑥𝑜𝑟𝑆𝑏   (3) 

𝑒𝑥𝑝𝑧 = 𝑒𝑥𝑝𝑎 + 𝑒𝑥𝑝𝑏 + 𝑐𝑖𝑛 (4) 

𝑀𝑧 = (1 + 𝑀𝑎) ×(1 + 𝑀𝑏) 

≈ {
1 +𝑀𝑎 +𝑀𝑏; (𝑀𝑎 +𝑀𝑏 < 1)
1+𝑀𝑎+𝑀𝑏

2
 ; (𝑀𝑎 +𝑀𝑏 ≥ 1)

    (5) 
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𝑐𝑖𝑛 =  {
0; (𝑀𝑎 +𝑀𝑏 < 1)
1; (𝑀𝑎 +𝑀𝑏 ≥ 1)

    (6) 

In equation (5), the imprecise floating point multiplication approximates the result 

by neglecting the additional term𝑀𝑎 ∗ 𝑀𝑏. In the hardware circuit for a 32-bit floating 

point multiplier, this means that the 24x24-bit mantissa multiplication can be effectively 

replaced with a 25x25-bit addition. Since the result is already an approximation, no IEEE-

754 compliant rounding circuit is needed. Subnormal numbers are set to zero by default so 

that additional hardware for handling subnormal numbers in rare situations can be ignored. 

Infinities and NaNs are still supported. As a result of the restructuring and simplification, 

a 5X latency reduction and 25X power savings are observed. The detailed results are shown 

in Chapter 5 and 6.  

The same approach is applied to the floating point adder as well. A threshold value 

TH (a design-time structural parameter) is set on the exponent difference. During the 

mantissa alignment, if the exponent difference exceeds the threshold TH, the mantissa of 

the smaller operand is effectively set to zero. This means that in the hardware circuit for a 

floating point adder, only a TH bit right shifter and a (TH+1)-bit adder is needed, as 

opposed to the 27-bit right shifter and adder in the IEEE-754 compliant floating point 

adder. For example, if TH=3, expa – expb = 1, and 𝑏 = 1. 𝑥1𝑥2𝑥3𝑥4𝑥5 × 2
𝑒𝑥𝑝𝑏 , then 

operand b after the shift-and-align stage will become: 

𝑏′ = 0.1𝑥1𝑥2000 × 2
𝑒𝑥𝑝𝑎                            (7) 

If however, when expa – expb = 4, which is greater than the threshold of 3, the 

mantissa of operand b after shift-and-align will be zero, and the addition result will be equal 

to operand a. IEEE-754 compliant rounding circuits are ignored and subnormal numbers 
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are set to zero as well. For a 32-bit floating point adder with TH = 8, the maximum error 

percentage is only 0.78% for effective addition operations with about 70% power savings 

and 25% performance improvement. This combination of algorithmic and logic level 

simplification and restructuring of floating point functional units result in a significant 

power savings with small quality degradations.



 

3.2 A low-power accuracy-configurable floating point multiplier  

 

 This section details an improvement that could be made on the imprecise floating 

point multiplier discussed in the previous chapter, where 25X power reduction could be 

achieved at a maximum error magnitude of 25%. The power error quality trade-off could 

be significantly improved as shown in this chapter so that 26X power reduction could be 

achieved at only 11.4% for single precision floating point multiplier and 49X power 

reduction at only about 18.07% maximum error magnitude for double precision operations. 

The improved floating point multiplier is based on Mitchell’s algorithm and can be 

configurable based on different accuracy levels and application dependent error tolerance 

requirements. 

3.2.1 Mitchell’s Algorithm for Fixed Point Multiplications 

 

A simple binary to logarithm conversion algorithm for approximating fixed point 

multiplication and division was proposed in [7], which has been commonly referred to as 

the Mitchell’s Algorithm (MA). The approximation algorithm involves three major steps. 

The first step is to convert each operand to its log2 based logarithm values by applying a 

piecewise linear approximation in the range of zero to one. The logarithm values are then 

added or subtracted according to the intended operation. And the last step is to perform 

another piecewise linear approximation to find the antilogarithm value from previous step, 

which gives the result of the approximated multiplication or division. A brief mathematical 

summary of the approximation algorithm is shown as follows: 

Assume D is an integer number and can be represented in the binary form as: 

𝐷 = (−1)𝑠∑2𝑖𝑍𝑖𝑖 ∈ 𝑁, 𝑍𝑖 ∈ {0,1}

𝑘

𝑖=0

(8) 
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Where 𝑖represents the bit position of each binary digit, 𝑍𝑖  represent the binary value of 

either “0” or “1”, and 𝑘 is the most significant bit position of the leading “1” in 𝐷′𝑠 binary 

representation. Before performing the piecewise linear approximation, a 2𝑘 can be factored 

out: 

𝐷 = (−1)𝑠2𝑘(1 +∑2𝑖−𝑘𝑍𝑖) = 2
𝑘(1 + 𝑥), 𝑥 ∈ [0,1)

𝑘−1

𝑖=0

(9) 

𝑥 = ∑ 2𝑖−𝑘𝑍𝑖
𝑘−1
𝑖=0  is now a fixed point decimal number between 0 and 1. Applying linear 

approximation on the straight line curve for log2(1 + 𝑥), 𝑥 ∈ [0,1) function yields the 

following approximation equation:  

log2 𝐷 ≈ 𝑘 + 𝑥(10) 

Therefore, the product of D1 and D2 could be approximated by: 

𝐷1 × 𝐷2 ≈ {
2𝑘1+𝑘2 × 2𝑥1+𝑥2 , 𝑥1 + 𝑥2 ∈ [0,1)

2𝑘1+𝑘2+1 × 2𝑥1+𝑥2−1, 𝑥1 + 𝑥2 ∈ [1,2)
(11) 

Finally, the product can be approximated by another linear approximation function using 

2𝑥 ≈ 1 + 𝑥 for 𝑥 ∈ [0,1): 

𝐷1 × 𝐷2 ≈ {
2𝑘1+𝑘2 × (1 + 𝑥1 + 𝑥2), 𝑥1 + 𝑥2 ∈ [0,1)

2𝑘1+𝑘2+1 × (𝑥1 + 𝑥2), 𝑥1 + 𝑥2 ∈ [1,2)
(12) 

Figure 6 shows the conventional hardware implementation of Mitchell’s Algorithm. The 

binary to log conversion approximation is calculated by the leading one detector (LOD) 

and the Barrel left shifter. The log to binary conversion after the addition is performed by 

a simple decoder. A ‘1’ is inserted into the appropriate position of the approximated binary 

result. 
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Figure 6 MA hardware implementation for fixed point 

