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Abstract 
 

Cardiovascular diseases constitute a significant global health burden and are the leading 

cause of death in the United States. By 2020, it is estimated that cardiovascular disease 

will be the leading cause of death worldwide, accounting for an estimated 25 million 

deaths annually. The contemporary view of heart failure states the development of the 

failing heart is driven in large part by circulating neurohormones and catecholamines 

which can stimulate pathologic remodeling events such as cardiac hypertrophy and 

fibrosis. However, these circulating factors also act on signaling pathways important for 

regulating normal cardiac function, such as the β-adrenergic signaling pathway, which 

regulates contractility in the fight-or-flight response. The overall goal of this dissertation 

is to investigate mechanisms which differentially regulate β-adrenergic signaling-

stimulated contractility and β-adrenergic signaling-stimulated hypertrophy. 

 

Like most signaling pathways, the β-adrenergic signaling pathway is a complex network 

of signaling species that interact to elicit diverse cellular functions in response to receptor 

stimulation. An open challenge therefore remains in understanding how certain cardiac 

functions are selectively activated or silenced in the presence of a common biochemical 

stress. Traditional reductionist approaches have proven very successful for identifying 

components of the β-adrenergic signaling pathway, but the complexity of this network 
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renders intuitive understanding of signaling responses difficult. These challenges provide 

opportunities for quantitative engineering methods, such as computational modeling, to 

provide insight into cardiac biology and potential therapies. In this dissertation, we take a 

multidisciplinary approach, integrating computational modeling with analysis of 

published experimental data and novel live-cell imaging strategies to interrogate the 

mechanisms regulating β-adrenergic signaling dynamics. 

 

Complex signaling networks contain many topological network motifs that may be 

important for regulating signaling flow through the network. In the present work, we 

develop highly mechanistic and carefully constrained models of cardiac β-adrenergic 

signaling to test the hypothesis that topological features in this network may be important 

for regulating contractile responses. By this approach, we show an incoherent feed-

forward loop formed by two protein kinase A substrates accelerates and induces 

adaptation in cardiac contractility responses. Moreover, extending these methods to 

Angiotensin II signaling, we show this network motif is also an important regulator of 

cardiac fibrosis. Together, these results implicate an important role of network topology 

in regulating β-adrenergic signaling. 

 

Recent studies from our lab and by others indicate β-adrenergic signaling is spatially and 

temporally heterogeneous in the cardiac myocyte. Because the protein kinase A 

substrates regulating cardiac contractility and hypertrophy reside in different subcellular 

compartments of the cardiac myocyte, we have hypothesized that such compartmentation 

may be important for regulating stimulated hypertrophic responses. In the present work, 
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we have used computational models as a hypothesis-generating inference tool to inspire 

experiments investigating the regulation of nuclear protein kinase A activity its 

downstream effects on cardiac myocytes. With this approach, we show that in contrast to 

HEK 293 cells, where nuclear protein kinase A activity is regulated by a subnuclear A-

kinase anchoring protein signaling complex, nuclear protein kinase A activity in cardiac 

myocytes is directly regulated by catalytic subunit compartmentation. 

 

Together, this body of work provides insight into how β-adrenergic signaling responses 

are selectively manipulated. These findings are important as the current therapeutic 

strategy for treating heart disease is antagonism of the entire β-adrenergic signaling 

pathway, which leaves patients vulnerable to electrophysiological and mechanical 

deficiencies. The present work provides evidence suggesting these therapies may be 

improved with a therapeutic strategy which more directly inhibits nuclear protein kinase 

A activity, while preserving or enhancing cytosolic protein kinase A activity. 
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1.1 Introduction 
 

β-adrenergic receptor signaling is well recognized in the heart for its acute actions in 

enhancing cardiac contractility during the fight-or-flight response1. However, during 

cardiac disease, sympathetic activity is elevated, chronically stimulating this pathway to 

drive pathologic remodeling processes such as hypertrophy and fibrosis2. Reductionist 

approaches have independently identified how contractility and hypertrophy may each be 

stimulated during β-adrenergic stimulation. However, the common regulation of these 

pathways by protein kinase A (PKA) makes it unclear how β-adrenergic signaling can 

sometimes elicit some responses of this network, but not all3. 

 

Recent studies from our lab indicate β-adrenergic signaling is spatially and temporally 

heterogeneous in the cardiac myocyte4. We have also used a computational model of the 

β-adrenergic signaling network to show how phospholamban (PLB) acts in concert with 

other PKA substrates to enhance Ca2+ transients during β-adrenergic stimulation5-6. These 

results have led us to hypothesize that β-adrenergic receptor-stimulated enhancements to 

contractility and myocyte hypertrophy are regulated by topological features of the  

β-adrenergic-PKA signaling network and by nuclear PKA compartmentation. Here, we 

have coupled computational modeling with fluorescence cell microscopy to test this 

hypothesis. Specific aims for this dissertation are 
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1.2 Dissertation Aims 
 

Aim 1. Test the hypothesis that incoherent feed-forward signaling accelerates and 

causes adaptation in β-adrenergic receptor-stimulated contractility. The β-adrenergic 

signaling network contains many feedback and feed-forward motifs which may be 

important for directing phosphorylation of contractile PKA substrates. We have 

A.  developed an integrated computational model of β-adrenergic signaling in the mouse 

cardiac myocyte and compared the actions of receptor-desensitization negative 

feedback and PLB-phospholemman (PLM) incoherent feed-forward signaling on 

stimulated Ca2+ transients. We have tested the hypothesis that PLM uses incoherent 

feed-forward signaling to accelerate contractile Ca2+ responses faster than 

cAMP/PKA dynamics and cause adaptations in Ca2+ transients. 

B.  further tested the hypothesis that incoherent feed-forward signaling also regulates  

G-protein coupled receptor-stimulated cardiac fibrosis using a computational model 

of Angiotensin II signaling. We have shown the importance of incoherent feed-

forward signaling is not limited to the β-adrenergic signaling network. 

 

Aim 2. Test the hypothesis that PKA catalytic subunit compartmentation underlies 

differences in cytosolic and nuclear PKA dynamics and regulates β-adrenergic 

receptor-stimulated myocyte hypertrophy. We have previously found that nuclear 

PKA activity significantly differs from cytosolic PKA activity in dynamics and 

sensitivity to β-adrenergic agonists. However, it remains unclear if and how PKA directly 

stimulates hypertrophy during β-adrenergic signaling. We have 
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A. identified regulators of nuclear PKA activity by combining fluorescence microscopy 

of local cAMP and PKA dynamics in HEK 293 cells with computational modeling of 

cAMP and PKA activity. We have clarified the mechanisms giving rise to differences 

in cytosolic and nuclear PKA signaling dynamics. 

B. determined that nuclear PKA activity may elicit hypertrophic responses to β-

adrenergic signaling by combining fluorescence microscopy of Ca2+, cell size and 

PKA dynamics with computational modeling of cytosolic and nuclear PKA activity 

and targeted PKA over-expression. We show that because nuclear PKA indeed 

selectively regulates myocyte hypertrophy, these results identify a novel form of 

cardiac β-adrenergic signaling compartmentation. 

 

We expected these aims to elucidate mechanisms for how β-adrenergic signaling 

specifically regulates cardiac contractility and hypertrophy. Together, these aims prompt 

the targeting of nuclear PKA inhibition and cytosolic PKA enhancement and as a novel 

and specific therapeutic strategy for managing cardiac disease. 
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2.1 Cardiovascular Disease 
 

Cardiovascular diseases constitute a significant disease burden in the western world, 

accounting for 34.3% of all deaths in the US and carrying a health care cost burden of 

$503.2 billion in 20107 (Figure 2.1). The failing heart is characterized by deficient 

cardiac output and is accompanied by significant tissue remodeling, resulting in 

myocardial hypertrophy and fibrosis in late stage congestive heart failure8. The onset of 

cardiac remodeling further drives progressive deterioration of the failing heart and may 

directly give rise to clinical arrhythmias9 or sudden cardiac death in the absence of 

intervention1. Understanding the regulation of cardiac remodeling is therefore important 

for developing effective heart failure interventions and therapeutics. 

 

Historically, heart failure was first understood to be a cardiorenal disorder in the 1940s 

and 1950s10, in which circulatory abnormalities were explained by sodium retention and 

blood volume expansion. By the 1970s and 1980s, heart failure became regarded as a 

hemodynamic disorder of both the heart and peripheral circulation, in which the heart 

suffered abnormalities in pumping capacity and the circulation experienced excessive 

vasoconstriction11. This prompted the favor of positive inotropes12-13 and vasodilators14-15 

for treating congestive heart failure. However, controlled clinical trials raised concerns 

that these strategies surprisingly increased the risk of worsening heart failure by 

exacerbating arrhythmia, provoking ischemia and accelerating cardiac remodeling16-17.  

 

By the 1980s and 1990s, heart failure was recognized as both a hemodynamic and a 

neurohormonal disorder: the neurohormonal hypothesis18, which states cardiac  
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Figure 2.1 Cardiovascular disease incidence in the United States. 
Cardiovascular diseases are the leading cause of death in the U.S., 
accounting for 34.3% of all deaths and carrying a total health care cost 
burden of $503.2 billion in 20107. Image adapted from the Centers for 
Disease Control19. 
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remodeling is driven by the expression of circulating factors (Figure 2.2). This view was 

supported by the clinical efficacy of β-adrenergic receptor antagonists (β-blockers)20-21 

and angiotensin converting enzyme inhibitors (ACE inhibitors)22-23 in treating heart 

failure patients. Today, these two classes of pharmaceutics constitute first-line 

therapeutics for managing cardiac disease24-26. This view revolutionized cardiac research 

and directed attention towards cardiac cell signaling as an important driver for heart 

failure progression. 

 

2.2 β-Adrenergic Signaling in Cardiac Physiology 
 

Of the many signaling pathways stimulated by sympathetic activation, the β-adrenergic 

signaling pathway is best recognized for its acute actions on enhancing cardiac 

contractility1 (Figure 2.3). The β-adrenergic signaling pathway is a classic example of 

stimulatory G-protein coupled receptor (GPCR) signaling, in which binding of the  

β-adrenergic receptor (β-AR) by ligands such as epinephrine stimulates the dissociation 

of stimulatory Gα subunit (Gs) to activate transmembrane adenylyl cyclase (AC)3. In turn, 

AC drives the conversion of ATP to cAMP, which freely diffuses across the myocyte to 

bind protein kinase A (PKA) holoenzyme. Such binding elicits the dissociation of PKA 

catalytic subunits from PKA regulatory subunits, freeing PKA to phosphorylate 

substrates important for Ca2+ dynamics (e.g., LCC: L-type Ca2+ channel, PLB: 

phospholamban), contractility (e.g., MLC: myosin light chain, TnI: troponin I), ion 

homeostasis (e.g., PLM: phospholemman), metabolism (e.g., GYS: glycogen synthase), 

apoptosis/survival (e.g., BAD: Bcl2-associated death promoter) and transcription (e.g., 

CREB: cAMP response element binding protein, CREM: cAMP response element  
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Figure 2.2 The neurohormonal hypothesis. Myocardial insults 
decrease cardiac contractile performance, stimulating release of 
catecholamines and neurohormones. Long-term sympathetic nervous 
system and renin-angiotensin-aldosterone system activation stimulates 
pathologic remodeling, eventually causing heart failure and mortality. 
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Figure 2.3 β-adrenergic signaling in cardiac physiology. Circulating 
catecholamines bind β-adrenergic receptors (β-AR), stimulating adenylyl 
cyclase activation (AC) by Gs and cyclic adenosine monophosphate 
(cAMP) generation by AC. cAMP binds and activates protein kinase A 
(PKA) holoenzyme, inducing dissociation of PKA catalytic subunits from 
regulatory subunits. PKA catalytic subunits phosphorylate substrates 
regulating Ca2+ (LCC: L-type Ca2+ channel, PLB: phospholamban), 
contractility (MLC: myosin light chain, TnI: troponin I), ion homeostasis 
(PLM: phospholemman), metabolism (GYS: glycogen synthase), 
apoptosis/cell survival (BAD: Bcl2-associated death promoter) and 
hypertrophy (CREB: cAMP response element binding protein, CREM: 
cAMP response element modulator). 
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modulator). The connectivity of the β-adrenergic signaling pathway to this diverse array 

of cardiac cell behaviors prompts many questions on how β-adrenergic signaling 

responses are coordinated and the role of β-adrenergic signaling in the development of 

cardiac disease. 

 

2.3 β-Adrenergic Signaling in Heart Failure 
 

During heart failure, sympathetic activity is globally enhanced by the elevation of 

circulating catecholamines27. Chronic catecholaminergic stimulation of the β-adrenergic 

signaling pathway28-29 and transgenic over-expression of the β1-adrenergic receptor  

(β1-AR)30, Gs
31 or PKA32 are all sufficient to induce cardiac disease in vivo. These 

studies, together with the clinical efficacy for β-blockers, collectively implicate an 

important role for PKA-mediated β-adrenergic signaling in perpetuating heart failure.  

 

However, the direct mechanism for heart failure induction by β-adrenergic signaling 

remains unclear, as this pathway itself undergoes significant remodeling during heart 

failure33. It is also unresolved whether the overall alterations to β-adrenergic signaling in 

heart failure are beneficial or detrimental34-35. In particular, expression of β1-ARs 

decreases as much as 50%36-37, with remaining β1-ARs desensitized by enhanced  

G-protein coupled receptor kinase (GRK) expression38-39. Gs
40 and ACs41 are also 

downregulated, resulting in decreased levels of cAMP in denervated preparations of the 

human heart42-43. However, the global enhancement in circulating sympathetic activity 

maintains the heart at a heighted state of adrenergic activation. These changes 
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collectively reduce β-adrenergic signaling reserve as the entire pathway is maximally 

engaged in the failing heart. 

 

Thus, in chronic heart failure, β-adrenergic signaling is locked in a vicious cycle whereby 

elevated sympathetic stress stimulates transcriptional desensitization of β-adrenergic 

signaling, resulting in decreased contractile performance (Figure 2.4). To maintain 

myocardial function within physiologically sustainable bounds, adrenergic activation is 

further increased, fueling pathologic remodeling and driving heart failure progression. 

 

2.4 Compartmentation in β-Adrenergic Signaling 
 

The diversity of cardiac behaviors regulated by β-adrenergic signaling prompts many 

questions on how the cardiac myocyte makes context-dependent decisions in 

coordinating β-adrenergic-stimulated responses. One compelling hypothesis at the center 

of many recent studies is that subcellular localization of β-adrenergic signaling species 

into various functional ‘compartments’ of the myocyte may give rise to highly specific  

β-adrenergic signaling interactions, which may be important for helping the β-adrenergic 

signaling pathway navigate dynamic myocardial microenvironments in physiology and 

disease (compartmentation)44-45. 

 

Of the various mechanisms which may give rise to spatiotemporal heterogeneities in 

cardiac β-adrenergic signaling, three mechanisms have prominently featured in recent 

compartmentation studies: β-AR compartmentation by lipid rafts46-47, cAMP 

compartmentation by phosphodiesterases (PDEs)48-49 and PKA compartmentation by  
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Figure 2.4 β-adrenergic signaling in heart failure35. Impaired cardiac 
performance induces compensatory β-adrenergic stimulation. Sustained β-
adrenergic stimulation drives pathologic cardiac remodeling, weakening 
long-term contractility and inducing further β-adrenergic stimulation. 
Image by Eschenhagen, et al.35. 
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A-kinase anchoring proteins (AKAPs)50-51. The importance of receptor compartmentation 

was highlighted by observations that in healthy myocytes, stimulation of β1-AR s and β2-

ARs produce distinct subcellular cAMP gradients52, but these distinctions are lost in heart 

failure myocytes due to receptor redistribution53. PDEs are also thought to importantly 

regulate cAMP gradients by restricting cAMP diffusion and cAMP access to PKA 

holoenzyme, deemed significant by observations that PDEs are often expressed in close 

proximity to PKA (e.g., localized to PKA by some AKAPs54). AKAPs powerfully 

regulate PKA-mediated signaling responses by localizing other signaling species into a 

common signaling microdomain. This not only improves signaling specificity, but may 

also accelerate and amplify signaling responses51. 

 

Together, these compartmentation mechanisms organize the flow of cardiac β-adrenergic 

signaling. While β-blockers have been overwhelmingly successful as therapeutic agents 

for improving mortality and morbidity21, they are often limited by risk of hypotension 

due to their negative inotropic effects on contractility55. These observations have 

prompted the suggestion of β-adrenergic signaling compartmentation mechanisms as 

novel therapeutic strategies56-58. The ideal therapy would preserve myocardial function 

and contractile reserve, while maximally inhibiting cardiac remodeling. Identification of 

mechanisms separating β-adrenergic contractile responses from transcriptional responses 

is therefore important for the development of next-generation therapeutics. 
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Signaling Networks 
 
 
 
 
 
 
 
 
 
 
 Work from this chapter is published in Computational models reduce complexity and accelerate 
insight into cardiac signaling networks. Yang, J.H., Saucerman, J.J. Circ. Res. 2011; 108(01):85-97. 
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3.1 Foreword 
 

Cell signaling networks are key regulators of biological functions, but are intrinsically 

complex, exhibiting massive spatial and temporal heterogeneity within and across cells59. 

Traditional reductionist methods have been very successful in identifying the protein-

protein interactions which form the foundation for reconstructing cell signaling networks. 

However, the interconnectivity and cross-talk of individual pathways challenges intuition 

for how flow through signaling networks is regulated. In recent decades, computational 

models have risen to this challenge to help accelerate insight to the regulation and 

consequences of cell signaling. In this chapter, we review contributions computational 

models have made toward the understanding of cardiac cell signaling. 

 

3.2 Introduction 
 

In the early 1990s, a major shift occurred in the understanding of heart failure as more 

than just a hemodynamic dysfunction. This paradigm shift (the neurohormonal 

hypothesis) states that persistent cell signaling by circulating factors is a key driver of 

pathological cardiac remodeling and helps perpetuate the heart failure phenotype8,11,18. 

This view guides the current therapeutic strategy for managing heart failure and many 

other cardiac diseases: use of β-blockers, angiotensin converting enzyme (ACE) 

inhibitors and angiotensin II receptor blockers (ARBs) to block the signaling pathways 

most strongly activated in disease first, treat other symptoms later. Indeed, 60% of all 

FDA-approved drugs target membrane-bound proteins; two-thirds of these are receptors 

for cell signaling60. 
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This paradigm underscores the central role of cell signaling pathways in regulating 

cardiac physiology (e.g., contractility, metabolism) and pathophysiology (e.g., 

hypertrophy, fibrosis). These pathways comprise an intricate network of biochemical 

interactions between signaling proteins and exhibit considerate complexity. Tremendous 

effort has been exerted in the past two decades to understand how cardiac signaling 

pathways are regulated, how these pathways interface with core functions of the heart and 

which pathway components are best suited for drug targeting. However, the sheer 

complexity of these networks often stump experimental intuition and motivate new 

approaches to study cell signaling. 

 

Still, two decades of experimental studies have yielded a wealth of insight into the 

biochemistry of signaling proteins, delineation of signaling pathways, and consequences 

on in vivo cardiac function61-63. Experimental studies have also empirically explained 

some of the fundamental mechanisms for cell signaling control, including pathway cross-

talk49,64, transcriptional feedback65 and spatial compartmentation44. These studies 

collectively form large bodies of evidence that require new frameworks to organize and 

interpret data as they are generated. 

 

While biologists who study cardiac signaling networks use different methods to probe 

their respective research interests, the questions they ask are often similar. In general, 

these questions can be distilled into three fundamental questions: 
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i.) What are the key mechanisms regulating my biological research interest? 

ii.) What are the multi-scale/multi-functional consequences of my findings? 

iii.) How can I extract the most useful biological information from large data sets? 

 

These three issues of identifying mechanism, determining consequence and interpreting 

complex data are challenges well suited for computational modeling and analysis. 

  

3.3 Computational Modeling 
 

By definition, a model is a simplified representation of a complex system. Every 

experimentalist uses conceptual models to make predictions about how two species may 

be causally related. Conceptual models help contextualize data, build intuition, generate 

new hypotheses and facilitate experimental design. Computational models formalize 

these representations by using mathematical equations to describe the relationships 

between species. 

 

Computational models take on a diversity of forms. The choice of model structure should 

be determined by the type of questions being asked, level of quantitative detail desired 

and quality of experimental data available to constrain model equations and parameters. 

Mechanistic models are frequently used as in silico workbenches for integrating diverse 

observations into common frameworks and for performing computational experiments to 

test hypotheses with high throughput. Statistical models are commonly used to identify 

correlations between species in more complex data sets where causal relationships may 

be unclear (such as high throughput ‘–omics’ data).  
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The gold standard for evaluating the quality of a computational model is the extent to 

which its predictions are validated against experimental data not used in model 

formulation. A typical workflow for a modeling study starts with a well-defined 

biological question, iterates through cycles of model testing and refinement, and ends 

with an experimentally testable answer to that question (Figure 3.1). Modeling studies 

integrate well with experimental studies to build support for a common hypothesis. 

Models can complement experiments by making predictions that limit the breadth of 

experiments performed (thus avoiding unnecessary experiments), revealing candidate 

biochemical mechanisms that may regulate biological dynamics (thus building intuition) 

and identifying key participants of a biological phenomena (thus focusing on the most 

important players). Models also permit unique in silico experiments that may not yet be 

physically possible (e.g., due to instrument resolution/dynamic range or specific and 

quantitative up-/down-regulation of single or combinations of biological species). 

 

Computational models have enjoyed a long history in studies of cardiovascular 

physiology, with more depth than any other organ system66-68. These models have 

contributed significantly to the understanding of cardiac physiology and disease, giving 

insight into important behaviors such as cardiac pacemaking in the sino-atrial node69, 

excitation-contraction coupling70-71, cross-bridge cycling72, and arrhythmogenesis in the 

ventricles73. Such computational modeling work in the heart played an important role in 

the development of systems biology74, giving rise to global efforts such as the 

International Union of Physiological Science (IUPS) Physiome Project75-76. The 

Physiome Project aims to understand total human cell, tissue and whole-organism  
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Figure 3.1. Typical workflow for a computational modeling study. 
Specific biological questions motivate the development of an appropriate 
modeling approach. Model prediction, validation and refinement is 
iteratively cycled until an experimentally testable answer is generated to 
answer the original biological question. These answers can sometimes 
motivate new hypotheses or new biological questions. 
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physiology via the integration of databases and computational models. Here, we 

specifically review the contributions computational modeling approaches have made 

toward understanding the regulation of cardiac signaling pathways and how these 

pathways interface with cardiac physiology. 

 

3.4 Mechanistic Models of Cardiac Cell Signaling  
 

The most common forms of computational models used to study cell signaling networks 

are those constructed with biochemical and biophysical mechanistic detail. These take a 

‘bottom-up’ approach, using laws of mass action and Michaelis-Menten enzyme kinetics 

to mechanistically represent individual biochemical reactions in a cell signaling network. 

These models are frequently developed to predict the time-varying relationships between 

the components being modeled77. This approach assumes that the individual biochemical 

reactions represented are sufficient to describe the overall signaling network dynamics 

and its predictions can be sensitive to missing reactions. While these models require a 

large number of parameters to be appropriately constrained, the detailed representation of 

biochemical and biophysical mechanisms enables these models to perform predictive 

computational experiments, which can later be validated experimentally.  

 

Bhalla, et al., pioneered the use of large signaling network models, integrating many 

signaling pathways such as PKA, PKC, MAPK, IP3, CaMKII and Ca2+ signaling in 

neurons78. In this work, the authors demonstrated how intersecting signaling pathways, as 

whole networks, can give rise to emergent behaviors such as signal integration across 

time scales, bistability and feedback. Mechanistic models are also useful for 
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understanding the fundamental design principles underlying biological networks. Alon, et 

al., combined modeling and experimental studies to demonstrate how common network 

motifs found in signaling networks can give rise to a diverse spectrum of systems 

properties such as network robustness, signaling acceleration/deceleration and memory79-

80. Taken together, biochemically and biophysically mechanistic models of cell signaling 

are useful for understanding the mechanisms for cell signaling regulation and the 

relationships between cell signaling networks and the functions they regulate. 

 

β-adrenergic signaling in the cardiac myocyte 

β-adrenergic signaling centrally regulates cardiac contractility and the progression of 

heart failure (Figure 3.2)3,34,81. Under normal sympathetic activity, catecholamines bind 

β-adrenergic G-protein coupled receptors, signaling through Gs to activate protein kinase 

A (PKA). PKA can then elicit enhanced contractile (inotropy), relaxation (lusitropy), 

growth (hypertrophy) and death (apoptosis) responses to adapt to altered circulatory 

demands. While acute β-adrenergic signaling is important for the fight-or-flight response, 

persistent β-adrenergic signaling induces hypertrophy, fibrosis and heart failure30,82. In 

failing hearts, expression for multiple β-adrenergic signaling proteins decreases 

significantly83-84 and drugs which directly inhibit β-adrenergic signaling (β-blockers) are 

effective first line therapies prescribed in the management of cardiac disease24-26,85, 

though the primary mechanisms of action are still unknown. 

 

Saucerman, et al., used this mechanistic modeling approach to investigate the β-

adrenergic signaling pathway in the cardiac myocyte5. Model simulations were used to  
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Figure 3.2. β-adrenergic signaling in the cardiac myocyte. Activation 
of β1- and β2-adrenergic receptors (β1-AR, β2-AR) by catecholamines 
initiates a signaling cascade of G-protein activation, adenylyl cyclase 
production of cAMP and PKA activation by cAMP. Phosphorylation of 
PKA substrates may elicit a number of cardiac behaviors such as inotropy, 
lusitropy, chronotropy, hypertrophy and apoptosis. 
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compare gene therapy strategies and show how protein kinase inhibitor (PKI) can make 

PKA act as an ultrasensitive switch. Another key aim of this study was to understand 

which intracellular targets for β-adrenergic signaling were most important for regulating 

cardiac inotropy. Model analysis demonstrated that most of the inotropic changes due to 

β1-adrenergic signaling could be explained by PKA-mediated phosphorylation of the  

L-type Ca2+ channel (LCC) and phospholamban (PLB). In a subsequent study6, the 

authors extended this model to show how PKA substrates perform specialized tasks in  

β1-adrenergic receptor (β1-AR)-stimulated inotropy: PLB phosphorylation increases 

sarcoplasmic reticulum (SR) Ca2+ load and accelerates relaxation; LCC and PLB 

phosphorylation together contribute to increased systolic Ca2+. Moreover, while PKA 

phosphorylation of the ryanodine receptors (RyR) increased the Ca2+ sensitivity for SR 

Ca2+ release86, its impact on steady-state Ca2+ transients was limited, consistent with the 

Ca2+ autoregulation hypothesis87. Collectively, these studies were the first to show how 

molecular perturbations in a cardiac signaling network could be interpreted in the context 

of cell physiology using computational models. 

