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Abstract

Adaptive control theory provides an effective tool to overcome the modeling un-

certainties associated with the design of dynamical control systems. Real life dynami-

cal systems contain parametric, structural, modeling and environmental uncertainties

that might be difficult to formulate into an accurate model or be partially unknown.

Therefore, some of these system uncertainties can be taken into consideration, and

especially the modeling error effects due to inaccuracies or over simplifications which

constitute a major design challenge that may limit the level of achievable performance.

Better modeling and control techniques can be developed by employing an ap-

proximation based spline function network to adaptively control, approximate the

uncertain system nonlinearities and estimate the unknown model parameters online.

A number of theoretical and computational challenges must be overcome to reach

a significant contribution in this field of approximation based adaptive control the-

ory. These challenges include: reduction of modeling error effects on control system

performance, computation of a large number of adaptable parameters that might be

necessary to achieve desired system performance, ability to ensure convergence of

the system output, state, and approximator parameters for tracking objectives, and

development of new approximation structures that can adapt or adjust to necessary

structural changes to ensure the best available fit during online operation.

In this dissertation we address these challenges by developing advanced approxi-

mation based adaptive control techniques using spline functions for nonlinear systems,

along with substantial results to solve some control problems of urgent relevance to

aircraft and spacecraft applications. Specifically, a spline function approximation
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based adaptive control scheme is designed and analyzed for two complex examples:

a commercial aircraft with actuator nonlinearities due to synthetic jet inputs and a

nonlinear spacecraft model with unknown liquid fuel slosh model parameters. The

designed controller structures employ a multivariable spline function network to ap-

proximate the uncertain system nonlinearities and estimate the unknown model pa-

rameters online. They guarantee closed-loop stability and convergence of the tracking

error to a small residual set. Parameter projection-based adaptive laws are employed

to ensure desired closed-loop stability, approximator parameter convergence, and de-

sired tracking properties are maintained throughout the entire operating envelope.

Simulation results are presented to illustrate how the desired system performance is

achieved and maintained for a realistic set of operating conditions. This research offers

the extension of our preliminary results to include the development of an approxi-

mation based adaptive control design and analysis study for more complex nonlinear

dynamical systems that suffer from similar drawbacks and limitations.
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Chapter 1

Introduction and Overview

Uncertain dynamics in modeling nonlinear systems is one of the primary chal-

lenges in the research and development of next-generation adaptively controlled sys-

tems. These parametric uncertainties and unknown modeling effects inherent in

real-life dynamical systems can cause undesirable system failures and deteriorated

control system performance. To help improve the level of achievable control system

performance in highly uncertain nonlinear dynamical systems, approximation based

adaptive control methodologies can be implemented as a strong tool to estimate the

system parametric uncertainty and approximate the unknown system nonlinearities

in a refined control framework structure. Approximation based adaptive control is

in essence a combination of a number of different concepts from dynamical systems

theory, stability theory, function approximation techniques, parameter estimation

methods, nonlinear control designs, and an intuitive design mechanism to apply all

of these tools in a unified methodology [19].

1.1 Approximation Based Control Methodology

The motivation behind approximation based control is the ability to improve online

control performance by accurately determining uncertain nonlinear portions of the
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system model via function approximation methods. Although, the available model

information maybe limited a priori, additional information can be updated while the

system is operating. The concept of function approximation has been presented in

a general context for both theory and practical purposes [54]. Originally formulated

in [42], the idea of employing neural network structures for approximation and con-

trol instigated further research in the area of approximation based control methods.

Although the majority of the initial results in this field were based on the neural

network architecture [47] for function approximation models of the unknown non-

linearities, neural networks only represent just one class of many different types of

function approximators. For example, radial basis functions, polynomials, rational

functions, fuzzy logic systems, wavelets, gain scheduling and spline functions, are all

function approximators that have been applied in a similar context [8, 46, 18, 57].

Therefore, control methodologies based on these approximation models with adap-

tivity online features are referred to as approximation based adaptive control. In

contrast to adaptive nonlinear control where the uncertainty is in the unknown pa-

rameters, approximation based adaptive control deals with system uncertainty that

is due to unknown nonlinearities [49].

There are two main types of parameter estimation methods: the so called online

learning technique and the offline tuning approach [19]. Online parameter estimation

methods are based on the idea of choosing suitable initial estimates for the unknown

parameters, then updating the parameter estimates using the current set of measure-

ments available. The three steps involved in the online learning design procedure are

fairly simple, first derive a parametric model that rewrites the system into a model

of known structure and unknown parameters. The second step is to design an online

learning scheme, this consists of replacing the unknown parameters in the parametric

model by some adjustable set of parameters. The third and final step is to derive

an adaptive law for updating the adjustable parameters in the newly formed adap-

tive approximator. The adaptive law is typically based on a chosen parametric error
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signal that is used in an optimization method minimizing a chosen type of cost func-

tion. The offline parameter estimation tuning approach first requires the collection

of all necessary input-output data to be processed and then fit to a predetermined or

assumed model. There are a number of different approximation based methods that

can be used to determine the best fit for the model data each of which has it’s own

benefits and drawbacks [54].

To illustrate the motivation for function approximation and control we present a

simple example of a single-input single-output (SISO) continuous time system. The

control objective in this case is for the system output signal y(t) to track a desired

signal yd(t) such that the tracking error e(t) = yd(t)− y(t) is forced to zero. Consider

the 1-dimensional state system representation as

ẋ(t) = f(x(t)) + u(t),

y(t) = x(t), (1.1)

where x(t) ∈ <1 is the single system state, u(t) ∈ <1 is the single control variable

input, y(t) is the measurable output signal, the time t ≥ 0 and f(x) is the unknown

function representing the dynamics. A simple choice of u(t), applying a cancellation

of terms methods for asymptotic tracking, yields the control law

u(t) = −λe(t)− f̂(x(t)) + ẏd(t), (1.2)

where e(t) = yd(t)− y(t) is defined as the system output tracking error. The design

constant λ is used to ensure stability, f̂(x) is the approximation of the unknown

function f(x), and we follow the assumption that the derivative ẏd(t) is continuous,

bounded, and available without the specific need for explicit differentiation of the

tracking signal yd(t).

Next, to determine the system stability, we solve for the closed-loop tracking error

dynamics from

ė(t) = ẏd(t)− ẏ(t),

= ẏd(t)− f(x)− u(t). (1.3)
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Substituting the control law from (1.2) into the system equation (1.1) and by can-

cellation of like terms yields the following form for the closed-loop tracking error

dynamics:

ė(t) = λe(t)− (f(x)− f̂(x)). (1.4)

The first case of interest is when f̂(x) 6= f(x) and this shows how the tracking error

performance is directly affected by the accuracy of the approximated model function

f̂(x). For the other case when f̂(x) = f(x), the error dynamics simplify to

ė(t) = λe(t), (1.5)

and will be stable for values of λ < 0. For the purposes of numerical simulation in

MATLAB we start by assuming we have some priori information about the system

function, so that we choose the unknown function to be f(x(t)) = cosx(t), with no

approximation f̂(x) = 0 function, and the desired tracking signal as yd(t) = π cos 0.2t

for a time scale of t ∈ [0, 100]. Figure 1.1 shows the system performance and tracking

error for the case where there is no function approximator f̂(x) = 0.

Figure 1.1: Closed-loop system output tracking performance for the control law (1.2)

applied to the system equation in (1.1) with no function approximator f̂(x) = 0.
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The top plot of Figure 1.1 reveals how the system tracking performance is affected

by the accuracy of the design model f̂(x) used in the simulation. For the next simula-

tion we assume the same priori information for f(x), but instead we choose an approx-

imating function for f̂(x) that is close to this function (e.g. f̂(x) = 0.7 cosx), based

on the priori information. Figure 1.2 shows the results for the simple approximation-

based control system with priori information used for function approximation pur-

poses.

Figure 1.2: Output tracking performance for (1.2) applied to (1.1) with function

approximation f̂(x) = 0.7 cosx, the solid line is the desired reference trajectory yd(t)

and the dashed line is the system output response y(t). The tracking error is plotted

on the bottom part of the figure.

This simple example motivates us to pursue more advanced methods of model

approximation for control purposes. Although, we assumed there was some priori

information used in the structure, this is not usually true. The effect of modeling

accuracy is pronounced in the tracking error and must be reduced to improve the

overall level of achievable control system performance. As we will see later in this

dissertation that such approximation models exist and can be used for these purposes.
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In the next section, we present some relevant background information on the topic

of spline function theory and how it can be used as a function approximator for the

purposes of achieving specific control objectives.

1.2 Literature Overview

As the next generation of nonlinear control system devices are employed to meet

new and more complex objectives, the uncertainties associated with these type of

systems are becoming an increasingly important challenge to the development of

control schemes that can achieve desired system performance.

1.2.1 Aircraft Control with Synthetic Jet Actuators

Historically, the development of aircraft control devices have been bulky mechanical

structures that provide desired performance throughout the aircraft flight envelope.

As the next generation of sophisticated aircraft control system devices are employed

to meet new and more demanding flight objectives, the uncertainties associated with

these devices become an increasingly important challenge to the development of con-

trol schemes that can achieve desired system performance. A specific area of interest

recently is in the use of active flow control devices, such as synthetic jet actuators

to improve the aircraft aerodynamic performance. To implement synthetic jet actu-

ators, which have inherent nonlinearities, requires an understanding of the actuator

nonlinearity and development of an effective control methodology to handle them.

One such technique is approximation-based adaptive inverse compensation to can-

cel the unknown smooth actuator nonlinearities, such that full control authority is

accomplished and maintained throughout the complete operation time.

In the literature [6] and [71], synthetic jets have been proven to be an efficient

method in controlling separated flow, resulting in an increase in lift and a delay in

stall. Some of the main advantages of synthetic jet actuators are their low cost,
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compact structure, ease of operation and the fact that they are zero net mass flow

in nature meaning that they produce a jet without the need for an external fluid

injection. This concept of a zero net mass flow jet is created by the transfer of linear

momentum from the internal oscillating actuator in the cavity through the orifice to

allow for flow control without net mass injection. Typically, synthetic jet actuators

are made up of a piezoelectrically driven membrane that produces a synthetic jet

flow. Interestingly enough, recent studies [58] have demonstrated flow control with

plasma synthetic jet actuators.

As shown in [13], the control effect of a synthetic jet actuator is a nonlinear

function of both the applied input to drive the piezoelectric diaphragm to generate

the air flow and the aircraft’s angle of attack α. This feature is important to consider

when designing an adaptive compensation scheme to cancel the effect of actuator

nonlinearities inherent in the control of an aircraft system with synthetic jet actuators.

In this dissertation document, we extend these results to apply such modeling and

adaptive control techniques to multiple input commercial transport aircraft model

with smooth nonlinear synthetic jet actuator characteristics. The system dynamics

include the aircraft’s angle of attack for the study of adaptive approximation-based

compensation of the unknown smooth actuator nonlinearities. An important issue of

an approximation-based adaptive compensation control scheme [63] is determining a

suitable parameterization for the synthetic jet actuator nonlinearity and its inverse.

Given that the actuator nonlinearity and its inverse are highly nonlinear, they are

best to be approximated.

In this dissertation, we address this issue by approximating the smooth synthetic

jet actuator nonlinearity and its inverse with multivariable spline functions. In our

previous results [66] we dealt with the case where the nonlinearities were non-smooth

and may have contained discontinuities. Here we assume that the nonlinearities are

smooth functions. Spline functions are a good fit for adaptive control applications

because they are linear in their parameters, which are the spline coefficients. In
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addition, splines have been proven useful for signal and image processing [77]. More

recently, spline functions have been applied to approximate feedback linearization.

The motivation for this approach has been for systems that fail to meet the necessary

conditions required for feedback linearization, also to reduce the algebraic complexity

encountered with pseudolinearization [8]. The contributions of this development are

two-fold: spline function network development for adaptive inverse compensation of

smooth synthetic jet actuator nonlinearities applied to a multiple input commercial

aircraft model, and performance analysis for such an adaptive approximation-based

control design scheme.

1.2.2 Modeling and Control of Spacecraft with Fuel Slosh

Slosh-tolerant spacecraft flight control designs have been the focus of numerous re-

search developments dating as far back as 1966. When Abramson published his

monograph [1] that had summarized all that was then known about sloshing liquids

and how they affect spacecraft dynamics, the print run of several thousand copies was

quickly distributed and proved to be extremely popular [16]. From the serious loss

of the ATS-V spacecraft in 1969 to the unsuccessful firing of the NEAR spacecraft

in 2000 [78], and more recently in 2007 a spacecraft company Space X launch vehicle

failed due to sloshing propellant in one of the tanks [87]. Most of the problems re-

ported on-board control systems that had sensor readings with higher than expected

lateral accelerations from the fuel slosh. Even more recently, with the retiring of

the well-known NASA space shuttle, researchers are developing alternative spacecraft

models and opening new opportunities for advanced space flight control technology.

Mathematically approximated models are important to the spacecraft industry

not only for control purposes, but also due to the immense amount of monetary

spending that is needed to build and test a real spacecraft. The models are used

mainly for computer simulation to evaluate specific performance objectives prior to

physical manufacturing. Models can also be verified experimentally, reconstructed
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from certain conditions at the time of failure, and studied by applying different design

strategies. Spacecraft control and model simulation is a very complex topic, but with

accurate approximations the task can be accomplished successfully.

To model a system undergoing liquid slosh disturbance, one class of design meth-

ods first developed by Graham, consists of equivalent mechanical system models to

approximate the liquid sloshing and this makes it possible to be included into the

spacecraft dynamics [25]. Furthermore, the accuracy of the approximated models

were verified via experimental analysis: experiments were performed to verify the

models [1, 75, 78]. Subsequently experiments to model and control the free surface

liquid phenomenon led to the advent of computer simulations and damping fixtures

that are still in use today [16]. The quest to include the liquid sloshing into the

spacecraft dynamics had been met; however a practical method to control and verify

the system had not.

There have been a number of adaptive control designs for spacecraft [5, 7, 17, 29,

43, 44]. The motivation of these designs has been to identify the inertia matrix for the

spacecraft dynamics. With current modeling designs a spacecraft inertial matrix is

only known within a 5% modeling error [79]. In addition, designs like the International

Space Station which require in orbit assembly; throughout the assembly process the

system inertia matrix will change and the system controller must be designed in such

a way to account for this change.

Adler et al [2], developed an adaptive control system for propellant slosh for launch

vehicles. The adaptive system utilized a laser sensor to measure fluid displacement

in the tank, a recursive-least squares estimator to estimate the natural frequency of

the sloshing fuel, and a linear filter which stabilizes the unstable fuel slosh using the

frequency estimate. The method was successful for a single-pendulum model and

requires no tank baffles or partitions. This result gives encouragement for further

development into more complex adaptive control systems such as, spacecraft with fuel

slosh dynamics and multiple mass-spring approximations to improve the accuracy of
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the system equations even further.

An expanded study of both approximation-based adaptive control and spacecraft

with fuel slosh dynamics has not yet appeared in the literature; we have thus chosen

to develop the scenario as part of this Dissertation. The main achievements of our re-

search are to develop novel approximation based adaptive control designs and analyze

their ability to effectively handle any unknown nonlinearities and parameter uncer-

tainties inherent in nonlinear control systems with applications to real-time space

and aircraft flight. The key features of the developed adaptive control schemes will

be the use of spline functions for approximation purposes, the guarantee of desired

system stability and tracking properties under deteriorated control authority caused

by unknown system nonlinearities and parameter uncertainties. These results yield

a framework of design guidelines for control performance objectives under unknown

system nonlinearities and parameter uncertainties with respect to nonlinear systems

(e.g. spacecraft and aircraft control applications).

1.3 Contributions Summary

As presented in the previous sections, the contributions discussed throughout this

dissertation aim to expand the study of approximation based adaptive control theory

using spline functions with applications to nonlinear dynamical systems.

Employing spline functions for nonlinear dynamical system applications, advanced

system modeling and control techniques are developed forth and analyzed. First, var-

ious spacecraft with fuel slosh models are presented and studied for both approxima-

tion method development and adaptive control structure design for future nonlinear

systems. In particular, we show analytical proofs and mathematical simulations that

spline function approximation based adaptive control can reduce the tracking er-

ror for complex objectives, a common measure of system performance (Chapter 5).

Application to aircraft with synthetic jet actuator nonlinearities is also developed,
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analytically evaluated control error, and supplemented with mathematical system

modeling verification simulations using real life physical parameters (Chapter 6).

In Chapter 3, new developments on spacecraft with fuel slosh modeling techniques

are proposed through a modified multi-mass pendulum sloshing modes approximation

based model with multiple inputs. This advanced modeling technique would improve

the accuracy of the system model in a way that would reduce the errors during

experimental testing caused by various mathematical approximations and tracking

performance evaluations. First, a simple single input spacecraft with fuel slosh model

is presented to satisfy the state variable form conditions to allow for control input

development and spline function based approximation design. Next, a pendulum

assumption based multiple input spacecraft model is formulated into state variable

form and analyzed for stability attributes. The context of these models are shown

to be valuable during control system design by applying a more accurate engineering

solution to the modeling design challenge.

Finally, contributions to advanced approximation methods in nonlinear dynamic

models are made through developments of typical nonlinear system models employing

spline functions in an adaptive control context (Chapter 5), in addition to adaptive

feedback control for aircraft applications (Chapter 6). Approximation based adap-

tive control using spline functions for a spacecraft with fuel slosh nonlinear dynamic

model implemented under the pendulum assumption is first studied in Chapter 3

and developed further with design parameters in Chapter 5. It is determined that a

spline function based approximation methods under adaptive control techniques for

nonlinear systems can reduce the tracking error to a small residual set for a reason-

able number of mathematical computer calculations. The contributions in Chapter 4

are an improved actuator nonlinearity characteristic modeling approximation study

of aircraft with synthetic jet actuator inputs.

Overall, the contributions presented in this dissertation document include adap-

tive control techniques implemented through spline function based approximation
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methods for next-generation spacecraft systems and aircraft flight control, with the

objective of maintaining stability demands in future spacecraft systems and achieving

desired tracking performance under actuator nonlinearities in new-age aircraft design

methods for control system implementations.

1.4 Dissertation Preview

The remaining dissertation document is organized as follows. In Chapter 2, we de-

scribe the general problem formulation and go through the relevant technical back-

ground of our developed research topics. In Chapter 3, we present the various space-

craft with fuel slosh models developed from the literature that were chosen to be

applied in our study. Synthetic jet actuator technology applied to aircraft control

design and modeling techniques are summarized in Chapter 4. We then present our

results for approximation based adaptive control using spline functions applied to var-

ious spacecraft with fuel slosh control models in Chapter 5. Adaptive compensation

of synthetic jet actuator nonlinearities for aircraft control is developed in Chapter

6, including modeling and simulation results for a real-life aircraft dynamic model.

Finally, conclusions and a brief technology outlook for future implementations are

suggested in Chapter 7.



Chapter 2

Technical Background and

Problem Formulation

System dynamic uncertainties can cause undesirable parametric, structural and

environmental nonlinearities, which require to be accounted for in order to achieve

the desired system performance and maintain the control objective. Design issues

involved in approximation based adaptive control systems are controller parametriza-

tion methods, deriving a set of error dynamics, choosing adaptive update laws, analyz-

ing stability and tracking properties. These issues become more challenging, because

of inherent system structural uncertainties and unmodeled parametric nonlinearities.

2.1 Splines for Approximation and Control

In the mathematical field of function approximation, a spline function is a special

type of interpolation that involves connecting piecewise polynomials through a set

of data points. The result is essentially a curve that is pieced together by polyno-

mial segments that are subject to continuity constraints at the connecting points.

For example, if we simply connected the data points with straight lines (1st order

polynomials), this would be considered a continuous spline of order two interpolating

13
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over the data set. Connecting the data set with 2nd order polynomials in such a way

that the graph has a continuous first derivative at these interconnecting points is a

spline of order three [19]. A spline function is defined on a chosen interval and can

be used to approximate complex mathematical functions defined by a specified set of

data points. Therefore, splines are composed of pieces of simple functions defined on

subintervals and joined at the endpoints [90]. The term ”splines“ was first introduced

in the mathematical literature in 1946 [61]. Since this time there have been a number

of monographs that have summarized the theory of splines and how they can be used

for approximation and control [4, 62, 55]. More recently, spline functions have been

applied to approximate feedback linearization. The motivation for this approach has

been for systems that fail to meet the necessary conditions required for feedback lin-

earization. In addition, spline functions are used to reduce the algebraic complexity

encountered with pseudolinearization [8]. They are superior to polynomial interpola-

tion, because of the interesting fact that the approximation error can be made smaller

without having to resort to applying higher order polynomials. The main challenges

with spline functions are minimizing approximation error, deriving an optimal set of

approximating parameters and choosing a suitable number of intervals to spline over.

Basis splines (B-splines) are important in that they can represent any spline func-

tion of the same degree by a linear combination from the set of basis elements; in

particular, the Cardinal B-Spline for intervals of the form [−1, 0, 1, 2, ...]. Splines

have been used to approximate system functions for nonlinear systems that are very

complex and otherwise would require substantial algebraic computation. By repre-

senting the complex system functions with splines we can reduce the mathemati-

cal computation required to execute the objectives and improve the accuracy of the

system modeling representation. The most widely used in today’s applications are

the cubic splines, due to their minimum curvature property [77]. The concept of an

ideal measure of curvature is considering the spline functions continuous second-order

derivative and taking it’s squared norm along the path of the function, this is a rough
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approximation to the potential energy of the original draughtsman’s spline used in

engineering drawings and maps.

In this Dissertation, the splines we chose to consider are defined as symmetrical,

bell shaped functions constructed from the functions gk : <1 → <1, defined recursively

[19], by

gk(x) =

∫ 1

0

gk−1(x− λ)dλ,

=

∫ ∞
−∞

gk−1(x− λ)g1(λ)dλ, (2.1)

for k > 1. This defines the Cardinal B-spline of order k (degree k − 1) for the knot

at 0, where

g1(x) =

 1 0 ≤ x < 1,

0 otherwise.