 

 Mitchell’s algorithm for binary fixed point addition  

 Let 𝑁1,   𝑁2 be two n-bits binary multiplicands, 𝑃𝑎𝑝𝑝𝑟𝑜𝑥:2n-bits approximated 

product 

 Calculate 𝐾1: leading ‘1’ position of 𝑁1 

 Calculate 𝐾2: leading ‘1’ position of 𝑁2 

 Shift 𝑁1,  𝑁2 to the left by n − 𝐾1 and n − 𝐾2 bits respectively and concatenate 

after 𝐾1, 𝐾2 respectively in 𝑆1,  𝑆2 (binary to log estimation) 

 Calculate S: Adding 𝑆1, 𝑆2  

 Decode 𝑆 and insert a ‘1’ in its position of 𝑃𝑎𝑝𝑝𝑟𝑜𝑥 (2𝑥 approximation) 

 𝑁1 ∗ 𝑁2 ≈ 𝑃𝑎𝑝𝑝𝑟𝑜𝑥 
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3.2.2 Design of low-power accuracy-configurable floating point multiplier  

 

 IEEE-745 standard floating point (FP) multiplication contains a mantissa 

multiplication block, which is usually the most power hungry component in a FP multiplier. 

Significant amount of work on low power FP multipliers have focused on the mantissa 

multiplier, as mentioned in the related work section, and relatively large amount of 

power/energy savings could be achieved. However, to the best of our knowledge, no 

previous work has applied Mitchell’s Algorithm to the floating point multiplier attempting 

to dramatically reduce power consumption and evaluate the implementation within the 

power-quality trade-off design paradigm. 

An intuitive method to apply Mitchell’s Algorithm to the floating point 

multiplication is simply replacing the mantissa multiplier with an MA multiplier of the 

same bitwidth. However, this method leads to a fixed accuracy design with a maximum 

error magnitude of 11.11%. In fact, various algorithms have different error sensitivities, 

some of which may require a much higher accuracy than others. Therefore, a fixed accuracy 

design will limit the FP multiplier to a small number of applications. To enable more 

accuracy configurations, an algorithmic transformation can be performed on the mantissa 

multiplication, which could reduce the maximum error to only 2.04% without significant 

hardware costs. In addition, bit truncations can still be applied on top of the algorithmic 

transformation, providing a wide range of accuracies for maximum amount of power 

savings while still producing acceptable quality of results (QoR) to specific applications. 

The algorithmic transformation for a FP multiplication 𝑍 = 𝑎 × 𝑏 is shown as following: 

𝑎 = 𝑆𝑎 × 2
𝑒𝑥𝑝𝑎 × (1 +𝑀𝑎);𝑀𝑎 ∈ [0,1)(13) 

𝑏 = 𝑆𝑏 × 2
𝑒𝑥𝑝𝑏 × (1 +𝑀𝑏);𝑀𝑏 ∈ [0,1)(14) 
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Then: 

𝑍 = (𝑆𝑎⨁𝑆𝑏) × 2
𝑒𝑥𝑝𝑎+𝑒𝑥𝑝𝑏−𝐵𝐼𝐴𝑆 × (1 +𝑀𝑎) × (1 +𝑀𝑏)(15) 

𝑍 = (𝑆𝑎⨁𝑆𝑏) × 2
𝑒𝑥𝑝𝑎+𝑒𝑥𝑝𝑏−𝐵𝐼𝐴𝑆 × (1 +𝑀𝑎 +𝑀𝑏 +𝑀𝑎 ×𝑀𝑏)(16) 

 

 

Figure 7 Low-power accuracy configurable floating point multiplier based on 

Mitchell’s Algorithm 

 

An observation can be made such that the MA multiplier can be applied on either 

the mantissa multiplication (1 + 𝑀𝑎) × (1 + 𝑀𝑏)  (the Log Path) or the fraction 

multiplication of 𝑀𝑎 ×𝑀𝑏 (the Full Path) with an additional adder for (1 + 𝑀𝑎 +𝑀𝑏). 

The log path is effectively the intuitive replacement of the mantissa multiplier by an MA 

multiplier with a maximum error magnitude of 11.11%. The full path has a much lower 
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maximum error magnitude of 2.04%. This effectively replaces the multiplier in the IEEE-

754 standard implementation with three adders, and the large accuracy range between the 

two configurations allows bit truncation to be applied on both datapath, enabling a wide 

range of accuracy configurations. 

This accuracy configurability allows the FP mulitplier to be used by a variety of 

error tolerant applications. By truncating 19 bits in the single precision mantissa 

multiplication, the proposed FP multiplier is able to achieve 26X power reductions with a 

maximum error percentage of 18%, while truncating 21 bits directly in the “Precise” FP 

multiplier produces about 21% maximum error but only gains 2.3X power reduction. 

Chapter 5 provides a formal error analysis and Chapter 6 provides the detailed power 

measurement as well as application level quality evaluation results. 

Figure 7 shows the micro-architecture of the proposed accuracy configurable FP 

multiplier using Mitchell’s Algorithm. Instead of implementing a power hungry Barrel left 

shifter and LOD, a priority encoder can be used, which has much simpler structure and 

helps minimize the power consumption. As seen from the figure, the mantissa multiplier is 

now replaced with a MA multiplier and two adders. The adder Add1 performs addition of 

(1 + 𝑀𝑎 +𝑀𝑏)  for the full path configuration. Add2 in the MA multiplier can be 

configured to calculate either the log path or the (𝑀𝑎 ×𝑀𝑏) for the full path. And the 

(1 + 𝑀𝑎 +𝑀𝑏) and (𝑀𝑎 ×𝑀𝑏) can be added by Add3. When the multiplier is configured 

to the log path, Add1 and Add3 are set idle by multiplexing all inputs to constant 0. And 

Add3 is effectively bypassed by a set of multiplexers. In this case, Add1 and Add3 consume 

only the leakage power. During the operation of the full path configuration, all three adders 

are switching, providing about 2X the power reduction compared to its single precision 
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IEEE-754 counterpart. It’s necessary to point out that part of the power savings of the 

accuracy configurable FP multiplier comes from the elimination of the rounding unit, 

which consumes up to 18% power consumption according to [8]. Since the proposed FP 

multiplier is inherently imprecise and not compliant to the IEEE-754 standard, no rounding 

unit is needed. 