 

Other groups continued to explore the effects of β-adrenergic signaling on cardiac 

electrophysiology. Using a stochastic model of EC coupling in the canine ventricular 

myocyte, Greenstein, et al., showed how increases in EC coupling gain observed in  

β-adrenergic stimulation may be explained by increased SR Ca2+ load rather than 

alterations to LCC gating88. Moreover, the authors showed how a shift in LCC gating 

towards higher activity can generate stochastic early after depolarizations (EADs) with 

implications for arrhythmogenesis under β-adrenergic stimulation. This study highlights 
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the importance of selecting an appropriate model structure to specifically answer a 

biological question: by using a stochastic (instead of deterministic) approach, the authors 

were able to detect rare, probabilistic arrhythmic events generated by β-adrenergic 

signaling that are otherwise non-intuitive and difficult to observe. 

 

Kuzumoto, et al., adapted the Saucerman model to study the effects of β1-AR signaling 

on Na+ regulation in a guinea pig EC coupling model, demonstrating the necessary role 

of phospholemman for limiting the increase in Na+ concentration under β1-AR 

stimulation89. This model prediction was later validated experimentally by Despa, et al.90. 

Himeno, et al., adapted the Kuzumoto model to analyze the role of β1-AR stimulation in 

inducing positive chronotropy91. They showed how increased firing frequency is driven 

by a combination of changes to the LCC current (ICaL), sustained inward (Na+ and K+) 

current (Ist) and hyperpolarization-activated nonselective cation (Na+ and K+) current 

(Iha). Moreover, the authors made the interesting observation that while the slow delayed 

rectifier K+ current (IKs) contributes weakly to overall K+ conductance, IKs plays an 

important role in counterbalancing increases in ICaL and Na+/Ca2+ exchanger current 

(INaCa) during β1-AR stimulation, which would otherwise prolong the action potential and 

compromise positive chronotropy. These studies demonstrate how computational models 

can help reduce the complexity of signaling interactions with cell physiology. Using 

these models, the authors were able to isolate the actions of β1-AR signaling on different 

ion channels to better understand how they act together in concert to regulate Na+ 

concentration or cell pacemaking (a feat that could be experimentally intractable). 
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Mechanistic models of cardiac signaling networks can also be integrated with 

experimental studies to probe mechanisms for cell signaling kinetics and localization. In 

a later study, Saucerman, et al., combined their β1-AR signaling model with live-cell 

imaging to examine the role of cAMP compartmentation in regulating PKA activity4. The 

authors integrated a spatially explicit implementation of their existing β1-AR signaling 

model with live cell Förster resonance energy transfer (FRET) imaging experiments in 

neonatal rat ventricular myocytes. Using the model, the authors showed how spatial PKA 

gradients detected in the FRET experiments could be explained by restricted cAMP 

diffusion, phosphodiesterase (PDE)-mediated cAMP degradation or PKA-mediated 

cAMP buffering and concluded that cAMP compartmentation is a candidate mechanism 

for rate limiting PKA activation. Such compartmentation can be an important mechanism 

for cell signaling specificity59,92. 

 

Iancu, et al., also took a combined modeling/FRET approach to investigate cAMP 

compartmentation in cardiac myocytes. The authors first developed a computational 

model to investigate how the M2 muscarinic receptor (M2R) can both stimulate and 

inhibit cAMP-dependent responses to β1-AR stimulation93. Using their model, the authors 

showed how the subcellular localization of adenylyl cyclase isoforms stimulated (AC4/7) 

or inhibited (AC5/6) by the Gi G-protein is sufficient for eliciting seemingly opposite 

cAMP responses to acetylcholine (ACh). Moreover, their model predicted a rebounding 

cAMP response following a transient ACh stimulus, which the authors validated using a 

PKA-based FRET sensor for cAMP. In a later study, the authors combined their model 

simulations with experiments using an Epac2-based FRET sensor for cAMP to 
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quantitatively estimate time-varying changes in cAMP concentration94. The authors 

showed cAMP concentrations were significantly higher in the bulk cytosol than near the 

PKA-based FRET sensor and suggested that these differences may explain how cAMP 

can differentially regulate PKA and Epac responses to β-adrenergic signaling. Together, 

these studies illustrate how modeling approaches can be used in concert with live-cell 

experimental studies to explain mechanisms for cell signaling regulation. 

 

CaMKII signaling in the cardiac myocyte 

Ca2+/Calmodulin-dependent protein kinase II (CaMKII) manages another central 

signaling arm in the cardiac myocyte (Figure 3.3)81,95. Ca2+-bound calmodulin (CaM) 

activates CaMKII, which phosphorylates many Ca2+, Na2+ and K+ channels to regulate 

EC coupling and cardiac excitability96-97. CaMKII is an important integrator of many 

signaling pathways in the heart (Ca2+, IP3, Gq-) and contributes to the heart failure 

phenotype by inducing hypertrophy, apoptosis and aberrant Ca2+ handling, which can 

trigger arrhythmias98-99. CaMKII also synergizes with PKA during β-adrenergic 

signaling100 and growing evidence suggests CaMKII inhibition may have a beneficial 

impact on the development of heart failure101. These observations have made CaMKII a 

potentially attractive target for treating cardiac diseases102. 

 

Hund, et al., implemented the first model of CaMKII signaling in an EC coupling model 

of the canine ventricular myocyte103. The authors showed that while CaMKII contributes 

to the positive Ca2+-frequency relation by increasing EC coupling gain, action potential 

duration adaptation at higher frequencies is best explained by the effects of transient  
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Figure 3.3.  CaMKII signaling in the cardiac myocyte. Cardiomyocyte 
depolarization triggers Ca2+ influx through the L-type Ca2+ channels 
(LCCs) and Ca2+ release through the ryanodine receptors (RyRs). Free 
Ca2+ binds calmodulin (CaM), which activates CaMKII and calcineurin to 
elicit a number of cardiac behaviors such as inotropy, lusitropy, 
hypertrophy and apoptosis. 
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outward K+ current (Ito1) on repolarization rather than CaMKII. Similarly, Grandi, et al., 

modeled CaMKII’s actions on ICaL, Ito1 and the fast Na+ current (INa) in a rabbit EC 

coupling model, showing that while the individual effects of CaMKII on INa or Ito1 may 

prolong the action potential, the combined effect on all three contribute to action potential 

shortening104. Moreover, the authors showed how transmural variations in Ito1 expression 

may enhance CaMKII-induced arrhythmia in heart failure. The findings from these two 

studies could only be achieved by separating the individual contributions of CaMKII 

phosphorylation to the overall action potential, a task made tractable by the use of 

computational models.  

 

Hashambhoy, et al., also examined the consequences of CaMKII activity on 

cardiomyocyte electrophysiology. Using a stochastic EC coupling model of the canine 

ventricular myocyte, the authors showed that CaMKII-dependent shifts in LCC gating 

can explain LCC facilitation and the apparent faster recovery from LCC inactivation 

independent of changes to LCC inactivation kinetics105. In a subsequent study, the 

authors showed how LCC phosphorylation by CaMKII decreases EC coupling gain with 

a greater effect on RyR Ca2+ release than RyR phosphorylation itself106. Moreover, the 

authors show LCC hyperphosphorylation is sufficient to induce EADs. Soltis, et al., used 

a similar approach to show CaMKII is required for the rapid adaptation that underlies 

frequency-dependent acceleration of recovery (FDAR)107. Integrating the 

Saucerman/McCulloch β1-AR signaling model into their work, the authors also show that 

CaMKII and PKA synergize to potentiate a positive feedback loop of CaMKII-Ca2+-

CaMKII regeneration. Finally, the authors demonstrate that CaMKII 
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hyperphosphorylation of RyRs can trigger delayed after depolarizations (DADs), adding 

support to the hypothesis that CaMKII is responsible for inducing arrhythmias via leaky 

RyRs. Together, the above modeling studies demonstrate how CaMKII signaling controls 

the positive Ca2+-frequency relation, LCC facilitation, FDAR and triggers for 

arrhythmogenesis, illustrating the utility of computational models for linking molecular 

signaling activities to emergent behaviors in the cardiac myocyte. 

 

Computational models have also examined the role of CaMKII after myocardial 

infarction. Hund, et al., experimentally measured increased CaMKII autophosphorylation 

in the border zone and used a model to explain how this can abnormally decrease Ca2+ 

transients by increasing Ca2+ leak from the SR108. Hyperactive CaMKII also reduced 

action potential upstroke velocity by altering INa gating kinetics, a potential mechanism 

for slow conduction and arrhythmogenesis at the myocardial infarct. Similarly, 

Christensen, et al., measured increased CaMKII oxidation at the border zone of a canine 

infarct, and used a model to show how oxidized CaMKII can act on INa to prolong the 

action potential refractory period, slow border zone conduction and increase the 

vulnerability to conduction block at a canine myocardial infarct109. Taken together, these 

studies illustrate the use of models for interpreting the pathophysiological consequences 

of experimentally measured alterations to cardiac signaling in a disease condition. 

 

Other modeling studies have focused on the biochemical mechanisms for CaMKII 

activation. In a combined experimental and modeling study, Song, et al., first showed 

experimentally that CaM-dependent proteins (analogous to CaMKII and calcineurin) 
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differentially process beat-to-beat Ca2+ signals based on their affinity for CaM110. The 

authors used a simple computational model to explain how these differences in CaM 

affinity can give rise to qualitatively different downstream signaling by these targets. 

Moreover, deactivation kinetics of CaM targets was driven by Ca2+ dissociation from the 

Ca2+-CaM-target complex rather than dissociation of Ca2+-CaM. Saucerman, et al., 

extended this modeling work to evaluate local CaMKII and calcineurin dynamics in the 

rabbit ventricular myocyte111. The authors showed how low-CaM affinity CaMKII and 

high-CaM affinity calcineurin can have different activity profiles and sensitivities to Ca2+ 

oscillations in the cytosol and dyadic cleft (where Ca2+ concentrations are considerably 

larger). By switching the CaMKII and calcineurin affinities for CaM, the local CaMKII 

and calcineurin responses were switched, leading the authors to conclude that CaMKII’s 

low affinity for CaM is what permitted CaMKII to be highly sensitive to Ca2+ in the 

dyad, but not in the cytosol. This was in contrast to calcineurin, which is highly sensitive 

to Ca2+ in the cytosol but not in the dyad. Chiba, et al., evaluated the role of phosphatases 

in regulating CaMKII112. The authors found that phosphatases limited CaMKII 

autophosphorylation and were important for regulating frequency-dependent activation of 

CaMKII. Collectively, these studies exemplify how models can be used to perform in 

silico experiments that are not otherwise tractable, (e.g., manipulation of binding 

affinities or tracking local CaMKII activity) to identify mechanisms for the regulation of 

cardiac signaling pathways. These studies also highlight the need for quantitative 

experiments of localized kinase activities in myocytes. 

 



32 
 

In addition to activating kinase (CaMKII) and phosphatase (calcineurin) activities, CaM 

also has direct effects in managing other aspects of EC coupling. For instance, Ca2+-CaM 

is known to directly regulate Ca2+-dependent inactivation of LCCs113-114. While this is 

typically modeled implicitly as a property of LCC gating, Tanskanen, et al., explicitly 

represented Ca2+-CaM binding activities in a stochastic model of the cardiac dyad. The 

authors showed how protein size and arrangement in these microdomains spatially 

restricts Ca2+ movement and influences the macroscopic properties of Ca2+-induced  

Ca2+-release115. Tadross, et al., used a computational model to further investigate how 

CaM can surprisingly confer sensitivity to small global Ca2+ signals in the presence of 

large local (Ca2+-dependent inactivating) signals to Ca2+ channels in neurons116. The 

authors find these behaviors are managed by rapid Ca2+ dissociation from Ca2+-CaM and 

preferential binding by Ca2+ channels to free CaM over Ca2+-CaM. These studies 

illustrate how models can be used to identify new mechanisms for how protein 

complexes can contribute over many scales to regulate overall cell function. 

 

Other signaling networks 

Biochemically mechanistic models have been used to study a limited number of other 

cardiac signaling pathways as well. Cooling, et al., modeled hypertrophic IP3 transients 

in response to endothelin 1 (ET-1) and angiotensin II (Ang II)117. Using a global 

sensitivity analysis to comprehensively test the role of every model parameter, the 

authors determined IP3 transients were primarily driven by dynamics at the receptor 

level. In particular, the authors showed how the more transient IP3 responses to Ang II 

than those generated by ET-1 could be explained by differences in receptor kinetics and 
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density. This global sensitivity analysis exemplifies the type of comprehensive in silico 

experiments that can bring focus on key mechanisms of cell signaling regulation and 

prioritize future experiments. 

 

Shin, et al., explored the counter-intuitive observation that MCIP can inhibit cardiac 

hypertrophy by blocking calcineurin, but can also stimulate hypertrophy in response to 

isoproterenol infusion or transverse aortic constriction (TAC)118. Using a computational 

model, the authors showed the biphasic behavior could be explained by a transcriptional 

negative feedback loop that includes a large NFAT threshold for MCIP expression. At 

low or moderate NFAT activity, MCIP expression is low and calcineurin inhibition is 

small, permitting hypertrophy. However, when NFAT activity crosses this threshold, 

MCIP expression increases and calcineurin inhibition is large, attenuating hypertrophy. 

Cooling, et al., used models of NFAT translocation to examine how NFAT activity can 

be sensitive to both the magnitude and frequency of Ca2+ oscillations119. 

 

Niederer, et al., investigated the role of stretch-induced nitric oxide (NO) generation on 

Ca2+ cycling and force generation in the rat ventricular myocyte120. The authors 

represented the effects of NO on regulating RyR function by making one of the RyR 

gating variables a function of cardiac myocyte strain, which is thought to increase RyR 

deactivation via local NO generation. This model predicted a steady-state decrease in 

Ca2+ transients in response to NO’s actions on RyRs alone. The authors conclude that this 

mechanism does not fully explain the slow increased force response of cardiac myocytes 
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engaged in sustained tension. This study demonstrates how models can identify gaps in 

understanding and draw attention to areas which require more experimental investigation. 

 

Summary 

While biochemically and biophysically mechanistic models require significant data for 

model validation, their detailed representations can be useful for identifying the key 

biological mechanisms regulating cardiac signaling pathways. These approaches help 

reduce the complexity of a signaling network by permitting comprehensive in silico 

assays that dissect the simultaneous effects of multiple interacting signaling mechanisms. 

These approaches can also help understand how small changes to a signaling network’s 

activity in a disease setting can produce large changes in phenotype. Moreover, these 

models have significant predictive value and integrate well with experimental studies to 

complement experimental findings with mechanistic understanding. 

 

3.5 Multi-Scale / Integrated Models of Cardiac 
Signaling Networks 
 

Cardiac cell-signaling research is motivated by the need to understand how signaling 

networks regulate human cardiac physiology and disease. Extrapolating molecular 

signaling events to organ-level phenotypes introduces inherent complexity across spatial, 

temporal and functional scales. As described above, mechanistic models of cell signaling 

pathways have tremendous deductive value for investigating biological mechanisms. 

However, other approaches are required for inductive extrapolation of the consequences 

of cell signaling on heart function. A second class of computational models are models 
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that integrate distinct cardiac functions into a common framework. In practice, model 

integration is modular in nature and usually involves linking common variables across 

computational models of different cardiac behaviors. For example, Cortassa, et al., 

developed an integrated model of the guinea pig cardiomyocyte, linking cell 

electrophysiology, force generation and mitochondrial energy generation to investigate 

phenomena such as oxidative stress-induced action potential shortening121. By combining 

these different units into a cohesive framework, integrated models clarify nonintuitive 

relationships between sub-systems without obvious mechanistic links. 

 

Multi-scale models of cardiac function 

This integrative approach is used most extensively in modeling multi-scale aspects of 

cardiac electromechanics and hemodynamics122. Some multi-scale models combine EC 

coupling models with detailed representations of ventricular anatomies to analyze cellular 

mechanisms for arrhythmia123. Other models integrate descriptions for circulatory 

resistance to model cardiac hemodynamics124-125. Saucerman, et al., used this approach to 

analyze the arrhythmogenic effects of a point mutation (KCQN1-G589D), which disrupts 

yotiao-mediated targeting of PKA and PP1 to the IKs channel126. The authors integrated 

their β-adrenergic signaling model with a rabbit EC coupling model and showed how this 

mutation would lead to a prolonged action potential only under β-adrenergic stimulation. 

Coupling this model with a three-dimensional rabbit ventricular wedge model, the 

authors showed how these cellular long QT events can amplify ventricular 

heterogeneities in electrical propagation to give rise to arrhythmias. Using this integrated 
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approach, the authors identified mechanisms for arrhythmia that were not obvious from 

the cellular or molecular phenotypes. 

 

Nakamura, et al., used a similar approach for investigating progesterone-dependent 

mechanisms for changes in LQT risk during female menstruation and pregnancy127. 

Taking a combined experimental and computational approach, the authors analyzed the 

effects of progesterone on the cardiomyocyte action potential and ECG. The authors first 

experimentally showed progesterone’s actions were managed by increased nitric oxide 

(NO) production by eNOS. The authors then used a computational model to simulate 

shortened action potentials in conditions with elevated NO, which were consistent with 

their electrophysiologic measurements in intact myocytes. The authors combined this 

model with a single-fiber representation of ventricular tissue to simulate ECG responses 

to progesterone administration in a form of congenital LQT syndrome (KCNE1-D76N), 

showing progesterone may protect against arrhythmias by regulating cardiac 

repolarization. This study exemplifies a novel use of combining an integrated 

computational model with experimental studies to examine the molecular mechanisms 

behind gender differences in risk for cardiac disease. 

 

Summary 

Multi-scale, integrative modeling approaches are helpful for understanding the 

consequences of molecular signaling events on overall cardiac physiology and 

pathophysiology. These models integrate detailed descriptions of many cardiac functions 

into a consistent framework and can identify biological mechanisms that emerge from the 
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coupling between cells or the heterogeneities in cardiac tissue. These models are also 

useful for clarifying the relationship between cell signaling and global cardiac behaviors 

(e.g., contractility, hemodynamics, electrophysiology, metabolism). Current multi-scale 

models including cell signaling have not yet incorporated tissue-level heterogeneity in 

cell signaling itself (e.g., variation in neural density, paracrine factors, expression levels); 

this is an important future direction.  

 

3.6 Large Data Sets 
 

Recent advancements in high-throughput methods for characterizing genomic, 

transcriptomic, proteomic and metabolomic states allow one to view the global 

consequences of molecular perturbations rather than just the “usual suspects”. However, 

this wealth of –omics data creates new challenges in data interpretation, as most of the 

measurements lack a biological context for interpreting the biological relevance to the 

experimental perturbation. Statistical modeling techniques help reduce the complexity of 

these data sets by identifying clusters of signaling species that may either be co-regulated 

or that can similarly regulate other species in a signaling network.  

 

Statistical modeling approaches draw upon information theory and computer science to 

identify features in the data that may globally represent the entire data set (e.g., principal 

components). One advantage to these ‘top-down’ techniques is that they make few 

assumptions about the data and can provide unbiased identification of unexpected 

correlations. However, statistical models produce different types of information than 

mechanistic models. While mechanistic models can predict the time-varying dynamics 
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and spatial localization of individual species in a cell signaling network, statistical 

models predict correlations between species in a network. While these correlations do not 

always explain the causality between correlated species, the correlations can be useful for 

identifying non-intuitive patterns in the data and guide future experiments. These 

techniques can tremendously reduce the complexity of a high-throughput data set by 

three to four orders of magnitude and are most useful for screening a large number of 

observations or generating new hypotheses to explore experimentally. In the context of 

cardiac signaling networks, these approaches have been used most frequently to examine 

changes in co-regulated gene/protein expression and changes in the activity of  

co-regulated protein-protein interactions. 

 

Statistical analysis of high-throughput genomic data 

Some of the earliest applications of statistical modeling approaches to cardiac signaling 

networks involved efforts to interpret DNA microarray datasets. These studies drew from 

machine learning to identify possible mechanisms regulating the gene or protein 

expression changes observed between normal and diseased (or transgenic) cardiac tissue. 

In one group of studies, Hall, et al., examined gene expression profiles associated with 

reverse remodeling in human hearts following left ventricular assist device (LVAD) 

treatment128-129. These studies revealed a number of important changes to cardiac vascular 

organization, cytoskeleton organization and integrin and cAMP signaling, suggesting 

these pathways may be relevant to cardiac remodeling. Hong, et al., took a similar 

approach to analyze transcriptional profiles corresponding to 17 mouse cardiac 

phenotypes130. In that study, the authors used spectral graph clustering and identified 31 



39 
 

groups of cardiac-specific genes with co-regulated expression. The authors validated the 

differential expression of some of these genes in a TAC mouse by RT-PCR. These 

studies illustrate efforts to identify candidate genetic regulators of cardiac remodeling. 

 

Other efforts have specifically focused on understanding experimental models of heart 

failure. Gao, et al., compared the gene expression profiles from canine tachycardia-

induced heart failure against gene expression profiles from heart failure in two other 

species131: 1.) human idiopathic and ischemic heart failure and 2.) mouse TNFα over-

expression and MLP knockout heart failure. The authors discovered a number of gene 

expression changes common between these different heart failure models, including up-

regulation of nucleic acid metabolism and transcription pathways and down-regulation of 

biosynthesis/metabolism and muscle development/contraction pathways. In a later study, 

the authors took a novel approach, combining microarray analysis with biochemically 

mechanistic modeling and in vivo hemodynamical and electrophysiogical measurements 

to examine longitudinal cardiac remodeling in canine tachycardia-induced heart 

failure132. They found significant gene expression changes to metabolism, cell signaling 

and extracellular matrix pathways early in the remodeling process and coincident with 

left ventricular dysfunction and action potential prolongation. Focusing on genes whose 

expression correlated with changes in action potential duration, the authors identified a 

number of candidate proteins that may regulate action potential duration, including the 

SERCA2 gene. The change in SERCA2 expression was validated by Western blot and a 

computational model was used to show that SERCA2 downregulation is a sufficient 

mechanism for prolonging the cardiac action potential. Taken together, the authors 
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demonstrate how these bioinformatics algorithms can be combined with experimental and 

computational validation to bring focus to specific molecular targets that manage the 

heart failure phenotype. 

 

Statistical analysis of high-throughput proteomic data 

Statistical modeling methods have also been used to characterize and analyze the cardiac 

proteome. Differential proteomic expression has significant diagnostic value in 

identifying patients with human heart failure133-134. Early work by Kislinger, et al., 

combined statistical modeling methods with mass spectrometry characterization of the 

mouse proteome to classify the organ (brain, heart, kidney, liver, lung, placenta) and 

subcellular localization (cytosol, cell membrane, mitochondria, nucleus) of all detectable 

proteins in the mouse proteome135. In a later study, the authors made a more 

comprehensive attempt to characterize the mouse cardiac proteome, classifying proteins 

by subcellular localization and relative abundance and validating many proteins by 

immunoblotting136. Comparing this proteome with various cardiac transcriptomes, the 

authors showed nearly 50% of expressed proteins had a linear correlation between 

mRNA and protein expression (Pearson’s correlation coefficient r = 0.915). Moreover, 

the majority of the ‘outlier’ proteins with low mRNA/protein expression correlation  

(r = 0.147) were involved in pathways regulating mitochondrial energy metabolism or 

ribosome assembly. From this body of work, the authors generated a reference profile of 

the wild-type mouse cardiac proteome. 
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These reference proteomes are useful for identifying biomarkers for cardiac disease133,137. 

As an example, Gramolini, et al., focused on a specific heart failure model by comparing 

protein expression profiles from cardiomyopathic phospholamban mutant mice (PLN-

R9C) against those from wild-type littermates138. The authors identified changes in 

protein expression in signaling pathways related to Ca2+ signaling, ER stress, cytoskeletal 

remodeling and apoptosis. These protein expression changes also included known 

biomarkers for heart failure (AT2A2, ANF, BNP, FABHP, and β-MHC). The authors 

validated these identified proteins against human cardiac PLN-R9C explants and found 

correlations in 27 of the 40 highest ranking candidates from the transgenic mouse tissue. 

Collectively, these studies illustrate how statistical learning methods can be used to 

simplify complex proteomic datasets to predict unique protein signatures corresponding 

to different cardiac phenotypes. 

 

Protein-protein interaction networks 

An alternative approach to analyzing large data sets is to use a protein-protein interaction 

(PPI) network to understand how changes in expression may correspond to changes in the 

regulation of specific signaling pathways and cardiac phenotypes. For example, Berger, 

et al., used a human PPI network to predict SNPs and FDA approved drugs that may 

induce long QT syndrome (LQTS) and increase susceptibility for arrhythmias139. The 

authors first curated a human PPI network and then used methods from machine learning 

to identify a LQTS subnetwork based on 13 genes corresponding to 12 different long QT 

(LQT) phenotypes or reduced LQT susceptibility. The authors validated this subnetwork 

against genes, SNPs and drugs known to trigger LQTS and then used the LQTS 
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subnetwork to predict FDA approved drugs that were not classified as QT prolonging 

drugs but were associated with reports of QT prolongation. Using their PPI network, the 

authors hypothesized mechanisms linking the drug targets to the LQT phenotype. 

 

Using a similar approach, Lage, et al., recently examined the PPI subnetworks underlying 

cardiac morphogenesis in early development140. The authors manually curated 255 

cardiac development-related genes and computationally classified these genes into 19 

functional PPI subnetworks. These 19 subnetworks were then manually annotated by 

their role in cardiac development, revealing recycling of functional subnetworks during 

heart development. The authors note increased anatomical complexity correlated with 

increased signaling complexity, marked by increases in PPI subnetwork activation, 

transcriptional activity and protein expression. The authors experimentally validated 

these predictions in 19 human hearts at various stages of development and 14 embryonic 

human hearts, confirming the regional and temporal activation of these different 

subnetworks. These studies powerfully show how PPI networks can be used to give 

mechanistic information on proteins whose expression or activity may altered in human 

cardiac disease and development. More generally, these studies illustrate how statistical 

modeling approaches can clarify interpretation of complex data sets to gain insight into 

how specific signaling networks may regulate organ-level phenotypes. 

 

Summary 

Statistical modeling techniques are useful for reducing the dimensionality of complex 

data sets and identifying key changes in a disease or transgenic cardiac phenotype. These 
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approaches can identify groups of signaling proteins that are correlated with specific 

phenotypes or have correlated activity. These groups can be useful for identifying 

biomarkers for cardiac disease or generating new experimental leads for the regulation of 

heart failure progression. Protein-protein interaction networks can help facilitate 

mechanistic understanding of large data sets by identifying how signaling proteins may 

be connected to each other. Together, these approaches can draw attention to non-obvious 

relationships between different parts of a signaling network and bring focus to the most 

important players in a complex phenotype. 

 

3.7 Future Directions 
 

While the cardiovascular system has a rich history of using computational models to 

study its cellular physiology, the use of computational models to study cardiac signaling 

networks is still young. To accompany our growing appreciation of cell signaling 

complexity, there is a great need for new statistical and mechanistic modeling approaches 

that are scalable to larger signaling networks. At the same time, there are many areas of 

cardiac signaling that have not yet benefitted from computational modeling. 

 

New statistical approaches to characterizing cardiac signaling networks 

Next generation sequencing technologies are now rapidly generating a wealth of data, 

providing comprehensive profiles for cardiac gene expression141. In recent years, 

researchers studying other systems have developed powerful new statistical modeling 

techniques to deal with these growing data sets142-143. These techniques aim to reduce the 

dimensionality of large-scale data sets into a more limited number of principal 
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components that may be more directly associated with a specific phenotype or cell 

behavior. For example, Janes, et al., examined the signaling network regulating cytokine-

induced apoptosis in HT-29 cells, obtaining 7980 measurements of protein activation144. 