For example, a cubic Cardinal B-spline of order 4 and degree 3, for the knot at 0 is

given by [80]

g4(x) =



x3

6
0 ≤ x < 1,

−x3
2

+ 2x2 − 2x+ 4
6

1 ≤ x < 2,

x3

2
− 4x2 + 10x− 44

6
2 ≤ x < 3,

−x3
6

+ 2x2 − 8x+ 64
6

3 ≤ x ≤ 4,

0 otherwise.

(2.2)

The B-spline basis elements of order k for the knot at x = j is gkj(x) = gk(x − j),

which is simply just a translation of the original B-spline gk(x). The basis elements

have support for x ∈ (j, k + j), and to form a partition of unity on x ∈ (0, 1) the

sum of the B-spline basis elements are
∑n

j=0 gk(x − j) = 1, this reveals how each

corresponding parameter only influences the curve for that knot point and interval

of support. For the cubic spline case (k = 4), we have plotted these basis elements

shown in Figure 2.1.

The cubic function sk(x) =
∑n−1

j=1−k θjgk(x − j) is a spline of order k, that has

(n+ k− 1) knots at the points x = 1− k, 1, 2, . . . , n− 1, with the coefficients θj. The



16

Figure 2.1: Cubic B-spline basis elements for (2.2).

set of basis elements {gk(x − j)}n−1
j=1−k form a partition of unity on [0, n]. Instead, if

we write the basis elements as

φj(x) = gk

(
n
x− a
b− a

− j
)
, (2.3)

for j = 1 − k, . . . , n − 1, then the new basis set is {φj}n−1
j=1−k, that is formed by

translating and dilating the k-th order Cardinal B-spline, we form a partition of

unity on [a, b] [19]. Defining the approximator as

f̂(x; θ) = θTφ(x) =
n−1∑
j=1−k

θjφj(x), (2.4)

with φj(x) as defined in (2.3), we have direct access to adjust the parameter vector θ of

the approximator without having to satisfy other continuity or matching constraints.

By approximating the uncertain nonlinearity modeling effect with spline func-

tions, we enable the design of an approximation based adaptive control technique

and improve the accuracy in approximating the uncertain model parameters required
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to meet the control objectives. To demonstrate the concept of spline function approx-

imation we present a simple example to approximate the function f(x) = cos(2x) for

the time interval x ∈ [0, 5]. The data points are generated using MATLAB and

then fed through the spline network in (2.2) to formulate the approximator function

f̂(x; θ). From (2.3) we choose k = 4, over the interval [a = 0, b = 5], with n = 5, this

yields the index variable j = −3,−2,−1, 0, 1, 2, 3, 4, which for the sake of notation

can be interchangeable with the corresponding index j = 1, 2, 3, 4, 5, 6, 7, 8 when we

are counting the number of basis elements. Therefore, this function approximation

structure has 8 coefficients with 8 basis elements. Figure 2.2, shows the function f(x)

with it’s approximator function f̂(x; θ)) plotted as a dashed line, the bottom part of

the figure shows the spline basis functions φj(x) used in the approximation structure.

The most apparent challenge in this simple example is choosing the optimal pa-

rameter vector θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8]T that generates the closes fit of f̂ to

f . Following (2.4), with the chosen numerical values results in the spline function

approximation network

f̂(x; θ) =
8∑
j=1

θjφj(x) = θTφ(x) = φ(x)T θ, (2.5)

where φ(x) = [φ1(x), . . . , φ8(x)]. The problem of solving for θ such that f̂(x; θ) ≈ f(x)

we choose m−distinct points that satisfy the matching condition
φ(x1)T

φ(x2)T

...

φ(xm)T




θ1

θ2

...

θm


=


f(x1)

f(x2)

...

f(xm)


,

which can be seen as ΦT θ = F , where Φ = [φ(x1, . . . , φ(xm)]. If we choose m = 8, such

that we have the same number of basis functions and the matrix ΦT is nonsingular,

then the unique solution for θ is

θ = (ΦT )−1F. (2.6)
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Although this matching condition is limited to the case where the number of data

points is equal to the number of coefficients and ΦT being nonsingular, it gives some

insight into the complexity of solving for an optimal θ. To display the effectiveness

of the spline function approximation method we also apply it to the simple exam-

ple presented in Section 1.1. Consider the approximating structure from the previ-

ous example with a different set of parameters θ and basis functions φj(x), where

j = 1, 2, 3, 4, 5, 6, 7, 8 as in the previous example. MATLAB simulation results are

displayed in Figure 2.4, where there is a drastic reduction of the system output track-

ing error with the spline function approximator f̂(x; θ) = θTφ(x). Although we have

only considered periodic functions in these introductory examples, the concept of us-

ing splines for functional approximation can extend to more complex non-periodic

functions that we will present later in this document.

Figure 2.2: The solid line in the top plot shows the desired function f(x) = cos 2x

and the dashed line is the spline function approximator f̂(x, θ). The basis functions

φ1, . . . , φ8 are plotted on the bottom part of the figure.

Although these simple examples only consider a univariate spline basis, later we
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will present a multivariable spline function basis that will consist of the two dimen-

sional basis elements shown in Figure 2.3.

Figure 2.3: Multivariate cubic B-spline basis elements.

Figure 2.4: The solid line in the top plot shows the desired output yd(t) = cos t and the

dashed line is the actual output response y(t) with the spline function approximator

f̂(x; θ). The tracking error e(t) is plotted on the bottom part of the figure.

As we will see in the next section we can employ an adaptive control method to
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update the parameter vector θ in the spline function approximator structure.

2.2 Approximation Based Adaptive Control Schemes

Adaptive control theory provides a strong tool to assist in the design of feedback

control systems. Typically these systems contain parametric, structural, and envi-

ronmental uncertainties that might be completely unknown. The basic principles of

the methodology is to start by estimating the unknown system parameters online

using a proper adaptive update law estimation method (e.g. gradient optimization),

and then use the estimates in place of the unknown parameters in the feedback control

law. As the fuel level of the spacecraft drops and the tank becomes partially filled the

remaining liquid sloshing around in the tank will cause parametric uncertainties. The

varying degrees of nonlinearity due to this highly complex liquid motion results in

structural uncertainties, and external space objects are some hazardly environmental

uncertainties, these are just some of the many challenges in spacecraft control system

design. Similarly, for aircraft with synthetic jets, they suffer from unknown actuator

nonlinearities, unmodeled dynamics and environmental uncertainties.

Adaptive control is a widely practiced methodology from the family of feedback

control systems. Motivated by the new feedback technologies that were invented

during World War II, including automatic pilot, gun positioning, and radar control

systems. In 1957, Drenick and Shahbender introduced the term adaptive control. As

the 60’s came to an end, adaptive control had begun seeing many advancements in

stability analysis for linear systems [41]. Although, these initial results assumed that

all system uncertainty was due to unknown parameters, it opened the door for control

designers to make modifications to the existing adaptive algorithms to account for

other types of uncertainties (i.e. external disturbances, signal measurement noise).

In the last two decades, most of the efforts in adaptive control have been towards

nonlinear systems and have experienced many great advancements [32]. Modern



21

applications for adaptive control found in the literature include temperature control,

chemical reactor control, automobile control, artificial heart control, robot control,

aircraft control, and physiological control.

A typical adaptive control system (see Figure 2.5) consists of unknown plant pa-

rameters, where the plant is the system process that the adaptive controller is designed

to control. Adaptive update laws to generate the unknown parameter estimates. The

designed feedback controller and a model reference system for tracking objectives.

Figure 2.5: Basic model reference direct adaptive feedback control.

There are two popular methods of combining the parameter estimates with the

feedback control law to create the adaptive controller. The first strategy, known as

direct adaptive control, uses the parameter estimates directly to determine the con-

troller parameters. The second method, referred to as indirect adaptive control, the

parameter estimation algorithm first estimates the unknown plant parameters and

then maps the estimates to the controller parameters through a strategically deter-

mined design equation. A direct adaptive control design utilizes a direct estimation

of the controller parameters from an adaptive law. The two methods for direct de-

signs are Lyapunov and Gradient. In contrast, an indirect approach calculates the

controller parameters from an algebraic design equation using the initial estimates

of the plant parameters. With direct adaptive control the controller parameters are
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updated directly. As a subset of these designs we have model reference and pole

placement. Model reference designs are used when the zeros of the system are stable

Re[s] < 0. When the system zeros are unstable Re[s] ≥ 0, they are either canceled

out by corresponding poles or pole placement designs are used to place the system

poles at a desired location. The complexity of the design varies by the order of the

system, as well as the number of system inputs and outputs.

Figure 2.6: Indirect adaptive control system.

When the system is a multi-input multi-output (MIMO) system the transmis-

sion zeros are considered to determine which adaptive control design procedure to

follow, the same stability conditions are considered as described for the single-input

single-output (SISO) systems. Some of these approaches will be presented briefly to

introduce the basic equations including the controller structure and design assump-

tions. As an expansion of the adaptive control methodology, approximation based

adaptive control deals with cases where the system uncertainty also includes unknown

nonlinearities that need to be approximated, in addition to the estimated unknown

system parameters. Generally, a nonlinear adaptive control design deals with systems

where the uncertainty is due to unknown system parameters that appear linearly with

respect to known nonlinearities. Therefore, adaptive approximation based control can

be viewed as an advanced adaptive control method that reduces the level of uncer-
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tainty in the system modeling error and improves the overall control authority, by

precise modeling techniques. The motivation to use adaptive approximation based

control methodology is founded on the idea of devising a method that can store the

model information as a function of the operating point and be able to recall the model

information as needed to maintain the desired system performance during changes in

the operating point [19].

Consider again the 1-dimensional state SISO system representation as

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = x(t), (2.7)

except here we assume that f(x(t)) = θTf φf (x) and g(x(t)) = θTg φg(x) are unknown

functions with unknown parameter vectors θf and θg that require online estimation.

The vector of basis functions φf (x) and φg(x) are determined during the offline design

phase, in our case we will be using the spline basis functions. Therefore, we define the

spline network approximator functions f̂(x) = θ̂Tf φf (x) and ĝ(x) = θ̂Tg φg(x), where θ̂f

and θ̂g will be updated via adaptive laws with proper consideration taken to initialize

the parameter estimates. A simple choice for an adaptive feedback linearizing u(t)

controller for asymptotic output tracking, yields the control law

u(t) =
1

ĝ(x)

(
− λe(t)− f̂(x(t)) + ẏd(t)

)
, (2.8)

where the tracking error is e(t) = yd(t)− y(t), and when applied to the system (2.7),

results in the closed-loop tracking error dynamics as

ė(t) = ẏd(t)− ẏ(t),

= ẏd(t)− f(x)− g(x)u(t). (2.9)

Rearranging the equation to be in terms of the parameter estimation errors θ̃f (t) =

θf− θ̂f (t), and θ̃g(t) = θg− θ̂g(t), yields the following form for the closed-loop tracking

error dynamics

ė(t) = −λe(t) + θ̃Tf φf (x) + θ̃Tg φg(x)u. (2.10)
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Now that we have defined the error dynamics we can develop our adaptive update

laws by considering the Lyapunov positive definite function candidate

V (e, θ̃f , θ̃g) =
1

2

(
e2 + θ̃Tf Γ−1

f θ̃f + θ̃Tg Γ−1
g θ̃g

)
, (2.11)

as a measure of the system’s error functions e(t), θ̃f (t) and θ̃g(t). The time derivative

of V along the corresponding solutions is

V̇ = eė+ θ̃Tf Γ−1
f

˙̃θf + θ̃Tg Γ−1
g

˙̃θg, (2.12)

using the fact that ˙̃θf (t) = − ˙̂
θf (t),

˙̃θg(t) = − ˙̂
θg(t), and the tracking error dynamics

defined in (2.10), the time derivative of V becomes

V̇ = e(− λe(t) + θ̃Tf φf (x) + θ̃Tg φg(x)u) + θ̃Tf Γ−1
f

˙̂
θf + θ̃Tg Γ−1

g
˙̂
θg. (2.13)

Combining like terms to solve for
˙̂
θf and

˙̂
θg, results in

V̇ = −λe2(t) + θ̃Tf Γ−1
f

(
Γfeφf (x) +

˙̂
θf

)
+ Γ−1

g

(
Γgeφg(x)u+

˙̂
θg

)
. (2.14)

Choosing the adaptive update laws to ensure that V̇ ≤ 0, gives us

˙̂
θf (t) = −Γfe(t)φf (x), (2.15)

˙̂
θg(t) = −Γgu(t)e(t)φg(x), (2.16)

which simplifies (2.14) to be

V̇ = −λe2(t) ≤ 0. (2.17)

This ensures the system stability and desired tracking performance. Although this

example is for the simplest case with only one state-variable, a similar development

can be expanded to include multiple state variable designs with multiple inputs and

outputs. In the next two subsections we briefly discuss the control of aircraft with

synthetic jet actuators and spacecraft with fuel slosh, respectively, and present some

of the most relevant literature in these important nonlinear system structures.
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2.3 Problem Formulation

There are two main problems that we will address in this dissertation that are of

importance to advanced spacecraft and aircraft systems. The first problem is found

in aircraft systems with actuator nonlinearities, a new type of aircraft control device

known as synthetic jet actuators have such an inherent nonlinearity. The other prob-

lem deals with nonlinear dynamical systems that fail to meet the requirements for

backstepping and/or feedback linearization, one such a system is spacecraft with fuel

slosh dynamics included rendering a nonminimum phase system model. In this brief

subsection we will introduce the basic problem formulation for these two challenges.

Synthetic Jet Actuator Nonlinearities of Aircraft Systems. To begin the

formulation of the actuator nonlinearity compensation problem, consider a linear

time-invariant plant to represent a local linear commercial aircraft model as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), t ≥ 0, (2.18)

where (A,B) is controllable, the angle of attack α is one of the components of the

state vector x(t) ∈ <n, u(t) ∈ <m×1 is the control input, y(t) ∈ < is the output, and

A ∈ <n×n, B ∈ <n×m and C ∈ <1×n are known constant matrices. The actuator

nonlinearity is denoted by N(·):

u(t) = N(v(t)), (2.19)

where t is the time variable, v(t) is physically represented by the input peak-to-peak

voltage applied to the synthetic jet actuator’s piezoelectric diaphragm which

generates the air flow, and u(t) is the equivalent virtual deflection on the airfoil. It

has been observed through wind tunnel testing [15] that the synthetic jet actuator

nonlinearity characteristic N(·) changes significantly with the varying values of the

aircraft’s angle of attack, denoted by α.

Our challenge is developing a method to design a spline function approximation

based adaptive inverse feedback control scheme for an aircraft flight control system
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having synthetic jet actuators. The developed scheme must cancel the actuator non-

linearity N(·), in order to meet the control objective. The basic adaptive inverse state

feedback control scheme is that shown in Figure 2.7.

Figure 2.7: Basic adaptive state feedback inverse compensation control scheme.

Dynamic Uncertainties of Nonlinear Systems. Another important problem

that we address is the design and analysis of systems that fail to meet the

requirements for feedback linearization and other common nonlinear control design

methods. These complex nonlinear dynamical systems sometimes have a

nonminimum phase structure or have a relative degree that is not well-defined (e.g.

ball and beam system, inverted pendulum). To formulate this problem we consider

the nonlinear dynamical system model representation as

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)), (2.20)

where x(t) ∈ <n is the system state vector, u(t) ∈ < is the control input, h(x) is

the output function, f(x) and g(x) are nonlinear functions representing the system

dynamics. If f and g, are inaccurately modeled or partially unknown, then those
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portions of the functions can be approximated using a spline function network. Next,

to separate the unknown portion of each nonlinear function represented by

ẋ(t) = (fo(x(t)) + f̄(x(t))) + (go(x(t)) + ḡ(x(t)))u(t), (2.21)

here the functions fo(x) and go(x) represent any known components of the system

dynamics and f̄(x) and ḡ(x) are the unknown parts of the dynamics. The unknown

functions of the system model will be approximated over the safe operating compact

region D. For any physical system, the region D is determined at the design stage

and is used to ensure the controller maintains the system inside these safe physical

limits. An example of such is the design of an electric motor that must operate within

specified voltage, current, torque, and speed constraints. If the motor operates outside

these safe limits, then it will result in electrical component failure or mechanical part

damage that could lead to dangerous life threatening conditions.

To account for the fact that each state of the system in (2.20) may contain un-

known functions, we consider rewriting the system dynamics such that the ith state

variable is

ẋi(t) = (foi(x(t)) + f̄i(x(t))) + (goi(x(t)) + ḡi(x(t)))u(t), (2.22)

where i = 1, . . . , n, are the number of system state variables defined in the initial

model development. Although, this case is only for a single input system it can easily

be expanded to the case for systems with multiple inputs.

In order to reduce the modeling error effects on the tracking objectives we consider

the unknown parts of the system dynamics the are denoted by the nonlinear functions

f̄(x) and ḡ(x), these unknown nonlinearities will be approximated by the smooth

functions f̂(x, θ̂f ) and ĝ(x, θ̂g), respectively. The vectors θ̂f ∈ <qf and θ̂g ∈ <qg

represent the adjustable parameters for each approximating function, where θ∗f and θ∗g

are the corresponding unknown “optimal” parameter (weight) vectors. The nonlinear

set of system equations (2.21) are expanded to be expressed for the ith state we develop

a linearly parametrized spline function approximation for each of the functions and
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denote them as f ∗i (x, θ∗fi), g
∗
i (x, θ

∗
gi

). That is, the nonlinear system functions can be

approximated by multivariable B-splines defined as

f̄i(x, θfi) , f ∗i (x, θ∗fi) ≈ θ∗Tfi Bfi (x) + ηfi(x), (2.23)

and

ḡi(x, θgi) , g∗i (x, θ
∗
gi

) ≈ θ∗Tgi Bgi (x) + ηgi(x). (2.24)

Where the expressions are,

θ∗Tfi Bfi (x) =

M1∑
j1=1

· · ·
Mn∑
jn=1︸ ︷︷ ︸

n

θ∗j1···jnbj1(x1) · · · bjn(xn), (2.25)

and

θ∗Tgi Bgi (x) =

M1∑
j1=1

· · ·
Mn∑
jn=1︸ ︷︷ ︸

n

θ∗j1···jnbj1(x1) · · · bjn(xn), (2.26)

ηfi , ηgi , represent the ith spline function approximation errors and for B-splines they

are bounded by positive constants ‖ηfi‖ ≤ ηffi , ‖ηgi‖ ≤ ηggi , and approach zero in a

cubic fashion. θ∗j1···jn for each ith approximator is one of (M1 ·M2 · · ·Mn) unknown

B-spline coefficients, and bj1(x1), · · ·, bjn(xn), are the n univariable B-spline basis

elements, and the estimator for each ith nonlinear approximation model function as

f̂i(x) = f̂i(x; θ̂fi) = θ̂TfiBfi (x), (2.27)

and

ĝi(x) = ĝi(x; θ̂gi) = θ̂TgiBgi (x). (2.28)

The inherent ith spline-function approximation errors as ηfi(x), ηgi(x) are

ηfi(x) = fi(x, θfi)− f ∗i (x, θ∗fi), (2.29)

ηgi(x) = gi(x, θgi)− g∗i (x, θ∗gi), (2.30)

and the ith parameter estimation errors θ̃fi(t) = θ̂fi(t)− θ∗fi , and θ̃gi(t) = θ̂gi(t)− θ∗gi .

As the ith estimates θ̂Tfi and θ̂Tgi approach the desired parameters θ∗Tfi and θ∗Tgi , the



29

spline function approximator effectively provides a model for spacecraft with fuel

slosh dynamics that can be used for control purposes. Observing the form of these

error expressions is critical for adaptive controller design so as to guarantee closed-loop

stability. We also note that the above system form does meet the requirement for the

popular backstepping control procedure, that is the following condition may not occur

gi(x, θgi) 6= 0 for any given x ∈ D . Indeed, advanced adaptive control techniques can

be developed to handle these residual error terms. In order to implement the spline

function network structure, we rewrite the system dynamics represented by (2.22) in

terms of the approximating spline functions (2.23) and (2.24), to do this we simply

add and subtract the terms f ∗i (x, θ∗fi), and g∗i (x, θ
∗
gi

) to the system (2.22). This results

in

ẋi(t) = (foi(x(t)) + f ∗i (x, θ∗fi)) + (f̄i(x(t))− f ∗i (x, θ∗fi)) + (goi(x(t)) + g∗i (x, θ
∗
gi

))u(t) +

+ (ḡi(x(t))− g∗i (x, θ∗gi))u(t),

= (foi(x(t)) + f ∗i (x, θ∗fi)) + (goi(x(t)) + g∗i (x, θ
∗
gi

))u(t) + η(x), (2.31)

where the network reconstruction error is defined as

η(x) = (f̄i(x)− f ∗i (x, θ∗fi)) + (ḡi(x)− g∗i (x, θ∗gi))u,

η(x) = ηfi(x) + ηgi(x)u. (2.32)

From this approximated model we develop our control design to maintain the tracking

objective and minimize the system errors using adaptive bounding techniques. In the

next section we discuss the steps involved to design such an approximation based

adaptive controller.

When we use the terms optimal and minimal they are meant to be in the sense

of the infinity norm for the corresponding errors over the region of operation D.

The minimum possible deviation between the unknown system functions f ∗, g∗ and

f̂(x, θ̂f ), ĝ(x, θ̂g), respectively, generated from the adaptive approximator, represents

the minimal approximation error and is crucial to the controller design. Therefore, it
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is noted that to reduce the minimal approximation error we can increase the number

of adjustable weights in the parameter vectors whose size is denoted by qf and qg,

respectively. Typically, θ∗f , and θ∗g , are chosen as the values of θf , and θg, respectively,

that is to minimize the network approximation error uniformly for all x ∈ D.

It is commonly found that the adaptive update laws
˙̂
θf and

˙̂
θg for the parameter

estimate vectors θ̂f and θ̂g are modified to incorporate a parameter projection method

P to ensure the parameter estimates remain bounded within a specified region of

operation D. The parameter projection modification is also used to maintain the

approximation functions stabilizability, such that it does not hold parameters to create

stabilizability problems.