 

Chapter 4 Error Analysis and Characterization2  

 
 Error analysis of imprecise hardware functions show their error probability 

(frequency), maximum error magnitude or percentage, and mean error magnitude or 

percentage. These are important quality metrics for designers and programmers to choose 

the appropriate configurations. Error analysis is usually done by formal mathematical 

analysis and proofs. For certain imprecise configurations where formal mathematical 

analysis is not possible or very challenging, numerical analysis can be performed by 

feeding the imprecise unit with a significant large set of uniformly distributed input vectors. 

Error characterization shows the error distribution of an imprecise hardware function for a 

given input distribution. It can show the error probability or error frequency for a specified 

interval of interest. The results of error analysis and characterization can be useful in 

guiding the selection of different imprecise hardware configurations.  

4.1 Error Analysis  

4.1.1 Error Analysis for Imprecise Floating Point Adder 

 

The maximum absolute error percentage, represented as 𝜀𝑚𝑎𝑥 for each imprecise 

function is shown in Table 1. This sub chapter presents the formal error analysis for the 

imprecise floating point adder as well as the improved accuracy configurable floating point 

multiplier. Error analysis for other floating point and special function units are essentially 

the same. As described in the previous chapter, the output accuracy of the imprecise 

floating point adder is determined by the design time structural parameter TH. We assume 

both operands a and b are normal floating point numbers, and they can be represented using 

                                                           
2 Part of the content in this chapter has been published in [33] and [34] 
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equations (1) and (2). We also assume that the exponent difference d between a and b are 

non-negative so that the compare-and-swap step can be ignored to simplify the analysis 

process. Let 

𝑦 = 𝑎 ± 𝑏; 𝑦, 𝑎, 𝑏 ∈ ℝ(17) 

𝑎 ± 𝑏 = 𝑆𝑎 × 2
𝑒𝑥𝑝𝑎 × (1 +𝑀𝑎) ± 𝑆𝑏 × 2

𝑒𝑥𝑝𝑏 × (1 +𝑀𝑏);(18) 

𝑒𝑥𝑝𝑎 − 𝑒𝑥𝑝𝑏 = 𝑑; 𝑑 ∈ 𝑁; 0 ≤ 𝑇𝐻 ≤ 27;(19) 

Depending on the effective operation, we need to consider four different cases: 

{

𝑦 = 𝑎 + 𝑏; 𝑑 ≥ 𝑇𝐻
𝑦 = 𝑎 + 𝑏; 0 ≤ 𝑑 ≤ 𝑇𝐻(20)
𝑦 = 𝑎 − 𝑏; 𝑑 ≥ 𝑇𝐻
𝑦 = 𝑎 − 𝑏; 0 ≤ 𝑑 ≤ 𝑇𝐻

 

a) 𝑦 = 𝑎 + 𝑏; 𝑑 ≥ 𝑇𝐻;In this case, b will be 0 after alignment and shifting, 

therefore,  

𝜀max =
(1 + 𝑀𝑎) × 2

𝑒𝑥𝑝𝑏

(1 + 𝑀𝑎) × 2𝑒𝑥𝑝𝑎 + (1 +𝑀𝑎) × 2𝑒𝑥𝑝𝑏
=

1

1 +𝑀𝑎
1 +𝑀𝑏

× (2𝑒𝑥𝑝𝑎−𝑒𝑥𝑝𝑏) + 1
 

=
1

1 +𝑀𝑎
1 +𝑀𝑏

× 2𝑑 + 1
<

1

2𝑑−1 + 1
<

1

2𝑇𝐻−1 + 1
; (
1.𝑀𝑎
1.𝑀𝑏

> 
1

2
 , 𝑑 ≥ TH ) 

When TH = 8, 𝜀𝑚𝑎𝑥 < 
1

27+1
≈  0.775% 

b) 𝑦 = 𝑎 + 𝑏; 0 < 𝑑 < 𝑇𝐻;         

𝜀𝑚𝑎𝑥 =
2−𝑇𝐻 × 2𝑒𝑥𝑝𝑏

(1 + 𝑀𝑎) × 2𝑒𝑥𝑝𝑎 + (1 +𝑀𝑎) × 2𝑒𝑥𝑝𝑏
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<
1

2𝑇𝐻(2𝑑 + 1)
<

1

2𝑇𝐻+1
; 

               When TH = 8, Ԑ𝑚𝑎𝑥 < 
1

29
 ≈ 0.2% 

c) 𝑦 = 𝑎 − 𝑏; 𝑑 ≥ TH; 

Ԑ𝑚𝑎𝑥 =
1.𝑀𝑏 × 2

𝑒𝑥𝑝𝑏

1.𝑀𝑎 × 2𝑒𝑥𝑝𝑎 − 1.𝑀𝑏 × 2𝑒𝑥𝑝𝑏
<  

1

2𝑇𝐻−1 − 1
; 

When TH = 8, Ԑ𝑚𝑎𝑥 < 
1

27−1
 ≈ 0.785% 

d) 𝑦 = 𝑎 − 𝑏; 0 < 𝑑 < 𝑇𝐻;       

Ԑ𝑚𝑎𝑥 =
2−𝑇𝐻 × 2𝑒𝑥𝑝𝑏

1.𝑀𝑎 × 2𝑒𝑥𝑝𝑎 − 1.𝑀𝑏 × 2𝑒𝑥𝑝𝑏
 

= 
1

2𝑇𝐻 × (1.𝑀𝑎 × 2𝑑 − 1.𝑀𝑏)
; 

 

In the first three cases (a)-(c), the 𝜀𝑚𝑎𝑥are bounded by a percentage that is smaller 

than 0.785% when TH = 8. In case (d), however, when the effective operation is a 

subtraction and the exponent difference is less than the predefined threshold, the maximum 

error percentage Ԑ𝑚𝑎𝑥 explodes. This happens when the two operands are very close to 

each other on the real line and are likely to produce a subnormal number as a result of 

subtraction. In this case, both the “precise” result and the approximated result can be very 

close to zero while producing a very large error percentage. However, due to the small 

absolute quantity, this will have minimum effect on the output quality of the application, 

despite the large relative error percentage. 
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4.1.2 Error Analysis for Imprecise Accuracy Configurable Floating Point Multiplier  

 

A detailed formal error analysis for Mitchell’s Algorithm fixed point multiplication 

is provided in [7], proving that the maximum error magnitude for a MA multiplier is 

11.11%. The analysis also applies to the log path for the proposed multiplier as the entire 

mantissa multiplication is essentially replaced by the MA multiplier. This section provides 

the formal error analysis for the full path configuration, when the mantissa multiplication 

is approximated by1 +𝑀𝑎 +𝑀𝑏 +𝑀𝐴(𝑀𝑎, 𝑀𝑏) , where 𝑀𝐴(𝑀𝑎, 𝑀𝑏)stands for using 

Mitchell’s Algorithm for approximating𝑀𝑎 ×𝑀𝑏.  