The authors used principal components analysis to identify groups of signaling proteins 

that correspond to stress-apoptosis or cell-survival behaviors. Performing regression 

analysis on these principal components, the authors generated a model capable of 

predicting apoptosis responses to TNF, EGF and insulin treatment, which they validated 

experimentally. The authors also identified certain situations that caused the model to fail 

in predicting experimental outcomes. By analyzing and reconciling these context-specific 

‘model breakpoints’, the authors identified a number of new mechanisms regulating 

TNF-induced apoptosis, including an unexpected role for TGFα in PI3K-Akt signaling 

and a counterintuitive loss of ERK-mediated survival under IL-1a blockade. The authors 

also evaluated more general properties of cell signaling networks, demonstrating how the 

overall signaling network is more sensitive to the dynamic range of signaling species than 

the absolute strength of their signaling activation. This study exemplifies how new 

statistical modeling techniques can be used to help identify mechanisms for signaling 

network regulation. As the size of cardiac-specific genomic and proteomic data grows, 

similar techniques will be important for reducing the complexity of these data sets and for 

investigating the relationships between signaling species. 

 

Large-scale mechanistic modeling of cardiac signaling networks 

The biggest challenge implementing biochemically mechanistic models is the 

requirement for appropriate biochemical parameters to constrain all reactions in a 
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signaling network. As these parameters can be difficult to estimate, detailed kinetic 

models of signaling pathways are typically limited to 10-20 protein species. However, the 

signaling networks for regulating some cardiac behaviors (e.g., cardiac hypertrophy) 

involve significantly more signaling molecules with considerably more complexity in 

network connectivity64. Thus, the field needs to identify modeling approaches that can 

“do more with less”. One approach for analyzing a signaling network using its topology 

alone is to use Boolean or Bayesian analysis, as has been used to study signaling 

associated with inflammation145-146. But these approaches provide only qualitative steady-

state information about a system and have difficulty with common network motifs such 

as feedback loops. Recent efforts have attempted to bridge the gap between network 

topology and signaling dynamics without requiring the full set of biochemical 

parameters147-148. As more information is known about the diverse signaling pathways 

that regulate complicated processes such as apoptosis, hypertrophy and metabolism, new 

progress must be made in the development of computational tools that can integrate these 

pathways into a consistent framework and make predictions about how they cross-talk to 

regulate cardiac behaviors. 

 

Opportunities in cardiac cell-based therapies 

Cell-based therapies for cardiac diseases are an exciting new research area149-150. 

However, the complexity of signaling pathways that regulate differentiation of cardiac 

progenitor cells into mature adult cardiac myocytes is a significant obstacle toward 

forward progress in translating these therapies to the clinic. Computational models can be 

useful in this context for understanding the relationship between the local environment 
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and differentiated state of cardiac progenitor cells151. In an elegant study combining 

computational and experimental work, Kirouac, et al., showed how inter-cell paracrine 

signaling regulated the differentiation of hematopoietic stem and progenitor cells into 

cells that express blood lineage-associated cell surface antigens152. The authors developed 

a computational model and estimated parameters based on their experiments of stem and 

progenitor cell differentiation under different selection and media exchange conditions. 

Using a sensitivity analysis, the authors determined that differentiation of these cells was 

primarily regulated by secreted inhibitory factors, comprising a paracrine negative 

feedback loop. Using their model, the authors showed how experimental heterogeneity in 

long term cell cultures could be explained by stochastic variations in the secretion rates of 

inhibitory factors. Moreover, they showed how loss of responsiveness to these secreted 

inhibitory factors was sufficient to explain pathologic transformation of progenitor cells 

into leukemic stem cells (in vitro data published by Warner, et al.153). This study 

illustrates how mechanistic signaling models are currently being used to understand and 

guide experimental differentiation of stem and progenitor cells into desired phenotypes. 

As cell-based therapies become more attractive treatment options for cardiac diseases, 

computational models can help accelerate mechanistic understanding of the 

differentiation processes for cardiac progenitor cells. 

 

Opportunities in mechanotransduction 

Cardiac biomechanics play a central role in shaping cardiac development and 

pathophysiology154-155. However, the signaling pathways converting ventricular stresses 

and strains to signaling cues for cardiac remodeling remain poorly understood. While it is 
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clear that focal adhesion and integrin-mediated signaling pathways are important for 

regulating cardiac growth, contractility and repair156-158, these pathways have received 

significantly less attention than those stimulated by circulating factors. Moreover, 

mechanical stretch alone is sufficient for inducing hypertrophy159-161, arrhythmia162-164 

and changes to G-protein signaling165-166 and mechanical unloading of failing hearts can 

reverse cardiac hypertrophy167-168. Computational models are already being used to 

explore the role of mechanical stretch in regulating myocyte electrophysiology169-171, 

electromechanics120,172 and ventricular arrhythmogenesis173-174. As cardiac 

mechanotransduction signaling pathways are better understood, computational models 

will be important for mechanistically understanding how mechanotransduction interfaces 

with other signaling pathways to control cardiac contractility and remodeling. 

Understanding these relationships will be an important step toward reconciling the 

strengths and weaknesses of the neurohormonal and biomechanical hypotheses for human 

heart failure8,11,18 and may help generate new leads for better therapeutic options. 

 

3.8 Conclusions 
 

Computational models are important research tools that can complement experimental 

studies to reduce the complexity of cardiac signaling networks. Modeling approaches can 

accelerate mechanistic insight into how signaling networks are regulated and help 

extrapolate the consequences of these signaling pathways on cardiac physiology. To date, 

computational models have contributed significantly toward understanding β-adrenergic 

and CaMKII signaling. There are tremendous opportunities for these approaches to be 

extended to both well-studied signaling pathways (e.g., α-adrenergic signaling, MAPKs) 
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and emerging signaling-related fields (e.g., cardiac stem cells, mechanotransduction). 

Models can help integrate different aspects of cardiac function into coherent frameworks 

and help understand the actions of cardiac signaling networks on both homeostatic 

maintenance of cardiac physiology and pathologic progression into heart failure. 

Modeling studies can also complement experimental studies to both provide mechanistic 

understanding and generate new experimental leads. These approaches powerfully reduce 

the complexity of large data sets and bring focus to the most important signaling species 

or signaling mechanisms regulate cardiac behaviors. As the appreciation for cardiac 

signaling network complexity and the size/quantity of experimental data sets grow, 

computational models are becoming necessary for addressing these challenges in a 

quantitative, mechanistic and methodical manner. Such efforts will prove increasingly 

important for elucidating mechanisms underlying the neurohormonal hypothesis and 

understanding the pathogenesis of heart failure. 
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Chapter 4 
 
 
Regulation of β-Adrenergic 
Receptor-Stimulated Contractility 
by Incoherent Feed-Forward 
Signaling 
 
 
 
 
 
 
 
 
 Work from this chapter is published in Phospholemman is a incoherent feed-forward regulator of Ca2+ 
in β-adrenergic signaling, accelerating β-adrenergic inotropy. Yang, J.H., Saucerman, J.J. J. Mol. Cell. 
Cardiol. 2012; 52(5):1048-55. 
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4.1 Foreword 
 

β-adrenergic signaling is best recognized for its effects on managing the fight-or-flight 

response and stimulating acute enhancements to cardiac contractility. Though the 

fundamental mechanisms regulating contraction are now well-studied175, a number of 

open questions remain regarding how contractile function in normal physiology is 

maintained. For instance, the sympathetic fight-or-flight response elicits a nearly 

instantaneous enhancement in heart function, while biochemical signaling events are 

thought to occur over the time scales of minutes. In this chapter, we test the hypothesis 

that topological features of the β-adrenergic signaling network, such as incoherent feed-

forward signaling, play a very important role in regulating cardiac contractility. 

 

4.2 Introduction 
 

During the sympathetic fight-or-flight response, β-adrenergic receptor (β-AR) stimulation 

activates protein kinase A (PKA) to enhance cardiac inotropy and lusitropy3. The main 

PKA substrates responsible for these responses are the L-type Ca2+ channels (LCCs) and 

phospholamban (PLB), which regulate excitation-contraction (EC) coupling by 

increasing Ca2+ influx and increasing sarcoplasmic reticulum (SR) Ca2+ reloading, 

respectively175. PKA phosphorylates LCCs on both α and β subunits to both increase total 

current density and prolong LCC opening (Mode 2 gating). PLB phosphorylation releases 

inhibition of the SR Ca2+-ATPase (SERCA), increasing the rate of Ca2+ uptake into the 

SR during relaxation. 
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Recently, phospholemman (PLM) emerged as another PKA substrate capable of 

regulating cardiomyocyte Ca2+ during β-AR stimulation176. In the heart, PLM directly 

inhibits the Na+/K+-ATPase (NKA)177. PLM phosphorylation by PKA releases this 

inhibition, driving Na+ extrusion and indirectly augmenting Na+/ Ca2+-ATPase (NCX) 

function via [Na+]i
90. This is itself a clinically relevant element of β-adrenergic signaling 

as [Na+]i is elevated in heart failure178 and PLM is phosphorylated during ischemia179, 

identifying PLM as a candidate drug target180. Moreover, PLM is hypothesized to serve a 

protective role against arrhythmia by limiting the rise of intracellular Na+ and Ca2+90. 

However, it remains unclear if PLM phosphorylation is central to β-adrenergic inotropy. 

 

To quantitatively investigate the role of PLM in β-adrenergic regulation of Ca2+ handling 

and contractility, we constructed a novel mechanistically detailed computational model of 

the mouse ventricular myocyte. Because PLM is already identified as a key integrator of 

Na+ and Ca2+ in normal and failing cardiomyocytes181, we hypothesized that PLM 

phosphorylation is critically important for the β-adrenergic signaling response. We asked 

the question, “How does PLM phosphorylation contribute to β-AR enhanced 

contractility?” Using the model, we show PLM forms an incoherent feed-forward loop 

with PLB and is necessary for producing rapid fight-or-flight responses. 

 

4.3 Models 
 

WT mouse ventricular myocyte model 

During the cardiac action potential, membrane depolarization triggers the opening of  
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L-type Ca2+ channels (LCCs), which in turn trigger Ca2+ release from the SR through the 

ryanodine receptors (RyRs). Following this Ca2+-induced Ca2+-release (CICR), Ca2+ is 

resequestered by the SR Ca2+-ATPase (SERCA) and extruded from the myocyte by 

NCX81. CICR is a tightly regulated process, requiring local control and luminal Ca2+ 

sensitivity for maintaining graded Ca2+ release with high gain and rapid RyR 

refractoriness182-183. β-adrenergic signaling regulates CICR primarily through protein 

kinase A (PKA) phosphorylation of the LCCs (increasing Ca2+ influx) and PLB 

(releasing basal SERCA inhibition to further load the SR). 

 

In order to quantitatively describe Ca2+ dynamics in the mouse ventricular myocyte 

accurately, we updated the Bondarenko, et al., model of mouse myocyte 

electrophysiology184 with new descriptions for locally controlled CICR185-187, luminal 

Ca2+ dependence of RyR gating188, reversible SERCA activity189-190 and cytosolic and SR 

Ca2+ buffering189,191 (Appendix A). In order to investigate β-adrenergic regulation of 

mouse EC coupling, we fully integrated a model of β1-adrenergic signaling5-6 (Figure 

4.1). This included PKA-mediated phosphorylation of LCC (increasing peak LCC current 

and prolonging LCC openings), PLB (increasing SERCA affinity for cytosolic Ca2+), 

PLM (increasing NKA affinity for cytosolic Na+) and troponin I (increasing troponin C 

affinity for cytosolic Ca2+). We also updated the NCX model189 to better capture the 

interplay between Na+ dynamics and Ca2+ handling. Because EC coupling dynamics and 

β-adrenergic signaling dynamics vary over very different time scales (ms vs. min), we 

imposed ionic charge conservation on the stimulus current to overcome drift and help the 

model achieve stable steady-state behavior192. 
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Figure 4.1 Model schematic for integrated β-adrenergic 
signaling/excitation-contraction coupling model. Beat-to-beat Ca2+ 
dynamics are driven by membrane depolarization, triggering voltage-gated 
ion channels. Ca2+ influx via L-type Ca2+ channels (LCCs) trigger Ca2+-
induced Ca2+-release from the ryanodine receptors (RyRs). Activation of 
β-adrenergic receptors (β-AR) stimulates protein kinase A (PKA) 
activation by cAMP. PKA phosphorylates  LCCs and phospholamban 
(PLB) to enhance Ca2+ dynamics. PKA also regulates Na+ and K+ 
homeostasis by phosphorylating phospholemman (PLM). 
  



54 
 

Transgenic mouse myocyte models 

In order to simulate Ca2+ dynamics in PLM knockout (PLM-KO) and PLB knockout 

(PLB-KO) myocytes, we modified the WT model by eliminating the inhibitory effects of 

PLM and PLB on NKA and SERCA, respectively. We further included relevant changes 

in gene expression to Na+ or Ca2+ handling proteins. For the PLM-KO case, this meant a 

20% reduction in NKA expression177. For the PLB-KO case, this meant a 25% reduction 

in RyR expression193. In the case of the PLB/PLM double knockout, we applied both sets 

of modifications to the WT model.  

 

4.4 Results 
 

PLM confers adaptation to β-AR-stimulated Ca2+ transients 

During the sympathetic fight-or-flight response, intracellular [Na+] is elevated by both 

increased Na+ channel firing frequency and enhanced Ca2+-driven Na+ influx via NCX194. 

Simultaneously, β-AR stimulation enhances Na+ efflux via PKA-mediated PLM 

phosphorylation. PLM phosphorylation stimulates NKA Na+ extrusion in a manner 

analogous to PLB enhancement of SERCA function – by releasing basal inhibition and 

decreasing the Km for intracellular Na+177. In order to examine how β-AR stimulation 

coincidentally regulates Na+ and Ca2+, we derived new expressions for PKA 

phosphorylation of PLM and incorporated the effects of PLM phosphorylation on NKA 

into the integrated model. We then modeled the PLM-KO by eliminating PLM-mediated 

regulation of NKA from the model. 
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To validate the model, we simulated Na+ responses to the β-adrenergic agonist 

isoproterenol (ISO) in both resting (Figure 4.2A) and 2 Hz paced wild-type (WT) and 

PLM-KO cells. Treatment with 1 µM ISO reduced resting [Na+]i in WT cells, but not in 

PLM-KO cells (Figure 4.2A; WT: 10.5 mM control to 7.8 mM ISO-stimulated [Na+]I, 

PLM-KO: 10.4 mM control to 10.4 mM ISO-stimulated [Na+]i)177. Under 2 Hz pacing, 

[Na+]i increased for both WT and PLM-KO myocytes, but 1 µM ISO reversed this Na+ 

accumulation in WT cells only (WT: 10.5 mM resting to 14.8 mM paced to 12.4 mM 

ISO-stimulated [Na+]i, PLM-KO: 10.4 mM resting to 13.8 mM paced to 15.5 mM ISO-

stimulated [Na+]i)90. These results are consistent with the cited experimental data, 

demonstrating that the model accurately described Na+ dynamics. 

 

Dynamically, we observed a [Ca2+]i adaptation (the property of returning to a sub-

maximal response following persistent biochemical stimulation) concurrent with the 

decline in [Na+]i in simulated WT cells, but not in PLM-KO cells (Figure 4.2B). This 

indicates a necessary role for PLM in conferring intracellular Ca2+ adaptation consistent 

with prior experiments90. Individual Ca2+ transients from unstimulated (*), 2 min early 

ISO-stimulated (†) and 30 min steady-state ISO-stimulated (‡) agreed with experimental 

measurements in both shape (Figure 4.2C) and relative change in magnitude (Figure 

4.2D; WT: 253 nM control to 887 nM early ISO to 714 nM steady-state ISO twitch Ca2+ 

amplitude, PLM-KO: 223 nM control to 897 nM early ISO to 928 nM steady-state ISO 

twitch Ca2+ amplitude) for WT and PLM-KO myocytes90. Moreover, we also found 

similar increases in SR load to experimental observations (Figures 4.2E and 4.2F; WT: 

1242 µM control to 1435 µM steady-state ISO [Ca2+]SR, PLM-KO: 1136 µM control to  
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Figure 4.2 Model validation of PLM-KO cardiomyocyte model. A, 
ISO stimulation reduces [Na+]i in resting WT, but not PLM-KO 
myocytes177. B, Cytosolic Ca2+ adaptation is uniquely present in the WT 
myocyte and coincides with the drop in intracellular Na+90. C, Model Ca2+ 
transients from control (*), 2 min. early ISO stimulation (†) and 30 min. 
steady-state ISO stimulation (‡) are consistent with experimental 
findings90. D, Twitch Ca2+ amplitude decreases in the WT myocyte at 
steady-state, indicating Ca2+ adaptation90. E, ISO-stimulated SR load is 
larger in PLM-KO myocytes than WT myocytes90. F, ISO-stimulated SR 
loading is similar between model and experiment90. 
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1655 µM steady-state ISO [Ca2+]SR)90. Thus, the model accurately predicts numerous 

aspects of Na+/Ca2+ handling and β-adrenergic regulation in both WT and PLM-KO 

cardiac myocytes. 

 

Na+ manages β-AR-stimulated Ca2+ adaptation 

Confident that the integrated model faithfully captured Na+ and Ca2+ dynamics, we 

interrogated the role of Na+ in managing Ca2+ adaptation by performing simulated 

intracellular Na+ clamp experiments (Figure 4.3). First, we recorded the simulated normal 

Na+ transients from both WT and PLM-KO myocytes (Figure 4.3A). We then repeated 

the 2 Hz pacing with 1 µM ISO simulations with WT and PLM-KO [Na+]i clamped to the 

recordings from the opposite cell type. Switching the Na+ transients between WT and 

PLM-KO myocytes switched the ability of intracellular Ca2+ transients to adapt to ISO 

stimulation (Figure 4.3B), giving direct evidence that PLM-mediated Ca2+ adaptation is 

managed via Na+. Clamping [Na+]i to control concentrations (Figure 4.3A; an 

intermediate between both ISO-stimulated conditions) prescribed an equivalent 

insignificant adaptation response (Figure 4.3B). Together, these indicate that the PLM-

mediated drop in intracellular Na+ is both sufficient and necessary to produce the Ca2+ 

adaptation observed in WT cells. 

 

Na+ regulates cytosolic Ca2+ by unloading SR Ca2+ 

To further understand how Na+ may regulate cytosolic Ca2+ dynamics, we investigated 

the effects of Na+ dynamics on SR load (Figure 4.4). Concurrent with the adaptation in 

cytosolic Ca2+ transients, the model predicted an adaptation in SR Ca2+ in WT, but not  
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Figure 4.3 Role of Na+ in managing PLM-mediated Ca2+ adaptation. 
A, Na+ responses from simulated Na+ clamp experiments – ISO causes 
Na+ to decrease in WT myocytes but increase in PLM-KO myocytes. B, 
Clamping Na+ in WT and PLM-KO myocytes to different Na+ transients 
indicate a sufficient and necessary role for Na+ in conferring Ca2+ 
adaptation, evidenced by switching of the Ca2+ adaptation phenomena 
between WT and PLM-KO myocytes. 
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PLM-KO cells (Figure 4.4A). However, the correlation between adaptive cytosolic Ca2+ 

transients and SR Ca2+ alone does not indicate the direction of causality. Recording these 

SR Ca2+ dynamics and performing SR load switch-clamp simulations, we again observed 

switching of the cytosolic Ca2+ adaptation responses (Figure 4.4B). These results give 

evidence that PLM-mediated Ca2+ adaptation to β-AR stimulation may be explained by 

Na+ indirectly unloading the SR. 

 

PLM opposes PLB-mediated SR Ca2+ loading 

To further explore the role of SR unloading, we sought a system by which one could 

directly manipulate SR load. PLB-KO mice are one experimentally tractable way of 

achieving this. We therefore developed a PLB-KO version of our model (Figure 4.5; see 

Methods). We validated this model by quantifying properties of SR load and cytosolic 

Ca2+ transients at rest and under 0.5 Hz pacing. At rest, PLB-KO myocytes had an SR 

load of 142 µM cytosol (vs. experimental 140 µM cytosol195). At 0.5 Hz pacing, cytosolic 

Ca2+ transients had similar amplitudes between WT and PLB-KO myocytes (Figures 

4.5A and 4.5B; WT: 136 nM twitch Ca2+ amplitude, PLB-KO: 183 nM twitch Ca2+ 

amplitude)195-196. We also observed faster relaxation in PLB-KO myocytes than WT 

control (Figure 4.5C; WT: τWT = 139.3 ms, PLB-KO: τKO = 95.3 ms, 0.68 simulated τKO/ 

τWT vs. 0.60 experimental τKO/ τWT)195. Correspondingly, we also observed increased SR 

loads in PLB-KO myocytes (Figure 4.5D; WT: 719 nM [Ca2+]SR, PLB-KO: 1306 nM 

[Ca2+]SR)195. Moreover, the simulated fraction of Ca2+ relaxation extruded by SERCA, 

NCX and IpCa was 94.0%, 5.7% and 0.3%, respectively, similarly biased to SERCA as in  
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Figure 4.4 Role of SR Ca2+ load in managing PLM-mediated Ca2+ 
adaptation. A, SR Ca2+ loads for WT and PLM-KO myocytes. B, 
Switching SR load between WT and PLM-KO myocytes, switches the 
Ca2+ adaptation phenomena between WT and PLM-KO myocytes. 
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Figure 4.5 Model validation of PLB-KO cardiomyocyte model. A, 
Model Ca2+ transients from WT and PLB-KO myocytes are qualitatively 
similar to experimental findings196. B, WT and PLB-KO Ca2+ transients 
have similar amplitudes195. C, PLB knockout accelerates relaxation195. D, 
PLB knockout significantly enhances SR load195. 
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experimental measurements (96.4% SERCA, 3.4% NCX, 0.1% other195). Thus, the model 

captured fundamental features of Ca2+ handling in PLB-KO myocytes. 

 

At 2 Hz pacing and under 1 µM ISO, the PLB-KO myocyte exhibited an adaptive 

response in the cytosolic Ca2+ transients in spite of the significantly elevated SR load 

(Figure 4.6A, top). Upon further examination, we detected a decrease in SR load in PLB-

KO myocytes when stimulated with ISO (Figure 4.6A, bottom). This surprising result 

identified a hidden component of the β-adrenergic signaling response normally masked 

by PLB phosphorylation: SR unloading. To test if PLM phosphorylation was responsible 

for this SR unloading, we crossed the PLB-KO model with the PLM-KO model to derive 

a PLB-KO/PLM-KO mouse model. In this double knockout simulation, cytosolic Ca2+ 

transients did not exhibit adaptation and SR Ca2+ content stayed elevated, indicating PLM 

phosphorylation underlied SR unloading (Figure 4.6B). 

 

To further investigate the individual contributions of PLB and PLM to SR load under ISO 

stimulation, we simulated 2 Hz pacing, 1 µM ISO-stimulated responses in WT myocytes 

where PKA could only phosphorylate either PLB alone, PLM alone or both PLB and 

PLM only (Figure 4.6C). When PLB alone was phosphorylated, the τ for [Ca2+]i decline 

decreased to 113 ms (from 124 ms in unstimulated WT myocytes) and SR load increased 

to 1802 µM [Ca2+]SR (from 1242 µM [Ca2+]SR in unstimulated WT myocytes). This 

exceeded the steady-state SR load in fully stimulated WT myocytes (1435 µM [Ca2+]SR). 

PLM phosphorylation alone also decreased the τ for [Ca2+]i decline (to 118 ms), but in 

contrast to PLB phosphorylation alone, SR load decreased to 894 µM [Ca2+]SR. When  
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Figure 4.6  Opposing actions of PLB and PLM on EC coupling. A, 
PLB-KO myocytes also exhibit Ca2+ adaptation in spite of elevated SR 
load. SR load decreases with sustained β-AR stimulation. B, PLB-KO, 
PLM-KO myocytes do not exhibit Ca2+ adaptation. SR load does not 
decrease with sustained β-AR stimulation. C, PLB phosphorylation and 
PLM phosphorylation exert opposite effects on SR load. D, PLB 
phosphorylation and PLM phosphorylation exert opposite effects on 
cytosolic Ca2+ transients. 
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both PLB and PLM are phosphorylated (in the absence of LCC phosphorylation), the τ 

for [Ca2+]i decline decreased to 100 ms and SR load reached 1369 µM [Ca2+]SR. Looking 

at Ca2+ transient amplitudes, we observe similar relationships between these different 

PLB and PLM phosphorylation conditions (Figure 4.5D), implying that cytosolic Ca2+ 

responses track with SR load. Together, these results demonstrate that while PLB and 

PLM both contribute to enhanced Ca2+ relaxation, PLB and PLM elicit opposite effects 

on both SR load and Ca2+ adaptation. 

 

Ca2+ adaptation is a incoherent feed-forward property of β-adrenergic signaling 

In principle, only two network motifs are capable of giving rise to adaptation responses in 

a cell signaling network: negative feedback loops and incoherent feed-forward loops197-

198. In the β-AR signaling pathway, both motifs are present (Figure 4.1). First, β-ARs can 

be directly desensitized by both GRKs and PKA in a negative feedback loop199 with 

significant implications for cardiac physiology200. Second, PKA phosphorylates both 

PLB and PLM, simultaneously increasing and decreasing total Ca2+ content. Both 

network motifs offer reasonable explanations for β-AR-stimulated Ca2+ adaptation. 

 

To determine if the ISO-stimulated Ca2+ adaptation is a consequence of β-AR 

desensitization or PLM incoherent feed-forward control, we simulated 2 Hz pacing, 1 µM 

ISO-stimulated responses in WT myocytes with either PLM phosphorylation or β1-AR 

desensitization blocked, or both. Removing PLM phosphorylation by PKA significantly 

inhibited Ca2+ adaptation in both SR load (Figure 4.7A) and cytosolic Ca2+ transients 

(Figure 4.7B). Steady-state twitch Ca2+ amplitudes reached 988 nM [Ca2+]i from 714 nM  
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Figure 4.7 Ca2+ adaptation is explained by an incoherent feed-
forward loop. A, Steady-state SR load is better explained by PLM 
phosphorylation than β-AR desensitization. B, PLM phosphorylation 
contributes more strongly to limit cytosolic Ca2+ transients than β-AR 
desensitization. C, WT Ca2+ adaptation is associated with slow 
intracellular Na+ dynamics. D, Acceleration of intracellular Na+ dynamics 
blocks Ca2+ adaptation in WT myocytes, indicating an incoherent feed-
forward regulatory motif. E, The model predicts accelerated inotropic 
responses to ISO in WT myocytes over PLM-KO myocytes. F, Published 
experimental data validates this model prediction in cardiac myocytes90 
and G, also indicates this acceleration occurs in the intact heart201. 
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[Ca2+]I in WT cells. Blocking β1-AR desensitization inhibited Ca2+ adaptation more 

weakly, with a steady-state twitch Ca2+ amplitude of 833 nM [Ca2+]i. Blocking both PLM 

phosphorylation and β1-AR desensitization fully inhibited Ca2+ adaptation with a steady-

state twitch Ca2+ amplitude of 1144 nM [Ca2+]i. These results indicate that PLM 

phosphorylation accounts for most of the cytosolic Ca2+ adaptation. 