In this dissertation we confront the following set of problems:

• Approximation based adaptive compensation of synthetic jet actuators for air-

craft flight control;

• Development of a spline function based compensation scheme for systems with

actuator nonlinearities;

• Approximation based adaptive control of spacecraft with fuel slosh using spline

functions;

• Investigation of other complex nonlinear dynamical challenges using spline func-

tions for approximation based adaptive control.



Chapter 3

Modeling of Spacecraft with Fuel

Slosh Dynamics

Planar and rotational control of motion for spacecraft and launch vehicles un-

der going fuel slosh is crucial for rendezvous, launch stage and docking objectives.

The degrees of freedom require a higher level of precision for control objectives. In

addition, the effect of fuel slosh is pronounced during these complex maneuvers.

3.1 A Spacecraft Model with Fuel Slosh

In this section, we formulate the equations of motion for a rigid SISO spacecraft

with a spherical fuel tank and include the frequency of the first fuel sloshing mode

[9]. To derive these equations using the pendulum analogy, we first need to define a

set of generalized coordinates, simply a set of angles and positions that completely

describe the motion of the spacecraft and the fuel. We assume that the spacecraft

has a partially filled fuel tank and is in a zero gravity environment. The coordinate

system used in this design is a two-dimensional body-fixed frame, with the origin and

pendulum point of attachment at the center of the tank.

The important variables of the system are the attitude angle θ of the vehicle, the

31
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respective axial and transverse acceleration components ax and az, the angle ψ of the

approximated pendulum for the fuel. A constant thrust FL > 0, is assumed to act

through the vehicles center of mass along the longitudinal axis, this can also be used

as a control input if needed. The input variable used for control is the transverse

reaction jet force FT . Some other assumed to be uncertain constant variables of

the system are the vehicle mass m and moment of inertia I with no fuel, the fuel

mass mf , and fuel moment of inertia If , the length a > 0 of the pendulum, and

the distance b which is measured on the longitudinal axis from the pendulum fixed

point of attachment to the vehicle center of mass location with no fuel. Note that the

parameters mf , If , and a depend on the fuel tank shape, the type of fuel, and the fill

ratio of the fuel tank [51]. Figure 3.1 shows the spacecraft model with the pendulum

approximated fuel slosh mode included.

Figure 3.1: Spacecraft with fuel slosh dynamics [9].

The next assumption is that the first fuel sloshing mode is approximated by con-

sidering the fuel to be “frozen” into a lump sliding about the sides of the tank. From

this assumption the fuel slosh acts like a pendulum with its point of attachment at

the center of the tank. In order to develop the equations of motion first consider the

free-body diagram for the fuel mass as shown in [64].
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Figure 3.2: Free-body diagram for fuel slosh as pendulum approximation.

Under the declared assumptions first demonstrated in [9], the equations of motion

for the fuel are:

∑
Fx = 0 = F2 −mfax −mfaθ̇

2
f cosψ −mfaθ̈f sinψ, (3.1)∑

Fz = 0 = F1 −mfaz +mfaθ̇
2
f sinψ −mfaθ̈f cosψ, (3.2)∑

Mo = 0 = −If θ̈f −mfa
2θ̈f −mfaax sinψ −mfaaz cosψ. (3.3)

Figure 3.3: Free-body diagram for spacecraft.

From the free-body diagram of just the spacecraft the derivation of the equations of

motion for the spacecraft are determined to be:
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∑
Fx = 0 = −F2 −m(ax + bθ̇2) + FL, (3.4)∑
Fz = 0 = −F1 −m(az + bθ̈) + FT , (3.5)∑
Mo = 0 = −Iθ̈ −mb(az + bθ̈) + (b+ d)FT . (3.6)

Although these set of equations might seem challenging at first, with a little effort

they can be simplified and combined based on the chosen control objectives. An

example of such a combination will now be presented.

In order to combine the equations of motion for the spacecraft and fuel slosh we

follow the procedure in [9] and solve the six linear equations for the six unknowns

F1, F2, ax, az, θ̈, and θ̈f . Combining the equations to eliminate internal forces and

defining the kinematic equations with

ψ̇ = θ̇f − θ̇, (3.7)

we obtain the equations of motion for both the spacecraft and fuel dynamics. These

equations are chosen to represent the coupled motion of the spacecraft and the fuel

slosh. This leads to a system that describes the nonlinear equations with the state

variables as

x1 = θ, x2 = θ̇, x3 = θ̇f , x4 = ψ. (3.8)

These are the state-variables that describe the dynamics of the spacecraft with the

fuel slosh included as an internal body. With the state variables defined, we can write

the nonlinear equations in state-variable form:

ẋ = f(x, u),

y = h(x), (3.9)
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where

x =


θ

θ̇

θ̇f

ψ


, u =

[
FT

]
, y =

[
θ
]
.

This system is governed by the set of equations (3.1)-(3.7) in compact form as: θ̈

θ̈f

 = N−1G.

where

N =

 I +mkb2 −kmab cosx4

−kmab cosx4 If +mka2

 , k =
mf

m+mf

,

G =

 (d+ bk)FT − abkmx2
3 sinx4

−akFT cosx4 − akFL sinx4 + kmabx2
2 sinx4

 .
Now represent the system in state-variable form as:

ẋ1 = θ̇ = x2, (3.10)

ẋ2 = θ̈ = f2(x, u), (3.11)

ẋ3 = θ̈f = f3(x, u), (3.12)

ẋ4 = θ̇f − θ̇ = x3 − x2, (3.13)

with

f2(x, u) = C(x) · [(mcabx2)2 sinx4 − (If +mca2)(abmcx3 sinx4) +

+ [(If +mca2)(d+ bc)−ma2c2b cos2 x4]FT − (mc2a2 cosx4 sinx4)FL],

f3(x, u) = C(x) · [(I +mcb2)(mcabx2
2 sinx4 − (mcabx3)2 cosx4 sinx4) +

+ [mcab cosx4(d+ bc)− (I +mcb2)ac cosx4]FT − [(I +mcb2)ac sinx4]FL],
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where

1

C(x)
= If (I +mcb2) + Imca2 + (mcab)2(1− cos2 x4), c =

mf

m+mf

.

Note that there is a constraint on the equations such that C(x) 6= 0, because

it appears in the denominator. The above set of equations show the mathematical

complexity of a nonlinear spacecraft model with fuel slosh dynamics included. Next,

we rewrite the system in the common affine system form to allow for control input

design.

ẋ = f(x) + g(x)u,

y = h(x), (3.14)

where we have

f(x) =


x2

f2(x)

f3(x)

x3 − x2


, g(x) =


0

g2(x)

g3(x)

0


, u = f,

with

f2(x) = C(x) · [(mcabx2)2 sinx4 − (If +mca2)(abmcx3 sinx4)− (mc2a2 cosx4 sinx4)FL],

f3(x) = C(x) · [(I +mcb2)(mcabx2
2 sinx4 − (mcabx3)2 cosx4 sinx4)−

− ((I +mcb2)ac sinx4)FL],

g2(x) = C(x) · [(If +mca2)(d+ bc)−ma2c2b cos2 x4],

g3(x) = C(x) · [mcab cosx4(d+ bc)− (I +mcb2)ac cosx4],

and h(x) = x1 = θ as the system output. Now we solve for the equilibrium states

ẋe = f(xe, ue) = 0.
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This yields the following:

xe1 ∈ <, xe2 = 0, xe3 = 0, xe4 ∈ {0, π} ue = 0.

Next, we determine if the nonlinear system is nonminimum phase. To do this we

show that the nonlinear system (3.14) has a relative degree ρ in a region around the

point x0 = [0, 0, 0, 0]. Taking the derivatives of the specified output:

ẏ = ẋ1 = x2,

ÿ = ẋ2 = f2(x) + g2(x)u.

Hence, the system has relative degree ρ = 2 in <4.

The next step is to characterize the zero dynamics by restricting x to the plane

Z∗ = {x ∈ <4|x1 = x2 = 0},

and take u = u∗(x) such that u∗(x) is the unique solution to the equation

0 = f2(x)|x1=x2=0 + g2(x)|x1=x2=0u
∗(x).

This yields

u∗(x) = −f2(x)|x1=x2=0

g2(x)|x1=x2=0

,

Thus the zero dynamics of the system are

ẋ3 = fz(x) + gz(x)u∗(x), (3.15)

ẋ4 = x3, (3.16)

where

fz(x) = C(x) · [−(mcabx3)2 cosx4 sinx4)− ((I +mcb2)ac sinx4)FL],

gz(x) = g3(x). (3.17)
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Now we need to determine the asymptotic stability of the equilibrium state xe =

[0, 0]. To be able to conclude whether or not the system is minimum phase. To

do this we have plotted the phase portrait shown in Figure 3.4. From the phase

portrait we see that the equilibrium state is a center. This zero dynamics system

is not asymptotically stable, therefore the nonlinear system for the chosen output of

y(t) = x1(t), is nonminimum phase.

Figure 3.4: Phase portrait x3 − x4 for the zero dynamics.

3.2 MIMO Spacecraft with Fuel Slosh

The model developed in [11] is derived using the Lagrangian formulation to include

the transverse, pitch and slosh dynamics into the system model. An interesting aspect

of the model is that the equations of motion are derived from the center of the tank

and the placement of the center of mass of the spacecraft is in line with the transverse

input thrusters. The model has two inputs for control purposes a transverse force

FT and a pitching moment M .. Let us assume that the accelerating rigid spacecraft

moves in a fixed plane, the fuel slosh dynamics are included using the pendulum

model shown in Figure 3.5.



39

Figure 3.5: Spacecraft with fuel slosh dynamics [51].

Under the declared assumptions the total kinetic energy of the system is

KE =
1

2
m[v2

x + (vz + bθ̇)2] +
1

2
Iθ̇2 +

1

2
If (θ̇ + ψ̇)2 +

+
1

2
mf [(vx + a(θ̇ + ψ̇) sinψ)2 + (vz + a(θ̇ + ψ̇) cosψ)2]. (3.18)

Since the gravitational effects are ignored, the potential energy (PE) is assumed

to be zero. Now, we will summarize the Lagrangian-formulation presented in [11] to

solve for the equations of motion governing the spacecraft with fuel slosh we write

the Lagrangian

L = KE − PE = L(v, ω, ψ, ψ̇)). (3.19)

First we let the base body translational velocity vector be described by v ∈ R3, and

the angular velocity vector by ω ∈ R3. The internal fuel slosh coordinates are included

by ψ ∈ R. The generalized control input forces and moments are defined by τt ∈ R3

and τr ∈ R3 respectively. To include the internal dissipative forces we assume they
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are derivable from a Rayleigh dissipation function R. These variables are defined as

R =
1

2
εψ̇2, v =


vx

0

vz

 , ω =


0

θ̇

0

 , τt =


FL

0

FT

 , τr =


0

M + FT b

0

 .

Now, we can write the Lagrange-Euler equations for the spacecraft with internal

dynamics by:

d

dt

∂L

∂v
+ ω̂

∂L

∂v
= τt, (3.20)

d

dt

∂L

∂ω
+ ω̂

∂L

∂ω
+ v̂

∂L

∂v
= τr, (3.21)

d

dt

∂L

∂ψ̇
− ∂L

∂ψ
+
∂R

∂ψ̇
= 0, (3.22)

where ω̂ and v̂ represent a skew-symmetric matrix from ω = (ω1, ω2, ω3) ∈ R3:

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
After solving the Lagrange-Euler equations, we have the following equations of motion

for the spacecraft with fuel slosh:

FL = mfa(θ̈ + ψ̈) sinψ +mbθ̇2 +mfa(θ̇ + ψ̇)2 cosψ +

+ (m+mf )(v̇x + θ̇vz), (3.23)

FT = (m+mf )(v̇z − θ̇vx) +mfa(θ̈ + ψ̈) cosψ +mbθ̈ −

−mfa(θ̇ + ψ̇)2 sinψ, (3.24)

0 = (If +mfa
2)(θ̈ + ψ̈) +mfa(v̇x + θ̇vz) sinψ +

+mfa(v̇z − θ̇vx) cosψ + εψ̇, (3.25)
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M + FT b = (I +mb2)θ̈ +mb(v̇z − θ̇vx). (3.26)

Since the focus is on the effect of fuel slosh during maneuvering, the angle θ represent-

ing the attitude is important to the simulation. This allows FL to primarily control

the orbit position and the distance at which the spacecraft travels in the x-direction.

The transverse thrusters FT control the movement on the z-axis, while the pitching

moment M controls the rotation of the craft in a fixed plane. The nonlinear state-

variable form is complex and can be derived by first declaring the states of the system,

which in our case will be the position and velocity variables for our spacecraft. To

place the system in state-variable form we introduce the following state-variables:

x1 = vx, x2 = vz, x3 = θ, x4 = θ̇, x5 = ψ, x6 = ψ̇ (3.27)

With the state-variables defined, we write our nonlinear equations in state-variable

form, by plugging in each corresponding state for the chosen variables:

ẋ = f(x, u), (3.28)

where

u =

 FT

M

 , y =

 vz

θ

 .
The system is governed by the set of equations (3.23)-(3.26), in compact form:

v̇x

v̇z

θ̈

ψ̈


= N−1Gx +N−1Guu,

where

Gx =


FL −mbθ̇2 − (m+mf )θ̇vz −mfa(θ̇ + ψ̇)2 cosψ

(m+mf )θ̇vx +mfa(θ̇ + ψ̇)2 sinψ

mbθ̇vx

−εψ̇ −mfaθ̇vz sinψ +mfaθ̇vx cosψ


, Gu =


0 0

1 0

b 1

0 0


,
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N =


m+mf 0 mfa sinψ mfa sinψ

0 m+mf mfa cosψ +mb mfa cosψ

0 mb I +mb2 0

mfa sinψ mfa cosψ If +mfa
2 If +mfa

2


.

After performing some rigorous math (see the Appendix) we obtain the nonlinear

system in the control affine form

ẋ = f(x) + g(x)u,

y = h(x), (3.29)

where

f(x) =



f1(x)

f2(x)

x4

f4(x)

x6

f6(x)


, g(x) =



g11(x) g12(x)

g21(x) g22(x)

0 0

g41(x) g42(x)

0 0

g61(x) g62(x)


,

and h(x) = [0, x2, x3, 0, 0, 0]T as the system output.

Reduced Order Model

The full order system is quite complex, therefore in this Dissertation we will study a

realistic reduced order system with the logical assumption that the pitch and slosh

dynamics have negligible influence on the axial acceleration [11]. First we rewrite

(3.23) as

v̇x + θ̇vz =
1

m+mf

[
FL −mfa(θ̈ + ψ̈) sinψ −mbθ̇2 −mfa(θ̇ + ψ̇)2 cosψ

]
.

The stated assumption allows us to simplify this to

v̇x + θ̇vz =
FL

m+mf

, (3.30)
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plugging this into (3.25), we obtain the following reduced order model

FT = (m+mf )(v̇z − θ̇vx) +mfa(θ̈ + ψ̈) cosψ +mbθ̈ −mfa(θ̇ + ψ̇)2 sinψ,(3.31)

0 = (If +mfa
2)(θ̈ + ψ̈) +mfa(

FL
m+mf

) sinψ +

+mfa(v̇z − θ̇vx) cosψ + εψ̇, (3.32)

M + FT b = (I +mb2)θ̈ +mb(v̇z − θ̇vx). (3.33)

Now vx(t) is considered as an exogenous input. To place the reduced order system

in state-variable form we define:

x1 = vz, x2 = θ, x3 = θ̇, x4 = ψ, x5 = ψ̇, (3.34)

and write out the nonlinear equations (3.31)-(3.33) in state-variable form:

ẋ = f(x, u), (3.35)

where

u =

 FT

M

 , y =

 vz

θ

 .
In compact form:


v̇z

θ̈

ψ̈

 = N−1Gx +N−1Guu,

where

Gx =


(m+mf )θ̇vx(t) +mfa(θ̇ + ψ̇)2 sinψ

mbθ̇vx(t)

−εψ̇ − mfaFL

m+mf
sinψ +mfaθ̇vx(t) cosψ

 , Gu =


1 0

b 1

0 0

 ,

N =


m+mf mfa cosψ +mb mfa cosψ

mb I +mb2 0

mfa cosψ If +mfa
2 If +mfa

2

 .
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After performing some rigorous math (see the Appendix) we obtain the nonlinear

system

ẋ = f(x) + g(x)u,

y = h(x), (3.36)

where

f(x) =



f1(x)

x3

f2(x)

x5

f3(x)


, g(x) =



g11(x) g12(x)

0 0

g21(x) g22(x)

0 0

g31(x) g32(x)


,

with

f1(x) = G1x(x)Dn1,1 +G2x(x)Dn2,1 +G3(x)Dn3,1,

f2(x) = G1x(x)Dn1,2 +G2x(x)Dn2,2 +G3(x)Dn3,2,

f3(x) = G1x(x)Dn1,3 +G2x(x)Dn2,3 +G3(x)Dn3,3,

g11(x) = G1uDn1,1 +G2u1Dn2,1, g12(x) = G2u2Dn2,1,

g21(x) = G1uDn1,2 +G2u1Dn2,2, g22(x) = G2u2Dn2,2,

g31(x) = G1uDn1,3 +G2u1Dn2,3, g32(x) = G2u2Dn2,3,

and h(x) = [x1, x2, 0, 0, 0]T as the system output. Now we can easily solve for the

relative equilibrium states

xe1 =
FL

m+mf

t+x1(0), xe2 = 0, xe3 = 0, xe4 = 0, xe5 = 0, xe6 = 0, ue = [0, 0]T .

Zero Dynamics Analysis

Next we determine if the MIMO nonlinear system is minimum phase. Applying

the definition given in [28], we first determine the relative degree {r1, r2} of the

system by differentiating the outputs until we have a component of the input explicitly
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appearing. Taking the derivatives of the specified outputs:

y1 = x2,

ẏ1 = ẋ2 = f2(x) + g21(x)u1 + g22(x)u2,

y2 = x3,

ẏ2 = ẋ3 = x4,

ÿ2 = ẋ4 = f4(x) + g41(x)u1 + g42(x)u2.

Hence, the system has relative degree {r1 = 1, r2 = 2} in <6. The next step is to

characterize the zero dynamics by restricting x to

Z∗ = {x ∈ <6|h1(x) = h2(x) = Lfh2(x) = 0},

where the Lie derivatives are

Lfh2(x) =
∂h2

∂x1

f1 +
∂h2

∂x2

f2 +
∂h2

∂x3

f3 +
∂h2

∂x4

f4 +
∂h2

∂x5

f5 +
∂h2

∂x6

f6,

= f3(x),

= x4.

Therefore,

Z∗ = {x ∈ <6|x2 = x3 = x4 = 0},

and take u = u∗(x) such that u∗(x) is the unique solution to the equations

0 = f2(x)|x2=x3=x4=0 + g21(x)|x2=x3=x4=0u
∗
1(x) + g22(x)|x2=x3=x4=0u

∗
2(x),

0 = f4(x)|x2=x3=x4=0 + g41(x)|x2=x3=x4=0u
∗
1(x) + g42(x)|x2=x3=x4=0u

∗
2(x),

After solving these two equations for the two unknowns u∗1(x), u∗2(x), we obtain

u∗1(x) =
g22(x)f4(x)− g42(x)f2(x)

g21(x)g42(x)− g22(x)g41(x)
|x2=x3=x4=0,

u∗2(x) =
g41(x)f2(x)− g21(x)f4(x)

g21(x)g42(x)− g22(x)g41(x)
|x2=x3=x4=0.
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Thus the zero dynamics of the system are

ẋ1 = fz1(x), (3.37)

ẋ5 = fz2(x), (3.38)

ẋ6 = fz3(x), (3.39)

where

fz1(x) = f1(x)|x2=x3=x4=0 + g11(x)|x2=x3=x4=0u
∗
1(x) + g12(x)|x2=x3=x4=0u

∗
2(x),

fz2(x) = x6,

fz3(x) = f6(x)|x2=x3=x4=0 + g61(x)|x2=x3=x4=0u
∗
1(x) + g62(x)|x2=x3=x4=0u

∗
2(x).

Now we need to determine the stability of the equilibrium state xze = [x5 = 0, x6 = 0]

of the zero dynamics system (3.37)-(3.39). To be able to conclude whether or not the

system is minimum phase. To do this we solve for the Jacobian matrix

Jz(x) =


∂fz1
∂x1

∂fz1
∂x5

∂fz1
∂x6

∂fz2
∂x1

∂fz2
∂x5

∂fz2
∂x6

∂fz3
∂x1

∂fz3
∂x5

∂fz3
∂x6


and evaluate this at xze. With the aforementioned physical parameters this yields

Jz(xze) =


0 0 0

0 0 1

0 0.587 −0.002417

 .
Observing the eigenvalues of the matrix Jz(xze) will give some insight into the

stability of the zero dynamics system. We first solve for the eigenvalues λ from

det(λI − Jz(xze)) = 0:

det(λI − Jz(xze)) = det


λ 0 0

0 λ −1

0 −0.587 λ+ 0.002417

 = 0.
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Figure 3.6: Phase portrait x6 − x5 for the zero dynamics system (3.37)-(3.39).

This yields the eigenvalues: λ1 = −0.76741, λ2 = 0.76499 and λ3 = 0. These

eigenvalues correspond to a strongly unstable system and what is known as a saddle

point in linear stability analysis theory. From this result, we conclude that the original

nonlinear system is nonminimum phase. To reinforce our analytical proof we have

plotted the phase-portrait shown in Figure 3.6. From the phase portrait we see that

the equilibrium state of the origin of the zero dynamics system is not asymptotically

stable, therefore the nonlinear system is nonminimum phase.

Reduced Order Model

ẋ = f(x) + g(x)u,

y = h(x),



48

where

f(x) =



f1(x)

x3

f2(x)

x5

f3(x)


, g(x) =



g11(x) g12(x)

0 0

g21(x) g22(x)

0 0

g31(x) g32(x)


,

and h(x) = [x1, x2, 0, 0, 0]T as the system output. The equilibrium states are

xe1 ∈ <, xe2 ∈ <, xe3 = 0, xe4 = 0, π, xe5 = 0, ue = [0, 0]T .