Since 𝑀𝐴(𝑀𝑎, 𝑀𝑏)is essentially a fixed point operation in binary, approximation 

equation (12) applies to 𝑀𝑎 ×𝑀𝑏. Let’s define: 

𝑀𝑎 = 2
𝑘𝑎(1 + 𝑥𝑎);𝑥𝑎 ∈ [0,1), 𝑘𝑎 ≤ −1 

𝑀𝑏 = 2
𝑘𝑏(1 + 𝑥𝑏);𝑥𝑏 ∈ [0,1), 𝑘𝑏 ≤ −1 

𝑀𝐴(𝑀𝑎, 𝑀𝑏) =  {
2𝑘𝑎+𝑘𝑏 × (1 + 𝑥𝑎 + 𝑥𝑏), 𝑥𝑎 + 𝑥𝑏 ∈ [0,1)

2𝑘𝑎+𝑘𝑏+1 × (𝑥𝑎 + 𝑥𝑏), 𝑥𝑎 + 𝑥𝑏 ∈ [1,2)
(21) 

Let 𝜀 be the error magnitude percentage, then: 

𝜀 =
(1 +𝑀𝑎)(1 + 𝑀𝑏) − (1 +𝑀𝑎 +𝑀𝑏 +𝑀𝐴(𝑀𝑎, 𝑀𝑏)

1 + 𝑀𝑎 +𝑀𝑏 +𝑀𝑎 ×𝑀𝑏
 

=
𝑀𝑎 ×𝑀𝑏 −𝑀𝐴(𝑀𝑎, 𝑀𝑏)

1 + 𝑀𝑎 +𝑀𝑏 +𝑀𝑎 ×𝑀𝑏
 

① Assume that  𝑥𝑎 + 𝑥𝑏 ∈ [0,1): 

𝜀 =
2𝑘𝑎+𝑘𝑏(1 + 𝑥𝑎)(1 + 𝑥𝑏) − 2

𝑘𝑎+𝑘𝑏(1 + 𝑥𝑎 + 𝑥𝑏)

1 + 2𝑘𝑎(1 + 𝑥𝑎) + 2𝑘𝑏(1 + 𝑥𝑏) + 2𝑘𝑎+𝑘𝑏(1 + 𝑥𝑎)(1 + 𝑥𝑏)
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=
1

(1 + 2−𝑘𝑎)(1 + 2−𝑘𝑏)
𝑥𝑎𝑥𝑏

+
2−𝑘𝑎 + 1
𝑥𝑎

+
2−𝑘𝑏 + 1
𝑥𝑏

+ 1

 

= 𝑓(𝑘𝑎, 𝑘𝑏 , 𝑥𝑎, 𝑥𝑏) 

Since 𝑘𝑎, 𝑘𝑏 ≤ −1, then:  

𝜀max = lim
𝑘𝑎→−1

lim
𝑘𝑏→−1

𝑓(𝑘𝑎, 𝑘𝑏 , 𝑥𝑎, 𝑥𝑏) 

=
1

9
𝑥𝑎𝑥𝑏

+
3
𝑥𝑎
+
3
𝑥𝑏
+ 1

 

=
1

𝑔(𝑥𝑎, 𝑥𝑏)
 

Let 𝑥𝑎 + 𝑥𝑏 = 𝛼, 0 < 𝛼 < 1: 

𝑔(𝑥𝑎, 𝛼) =
9

𝑥𝑎(𝛼 − 𝑥𝑎)
+

3

𝛼 − 𝑥𝑎
+
3

𝑥𝑎
+ 1 

𝐿𝑒𝑡
𝜕𝑔

𝜕𝛼
= 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥𝑎 =

𝛼

2
 

𝜀max =
1

𝑔𝑚𝑖𝑛
=

1

lim
𝛼→1

𝑔(𝑥𝑎, 𝛼)
|
𝑥𝑎=

𝛼
2
=
1

49
≈ 0.0204 

②Assume 𝑥𝑎 + 𝑥𝑏  ∈ [1,2): 

𝜀 =
2𝑘𝑎+𝑘𝑏(1 + 𝑥𝑎)(1 + 𝑥𝑏) − 2

𝑘𝑎+𝑘𝑏+1(𝑥𝑎 + 𝑥𝑏)

1 + 2𝑘𝑎(1 + 𝑥𝑎) + 2𝑘𝑏(1 + 𝑥𝑏) + 2𝑘𝑎+𝑘𝑏(1 + 𝑥𝑎)(1 + 𝑥𝑏)
 

=
1

(1 + 2−𝑘𝑎 + 𝑥𝑎)(1 + 2−𝑘𝑏 + 𝑥𝑏)
(1 − 𝑥𝑎)(1 − 𝑥𝑏)
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= 𝑓(𝑘𝑎, 𝑘𝑏 , 𝑥𝑎, 𝑥𝑏) 

Then:  

𝜀max = lim
𝑘𝑎→−1

lim
𝑘𝑏→−1

𝑓(𝑘𝑎, 𝑘𝑏 , 𝑥𝑎, 𝑥𝑏) 

=
1

(3 + 𝑥𝑎)(3 + 𝑥𝑏)
(1 − 𝑥𝑎)(1 − 𝑥𝑏)

 

=
1

𝑔(𝑥𝑎, 𝑥𝑏)
 

Let 𝑥𝑎 + 𝑥𝑏 = 𝛼, 𝛼 ≥ 1: 

𝑔(𝑥𝑎, 𝛼) = 
(3 + 𝑥𝑎)(3 + 𝛼 − 𝑥𝑎)

(1 − 𝑥𝑎)(1 − 𝛼 + 𝑥𝑎)
 

𝐿𝑒𝑡
𝜕𝑔

𝜕𝛼
= 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝛼 = 1 

𝜀max =
1

𝑔𝑚𝑖𝑛
=

1

lim
𝑥𝑎→

1
2

(
12

𝑥𝑎 − 𝑥𝑎2
+ 1)

|𝛼=1 =
1

49
≈ 0.0204 

The above analysis shows the maximum error bound is 2.04% for the full path 

configuration in the proposed FP multiplier when no bitwidth truncation is applied. It 

applies to both single and double precisions. The maximum error percentage for truncated 

configurations is very challenging to obtain using formal analysis. Therefore, they are 

obtained using statistical analysis during the process of error characterization.  