 

Adaptation in incoherent feed-forward loops requires a time delay between the fast 

positive signal transduction cascade and slow negative signal transduction cascade198. We 

therefore hypothesized that if the observed cytosolic Ca2+ adaptation is indeed a 

consequence of PLM-mediated incoherent feed-forward inhibition, then SR Ca2+ loading 

by SERCA (via PLB phosphorylation) must be fast with respect to Na+ extrusion by 

NKA (via PLM phosphorylation). Indeed, the t50 for SR Ca2+ loading was 0.36 min while 

t50 for Na+ extrusion was 1.59 min in ISO-stimulated WT cells (Figure 4.7C). We then 

tested the hypothesis that accelerating Na+ extrusion (and therefore breaking the time 

delay between PLB- and PLM-mediated effects) would block the cytosolic Ca2+ 

adaptation. Indeed, increasing NKA activity to accelerate Na+ extrusion to the same rate 

as SR Ca2+ loading (t50 = 0.35 min) blocked Ca2+ adaptation to ISO stimulation (Figure 

4.7D). Together, these results offer strong evidence that Ca2+ adaptation is a incoherent 

feed-forward property of β-AR signaling, managed by PLM. 

 

PLM phosphorylation accelerates β-adrenergic inotropy 

In addition to providing mechanisms for adaptation, incoherent feed-forward loops are 

capable of accelerating cell signaling responses202. We hypothesized that PLM 
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phosphorylation may be important for accelerating β-AR-stimulated inotropy. We 

measured the t50 for steady-state Ca2+ transient enhancement in the simulated WT and 

PLM-KO myocytes (Figure 4.7E). Indeed, β-AR-stimulated inotropy was accelerated by 

100% in WT myocytes over PLM-KO myocytes (WT: t50 = 0.18 min, PLM-KO: t50 = 

0.36 min). We have not encountered any published reports of PLM-mediated acceleration 

of β-adrenergic inotropy, so we decided to experimentally validate this model prediction 

by reanalyzing published data. Digitizing and reanalyzing the work by Despa, et al.90, we 

find 41% acceleration in their representative experiments of Ca2+ transients in isolated 

myocytes exposed to ISO (Figure 4.7F; WT: t50 = 0.37 min, PLM-KO: t50 = 0.52 min). 

We further reanalyzed in vivo data from Wang, et al.201, which measured the timecourse 

of left ventricular pressure in live WT and PLM-KO mice following serial injections of 

ISO. This analysis revealed an average 168% acceleration of left ventricular pressure 

inotropy in WT mice over PLM-KO mice across a 2-order of magnitude range of ISO 

concentrations (Figure 4.7G). These results strongly support our hypothesis that PLM 

phosphorylation plays a central role in β-adrenergic signaling by accelerating steady-state 

inotropy in vitro and in vivo. 

 

4.5 Discussion 
 

In this chapter, we model the role of PLM phosphorylation in regulating cytosolic Ca2+ 

transients during β-adrenergic signaling. Extensive experimental work has demonstrated 

that PLM is important for managing intracellular Na+ and modulating EC coupling in 

normal and failing myocytes90,177-178. Here, we use a model to test our understanding of 
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how PLM may regulate EC coupling. Model simulations indicate a necessary and 

sufficient role for Na+ to parlay PLM phosphorylation signals to the SR to confer long-

term cytosolic Ca2+ adaptation to β-AR stimulation. The magnitude of this adaptation 

response cannot be explained by receptor-level negative feedback via β-AR 

desensitization, identifying PLM as an important incoherent feed-forward regulator of 

cytosolic Ca2+. 

 

PLM-mediated protection against spontaneous Ca2+ release 

In the intact heart, β-adrenergic signaling simultaneously coordinates a number of events 

during the sympathetic fight-or-flight response3. While the net effect of these events is to 

enhance contractile function (via increased chronotropy, inotropy, lusitropy), persistent  

β-AR stimulation can itself drive cardiac pathologies. In addition to activating cardiac 

remodeling transcriptional programs, β-AR stimulation-induced chronotropy drives 

intracellular Na+ loading by accelerating Na+ entry with the increased frequency of 

myocyte depolarizations. Indeed, intracellular Na+ is elevated in the failing heart and may 

have important consequences on NCX function178. Despa, et al., hypothesized that PLM 

phosphorylation may play a protective role in the sympathetic fight-or-flight response by 

limiting the rise of intracellular Na+, thereby preventing Ca2+ overload and arrhythmic 

Ca2+ release90. Our results support this hypothesis, evidenced by the elevated [Na+]i and 

reduced [Ca2+]SR in our PLM-KO myocyte simulations (Figure 4.2). 

 

Interestingly, Despa, et al., observed an increased propensity for spontaneous ISO-

stimulated Ca2+ transients in their PLM-KO experiments90. However, our model did not 
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predict after-depolarizations in spite of the inclusion of a luminal RyR gating mechanism. 

There are a few possible explanations for this discrepancy. First, some evidence suggests 

that early after-depolarizations may be driven by stochastic LCC openings during β-AR 

stimulation203, while our model is deterministic. Other evidence suggests RyR 

phosphorylation may lower the threshold for store overload-induced Ca2+-release by 

sensitizing luminal Ca2+ dependence for RyR gating204. But this mechanism is unclear as 

other evidence suggests luminal RyR gating may be protective against spontaneous Ca2+ 

release by accelerating Ca2+ regulation188. Our recent models have predicted that 

CaMKII-mediated RyR phosphorylation can play a key role in β-AR-induced delayed 

after-depolarizations107. However, these effects are not included here as we limited our 

study to focus on PKA substrate phosphorylation. 

 

Systems understanding of PLM in β-adrenergic regulation of contractility 

In the conventional understanding of β-adrenergic regulation of EC coupling, PKA 

phosphorylates many targets to collectively enhance cardiac inotropy and lusitropy. It is 

proposed that PLM may act as a cardiac stress protein that minimizes the risk of 

arrhythmogenesis at the expense of reduced inotropy176. Consistent with this proposition 

is our model prediction that PLB and PLM phosphorylation elicit opposite effects on SR 

load (Figure 4.6C). Though these effects are similar in magnitude, release of PLB 

inhibition of SERCA overtakes release of PLM inhibition of NKA in regulating SR load, 

masking the PLM response. Simulations with PLB and PLM phosphorylation alone also 

unmask the relative effect of LCC phosphorylation. PLB and PLM are able to 

recapitulate most of the SR loading in ISO-stimulated WT cells (WT: 1435 µM [Ca2+]SR, 
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PLB/PLM phosphorylation: 1369 µM [Ca2+]SR), but are unable to recapitulate the 

enhanced Ca2+ transients (WT: 725 nM Δ[Ca2+]i, PLB/PLM phosphorylation:  

247 nM Δ[Ca2+]i). 

 

From this perspective, the roles of LCC, PLB and PLM are more clearly defined. While 

Ca2+ influx through LCCs is thought to be the primary mechanism for regulating total 

cellular Ca2+205, our model suggests β-adrenergic increases in the total Ca2+ content in 

mouse are primarily explained by enhanced Ca2+ retention (via PLB phosphorylation and 

increased SERCA Ca2+ uptake), rather than enhanced Ca2+ influx. Moreover, 

enhancements to β-adrenergic Ca2+ transients are better explained by increased CICR (via 

LCC phosphorylation, increasing trigger Ca2+ flux to enhance RyR release), than by mere 

enhancements to sarcolemmal Ca2+ influx or global [Ca2+]. Indeed at 2 Hz pacing, 1 µM 

ISO increased steady-state RyR fractional release from 29.1% to 59.0%. However, when 

LCC phosphorylation was ablated, steady-state RyR fractional release only increased to 

31.8%, highlighting the significance of high EC coupling gain under normal CICR and 

supporting the observation that β-adrenergic signaling enhances CICR by a local 

saturation of LCC trigger Ca2+ rather than an enhancement to SR load206. PLM moderates 

Ca2+ transients indirectly by enhancing NCX Ca2+ efflux, which reduces SR Ca2+ load 

and thus the extent of CICR. 

 

If PLM acts to directly oppose PLB, what evolutionary advantage is gained by 

conserving this inefficient process? We show PLB and PLM form a negative (incoherent) 

feed-forward network motif79, accelerating steady-state β-adrenergic inotropy (Figure 
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4.7). This PLM-mediated acceleration was substantial in our model (100%) and 

reanalysis of published in vitro data by Despa, et al.90 and in vivo data by Wang, et al.201 

validate this model prediction (Figure 4.7). cAMP accumulation was previously shown to 

be a rate-limiting step in the β-adrenergic signaling response4,207. The current findings 

further elaborate this concept of pathway kinetics, showing that the downstream PLM 

feed-forward loop causes Ca2+ inotropy to reach steady state (t50 = 0.18 min) faster than 

the upstream cAMP (t50 = 0.41 min) and PKA (t50 = 0.33 min) signals. Thus 

paradoxically the β-adrenergic signaling pathway accelerates as the inotropic signal 

propagates downstream. 

 

Moreover, the t50 for the WT myocyte in our model was 0.18 min shorter than the PLM-

KO myocyte, implying these myocytes reach steady-state inotropy ~40 beats faster at the 

cost of minor reductions in inotropy. This model prediction is only a lower-bound 

estimate since PKA also phosphorylates troponin I and myosin binding protein C to 

sensitize myofilaments to Ca2+ and accelerate stretch activation208-209. Together these 

indicate that in addition to its role in protecting against arrhythmia, PLM critically 

accelerates β-adrenergic signaling responses, overcoming slow cAMP and PKA 

dynamics to ensure a rapid fight-or-flight response. PLM simultaneously mediates both 

this acceleration and its antiARrhythmic effects by adapting SR Ca2+ load. 

 

Relevance to other species 

Mouse EC coupling differs from EC coupling in other species with an increased heart 

rate and a more significant dependence on SERCA for Ca2+ relaxation. Mouse resting 
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[Na+]i is also typically higher (10-15 mM) than that of other mammalian species (4-8 

mM)194, due to enhanced Na+ influx. In contrast, NKA function is similar across species 

and PLM phosphorylation induces similar enhancements to NKA activity210. While there 

are few published studies of PLM phosphorylation-mediated effects on Ca2+ handling in 

other species, it stands to reason that the results presented here would generalize to other 

species since NKA is the primary mechanism for Na+ extrusion in the cardiac myocyte. 

Because NCX more prominently regulates Ca2+ in human and other mammalian 

myocytes175, PLM phosphorylation is expected to drive greater cytosolic Ca2+ unloading 

and greater Ca2+ adaptation in human than mouse, enhancing PLM-driven acceleration of 

β-adrenergic inotropy. Moreover, PLM phosphorylation may also have a stronger anti-

arrhythmic role in human than mouse. New experimental work is needed to clarify the 

role of PLM in human cardiac Ca2+ handling. 

 

Computational modeling of mouse EC coupling 

Computational models have emerged as useful tools for interrogating cardiac signaling211 

and EC coupling66. There are now several published computational models of the mouse 

ventricular myocyte184,212-216. The model presented here improves upon existing mouse 

models by including mechanisms central to EC coupling and fully integrated descriptions 

of β-adrenergic signaling. Moreover, as Na+ dynamics are relevant to cardiac disease, our 

model is the first to explicitly represent Na+ regulation of Ca2+ transients. While this 

model is limited by variability in mouse strains and experimental data sources, this model 

captures many core components of cardiac Ca2+ handling, as evidenced by the ability to 
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faithfully reproduce quantitative data from WT and two non-trivial transgenic knockout 

mouse conditions. 

 

One important component missing from this model is CaMKII regulation of EC coupling 

and frequency-dependent acceleration of relaxation (though the mechanism remains 

unknown217). However, for the purposes of this study we bounded the model at the level 

of PKA activation, as any model can always be improved without end. Indeed, the 

current model is already consistent with a wide range of experimental data. Modeling 

transgenic knockouts is also subject to gaps in knowledge of all the expression 

differences between knockout and WT – here we could only incorporate the primary 

known adaptive gene expression changes in PLM- and PLB-KO mice. 

 

4.6 Conclusions 
 

In summary, we have developed a new computational model of the mouse ventricular 

myocyte to investigate the role of PLM in regulating EC coupling responses to  

β-adrenergic signaling. Using this model, we have shown that PLM comprises a 

incoherent feed-forward loop with PLB, conferring both adaptation to cytosolic Ca2+ 

transients via Na+ effects on SR load and acceleration to β-AR-stimulated inotropy. In 

this way, PLM critically regulates the sympathetic fight-or-flight response. 
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Chapter 5 
 
 
Regulation of Angiotensin II 
Receptor-Stimulated Fibrosis by 
Incoherent Feed-Forward Signaling 
 
 
 
 
 
 
 
 
 
 Work from this chapter is published in Systems analysis of bounded signaling modules generates 
experimental roadmap for eight major diseases. Benedict, K.F., Mac Gabhann, F.*, Amanfu, R.K.*, 
Chavali, A.K.*, Gianchandani, E.P.*, Glaw, L.S.*, Oberhardt, M.A.*, Thorne, B.C.*, Yang, J.H.*, Papin, 
J.A., Peirce, S.M., Saucerman, J.J., Skalak, T.C. Ann. Biomed. Eng. 2011; 39(2):621-35. 
 
 (*) denotes equal contribution  
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5.1 Foreword 
 

In the previous chapter, we showed how incoherent feed-forward signaling can accelerate 

and confer adaptation to β-adrenergic receptor-stimulated contractility. These incoherent 

feed-forward signaling motifs are common in cell signaling, prompting us to hypothesize 

that these motifs may also be relevant to other aspects of cardiac disease. One such 

example is in Angiotensin II (Ang II) signaling, in which type 2 Ang II receptors directly 

antagonize type 1 Ang II receptors at multiple nodes. Similar to chronic β-adrenergic 

signaling, persistent Ang II signaling is implicated in cardiac remodeling events such as 

fibrosis. In this chapter, we test the hypothesis that incoherent feed-forward signaling acts 

as a controller for cardiac extracellular matrix remodeling, which becomes overwhelmed 

in elevated Ang II signaling. 

 

5.2 Introduction 
 

In addition to cardiac hypertrophy, fibrosis is a hallmark characteristic remodeling 

process implicated in cardiac disease218. Cardiac fibroblasts, which account for 

approximately 90% of non-contractile cells (>50% of all cells) in the heart, are thought to 

play a critical role in maintaining extracellular matrix (ECM) homeostasis and preventing 

fibrosis via the secretion and degradation of ECM proteins. However, during heart 

failure, expression of secreted matrix metalloproteinases (MMPs) is significantly altered, 

prompting MMPs to become candidate therapeutic targets219-221. Changes in MMP 

expression are in part stimulated by angiotensin II (Ang II) signaling. Consequently, 

angiotensin converting enzyme (ACE) inhibitors, which limit tissue Ang II 
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concentrations, have been shown effective for attenuating fibrotic remodeling in the heart 

and reducing the risk for atrial fibrillation, which may trigger heart attacks222-223. 

 

Mitogen-activated protein kinases (MAPKs) are particularly important signal transducers 

in Ang II-induced fibrosis224-225 and are regulated by the Gq-coupled Ang II type 1 (AT1) 

and type 2 (AT2) receptors226. However, while Ang II is clearly linked to fibrotic 

remodeling, a number of significant questions remain in understanding how Ang II 

signals through AT1Rs and AT2Rs to stimulate cardiac fibrosis. First, there is extensive 

evidence suggesting AT1R signaling is pro-fibrotic, but evidence for the role of AT2Rs is 

contradictory224,227. One key question lies in understanding if AT2Rs elicit a pro- or anti-

fibrotic response and if the Ang II-induced remodeling phenotype is sensitive to 

perturbations by AT2Rs over physiological ranges. This is important because AT1R and 

AT2R expression levels change significantly in heart failure228-230. 

 

Lack of quantitative detail about intermediate Ang II signaling steps is a significant 

hurdle in developing more efficacious treatment strategies. A second challenge lies in 

characterizing the key interventional targets for treating heart disease. ACE inhibitors are 

effective for globally reducing Ang II production, but tissue Ang II concentrations may 

remain elevated in some patients231. These indicate a need to better identify treatment 

strategies which may account for genetic variations between patients. Downstream 

signaling proteins which may more directly control the fibrotic response have not yet 

been quantitatively identified. Consequently, current treatments act only on either global 

Ang II or AT1Rs. Finally, it remains poorly understood how Ang II signaling is 
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terminated. Such deactivation mechanisms are fundamentally important for both gaining 

understanding at a basic science level and for strategizing therapeutic development for 

fibrosis. Such strategies may curb side effects in the circulatory system by minimizing 

actions on non-cardiac cells. These strategies may also protect endogenous pro-survival 

Ang II signaling mechanisms in cardiac myocytes. 

 

To address these challenges, we constructed a model of Ang II-stimulated MMP 

expression in the cardiac fibroblast. Using this model, we clarified the role of AT2R 

signaling and identified highly sensitive signaling nodes in the Ang II signaling pathway. 

Moreover, we showed how an incoherent feed-forward signaling motif formed by AT1Rs 

and AT2Rs may limit the effectiveness of therapeutic strategies proposed in the literature. 

 

5.3 Model 
 

To quantitatively assess Ang II signaling dynamics, we constructed a mechanistic model 

of Ang II signaling in cardiac fibroblasts using ordinary differential equations based on 

Michaelis-Menten kinetics (Figure 5.1, Appendix B). In this model, stimulation of the 

AT1Rs and AT2Rs modulate the activity of c-Jun N-terminal kinase (JNK) and 

extracellular signal-regulated kinase (ERK) MAPKs, which directly phosphorylate 

multiple transcription factors to alter MMP expression. Parameters for this model were 

either derived from primary literature or fitted to data. To identify key interactions in this 

pathway, we performed a sensitivity analysis, computing ERK and JNK activities after 

varying each model parameter over 7 orders of magnitude (from 0.001x to 1000x). This 

dynamic model simulated ERK and JNK regulation by upstream kinases and  
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Figure 5.1 Model schematic for Ang II-stimulated fibrosis. Ang II 
binds the AT1 and AT2 receptors, which signals through mitogen-activated 
protein kinases (MAPKs) to stimulate transcription factors (NF-ΚB, AP-1, 
SP1 and PEA3) which regulate MMP2 and MMP3 expression. 

  



79 
 

 

phosphatases in response to Ang II stimulation of the AT1 and AT2 receptors. Changes in 

MMP expression were estimated as a linear combination of ERK and JNK activities, with 

the assumption that the total number of available MMP promoter regions is greater than 

the number of transcription factors activated by ERK and JNK. Together, this model 

mechanistically describes Ang II-induced ECM remodeling via changes in MMP 

expression. 

 

5.4 Results and Discussion 
 

Model Validations of Predicted ERK and JNK Activities 

Our model accurately represented MAPK signaling dynamics and changes in MMP 

expression in response to Ang II stimulation. Where model parameters were absent in the 

literature, we fitted the model so that JNK, ERK, Src-homology phosphatase (SHP), 

phosphatase 2A (PP2A) and MAPK phosphatase (MKP) responses were constrained to 

measurements by independent labs (Figures 5.2 and 5.3). Model fits for ERK and JNK 

dynamics agreed well with experimental measurements. 1 µM Ang II induced a transient 

increase in ERK activity, peaking at 8 min and returning to basal levels232 (Figure 5.2A). 

In contrast, JNK activity peaked at 20 minutes and reached equilibrium at half the peak 

activity233 (Figure 5.2B). Simulated phosphatase dynamics also agreed well with 

experimentally measured activities. 100 nM Ang II increased SHP activity by 1.5-fold, 

reaching equilibrium within 5 minutes234-235 (Figures 5.3A and 5.3B). At similar Ang II 

concentrations, PP2A and MKP activity increased 2-fold236-237 (Figures 5.3C and 5.3D). 
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Figure 5.2 ERK and JNK activation by Ang II. A, ERK is transiently 
activated, with peak activity occurring 8 min after stimulation232. B, JNK 
is also transiently activated, with peak activity 20 min after stimulation233.  
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Figure 5.3 Phosphatase responses to Ang II. A, SHP activation 
saturates within 5 min in response to 100 nM Ang II238. B, Ang II 
increases SHP activation234,238. C, Ang II enhances PP2A activity239. D, 
Ang II also increases MKP activity237. 
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Because MMP2 and MMP3 expression is regulated by a host of transcription factors 

(e.g., NF-κB, AP-1, SP1, PEA3), we estimated MMP expression as a linear combination 

of transcription factors which could be activated by ERK or JNK. Model predictions for 

MMP expression changes agreed well with observations in human heart diseases. For 

example, the model predicted a significantly larger increase in MMP2 expression rate 

than MMP3 expression rate in response to elevated Ang II (Figure 5.4A). This is 

consistent with independent observations in left ventricular hypertrophy and congestive 

heart failure221. Moreover, JNK activity increased faster than ERK activity under 

sustained Ang II stimulation, as evidenced by an increase in the ratio of JNK to ERK 

activity. These model predictions support the hypothesis that stress-induced MAPKs like 

JNK may have a more pro-apoptotic (and therefore pro-fibrotic remodeling) role than 

ERK MAPKs240. 

 

AT2R Signaling is Anti-Fibrotic 

Treatments targeted at reducing Ang II signaling are effective in curbing the effects of 

heart disease231. In 2008, there were 89 clinical trials targeted at Ang II signaling in the 

heart241. Most of these trials either targeted Ang II production or activation of the AT1Rs. 

AT2Rs have also been considered as a potential therapeutic target242, but it is unclear if 

AT2R signaling is anti-fibrotic under physiological conditions. Moreover, there is little 

quantitative evidence to compare AT2R agonists with therapies in use or development. 

 

To determine if AT2Rs play a strongly antagonistic role in Ang II-induced remodeling, 

we compared Ang II responses under normal (wild-type) and AT2R over-expression  
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Figure 5.4 MMP expression rates in response to Ang II stimulation 
and pharamacologic intervention. A, 1 µM Ang II induces a rapid 
increase in MMP2 and MMP3 expression and preferentially activates JNK 
over ERK. 10-fold over-expression of AT2Rs inhibits increase in MMP 
expression rates. B, ACE inhibitors have greater efficacy over AT1R 
antagonists and AT2R agonists in reducing MMP expression.  
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conditions. AT2Rs over-expression was modeled by increasing the concentration of 

AT2Rs one order of magnitude (10-fold). Under these conditions, the total expression rate 

of both MMP2 and MMP3 increased by similar magnitudes in contrast to the much larger 

increase in MMP2 expression than MMP3 expression seen under the wild-type 

conditions (Figure 5.4A). The relative increase in JNK activity over ERK activity was 

also smaller in these conditions, suggesting that AT2Rs may specifically attenuate stress-

activated MAPK responses. These results suggest that AT2R stimulation may directly 

attenuate Ang II-induced remodeling responses. 

 

AT2R Agonists are Not Effective Anti-Fibrosis Agents  

AT2R agonists are an effective method for stimulating AT2R activity, but there had not 

been any experiments or clinical studies evaluating the actions of these drugs on the 

heart. To determine if AT2R agonists may be a meaningful treatment for fibrotic 

remodeling, we compared the responses of our model to simulated ACE inhibition (in 

clinical use), AT1R antagonists (in clinical trials) and AT2R agonists. ACE inhibitors in 

our model were represented by reducing the total effective concentration of Ang II by one 

order of magnitude (from 1 µM to 100 nM). AT1R antagonists were represented by a two 

order of magnitude increase in the effective Kd of the AT1R (due to competitive 

inhibition; from 0.95 nM to 95 nM). AT2R agonists were represented by the addition of 

10 µM ligand which can only bind the AT2R and stimulate AT2R signaling. These 

representations corresponded to ideal drugs from each of these three families. 

 



85 
 

Of the three simulated therapies, ACE inhibitors had the most robust anti-fibrotic result, 

reducing MMP2 and MMP3 expression to nearly basal rates (Figure 5.4B). The fold 

change in JNK to ERK activity was also nearly reduced to 1 in these conditions. These 

results support clinical observations that ACE inhibitors are effective treatments for 

patients with heart disease. AT1R antagonists in our model also attenuated excess MMP 

expression, but were unable to fully block excess JNK activity. This result would indicate 

that while AT1R antagonists may attenuate fibrotic remodeling, they may still result in 

pathologic consequences by over-stimulating stress-induced MAPKs240. 

 

In contrast, AT2R agonists in our model had limited effect in blocking MMP expression 

or ERK and JNK activity. This counterintuitive result could be explained by the 

observation that the phosphatases induced by AT2R are highly active at normal 

physiological Ang II concentrations (Figure 5.5). However, this saturation may be 

overcome by increasing the total number of available AT2Rs (Figure 5.4A), suggesting 

AT2Rs are already maximally engaged under physiological conditions. Together, these 

results suggest that while AT2R signaling is anti-fibrotic, AT2R agonists would have 

limited effect in treating fibrotic remodeling. Therapies designed to limit Ang II signaling 

should therefore focus on either inhibition of Ang II production or enhancement of AT2R 

expression rather than inhibition of AT1R activity or elevation of AT2R activity. 

 

MKPs are Key Endogenous Regulators of ERK and JNK Activity 

A key challenge in designing therapeutic strategies is identification of the most 

efficacious intervention target. To identify key signaling proteins regulating ERK and  
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Figure 5.5 Peak and steady-state MAPK and phosphatase activities 
in response to normal and elevated Ang II stimulation. A, Model 
stimulation with normal physiologic Ang II concentrations243 induces a 
transient increase in ERK and JNK activity, which is silenced at steady-
state by increased phosphatase activity. B, Under conditions of sustained, 
elevated Ang II treatment, phosphatase activities are saturated and steady-
state JNK activity increases. 
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JNK activation by Ang II, we performed a sensitivity analysis, varying each parameter 

over seven orders of magnitude and measuring ERK and JNK activities (Figure 5.6). We 

then quantitatively compared the dynamic range for the parameter sensitivities the 

fractional range of ERK (JNK) activation (0 – 100%) as the sensitivity metric. These 

were determined by taking the ratio of the difference between ERK (JNK) activities at 

1000-fold increased and 1000-fold decreased parameter values over the total ERK (JNK) 

concentration. This analysis indicated that while ERK is sensitive to most reactions 

involving PP2A and MKP (Figure 5.7A), JNK is preferentially sensitive to reactions 

including MKP and displays much smaller dynamic range for these reactions (Figure 

5.7B). These suggested that strongly pro-fibrotic JNK activity is more tightly regulated 

than ERK activity. 