Taking the derivatives of the reduced order model specified outputs:

y1 = x1,

ẏ1 = ẋ1 = f1(x) + g11(x)u1 + g12(x)u2,

y2 = x2,

ẏ2 = ẋ2 = x3,

ÿ2 = ẋ3 = f2(x) + g21(x)u1 + g22(x)u2.

Hence, the system has relative degree {r1 = 1, r2 = 2} in <5. The next step is to

characterize the zero dynamics by restricting x to

Z∗ = {x ∈ <5|h1(x) = h2(x) = Lfh2(x) = 0},

where the Lie derivative is

Lfh2(x) =
∂h2

∂x1

f1 +
∂h2

∂x2

f2 +
∂h2

∂x3

f3 +
∂h2

∂x4

f4 +
∂h2

∂x5

f5,

= f2(x),

= x3.

Therefore,

Z∗ = {x ∈ <5|x1 = x2 = x3 = 0},
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and take u = u∗(x) such that u∗(x) is the unique solution to the equations

0 = f1(x)|x1=x2=x3=0 + g11(x)|x1=x2=x3=0u
∗
1(x) + g12(x)|x1=x2=x3=0u

∗
2(x),

0 = f2(x)|x1=x2=x3=0 + g21(x)|x1=x2=x3=0u
∗
1(x) + g22(x)|x1=x2=x3=0u

∗
2(x),

After solving these two equations for the two unknowns u∗1(x), u∗2(x), we obtain

u∗1(x) =
g12(x)f2(x)− g22(x)f1(x)

g11(x)g22(x)− g12(x)g21(x)
|x1=x2=x3=0,

u∗2(x) =
g21(x)f1(x)− g11(x)f2(x)

g11(x)g22(x)− g12(x)g21(x)
|x1=x2=x3=0.

Thus the zero dynamics of the system are

ẋ4 = fz1(x), (3.40)

ẋ5 = fz2(x), (3.41)

where

fz1(x) = x5,

fz2(x) = f3(x)|x1=x2=x3=0 + g31(x)|x1=x2=x3=0u
∗
1(x) + g32(x)|x1=x2=x3=0u

∗
2(x).

Now we need to determine the stability of the equilibrium state xze = [x4 = 0, x5 = 0]

of the zero dynamics system (3.40)-(3.41). To be able to conclude whether or not the

system is minimum phase. To do this we solve for the Jacobian matrix

Jz(x) =

 ∂fz1
∂x4

∂fz1
∂x5

∂fz2
∂x4

∂fz2
∂x5


and evaluate this at xze. With the aforementioned physical parameters this yields

Jz(xze) =

 0 1

−0.0000.. −0.0000..

 .
Observing the eigenvalues of the matrix Jz(xze) will give some insight into the stability

of the zero dynamics system. We first solve for the eigenvalues λ from det(λI −

Jz(xze)) = 0:

det(λI − Jz(xze)) = det

 λ −1

+0.0000.. λ+ 0.0000..

 = 0.
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This yields the eigenvalues: λ1,2 = −1.19E−20 ± 2.056jE−9. These eigenvalues

correspond to a stable system and what is known as a stable focus in linear stability

analysis theory. From this result, we conclude that the reduced order nonlinear system

is minimum phase.

3.3 Multi-Mass Fuel Slosh Dynamics

The spacecraft with fuel slosh models presented thus far in this chapter have only in-

cluded the first or lowest frequency slosh mode as a single-pendulum. To improve the

model accuracy we would have to extend the development of these models to include

more frequencies that are higher and are pronounced during complex maneuvering.

Recent developments presented in [53], derive a multiple slosh mass-spring model to

include higher frequency modes.

Figure 3.7: A multi-slosh mode pendulum model for a spacecraft with a gimbaled

thruster with multiple inputs. [52].

Where δ denotes the gimbal deflection angle, which is used as one of the additional

control inputs. The equations of motion are derived as before from (3.18), but the
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modified total Kinetic Energy (K.E.) is expressed as

KE =
1

2
m[v2

x + (vz + bθ̇)2] +
1

2
m0[v2

x + (vz + h0θ̇)
2] +

1

2
(I + I0)θ̇2 +

+
1

2

N∑
i=1

[mi((vx + li(θ̇ + ψ̇i) sinψi)
2 + (vz − hiθ̇ + li(θ̇ + ψ̇i) cosψi)

2 +

+ Ii(θ̇ + ψ̇i)
2]. (3.42)

As before we assume the gravitational effects are ignored, and the potential en-

ergy (PE) is assumed to be zero. We continue with the modified version of the

Lagrangian-formulation presented in [53] to solve for the equations of motion gov-

erning the multiple fuel slosh spacecraft with fuel slosh multiple inputs we write the

Lagrangian

L = KE − PE = L(v, ω, ψ, ψ̇)). (3.43)

Recall how we let the base body translational velocity vector be described by v ∈ R3,

and the angular velocity vector by ω ∈ R3. The internal fuel slosh coordinates are

included by ψ ∈ R. The generalized control input forces and moments are defined

by τt ∈ R3 and τr ∈ R3 respectively. To include the internal dissipative forces we

assume they are derivable from a Rayleigh dissipation function R. These variables

are defined as

R =
1

2

N∑
i=1

εiψ̇
2
i , v =


vx

0

vz

 , ω =


0

θ̇

0

 ,

τt =


FL cos δ

0

FT + FL sin δ

 , τr =


0

M + FT b+ FLl sin δ

0

 .

Next, we solve the Lagrange-Euler equations for the spacecraft with internal dynamics

to obtain the modified equations of motion for the multiple slosh mode spacecraft
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model as

FL cos δ = (m+mf )ax +
N∑
i=1

mili(θ̈ + ψ̈i) sinψi + m̄b̄θ̇2 +

+
N∑
i=1

mili(θ̇ + ψ̇i)
2 cosψi, (3.44)

FT + FL sin δ = (m+mf )az +
N∑
i=1

mili(θ̈ + ψ̈i) cosψ +

+ m̄b̄θ̈ −
N∑
i=1

mili(θ̇ + ψ̇i)
2 sinψi, (3.45)

0 = (Ii +mil
2
i )(θ̈ + ψ̈i)−milihi(θ̈ cosψi + θ̇2 sinψi) +

+mili(ax sinψi + az cosψi) + εiψ̇i, (3.46)

M + FT b+ FLl sin δ=Ī θ̈ −
N∑
i=1

milihi[(θ̈ + ψ̈i) cosψi − (θ̇ + ψ̇i)
2 sinψi] +

+ m̄b̄az −
N∑
i=1

εiψ̇i. (3.47)

where (ax, az) = (v̇x + θ̇vz, v̇z − θ̇vx) are the axial and transverse acceleration com-

ponents for the center of the fuel tank, and

m̄b̄ = mb−
N∑
i=1

mili,

Ī = I + I0 +mb2 +m0h
2
0 +

N∑
i=1

mih
2
i ,

Although our research does not include an approximation based adaptive control

design for this specific model, we can apply our control design from the single slosh

model to the multiple slosh model to determine the performance ability. We anticipate

that future research will include designs specific for this model to provide for a more

accurate mathematical model for the actual spacecraft and liquid fuel included.



Chapter 4

Synthetic Jets for Aircraft

A single synthetic jet consists of an actuator cavity, an oscillating membrane and

an orifice (see Figure 4.1). A piezoelectric actuator driven at its resonant frequency

functions as the oscillating membrane, and when it oscillates, fluid is alternately

expelled and ingested through the orifice. A jet is synthesized by a train of vortices

formed at the edge of the orifice.

Figure 4.1: Physical structure of a synthetic jet actuator.

53
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4.1 Airflow Shaping and Control

Active flow control using synthetic jet actuators first begin in 1994 [70], since this

time researchers have been performing wind tunnel testing to better understand the

formation and action of such jets [6]. The primary advantage of these synthetic jets

are their zero-net-mass flow nature, which allow the oscillating actuators to synthesize

a jet stream without the need for an external source of fluid injection. The generated

vortices are formed by the periodic oscillation of the fluid boundary and propagate

with a non-zero mean streamwise momentum from the interaction of the newly formed

vortices. To better understand this concept we present the side view of an aircraft

wing inside of a clean undisturbed airfoil, shown in Figure 4.2.

Figure 4.2: Clean airfoil around an aircraft wing.

There are two cases of interest that synthetic jets have been used for in maintaining

a clean airfoil across an aircraft’s wing: The first case is at low angles of attack and

the second is at higher angles of attack. At low angles of attack a separation bubble

could form at the surface and disturb the pressure distribution across the clean airfoil

resulting in a disturbance shown in Figure 4.3. To counter-act the surface bubble,

synthetic jets create a virtual shape change of the airfoil and decrease the surface

pressure distribution localized in the area near the synthetic jet actuation ports.



55

This provides the needed decrease in pressure drag with only minimal change in lift,

to stabilize the airfoil around the aircraft’s wing.

Figure 4.3: Pressure bubble disturbing surface and airfoil around an aircraft wing.

At higher angles of attack the airfoil can experience an adverse pressure gradient

region causing the streamlines to separate at the leading edge resulting in excessive

drag, lose of lift, and eventually stall. This turbulent flow caused by boundary layer

separation near the leading edge of the wing’s surface can be overcome by placing

synthetic jets at the leading edge of the wing to reattach the airflow and maintain

a clean airfoil. The induced fluid vortices created by the synthetic jets reattach the

fluid flow pattern and prevent further flow separation. Recent studies [39, 37] have

shown that placing synthetic jets on the leading edge of an aircraft’s wing can delay

the onset of stall up to 31◦ angle of attack. While synthetic jets placed on the trailing

edge of the wing helped generate lift and reduce drag.

As we will see in the next section that the mathematical model used to represent

the synthetic jets actuation behavior varies considerably with the change of angle of

attack, as discovered by wind tunnel testing data.
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Figure 4.4: Separation of airflow resulting in stall.

Figure 4.5: Reattached airflow with synthetic jets at the leading edge.
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4.2 Mathematical Model

Following the earlier development from Section 2.3 we extend our results to consider

each single-input actuator nonlinearity denoted by Ni(·):

ui(t) = Ni(vi(t)) = Ni(A
2
ppi

(t)), (4.1)

where i is the index of actuator nonlinearity inputs, t is the time variable, vi(t) =

A2
ppi

(t), with Appi(t) being the ith input peak-to-peak amplitude voltage applied to

each synthetic jet actuator’s piezoelectric diaphragm which generates the air flow, and

ui(t) is the equivalent virtual deflection on the airfoil. It has been observed through

wind tunnel testing [15] that each synthetic jet actuator nonlinearity characteristic

Ni(·) changes significantly with the varying values of the aircraft’s angle of attack,

denoted by α. As shown in [13], at low angles of attack (α < 10◦), a parametric model

with parameters θ∗i = [θ∗1i , θ
∗
2i

]T ∈ <2 for each actuator nonlinearity characteristic is

ui(t) = Ni(θ
∗
i ; vi(t)) = fi(vi(t)) = θ∗2i −

θ∗1i
vi(t)

, (4.2)

where vi(t) is such that ui(t) ≥ 0. At higher angles of attack (22◦ < α < 24◦), the

synthetic jet characteristic changes to be nonlinearly parameterized and is represented

by

ui(t) = Ni(θ
∗
i ; vi(t)) = fi(vi(t)) = θ∗2i + θ∗1i sin2(θ∗3ivi(t)), (4.3)

for some parameters θ∗1i , θ
∗
2i

and θ∗3i [15].

An adaptive inverse compensation scheme can be easily obtained and used to

cancel the effect of the unknown actuator nonlinearities at low angles of attack, that

is the function,

vi(t) = N̂I i(θ̂i(t);udi(t)) =
θ̂1i(t)

θ̂2i(t)− udi(t)
(4.4)

where θ̂i(t) = [θ̂1i ,θ̂2i ]
T , being the adaptive estimate of θ∗i , and udi(t) is the desired

feedback control law to be designed based on the aircraft flight dynamics. An adaptive

inverse compensation scheme for the actuator nonlinearity at high angles of attack
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was given in [15]. Combining the two models (4.2) and (4.3), we can see that a

synthetic jet characteristic for a wide range of angles of attack is highly nonlinear in

nature. Such a nonlinearity may be complicated to describe by an analytical function

and it is denoted as fi(vi, α) whose characteristic depends on α.

Our objective is to design a spline function approximation based adaptive inverse

feedback control scheme for an aircraft flight control system having synthetic jet

actuators. The developed scheme must cancel each actuator nonlinearity Ni(·), in

order to meet the control objective. As a continuation of our results in [66], we

consider an m-input linearized time-invariant plant model of aircraft dynamics with

synthetic jet actuators. Such a system that has a controllable state variable form can

represent a commercial aircraft model as

ẋ(t) = Ax(t) +Bu(t) = Ax(t) +
m∑
i=1

Biui,

y(t) = Cx(t), t ≥ 0, (4.5)

where the angle of attack α is one of the components of the state vector x(t) ∈ <n,

u(t) ∈ <m is the control input, y(t) ∈ < is the output, and A ∈ <n×n, B ∈ <n×m

and C ∈ <1×n are known constant parameter matrices. To begin the extension to

the multiple input channel nonlinearity case, we define Bi as the ith column of the

partitioned system matrix B for i = 1, . . . ,m, such that our design can access the

columns of B separately, corresponding to each ith input channel that has its own

nonlinearity profile associated with it. In addition, we define the control input ui(t)

as the ith element of u(t) that is implemented with the synthetic jet actuators and

write the multiple nonlinearity input channels as ui(t) = Ni(vi(t)). Similarly for

the inverse structure, vi(t) = N̂I i(udi(t)). This implementation with synthetic jet

actuators has a nonlinearity profile given by, ui(t) = Ni(vi(t)) = fi(vi, α), where α is

the angle of attack of the aircraft, and vi(t) is the ith applied input to the synthetic jet

actuators. In other words, udi(t) is designed as if ui(t) = udi(t) is true, so it is critical

to determine and observe the control error ui(t) − udi(t). A similar development is
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given in [63] with a neural network framework.

4.3 Actuator Nonlinearity Characteristic

From what we have analyzed in the previous section, the synthetic jet actuator charac-

teristic is a general nonlinear function of v(t) and α. Therefore, we need to determine

a suitable nonlinearity profile for each actuator input nonlinearity for feedback con-

trol. In this section, for simplicity we will drop the subscript i, such that f(v, α) is

used instead of fi(vi, α), this is equivalent to assuming each ith nonlinearity has the

same profile function. That is,

ui(t) = fi(vi, α), i = 1, 2, . . . ,m,

f1 = f2 = · · · = fm, (4.6)

although in practice they could be different functions and may even depend on a

different set of state variables from each other. One possible realistic choice of the

nonlinearity profile f(v, α), based on interpolation of the low and high angle of attack

models, is

f(v, α) = a(α)fl(v) + b(α)fh(v). (4.7)

This candidate nonlinearity profile depends on the applied input to the synthetic jets

v(t) and the angle of attack α, where fl(v) is the actuator nonlinearity function at a

specific low angle (αl = 3◦) of attack, fh(v) is the nonlinearity function at a high angle

(αh = 24◦) of attack, and, a(α) and b(α) are functions that determine the dependency

of the actuator nonlinearity on α. In order for this function to be meaningful it must

satisfy

a(αl) = 1, a(αh) = 0, b(αl) = 0, b(αh) = 1. (4.8)
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Figure 4.6: Nonlinear profile f(v, α) for varying α and v.

That is the nonlinear profile is equal to the actuator nonlinearity functions at the

two different angles of attack mentioned above that were determined by experimental

data points taken from wind tunnel tests. There are many functions that can be used

to represent a(α) and b(α). Given that we have data points for two different angles of

attack, the simplest of these are linear functions. With the constraint (4.8), we find

a(α) = −0.0479α + 1.1429, b(α) = 0.0479α− 0.1429. (4.9)

As determined in [14], the actuator nonlinearity functions at αl = 3◦ and αh = 24◦

are given by fl(v) = 15− 33.335
v

and fh(v) = 20 + 5 sin2(π v
32

), respectively.

As our further wind tunnel tests are performed (as a part of our research project),

more information will become available to make the function f(v, α) more precise, as

of now it is only valid for v ∈ [33.335
15

, 16) and α ∈ [3, 24], where the lower bound on

v ensures that f(v, α) ≥ 0. Therefore, this model will be employed in our study for

the approximation-based adaptive inverse compensation control design, as the actual

model f(v, α) is not currently available.
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4.4 Other Synthetic Jet Actuator Applications

Because of the synthetic jets compact size they can easily be used for applications

that require an internal flow or some type of turbo machinery [37]. Effective cooling

techniques could employ these micro jets to help reduce system overheating which is

common in today’s laptops. Synthetic jets can augment or even replace cooling fans

for such devices as microprocessors, memory chips, batteries and wireless frequency

components. Even modern television’s that need thermal management of high power

LED screens, could use synthetic jets for cooling objectives.

Mixing of fluids could be accomplished with a combination of multiple synthetic

jets at precise locations to allow for chemical concentrations to be distributed evenly

throughout. A similar technique could be used in the automotive industry to ensure

distinct paint colors and evenly coat surfaces of an automobile during the manufactur-

ing stage. Micro-aircraft devices could use these small jets to maneuver and control

movement during intelligence gathering missions. Also synthetic jets could provide

the right amount of thrust for small underwater vehicles. Although these are only a

few of the additional applications synthetic jets can be used for, still much research

and development is needed to verify the experimental data to bring them to reality.



Chapter 5

Approximation Based Adaptive

Control of Spacecraft with Fuel

Slosh using Spline Functions

Recall the nonlinear system defined in (3.14), due to the fact that each state

variable may contain unknown functions we follow our development in subsection 2.2

and represent the dynamics of the ith state variable as

ẋi = (foi(x) + f̄i(x)) + (goi(x) + ḡi(x))u, (5.1)

where x ∈ <4 contains the plant states and i = 1, 2, 3, 4 index the state variables

defined in the initial model development, foi and goi represent any known information

of the dynamic spacecraft model to be approximated. The other functions f̄i and ḡi

are the unknown dynamics and will therefore have to be approximated.

5.1 Approximated SISO System Model

The system dynamics are therefore

62
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ẋ1 = fo1(x), (5.2)

ẋ2 = f̄2(x) + ḡ2(x)u, (5.3)

ẋ3 = f̄3(x) + ḡ3(x)u, (5.4)

ẋ4 = fo4(x), (5.5)

this implies that the remaining dynamic functions are fo2(x) = fo3(x) = go1(x) =

go2(x) = go3(x) = go4(x) = f̄1(x) = f̄4(x) = ḡ1(x) = ḡ4(x) = 0. Next, we rewrite the

system in parametrized form as

ẋi = (foi(x) + f̄i(x, θfi)) + (goi(x) + ḡi(x, θgi))u, (5.6)

where each state in compact form is

ẋ1 = fo1(x), (5.7)

ẋ2 = f̄2(x, θf2) + ḡ2(x, θg2)u, (5.8)

ẋ3 = f̄3(x, θf3) + ḡ3(x, θg3)u, (5.9)

ẋ4 = fo4(x). (5.10)

The expanded form is

ẋ1 = x2, (5.11)

ẋ2 =
θ1f2

φ1f2
(x) + θ2f2

φ2f2
(x) + θ3f2

φ3f2
(x)

θ1f2
+ θ5f2

+ θ4f2
φ4f2

(x)
+

θ1g2
φ1g2

(x) + θ2g2

θ3g2
+ θ4g2

+ θ5g2
φ2g2

(x)
u, (5.12)

ẋ3 =
θ1f3

φ1f3
(x) + θ2f3

φ2f3
(x) + θ3f3

φ3f3
(x)

θ4f3
+ θ5f3

+ θ6f3
φ4f3

(x)
+

θ1g3
φ1g3

(x)

θ2g3
+ θ3g3

+ θ4g2
φ2g3

(x)
u, (5.13)

ẋ4 = x3 − x2. (5.14)

It is clear that the system is nonlinear in its unknown parameters, therefore,

approximation methods must be employed to handle these uncertain nonlinearities.

Substituting in the mathematically derived dynamic model equations we obtain the

system with the spacecraft physical model parameters



64

θ1f2
= (mcab)2, θ2f2

= −(If +mca2)abmc,

θ3f2
= −mc2a2F , θ4f2

= −(mcab)2,

θ5f2
= If (I +mcb2) + Imca2, θ1g2

= −ma2c2b,

θ2g2
= (If +mca2)(d+ bc), θ3g2

= (mcab)2,

θ4g2
= If (I +mcb2) + Imca2, θ5g2

= −(mcab)2,

θ1f3
= (I +mcb2)mcab, θ2f3

= −(I +mcb2)(mcab)2,

θ3f3
= −(I +mcb2)acF , θ4f3

= (mcab)2,

θ5f3
= If (I +mcb2) + Imca2, θ6f3

= −(mcab)2,

θ1g3
= mcab(d+ bc)− (I +mcb2)ac, θ2g3

= (mcab)2,

θ3g3
= If (I +mcb2) + Imca2, θ4g3

= −(mcab)2,

and

φ1f2
(x) = x2

2 sinx4, φ2f2
(x) = x3 sinx4, φ3f2

(x) = cos x4 sinx4,

φ4f2
(x) = cos2 x4, φ1g2

(x) = cos2 x4, φ2g2
(x) = cos2 x4,

φ1f3
(x) = x2

2 sinx4, φ2f3
(x) = x2

3 cosx4 sinx4, φ3f3
(x) = sin x4,

φ1g3
(x) = cos x4, φ2g3

(x) = cos2 x4.