4.2 Error Characterization 

Maximum error percentage is an important metric for an imprecise floating point 

multiplier. However, using the error bound alone does not provide a complete picture of 
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its behavior under a dynamic wide range of input vectors. IHW error characterization 

provides some statistical insight, such as error rate and error magnitude distribution, to 

applications and system designers.  The error characterization shows the error sensitivity 

of each component under no application context. When doing quality tuning, it is helpful 

to look at the error characteristics to determine which component to be deployed. It is very 

necessary in imprecise arithmetic component design as it shows multiple quality properties 

and determines the applicability of the designed component to applications. It can serve as 

a guide for quality tuning. It is inherently and implicitly reflected in simulation results since 

it is the intrinsic property of the imprecise component.  

Compared to fixed point arithmetic operations, error characterization for floating 

point arithmetic is difficult because of the large range and non-discrete nature of floating 

point numbers. However, as the proposed imprecise floating point algorithm has no effect 

on the accuracy of the exponent addition, the range between 0.0 and 1.0 on the real line 

can provide a good coverage for characterizing the error percentage distribution produced 

only from the mantissa multiplication. In addition, obtaining a uniform distribution along 

the real line using the conventional pseudo-random number based Monte Carlo simulation 

method would result in an extremely large sample space, making the characterization 

processes very slow and producing biased results. Instead, we use the quasi-Monte Carlo 

method [24], which uses a low discrepancy sequence to generate correlated numbers that 

could provide a better uniformity in the specified range. 

Figure 8 shows the probability mass function (PMF) of error distributions for 32-

bit imprecise functions proposed in Chapter 3 using the quasi- Monte Carlo method with 

200 million random inputs. Each bar indicates a non-zero error probability or error 
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frequency. The sum of all bars represents the error rate of the component. The 𝑥 axis is 

𝑙𝑜𝑔2 based and represents the upper bound of error magnitude percentage obtained using 

the following formula: 

𝑥 = ⌈log2|𝐸𝑅𝑅%|⌉ 

For example, for 32 bit fpadd in Figure 8, a bar on top of the -2 marker indicates 

that there is a 5% probability that the error percentage is bounded between 2−3% 

and2−2%. It can be seen that the floating point adder and the log2 function are dominated 

by frequent small magnitude (FSM) error. The error magnitude explosion problem 

analyzed in the previous section for the floating point adder has a probability very close to 

zero when the error magnitude is larger than 8%. For other imprecise functions, there is an 

increasing probability towards larger error magnitude, but the error magnitude is bounded 

by the theoretical maximum error, shown in Table 1. 

  

   

 

Figure 8 Proposed imprecise hardware error characterization with 200 million 

random 
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Figure 9 shows the probability mass function (PMF) of error distributions for the 

improved floating point multiplier with both the full path configuration and the log path 

configuration and several bit-truncation schemes applied on top of both datapath. It can be 

seen that as the number of truncation bits increases, the error probability tends to be 

clustered to the right but not the rightmost interval. This indicates that even though the 

maximum error percentage seems to be large for a configuration, most input vectors will 

have an error percentage far below the maximum error bound. With each configuration 

characterized by a large set of input vectors, we can use this information to guide the choice 

of a particular configuration during application specific quality tuning processes. For 

instance, in Figure 9, there is only a small difference between “Log Path Tr17” and “Log 

Path Tr18”. However, a noticeable difference appears between 18 and 19 bits truncation as 

the highest error probability interval is shifted to the right. 
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Figure 9 Improved imprecise floating point multiplier error characterization with 

200 Million random inputs



 

Chapter 5 Experimental Methodology and Results3 
  

5.1 Power-quality tradeoff frame work  

 

 To study IHW arithmetic components on GPU, we propose a power-quality 

tradeoff framework based on CAD synthesis tools, GPGPU-Sim, and GPUWattch 

simulation models to quickly evaluate the impact of IHW on the output quality and estimate 

the impact on GPU system level power consumption. GPGPU-Sim is a cycle-accurate 

simulator that models GPU architectures similar to the NVIDIA Fermi series [25]. 

GPUWattch is an energy model based on McPAT [26]. It models GPU power consumption 

by fetching the performance counters from GPGPU-Sim during the simulation process. 

The modified McPAT with GPU-specific architectural components then computes the 

estimated static and dynamic power using per-access energy acquired from synthesis. For 

the Fermi architecture, the modeling error on power consumption is 9.7% [17]. 

 

Figure 10 Methodology flow for estimation GPGPU system level power quality 

trade-off with IHW 

                                                           
3 Part of the content in this chapter has been published in [33] and [34] 
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Figure 11 Top-down Power synthesis, functional verification and error 

characterization flow 

 

Figure 10 shows the methodology flow used in this study. All the imprecise 

components were first implemented as functional models in C++. The correctness of the 

functional models was verified against hardware models written in VHDL through 

simulation. The functional models were then imported into the GPGPU-Sim simulator. A 

knob was created for allowing the simulation to run in either the precise or the imprecise 

mode. Each imprecise hardware unit can be enabled or disabled individually, along with 

the tunable structural parameter, as detailed in Chapter 3. A GPGPU application is run on 

GPGPU-Sim with GPUWattch enabled to collect the power and performance statistics and 

the reference (baseline) application output. We then run a functional simulation with 

imprecise arithmetic units enabled to obtain the imprecise output. The reference and the 

imprecise outputs are then compared and evaluated using an application specific quality 

metric against a predefined fidelity constraint. If the constraint is not met, the structural 

parameter is adjusted or some imprecise components are disabled based on their 
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application-specific error sensitivity and error characteristics from previous 

characterization analysis to improve the output quality. The output is then re-evaluated for 

the updated imprecise output. The iterative quality tuning process is complete once the 

quality constraint is satisfied. 

To obtain non-functional metrics for proposed IHW components, we developed a 

synthesized HDL library. Due to the fact that implementation details of components in a 

GPU are not publicized, we compared our proposed imprecise components against the 

standard IEEE-754 compliant counterparts in the Synopsys DesignWare IP (DWIP) library. 

All proposed components and DWIPs were synthesized in Synopsys Design Compiler 

using 45nm FreePDK library. SPICE netlists were  extracted after place and route in 

Encounter. The post-layout netlists were then sent to HSIM for SPICE simulations. The 

power consumptions were measured in HSIM with 500 random input vectors. The process 

is shown in Figure 11 together with the co-simulation and error characterization processes. 

With the power statistics obtained by GPUWattch for each benchmark application, we 

evaluated the impacts of the IHW design approach on nonfunctional metrics at the system 

level by applying the hardware synthesis results to the power simulation results from 

GPUWattch. The system-level GPU power improvement is the additive result of the power 

improvement in both FPU and SFU. 