 

Though ERK and JNK are both members of the MAPK family, they appeared to play 

opposite roles in the development of heart disease. Normal JNK activity appears to be 

pathologic in cardiac remodeling244, whereas normal ERK activity may be 

cardioprotective245. To identify proteins which uniquely regulate JNK activity, but not 

ERK activity, we calculated two other sensitivity metrics. First, we calculated the ratio of 

ERK and JNK activities over the range of parameter perturbations. This metric is small 

when the JNK activity is significantly greater than ERK activity and large when ERK 

activity is significantly greater than JNK activity. Using this metric, MKPs emerge as the 

single most sensitive signaling protein for minimizing JNK activity relative to ERK 

activity (Figure 5.8A). Second, we calculated the ratio of the JNK and ERK parameter 

sensitivities. The absolute value of this metric is large when JNK sensitivity is large and  
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Figure 5.6 Parameter sensitivity over 7 orders of magnitude. A, ERK 
activity is uniformly sensitive to Ras, Raf, MEK, PP2A and MKP. B, JNK 
activity is more specifically sensitive to MKP.  
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Figure 5.7 ERK and JNK sensitivity dynamic range. A, ERK 
sensitivity exhibits a large dynamic range for parameters related to Ras, 
Raf, MEK, PP2A and MKP. B, JNK sensitivity exhibits a large dynamic 
range only for MKP parameters.  
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Figure 5.8 Normalized parameter sensitivities. A, MKP is the single 
most important protein for biasing MAPK activation toward ERK. B, 
Negative parameter sensitivity ratios indicate parameter manipulation 
changes JNK and ERK activities in opposite directions. MKP and SEK 
emerge as most powerful signaling proteins for inhibiting JNK activity. 
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ERK sensitivity is small. The sign of these values is positive when ERK and JNK are 

both up- or down-regulated and negative when the actions on ERK and JNK occur in 

opposing directions. Using this metric, we find that the reactions which most significantly 

reduce JNK activity relative to ERK activity involve MKPs and SEK, which directly 

activates JNK(Figure 5.8B). Together, these results identify MKPs as the key regulator of 

ERK and JNK activities. These results provide support for a hypothesis that MKPs may 

be a useful interventional target for inhibiting Ang II signaling. 

 

MKP Inhibition as a Therapeutic Strategy 

Quantitatively constrained mechanistic models are useful for hypothesis testing and 

generating new research directions211. Interestingly, ERK can trigger MKP expression in 

response to Ang II stimulation, creating a transcriptional negative feedback loop that may 

occur over larger time scales than the signaling dynamics modeled here226,237. To test if 

this endogenous negative feedback loop may antagonize JNK activity and MMP 

expression, we increased the total MKP concentration 4-fold, which is equivalent to the 

steady-state increase in MKP expression following long-term Ang II treatment226. This is 

an appropriate assumption because the time scale separation between this transcriptional 

feedback and the dynamics we modeled was large. Our model qualitatively suggests that 

a MKP-mediated transcriptional negative feedback loop was sufficient for inducing a 

significant long-term antagonistic effect on AT1R-stimulated fibrosis (Figure 5.9). 

 

Together, these results identify MKPs as key regulators of ERK and JNK in response to 

Ang II signaling and suggest endogenous feedback mechanisms have evolved to limit  
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Figure 5.9 Enhanced MKP expression limits Ang II-stimulated 
fibrosis. Increasing total MKP concentration blocks enhancements to 
MMP expression rate and JNK activation in the presence of 1 µM Ang II.  
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long-term responses to sustained Ang II stimulation by increasing MKP expression. An 

important new experimental direction will be to characterize the relationship between this 

feedback and fibrotic remodeling. Therapies targeted at stimulating JNK-specific MKP 

production may be more effective for treating this remodeling than therapies targeted at 

either global Ang II concentrations or Ang II receptors. 

 

Ang II Signaling Responses are Deactivated by Incoherent Feed-Forward Control 

Ang II receptors are G-protein coupled receptors (GPCRs), a particularly important 

family of cardiac signaling receptors which include beta-adrenergic receptors63. In  

β1-adrenergic receptors (β1-ARs), receptor desensitization is an important mechanism for 

limiting responses to sustained stimulation. Beta arrestins play a particularly important 

role in this desensitization by targeting GPCRs for endocytic internalization and 

ubiquidination and by sterically inhibiting the G-protein activity. In contrast, beta 

arrestins play a stimulating role in Ang II receptors signaling by scaffolding the AT1 and 

AT2 receptors to other key signaling proteins246. While it is clear that Ang II elicits 

transient ERK and JNK activation (Figure 5.2), the mechanisms for adaptation in Ang II 

signaling are not well understood. Moreover, while AT1Rs are known to undergo 

endocytic internalization, AT2Rs do not internalize247. It is therefore unclear if normal 

GPCR desensitization mechanisms are necessary for conferring adaptation to Ang II 

signaling responses. 

 

In constructing this model, we found that AT2R signaling alone is sufficient to explain 

long-term adaptation of AT1R signaling responses (Figure 5.2). To test the role of AT2R 
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signaling in limiting ERK and JNK activities, we removed SHP, PP2A and MKP 

activation by AT2Rs. In these conditions, ERK and JNK exceeded normal activities, 

reaching full activation near total ERK and JNK concentrations (Figure 5.10A). These 

suggested AT2R signaling is necessary for maintaining the physiological ranges for ERK 

and JNK activities. 

 

However, receptor internalization may also limit AT1R responses. To test the hypothesis 

that AT1R signaling deactivation may be explained by AT1R internalization, we modeled 

the effects of AT1R internalization in the absence of AT2R signaling. To do this, we 

introduce an internalization term into the expression for AT1R activation by Ang II with a 

time constant of 136 s 247 (Figure 10B). Under these conditions, only 30% of the Ang II-

bound AT1Rs remained non-internalized at steady-state (Figure 5.10C). However, our 

model predicted that even with 70% inhibition of the AT1Rs, ERK and JNK activities 

fully saturated at steady state in the absence of AT2R signaling (Figures 5.10A). These 

results indicated AT1R internalization cannot account for the transient deactivation of 

ERK and JNK activities. Simulating both AT2R engagement and AT1R internalization 

resulted in lower ERK and JNK activity than including AT2R signaling alone (Figure 

5.11). Together, these results suggested that while AT1R internalization may participate 

in the acute inactivation of Ang II signaling responses, AT2R signaling alone is both 

sufficient and necessary to explain long-term deactivation. 

 

An important observation is that Ang II activates both the (pro-fibrotic) AT1Rs and (anti-

fibrotic) AT2Rs simultaneously (Figure 5.12A). However, the phosphatases stimulated by  
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Figure 5.10 MAPK adaptation is not explained by receptor 
internalization. A, AT2R signaling, but not AT1R internalization, is 
sufficient and necessary for explaining ERK and JNK adaptation 
responses to 1 µM Ang II. B, Functional model implementation of AT1R 
internalization247. C, AT1R internalization reduces steady-state signaling 
AT1Rs by 70%. AT2R competition for Ang II ligand is insignificant.  
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Figure 5.11 AT1R internalization further limits MAPK activation. 
A,B, While AT1R internalization alone is insufficient for explaining JNK 
and ERK adaptation responses to 1 µM Ang II, internalization may play 
an additional role in limiting MAPK induction. 
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Figure 5.12 A unified hypothesis for Ang II-mediated fibrosis. A, 
AT1Rs and AT2Rs share similar activation kinetics. B, Kinase and 
phosphatase activated by Ang II differ considerably. C, Over normal 
physiological Ang II tissue concentrations (6-100 nM), JNK activation is 
small and kept in check by PP2A and MKP, which exhibit large dynamic 
range. At elevated Ang II concentrations, PP2A and MKP activities are 
saturated and JNK activity increases significantly. 
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AT2Rs reach maximum activation significantly more slowly than the kinases stimulated 

by AT1Rs (Figure 5.12B). This delay provides a small window for MMP expression to 

increase significantly (Figure 5.2A) before phosphatase activity is sufficient for causing 

adaptation in the MAPK activities. Moreover, steady-state activation of these two 

pathways is unbalanced, resulting in increased overall steady-state MMP expression 

under Ang II stimulation. Interestingly, the AT2R pathway is insensitive to signaling 

events in the AT1R pathway. How then does AT2R signaling limit the long-term 

responses to sustained Ang II stimulation? Our results indicate that the AT2Rs do this by 

robustly intervening at multiple stages of the AT1R pathway. This signaling motif is a 

form of incoherent feed-forward control, where Ang II acts on the AT2Rs as 

intermediates in exerting control over anticipated AT1R responses. 

 

Feed-forward control mechanisms are effective when the output of a system (in this case, 

pro-fibrotic ERK and JNK activities) must be maintained in a bounded range. In contrast 

to the significant and sustained activation of PP2A and MKP under both basal and Ang 

II-stimulated conditions, ERK and JNK activities are transient and significant steady-

state JNK activation only occurs under Ang II-stimulated conditions (Figure 5.5). 

 

Testing our model across different concentrations of Ang II, we found that the EC50s for 

PP2A and MKP (7 nM and 10 nM, respectively) were orders of magnitude different from 

the EC50s for ERK and JNK (200 nM and 0.5 nM, respectively) (Figure 5.12C). These 

suggest that under physiological Ang II concentrations (6 – 100 nM), ERK activity is 

saturated while JNK activity is inactive and under-stimulated. However, PP2A and MKP 
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activities are most sensitive at these concentrations allowing these phosphatases to exert 

strong control over ERK and JNK. As Ang II increases beyond normal physiological 

concentrations, PP2A and MKP activities may become saturated and JNK activity can 

increase rapidly and escape control of saturated PP2A and MKP activities. This loss of 

control over ERK and JNK activities exemplifies a limitation of incoherent feed-forward 

control: the system breaks down when stimulated output responses exceed the dynamic 

range for the intermediate controller79. 

 

In the context of cardiac health and disease, health is maintained when physiological 

responses are kept within specific ranges, but pathologies can form when a biological 

network is stimulated beyond what the system can handle. Our simulations suggest Ang 

II signaling responses are deactivated by an incoherent feed-forward control and that 

fibrotic MMP expression may occur when AT1Rs are stimulated beyond the control of 

AT2Rs, as occurs in global elevations to circulating Ang II. New experiments are needed 

to test this hypothesis and to characterize other possible Ang II control mechanisms. 

 

Limitations 

MAPK signaling pathways are well-studied canonical signaling pathways, regulated by 

many signaling proteins. Because MAPKs are regulated by transcriptional feedback loops 

with much longer time scales (hours, days) than the dynamics investigated here (min), we 

made a number of simplifying assumptions in constructing this model. First, we assume 

that signaling dynamics are insensitive to long-term changes in expression of individual 

signaling species. Second, the model also simplifies many intermediate steps between 
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Ang II receptor binding and Ras or phosphatase activation as lumped, rapidly 

equilibriating steps. Such assumptions are permissible in the absence of sufficient data to 

constrain steps in a model or when the simplified steps are not the focus of the main 

phenomena under investigation. This model could be improved with better biochemical 

measurements in cardiac fibroblasts. However, while increasing modeling detail may 

increase the scope of the model, we show here that simple, quantitatively constrained 

mechanistic models are sufficient and useful for generating new insight. 

 

5.5 Conclusions 
 

One implicit goal of this study was to use a computational model as an inference tool for 

accelerating biological insight and for proposing novel experimentally-testable 

therapeutic concepts. In this chapter, we have identified three important findings in the 

regulation of Ang II-stimulated fibrosis: 

i.) AT2R signaling is anti-fibrotic, but AT2R-specific agonists are not effective for 

inhibiting fibrotic remodeling 

ii.) MKPs are key endogenous regulators of ERK and JNK activity 

iii.) Ang II signaling responses are deactivated by incoherent feed-forward control 

 

These findings inspire a number of therapeutic concepts. First, our simulations comparing 

ACE inhibitors, AT1R antagonists and AT2R agonists suggest Ang II-based anti-fibrosis 

therapies should focus more on inhibiting Ang II production or increasing AT2R 

expression rather than blocking AT1R activity or stimulating AT2R activity. We show  



101 
 

AT2R agonists may be ineffective therapeutic agents due to saturation of phosphatase 

activities under physiological conditions. These model predictions can be directly tested 

in vitro by stimulating cardiac fibroblasts with these three classes of small molecules and 

quantifying MMP secretion. Moreover, phosphatase saturation may be tested by treating 

fibroblasts with phosphatase agonists to characterize the full dynamic range of 

phosphatase activity. 

 

Second, our sensitivity analysis identified MKPs as key ERK and JNK regulators, 

suggesting pharmaceutical or gene therapies targeted at stimulating MKP expression or 

activity may be more effective than receptor/ligand-based therapies. These hypotheses 

may be tested in vivo by evaluating transgenic over-expression of MKPs in an established 

in vivo heart failure model. Further studies will also be necessary to explore the 

relationship between ERK activation and MKP negative feedback in vitro to determine if 

MKP expression is capable of perturbing MMP expression.  

 

Finally, our model predicts the mechanism for fibrosis induction in elevated Ang II 

signaling is escape from the incoherent feed-forward control of saturated AT2R signaling 

by elevated AT1R activity. Therapeutically, AT2R-mediated control may be enhanced by 

elevating AT2R expression using gene therapy. However, a more comprehensive study 

including all MAPKs and relevant phosphatases cross-talking on MMP expression will 

be necessary to more precisely characterize the control systems regulating Ang II-

mediated fibrosis. 
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Together, this chapter demonstrates how a simple, but carefully constrained model of a 

disease-relevant cardiac signaling pathway can elucidate signaling mechanisms and 

provide quantitative support for comparing therapeutic strategies. In the context of Ang 

II-mediated fibrosis, this work also highlights a third consequence of incoherent feed-

forward signaling: in addition to providing adaptation and acceleration mechanisms, 

incoherent feed-forward motifs can produce sharp biological thresholds for limiting 

receptor-stimulated behaviors. 
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Chapter 6 
 
 
Regulation of Nuclear PKA Activity 
Revealed by cAMP Manipulation 
and Model-Based Inference 
 
 
 
 
 
 
 
 
 
 Work from this chapter is published in Regulation of nuclear PKA revealed by spatiotemporal 
manipulation of cAMP. Sample, V.*, DiPilato, L.M.*, Yang, J.H.*, Ni, Q., Saucerman, J.J., Zhang, J. Nat. 
Chem. Biol. 2012; 8(4):375-82. 
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6.1 Foreword 
 

In addition to its effects on acute contractility, β-adrenergic signaling is an important 

mediator of cardiac remodeling. In the heart, β-adrenergic signaling responses are 

primarily exerted via PKA activation by cAMP. Because cardiac remodeling is a long-

term, transcriptionally regulated process, we hypothesized that nuclear PKA activity may 

be relevant to β-adrenergic signaling-stimulated remodeling. However, it remains unclear 

if nuclear PKA activity is distinct from cytosolic PKA activity and if so, how nuclear 

PKA activity may be regulated. Numerous studies have shown cAMP compartmentation 

may be an important regulator for PKA248. In this chapter, we take an integrated approach 

combining computational modeling with live-cell imaging to examine nuclear PKA 

regulation in a commonly used cell line. 

 

6.2 Introduction 
 

cAMP plays a ubiquitous signaling role across cells from many species. In the classic 

mammalian model, activation of G-protein coupled receptors (GPCRs) initates a cascade 

of signaling events involving the activation of stimulatory Gα subunit and transmembrane 

adenylyl cyclase (tmAC), which catalyzes the conversion of ATP to cAMP. cAMP then 

diffuses throughout the cell, binding to and activating its known effectors: cAMP 

dependent protein kinase (PKA), exchange protein directly activated by cAMP (Epac), 

and cyclic nucleotide-gated channels249. Remarkably, despite the large number of GPCRs 

that are coupled to cAMP generation, cAMP elicits highly specific cellular responses to 

external stimuli. This specificity is believed to be achieved by compartmentation248, 
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wherein spatially heterogeneous cAMP gradients are formed despite cAMP’s fast 

diffusion. Phosphodiesterases (PDEs), which degrade cAMP to 5’-AMP, have been 

identified as important regulators of these heterogeneous cAMP dynamics250. Subcellular 

cAMP signaling microdomains can be further defined by distinct environments within 

cellular organelles as well as the assembly of signaling complexes at intracellular sites 

via scaffolding proteins such as A-kinase anchoring proteins (AKAPs)251.  

 

The nucleus is a good example of one such cAMP-PKA microdomain is the nucleus, 

where PKA plays important functional roles in regulating transcription252 and RNA 

splicing253. The contemporary hypothesis for cAMP-PKA signaling in the nucleus states 

that cAMP production by tmACs activates cytosolic PKA holoenzyme, in which cAMP-

binding induces catalytic subunit dissociation from the regulatory subunit in an isoform-

specific manner254 and translocates into the nucleus via diffusion255, serving as the only 

functional source of nuclear PKA249,252,256. In contrast to this hypothesis, resident pools of 

nuclear PKA holoenzyme have been proposed, evidenced by immunoblot and 

immunofluorescence observations of PKA regulatory and catalytic subunits in the nuclei 

of different cell types257-258. Moreover, a recent study identified a splicing factor 

(SRFS17A) as a nuclear AKAP requiring the presence of PKA regulatory subunit to 

regulate alternative splicing259, suggesting expression of endogenous nuclear PKA 

holoenzyme. However, the existence of nuclear PKA holoenzyme has not been well 

characterized, in part due to lack of functional data on cell responses stimulated by 

nuclear PKA holoenzyme.  
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In this chapter, we developed a versatile system for precisely manipulating the location, 

kinetics and magnitude of intracellular cAMP signals via activation of targeted soluble 

ACs (sACs). Using these sACs as cAMP point sources, we coupled real-time cAMP and 

PKA imaging with mechanistic computational modeling to investigate mechanisms 

regulating nuclear cAMP-PKA signaling in HEK 293 cells. We observed PKA dynamics 

at the membrane, cytosol and nucleus were differentially sensitive to the location of 

cAMP generation, indicating distinct pools of PKA holoenzyme. Using a computational 

model, we inferred the involvement of a nuclear pool of PKA holoenzyme to be 

necessary for explaining the measured cAMP and PKA dynamics. We confirmed these 

model predictions by immunofluorescence and immunblot analysis. Using the model, we 

further predicted that nuclear PKA holoenzyme is insulated from membrane-generated 

cAMP signals by a nuclear AKAP-PDE complex, which we also validated 

experimentally. These results provide evidence supporting the existence of a distinct 

nuclear signaling complex sensitive to local cAMP generation. 

 

6.3 Materials and Methods 
 

Gene construction  

sAC-NES fusion was formed by cloning the first 469 amino acids from truncated rat sAC 

via PCR amplification using NcoI and SalI restriction sites for N- and C- termini and 

ligating it into pRSETB vector bacterial vector (Invitrogen). An internal BamHI site was 

silently mutated using QuikChange mutagenesis. mCherry without a stop codon was 

subcloned into the sAC-containing vector between SalI and EcoRI sites and the entire 

sequence was subcloned into the mammalian expression vector, pcDNA3 (Invitrogen), 
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containing an NES sequence (5’-LPPLERLTL) at the C-terminus of the MCS using 

BamHI and EcoRI restriction sites. For -NLS and PM- targeting, sAC-mCherry was 

subcloned into pcDNA3 vectors containing the sequences coding for 5’- 

PKKKRKVEDA at the C-terminus between EcoRI and XbaI sites and 5’-

GCIKSKRKDK at the N-terminus between HindIII and BamHI sites, respectively.  

 

Cell culture  

HEK 293 cells were maintained in Dulbecco's Modified Eagle Medium with 10% fetal 

bovine serum and 1% penicillin/streptomycin at 37°C with 5% CO2. For imaging 

experiments, cells were first cultured on sterilized glass coverslips in 35-mm dishes 

coated with poly-D-lysine. Cells were then transfected with calcium phosphate at 50-60% 

confluency and allowed to grow for 18–24 hours before imaging. 

 

Live-cell imaging 

Cells were washed twice with and maintained in Hanks’ balanced salt solution buffer and 

allowed to equilibrate for 10 minutes at room temperature in the dark. Cells with low 

sAC expression (less than 2-fold expression of RFP above background) were chosen for 

imaging experiments to minimize basal activity. After selection, cells were treated with 

NaHCO3 (Sigma), KH7, Na2HPO4 (Sigma), forskolin (FSK; Calbiochem) and IBMX  

(3-isobytl-1-methylxanthine; Sigma) as indicated. Dual emission ratio imaging was 

performed on a Zeiss Axiovert 200M microscope with a MicroMAX BFT512 cooled 

CCD camera (Roper Scientific) controlled by METAFLUOR 6.2 software (Molecular 

Devices). Emission ratios were obtained using a 420DF20 excitation filter, a 450DRLP 



108 
 

dichroic mirror, and two emission filters (475DF40 for ECFP and Cerulean and 535DF25 

for cpVenus) alternated by Lambda 10–2 filter-changer (Sutter Instruments). RFP images 

were taken with a 568DF55 excitation filter, a 600DRLP dichroic mirror and a 653DF95 

emission filter. Images were taken every 20s with an exposure time of 100-500ms. 

Fluorescent images were background-corrected by subtracting autofluorescence 

intensities of untransfected cells (or background with no cells) from the emission 

intensities of fluorescent cells expressing reporters.  

 

Computational model development 

A computational model was developed to specifically describe cAMP and PKA dynamics 

in HEK 293 cells in MATLAB (Mathworks, Natick, MA) (Appendix C). The final model 

consists of three spatial compartments (plasma membrane, cytosol, and nucleus) and one 

functional compartment (AKAP). Equations describing PKA activation by cAMP were 

based on work by Rich, et al.260-261. Equations describing ICUE and AKAR activity were 

based on Saucerman, et al.4. cAMP generated by transmembrane and soluble adenylyl 

cyclases was permitted to freely diffuse across all compartments and activate PKA. 

Active PKA catalytic subunit was also permitted to diffuse across all compartments. PDE 

degradation of cAMP and AKAR regulation by PKA and phosphatases were described 

using Michaelis-Menten kinetics. Parameters for adenylyl cyclase activity, cAMP and 

PKA diffusion, PDE activity and phosphatase activity were estimated by nonlinear least 

squares fitting from randomized initial parameter sets, constrained by the magnitudes or 

t50 values from corresponding ICUE and AKAR experimental measurements. For each 

simulation, the model was run to steady state before stimulation by FSK, FSK+IBMX or 
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NaHCO3. Simulations ran for 60 min, corresponding to the average length of the nuclear 

ICUE and AKAR experiments. 

 

Model analysis 

Comparisons between the suitability of different model structures were made using the 

Akaike Information Criterion (AIC), an empirical estimate of the information given by a 

particular model structure262-263. The AIC rewards model agreement with fitted 

experimental data and penalizes the addition of fit parameters. For the least squares case 

with a small sample size, the corrected AIC is given by 
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where n is the number of experimental measurements, RSS is the residual sum of squared 

errors and K is the number of model parameters. Within a set of fitted models, the ‘best 

model’ minimizes the AIC. The probability that a given model within a set of models is 
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where Δi is the difference between the AIC of the ith model with the minimum AIC from 

a set of R models. These Akaike weights are equivalent to the Bayesian posterior model 

probabilities and sum to 1 for any particular set of models. 
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Immunofluorescence 

HEK 293 cells were grown to 70% confluency in 35 mm dishes and fixed with 4% 

paraformaldehyde at room temperature for 20 min. The cells were then washed thrice 

with DPBS and permeabilized with 0.2% Triton X-100 (Sigma) followed by three washes 

with DPBS. Following the wash, cells were incubated in 4% bovine serum albumin 

(BSA) for an hour and then incubated with mouse primary antibodies for pan PKA RI, 

PKA RIIβ and PKA catalytic α subunits (1:250 dilution, each) followed by a 30 min 

incubation with Alexa546 conjugated goat anti-mouse secondary antibodies (Invitrogen 

Molecular Probes). For nuclear colocalization studies, immunofluorescence images using 

Alexa546 conjugated goat anti-mouse antibody were obtained on a spinning disk 

confocal unit (CSU10: Yokogawa) while DAPI (Invitrogen), a cell permeable dye was 

used to label the nucleus. For Alexa546 images, excitation was conducted with an argon 

laser (CVI-Melles Griot) using a 514DF25 excitation filter and a 620DF60 emission filter 

(Chroma Technology). DAPI images were acquired with a 365WB50 excitation filter and 

a 482DF32 emission filter. Fluorescence images were procured with a CCD camera 

(Orca ER, Hamamatsu Photonics), controlled by Metamorph 7.5 imaging software 

(Molecular Devices) using a 40x objective (Zeiss) fitted on an Axiovert 200 microscope.  

 

Nuclear fractionation 

HEK 293 cells were grown in 10 cm dishes to 90% confluency, washed twice with 5 mL 

ice cold PBS, scraped and collected in a 15 mL falcon tube. The cells were then 

centrifuged at 1500 rpm for 10 min at 4oC. After removing the supernatant, the pellet was 

loosened by gentle vortexing for 5 sec and resuspended in 4 mL ice cold sucrose buffer I. 
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Sucrose buffers I and II were made as per protocol from Current Protocols in Molecular 

Biology264. The cells were then transferred to an ice cold Dounce homogenizer and the 

cells were lysed by 5-10 strokes of a B pestle. The solution with the lysed cells were then 

removed to a 50 mL faclon tube and gently mixed with 4 mL of sucrose buffer II. This 

solution was carefully layered onto a 4.4 mL cushion of sucrose buffer II in a polyallomer 

SW40.1 and the tube was filled to the top with sucrose buffer I. The tubes were then spun 

in a Beckman centrifuge maintained at 4oC in a SW41Ti rotor at 30,000x g for 45 

minutes. A fraction of the supernatant was saved for Western analysis and the remaining 

supernatant was removed. The nuclear pellet was suspended in 200 µL 2x SDS sample 

buffer and sonicated three times at power 3 for 5 sec each. The two fractions were run on 

a 10% SDS gel and Western blot analysis was performed as per standard procedure. The 

membrane was then probed with antibodies for CREB, tubulin, GAPDH, pan PKA RI, 

PKA RIIβ and PKA catalytic α subunits. 

 

6.4 Results 
 

Establishing a System for Local cAMP Manipulation 

To better quantify the effect of cAMP compartmentation on PKA dynamics, we 

developed a system for local cAMP manipulation using recombinant sACs. Endogenous 

sACs are sensitive to sodium bicarbonate (NaHCO3), which activates sAC by inducing 

closure of the active site and metal recruitment, resulting in enhanced ATP turnover265. 

Here, we ligated the monomeric red fluorescent protein mCherry to a truncated, 

catalytically active form of sAC266-267 at the carboxy terminus as an expression marker 
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for transfection. In addition, we ligated localization sequences targeting the mCherry-

sAC to the plasma membrane, cytosol or nucleus at the N- or C- terminus to generate 

localized NaHCO3-sensitive point sources for cAMP generation. 

 

 We first tested this system in HEK 293 cells by co-expressing a cytosolic targeted 

version of these constructs containing a nuclear export signal (NES) (sAC-NES, Figure 

6.1A) with the cytosolic targeted FRET-based cAMP indicator ICUE-NES to monitor 

cAMP accumulation268-269. Treatment of HEK 293 cells co-expressing sAC-NES and 

ICUE-NES with 15 mM NaHCO3 induced a rapid and robust FRET response (29.3 ± 

3.8%; n =10 cells; mean ± SEM) which was readily reversed by washing out NaHCO3 

(Figure 6.1B). These reversal kinetics were similar to reversal kinetics observed by  

β-adrenergic receptor antagonists269, suggesting reversal kinetics were due to cAMP 

depletion. These responses were specific to expression of our targeted sAC, as the 

addition of 100 µM KH7, a sAC-specific inhibitor, also reversed the ICUE response 

(Figure 6.1C). 