5.1.1 Spline Function Approximation Technique

To overcome these highly nonlinear complexity challenges, for the ith state we

develop a linearly parametrized spline function approximation for each of the

uncertain functions f̄i(x, θfi), ḡi(x, θgi), and denote them as f ∗i (x, θ∗fi), g
∗
i (x, θ

∗
gi

),

respectively. That is, the uncertain system functions can be approximated by

multivariable B-splines defined as

f̄i(x, θfi) , f ∗i (x, θ∗fi) ≈ θ∗Tfi Bfi (x) + ηfi(x), (5.15)

and

ḡi(x, θgi) , g∗i (x, θ
∗
gi

) ≈ θ∗Tgi Bgi (x) + ηgi(x). (5.16)
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Here the expressions are

θ∗Tfi Bfi (x) =

M1∑
j1=1

· · ·
M4∑
j4=1

θ∗j1···j4bj1(x1) · · · bj4(x4), (5.17)

and

θ∗Tgi Bgi (x) =

M1∑
j1=1

· · ·
M4∑
j4=1

θ∗j1···j4bj1(x1) · · · bj4(x4), (5.18)

ηfi , ηgi , represent the ith spline function approximation errors and for B-splines they

are bounded by known positive constants ‖ηfi‖ ≤ ηffi , ‖ηgi‖ ≤ ηggi , and approach

zero in a cubic fashion. θ∗j1j2j3j4 for each ith approximator is one of (M1 ·M2 ·M3 ·M4)

unknown B-spline coefficients, and bj1(x1), bj2(x2), bj3(x3), bj4(x4) are the univariable

B-spline basis elements, and the estimators for each ith nonlinear approximation model

functions are

f̂i(x) = f̂i(x; θ̂fi) = θ̂TfiBfi (x), (5.19)

and

ĝi(x) = ĝi(x; θ̂gi) = θ̂TgiBgi (x). (5.20)

Output Tracking Error. Before we move on to discuss the approximation-

based adaptive control structure it is imperative for us to observe the inherent errors

that exist. Recall the control objective is for the system output signal y(t) to track

a desired output yd(t). It is typical to assume that yd, ẏd, · · ·, y(i)
d are known and

uniformly bounded. This leads us to observe the output tracking error defined as

e(t) = y(t)− yd(t). (5.21)

Observing the form of the error expressions is critical for adaptive controller design

so as to guarantee closed-loop stability. We must also mention that the above system

form does not meet the requirement for the popular exact feedback linearization

control procedure, that is the system for the chosen output of y(t) = x1(t), has a

relative degree of ρ = 2 which is < n = 4 for any given x ∈ D . Indeed, advanced

adaptive control techniques must be developed to handle these type of systems with

a non-minimum phase structure.
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Consider the following change of coordinates similar to that of [49] for neural

networks

z1(t) = x1(t)− yd(t)− α1, (5.22)

z2(t) = x2(t)− ẏd(t)− α2, (5.23)

z3(t) = x3(t)− ÿd(t)− α3, (5.24)

z4(t) = x4(t)− y(3)
d (t)− α4, (5.25)

where αi are intermediate designed control functions to be defined in the next section

with the stability analysis, for i = 1, 2, 3, 4. Therefore, the z-coordinate dynamics are

represented as

ż1(t) = ẋ1(t)− ẏd(t)− α̇1, (5.26)

ż2(t) = ẋ2(t)− ÿd(t)− α̇2, (5.27)

ż3(t) = ẋ3(t)− y(3)
d (t)− α̇3, (5.28)

ż4(t) = ẋ4(t)− y(4)
d (t)− α̇4. (5.29)

Substituting in the system functions from (5.1) we obtain

ż1(t) = fo1(x)− ẏd(t)− α̇1, (5.30)

ż2(t) = f̄2(x, θf2) + ḡ2(x, θg2)u− ÿd(t)− α̇2, (5.31)

ż3(t) = f̄3(x, θf3) + ḡ3(x, θg3)u− y
(3)
d (t)− α̇3, (5.32)

ż4(t) = fo4(x)− y(4)
d (t)− α̇4, (5.33)

and substituting in the coordinates from (5.22) - (5.25) we rewrite the dynamics to

be

ż1(t) = z2 + α2 − α̇1, (5.34)

ż2(t) = z3 + α3 − x3 + f̄2(x, θf2) + ḡ2(x, θg2)u− α̇2, (5.35)

ż3(t) = z4 + α4 − x4 + f̄3(x, θf3) + ḡ3(x, θg3)u− α̇3, (5.36)

ż4(t) = z3 − z2 + α3 − α2 − α̇4 + ÿd(t)− ẏd(t)− y(4)
d (t), (5.37)
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where the derivative of the ith designed control function is defined by

α̇i =
∂αi
zi
żi +

∂αi

θ̂fi

˙̂
θfi +

∂αi

θ̂gi

˙̂
θgi +

∂αi
ydi−1

yd
i +

∂αi
ydi

yd
i+1, (5.38)

for i = 1, 2, 3, 4 [19].

5.1.2 Stability Analysis

Now that we have defined the z-coordinate dynamics we can develop our adaptive

control law, by considering the Lyapunov positive definite function candidate

V (zi, θ̃fi , θ̃gi) =
1

2

n∑
i=1

(
z2
i + θ̃TfiΓ

−1
fi
θ̃fi + θ̃TgiΓ

−1
gi
θ̃gi

)
, (5.39)

as a measure of the system error functions zi(t), θ̃fi(t), and θ̃gi(t), where n = 4 is the

number of system states. Taking the time derivative of V along the corresponding

solutions gives

V̇ =
n∑
i=1

(
ziżi + θ̃TfiΓ

−1
fi

˙̃θfi + θ̃TgiΓ
−1
gi

˙̃θgi

)
, (5.40)

Using the fact that ˙̃θfi(t) =
˙̂
θfi(t),

˙̃θgi(t) =
˙̂
θgi(t), and the z-coordinate system dy-

namics defined in (5.30) - (5.33) the time derivative of V becomes

V̇ =z1(fo1(x)− ẏd(t)− α̇1) + z2(f̄2(x, θf2) + ḡ2(x, θg2)u− ÿd(t)− α̇2) +

+ z3(f̄3(x, θf3) + ḡ3(x, θg3)u− y
(3)
d (t)− α̇3) +

+ z4(fo4(x)− y(4)
d (t)− α̇4) +

n∑
i=1

(
θ̃TfiΓ

−1
fi

˙̂
θfi + θ̃TgiΓ

−1
gi

˙̂
θgi

)
. (5.41)

Grouping the terms with the control input u we obtain

V̇ =z1(fo1(x)− ẏd(t)− α̇1) + z2(f̄2(x, θf2)− ÿd(t)− α̇2) + z3(f̄3(x, θf3)−

− y(3)
d (t)− α̇3) + z4(fo4(x)− y(4)

d (t)− α̇4) + (z2ḡ2(x, θg2) +

+ z3ḡ3(x, θg3))u+
n∑
i=1

(
θ̃TfiΓ

−1
fi

˙̂
θfi + θ̃TgiΓ

−1
gi

˙̂
θgi

)
. (5.42)

Then substitute in the dynamics from (5.34) - (5.37) with

V̇ =z1(z2 + α2 − α̇1) + z2(z3 + α3 − x3 + f̄2(x, θf2) + ḡ2(x, θg2)u− α̇2) +
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+ z3(z4 + α4 − x4 + f̄3(x, θf3) + ḡ3(x, θg3)u− α̇3) + z4(z3 − z2 + α3 − α2 −

− α̇4 + ÿd(t)− ẏd(t)− y(4)
d (t)) + (z2ḡ2(x, θg2) + z3ḡ3(x, θg3))u+

+
n∑
i=1

(
θ̃TfiΓ

−1
fi

˙̂
θfi + θ̃TgiΓ

−1
gi

˙̂
θgi

)
. (5.43)

Therefore, the intermediate control function αi is determined from (5.43) to be

αi(zi, θ̂fi , θ̂gi , β̂i, y
i−1
d )=−zi−1 − cizi − foi − f̂i +

i−1∑
k=1

∂αi−1

∂xk

(
xk + fok + f̂k

)
+

+
i−1∑
k=1

∂αi−1

∂yk−1
d

y
(k)
d

i−1∑
k=1

∂αi−1

∂θ̂k
τki −

−
i−1∑
k=1

[∂αi−1

∂xk

∂f̂k
∂θk

Γk

i−2∑
l=k

∂αl
∂θk

T

zl+1

]
, (5.44)

where τki are the adaptation functions to be defined in the next subsection.

Adaptive Controller Design. Observing the time derivative of the V function

and substituting in the spline based adaptive approximation functions from (5.19) -

(5.20) for the unknown parts of the dynamics we define the control input law for u(t)

to ensure the desired stability properties and tracking objectives

u =
1

z2ĝ2(x, θ̂g2) + z3ĝ3(x, θ̂g3)

n∑
i=1

(
zi(y

(i)
d (t)− f̂i(x, θ̂fi)− α̇i)− λiz2

i

)
. (5.45)

Next, from the normalized gradient algorithm in [76] we choose the following adaptive

laws

˙̂
θfi(t) = τfi = −

Γθfiφfiεfi
m2
fi

(t)
, (5.46)

˙̂
θgi(t) = τgi = −

Γθgiφgiεgi
m2
gi

(t)
, (5.47)

where εfi = θ̂Tfiφfi , εgi = θ̂Tgiφgi and

mfi =
√

1 + κfiφ
T
fi
φfi , (5.48)
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mgi =
√

1 + κgiφ
T
gi
φgi , (5.49)

with the ith constant variables κfi , and κgi .

Lemma 1 : The closed-loop comprised of the system described by (5.1), with the

approximation-based adaptive controller defined by (5.45) and adaptive laws (5.46),

(5.47), guarantees the following properties:

1. zi, xi, θ̂fi, θ̂gi ∈ L∞ i = 1, 2, 3, 4

2. z ∈ L2.

3. zi(t)→ 0 as t→∞.

Proof: Recall the positive definite function defined in (5.39) and it’s time deriva-

tive (5.42) along the signals with the applied control input (5.45), is

V̇ =
n∑
i=1

(
− λiz2

i + θ̃TfiΓ
−1
fi

˙̂
θfi + θ̃TgiΓ

−1
gi

˙̂
θgi

)
. (5.50)

Substituting in the parameter adaptation from (5.46), and (5.47), yields the derivative

as

V̇ = −
n∑
i=1

(
λiz

2
i +

ε2fi
m2
fi

+
ε2gi
m2
gi

)
. (5.51)

This corresponds to an adaptive control scheme that ensures desired closed-loop sta-

bility and tracking properties which, like those with other approximation based de-

signs, are in a local and average sense due to the approximation errors ηfi , ηgi , that

is, for approximation errors with some non-zero bounds and chosen initial conditions

within the specified regions, all closed-loop system signals remain bounded and the

ith z-coordinate zi(t) is bounded by the approximation errors in a mean square sense.

Given the fact that each ηfi , ηgi is small (in some norm sense) and bounded on a

compact region, we have, from (5.51), the boundedness of zi(t), and
εfi
mfi

,
εgi
mgi

. From

our aforementioned assumptions, that of yd(t) and, in turn, from zi(t) = xi(t) −

yi−1
d (t) − αi, that of xi(t), from (5.45), that of u(t). Thus all closed-loop signals are

bounded. Finally, from (5.46), (5.47), and (5.51), zi(t), each ith
˙̂
θfi(t), and

˙̂
θgi(t)
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are all bounded by ηfi , ηgi , respectively, in a mean square sense (e.g.
∫ t2
t1
z2
i (t)dt ≤

γ0 + k0

∑m
i=1

∫ t2
t1
η2
i (t)dt for some constants γ0, k0 > 0).

Next, we modify our adaptive control design parameters (5.46), (5.47), to handle

the parameter uncertainties outside the region of operation. To do this we will employ

a parameter projection technique to ensure that the parameter estimates remain in

the bounded region of operation. That is the parameter adaptation laws are defined

by projection operators as

˙̂
θfi(t) = Pfi(τfi) = −Pfi

(Γθfiφfiεfi
m2
fi

(t)

)
, (5.52)

˙̂
θgi(t) = Pgi(τgi) = −Pgi

(Γθgiφgiεgi
m2
gi

(t)

)
, (5.53)

The parameter projection operators Pfi , Pgi for i = 1, 2, 3, 4 are used to maintain the

boundedness of the elements for each θ̂fi and θ̂gi . Applying the fact that for spline

functions the basis elements Bfi and Bgi defined previously in equations (5.17) and

(5.18) form a partition of unity on D . From this it is straightforward to define the

upper and lower bounds on each element of θ̂fi and θ̂gi such that the inequalities hold

θfji ≤ θ̂fji ≤ θ̄fji , θgji ≤ θ̂gji ≤ θ̄gji which ensure the boundedness of θ̂fi and θ̂gi ,

respectively [19]. Therefore, each Pfi , Pgi projection operator performs component

wise according to the definitions

Pfji(τfi) =

 τfi θfji ≤ θ̂fji ≤ θ̄fji ,

0 otherwise,

Pgji(τgi) =

 τgi θgji ≤ θ̂gji ≤ θ̄gji ,

0 otherwise.

5.1.3 Simulations

This section presents the simulation results for the spline function approximation

based adaptive control designs presented in the first part of Chapter 5. To begin our

simulation results, we determine system performance by measuring the tracking error
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e(t) = y(t) − yd(t) for a sinusoidal reference input chosen as yd(t) = 2π
180

sin t. This

corresponds to an amplitude of 2◦ and a frequency of ω = 2πf = 1(rad/sec). The

physical parameters used in the simulations are m = 480kg, I = 400kg · m2,mf =

50kg, If = 10kg ·m2, b = 1.5m, d = 1.25m, a = 0.21m,F = 2300N, and ε = 3.7kg ·

m2/s, as given in [53]. The spacecraft model with fuel slosh was chosen to have initial

conditions of the system as θ0 = 2◦, θ̇0 = 0.037(deg/sec), ψ0 = 5◦, and θ̇f0 = 0. The

following simulation shows the tracking error y(t)−yd(t) for the spline function based

adaptive control design presented in Section 5.1, applied to the SISO spacecraft model

with fuel slosh.

Figure 5.1: Tracking error y(t) − yd(t) for yd(t) = 2π
180

sin t: SISO spacecraft model

with fuel slosh.

Next, we simulate the case for yd(t) = 2π
180

sin t+ 4π
180

cos t, this is shown in Figure

5.1 and verifies that indeed the tracking error goes to zero.

Although the transient error increases the steady-state error goes to zero. In order

to shed some light on how practical this controller design is, we present the control

input u(t) displayed in Figure 5.3, that is applied to achieve the tracking error that

is presented in Figure 5.2. To apply this controller to a real spacecraft we would

have to consider the response time for modern control inputs. In addition, we would

study the frequency of which these control inputs can operate and design the adaptive
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Figure 5.2: Tracking error y(t)− yd(t) for yd(t) = 2π
180

sin t+ 4π
180

cos t: SISO spacecraft

model with fuel slosh.

Figure 5.3: Input u(t) for the tracking error y(t)− yd(t) shown in Figure 5.2.
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controller to maintain the control input u(t) to meet the frequency requirements. In

addition to the tracking error we simulated the responses for the output θ(t) shown

in Figure 5.4 the spacecraft attitude, ψ(t) the angle of the fuel slosh shown in Figure

5.5. The purpose of simulating these states is to show that they are indeed bounded

for the chosen time set.

Figure 5.4: Output response for y(t) = θ(t) and yd(t) = 2π
180

sin t: SISO spacecraft

model with fuel slosh.

Figure 5.5: Slosh angle response ψ(t), for yd(t) = 2π
180

sin t: SISO spacecraft model

with fuel slosh.
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5.2 Approximation and Control of MIMO Model

Modifying the MIMO spacecraft model presented in Section 3.2, to include an addi-

tional input that allows for more precise attitude tracking. The new model now has

three inputs for control purposes a transverse force FT , a pitching moment M and

δ denotes the gimbal deflection angle with the longitudinal thrust FL as shown in

Figure 5.6.

Figure 5.6: Modified MIMO Spacecraft with fuel slosh dynamics [53].

The modified design variables are defined as

R =
1

2
εψ̇2, v =


vx

0

vz

 , ω =


0

θ̇

0

 ,

τt =


FL cos δ

0

FT + FL sin δ

 , τr =


0

M + FT b+ FLl sin δ

0

 .

For simplicity we introduce the length l = b + p. After solving the Lagrange-Euler

equations, we have the following equations of motion for the spacecraft with fuel

sloshing dynamics included:

FL cos δ = mfa(θ̈ + ψ̈) sinψ +mfa(θ̇ + ψ̇)2 cosψ +
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+mbθ̇2 + (m+mf )(v̇x + θ̇vz), (5.54)

FT + FL sin δ = (m+mf )(v̇z − θ̇vx) +mbθ̈ +mfa(θ̈ +

+ ψ̈) cosψ −mfa(θ̇ + ψ̇)2 sinψ, (5.55)

0 = (If +mfa
2)(θ̈ + ψ̈) +mfa(v̇x + θ̇vz) sinψ +

+mfa(v̇z − θ̇vx) cosψ + εψ̇, (5.56)

M + FT b+ FLl sin δ = (I +mb2)θ̈ +mb(v̇z − θ̇vx). (5.57)

Since the focus is on the effect of fuel slosh during maneuvering, the angle θ repre-

senting the attitude is important to the simulation. For the longitudinal thruster we

assume small gimbal deflection of δ so that cos δ ≈ 1 and sin δ ≈ δ. This allows FL to

primarily control the orbit position and the distance at which the spacecraft travels

in the x-direction. The transverse thrusters FT control the movement on the z-axis,

while the pitching moment M controls the rotation of the craft in a fixed plane. The

nonlinear state-variable form is complex and can be derived by first declaring the

states of the system, which in our case will be the position and velocity variables for

our spacecraft. To place the system in state-variable form we introduce the following

state variables:

x1 = vx, x2 = vz, x3 = θ, x4 = θ̇, x5 = ψ, x6 = ψ̇ (5.58)

With the state variables defined, we write our nonlinear equations in state-variable

form by plugging in each corresponding state for the chosen variables:

ẋ = f(x, u),

y = h(x), (5.59)
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where

u =


δ

FT

M

 , y =


vz

θ

ψ

 .
The system is governed by the set of equations (5.54)-(5.57), in compact form:


v̇x

v̇z

θ̈

ψ̈


= N−1Gx +N−1Guu,

where

Gx =



FL −mbθ̇2 − (m+mf )θ̇vz −mfa(θ̇ + ψ̇)2 cosψ

(m+mf )θ̇vx +mfa(θ̇ + ψ̇)2 sinψ

mbθ̇vx

−εψ̇ −mfaθ̇vz sinψ +mfaθ̇vx cosψ


,

Gu =



0 0 0

FL 1 0

FLl b 1

0 0 0


, N =



m+mf 0 mfa sinψ mfa sinψ

0 m+mf mfa cosψ +mb mfa cosψ

0 mb I +mb2 0

mfa sinψ mfa cosψ If +mfa
2 If +mfa

2


.

After performing some rigorous math (see [65]) we obtain the nonlinear system in

affine control form

ẋ = f(x) + g(x)u,

y = h(x), (5.60)
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where

f(x) =



f1(x)

f2(x)

x4

f4(x)

x6

f6(x)


, g(x) =



g11(x) g12(x) g13(x)

g21(x) g22(x) g23(x)

0 0 0

g41(x) g42(x) g43(x)

0 0 0

g61(x) g62(x) g63(x)


,

and h(x) = [0, x2, x3, 0, x5, 0]T as the system output.

Reduced Order System Model. This full order system is quite complex and

highly demanding, therefore in this dissertation we will study a realistically reduced

order system with the logical assumption that the pitch and slosh dynamics have

negligible influence on the axial acceleration [11]. First we rewrite the system equation

(5.54) as

v̇x + θ̇vz =
1

m+mf

[FL −mfa(θ̈ + ψ̈) sinψ −mbθ̇2 −

−mfa(θ̇ + ψ̇)2 cosψ]. (5.61)

The stated assumption allows us to simplify this to

v̇x + θ̇vz =
FL

m+mf

, (5.62)

and plugging this into equation (5.56), we obtain the following reduced order model

FT + FLδ = (m+mf )(v̇z − θ̇vx) +mfa(θ̈ + ψ̈) cosψ +

+mbθ̈ −mfa(θ̇ + ψ̇)2 sinψ, (5.63)

0 = (If +mfa
2)(θ̈ + ψ̈) +mfa(

FL
m+mf

) sinψ +

+mfa(v̇z − θ̇vx) cosψ + εψ̇, (5.64)

M + FT b+ FLlδ=(I +mb2)θ̈ +mb(v̇z − θ̇vx). (5.65)
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Now vx(t) is considered as an exogenous input. To place the reduced order system

in state-variable form we define:

x1 = vz, x2 = θ, x3 = θ̇, x4 = ψ, x5 = ψ̇, (5.66)

and write out the nonlinear equations (5.63)-(5.65) in state-variable form:

ẋ = f(x, u),

y = h(x),

where

u =


δ

FT

M

 , y =


vz

θ

ψ

 .
Which can be represented in compact form:


v̇z

θ̈

ψ̈

 = N−1Gx +N−1Guu,

where

Gx =


(m+mf )θ̇vx(t) +mfa(θ̇ + ψ̇)2 sinψ

mbθ̇vx(t)

−εψ̇ − mfaFL

m+mf
sinψ +mfaθ̇vx(t) cosψ

 ,

Gu =


FL 1 0

FLl b 1

0 0 0

 , N =


m+mf mfa cosψ +mb mfa cosψ

mb I +mb2 0

mfa cosψ If +mfa
2 If +mfa

2

 .
Recall the formula to solve for the inverse of a square matrix:

N−1 =
1

det(N)
adj(N). (5.67)
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To find the adj(N) we first find the cofactor of each element of N and take the transpose

of the cofactor matrix of N , this results

adj(N) =


N11 N21 N31

N12 N22 N32

N13 N23 N33

 . (5.68)

Through some rigorous math we obtain

N11 = (I +mb2)(If +mfa
2),

N12 = −mb(If +mfa
2),

N13 = mb(If +mfa
2)− (I +mb2)mfa cosx4,

N21 = −mb(If +mfa
2),

N22 = (m+mf )(If +mfa
2)−m2

fa
2 cos2 x4,

N23 = (mb+mfa cosx4)mfa cosx4 − (If +mfa
2)(m+mf ),

N31 = −(I +mb2)mfa cosx4,

N32 = mbmfa cosx4,

N33 = (I +mb2)(m+mf )−mb(mb+mfa cosx4).