 To estimate the system level power impact of IHW, we used a similar estimation 

approach to GPUWattch by using per-access energy acquired from synthesis. The latency 

for each operation is calculated by assuming a continuously operating pipeline with no 

stalls. We also assume that other idle components in the execution units are power-gated 

with no effect on dynamic power consumption. A 700 MHz core clock frequency of the 
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execution pipeline was used, which is the same as GPUWattch. The application specific 

average power consumptions from IHW and DWIPs are calculated by dividing the total 

average energy (sum of average energy of each operation) by total latency spent in the 

functional units. Then the application level power savings from IHW can be obtained by 

comparing against the application specific power consumption from DWIPs. The 

percentage power savings for FPU and SFU is then applied to the percentage of power 

consumption obtained from GPUWattch to calculate the system level power savings. Due 

to the limitation of existing GPU power modeling tools and the difficulty of verifying 

against real GPU power numbers, these results serve as an estimation of the relative system 

level impact from IHW. 
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init_perf_acc(); // read in all performance counters 

init_syn_res();  // initialize nonfunctional metrics matrix 

for each op in op_list: 

acc = get_perf_counter(op); 

(ihw_pwr,ihw_lat)= get_syn_res(op, imprecise_mode[op]); 

(dw_pwr,dw_lat)  = get_syn_res(op, imprecise_mode=False); 

i_pipe_lat = [acc - 1 + ceil(ihw_lat/CLK_FREQ)]/CLK_FREQ; 

dw_pipe_lat = [acc - 1 + ceil(dw_lat/CLK_FREQ)]/CLK_FREQ; 

if op ϵ FPU: 

ihw_fpu_eng += ihw_pwr * i_pipe_lat; 

dw_fpu_eng  +=  dw_pwr * dw_pipe_lat; 

elif op ϵ SFU: 

ihw_sfu_eng += ihw_pwr * i_pipe_lat; 

dw_sfu_eng  +=  dw_pwr * dw_pipe_lat; 

end for; 

ihw_fpu  = ihw_fpu_eng / tot_ihw_lat; 

dw_fpu  = dw_fpu_eng / tot_dw_lat; 

… 

avg_fpu_pwr_impr = | (dw_ fpu_pwr- ihw_fpu_pwr) | / dw_ fpu_pwr 

avg_sfu_pwr_impr = | (dw_ sfu_pwr- ihw_sfu_pwr) | / dw_ sfu_pwr 

sys_pwr_impr = fpu_pwr * avg_fpu_pwr_impr + sfu_pwr * avg_sfu_pwr_impr; 

Figure 12 Simplified algorithm for estimating system level power savings 
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5.2 Non-Functional Metrics 
 

Table 2 Nonfunctional metrics of 32-bit IHW components  

(normalized against DWIP components, lower is better) 

 

 

 

Figure 13 Normalized Non-functional Metrics of 32bit IHW vs. DWIPs 

 

Table 3 Integer Adder vs. Integer Multiplier 

 

A library consisting of all proposed imprecise units was implemented in VHDL. 

We also use the highly optimized and industrial standard soft IPs from the IEEE-754 

compliant Synopsys DesignWare IP library (DWIPs) as baselines for comparison. All IHW 
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components and DWIPs were synthesized using Synopsys’s Design Compiler with 45nm 

FreePDK using the top-down power flow described in Figure 11. The power, performance, 

and area (P.P.A) results were stored into a matrix for system level power evaluation for 

each application. Table 2 shows the normalized nonfunctional metrics compared against 

each corresponding DesignWare IP component. And Figure 13 is a bar chart representing 

the same set of data for better interpretation. For example, the 32-bit floating point adder 

was synthesized with structural parameter TH=8. Along with other logic-level 

simplifications such as ignoring rounding circuits, a 69% power savings and a 26% percent 

latency improvement were achieved. The proposed imprecise floating point multiplier 

demonstrates the most significant improvement among all IHW components: about 96% 

power reduction and 78% performance improvement. This is not a surprising result, as 

such significant improvements are mainly achieved by replacing the 24x24-bit multiplier 

with a 25x25-bit carry save adder. A closer study of these two components shows a 

difference in power consumption of approximately 35 times and approximately 3 times in 

performance, as shown in Table 3. Table 2 and Figure 13 also demonstrate other proposed 

IHW designs achieving significant power and performance improvements as well. Even 

though the isqrt component has 16% higher power consumption, the EDP savings can 

reach about 87%. 

Figure 14 shows the power-quality trade-off design space for both single precision 

and double precision FP multipliers. The quality metric max error percentage is used here 

to be consistent with previous error analysis. Other inherent quality metrics such as mean 

error distance (MED) and worst case error distance (WED) [27] follow the same trends 

and therefore are not shown here. As seen from Figure 4(a), the log path in the single 
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precision imprecise multiplier can achieve more than 25X power reductions when 19 bits 

are truncated in the mantissa. However, the intuitive bit truncation schemes can only 

achieve approximately 2.5X power reduction at a higher max error percentage (21%). 

Similarly for the double precision multipliers, the imprecise multiplier can achieve 49X 

power reduction while truncating 48 bits in mantissa. This demonstrates that even though 

intuitive bit truncation schemes are simple and require little hardware modifications, they 

are far from optimal in the power-quality design space when aggressive power reductions 

are desirable. 

 

(a) 32bit imprecise FP multiplier 

 

(b) 64bit imprecise FP multiplier 

Figure 14 Power-quality trade-off of accuracy configurable FP multiplier 
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Table 4 Non-functional metrics of imprecise FP multiplier 

 

5.3 Application level power-quality trade-off 

5.3.1 System level power-quality trade-off with GPGPU applications  

 

 We apply the power-quality tradeoff framework presented in Chapter 5.1 to study 

three compute-intensive CUDA benchmark applications from Rodinia and ISPASS2009 

benchmark suits: HotSpot, SRAD, and RayTracing. These three benchmark applications 

were chosen based on their representative application domains, the dominance of floating 

point operations in FPU and SFU, and the availability of outputs for quality evaluation with 

specific quality metrics. Other compute-intensive benchmark applications, such as the CFD 

solver which is an unstructured grid finite volume solver for compressible flow used in 

fluid dynamics, were not studied because of the lack of functional output for quality 

evaluations and the lack of application specific quality metrics. 
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Figure 15 Functional simulation result from Hotspot with estimated 32% GPU 

power savings 

The Hotspot benchmark [28] is a processor temperature simulation model based on 

an architectural floor plan and simulated power measurements. The thermal simulation 

iteratively solves a series of differential equations. The compute-intensive kernel consumes 

nearly 35% of total power consumption by FPUs and SFUs, as shown in Figure 1. The 

algorithm tends to iteratively average out errors, and by performing functional simulation 

using GPGPU-Sim with all proposed IHW components enabled, there is almost no 

perceptible quality degradation, with a mean absolute error of 0.05 Kelvin, and mean 

square error of 0.003 K for all temperature blocks. Figure 15 (a)-(b) show the temperature 

“hot spots” in a 512 by 512 block processor for both the “precise” and imprecise results. 