 

To determine if these cAMP signals were functionally relevant, we probed PKA 

dynamics by using a cytosolic targeted FRET reporter for PKA activity (AKAR-NES), 

which indicates changes in PKA activity by phosphorylation-dependent changes in 

FRET270. Upon NaHCO3 stimulation of HEK 293 cells co-expressing sAC-NES and 

AKAR-NES, we observed an immediate and robust FRET response (19.3 ± 2.8%; n = 5 

cells) with a t50 of 0.9 ± 0.1 min (Figure 6.1D). PKA activity was sustained in the 

presence of 15 mM NaHCO3 and reversed immediately upon washout, demonstrating that  
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Figure 6.1 Local cAMP manipulation using soluble adenylyl cyclases 
(sAC). A, Representative images of targeted sAC expression. sAC-NES 
expression is cytosolic. sAC-NLS expression is nuclear. PM-sAC 
expression is at the plasma membrane. B, Local cAMP accumulation by 
sAC-NES is fast and reversible. C, NaHCO3-stimulated cAMP responses 
are specifically stimulated by expressed sAC, evidenced by deactivation 
with 100 µM KH7, a sAC inhibitor. D, Local cytosolic PKA activity is 
similarly fast and reversible. E, sAC reversibility kinetics are fast and 
robust to multiple NaHCO3 treatments. F, NaHCO3-stimulated cAMP 
accumulation is dose dependent and tunable. 
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this targeted sAC system was effective for manipulating both compartmented cAMP 

accumulation and downstream PKA activity.  

 

We next tested the fidelity and precision of this system by exposing cells to pulses of 15 

mM NaHCO3 at 5 min increments, followed by washout (Figure 6.1E). After each 

stimulus, an immediate and robust cAMP response was observed, sustained without 

significant photobleaching or signal decay. Thus we demonstrated that this system is 

highly reversible, sensitive and without memory, while permitting precise control of 

signal duration.  

 

To further test this system’s ability to manipulate cAMP concentrations, we co-expressed 

sAC-NES and ICUE-NES and stimulated cells with three concentrations of NaHCO3. A 

small dose of 2.5 mM NaHCO3 elicited a small ICUE response (19.3 ± 0.017%; n =3 

cells) (Figure 6.1F), while subsequent increments of 2.5 mM and 7.5 mM NaHCO3 

resulted in step-wise increases in FRET responses and cAMP concentrations, 

demonstrating the targeted sACs were capable of prescribing specific cAMP 

concentrations. 

  

Having characterized the robustness of the cytosolic sAC to different stimulus conditions, 

we decided to generalize this system for other compartments. To generate a nuclear 

cAMP source, we ligated a nuclear localization signal (-NLS) sequence269 to sAC. 

Similarly, we targeted the sAC to the plasma membrane (PM-) by ligating a lipid 

modification domain derived from Lyn kinase, which can be myristoylated or 
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palmitoylated268. To test the local cAMP generation by these constructs, we co-expressed 

sAC-NLS and ICUE-NLS and stimulated with 2.5 mM NaHCO3, which produced a rapid 

ICUE-NLS response (21.3 ± 2.5%; n = 5 cells) (Figure 6.2A). Interestingly, subsequent 

incremental doses of NaHCO3 did not further enhance the magnitude of the ICUE-NLS 

response significantly. 

 

However, distal cAMP responses exhibited different dynamics, as co-expression of sAC-

NLS with PM-ICUE did not elicit a PM-ICUE response with 2.5 mM NaHCO3 (Figure 

6.2B). Only after stimulating with larger doses of NaHCO3 were detectable responses 

elicited, suggesting the null response by 2.5 mM NaHCO3 was due to diminished plasma 

membrane cAMP accumulation from nuclear cAMP generation by sAC-NLS. Similarly, 

when we performed the converse experiment, we observed saturating local ICUE 

responses and weak distal ICUE responses. Co-expression of PM-sAC with PM-ICUE 

elicited a maximal response (11.4 ± 0.9%; n = 2 cells) (Figure 6.2D) whereas co-

expression of PM-sAC with ICUE-NLS elicited a small response (4.1 ± 0.4%; n = 3 

cells) (Figure 6.2C). These results demonstrate our targeted sAC system was capable for 

eliciting spatially localized cAMP generation and that endogenous cAMP 

compartmentation mechanisms generated spatially heterogeneous cAMP gradients in 

these cells. 

 

Nuclear PKA Dynamics are Sensitive to Locations of cAMP Generation  

Armed with a system for generating highly localized cAMP accumulation, we were 

interested in how cAMP compartmentation may regulate nuclear PKA activity. We first  
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Figure 6.2 cAMP accumulation is sensitive to local and distal cAMP 
generation. A Local nuclear cAMP accumulation from cAMP generation 
by sAC-NLS induces a nearly saturating ICUE-NLS response. B, Distal 
plasma membrane cAMP accumulation from sAC-NLS is non-saturating. 
C, Similarly, distal nuclear cAMP accumulation from cAMP generation 
by PM-sAC is non-saturating, while, D, local plasma membrane cAMP 
accumulation from cAMP generation by PM-sAC is saturating. 

  



117 
 

examined nuclear PKA activation by PM-sAC to mimic the effects of stimulating 

endogenous tmACs. Treating cells co-expressing PM-sAC and AKAR-NLS with 15 mM 

NaHCO3 evoked a slow nuclear AKAR response with a t50 of 20.2 ± 3.0 min (n = 4 cells) 

(Figure 6.3A), whereas a small stimulus of 2.5 mM NaHCO3 did not induce consistent 

responses. These responses were similar to those elicited by direct activation of tmAC 

with forskolin (FSK) (t50 = 26.0 ± 1.6 min; n = 13 cells) (Figure 6.3B), with no 

statistically significant difference between the t50s of the two experiments. These slow 

kinetics were also consistent with observations that nuclear PKA activity may be rate-

limited by slow diffusion of cytosolic PKA catalytic subunit255,271.  

 

In contrast, NaHCO3 stimulation of either sAC-NES or sAC-NLS resulted in faster 

AKAR-NLS responses with a t50 of 3.5 ± 0.3 min (n = 9 cells) and 4.2 ± 0.5 min (n = 7 

cells), respectively (Figure 6.3B). While the kinetics of nuclear PKA responses 

stimulated by nuclear- and cytosolic-generated cAMP were not different, these rates were 

significantly faster than those evoked by membrane-generated cAMP via endogenous 

tmAC (p < 0.001 for both) or PM-sAC (p = 0.01 for both). To exclude the possibility that 

sAC over-expression had additional effects on PKA, we treated cells expressing sAC-

NLS with FSK and observed similarly slow AKAR-NLS responses (t50 = 29.8 ± 2.3 min; 

n = 2 cells) to those in cells containing untargeted sAC (t50 = 26.0 ± 1.6 min; n = 13 cells) 

(Figure 6.3B). To further demonstrate that fast nuclear AKAR responses were induced by 

local cAMP generation, we stimulated HEK 293 cells expressing sAC-NLS with 

NaHCO3 and examined the phosphorylation of CREB, an endogenous substrate of PKA 

in the nucleus. Similar to AKAR-NLS responses, we observed rapid CREB  
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Figure 6.3 Nuclear PKA dynamics are sensitive to the location of 
cAMP generation. A, Nuclear PKA dynamics from cAMP generation at 
the plasma membrane are significantly slower than dynamics from cAMP 
generation at the cytosol or nucleus. B, NaHCO3-stimulated nuclear PKA 
dynamics from membrane cAMP generation are similar to membrane-
stimulated responses on endogenous tmAC using FSK. C, Slow nuclear 
PKA dynamics are functionally validated by slow CREB phosphorylation. 
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phosphorylation kinetics in the presence of stimulated sAC-NLS (Figure 6.3C). The rapid 

AKAR-NLS response and CREB phosphorylation elicited by nuclear or cytosolic cAMP 

production were surprising. These contradicted the prevailing notion that nuclear PKA 

activity is rate-limited by slow diffusion of cytosolic PKA catalytic subunit in the 

nucleus255,271. With this classic hypothesis, we expected nuclear PKA dynamics to be 

insensitive to the location of cAMP generation. 

 

Model-Based Inference for Nuclear PKA Holoenzyme 

To quantitatively clarify if this prevailing notion is able to explain our data, we 

constructed a biochemically mechanistic computational model describing cAMP and 

PKA dynamics in the three spatial subcellular compartments (plasma membrane, cytosol, 

nucleus) represented in our experiments (Figure 6.4; Appendix C). This ‘Classical Model’ 

model consists of endogenous adenylyl cyclase at the plasma membrane, PKA 

holoenzyme exclusively at the membrane and cytosol, and PDEs and phosphatases in all 

the three compartments. 

 

We first fit this model to our plasma membrane and nuclear ICUE measurements 

generated by NaHCO3 stimulation of plasma membrane and nuclear targeted sAC to 

determine if this model adequately captured cAMP dynamics (Figure 6.5A). Similar to 

our experimental measurements, the model predicted that local ICUE responses saturate 

at lower NaHCO3 doses than distal ICUE responses, irrespective of the location of sAC. 

Simulated ICUE responses have similar shape and qualitative trends, indicating the 

model is a good representation of both cAMP dynamics and ICUE activity. 
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Figure 6.4 Model schematic for cAMP compartmentation 
manipulation using sACs. Endogenous tmACs (AC) are membrane-
bound and sensitive to FSK. sACs can be targeted to the plasma 
membrane, cytosol or nucleus using localization sequences. sACs are 
sensitive to NaHCO3.FRET reporters for cAMP (ICUE) and PKA 
(AKAR) can also be targeted to different subcellular compartments to give 
local quantification of cAMP and PKA dynamics. 
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Figure 6.5 Model-based inference for nuclear PKA holoenzyme. A, 
The Classical Model for diffusion limited nuclear PKA activity can 
explain local and distal cAMP accumulation to dose-dependent NaHCO3 
treatment. B, The Classical Model also adequately explains slow nuclear 
PKA dynamics from FSK stimulation of endogenous tmACs. C, The 
Classical Model fails to predict fast local nuclear PKA dynamics from 
nuclear cAMP generation from sAC-NLS. Inclusion of nuclear PKA 
holoenzyme (nucPKA Model) is capable of capturing the faster nuclear 
PKA kinetics. 
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To determine if the model adequately captured nuclear PKA dynamics, we 

simultaneously fit this model to our FSK-stimulated AKAR-NES and AKAR-NLS 

measurements (Figure 6.5B). Simulated cytosolic AKAR-NES dynamics were fast  

(t50 = 1.79 min vs. experimental t50 = 1.5 ± 0.1 min; n = 8 cells), while simulated nuclear 

AKAR-NLS dynamics are slow (t50 = 25.4 min vs. experimental t50 = 25.4 ± 1.3 min; n = 

28 cells). Confident that the Classical Model adequately described the cAMP and PKA 

dynamics under our experimental conditions, we simulated cytosolic PKA dynamics 

stimulated by NaHCO3-activated sAC-NES as well as nuclear PKA dynamics stimulated 

by NaHCO3-activated sAC-NLS (Figure 6.3C). This model predicted rapid cytosolic 

PKA activation by sAC-NES (t50 = 0.6 min), which was qualitatively similar to the 

experimentally measured AKAR-NES response (t50 = 0.9 ± 0.1 min; n = 5 cells). 

However, under nuclear sAC stimulation, the model predicted slow nuclear PKA 

responses with a t50 = 24.7 min, which was in sharp contrast to the experimentally 

measured AKAR-NLS kinetics (t50 = 4.8 ± 0.5 min; n = 7 cells). This identified a failure 

of the Classical Model to explain the fast nuclear PKA responses.  

 

We hypothesized that the presence of an independent pool of PKA holoenzyme in the 

nucleus could account for the observed fast nuclear PKA kinetics, and incorporated a 

nuclear PKA holoenzyme as a free parameter into the model, now termed ‘nucPKA 

Model’ (Appendix C). The nucPKA Model was refitted to both our targeted ICUE and 

AKAR data and predicted similar ICUE responses as the Classical Model. While the 

predictions for the PKA response kinetics in the cytosol remained relatively unchanged 

(t50 = 0.9 min), the nucPKA Model gave a significant improvement in predicting nuclear 
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PKA responses (t50 = 6.1 min nucPKA Model vs. experimental t50 = 4.8 ± 0.5 min; n = 7 

cells) (Figure 6.3C). 

 

Increasing model complexity risks trivially improve model fits to experimental data, 

while risking increased model uncertainty. To quantitatively compare the appropriateness 

of selecting one model over the other, we took an information theoretic approach to 

determine which model structure is most likely. We first computed the Akaike 

Information Criterion (AIC) 262-263 for both the Classical Model (AIC = -59.12) and the 

nucPKA Model (AIC = -60.71), which rewards improvements in model fits and penalizes 

increases in the number of fitted parameters. The smaller AIC value for the nucPKA 

Model indicates that the nucPKA Model is a better description for the observed PKA 

dynamics than the Classical Model. Using these AICs, we also computed the Akaike 

weights, which quantify the probability that a model structure within a set of models is 

likely to best describe the respective experimental data. The nucPKA Model had a higher 

Akaike weight (w = 0.69) than the Classical Model (w = 0.31), giving a greater than  

2-to-1 evidence ratio for the nucPKA Model. These findings suggested a nuclear pool of 

PKA holoenzyme is likely to be an important component of nuclear PKA dynamics. 

 

Experimental Validation for Nuclear PKA Holoenzyme 

To validate this model prediction, we performed immunofluorescence studies using anti-

pan PKA RI, anti-PKA RIIβ and anti-PKA catalytic subunit antibodies and tested for the 

presence of nuclear PKA holoenzyme. All the three antibodies showed weak but distinct 

staining in the nuclei of HEK 293 cells (Figures 6.6A and 6.6B), whereas staining with  
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Figure 6.6 Experimental validation of nuclear PKA holoenzyme 
prediction. A, Representative immunofluorescence imaging of nuclear 
PKA regulatory and catalytic subunit expression. B, Nuclear PKA 
expression is small, but significant over background noise. C, Western 
blot confirmation of nuclear PKA holoenzyme from whole cell (WC), 
non-nuclear (NN) and nuclear (N) fractions. D, Mutant A126.1B2 cells 
contain reduced nuclear PKA catalytic subunit, but intact regulatory 
subunit. E, Reconstitution of nuclear PKA holoenzyme with nuclear 
catalytic subunit (C-NLS) expression confers fast nuclear PKA responses 
to FSK stimulation. 
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secondary antibodies alone did not give a signal in the nucleus. To ensure these results 

were not due to non-specific labeling, we isolated the nuclei of HEK 293 cells by density 

centrifugation through a sucrose gradient and performed Western blot analysis on the 

nuclear and non-nuclear fractions to further substantiate the existence of a PKA pool in 

the nucleus. These fractions were first probed with antibodies against cAMP response 

element-binding protein (CREB) as a nuclear fraction reporter, as well as antibodies 

against β-tubulin as cytosolic fraction reporters. The nuclear fraction gave positive 

indication by anti-CREB antibodies with undetectable levels of β-tubulin antibodies 

(Figure 6.6C), indicating that the nuclear fraction was free of cytosolic contaminants. 

Having confirmed the purity of the nuclear fraction, we probed the two fractions with 

anti-pan PKA RI, anti-PKA RIIβ and anti-PKA catalytic subunit antibodies. The nuclear 

fraction gave a positive signal for both PKA regulatory and catalytic subunits, providing 

direct evidence for the presence of PKA holoenzyme in the nucleus.  

 

To further link nuclear PKA holoenzyme expression with the fast functional nuclear PKA 

responses, we performed rescue experiments using a mutant PC12 cell line (A126.1B2) 

deficient in nuclear PKA activity272. This mutant cell line exhibits significantly decreased 

PKA catalytic subunit in the nucleus (Figure 6.6D), and stimulation with FSK does not 

elicit an AKAR-NLS response (Figure 6.6E). However, because PKA RI subunit are still 

highly expressed in the nuclei of these cells (Figure 6.6D), we tested if increasing the 

expression of nuclear catalytic subunit could enrich nuclear PKA holoenzymes and 

enable fast nuclear PKA responses. Indeed, FSK-stimulation in A126.1B2 cells over-

expressing nucleus targeted PKA catalytic subunit generated fast AKAR-NLS responses 
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(t50 = 2.9 ± 0.3 min; n = 2 cells; Figure 6.6E). These rapid response were consistent with 

the kinetics of activation of the nuclear PKA holoenzyme predicted by the nucPKA 

model (t50 = 6.1 min) as well as our sAC-NLS, AKAR-NLS co-expression experiments 

(t50 = 4.8 ± 0.5 min; n = 7 cells). In contrast, A126.1B2 cells stably transfected with 

untargeted catalytic subunit gave slow AKAR-NLS responses to FSK stimulation (Figure 

6.6E). Collectively, this data suggests that fast nuclear PKA responses require locally 

activatable nuclear PKA holoenzyme. 

 

PDE4 regulates PKA responses in the nucleus 

Having confirmed the model-predicted nuclear PKA holoenzyme expression, we turned 

attention to identify mechanisms regulating nuclear PKA responses. It is well established 

that PDEs can shape cAMP gradients in sub cellular compartments by restricting cAMP 

diffusion250. To test the role of PDEs in regulating nuclear PKA responses, we treated 

HEK 293 cells with 3-isobytl-1-methylxanthine (IBMX), a non-selective PDE inhibitor, 

and monitored AKAR-NLS responses to tmAC activation by FSK. Inhibition of PDEs 

with IBMX significantly accelerated the kinetics of FSK-stimulated nuclear PKA activity 

as indicated by a decreased t50 of 12.5 ± 2.1 min (n = 18 cells). In 44% of these cells, a 

very fast response (t50 = 3.1 ± 1.2 min; n = 8 cells) was observed (Figure 6.7A), matching 

the kinetics of the nuclear PKA holoenzyme activation that were experimentally 

determined by nuclear cAMP generation (t50 = 4.8 ± 0.5 min; n = 7 cells) and those 

predicted by the nucPKA Model (t50 = 6.1 min). These results suggested a role for PDEs 

in limiting the activation of the endogenous nuclear PKA pool when cAMP is produced 

at the plasma membrane.  
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Figure 6.7 Nuclear PKA dynamics are regulated by PDE4D. A, PDE 
inhibition with 100 µM IBMX accelerates nuclear PKA responses to 50 
µM FSK. B, PDE4-specific inhibition with 10 µM rolipram (RP) also 
accelerates nuclear PKA responses to FSK. C, PDE3-specific inhibition 
with milrinone (MIL) did not accelerate nuclear PKA-responses to FSK, 
suggesting PDE4 rate-limits nuclear PKA activation. D, Expression of 
dominant negative PDE4D3 (dnPDE4D3) accelerates nuclear PKA 
activity. E, Nuclear cAMP accumulation is saturated under stimulation of 
endogenous tmAC by FSK alone. 
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PDE3 and PDE4 have been identified as the two major subfamilies of PDEs expressed in 

HEK 293 cells273. To identify which PDE isoform regulates PKA responses in the 

nucleus, we treated cells with FSK in the presence of either milrinone, a PDE3-selective 

inhibitor, or rolipram, a PDE4-selective inhibitor. The rolipram/FSK cocktail induced a 

fast AKAR-NLS response (t50 = 5.4 ± 2.14 min; n = 8 cells; Figure 6.7B), while 

treatment with milrinone/FSK induced a slow AKAR-NLS response, similar to FSK 

stimulation alone (Figure 6.7C). These data suggested that PDE4 is the predominant 

isoform responsible for regulating nuclear PKA responses. To more carefully identify the 

specific PDE4 subfamilies involved in regulating nuclear PKA activity, we co-expressed 

dominant negative (dn-) mutants of PDE4B and PDE4D with AKAR-NLS274-275. These 

catalytically-inactive mutants exert an inhibitory effect by dislodging the endogenous 

PDE4 isoforms from their appropriate anchor sites274-275. FSK elicited a slow AKAR-

NLS response in cells over-expressing either dnPDE4B1 or dnPDE4B2, but fast in cells 

over-expressing dnPDE4D3 (Figure 6.7D), suggesting that PDE4D3 is responsible for 

regulating nuclear PKA responses in HEK 293 cells. 

 

In light of the IBMX experiments, we hypothesized that PDE4 may play an important 

role in limiting the cAMP diffusion from the plasma membrane to the nucleus. To test 

this hypothesis, we examined the effect of PDE inhibition on ICUE-NLS responses to 

cAMP generation at the plasma membrane. However, FSK stimulation led to fast, 

saturated ICUE-NLS responses both with and without PDE inhibition (Figure 6.7E), 

suggesting cAMP is capable of quickly diffusing to the nucleus. This data presented a 

paradox: if cAMP generated at the plasma membrane accumulates fast in the nucleus and 



129 
 

produces a maximal response from ICUE-NLS (which has a lower affinity for cAMP 

than PKA276-277), why are nuclear PKA holoenzymes not being activated by this pool of 

cAMP? Indeed, when the nucPKA model was refitted to all of the ICUE and AKAR 

responses, it predicted fast nuclear responses of PKA irrespective of where cAMP was 

synthesized (Figure 6.8A), in contrast to the experimental observations (Figure 6.3B).  

 

Model-Based Inference for a Nuclear AKAP-PDE4 Complex 

To reconcile how PDE4 may limit nuclear PKA activation despite adequate nuclear 

cAMP accumulation by FSK stimulation, we hypothesized that PDE4 may form a 

signaling complex with nuclear PKA holoenzyme. Such an arrangement may allow 

nuclear PDEs to degrade cAMP immediately local to the nuclear PKA holoenzyme, 

insulating nuclear PKA activity by raising the cAMP activation threshold. The existence 

of such signaling complexes has been documented in literature278. For example, a peri-

nuclear AKAP (mAKAP) has been shown to tether PDE4 to the AKAP-PKA complex 

and modulate local cAMP levels279. We therefore inferred the existence of a subnuclear 

AKAP which may bring nuclear PKA holoenzyme in close proximity to PDEs.  

 

To test the validity of this hypothesis, we revised the nucPKA Model by adding a 

phenomenological subnuclear AKAP compartment (‘nucAKAP Model’). We assumed all 

nuclear PKA holoenzyme resides in this subnuclear AKAP compartment and that the 

apparent PDE concentrations in this compartment are raised significantly by protein 

tethering. Refitting the nucPKA Model to each of the data sets, we observed significant 

improvement in the model predictions for nuclear PKA dynamics. Specifically, while  
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Figure 6.8 Model-based inference for nuclear AKAP complex. A, 
Both Classical and nucPKA Models fail to predict nuclear PKA activation 
by local and distal cAMP generation. Inclusion of a nuclear AKAP 
complex (nucAKAP Model) recovers the experimentally observed 
dynamics. B, nucAKAP Model best fits the dynamics observed from FSK-
stimulated cAMP generation by endogenous tmAC with and without PDE 
inhibition by IBMX. 
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both the refitted Classical Model and the nucPKA Model failed to predict the differences 

in nuclear PKA dynamics in response to membrane and cytosolic cAMP generation 

(Figure 6.8A), nuclear PKA response kinetics computed by the nucAKAP model 

matched the experimental kinetics, for the membrane cAMP production (nucAKAP 

Model t50 = 20.1 min vs. experimental t50 = 20.4 ± 3.02 min; n =4 cells) as well as for 

cytosolic cAMP generation (nucAKAP Model t50 = 5.0 min vs. experimental t50 = 3.5 ± 

0.3 min; n = 9 cells). These simulations suggest that differences in nuclear PKA kinetics 

may be explained by differences in apparent cAMP concentration which are specified by 

AKAP-bound PDE4. In this scenario, cytosolic sAC stimulation may generate a much 

larger cAMP signal than membrane sAC or tmAC stimulation, driving activation of a 

nuclear AKAP-bound PKA pool. 

 

We also simulated PKA activity in the membrane, cytosol and nucleus in response to 

FSK in the absence or presence of IBMX for each of the three models (Figure 6.8B). The 

nucAKAP Model best captured the slow nuclear PKA response to FSK (t50 = 24.9 min vs. 

t50 = 26.0 ± 1.6 min; n = 13 cells) and accelerated nuclear PKA response to FSK in the 

presence of IBMX (t50 = 17.4 min vs. t50 = 12.5 ± 2.1; n = 18 cells). The computed AIC 

values for the Classical Model (AIC = 3.95), nucPKA Model (AIC = 5.81) and nucAKAP 

Model (AIC = -37.50) suggest that the nucAKAP Model best describes the responses of 

nuclear PKA in our experiments, significantly outweighing both the Classical and 

nucPKA Models in explaining the differences in nuclear PKA dynamics. The 

corresponding Akaike weights for these models were < 0.001 for both the Classical and 

nucPKA Models and > 0.999 for the nucAKAP Model indicating that both the Classical 
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and nucPKA Models are incapable of explaining how PDE4 limits nuclear PKA 

responses to tmAC stimulation.  

 

Experimental Validation for AKAP Regulation of Nuclear PKA Activity 

To test the prediction for a AKAP-PDE4-PKA complex, we pre-incubated HEK 293 cells 

expressing AKAR-NLS with Ht31, a peptide that blocks the interaction between PKA 

and AKAP279. This treatment is experimentally analogous to reducing the nucAKAP 

Model to the nucPKA Model, with the expectation that disruption of the AKAP-PKA 

interaction should accelerate nuclear PKA activation since PKA is no longer localized in 

the same signaling microdomain as the AKAP-tethered PDEs. Upon stimulation with 

FSK, we observed faster AKAR-NLS kinetics (t50 = 7.6 ± 1.2 min; n = 14 cells) (Figure 

6.9A), which were similar to those evoked by PDE inhibition. In contrast, when cells 

were pre-incubated with a negative control scrambled peptide (Ht31P) and then treated 

with FSK, we observed slow AKAR-NLS responses (t50 = 25.3 ± 1.8 min; n = 9 cells), 

comparable to treatment with FSK alone (Figure 6.9B). Together, these results confirm 

an important role for AKAPs in regulating the nuclear PKA response and support our 

conceptual model of a subnuclear AKAP- PDE4-PKA signaling complex. 

 

6.5 Discussion 
 

The ability to both monitor and precisely manipulate cAMP concentrations at different 

subcellular loci is important for fully understanding the role of compartmented cAMP 

signaling in cells. Towards this end, we describe a new method using targeted sACs for 

prescribing the location, kinetics and magnitude of cAMP accumulation. This system is  
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Figure 6.9 Experimental validation of nuclear AKAP complex 
prediction. A, AKAP disruption by pre-treatment with 50 µM Ht31 
accelerates nuclear PKA responses to FSK. Pre-treatment with 50 µM 
Ht31P negative control gives slow nuclear PKA responses. B, Nuclear 
PKA dynamics with Ht31 pre-treatment are similar to dynamics with 
PDE4 inhibition by IBMX and RP, suggesting an AKAP complexes 
nuclear PKA holoenzyme with PDE4. 
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advantageous over photolytic uncaging of cAMP analogs280, since these sACs can be 

genetically targeted to functional organelle microdomains (e.g., mitochondria and 

vesicles) or cellular nanodomains (e.g., membrane rafts) using localization sequences. 

Moreover, activation of sAC leads to more efficient cAMP generation than photolytic 

uncaging due to its catalytic nature, permitting temporal control of NaHCO3 -mediated 

responses. In addition, targeted sAC can be scalable to in vivo transgenic models to 

examine multi-cellular or tissue relevance. Recently, light-sensitive adenylyl cyclases 

from Euglena gracilis and the soil bacteria Beggiatoa have also been exploited to 

generate cAMP upon stimulation with light281-282, though cAMP generation in specific 

organelles has yet to be demonstrated by this method. The present method allows 

organelle-specific and efficient cAMP generation under strict temporal control, thereby 

enabling mechanistic dissection of the spatiotemporal regulation of cAMP signaling in 

specific subcellular compartments. 