This assists us in solving for the determinant of N

DN = det(N) = mfa cosx4N13 + (If +mfa
2)N33,

for simplicity we introduce

Dni,j =
Ni,j

DN
, i, j = 1, 2, 3

and rewrite Gx, Gu as

Gx =


G1x(x)

G2x(x)

G3x(x)

 , Gu =


G1u1 G1u2 0

G2u1 G2u2 G2u3

0 0 0

 ,
with

G1x(x) = (m+mf )x3vx(t) +mfa(x3 + x5)2 sinx4,

G2x(x) = mbx3vx(t),
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G3x(x) = −εx5 −
mfaFL
m+mf

sinx4 +mfax3vx(t) cosx4,

G1u1 = FL, G1u2 = 1, G2u1 = FLl,

G2u2 = b, G2u3 = 1.

This enables us to write out the nonlinear system in affine control form as

ẋ = f(x) + g(x)u,

y = h(x), (5.69)

where

f(x) =



f1(x)

x3

f2(x)

x5

f3(x)


, g(x) =



g11(x) g12(x) g13(x)

0 0 0

g21(x) g22(x) g23(x)

0 0 0

g31(x) g32(x) g33(x)


,

with

f1(x) = G1x(x)Dn1,1 +G2x(x)Dn2,1 +G3x(x)Dn3,1,

f2(x) = G1x(x)Dn1,2 +G2x(x)Dn2,2 +G3x(x)Dn3,2,

f3(x) = G1x(x)Dn1,3 +G2x(x)Dn2,3 +G3x(x)Dn3,3,

g11(x) = G1u1Dn1,1 +G2u1Dn2,1,

g12(x) = G1u2Dn1,1 +G2u2Dn2,1,

g13(x) = G2u3Dn2,1,

g21(x) = G1u1Dn1,2 +G2u1Dn2,2,

g22(x) = G1u2Dn1,2 +G2u2Dn2,2,

g23(x) = G2u3Dn2,2,

g31(x) = G1u1Dn1,3 +G2u1Dn2,3,

g32(x) = G1u2Dn1,3 +G2u2Dn2,3,

g33(x) = G2u3Dn2,3,

and h(x) = [x1, x2, 0, x4, 0]T as the system output.
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5.2.1 Splines for Approximation and Control

We are now ready to develop our spline function based adaptive control design for the

MIMO reduced order spacecraft model with fuel slosh. The first step here is to rewrite

the system representation with each uncertain function from equation (5.69) modeled using

spline functions. That is, the uncertain nonlinear system functions will be approximated

by multivariable B-splines defined as

fi(x) , f∗i (x, θ∗fi) ≈ θ
∗T
fi

Bfi (x) + ηfi(x), (5.70)

and for each control input

g1i(x) , g∗1i(x, θ
∗
g1i) ≈ θ

∗T
g1iBg1i (x) + ηg1i(x), (5.71)

g2i(x) , g∗2i(x, θ
∗
g2i) ≈ θ

∗T
g2iBg2i (x) + ηg2i(x). (5.72)

g3i(x) , g∗3i(x, θ
∗
g3i) ≈ θ

∗T
g3iBg3i (x) + ηg3i(x). (5.73)

Where the expressions are,

θ∗Tfi Bfi (x) =

M1∑
j1=1

· · ·
M3∑
j3=1︸ ︷︷ ︸

3

θ∗j1···j3bj1(x1) · · · bj3(x3), (5.74)

and

θ∗Tg1iBg1i (x) =

M1∑
j1=1

· · ·
M3∑
j3=1︸ ︷︷ ︸

3

θ∗j1···j3bj1(x1) · · · bj3(x3), (5.75)

θ∗Tg2iBg2i (x) =

M1∑
j1=1

· · ·
M3∑
j3=1︸ ︷︷ ︸

3

θ∗j1···j3bj1(x1) · · · bj3(x3), (5.76)

θ∗Tg3iBg3i (x) =

M1∑
j1=1

· · ·
M3∑
j3=1︸ ︷︷ ︸

3

θ∗j1···j3bj1(x1) · · · bj3(x3), (5.77)

Here the index i = 1, 2, 3, are the number of uncertain system functions defined in (5.69), in

order to reduce the modeling error effects on the tracking objectives they will be approxi-

mated by the smooth functions f̂i(x, θ̂fi), ĝ1i(x, θ̂g1i), ĝ2i(x, θ̂g2i) and ĝ3i(x, θ̂g3i), respectively.
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The vectors θ̂fi ∈ <qf , θ̂g1i ∈ <qg , θ̂g2i ∈ <qg and θ̂g3i ∈ <qg represent the adjustable param-

eters for each approximating function, where θ∗fi , θ
∗
g1i , θ

∗
g2i and θ∗g3i are the corresponding

unknown “optimal” parameter (weight) vectors. ηfi , ηg1i , ηg2i and ηg3i represent the ith

reconstruction errors and are defined as

ηfi(x) = fi(x)− f∗i (x, θ∗fi), (5.78)

ηg1i(x, u1) = g1i(x)u1 − g∗1i(x, θ∗g1i)u1, (5.79)

ηg2i(x, u2) = g2i(x)u2 − g∗2i(x, θ∗g2i)u2, (5.80)

ηg3i(x, u3) = g3i(x)u3 − g∗3i(x, θ∗g3i)u3. (5.81)

For equation 5.78 we define an upper bound on the magnitude of ηfi(x) that is assumed to

be unknown and is given by

η∗ffi = sup
x∈Ω
‖ηfi(x)‖ . (5.82)

This case requires an adaptive bounding scheme to update the estimates on the bounds for

ηfi(x) on-line. This estimate is defined as η̂ffi , with the bounding estimation error defined

as

η̃ffi(t) = η̂ffi(t)− η
∗
ffi
, (5.83)

which will we be applied in the stability analysis. However, for the remaining reconstruc-

tion errors (5.79, 5.80, 5.81), we assume that the bounds on the functions which multiply

the control inputs are known and are bounded by reasonably determined positive constants

‖ηg1i‖ ≤ ηgg1i , ‖ηg2i‖ ≤ ηgg2i and ‖ηg3i‖ ≤ ηgg3i , which approach zero in a cubic fashion.

θ∗j1j2j3 for each ith approximator is one of (M1 ·M2 ·M3) unknown spline coefficients, and

bj1(x1), bj2(x2), bj3(x3), are the three univariable spline basis elements, and the approxima-

tions of the uncertain functions for each ith model is

f̂i(x; θ̂fi) = θ̂TfiBfi (x), (5.84)

ĝ1i(x; θ̂g1i) = θ̂Tg1iBg1i (x), (5.85)

ĝ2i(x; θ̂g2i) = θ̂Tg2iBg2i (x), (5.86)

and

ĝ3i(x; θ̂g3i) = θ̂Tg3iBg3i (x). (5.87)
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Hence, we define the ith parameter estimation errors θ̃fi(t) = θ̂fi(t) − θ∗fi , θ̃g1i(t) =

θ̂g1i(t) − θ∗g1i , θ̃g2i(t) = θ̂g2i(t) − θ∗g2i and θ̃g3i(t) = θ̂g3i(t) − θ∗g3i . As the ith estimates θ̂Tfi ,

θ̂Tg1i , θ̂
T
g2i and θ̂Tg3i approach the desired parameters θ∗Tfi , θ∗Tg1i , θ

∗T
g2i and θ∗Tg3i , respectively, the

spline function approximator structure effectively provides a model for spacecraft with fuel

slosh dynamics that can be used for control purposes. Observing the form of these error

expressions is critical for the adaptive controller design such as to guarantee closed-loop

stability.

Adaptive Control Design. Next, we define the tracking errors for each output,

recall from the system model (5.69) the first output y1(x) = x1 = vz which is the velocity

component in the z−plane, the second output y2(x) = x2 = θ the spacecraft attitude and

the third output y3(x) = x4 = ψ the pendulum fuel slosh angle. Thus, the output tracking

errors are e1 = y1 − yd1 , e2 = y2 − yd2 and e3 = y3 − yd3 for each corresponding output,

where yd1 , yd2 and yd3 are the desired tracking functions. These errors are applied using a

sliding mode vector of each component

s =


s1

s2

s3

 =


e1 + c1

∫
e1dτ

e2 + c2

∫
e2dτ

e3 + c3

∫
e3dτ

 , (5.88)

where c1, c2 and c3 are positive design constants. Each of the s components are essentially

filtered error signals that induce proportional and integral control action [36, 69]. The

adaptive laws are reminiscent to what has been presented in [50] to update the parameter

vectors θ̂fi , θ̂g1i , θ̂g2i and θ̂g3i and are defined by:

˙̂
θf1 = γf1

{
Bf1 s1 − σ1(θ̂f1 − θ0

f1)
}
, (5.89)

˙̂
θf2 = γf2

{
Bf2 s2 − σ2(θ̂f2 − θ0

f2)
}
, (5.90)

˙̂
θf3 = γf3

{
Bf3 s3 − σ3(θ̂f3 − θ0

f3)
}
, (5.91)

and

˙̂
θg11 = γg11

{
Bg11 s1 − σ11(θ̂g11 − θ0

g11)
}
, (5.92)

˙̂
θg21 = γg21

{
Bg21 s1 − σ21(θ̂g21 − θ0

g21)
}
, (5.93)

˙̂
θg31 = γg31

{
Bg31 s1 − σ31(θ̂g31 − θ0

g31)
}
, (5.94)
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˙̂
θg12 = γg12

{
Bg12 s2 − σ12(θ̂g12 − θ0

g12)
}
, (5.95)

˙̂
θg22 = γg22

{
Bg22 s2 − σ22(θ̂g22 − θ0

g22)
}
, (5.96)

˙̂
θg32 = γg32

{
Bg32 s2 − σ32(θ̂g32 − θ0

g32)
}
, (5.97)

˙̂
θg13 = γg13

{
Bg13 s3 − σ13(θ̂g13 − θ0

g13)
}
, (5.98)

˙̂
θg23 = γg23

{
Bg23 s3 − σ23(θ̂g23 − θ0

g23)
}
, (5.99)

˙̂
θg33 = γg33

{
Bg33 s3 − σ33(θ̂g33 − θ0

g33)
}
, (5.100)

where σ > 0 is a leakage constant defined similar to the popular σ−modification [27] and

is used to prevent the estimates from experiencing parameter drift. The constants γfi > 0

and γgij > 0 represent the adaptation gains and θ0
fi

are design parameters. To update the

reconstruction error bounds η̂ffi , we apply the following adaptive laws:

˙̂ηff1 = γff1

{
s1 tanh

s1

ε
− σ1(η̂ff1 − η0

ff1)
}
, (5.101)

˙̂ηff2 = γff2

{
s2 tanh

s2

ε
− σ2(η̂ff2 − η0

ff2)
}
, (5.102)

˙̂ηff3 = γff3

{
s3 tanh

s3

ε
− σ3(η̂ff3 − η0

ff3)
}
, (5.103)

where η0
ffi

are design parameters and ε > 0 is a small design constant used to smooth

out the sign function by converting it into a hyperbolic function in this case tanh. These

adaptive laws were derived based on the Lyapunov stability analysis to maintain system

stability and prevent parameter drift. The control inputs in vector form are determined to

be

u =


δ

FT

M

 = ĝ(x; θ̂g)
−1Ŵf , (5.104)

where ĝ is a 3x3 matrix that is a collection of the uncertain system functions from (5.69)

and given by

ĝ(x) =


ĝ11(x; θ̂g11) ĝ12(x; θ̂g12) ĝ13(x; θ̂g13)

ĝ21(x; θ̂g21) ĝ22(x; θ̂g22) ĝ23(x; θ̂g23)

ĝ31(x; θ̂g31) ĝ32(x; θ̂g32) ĝ33(x; θ̂g33)

 .
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The matrix Ŵf , is

Ŵf =


−θ̂Tf1Bf1 − η̂ff1 tanh s1

ε + ẏd1 − c1e1 − k1s1 −
∑3

i=1 ηff1,isgn(s1)

−θ̂Tf2Bf2 − η̂ff2 tanh s2
ε + ẏd2 − c2e2 − k2s2 −

∑3
i=1 ηff2,isgn(s2)

−θ̂Tf3Bf3 − η̂ff3 tanh s3
ε + ẏd3 − c3e3 − k3s3 −

∑3
i=1 ηff3,isgn(s3)

 ,
where ci and ki are positive real numbers. We have to mention restrictions that guarantee

the existence of ĝ(x; θ̂g)
−1 is defined. The first of which is that the sign of the determinant

of ĝ remains constant over the range of possible variations of the function approximation

and the next requirement is that each element of ĝ are sign definite.

The stability analysis is verified using the Lyapunov method and is addressed by first

defining the positive definite Lyaponov function as

V (s, θ̃fi , θ̃gi,j , η̃ffi) =
1

2
sT s+

3∑
i=1

θ̃Tfi θ̃fi
2γfi

+

3∑
i=1

η̃2
ffi

2γffi
+

+
3∑
i=1

3∑
j=1

θ̃Tgi,j θ̃gi,j

2γgi,j
, (5.105)

where γfi , γgi,j and γffi are the adaptive gains, η̃ffi = η̂ffi − η∗ffi the adaptive bounds

estimation errors, for the case of i = 1, 2, 3 and j = 1, 2, 3.

As a measure of the systems error functions s(t), θ̃fi(t) and θ̃gi,j (t). Applying the fact

that
˙̃
θfi(t) =

˙̂
θfi(t),

˙̃
θgi,j (t) =

˙̂
θgi,j (t), and ˙̃ηffi(t) = ˙̂ηffi(t) we take the derivative of V

defined in equation (5.105) and inserting equations (5.69) and (5.88) as

V̇ = sT


c1e1 − ẏd1

c2e2 − ẏd2

c3e3 − ẏd3

+ sT {f + gu}+

3∑
i=1

θ̃Tfi
˙̂
θfi
γfi

+

+
3∑
i=1

3∑
j=1

θ̃Tgi,j
˙̂
θgi,j

γgi,j
+

3∑
i=1

η̃ffi
˙̂ηffi

γffi
. (5.106)

Next, we add and subtract the terms sT f̂ and sT ĝu to be inserted into equation (5.106)

as

V̇ = sT

{
c1e1 − ẏd1

c2e2 − ẏd2

c3e3 − ẏd3

+


ηf1

ηf2

ηf3

−

θ̂Tf1Bf1

θ̂Tf2Bf2

θ̂Tf3Bf3

+ f̂ +
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+ ĝu−


θ̃Tg1,1Bg1 ,1 θ̃

T
g2,1Bg2,1 θ̃

T
g3,1Bg3,1

θ̃Tg1,2Bg1,2 θ̃
T
g2,2Bg2,2 θ̃

T
g3,2Bg3,2

θ̃Tg1,3Bg1,3 θ̃
T
g2,3Bg2,3 θ̃

T
g3,3Bg3,3

u+

+


ηg1,1 ηg2,1 ηg3,1

ηg1,2 ηg2,2 ηg3,2

ηg1,3 ηg2,3 ηg3,3




1

1

1


}

+
3∑
i=1

θ̃Tfi
˙̂
θfi
γfi

+

+
3∑
i=1

3∑
j=1

θ̃Tgi,j
˙̂
θgi,j

γgi,j
+

3∑
i=1

η̃ffi
˙̂ηffi

γffi
. (5.107)

Implementing the reconstruction error bounds and plugging in the parameter update laws

from equations (5.89) - (5.100) into the equation (5.107) we obtain

V̇ ≤ sT

{
c1e1 − ẏd1

c2e2 − ẏd2

c3e3 − ẏd3

+


ηg1,1 ηg2,1 ηg3,1

ηg1,2 ηg2,2 ηg3,2

ηg1,3 ηg2,3 ηg3,3




1

1

1

+ f̂ + ĝu

}
+

+ ‖s‖T


η∗ff1

η∗ff2

η∗ff3

+

3∑
i=1

η̃ffi
˙̂ηffi

γffi
− [σ1σ2σ3]


θ̂Tf1(θ̂Tf1 − θ

0
f1

)

θ̂Tf2(θ̂Tf2 − θ
0
f2

)

θ̂Tf3(θ̂Tf3 − θ
0
f3

)

 , (5.108)

where ‖s‖ = [‖s1‖ ‖s2‖ ‖s3‖]T . We then substitute in the control inputs defined in equation

(5.104) to yield

V̇ ≤ ‖s‖T


η∗ff1

η∗ff2

η∗ff3

− sT

{
η̂ff1 tanh( s1ε ) + k1s1

}
{
η̂ff2 tanh( s2ε ) + k2s2

}
{
η̂ff3 tanh( s3ε ) + k3s3

}
−

− [σ1σ2σ3]


θ̃Tf1(θ̂f1 − θ0

f1
)

θ̃Tf2(θ̂f2 − θ0
f2

)

θ̃Tf3(θ̂f3 − θ0
f3

)

+
3∑
i=1

η̃ffi
˙̂ηffi

γffi
. (5.109)

Using the hyperbolic tangent property defined in [48], (5.101), (5.102) and (5.103) we

reduce the derivative of V (5.109) as

V̇ ≤−ksT s+ η∗ff1κε+ η∗ff2κε+ η∗ff3κε−
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− [σ1σ2σ3]


θ̃Tf1(θ̂f1 − θ0

f1
) + η̃Tff1(η̂ff1 − η0

ff1
)

θ̃Tf2(θ̂f2 − θ0
f2

) + η̃Tff2(η̂ff2 − η0
ff2

)

θ̃Tf3(θ̂f3 − θ0
f3

) + η̃Tff3(η̂ff3 − η0
ff3

)

 . (5.110)

Following the stability analysis from [50] we conclude that V̇ is not negative definite, there-

fore asymptotic convergence is not guaranteed. However, for a bounded set, the solution

V , can be shown to conclude system tracking errors, parameters and adaptive bounds are

uniformly ultimately bounded for a well defined compact set Ω.

5.2.2 Space Flight Control Performance Evaluation

The spline function based adaptive control laws designed in the previous section are imple-

mented here to a realistic spacecraft system with physical parameters. The control objective

is to track the desired output signals and maintain system stability during an orbital trans-

fer. The physical parameters used in the simulations are m = 480kg, I = 400kg ·m2,mf =

50kg, If = 10kg ·m2, b = 1.5m, d = 1.25m, a = 0.21m,F = 2300N, and ε = 3.7kg ·m2/s, as

given in [53].

Simulation. In this section, we illustrate the performance of our approximation based

adaptive controller design applied to the complete nonlinear system

Figure 5.7: Tracking error y(t)− yd(t) for the reduced order MIMO spacecraft model

with fuel slosh.
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Figure 5.8: Slosh Angle ψ Time Response.

Figure 5.9: Attitude Angle θ: Output Time Response.

Figure 5.10: Transverse Velocity vz: Output Time Response.
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Where the corresponding control inputs are

Figure 5.11: Transverse Control Force FT , Pitching Moment M , and Gimbal Deflec-

tion Angle δ.

Here we have developed a MIMO nonlinear dynamical model for a spacecraft with a

single fuel sloshing mode. Where the spline function based adaptive control design scheme
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achieves bounding tracking for a set of desired output signals. The effectiveness of our

approximation based design has been illustrated by a number of different simulation condi-

tions. We anticipate our future research to include the adaptive control design and system

dynamics of a spacecraft with multiple fuel slosh modes.



Chapter 6

Adaptive Compensation of

Synthetic Jet Actuator

Nonlinearities

Recall the ith synthetic jet actuator nonlinearity model with uncertain parameters as

defined earlier is described by

ui(t) = Ni(θ
∗
i ; vi, α) (6.1)

where ui(t) is the ith control input to the plant and is generated by synthetic jet actuators,

i = 1, 2, . . . ,m, where m > 1 is the number of control inputs, vi(t) is the input to each

actuator, α is the angle of attack, and θ∗i is the unknown parameter vector. It is important

to note that for a realistic study the actuator output ui(t) is not available for measurement.

In this case, an approximation is a good choice.

To overcome these challenges, we develop a linearly parametrized spline function ap-

proximation for each ith function denoted fi(vi, α). That is, the nonlinearity profile can be

approximated by multivariable B-splines defined as

ui(t) = Ni(θ
∗
Ni

; vi, α) , fi(vi, α) = θ∗TNi
BNi (vi, α) + ηNi(vi, α), (6.2)

where the expression is,

θ∗TNi
BNi (vi, α) =

M1∑
j1=1

M2∑
j2=1

θ∗j1j2bj1(v)bj2(α), (6.3)

91
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ηNi represents the ith spline function approximation error and is bounded by a positive

constant ‖ηNi‖ ≤ ηNNi , θ
∗
j1j2

for each ith approximator is one of (M1 ·M2) unknown B-

spline coefficients, and bj1(v), bj2(α) are the univariable B-spline basis elements, and the

estimator of the synthetic jet actuator nonlinearity function as

ûi(t) = N̂i(θ̂Ni ; vi, α) = θ̂TNi
BNi (vi, α). (6.4)

Smooth Adaptive Inverse Design. For the nonlinearity function Ni(udi, α), we

assume it is invertible and continuous such that there exists NIi(ud, α) to ensure that

ui(t) = Ni(NIi(udi , α), α) = udi(t) the inputs to the aircraft dynamics. With these

assumptions we can express the nonlinearity inverse function NIi(udi , α), in the following

form:

NIi(udi , α) = f−1
i (udi , α) = udSi

(6.5)

where f−1
i (udi , α) is the inverse function for the synthetic jet actuator nonlinearity, udi , as

mentioned before, is the desired input signal. In our previous research [66], we consider the

case where the function udSi
may be discontinuous, for example actuator nonlinearities that

exhibit a deadzone or backlash behavior.