Figure 15(c) compares the simulated temperature block by block. Each peak represents a 

local temperature “hot spot” that is the area of interest. The two temperature distributions 

have almost identical temperature peaks. Using the system-level power evaluation model, 

the application of IHW in HotSpot achieves about 32.06% power savings by employing all 
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proposed IHW components, due in large part to the 91.54% power savings from the SFU 

and FPU, as shown in Table 5.  

 

Figure 16 SRAD with an estimated 24% GPU power savings 

SRAD (Speckle Reducing Anisotropic Diffusion) [29] is a diffusion method for 

ultrasonic and radar imaging applications based on partial differential equations (PDEs). It 

is used to remove locally correlated noise, known as speckles, without destroying important 

image features. Figure 2 shows that the computational kernel of SRAD consumes around 

27% of total power by FPUs and SFUs. The application was simulated on GPGPU-Sim 

with all IHW components enabled following the methodology outlined in Chapter 6.1. The 

images on the top row of Figure 16 are ultrasonic images, while the images on the bottom 

row are binary-edged segmentation maps that are the basis for quality evaluation, as 

measured by Pratt’s figure of merit (from 0 to 1) in the original SRAD work [30]. Figure 

16(a) represents the original ultrasonic image and the ideal segmentation, 16(b) shows the 

image and segmentation after precise SRAD processing, and 16(c) shows the same results 
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when utilizing the proposed IHW. The precise version has a Pratt’s figure of merit of 0.20, 

while the imprecise results in a slightly higher 0.23, showing that the noise of the imprecise 

processing is dwarfed by the real-world image noise. The power evaluation model reports 

a significant 24.23% system level power savings for the GPU. 

 

Figure 17 Ray tracing algorithm with an estimated 10% (b) and 12% (c) GPU 

power savings 

The third application is a ray tracing algorithm for 3D graphics applications. The 

application is obtained from the ISPASS benchmark included in the GPGPU-Sim 

simulation tool. The total power consumption from FPU and SFU is about 28%. Since the 

output is a graphic image with 3D objects, we used the structural similarity index (SSIM) 

as the quality metric for better capturing the structural content in the image [31]. SSIM is 

expressed as a value between 0 and 1, with 1 corresponding to perfect quality. Figure 17 

shows the quality degradation based on the different IHW components proposed in Table 

1. When only reciprocal, floating point addition/subtraction, and square root functions are 

used as in Figure 17(b), the SSIM is as high as 0.95 and the system-level GPU power 

savings is about 10.24% as shown in Table 5. When the imprecise inverse square root 

function is added, the quality drops to 0.83, but the power savings improved to about 11.5%. 
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Due to the nature of error compounding in the ray tracing algorithm, the application is not 

as error resilient as the other two, and 11.5% power savings is about the maximum that can 

be achieved using imprecise components proposed in Table 1 without significantly 

degrading the structural content of the image. It is found out that ray tracing is very 

sensitive to floating point multiplication operations as significant amount of floating point 

multiplication are present during various dot product and cross product calculations during 

reflection angle and surface normal computation that have significant impacts on the image 

quality.  

Table 5 System level power savings for some compute intensive GPU applications 

 

                                                 
                            (a)                                                    (b)                                                  (c) 

Figure 18 Power-quality improvement for Ray tracing application using the improved 

floating point multiplier 

(a) Orignal ifpmul design in Table 1           

(b) rcp,fpadd,sqrt,full path fpmul tr=0; SSIM = 0.85,13.56% System level power savings  

(c) rcp,fpadd,sqrt,full path fpmul tr=15; SSIM = 0.79,15.37% System level power savings 
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Figure 18 shows the output of the RAY tracing algorithm when the imprecise 

floating point multiplication function proposed in Table 1 is applied together with the 

configuration in Figure 17(b), which has turned on imprecise floating point 

addition/subtraction, reciprocal, and square root functions. As it could be seen from the 

Figure 18(a), RayTracing algorithm is very sensitive to the precision of floating point 

multiplication, as significant amount of floating point multiplications are used in ray 

reflection and surface normal calculations. The large error presented in the multiplication 

operations could result in wrong ray direction and surfaces calculations. Since the rays are 

reflected multiple times before hitting the predefined end point in the 3D space, the errors 

can accumulate very quickly. This presents a strong barrier and challenge in achieving 

further power quality tradeoff. Even though we could achieve only slight quality 

degradation when only floating point addition/subtraction, reciprocal, and square root are 

applied, when the original imprecise floating point multiplication is added, the quality 

significantly drops, in which most of the spheres are no longer visible, and the image is 

most likely unacceptable to any applications. The large error magnitude from the original 

proposed imprecise floating point multiplier therefore limits the possibility of power 

quality tradeoff for RayTracing algorithm. Figure 18(b) shows the generated image when 

we apply the improved floating point multiplier with full path configurations. The image 

quality slightly degrades from 0.95 to 0.85, but the holistic power savings improved from 

10% to 13.56%. The improved floating point multiplier was also applied to previously 

studied Hotspot and SRAD. However, since these two applications are not as sensitive to 

floating point multiplications as RayTracing, the system level improvement on quality and 

power savings are less 1%.  
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The next section presents more detailed study on the improved imprecise floating 

point multiplier based on Mitchell’s algorithm and shows that conventional intuitive bit 

truncations schemes are far less optimal in the power – quality tradeoff design space for 

application sensitive to floating point multiplication inaccuracies.  

5.3.2 Application level study for the improved floating point multiplier  

 

Table 6 CPU and GPU Benchmarks Summary 

 

 To demonstrate the applicability of the proposed accuracy configurable FP 

multiplier to different algorithms and computation platforms under various accuracy 

configurations and show that it is significantly better than direct bit truncation schemes 

used previously, we studied the quality of results with three representative GPU 

benchmarks from Rodinia benchmark suit [16] and ISPASS2009 [17], and also three CPU 

benchmarks from SPEC2000 and SPEC2006. A high-level functional model of the 

proposed multiplier is written in C and CUDA. The CUDA version is used for GPU 

benchmaks and the C version is used for CPU benchmarks. The correctness of the 

functional model was verified against the hardware behavior model through extensive 

functional simulations. The benchmarks are picked based on their dominance of floating 
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point multiplications as well as the availability of application outputs for quality evaluation. 