 

On the computational modeling front, we adopted a unique strategy of assaying model 

structures via parameter estimation to infer the regulatory structure of a cell signaling 

network. Mechanistic models are often presumed to contain an appropriate structure and 

are used as surrogates for an experimental system59. Here, we draw upon findings in 

information theory to directly infer and test different model structures when they are not 

fully known a priori262. While traditional approaches in systems biology seek to quantify 

known relationships or integrate large data sets283, our approach here illustrates a 

relatively under-utilized, but important application for computational models in 
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complementing experimental studies: providing quantitative evidence for selecting from 

directly competing hypotheses. 

 

In this chapter, we combined targeted sAC expression with live-cell imaging and 

mathematical modeling to investigate how cAMP signals are translated into nuclear PKA 

activity. We revise the existing dogma of cAMP-PKA signaling in the nucleus249,252,256 

and form a new conceptual model for the regulation of nuclear PKA responses: PKA 

signaling dynamics in the nucleus is governed by two distinct pools of PKA holoenzyme, 

a translocated cytosolic pool and a resident nuclear pool. In this conceptual model, the 

presence of an AKAP-mediated signaling complex that localizes PDE4 in close 

proximity to nuclear PKA holoenzyme largely controls nuclear PKA activity. When 

cAMP is generated at the plasma membrane and diffuses into the nucleus, cAMP 

concentrations immediately local to the nuclear PKA holoenzyme are kept low by 

AKAP-anchored PDE4s and are not capable of efficiently activating nuclear PKA 

holoenzyme. And as a result, nuclear PKA responses are characterized by slow kinetics, 

rate-limited by the translocation of the catalytic domain of cytosolic PKA. However, 

when the local cAMP concentration is elevated above a threshold, for example by 

activation of cytoplasmic- or nuclear-targeted sAC, activation of nuclear PKA 

holoenzyme can occur and generate fast kinetics of nuclear PKA responses. This nuclear 

PKA signaling domain assembled by a subnuclear AKAP therefore elevates the cAMP 

activation threshold and translates spatially distinct cAMP signals into temporally variant 

nuclear PKA kinetics. New studies will need to focus on identifying the responsible 

AKAP and more fully characterize the signaling complex. In addition, the functional 
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impact of this nuclear PKA holoenzyme on processes such as transcription and RNA 

splicing will need to be clarified. However, there is some evidence to suggest that 

endogenous sACs can be found in the nuclei of several cell types and engaged in 

response to metabolic stress258.   

 

6.6 Conclusions 
 

In summary, we combine targeted biochemical cAMP manipulation, real-time cAMP and 

PKA measurement and quantitative mechanistic modeling to provide evidence for the 

existence and distinct regulation of nuclear PKA holoenzyme. We propose a new model 

that a subnuclear signaling complex establishes a local signaling threshold which 

translates spatial second messenger signals into temporal control of kinase activity. The 

quantitative native biochemistry approach284-286 utilized here should facilitate further 

testing of this model in this and other cell systems, leading to a better understanding of 

the mechanistic intricacies that underlie compartmentalized cAMP signaling.  
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Chapter 7 
 
 
Regulation of PKA Catalytic 
Subunit Compartmentation in 
Cardiac Myocytes 
 
 
 
 
 
 
 
 
 
 Work from this chapter is in preparation for publication. 
 
  



138 
 

7.1 Foreword 
 

In the previous chapter, we inferred a subnuclear AKAP-PDE4-PKA signaling complex 

as a putative local cAMP compartmentation mechanism which can regulate nuclear PKA 

dynamics in the commonly used HEK 293 cell line. Moreover, we showed how an 

integrated modeling-experimental approach can be useful for hypothesis generation. 

However, the primary focus of this dissertation is to understand how β-adrenergic 

signaling regulates cardiac remodeling processes such as hypertrophy. In this chapter, we 

directly test the hypothesis that nuclear PKA activity directly and specifically regulates 

cardiac myocytehypertrophy, in vitro. Moreover, we show cardiac nuclear PKA activity 

is regulated by compartmentation of the PKA catalytic subunit, rather than cAMP 

compartmentation. These findings have important implications for the therapeutic 

management of cardiac disease. 

 

7.2 Introduction 
 

Congestive heart failure is a complex disease characterized by the failing heart’s inability 

to adequately supply blood to meet the body’s demand. In normal physiology, the body 

responds to acute deficiencies in blood flow by releasing catecholamines and stimulating 

sympathetic activity in the heart1. However, the contemporary view of heart failure states 

that in addition to acute enhancements in contractility, sympathetic overdrive initiates 

cardiac remodeling events such as hypetrophy and fibrosis, which further weaken cardiac 

tissue (the neurohormonal hypothesis)8,18. Over time, this further stimulates 
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catecholamine release, locking the heart in a vicious cycle until the heart suffers 

electromechanical disfunction and sudden cardiac death. 

 

Consistent with this view, β-adrenergic receptor antagonists (β-blockers) have risen as 

highly efficacious first-line therapies for managing the progression of heart failure21,85. 

However, the β-adrenergic receptor/protein kinase A (PKA) signaling pathway is 

complex and it remains unclear how β-adrenergic signaling can sometimes elicit some 

signaling responses (e.g., contractility enhancements) but not others (e.g., cell 

hypertrophy)3. Moreover, while β-blockers have demonstrated success in attenuating 

cardiac remodeling, β-blocker treatment also risks leaving patients susceptible to 

bradycardia and low blood pressure due to their antagonistic actions on heart rate and 

contractility21,85. These concerns raise many questions on how β-adrenergic signaling 

contributes to the progression of heart failure34-35. 

 

Many groups, including our own, have observed spatiotemporal heterogeneity in  

β-adrenergic signaling in the cardiac myocyte, prompting the hypothesis that local 

‘compartmentation’ of β-adrenergic signaling species may underlie selection of different 

receptor-stimulated behaviors44-45. Common to most of these studies is the hypothesis that 

spatially heterogeneous cAMP gradients or PKA holoenzyme expression restricts the 

activity of PKA catalytic subunit to small local signaling microdomains, coupled to  

β-adrenergic signaling responses. Here we test a complementary hypothesis that 

compartmentation of PKA catalytic subunit itself may also be an important regulator of 

β-adrenergic signaling specificity. 
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Taking a multi-disciplinary approach of combining live-cell imaging with high-

throughput hypertrophy screening and computational modeling, we demonstrate  

β-adrenergic receptor-stimulated enhancements to Ca2+ and cell size have different 

sensitivities to receptor activation. These differences in sensitivity are also present in 

cytosolic and nuclear PKA activity, suggesting selection of these behaviors may be 

regulated by local PKA. Moreover, we show that differences in cytosolic and nuclear 

PKA activity are not explained by differences in cytosolic and nuclear cAMP 

accumulation, indicating these compartmented PKA dynamics are not regulated by 

compartmented cAMP accumulation. Rather, differences in cytosolic and nuclear PKA 

activity can be directly explained by rate-limiting PKA catalytic subunit diffusion. Using 

a computational model, we infer the existence of a PKI-mediated nuclear PKA signaling 

microdomain, which we confirm experimentally. Finally, over-expressing PKA catalytic 

subunit in both the cytosol and nucleus, we demonstrate PKA catalytic subunit 

compartmentation is sufficient for regulating differential activation of β-adrenergic 

signaling responses. 

 

7.3 Materials and Methods 
 

Cardiomyocyte Isolation and Culture 

Neonatal rat ventricular myocytes were isolated from 2-3 day old Sprague-Dawley rats 

using the Neomyt Cardiomyocyte Isolation Kit (Cellutron Life Technologies, Baltimore, 

MD). All procedures were performed in accordance with the Guide for the Care and Use 

of Laboratory Animals published by the National Institutes of Health and approved by 

the University of Virginia Institutional Animal Care and Use Committee. Myocytes were 
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cultured in media containing 65% Dulbecco’s Modified Eagle Medium, 17% Medium 

199, 10% horse serum, 5% fetal bovine serum, 2% penicillin / streptomycin and 1%  

L-glutamine on either 35 mm glass-bottom dishes (MatTek, Ashland, MA) or CellBIND 

coated 96-well plates (Corning, Corning, NY). 

 

Ca2+ Imaging 

Two days after isolation, myocytes cultured in 35 mm glass-bottom dishes were 

transferred to serum-free media (76.8% Dulbecco’s Modified Eagle Medium, 19.2% 

Medium 199, 2% penicillin / streptomycin and 1% insulin-transferrin-sodium selenite) 

for 24 hours. Three days after isolation, cultured myocytes were loaded by incubating in 

Fluo-4 AM (Invitrogen, Carlsbad, CA) dissolved in Tyrode’s Solution for 30 minutes. 

Loaded myocytes were then de-esterified by washing out the Fluo-4/Tyrode’s mixture 

and incubating myocytes for an additional 30 minutes in Tyrode’s Solution. De-esterified 

myocytes were then field stimulated at 1 Hz pacing using the C-Pace EP Culture Pacer 

(IonOptix, Milton, MA) and stimulated using isoproterenol (ISO; Tocris, Minneapolis, 

MN) dissolved in Tyrode’s Solution. Paced myocytes were imaged on an IX-81 inverted 

microscope (Olympus, Center Valley, PA) with a Digital CCD C9300-221 camera 

(Hamamatsu, Bridgewater, NJ) at 10 Hz using MetaMorph (Molecular Devices, 

Sunnyvale, CA). Cells were segmented in ImageJ (National Institutes of Health, 

Bethesda, MA) and analyzed in MATLAB (Mathworks, Natick, MA). 
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Hypertrophy Measurements 

Two days after isolation, myocytes cultured in 96-well plates were transfected with 

cTnT-EGFP plasmid287 using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Two days 

following transfection, myocytes were cultured in serum-free media containing various 

concentrations of ISO for 24 hours. Following incubation, myocytes were imaged on an 

Olympus IX-81 inverted microscope with an automated stage (Prior Scientific, Rockland, 

MA) and an Orca-AG CCD camera (Hamamatsu, Bridgewater, NJ) using IPLab 

(Scanalytics, Fairfax, VA). Images were segmented and analyzed in MATLAB using 

custom image processing algorithms. For mCherry and PKA over-expression 

experiments, myocytes were co-transfected with cTnT-mCherry-C1(Clontech, Mountain 

View, CA), CMV-PKA-NES or CMV-PKA-NLS plasmid and imaged 24 hours 

following culture in serum-free media. 

 

FRET Imaging 

Two days after isolation, myocytes cultured in 35 mm glass-bottom dishes were 

transfected with CMV-AKAR-NES270, CMV-AKAR-NLS270, CMV-ICUE-NES268 or 

CMV-ICUE-NLS268 plasmid using Lipofectamine 2000. Following transfection, 

myocytes were cultured in serum-free media for 24 hours. Following incubation, 

myocytes were washed and incubated in Tyrode’s Solution. Imaging was performed on 

an Olympus IX-81 inverted microscope with an Orca-AG CCD camera using IPLab. 

Cells were segmented in ImageJ and analyzed in MATLAB. One minute after the 

beginning of each experiment, Tyrode’s Solution was added to each dish as a negative 

control. Cells were then treated with ISO dissolved in Tyrode’s Solution at different 
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concentrations. Finally, cells were treated with 50 µM forskolin (Tocris, Minneapolis, 

MN) and 100 µM 3-isobytl-1-methylxanthine (Sigma-Aldrich, St. Louis, MO) as a 

positive control. FRET computations were performed in MATLAB using the PFRET 

algorithm288. Cells were then segmented in ImageJ and FRET responses were normalized 

to positive and negative controls in MATLAB. For wheat germ agglutinin (WGA, Sigma-

Aldrich, St. Louis, MO) experiments, myocytes were pre-incubated in Tyrode’s Solution 

with 20 µg/mL WGA before each experiment. 

 

Computational Modeling 

Nuclear PKA activity was modeled by modifying our previously published ordinary 

differential equation implementation of cardiac β-adrenergic signaling5-6,289 to include 

nuclear PKA transport, PKI transport and AKAR expression/phosphorylation (Appendix 

D). The expanded model was implemented in MATLAB and constrained to parameters 

estimated from published literature. The final model contained 34 state variables and 104 

parameters. Before each simulation, fresh initial conditions were generated by running 

the model to steady-state with no ISO stimulation. 

 

Immunofluorescence  

Two days after isolation, myocytes cultured in 35 mm glass-bottom dishes were fixed in 

4% paraformaldehyde (Fisher Scientific, Pittsburgh, PA) for 20 minutes. Myocytes were 

then permeabilized with 0.2% Triton X-100 (MP Biomedicals, Solon, OH) for 2 minutes. 

Myocytes were then blocked with 1% bovine serum albumin (Sigma-Aldrich, St. Louis, 

MO) for 45 minutes. After blocking, myocytes were incubated with 1:200 rabbit 
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polyclonal anti-PKIA primary antibodies (Lifespan Biosciences, Seattle WA) for 1 hour. 

Myocytes were then blocked with 2% normal goat serum (Sigma-Aldrich, St. Louis, MO) 

for 30 minutes. After blocking, myocytes were incubated with 1:200 goat anti-rabbit 

secondary antibodies conjugated with Alexa fluorophors (Invitrogen, Carlsbad, CA). 

Following washout, cells were imaged on an Olympus IX-81 inverted microscope with 

an Orca-AG CCD camera using IPLab. Cells were analyzed using ImageJ. 

 

Western Blot Measurements 

Two days after isolation, myocytes cultured in 6-well plates were treated with ISO for 30 

minutes and then rinsed with ice cold phosphate buffered solution. Cellular lysates were 

prepared in Pierce RIPA Buffer (Thermo Scientific, Rockford, IL) supplemented with 

Complete Protease Inhibitor Cocktail Tablets (Roche, Indianapolis, IN) and Halt 

Phosphatase Inhibitor Cocktail (Thermo Scientific, Rockford, IL). Protein concentrations 

from cell lysates were quantified using the Micro BCA Protein Assay Kit (Thermo 

Scientific, Rockford, IL) and all samples were normalized for protein concentration. 

Lysed cells were then mixed with 4x SDS-sample buffer. Samples for pCREB detection 

were boiled for 5 min at 95°C. Equal amounts of total protein from each sample were 

resolved on 15% SDS-polyacrylamide gels by electrophoresis and then transferred to 

Immobilon-FL PVDF membranes (Millipore, Billerica, MA). These membranes were 

rinsed with phosphate buffer solution and then incubated with Odyssey Blocking Buffer 

(LI-COR Biosciences, Lincoln, NE). Blots were labeled using primary rabbit anti-

phospho-PLB (Ser16/Thr17) antibodies (Cell Signaling Technology, Danvers, MA) or 

rabbit anti-phospho-CREB (Ser133) (Cell Signaling Technology, Danvers, MA). Mouse 
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anti-α-tubulin (LI-COR Biosciences, Lincoln, NE) were used as protein loading controls. 

PLB and CREB were detected using goat anti-rabbit IRDye800 CW (LI-COR 

Biosciences, Lincoln, NE) secondary antibodies. α-tubulin was detected using goat anti-

mouse IRDye680 CW (LI-COR Biosciences, Lincoln, NE) secondary antibodies. All 

membranes were scanned using an Odyssey scanner (LI-COR Biosciences, Lincoln, NE). 

 

Statistical Analysis 

All statistical analyses were performed using Prism (GraphPad, La Jolla, CA). EC50s for 

ISO-stimulated Ca2+ enhancements, hypertrophy, FRET responses and PLB and CREB 

phosphorylation were fitted to a variable slope dose-response curve. Unpaired t-tests 

were performed on ICUE and AKAR t50s for statistical significance. Non-parametric 

Mann-Whitney tests were performed on hypertrophy measurements. Hypertrophy 

measurements are reported as median ± mean absolute deviation. All other statistics are 

reported as mean ± standard error of mean. 

 

7.4 Results 
 

β-Adrenergic Signaling Responses are Differentially Sensitive to ISO 

β-adrenergic signaling stimulates many cardiac behaviors via PKA, eliciting coordinated 

control of both contractile and hypertrophic responses3. To characterize contractile and 

hypertrophic responses to β-adrenergic stimulation, we treated neonatal rat ventricular 

myocytes with isoproterenol (ISO) and measured enhancements to Ca2+ transients and 

cell size. At 1 µM ISO, steady-state Ca2+ transient amplitudes exhibited a 63.5 ± 15.1% 
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(mean ± SEM; n = 8 experiments) enhancement in Fluo-4 loaded myocytes (Figure 

7.1A). Similarly, 1 µM ISO induced a 24.2 ± 3.5% (median ± standard error of median,  

n > 100 cells) increase in cell size after a 24 hour culture in serum-free media (Figure 

7.1B). Interestingly, enhancements to Ca2+ handling exhibited marked increases in ISO 

sensitivity over hypertrophic responses (Figure 7.1C). Increases in Ca2+ amplitudes 

exhibited significantly higher sensitivity for ISO (EC50 = 1.84 nM; n ≥ 3 experiments 

each) than increases in cell size (EC50 = 85.88 nM; n > 250 cells each) (Figure 7.1D). 

These suggest PKA-mediated β-AR responses may be differentially regulated by the 

magnitude of receptor stimulation. 

 

PKA Activity is Compartmented and Differentially Sensitive to ISO 

We reasoned that because PKA substrates regulating Ca2+ handling are mostly cytosolic 

(e.g., ion channel regulators) and PKA substrates regulating hypertrophy may be mostly 

nuclear (e.g., transcription factors), differential regulation of these behaviors may be 

explained by compartmented PKA activity. We therefore hypothesized that PKA activity 

in the cytosol and nucleus may also be differentially sensitive to β-adrenergic stimulation. 

To test this hypothesis, we expressed PKA-specific FRET reporters targeted to either the 

cytosol (AKAR-NES) or nucleus (AKAR-NLS) (Figure 7.2A). Stimulating these 

myocytes with 1 µM ISO, PKA activity was saturated faster in the cytosol (t50 = 3.71 ± 

0.25 min; mean ± SEM, n = 8 cells) than in the nucleus (t50 = 10.60 ± 0.68 min; n = 6 

cells) (Figure 7.2B). Treatment with 10 µM propranolol (PRO), a non-selective beta 

blocker, deactivated PKA activity – also faster in the cytosol than in the nucleus. 

Moreover, cytosolic PKA activity (EC50 = 1.22 nM; n ≥ 9 cells each) was indeed  
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Figure 7.1 β-adrenergic signaling responses exhibit different ISO 
sensitivities. A, Representative Fluo-4 measurements from control and 1 
µM ISO-stimulated myocytes paced at 1 Hz. B, Representative automated 
cell segmentations  from myocytes cultured in 1 µM ISO for 24 hours. C, 
ISO-stimulated Ca2+ enhancmements exhibit high ISO sensitivity (mean ± 
SEM, n ≥ 3 experiments per ISO concentration). D, 24 hour myocyte 
hypertrophy responses are less sensitive to ISO (median ± standard error 
of median, n > 250 cells per ISO concentration). 
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Figure 7.2 Cytosolic PKA and nuclear PKA differ in dynamics and 
ISO sensitivity. A, Representative expression of cytosolic AKAR-NES 
and nuclear AKAR-NLS FRET reporters. B, Representative responses to 1 
µM ISO and 10 µM PRO. Nuclear PKA activity is slower than cytosolic 
PKA activity. C, Averaged AKAR-NES and AKAR-NLS responses to 
ISO stimulation, normalized to 50 µM FSK / 100 µM IBMX (mean ± 
SEM, n ≥ 9 cells each). D, Cytosolic PKA activity exhibits a higher ISO 
sensitivity than nuclear PKA activity. 
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sensitized to ISO over nuclear PKA activity (EC50 = 70.47 nM) (Figures 7.2C and 7.2D). 

The cytosolic AKAR-NES EC50 was similar to untargeted AKAR EC50 reported by 

others290, providing support that published reports of PKA dynamics using these FRET 

reporters are specifically representative of cytosolic PKA activity. These differences in 

cytosolic and nuclear PKA sensitivity were surprising since differential regulation of 

PKA substrate phosphorylation is thought to be, in part, by A-kinase anchoring proteins 

(AKAPs), which may directly localize PKA substrates to PKA holoenzyme51. However, 

no endogenous AKAPs are expected to have affinity for recombinant AKAR-NES or 

AKAR-NLS. 

 

Nuclear PKA Compartmentation is Not Explained by cAMP Compartmentation 

cAMP compartmentation (e.g., by phosphodiesterases) is also thought to regulate 

spatially heterogeneous PKA activity. We tested if cAMP compartmentation may explain 

the observed differences in cytosolic and nuclear PKA dynamics by treating myocytes 

with 50 µM forskolin (FSK), an adenylyl cyclase activator, and 100 µM 3-isobutyl-1-

methylxanthine (IBMX), a non-selective phosphodiesterase inhibitor. In myocytes 

expressing cAMP-specific FRET reporters targeted to both the cytosol (ICUE-NES) and 

nucleus (ICUE-NLS), FSK/IBMX induced a rapid and robust cAMP response (cytosol: 

t50 = 1.62 ± 0.13 min; nucleus: t50 = 0.77 ± 0.05 min; mean ± SEM, n = 12 cells each) 

(Figures 7.3A and 7.3C). In contrast, FSK/IBMX induced a rapid PKA response in the 

cytosol (t50 = 0.59 ± 0.02 min; n = 9 cells), but not in the nucleus (t50 = 7.15 ± 0.70 min; n 

= 11 cells) (Figures 7.3B, 7.3C). These suggest the differences in cytosolic and nuclear 

PKA dynamics are not explained by rate-limiting cAMP compartmentation. 
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Figure 7.3 Nuclear PKA dynamics are not explained by cAMP 
compartmentation. A, Mean cytosolic ICUE-NES (mean ± SEM, n = 12 
cells) and nuclear ICUE-NLS (n = 12 cells) responses to 50 µM FSK / 100 
µM IBMX. B, Mean cytosolic AKAR-NES (n = 9 cells) and nuclear 
AKAR-NLS (n = 11 cells) responses to 50 µM FSK / 100 µM IBMX. C, 
cAMP accumulation occurs rapidly in both the cytosol and nucleus, while 
PKA activation occurs rapidly in the cytosol only. These suggest nuclear 
PKA activity is not rate-limited by nuclear cAMP accumulation. 
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A Computational Model for Nuclear PKA Activity 

Computational models have contributed significantly to the investigation of cardiac 

signaling networks211. We have previously modeled the β1-adrenergic signaling pathway5 

and its actions on cytosolic rat6 and mouse myocyte physiology. Here, we extended these 

models with a nuclear compartment to generate hypotheses for explaining the observed 

PKA activity compartmentation (Figure 7.4A; Appendix D). In this new model, activated 

PKA catalytic subunit passively diffuses across the nuclear envelope via nuclear pore 

complexes255, where it may phosphorylate and activate cAMP response element binding 

protein (CREB)291. In turn, phospho-CREB is dephosphorylated by protein phosphatase 

2A (PP2A)292. Protein kinase inhibitor (PKI) inhibits this process by binding and 

inactivating free PKA catalytic subunit (C)293. PKI may also diffuse across the nuclear 

envelope and inactivate nuclear PKA catalytic subunits, upon which a nuclear export 

signal (NES) is exposed and PKA catalytic subunit is shuttled from the nucleus to the 

cytosol in an ATP-dependent manner. In addition, we modeled the expression of AKAR-

NES and AKAR-NLS as in previous studies4. When fitted to the experimental data, 

simulated AKAR responses to ISO were similar to measured AKAR in both dynamics 

responses (Figure 7.4B) and ISO sensitivity (Figure 7.4C). 

 

Nuclear PKA Activity Dynamics are Rate-Limited by PKA Catalytic Subunit Diffusion 

PKA catalytic subunit is a 38 kDa protein, while cAMP is a small molecule with a molar 

mass of 329.2. Empirically, nuclear pore complexes have been shown to have a cargo 

threshold of ~40 kDa294. We therefore hypothesized that nuclear PKA activation may be 

rate-limited by PKA catalytic subunit diffusion rather than cAMP diffusion, consistent  
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Figure 7.4 A computational model for PKA compartmention in 
cardiac myocytes. A, Schematic for nuclear PKA compartment extension 
to our previously published β-adrenergic signaling models. B, Model-
predicted AKAR-NES and AKAR-NLS responses to ISO stimulation. C, 
Model-predicted AKAR-NES and AKAR-NLS ISO sensitivities. Model 
responses are qualitatively similar to experimentally measured differences 
in dynamics and ISO sensitivity. 
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with observations that nuclear PKA accumulation is slow following cytosolic catalytic 

subunit microinjection255. Using the model, we simulated the role of changes to passive 

nuclear transport in shaping ISO-stimulated nuclear PKA dynamics. Model simulations 

predicted a step-wise decrease in the rate and steady-state magnitude of nuclear PKA 

activity, suggesting PKA catalytic subunit diffusion plays a key role in rate-limiting 

nuclear PKA dynamics (Figure 7.6A). Reducing nuclear transport in the model to 5% 

nearly ablated the simulated AKAR-NLS response to 1 µM ISO. We tested this model 

prediction experimentally by pre-incubating myocytes expressing AKAR-NLS with 20 

µg/mL wheat germ agglutinin (WGA), which directly inhibits nuclear transport by 

binding nuclear pores295, for 30 min. We then applied 1 µM ISO and measured the 

AKAR-NLS response. Consistent with model predictions, myocytes pre-incubated with 

WGA displayed a significantly attenuated AKAR-NLS response (Figure 7.6B; n = 22 

cells). These support a hypothesis that nuclear PKA activity in cardiac myocytes is 

regulated, not by cAMP compartmentation, but direct compartmentation of the PKA 

catalytic subunit. 

 

Biased PKIα Expression Underlies Differential ISO Sensitivity 

Our finding that nuclear PKA sensitivity to ISO was significantly smaller than cytosolic 

PKA sensitivity (Figure 7.2D) suggests the nucleus may comprise a PKA signaling 

microdomain independent of the cytosol. In forming the computational model, we 

reasoned this shift in sensitivity was due either to the presence of a novel nuclear 

competitive inhibitor or expression of a PKA inhibitor biased towards the nucleus. 

Protein kinase inhibitor (PKI) is one such endogenous competitive inhibitor of PKA293,  
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Figure 7.5 Nuclear PKA activity is rate-limited by slow diffusion. A, 
Model-predicted AKAR-NLS responses to 1 µM ISO stimulation. 
Increasing the nuclear pore complex diffusion barrier by restricting the 
diffusion rate shrinks the rate and magnitude of AKAR-NLS 
phosphorylation. B, Experimental validation for model prediction. Mean 
AKAR-NLS responses to 1 µM ISO stimulation following 30 min pre-
incubation with 20 µg/mL WGA (mean ± SEM, n = 22 cells). 
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which we have previously predicted to be capable of conferring ultra-sensitive cytosolic 

PKA activation by cAMP5. Indeed, when nuclear PKI concentrations were constrained to 

be equal to cytosolic PKI concentrations, the model predicted a loss of differential ISO 

sensitivity between cytosolic and nuclear PKA (Figure 7.6A). We tested this model 

prediction by immunolabeling fixed myocytes with anti-PKIα antibodies and surprisingly 

found nearly exclusive nuclear PKIα expression (Figure 7.6B). These results suggest the 

nuclear bias in PKIα expression may be an important component of limiting nuclear PKA 

sensitivity to β-adrenergic stimulation. 