Based on the spline function network property, we can approximate the ith nonlinearity

inverse function by

udSi
= NIi(θ

∗
si ;udi , α) , θ∗Tsi Bsi (udi , α) + ηsi(udi , α), (6.6)

where

θ∗Tsi Bsi (udi , α) =

R1∑
j1=1

R2∑
j2=1

θ∗j1j2bj1(ud)bj2(α), (6.7)

ηsi represents the ith spline function network approximation error and is bounded by a

positive constant as ‖ηsi‖ ≤ ηNSi , θ
∗
j1j2

for each ith approximator is one of (R1 ·R2) unknown

B-spline coefficients, bj1(ud), bj2(α) are the univariable B-spline basis elements. Next, we

define the estimates of the synthetic jet actuator nonlinearity inverse functions as

ûdSi
(t) = N̂Ii(θ̂si ;udi , α) = θ̂TsiBsi (udi , α). (6.8)

Applying (6.5) and the estimation error ũdSi
= udSi

− ûdSi
, we obtain

udi = fi(ûdSi
+ ũdSi

, α). (6.9)
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Figure 6.1: Approximation based smooth adaptive inverse compensation control.

Following from equation (6.5), we define the applied control inputs as (see Figure 6.1)

vi = ûdSi
, (6.10)

now we can take the Taylor series expansion of (6.9) about udSi
= ûdSi

, to obtain the desired

control signals udi as

udi = fi(vi, α) +
∂fi(vi, α)

∂vi
ũdSi

+ O
(∂f li (vi, α)

∂vli
, ũdSi

)
, (6.11)

where l = 2, 3, . . . ,∞ and O(·) represents the higher order derivative terms in the Taylor

series expansion. The representation of udi(t) in (6.11) is written in this form to allow

the derivation of each ith control error ui(t)− udi(t). The full state desired linear feedback

control law is defined as ud(t) = r(t)−Kx(t), where ud(t) = [ud1 , ud2 , . . . , udm ] ∈ <m, (recall

that m > 1 is the number of control inputs and i = 1, 2, . . . ,m), and K is chosen such that

the poles of the solution A − BK are equal to some desired closed loop poles. Figure 6.1

describes an adaptive state feedback inverse control system for smooth nonlinearities that

contains two spline function network approximations. The first approximation structure is

used as a compensator for the inverse nonlinearity, while the second structure is an estimator

for the uncertain synthetic jet actuator nonlinearity.
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6.1 Control Error

Next, we derive an expression for the ith control error ui(t)−udi(t) to describe the effective-

ness of the nonlinearity functional approximations. This expression is critical in developing

adaptive update laws for the parameter estimates.

Lemma 1 : With the functional compensator described by (6.8), (6.10) and the estimate

represented by (6.4), the ith control error for the spline function-based synthetic jet

actuator nonlinearity compensation scheme is given by

ui(t)− udi(t) = θ̃TNi

∂BNi(vi, α)

∂vi
θ̂TsiBsi(udi , α)− θ̂TNi

∂BNi(vi, α)

∂vi
θ̃TsiBsi(udi , α) + ηi(t), (6.12)

where ηi(t) is the model mismatch error.

Proof: From (6.2) and (6.11), the control error is given as

ui − udi = −∂fi(vi, α)

∂vi
ũdSi

−O

(
∂f li (vi, α)

∂vli
, ũdSi

)
. (6.13)

Substituting (6.6) and (6.8) in (6.13), we obtain

ui − udi =
∂fi(vi, α)

∂vi
θ̃TsiBsi(udi , α)− ∂fi(vi, α)

∂vi
ηsi(udi , α)−O

(
∂f li (vi, α)

∂vli
, ũdSi

)
, (6.14)

where θ̃si(t) = θ̂si(t)− θ∗si is the parameter error for the ith inverse nonlinearity function.

From (6.2), (6.4), (6.14) and θ̃Ni(t) = θ̂Ni(t)− θ∗Ni
the parameter error for the ith

nonlinearity function, this results in the following form

ui − udi =

(
∂ηNi(vi, α)

∂vi
− θ̃TNi

∂BNi(vi, α)

∂vi

)
θ̃TsiBsi(udi , α)− ∂fi(vi, α)

∂vi
ηsi(udi , α)−

−O

(
∂f li (vi, α)

∂vli
, ũdSi

)
+ θ̂TNi

∂BNi(vi, α)

∂vi
θ̃TsiBsi(udi , α)

= −θ̃TNi

∂BNi(vi, α)

∂vi
θ̂TsiBsi(udi , α) + θ̂TNi

∂BNi(vi, α)

∂vi
θ̃TsiBsi(udi , α) + ηi, (6.15)

where ηi(t) is

ηi = θ̃TNi

∂BNi(vi, α)

∂vi
θ∗Tsi Bsi(udi , α) +

∂ηNi(vi, α)

∂vi
θ̃TsiBsi(udi , α)−O

(
∂f li (vi, α)

∂vli
, ũdSi

)

− θ∗TNi

∂BNi(vi, α)

∂vi
ηsi(udi , α). (6.16)
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This expresses the ith control error ui(t)−udi(t) in terms of the parameter errors θ̃Ni(t)

and θ̃si(t). Note that the form of (6.12) is crucial in controller design and in deriving

adaptive laws that guarantee closed-loop stability. Also we must note that the modeling

mismatch term ηi(t) consists of approximation error terms and higher-order derivative terms

from the Taylor series expansion performed earlier. The following important result gives

the upper bound of the norm of ηi(t) and is used in the stability proof, where ‖.‖ is used

as any suitable vector norm.

Lemma 2 : The norm of the modeling mismatch term ηi(t) in (6.12) is bounded by

‖ηi(t)‖ ≤ βTi Ωi, (6.17)

where βi = [β1i , β2i , β3i , β4i , ]
T is the ith unknown constant vector, being composed of

bounded constants and the known ith vector function is Ωi =

[
1,
∥∥∥θ̂Ni

∥∥∥ ,∥∥∥θ̂si∥∥∥ ,∥∥∥θ̂si∥∥∥2
]T

.

Proof: From (6.16) and the fact that there obviously exists the ith positive constants θMi

and θSi satisfying
∥∥θ∗Ni

∥∥ ≤ θMi and
∥∥θ∗si∥∥ ≤ θSi , where θMi and θSi are not needed to be

known. Based on the following facts for the bounds

∥∥∥θ̃Ni

∥∥∥ ≤ θMi +
∥∥∥θ̂Ni

∥∥∥ , ∥∥∥θ̃si∥∥∥ ≤ θSi +
∥∥∥θ̂si∥∥∥ ,

we have each ith modeling mismatch error bounded by

‖ηi(t)‖ ≤ θsi

(
θMi +

∥∥∥θ̂Ni

∥∥∥)∥∥∥∥∥∂BNi(vi, α)

∂vi

∥∥∥∥∥ ‖Bsi(udi , α)‖+ θMi

∥∥∥∥∥∂BNi(vi, α)

∂vi

∥∥∥∥∥ηSi + ‖O(·)‖

+

∥∥∥∥∥∂ηNi(vi, α)

∂vi

∥∥∥∥∥(θSi +
∥∥∥θ̂si∥∥∥) ‖Bsi(udi , α)‖ . (6.18)

With some algebraic simplifications, this becomes

‖ηi(t)‖ ≤ β1i + β2i

∥∥∥θ̂Ni

∥∥∥+ β3i

∥∥∥θ̂si∥∥∥+ β4i

∥∥∥θ̂si∥∥∥2
= βTi Ωi. (6.19)

The ith vector βi is concluded to be bounded because ‖Bsi(udi , α)‖ and
∥∥∥∂BNi

(vi,α)

∂vi

∥∥∥ are
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bounded for a bounded α. Note that the ith control error (6.12) reflects the mutual depen-

dence of the two parametrized nonlinearity functions. To proceed, we define an estimator

for the bound of the ith model mismatch error βTi Ωi, as

η̂i(t) = β̂Ti Ωi, (6.20)

where β̂i(t) =
[
β̂1i , β̂2i , β̂3i , β̂4i

]T
, to be updated from an adaptive law. A similar develop-

ment is given in [85] with a neural network framework for discontinuous nonlinearities. ∇

As the ith estimates θ̂Ni(t) and θ̂si(t) approach the actual parameters θ∗Ni
and θ∗si , each

spline function approximator effectively provides an inverse for the synthetic jet actuator

nonlinearity. Observing the form of the control error expression (6.12) is critical for adaptive

controller design, so as to guarantee closed-loop stability. Through the first-order Taylor

expansion, the ith control error ui(t)− udi(t) has been expressed conveniently in a linearly

parameterizable form with respect to the parameter errors θ̃Ni(t) and θ̃si(t). This allows

us to adaptively update the estimates θ̂Ni(t) and θ̂si(t). Moreover, the mismatch error

term ηi(t) is bounded by a constant vector multiplied by a known function vector. Indeed,

adaptive control techniques can be employed to handle these residual terms in a robust

fashion.

The interesting fact that the modification of one nonlinearity function depends on the

other, leads us to conclude that the adaptive update laws to be developed for θ̂Ni(t) and

θ̂si(t) should be mutually coupled, such that the parameter errors θ̃Ni(t) and θ̃si(t) are

bounded and the closed-loop system stability is guaranteed.

6.2 Adaptive Feedback Control System

In this section we present a state feedback adaptive inverse compensation scheme to cancel

the ith control input nonlinearity Ni(θ
∗
i ; vi, α), in order to ensure the system objective is

achieved. Such a control system is that shown in Figure 6.1 (note that the output y(t) is

not used in this study, but the control scheme to be developed can be made for output

tracking).
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6.2.1 State Feedback Control

Recall the m-input linearized time-invariant plant model for the commercial aircraft flight

dynamics with synthetic jet actuators included,

ẋ(t) = Ax(t) +Bu(t) = Ax(t) +

m∑
i=1

Biui,

y(t) = Cx(t), t ≥ 0, (6.21)

where the angle of attack α is one of the components of the state vector x(t) ∈ <n, u(t) ∈ <m

is the control input, y(t) ∈ < is the output, and A ∈ <n×n, B ∈ <n×m and C ∈ <1×n

are known constant parameter matrices. Here Bi is defined as the ith column of B for

i = 1, . . . ,m, such that ui(t) is the ith element of u(t) that is implemented with the synthetic

jet actuators. To compensate for the approximation error uncertainty we modify the desired

state feedback control signal as

ud(t) = −Kx(t) + r(t) + vη(t), (6.22)

where ud(t) = [ud1 , ud2 , . . . , udm ] ∈ <m, r(t) ∈ <m is a vector of bounded reference input

signals and K ∈ <m×n is a constant gain vector such that the eigenvalues of A − BK are

set to the desired closed-loop system poles. The vη(t) = [vη1 , vη2 , . . . , vηm ] ∈ <m term, is

a commonly applied disturbance rejection term to compensate for the approximation error

uncertainty and will be defined in the next section. The choice of K can be made from a

linear-quadratic regulator (LQR) design [35] or a pole placement technique [56].

Applying (6.12), (6.21) and (6.22), we obtain the closed-loop linear dynamics

ẋ(t)=(A−BK)x(t) +
m∑
i=1

Bi

(
ηi(t)− θ̃TNi

(t)
∂BNi(vi(t), α)

∂vi(t)
θ̂Tsi(t)Bsi(udi(t), α)

+ θ̂TNi
(t)
∂BNi(vi(t), α)

∂vi(t)
θ̃Tsi(t)Bsi(udi(t), α)

)
+Br(t) +Bvη(t). (6.23)

This representation motivates us to choose the reference model system as

ẋm(t) = (A−BK)xm(t) +Br(t). (6.24)

The control objective is to choose a feedback gain K and adaptive laws for the ith parameters

θ̂Ni(t) and θ̂si(t), such that all closed-loop system signals are bounded, and the state tracking

errors e(t) = x(t)− xm(t) are as small as possible (due to the uncertainty of each ηi(t) and

the related approximation, limt→∞(x(t)− xm(t)) = 0 may not be theoretically achievable).
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6.2.2 Adaptive Laws

In this subsection, we formulate adaptive laws to update the ith parameter estimates θ̂Ni(t),

θ̂si(t) and β̂i(t), so that the control objective is achievable. Parameter projection is applied

to ensure that the parameter estimates remain in the bounded region. We assume that the

following inequalities for the components of the ith true nonlinearity parameters θ∗Ni
, θ∗si

and βi are known and satisfy:

θb1Ni
≤ θ∗1Ni

≤ θd1Ni
, . . . , θbn1Ni

≤ θ∗n1Ni
≤ θdn1Ni

,

θb1si ≤ θ
∗
1si ≤ θ

d
1si , . . . , θ

b
n2si ≤ θ

∗
n2si ≤ θ

d
n2si ,

βb1i ≤ β1i ≤ βd1i , . . . , β
b
4i ≤ β4i ≤ βd4i ,

for some known constants θb1Ni
, . . . , θbn1Ni

, θd1Ni
, . . . , θdn1Ni

, where n1 = M1·M2, and θb1si , . . . , θ
b
n2si ,

θd1si , . . . , θ
d
n2si , n2 = R1 ·R2, βb1i , . . . , β

b
4i

, and βd1i , . . . , β
d
4i

. With these defines the ith initial

estimates θ̂Ni(0), θ̂si(0) and β̂i(0) of θ∗Ni
, θ∗si and βi respectively, are chosen to satisfy the

inequalities

θb1Ni
≤ θ̂1Ni(0) ≤ θd1Ni

, . . . , θbn1Ni
≤ θ̂n1Ni(0) ≤ θdn1Ni

,

θb1si ≤ θ̂1si(0) ≤ θd1si , . . . , θ
b
n2si ≤ θ̂n2si(0) ≤ θdn2si ,

βb1i ≤ β̂1i(0) ≤ βd1i , . . . , β
b
4i ≤ β̂4i(0) ≤ βd4i . (6.25)

Applying the parameter projection algorithm from [76], we develop our adaptive laws as

˙̂
θNi(t) = gNi(t) + hNi(t), (6.26)

˙̂
θsi(t) = gsi(t) + hsi(t), (6.27)

˙̂
βi(t) = gβi(t) + hβi(t), (6.28)

where i = 1, 2, . . . ,m, t ≥ 0, gNi(t), gsi(t) and gβi(t) are the adaptation functions given by

gNi(t) = −Γ1ie
T (t)PBi

∂BNi(vi, α)

∂vi
θ̂TsiBsi(udi , α), (6.29)

gsi(t) = Γ2ie
T (t)PBi

∂BNi(vi, α)

∂vi
θ̂TNi

Bsi(udi , α), (6.30)

gβi(t) = Γ3iΩi

∣∣eT (t)PBi
∣∣ , (6.31)
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and Γji , j = 1, 2, 3 are the adaptation gain matrices that satisfy Γji = ΓTji > 0 and recall

the state tracking errors from

e(t) = x(t)− xm(t). (6.32)

P ∈ <n×n, P = P T > 0 is determined by the solution to the Lyapunov equation for

continuous time systems

PAm +ATmP = −Q, (6.33)

for a constant matrix Q ∈ <n×n, Q = QT > 0 (recall Am = A − BK). The functions

hNi(t), hsi(t) and hβi(t) are parameter projection functions defined such that the ith pa-

rameter estimates stay in a convex region for certain desired physical properties, and are

represented as

hlNi
(t) =



0 if θ̂lNi
(t) ∈ (θblNi

, θdlNi
), or

if θ̂lNi
(t) = θblNi

, glNi
(t) ≥ 0, or

if θ̂lNi
(t) = θdlNi

, glNi
(t) ≤ 0,

−glNi
(t) otherwise,

(6.34)

hjsi(t) =



0 if θ̂jsi(t) ∈ (θbjsi , θ
d
jsi

), or

if θ̂jsi(t) = θbjsi , gjsi(t) ≥ 0, or

if θ̂jsi(t) = θdjsi , gjsi(t) ≤ 0,

−gjsi(t) otherwise,

(6.35)

where i = 1, 2, . . . ,m, l = 1, 2, . . . ,M1 ·M2 and j = 1, 2, . . . , R1 ·R2, and

hkβi(t)=



0 if β̂ki(t) ∈ (βbki , β
d
ki

), or

if β̂ki(t) = βbki , gkβi(t) ≥ 0, or

if β̂ki(t) = βdki , gkβi(t) ≤ 0,

−gkβi(t) otherwise,

(6.36)

where k = 1, . . . , 4. Note the coupled nature of the adaptive laws θ̂Ni(t) and θ̂si(t) clearly

showing the mutual dependence of the two nonlinearity spline function approximators.

Next, to determine the effectiveness of our design we analyze the stability properties.

Theorem 1 Under the facts stated in Lemma 2, the modified desired feedback control law

(6.22), adaptive laws (6.26), (6.27) and (6.28), applied to the plant (6.21), guarantee that
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the overall closed-loop system is locally stable in the sense that the initial system states

x(0) are chosen from the desired compact set of operation Dx ⊂ <n, and the ith initial

parameters
{
θ̂Ni(0), θ̂si(0)

}
∈ Dθi, where Dθi ⊂ <M1·M2+R1·R2 is a compact set in the

space of θ∗Ni
, θ∗si, then all signals remain bounded and the tracking error e(t) is bounded by

the approximation errors in a mean square sense.

Proof: Applying (6.23) and (6.24) we have

ė(t)=(A−BK)e(t) +

m∑
i=1

Bi

(
vηi(t) + ηi(t)− θ̃TNi

(t)
∂BNi(vi(t), α)

∂vi(t)
θ̂Tsi(t)Bsi(udi(t), α)

+ θ̂TNi
(t)
∂BNi(vi(t), α)

∂vi(t)
θ̃Tsi(t)Bsi(udi(t), α)

)
. (6.37)

Consider the positive definite function

V (e, θ̃Ni , θ̃si) = eTPe+
m∑
i=1

(
θ̃TNi

Γ−1
1i
θ̃Ni + θ̃TsiΓ

−1
2i
θ̃si + β̃Ti Γ−1

3i
β̃i

)
, (6.38)

as a measure of the systems error functions e(t), θ̃Ni(t) and θ̃si(t), where β̃i(t) = β̂i(t)− βi.

Using the fact that
˙̃
θNi(t) =

˙̂
θNi(t),

˙̃
θsi(t) =

˙̂
θsi(t), and

˙̃
βi(t) =

˙̂
βi(t) we write the time

derivative of V as

V̇ = eT (t)P ė(t) + ėT (t)Pe(t) + 2
m∑
i=1

(
θ̃TNi

(t)Γ−1
1i

˙̂
θNi(t) + θ̃Tsi(t)Γ

−1
2i

˙̂
θsi(t) + β̃Ti (t)Γ−1

3i

˙̂
βi(t)

)
.

(6.39)

Substituting (6.26), (6.27), (6.28) and (6.37) into (6.39), and with the cancellation of like

terms, the time derivative of V becomes

V̇ =−eT (t)Qe(t) + 2

m∑
i=1

(
eT (t)PBivηi(t) + eT (t)PBiηi(t) + β̃Ti Ωi

∣∣eT (t)PBi
∣∣+

+ θ̃TNi
(t)Γ−1

1i
hNi(t) + θ̃Tsi(t)Γ

−1
2i
hsi(t) + β̃Ti (t)Γ−1

3i
hβi(t)

)
. (6.40)

With each ith initial parameter within known upper and lower bounds, and from the defined

parameter projection functions hNi(t), hsi(t), and hβi(t) which keep the parameters in the

desired bounds, it follows that (6.25) is satisfied, and each ith

θ̃TNi
hNi(t) ≤ 0, θ̃Tsihsi(t) ≤ 0, β̃Ti hβi(t) ≤ 0 (6.41)
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that is, θ̃TNi
(t)Γ−1

1i
hNi(t) ≤ 0, θ̃Tsi(t)Γ

−1
2i
hsi(t) ≤ 0, and β̃Ti (t)Γ−1

3i
hβi(t) ≤ 0. From these

properties, (6.40) reduces to

V̇ ≤ −eT (t)Qe(t) + 2

m∑
i=1

(
eT (t)PBiηi(t) + β̃Ti Ωi

∣∣eT (t)PBi
∣∣+ eT (t)PBivηi(t)

)
. (6.42)

To proceed with the analysis we first consider the case where we ignore the uncertainty

compensation signal vηi(t) part in (6.42). This corresponds to an adaptive control scheme

that ensures desired closed-loop stability and tracking properties which, like those with other

approximation based designs, are in a local and average sense due to approximation errors,

that is, for approximation errors with some non-zero bounds and chosen initial conditions

within the specified regions, all closed-loop system signals remain bounded and the tracking

error e(t) is bounded by the approximation errors in a mean square sense.

Since Q = QT > 0 and each ηi(t) is small (in some norm sense) and bounded on a

compact region, we have, from (6.40) and (6.41), the boundedness of e(t), from (6.24) that

of xm(t) and, in turn, from e(t) = x(t) − xm(t), that of x(t), from (6.22), that of ud(t)

(without vη(t)). Thus all closed-loop signals are bounded. Finally, from (6.26), (6.27),

(6.28), (6.40), and (6.41), e(t), each ith
˙̂
θNi(t), and

˙̂
θsi(t) are all bounded by ηi(t) in a mean

square sense (e.g.
∫ t2
t1
e2(t)dt ≤ γ0 + k0

∑m
i=1

∫ t2
t1
η2
i (t)dt for some constants γ0,k0 > 0).

Next, we consider the case where the vηi(t) term is included in (6.42). Following the

Lyapunov redesign procedure presented in [30], vηi(t) is a chosen term to cancel the desta-

bilizing effect of ηi(t) and β̃Ti Ωi on V̇ . With this definition, we need to choose vηi(t) such

that
∑m

i=1

(
eT (t)PBiηi(t) + β̃Ti Ωi

∣∣eT (t)PBi
∣∣ + eT (t)PBivηi(t)

)
≤ 0. First we realize that

the inequality (6.17) is satisfied with the absolute value |·|, that is,

|ηi(t)| ≤ βTi Ωi. (6.43)

Thus we have

m∑
i=1

(
eT (t)PBiηi(t) + β̃Ti Ωi

∣∣eT (t)PBi
∣∣+ eT (t)PBivηi(t)

)
(6.44)

≤
m∑
i=1

(
eT (t)PBivηi(t) + β̃Ti Ωi

∣∣eT (t)PBi
∣∣+
∣∣eT (t)PBi

∣∣ |ηi(t)|),
≤

m∑
i=1

(
eT (t)PBivηi(t) +

∣∣eT (t)PBi
∣∣ β̃Ti Ωi +

∣∣eT (t)PBi
∣∣βTi Ωi

)
,
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≤
m∑
i=1

(
eT (t)PBivηi(t) +

∣∣eT (t)PBi
∣∣ β̂Ti Ωi

)
.