Table 6 lists a summary of all six benchmarks studied in this work. 

 

 

(a) MAE vs. Power Reduction                    (b) WED vs. Power Reduction

 

(c) Heatmap generated by various configuration of accuracy configurable fp Multiplier 

Figure 19 HotSpot power-quality tradeoff with improved accuracy configurable 

floating point multiplier 
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Hotspot [28], as introduced previously, is a processor temperature simulation model 

based on an architectural floor plan and simulated power measurements which iteratively 

solves a series of differential equations. The compute-intensive benchmark kernel has 

about 3.7 Million single precision floating point multiplications. The imprecise simulation 

outputs were obtained by replacing all floating point multiplications in the kernel with the 

functional model written in CUDA. For each configuration, the mean absolute error (MAE) 

and worst error distance (WED) for all temperature blocks were calculated. The 26X power 

reduction configuration (19 bits truncated in log path) produces a MAE of 1.2 Kelvin, while 

the 22 bits intuitive bit truncation on a “precise” multiplier has about 8 times larger MAE 

with only 6X power reductions. As seen from Figure 19(a) and 19(b), the proposed 

multiplier shows significant better quality vs. power trade-off compared to the bit 

truncation schemes. Figure 19(c) show the 2D temperature maps from three worst-case 

quality but lowest-power configurations.  
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Figure 20 CP benchmark power-quality trade-off 

CP (Coulomb Potential) is a GPGPU application used for placing counterions near 

a biological molecule in preparation for molecular dynamics simulations. Same as Hotspot, 

mean absolute error (MAE) was used as the figure of merit for CP. Figure 20(a) shows the 

MAE for all accuracy configurations. As can be seen from the figure, the proposed FP 

multiplier has a consistently lower MAE and larger power reduction across all 

configurations. Figure 20(b)-(d) demonstrates the resulting energy differences between the 

specific configuration and the reference for each atom. It is worth-noting that out of all 

floating point multiplication operations, about 20% was kept precise as these were used for 

determining the coordinates of each atom in a 2D grid.  

179.art (The Adaptive Resonance Theory 2 (ART 2) neural network) is a floating 

point CPU benchmark from SPEC2000 used for recognizing objects in a thermal image. 
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As seen from Table II, the benchmark contains a total of 3.17 Billion double precision 

floating point multiplications. The input to the benchmark contains thermal images of a 

helicopter and an airplane. The output contains the coordinates of the recognized object as 

well as a confidence of match (vigilance). Therefore, we choose to use the confidence of 

match as the quality metric for this application given the correct object coordinates. Figure 

21(a) shows that the vigilance from intuitive bit truncation drops abruptly as the more bits 

were truncated, while a slow slope can be obtained by using the proposed accuracy 

configurable FP multiplier. With 26X power reduction, the accuracy configurable FP 

multiplier can still maintain a confidence of match above 0.8. 

 

                           (a) 179.art                                                 (b) 435.gromacs 

Figure 21 179.art, 435.gromacs: power-quality trade-off 

  

435.gromacs is a floating point CPU benchmark from SPEC2006 performing a 

simulation of the protein Lysozyme in a solution of water and ions. The input to the 

benchmark is set to be the default 6000 iteration steps. The output contains the average 

potential energy and system temperature. According to SPEC2006 documentation [19], 

molecular dynamics simulations by default are chaotic processes, therefore an error 
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percentage within 1.25% for the outputs is considered to be correct. The error percentage 

compared to the reference value given by the benchmark therefore is used here as a quality 

metric. The results from various accuracy configurations as well as the bit truncation 

schemes are shown in Figure 21(b). All points below the dashed line at 1.25% can be 

considered correct. In this benchmark, the log path of the FP multiplier has a better QoR 

than the full path. This is counter-intuitive and might be caused by the randomness within 

the application. 

Table 7 482.Sphinx3: quality of results 

  

482.sphinx3 is a voice recognition benchmark adapted from the speed recognition 

system Sphinx-3 [32]. For a reasonable and feasible simulation time, we randomly chose 

5 raw audio streams (an391 - an395) from the AN4 database that comes with the 

benchmark. The 5 raw audio streams contains a total of 25 words. Since the quality of the 

result depends on the words interpreted by the system, we use the number of words 

correctly recognized as a quality metric. The results are shown in Table III. The intuitive 

bit truncation schemes has a good accuracy until 49 bits are truncated in the double 

precision multiplication. However, the full path configuration miss recognized at most one 

word across all six accuracy configurations. Even though these two configurations has 

similar quality characteristics, the full path configuration has a much larger power 
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reductions. The log path does not perform very well in this application compared to the 

other two.



 

Chapter 6 Conclusions and Future Work 
 

In this thesis, we demonstrated that: 

1. Significant GPU system level power savings could be achieved by applying floating 

point IHW for compute-intensive applications with negligible quality degradation.  

2. Traditional bit truncation schemes employed in floating point multiplication is sub-

optimal in the power-quality design paradigm with inferior quality and limited 

power savings.  

The significant impact from IHW is mainly contributed by the following three factors:  

 The error resiliency of floating point arithmetic in compute-intensive GPGPU 

applications, which enables the use of IHW. 

 The high execution frequency of these arithmetic operations, which sets the power 

consumption upper bound at the system level. 

 The massively parallel homogeneous computation cores in the GPGPU architecture, 

which provide a multiplicative effect for system level power savings. 

The collective impact of these three factors was demonstrated with the evaluation 

of IHW under several benchmarks in scientific computing, achieving up to 32%, 24%, and 

13% system-level power savings respectively, while maintaining an acceptable level of 

output quality for each. The system level power savings from IHW can be further improved 

by combining with DVFS and power gating techniques. In addition, the proposed 

improvement on the low power accuracy configurable floating point multiplier based on 

Mitchell’s Algorithm demonstrates that dramatic (49X) power reductions could be 

achieved when applying bit truncations on top of the algorithmic transformed FP multiplier. 
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As shown in the application level analysis, the wide range of accuracy configurations 

allows a fine grained quality tuning for various error tolerant applications. 

Future work includes refining the system level power quality estimation framework, 

enabling more structural parameters of IHW components to expand the design space, and 

adding more control knobs for tuning output quality. One limitation of the proposed 

floating point multiplier is that it is inherently imprecise. Therefore, for applications that 

are partially error tolerant such as RayTracing, a “precise” floating point multiplier may be 

required for obtaining a good quality of result (QoR). Some future work include integrating 

the “precise” mode into the floating point multiplier and developing an automatic quality 

tuning model for applications that are partially error tolerant. 
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