Ideally, we choose each ith term as

vηi = −εi(t)sgn(eT (t)PBi), (6.45)

where εi(t) ≥ β̂Ti Ωi, then,
m∑
i=1

(
eT (t)PBiηi(t) + β̃Ti Ωi

∣∣eT (t)PBi
∣∣+ eT (t)PBivηi(t)

)
(6.46)

≤
m∑
i=1

(
β̂Ti Ωi

∣∣eT (t)PBi
∣∣− εi ∣∣eT (t)PBi

∣∣ ),
≤

m∑
i=1

(
β̂Ti Ωi

∣∣eT (t)PBi
∣∣− β̂Ti Ωi

∣∣eT (t)PBi
∣∣ ) = 0.

Hence, with each ith approximation error rejection term vηi(t) included, the V̇ along the

trajectories of the closed-loop system is negative definite, improving the adaptive control

scheme’s desired closed-loop stability and tracking properties. ∇

The ith robustifying control signal given by (6.45) is a discontinuous function and prac-

tically its implementation is characterized by the phenomenon of chattering, where, due to

imperfections in switching devices or computational delays, the control has fast switching

fluctuations across the region of operation [30]. To overcome these problems, we will ap-

proximate the discontinuous robustifying control signal by a continuous one. Observing the

structure of (6.45) we chose our continuous approximation function as

vηi(t) = −εi(t)
eT (t)PBi

ρi + |eT (t)PBi|
, 0 < ρi << 1, (6.47)

where i = 1, 2, . . . ,m, and |·| is the absolute value. The system stability properties corre-

sponding to this chosen continuous approximation function will be the same as (6.45), as

long as the choice of ρi is not too small and εi(t) ≥ β̂Ti Ωi. Thus far, we have developed

a spline function approximation based smooth adaptive inverse design for compensating

multiple input actuator nonlinearities.

In the next section, we apply our design to a benchmark commercial aircraft flight

dynamic system with multiple input synthetic jet actuators. The following numerical eval-

uation of such an adaptive control system is crucial in order to verify the desired system

stability and tracking properties.
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6.3 Aircraft Flight Control Performance

In this section, we demonstrate our spline function network approximation-based smooth

adaptive inverse compensation control design applied to a commercial transport linear air-

craft flight dynamic model with multiple input actuator nonlinearities, to evaluate the adap-

tive control system performance. We present the details of the aircraft dynamic model,

actuator nonlinearities, nonlinearity inverse design, feedback control law, and simulation

steps.

6.3.1 Linear Aircraft Dynamic Model

In this study, we employ a multi-input linearized model of a commercial transport aircraft

that is,

ẋ(t) = Ax(t) +Bu(t), (6.48)

where the state vector is x = [x1, x2, x3, x4, x5]T whose components are the angle of attack

α, pitch rate q, side-slip angle β, roll rate p, and yaw rate r, the control input vector is

u = [u1, u2, u3]T whose components are the elevator angle δe, aileron angle δa and rudder

angle δr, respectively. The elevator angle δe is to be equivalently implemented through

synthetic jet actuators, and A ∈ R5×5 and B ∈ R5×3 which are given by

A =



−0.5656 0.9730 0 0 0

−0.8985 −0.4755 0 0 0

0 0 −0.1178 0.0501 −0.9881

0 0 −1.4828 −1.0674 0.6121

0 0 0.5364 −0.0644 −0.3057


,

B =



−0.0009 0 0

−0.0161 0 0

0 0 0.0007

0 0.0136 0.0063

0 0.0003 −0.0079


.
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6.3.2 Linear Feedback Law

Recall the desired linear feedback control law for the case when u(t) = ud(t) (that is, when

there is no actuator nonlinearity N(·) and there is no inverse N̂I(·)) is

ud(t) = −Kx(t) + r(t) (6.49)

where r(t) is a reference input signal, and K ∈ R3×5 is a feedback gain vector to be

determined. To proceed, we augment the desired linear feedback control law with the vη(t)

term to compensate for the approximation error uncertainty, such that

ud(t) = −Kx(t) + r(t) + vη(t). (6.50)

Using the LQR design, with simple Q = I5 and R = I3, we determine the optimal gain

matrix for K as

K=


−0.0005 −0.0163 0 0 0

0 0 −0.0046 0.0061 0.0033

0 0 0.0090 0.0016 −0.0434

 .
The reference model matrix Am = A−BK is

Am=



−0.5656 0.9730 0 0 0

−0.8985 −0.4758 0 0 0

0 0 −0.1178 0.0501 −0.9881

0 0 −1.4828 −1.0675 0.6123

0 0 0.5365 −0.0644 −0.3060


.

The closed-loop system poles are the eigenvalues of Am: −0.5207 + 0.9339i, −0.5207 −

0.9339i, −0.2179 + 0.7904i, −0.2179− 0.7904i and −1.0555. The solution to the Lyapunov

equation PAm +ATmP = −Q = −I5, is

P =



0.9728 0.0516 0 0 0

0.0516 0.9535 0 0 0

0 0 2.9439 −3.0056 0.0026

0 0 −3.0056 4.3034 −0.5925

0 0 0.0026 −0.5925 1.7631


.
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6.3.3 Simulation

To simulate the design, we need to first generate the signal ud(t) = −Kx(t) + r(t) + vη(t),

for the reference signal r(t) = 3.7 sin t. The initial states for the system are:

x0 = [5 0.01 0.01 0.01 0.001]T , and the reference system initial states are:

xm0 = [4 0.06 0.05 0.08 0.009]T . The plot in Figure 6.3, shows the system state

tracking errors for the case when no nonlinearities are present in the control input actuators.

In Figure 6.2, all of the input channels contain a nonlinearity and as such the tracking errors

are disturbed from zero.

The parameter estimates are initialized as θ̂Nj,k = 1, θ̂sj,k = 1. With adaptation gains

set to Γi = 300 × I, for i = 1, 2, 3 and I the identity matrix. The robustifying signal

variable values from (6.47) are chosen as ε(t) = 20 and ρ = 0.00017. The plot in Figure 6.3,

shows the system state tracking errors for the case when no nonlinearities are present in

the control input actuators. In Figure 6.4, one of the input channels contains a nonlinearity

and as such some of the tracking errors are disturbed from zero. Figure 6.5 shows the

state tracking errors with one input channel containing a nonlinearity and adaptive spline

function compensation control, as we can see the tracking errors go near to zero. Figure

6.6 is a plot of the control signal. Figures 6.7-6.8 show the angle of attack output tracking

performance. In Figure 6.9 we show the importance and effect of including the robustifying

control signal vη(t) from (6.47). Figure 6.10 shows the regulation (r(t) = 0) results when

one actuator (u1-the elevator angle) is implemented with synthetic jets.
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Figure 6.2: System state tracking errors with input nonlinearities.

Figure 6.3: System state tracking errors without input nonlinearities.
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Figure 6.4: System state tracking errors with partial input nonlinearities.

Figure 6.5: System state tracking errors with partial input nonlinearities and adaptive

compensation.
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Figure 6.6: Control signal u(t).

Figure 6.7: System output (solid) and reference signal (dotted): angle of attack (rad).
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Figure 6.8: Tracking error during the first 8 s (the dashed lines indicate the required

error bound).

Figure 6.9: System output with robustifying signal (solid), without (dotted): angle

of attack (rad).
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Figure 6.10: System response of regulation: r(t) = 0.



Chapter 7

Conclusions and Outlook

This chapter presents concluding remarks on our work presented in this dissertation. In

addition, we present an outlook into future technology advancements. The purpose of this

outlook is to inform the reader of current spacecraft technologies that are being pursued for

further research. Fuel slosh in liquid fuel tanks of control systems are often poorly known

and severely limit system performance. Liquid fuel tanks, a common system component,

always contain fuel slosh.

7.1 Conclusions

The nonlinear effect of fuel slosh can be minimized by implementation of the spline

function approximation based adaptive control scheme. Examples implementing both a

SISO and MIMO spacecraft control model with fuel slosh are studied in this dissertation.

This study demonstrated through simulation that fuel slosh in a partially filled spherical

container deteriorated the attitude tracking for a sinusoidal reference. The simulation with

the advanced adaptive controller showed a significant reduction in the effect of the unknown

fuel slosh. Other common nonlinear effects such as thermally induced vibration on solar

arrays and environmental disturbances can also be controlled using this adaptive control

approach. The problem considered in this study is only one of many practical applications

that can be studied for further advancements. Future work incorporating the multi-mass

111
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fuel slosh model with multiple inputs would improve the accuracy of the developed model

and yield more insight into the system effects of liquid motion inside a container.

In addition, this dissertation document develops a method to use multivariable B-splines

to construct two approximation structures for an adaptive inverse compensation controller

for aircraft flight control. The first approximator estimates the unknown synthetic jet

actuator nonlinearity, while the other estimates the inverse function for compensation. The

use of spline functions for implementing these functions leads to a linear parametrization

of the control error. A state feedback control law, combined with the adaptive inverse

compensation scheme, has been designed and analyzed for desired stability and tracking

performance, and applied to a realistic aircraft control example. Simulations are performed

to illustrate the effectiveness of the design method developed.

7.2 Technology Outlook

There are a number of applications that are currently being pursued in spacecraft

and aircraft technology. One of the more shocking but understandable is that spacecraft

technology is soon to return to its roots with the return of the capsule spacecraft. The space

shuttle design has been retired in 2010 [86], making room for a plethora of new innovative

spacecraft designs. In addition to the damage that occurs to the spacecraft during the

launch phase because of the rockets sending debris onto the attached spacecraft, which was

concluded to be a possible culprit in the tragic Space Shuttle Columbia, that broke apart

during the re-entry stage [86]. Implementing the capsule design for the spacecraft to be

placed on top of the rockets for take off and do not run the risk of being damaged by rocket

debris during the launch stage of the spacecraft mission.

On a side-note with satellite technology, currently the price of retrieving a damaged

satellite and repairing it on earth and then sending it back to its original orbit is more than

sending a new satellite. The average price for one of the state-of-the-art satellites can run in

the hundreds of millions of dollars. This has inspired Boeing (the leading satellite provider)

to pursue other technologies for their repairing needs. Some of the recent projects are

sending satellites to repair other satellites while they remain in orbit. This application will
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be affected by fuel slosh because the amount of precision needed to complete the mission.

Commercial aircraft companies could see a substantial improvement in turbulence man-

agement systems by adding on synthetic jet control technologies to pre-existing airplanes.

Safety is another aspect that would benefit from a secondary control method to assist the

pilots in case of power loss or damaged component failures. Military applications similar to

stealth aircraft could apply these new synthetic jet actuator technologies to allow for highly

complex maneuvers that demand an increase in angle of attack values up to 40o.

Another recently developing technology that shows promise for spacecraft ranging in

the 100 grams to 50 kg mass are NEMS engines [83]. Nano-Electrical-Mechanical-System

(NEMS) are an exciting new field that is making its way into R&D labs and commer-

cial products. NEMS are developed by using a combination of micromachining and stan-

dard integrated circuit technology. Some of the most common NEMS applications are

accelerometers, gyros, and GPS receivers. For spacecraft technology NEMS rocket engines

are developed. The size of the NEMS engine is comparable to a human hair, but has a

thrust-to-weight ratio hundreds of times greater than the macro size satellites and space

shuttles [79].

The most recent space development is the new space race, which started around 2004,

the race is to commercialize space travel. Researchers are studying cost efficient space travel

and possibly orbiting a hotel in space for tourists to visit. Currently there are a number

of companies that provide space travel service for civilians. These developments make way

for a new meaning to space travel. Allowing more practical orbital flights for research or

touring purposes.

To complete the construction of the $100 billion international space station a substantial

number of spacewalks must be performed. Traveling at 17, 500 mph and 220 miles above the

earth’s surface, astronaut stability is crucial to maintain during spacewalk task performance.

Current research presents extensions for robotic arms to enable under craft repair and

maintenance. Formation flying is a concept used to solve the need to have large structures

in space. Because it is close to impossible to launch a large space structure. Researchers are

proposing sending an array of smaller structures that can in some way structure themselves

together to form a larger structure that will be used for beneficial objectives.
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Appendix

MIMO State Variable Model

To place the system in state variable form we introduce the following state-variables:

x1 = vx, x2 = vz, x3 = θ, x4 = θ̇, x5 = ψ, x6 = ψ̇. (7.1)

With the system state variables defined, we write our nonlinear equations in state-

variable form, by plugging in each corresponding state for the chosen variable:

ẋ = f(x) + g(x)u,

y = h(x),

where

u =

 FT

M

 , y =

 vz

θ

 .
The system is governed by the set of equations (3.23)-(3.26), in compact form:



v̇x

v̇z

θ̈

ψ̈


= N−1Gx +N−1Guu,

where

Gx =



FL −mbθ̇2 − (m+mf )θ̇vz −mfa(θ̇ + ψ̇)2 cosψ

(m+mf )θ̇vx +mfa(θ̇ + ψ̇)2 sinψ

mbθ̇vx

−εψ̇ −mfaθ̇vz sinψ +mfaθ̇vx cosψ


, Gu =



0 0

1 0

b 1

0 0


,

N =



m+mf 0 mfa sinψ mfa sinψ

0 m+mf mfa cosψ +mb mfa cosψ

0 mb I +mb2 0

mfa sinψ mfa cosψ If +mfa
2 If +mfa

2


.
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Recall the formula to solve for the inverse of a square matrix:

N−1 =
1

det(N)
adj(N). (7.2)

To find the adj(N) we first find the cofactor of each element of N and take the transpose

of the cofactor matrix of N , this results

adj(N) =



N11 N21 N31 N41

N12 N22 N32 N42

N13 N23 N33 N43

N14 N24 N34 N44


. (7.3)

Through some rigorous math we obtain

N11 = (m+mf )(I +mb2)(If +mfa
2)−mb(mfa cosx5 +mb)(If +mfa

2) +

+mfa cosx5

(
mb(If +mfa

2)−mfa cosx5(I +mb2)
)
,

N12 = m2
fa

2 sinx5 cosx5(I +mb2),

N13 = −m2
fmab sinx5 cosx5,

N14 = mfa sinx5

(
(m+mf )(I +mb2)−mb(mfa cosx5 +mb)

)
,

N21 = mfa
2 sinx5 cosx5(I +mb2),

N22 = (m+mf )(I +mb2)(If +mfa
2)−m2

fa
2 sin2 x5(I +mb2),

N23 = m2
fa

2mb sin2 x5 − (m2b+mfmb)(If +mfa
2),

N24 = (m2b+mbmf )(If +mfa
2)−m2

fa
2mb sin2 x5,

N31 = −m2
fa

2 sinx5 cosx5mb,

N32 = m2
fa

2mb sin2 x5 − (m2b+mfmb)(If +mfa
2),

N33 = (m+mf )2(If +mfa
2)− (m+mf )m2

fa
2 cos2 x5 − (m+mf )m2

fa
2 sin2 x5,

(7.4)

N34 = (m+mf )m2
fa

2 sin2 x5 − (m+mf )2(If +mfa
2) +

+ (m+mf )(m2
fa

2 cos2 x5 +mbmfa cosx5),

(7.5)
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N41 = m2b2mfa sinx5 − (I +mb2)(mamf sinx5 +m2
fa sinx5),

N42 = −(I +mb2)(mmfa cosx5 +m2
fa cosx5),

N43 = m2bmfa cosx5 +mbm2
fa cosx5,

N44 = (m+mf )2(I +mb2)− (m2b+mbmf )(mfa cosx5 +mb).

This assists us in solving for the determinant of N

DN = det(N) = (m+mf )N11 +mfa sinx5N41,

for simplicity we introduce

Dni,j =
Ni,j

DN
, i, j = 1, 2, 3, 4

and rewrite Gx, Gu as

Gx =



G1x(x)

G2x(x)

G3x(x)

G4x(x)


, Gu =



0 0

G2u1 0

G3u1 G3u2

0 0


,

with

G1x(x) = FL −mbx2
4 − (m+mf )x4x2 −mfa(x4 + x6)2 cosx5,

G2x(x) = (m+mf )x4x1 +mfa(x4 + x6)2 sinx5,

G3x(x) = mbx4x1,

G4x(x) = −εx6 −mfax4x2 sinx5 +mfax4x1 cosx5.

G2u1 = 1, G3u1 = b, G3u2 = 1.

This enables us to write the nonlinear system in affine control form as

ẋ = f(x) + g(x)u,

y = h(x),



117

where

f(x) =



f1(x)

f2(x)

x4

f4(x)

x6

f6(x)


, g(x) =



g11(x) g12(x)

g21(x) g22(x)

0 0

g41(x) g42(x)

0 0

g61(x) g62(x)


,

with

f1(x) = G1x(x)Dn1,1 +G2x(x)Dn2,1 +G3x(x)Dn3,1 +G4x(x)Dn4,1,

f2(x) = G1x(x)Dn1,2 +G2x(x)Dn2,2 +G3x(x)Dn3,2 +G4x(x)Dn4,2,

f4(x) = G1x(x)Dn1,3 +G2x(x)Dn2,3 +G3x(x)Dn3,3 +G4x(x)Dn4,3,

f6(x) = G1x(x)Dn1,4 +G2x(x)Dn2,4 +G3x(x)Dn3,4 +G4x(x)Dn4,4,

g11(x) = G2u1Dn2,1 +G3u1Dn3,1, g12(x) = G3u2Dn3,1,

g21(x) = G2u1Dn2,2 +G3u1Dn3,2, g22(x) = G3u2Dn3,2,

g41(x) = G2u1Dn2,3 +G3u1Dn3,3, g42(x) = G3u2Dn3,3,

g61(x) = G2u1Dn2,4 +G3u1Dn3,4, g62(x) = G3u2Dn3,4,

and h(x) = [0, x2, x3, 0, 0, 0]T as the system output.

Reduced Order MIMO Model

To place the reduced order system in state-variable form we define the state variables:

x1 = vz, x2 = θ, x3 = θ̇, x4 = ψ, x5 = ψ̇, (7.6)

and write out the nonlinear equations (3.31)-(3.33) in state-variable form:

ẋ = f(x) + g(x)u,

y = h(x),

where

u =

 FT

M

 , y =

 vz

θ

 .
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In compact form: 
v̇z

θ̈

ψ̈

 = N−1Gx +N−1Guu,

where

Gx =


(m+mf )θ̇vx(t) +mfa(θ̇ + ψ̇)2 sinψ

mbθ̇vx(t)

−εψ̇ − mfaFL

m+mf
sinψ +mfaθ̇vx(t) cosψ

 , Gu =


1 0

b 1

0 0

 ,

N =


m+mf mfa cosψ +mb mfa cosψ

mb I +mb2 0

mfa cosψ If +mfa
2 If +mfa

2

 .
Recall the formula to solve for the inverse of a square matrix:

N−1 =
1

det(N)
adj(N). (7.7)

To find the adj(N) we first find the cofactor of each element of N and take the transpose

of the cofactor matrix of N , this results

adj(N) =


N11 N21 N31

N12 N22 N32

N13 N23 N33

 . (7.8)

Through some rigorous math we obtain

N11 = (I +mb2)(If +mfa
2),

N12 = −mb(If +mfa
2),

N13 = mb(If +mfa
2)− (I +mb2)mfa cosx4,

N21 = −mb(If +mfa
2),

N22 = (m+mf )(If +mfa
2)−m2

fa
2 cos2 x4,

N23 = (mb+mfa cosx4)mfa cosx4 − (If +mfa
2)(m+mf ),

N31 = −(I +mb2)mfa cosx4,

N32 = mbmfa cosx4,

N33 = (I +mb2)(m+mf )−mb(mb+mfa cosx4).
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This assists us in solving for the determinant of N

DN = det(N) = mfa cosx4N13 + (If +mfa
2)N33,

for simplicity we introduce

Dni,j =
Ni,j

DN
, i, j = 1, 2, 3

and rewrite Gx, Gu as

Gx =


G1x(x)

G2x(x)

G3x(x)

 , Gu =


G1u1 0

G2u1 G2u2

0 0

 ,
with

G1x(x) = (m+mf )x3vx(t) +mfa(x3 + x5)2 sinx4,

G2x(x) = mbx3vx(t),

G3x(x) = −εx5 −
mfaF

m+mf
sinx4 +mfax3vx(t) cosx4,

G1u1 = 1, G2u1 = b, G2u2 = 1.

This enables us to write out the nonlinear system in affine control form as

ẋ = f(x) + g(x)u,

y = h(x),

where

f(x) =



f1(x)

x3

f2(x)

x5

f3(x)


, g(x) =



g11(x) g12(x)

0 0

g21(x) g22(x)

0 0

g31(x) g32(x)


,

with

f1(x) = G1x(x)Dn1,1 +G2x(x)Dn2,1 +G3x(x)Dn3,1,

f2(x) = G1x(x)Dn1,2 +G2x(x)Dn2,2 +G3x(x)Dn3,2,
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f3(x) = G1x(x)Dn1,3 +G2x(x)Dn2,3 +G3x(x)Dn3,3,

g11(x) = G1u1Dn1,1 +G2u1Dn2,1, g12(x) = G2u2Dn2,1,

g21(x) = G1u1Dn1,2 +G2u1Dn2,2, g22(x) = G2u2Dn2,2,

g31(x) = G1u1Dn1,3 +G2u1Dn2,3, g32(x) = G2u2Dn2,3,

and h(x) = [x1, x2, 0, 0, 0]T as the system output.
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