 

PKA Compartmentation Differentially Phosphorylates Endogenous PKA Substrates 

Because cytosolic and nuclear PKA activity exhibited similar differences in ISO 

sensitivity in both our FRET experiments and computational model, we hypothesized the 

functional differences in ISO sensitivity of β-AR-stimulated Ca2+ enhancements and 

hypertrophy may be explained by nuclear PKA compartmentation. We first modeled the 

phosphorylation of endogenous PKA substrates relevant to Ca2+ enhancement (PLB, 

phospholamban) and hypertrophy (CREB, cAMP response element binding protein). The 

model predicted a rightward shift in CREB ISO sensitivity over PLB (Figure 7.7A). 

Consistent with our expectations, the ISO sensitivity for PLB (EC50 = 4.95 nM) and 

CREB (EC50 = 31.46 nM) phosphorylation paralleled the ISO sensitivities for cytosolic 

and nuclear PKA measured by AKAR-NES and AKAR-NLS. We validated this model 

prediction by Western blotting steady-state PLB and CREB phosphorylation over a large 

range of ISO concentrations (Figures 7B and 7C; PLBp EC50 = 0.58 nM; CREBp EC50 = 

52.68 nM; n = 3 experiments each). These results suggest PKA catalytic subunit  
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Figure 7.6 Nuclear PKA sensitivity to ISO is regulated by biased 
PKIα expression. A, Model prediction for nuclear PKA ISO sensitivity 
with PKI bias eliminated (dashed red). B, Immunofluorescence labeling 
with anti-PKIα antibodies identify nearly exclusive PKIα expression, 
consistent with model prediction for PKI expression biased to the nucleus. 
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Figure 7.7 PKA compartmentation underlies PKA substrate 
phosphorylation. A, Model prediction for phosphorylated PLB and 
CREB sensitivity to ISO. PLBp and CREBp EC50s parallel cytosolic and 
nuclear PKA EC50s, respectively. B, Representative Western blot 
validations for model predictions. C, PLB phosphorylation is significantly 
more sensitive to ISO than CREB phosphorylation (mean ± SEM, n = 3 
experiments each). 
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compartmentation may be functionally relevant for specifically selecting different β-

adrenergic signaling responses to ISO. 

 

PKA Compartmentation Differentially Elicits Contractile and Hypertrophic Responses 

We further tested the specific consequences of cytosolic and nuclear PKA catalytic 

subunit compartmentation by over-expressing mCherry-labeled PKA catalytic subunit 

targeted to either the cytosol (PKA-NES) or nucleus (PKA-NLS) (Figure 7.8A). Western 

blot anaylsis demonstrated that PKA-NES expressing myocytes specifically had 

increased cytosolic PLB phosphorylation over mCherry over-expression alone, while 

PKA-NLS expressing myocytes did not (Figure 7.8B). Conversely, both PKA-NLS and 

PKA-NES exhibited increased CREB phosphorylation. These indicated both targeted 

PKA constructs were localized correctly and catalytically active. 

 

We functionally assessed the effect of targeted PKA over-expression by quantifying Ca2+ 

responses to 1 µM ISO and enhancements to cell size following targeted PKA over-

expression. Pacing these myocytes at 1 Hz, we observer larger baseline Ca2+ transients in 

PKA-NES myocytes over either mCherry or PKA-NLS myocytes (Figures 7.8C and 

7.8D). These were complemented by ablated sensitivity to 1 µM ISO addition (Figure 

7.8E), suggesting PKA-NES over-expression was saturating the phosphorylation of 

contractility-relevant PKA substrates, while PKA-NLS over-expression had no effect on 

these targets. In contrast, PKA-NLS myocytes were hypertrophied (1401 ± 38 µm2; 

median ± standard error of median, n = 1324 cells) over both mCherry (1213 ± 37 µm2; n 

= 944 cells) and mCherry-PKA-NES myocytes (1291 ± 44 µm2; n = 945 cells) (Figure  



159 
 

 

 
 
Figure 7.8 PKA compartmentation underlies selection of contractile 
and cell hypertrophic β-adrenergic signaling responses. A, Expression 
of mCherry, PKA-NES and PKA-NLS plasmids. B, Western blots for 
PLB and CREB phosphorylation by PKA-NES and PKA-NLS. Both 
plasmids are catalytically active and capable of phosphorylating PKA 
substrates over mCherry control. C, Representative Fluo-4 Ca2+ responses 
to 1 µM ISO for expressing cells under 1 Hz pacing. D, Mean Fluo-4 Ca2+ 

transients before and after stimulation by 1 µM ISO (mean ± SEM, n ≥ 3 
experiments each). Baseline (Control: CTL) Fluo-4 Ca2+ transients are 
nearly saturated in PKA-NES myocytes. E, Mean enhancements to Fluo-4 
Ca2+ transients by 1 µM ISO stimulation. 1 µM ISO elicits robust 
enhancements to mCherry and PKA-NLS myocytes, but not PKA-NES 
myocytes (mean ± SEM, n > 3 experiments each). F, Median cell size 
measurements in expressing cells. PKA-NLS induces hypertrophic growth 
to cell area, while PKA-NES does not (median ± standard error of median, 
n > 900 cells each). 
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7.8F). Together, these indicate a specific role for cytosolic PKA in enhancing contractile 

behaviors under β-adrenergic signaling and a specific role for nuclear PKA in enhancing 

hypertrophic behaviors, supporting the hypothesis that compartmented signaling in these 

two microdomains were functionally relevant to regulating the overall β-adrenergic 

signaling response. 

 

7.5 Discussion 
 

Compartmentation in β-Adrenergic Signaling 

Over the last two decades, numerous studies have investigated mechanisms regulating 

spatiotemporal heterogeneity in cardiac β-adrenergic signaling45. While some have 

focused on receptor organization47,52-53, receptor subtype296-297 or PKA regulatory subunit 

subtype298, PDEs48-49,299 and AKAPs50-51,54,300 have prominently risen as key regulatory 

mechanisms of compartmented β-adrenergic signaling. The underlying hypothesis of 

these studies is that β-adrenergic signaling responses are managed by phosphorylation of 

PKA substrates local to PKA holoenzyme (for instance, localized by AKAPs), which 

become activated by spatially heterogeneous cAMP gradients (restricted by spatially 

heterogeneous adenylyl cyclase and PDE activity). 

 

We have previously shown that nuclear PKA dynamics may be explained by nuclear 

PDE4D-PKA-AKAP complexes, as inferred in HEK 293 cells301. However, the most 

convincing evidence that nuclear PKA activity was rate-limited by cAMP diffusion in 

those studies were observations that nuclear PKA dynamics were accelerated under PDE 

inhibition by IBMX and AKAP disruption by Ht31. Here, we observe slow nuclear PKA 
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activity despite rapid nuclear cAMP accumulation in the presence of IBMX (Figure 7.3). 

Together, these results support a simpler model for cardiac myocytes where nuclear PKA 

activity is rate-limited by slow diffusion of PKA catalytic subunit255. Interestingly, we 

show that distal (nuclear) PKA phosphorylation events are not only slower in dynamics 

than local (cytosolic) PKA phosphorylation events, but also significantly less sensitive to 

β-adrenergic receptor stimulation (Figure 7.2). Our modeling and immunofluorescence 

studies suggest these differences in sensitivity are explained by spatially heterogeneous 

PKI expression, which limits PKA activity similar to how PDEs limit cAMP activity. As 

there are few published reports on the significance of PKI in the heart, further study will 

be necessary to evaluate how PKA catalytic subunit compartmentation may be regulated. 

 

Relevance to Cardiac Physiology and Disease 

In this chapter we demonstrate that PKA catalytic subunit compartmentation is 

functionally significant, as indicated by the targeted over-expression data. These results 

are important in two ways. First, the differences in cytosolic and nuclear PKA sensitivity 

to ISO suggest PKI-mediated compartmentation may serve to insulate myocytes from 

inducing hypertrophic growth whenever β-adrenergic receptors are engaged to enhance 

contractility. This itself has therapeutic implications since treatment with β-blockers are 

effective for attenuating cardiac remodeling during heart failure, but also put patients at 

risk for bradycardia and low blood pressure21,85. If chronotropic and inotropic responses 

can be separated from hypertrophic responses by cytosolic-nuclear compartmentation, 

these results suggest nuclear PKA activity inhibition may be a more attractive gene  
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therapy target than enhancements to excitation-contraction coupling or antagonism to  

β-adrenergic signaling alone302. 

 

Second, we show nuclear PKA activity is an order of magnitude slower than cytosolic 

PKA activity. These results add a second layer of insulation to PKA-stimulated 

transcriptional activity: the requirement for sustained β-adrenergic receptor stimulation. 

These suggest that while contractile responses may be activated by small and acute 

sympathetic activity, hypertrophic responses associated with pathologic cardiac 

remodeling may require large and chronic sympathetic activity. These could in part 

explain how daily engagement of the fight-or-flight response does not drive the heart 

toward a failing phenotype, while chronically elevated sympathetic activity may lock the 

heart in a vicious deteriorating cycle35. Indeed, while further in vivo studies will be 

necessary to confirm these preliminary in vitro findings, the current work proposes PKA 

catalytic subunit compartmentation may contribute to the bifurcation between 

physiologic β-adrenergic signaling engagement and pathologic β-adrenergic signaling-

driven remodeling.  

 

β-Adrenergic Signaling-Stimulated Hypertrophy 

While it is well-recognized that β-adrenergic stimulation by ISO is sufficient for 

stimulating cardiac hypertrophy303, the exact mechanisms for these observations remain 

unclear. Transgenic over-expression studies indicate that activity by β1-AR30, Gsα
31 or 

PKA32 are all sufficient for inducing hypertrophy and heart failure in vivo. However, the 

complexities of cardiac hypertrophy signaling networks64,304 convolute understanding. 

For instance, a number of studies have now shown that β-adrenergic signaling may 
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stimulate hypertrophy in a PKA-independent manner via cAMP activation of Epac305-307. 

Moreover, because β-adrenergic stimulation enhances Ca2+ signaling, PKA-mediated 

hypertrophy may be managed by enhanced CaMKII308-309 or calcineurin/NFAT310-311 

signaling. Additionally, some evidence suggests PKA activation may inhibit hypertrophy 

via histone deacetylase 5 (HDAC5) phosphorylation312 or HDAC4 proteolysis313. Indeed, 

future work will need to clarify the direct role of PKA in cardiac hypertrophy. 

 

In this chapter, we specifically over-expressed PKA catalytic subunit in the cytosol and 

nucleus, indicating a sufficient role for nuclear, but not cytosolic, PKA to stimulate 

myocyte hypertrophy (Figure 7.8). These results are not mutually exclusive with findings 

from others, but support a hypothesis that catecholamine-stimulated hypertrophy is 

driven by a direct action of PKA on nuclear transcription factors, rather than network 

cross-talk via Ca2+ or Epac. These data imply a model where chronic β-adrenergic 

stimulation can stimulate PKA catalytic subunit to escape local control by PDE or AKAP 

compartmentation mechanisms and distally initiate cardiac remodeling events. 

 

 Limitations and Considerations 

In this chapter, we have taken a multi-disciplinary approach to investigating PKA 

catalytic subunit compartmentation, integrating live-cell imaging experiments from 

neonatal rat ventricular myocytes with computational modeling. While seminal studies in 

cardiac β-adrenergic compartmentation were performed using neonatal rat 

myocytes4,298,314-318, care must be taken in inferring the role of this PKA catalytic subunit 

compartmentation in human heart failure. Moreover, we have chosen myocyte cell 
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hypertrophy as an approximation for ventricular hypertrophy in the intact heart. While 

these in vitro findings alone do not prove that nuclear PKA activity critically drives 

pathologic cardiac hypertrophy in heart failure, these results do support the hypothesis 

that PKA activity in the cytosol and nucleus exerts different cardiac behaviors. Indeed, 

these findings will be strengthened by future in vivo studies investigating the 

consequences of nuclear PKA compartmentation on the heart as an organ. 

 

Moreover, while we chose CREB as a representative endogenous PKA-sensitive 

transcription factor, these results do not clearly implicate CREB as the mechanistic link 

between nuclear PKA activity and myocyte hypertrophy. The role of CREB in regulating 

cardiac hypertrophy is controversial. While there is some evidence that PKA-dependent 

hypertrophy may be managed by CREB phosphorylation319-321, other studies suggest 

CREB is not critical for cardiac function322 and have shown that transgenic inhibition of 

CREB phosphorylation is also sufficient for driving hypertrophy and heart failure320. 

Moreover, the observation that cytosolic PKA over-expression is capable of evoking 

significant CREB phosphorylation was a surprising result. We reason that this may be 

due to volume differences between the nucleus and cytosol, where total cytosolic PKA 

over-expression may be larger than total nuclear PKA over-expression. However, the 

appropriate subcellular localization of our targeted PKA over-expression, coupled with 

the enhancement in PLB phosphorylation by cytosolic PKA over-expression and 

enhancement in CREB phosphorylation by nuclear PKA over-expression, together 

indicated that both targeted PKA constructs were enzymatically functional. We therefore 

reasoned that the phenotypic differences between cytosolic and nuclear PKA over-
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expression were direct consequences of targeted nuclear over-expression, and not some 

other mechanism. New studies will be necessary to clarify the mechanistic link between 

nuclear PKA activity and myocyte hypertrophy. 

 

In addition, while quantifying cell area under ISO-stimulated and PKA over-expression 

conditions, we observed significant cell-cell variability (Figures 7.9A and 7.9B). In the 

present work, the automated image acquisition and image segmentation cell hypertrophy 

assay permitted high-throughput quantification with greater than 100 cells measured per 

condition. We found that cell-cell variability was greater with experimental repeats than 

across experimental repeats, prompting us to pool single cell measurements rather than 

average across repeats. Because cell area measurements were distributed non-Gaussian, 

we reported median ± standard error and performed non-parametric Mann-Whitney tests 

for statistical significance.  

 

Finally, carefully constrained computational models can provide significant insight into 

the mechanics of cell signaling and provide inspiration for new experimental studies211. 

However, interpretation of modeling results requires careful attention. Here, we carefully 

assembled and validated our model from published biochemical data and used the model 

as a hypothesis-generating inference tool to investigate mechanisms underlying PKA 

catalytic subunit compartmentation. We minimized bias in these simulations by first 

making prospective modeling predictions and then following with subsequent 

experimental validations. By performing our study under these standards, we built 

confidence that the computational model was an adequate description of the biology in  
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Figure 7.9 Cell area measurement variability. A, Cell area 
measurements for cardiac myocytes over-expressing mCherry, PKA-NES 
or PKA-NLS (3 experiments each). Expressing cells contained greater 
variability within individual experiments than across multiple 
experiments. B, Quantification of cell area variability within and across 
experimental repeats (taken as standard deviation of mean measurements). 
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our experiments and that the model predictions were reasonable hypotheses for 

compartmentation signaling mechanisms. 

 

7.6 Conclusion 
 

In this chapter, we have provided direct evidence that PKA catalytic subunit can itself 

form functionally relevant, diffusion-limited signaling compartments. We show PKA 

activity in the nucleus is slower and less sensitivity to extracellular β-adrenergic receptor 

agonists than cytosolic PKA activity. These differences in signaling sensitivity are 

prescribed by biased nuclear PKI expression. Moreover, cytosolic PKA activity directly 

enhances Ca2+ transients, but has no effect on myocyte hypertrophy. Conversely, nuclear 

PKA activity directly induces myocyte hypertrophy, but has no effect on Ca2+ transients. 

Together, these findings suggest PKA catalytic subunit compartmentation may help 

explain how chronic, but not acute, β-adrenergic stimulation may initiate cardiac 

remodeling events and drive the progression of heart failure. 
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Chapter 8 
 
 
Dissertation Conclusions 
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8.1 Contributions and Conclusions 
 

The overall goal of this dissertation was to investigate how the β-adrenergic signaling 

network differentially regulates contractile and hypertrophic responses to β-AR 

stimulation. We hypothesized that two key network properties were important for 

managing these responses: incoherent feed-forward signaling and PKA catalytic subunit 

compartmentation. In testing this hypothesis and achieving this goal, we have 

i.) developed novel biochemically mechanistic computational models of  

β-adrenergic and Angiotensin II signaling in cardiac myocytes 

ii.) identified an incoherent feed-forward loop which accelerates and generates 

adaptation in β-AR-stimulated contractility 

iii.) characterized PKA catalytic subunit compartmentation as a novel form of  

β-adrenergic signaling compartmentation 

iv.) demonstrated nuclear PKA activity may directly regulate hypertrophy of the 

cardiac myocyte 

 

In Chapters 4 and 5 (Aim 1), we described the development of computational models for 

β-adrenergic receptor-stimulated contractility and Angiotensin II receptor-stimulated 

fibrosis. Using these models, we provide strong evidence that incoherent feed-forward 

signaling regulates the dynamics of short-term cardiac contractility and long-term cardiac 

fibrosis. Collectively, we identify important roles played by network topology in 

managing cardiac cell signaling responses. 
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In Chapters 6 and 7 (Aim 2), we described the application of β-adrenergic signaling 

models to live cell imaging experiments for investigating the regulation and function of 

nuclear PKA compartmentation. Using these models as inference tools, we generated 

many model-driven hypotheses, which we validated experimentally, identifying a nuclear 

PKA-PDE-AKAP signaling complex in HEK 293 cells and discovering PKA catalytic 

subunit compartmentation is sufficient for selectively regulating cytosolic vs. 

hypertrophic β-adrenergic signaling responses. Together, these results identify a novel 

form of β-adrenergic signaling compartmentation which may be functionally relevant for 

the development of cardiac hypertrophy. 

 

In conclusion, our data shows that both incoherent feed-forward signaling and PKA 

compartmentation are important regulators of β-adrenergic signaling responses. These 

mechanisms not only control the kinetics of cardiac contractility and hypertrophy, but 

also aid in creating specificity for eliciting different signaling responses under varying 

environmental conditions. 

 

8.2 Translational Relevance 
 

Current therapeutic options for treating cardiovascular disease largely rely on small 

molecule pharmaceutics, whose effectiveness can be limited by hereditary factors. Over 

the past decade, gene therapy strategies have emerged as promising alternatives to small 

molecule pharmaceutics for addressing these pharmacogenomic challenges in 

cardiovascular disease302,323-325. Effective cardiovascular gene therapy requires 

cardiovascular-specific gene transduction and long-term transgene expression326. In 
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particular, AAV vectors have risen as a front-runner in cardiac gene delivery324,327. The 

major advantages of AAVs are their reduced immunogenicity, long-term transgene 

expression and organ specificities. Of the over 75 clinical trials involving AAVs, only 

three are targeted at cardiovascular diseases328-330.  

 

These three studies have focused on rescuing contractility in the failing heart by 

delivering the sarcoplasmic reticulum calcium ATPase (SERCA2a) gene329,331-332. 

Preliminary reports from Phase I demonstrated a 52% risk-reduction in cardiovascular 

related clinical events, supporting Phase II trials332-333. These too have indicated a 

resounding success, demonstrating safety and efficacious benefit over 12 months334, 

providing support for larger, confirmatory trials302,330. The success from these preliminary 

studies gives promise to the clinical viability of AAV-mediated therapeutics for treating 

human cardiac diseases. 

 

Our work here suggests targeting PKA catalytic subunit compartmentation may be one 

novel strategy for blocking β-adrenergic signaling-stimulated remodeling, while retaining 

contractile responsiveness. In this chapter, we have shown that this compartmentation is 

endogenously regulated by PKI, indicating cardiac-specific PKIα over-expression may be 

an ideal gene therapy strategy. While many more studies are necessary to investigate the 

specific in vivo role of PKIα in regulating nuclear PKA-stimulated behaviors, our results 

suggest signaling compartmentation may itself be an innovative therapeutic target for 

specifically eliciting some behaviors (but not all) of β-adrenergic signaling for 

intervening in the progression of cardiac disease. 
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8.3 Future Directions 
 

Collectively, our results motivate three exciting research directions for follow-up studies: 

i.) in vivo characterization of nuclear PKA compartmentation in cardiac physiology 

and pathophysiology 

ii.) in vitro characterization of PKI-mediated PKA compartmentation 

iii.) in vivo characterization of PKI-based gene therapy interventions in cardiac 

disease models 

 

Here, we provide direct evidence supporting the hypothesis that β-adrenergic signaling 

may stimulate cardiac hypertrophy via nuclear PKA-mediate phosphorylation of 

transcriptional regulators, in vitro. Our observations that cytosolic PKA over-expression 

is insufficient to stimulate a hypertrophic response suggest remodeling events observed in 

the PKA over-expression mouse32 may be specifically explained by elevated nuclear 

PKA activity. This hypothesis may be directly tested in a follow-up study by over-

expressing cytosolic PKA and nuclear PKA in parallel mouse cohorts using an 

established method for robust cardiomyocyte-specific gene delivery with the AAV9 

vector and under the cardiac troponin T promoter287. Quantifying hemodynamic and 

histological parameters of these transgenic mice will elucidate whether or not nuclear 

PKA activity may in fact specifically contribute to in vivo remodeling. These studies may 

be complemented by quantifying histological sections of healthy and failing hearts 

labeled with PKA catalytic subunit-specific antibodies to determine if nuclear PKA 

activity is elevated during cardiac disease. 
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Second, preliminary data from these studies indicate the three PKI isoforms (α, β and γ) 

have very different expression patterns in the cardiac myocyte (Figure 8.1). Though 

observations of PKI-mediated inhibition of PKA were first published in the 1960s335-336, 

to date there are relatively few published studies of PKI’s regulation of PKA. Here, we 

have used a computational model to explain how PKI may have an important role in 

functionally restricting PKA catalytic subunit activity in an analogous way to how PDEs 

restrict cAMP activity. Because these three PKI isoforms also have different affinities for 

PKA catalytic subunit293, the spatially heterogeneous expression of these PKI isoforms 

raises interesting questions on how they may compartment PKA activity. Future in vitro 

studies will be necessary to more fully characterize the role of PKI in prescribing PKA 

catalytic subunit compartmentation and the physiological consequences of such 

compartmentation. This is a completely unexplored dimension to β-adrenergic signaling 

compartmentation and is ripe for investigation. 

 

Finally, PKI-mediated interventions may be tested by over-expressing PKIα in various 

heart failure models (e.g., transverse aortic constriction, coronary artery ligation) using 

similar gene delivery vehicles. Quantifying hemodynamic and histological parameters of 

these mice will indicate if nuclear PKA inhibition can attenuate or rescue the heart failure 

phenotype. Conversely, because our immunofluorescence data indicates endogenous 

PKIα is almost exclusively nuclear (Figure 8.1), over-expressing cardiomyocyte-specific 

PKIα siRNA in healthy mice will show if enhancement of nuclear PKA activity (by 

release of nuclear PKA inhibition) is sufficient for inducing cardiac hypertrophy and 

remodeling in vivo. 
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 Figure 8.1 PKI isoforms express differentially in the neonatal rat 
ventricular myocyte. PKIα has a preferentially nuclear expression, while 
PKIβ has a preferentially peri-nuclear expression. PKIγ has a ubiquitous 
cytosolic and nuclear expression. These differences in PKI expression 
patterns may help PKI establish PKA catalytic subunit compartmentation. 
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Appendix A 
 
 
Integrated Mouse β-Adrenergic 
Signaling / Excitation-Contraction 
Coupling Model 
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β1-Adrenergic Signaling 
 
β-Adrenergic Receptor / Gsα 
Parameter Description Value Units Source 
ISO isoproterenol concentration (when used) 1 µM - 
b1ARtot total β1-adrenergic receptors 0.00528 µM adapted 
Gstot total Gs protein 3.83 µM 5 
kf_LR β1-AR binding to ligand 1 1/[µM ms] 5-6 
kr_LR β1-AR binding to ligand 0.285 1/ms 5-6 
kf_LRG ligand bound β1-AR associating with G-protein 1 1/[µM ms] 5-6 
kr_LRG ligand bound β1-AR associating with G-protein 0.062 1/ms 5-6 
kf_RG unbound β1-AR associating with G-protein 1 1/[µM ms] 5-6 
kr_RG unbound β1-AR associating with G-protein 33.0 1/ms 5-6 
k_G_act Gs-alpha activation 16.0e-3 1/ms 5-6 
k_G_hyd Gs-alpha hydrolysis 0.8e-6 1/ms 5-6 
k_G_reassoc Gs-alpha reassociation 1.21 1/[µM ms] 5-6 
kf_bark β1-AR desensitization by β-arrestin 1.1e-6 1/ms 5-6 
kr_bark β1-AR resensitization 2.2e-6 1/ms 5-6 
kf_pka β1-AR desensitization by PKA 3.6e-6 1/[µM ms] 5-6 
kr_pka β1-AR resensitization 2.2e-6 1/ms 6 

 
𝑏1𝐴𝑅𝑎𝑐𝑡 = 𝑏1𝐴𝑅𝑡𝑜𝑡 − 𝑏1𝐴𝑅_𝑆464 − 𝑏1𝐴𝑅_𝑆301 

 
𝑏1𝐴𝑅 = 𝑏1𝐴𝑅𝑎𝑐𝑡 − 𝐿𝑅 − 𝐿𝑅𝐺 − 𝑅𝐺 

 
𝐺𝑠 = 𝐺𝑠𝑡𝑜𝑡 − 𝐿𝑅𝐺 − 𝑅𝐺 − 𝐺𝑠𝑏𝑦 

 
𝑑𝐿𝑅
𝑑𝑡

= 𝑘𝑓_𝐿𝑅 ∙ 𝐼𝑆𝑂 ∙ 𝑏1𝐴𝑅 − 𝑘𝑟_𝐿𝑅 ∙ 𝐿𝑅 
 

𝑑𝐿𝑅𝐺
𝑑𝑡

= 𝑘𝑓_𝐿𝑅𝐺 ∙ 𝐿𝑅 ∙ 𝐺𝑠 − 𝑘𝑟_𝐿𝑅𝐺 ∙ 𝐿𝑅𝐺 − 𝑘_𝐺_𝑎𝑐𝑡 ∙ 𝐿𝑅𝐺 
 

𝑑𝑅𝐺
𝑑𝑡

= 𝑘𝑓_𝑅𝐺 ∙ 𝑏1𝐴𝑅 ∙ 𝐺𝑠 − 𝑘𝑟_𝑅𝐺 ∙ 𝐺𝑠 − 𝑘_𝐺_𝑎𝑐𝑡 ∙ 𝑅𝐺 
 

𝑑𝑏1𝐴𝑅_𝑆464
𝑑𝑡

= 𝑘𝑓_𝑏𝐴𝑅𝐾 ∙ (𝐿𝑅 + 𝐿𝑅𝐺) − 𝑘𝑟_𝑏𝐴𝑅𝐾 ∙ 𝑏1𝐴𝑅_𝑆464 
 

𝑑𝑏1𝐴𝑅_𝑆301
𝑑𝑡

= 𝑘𝑓_𝑃𝐾𝐴 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑏1𝐴𝑅𝑎𝑐𝑡 − 𝑘𝑟_𝑃𝐾𝐴 ∙ 𝑏1𝐴𝑅_𝑆301 
 

𝑑𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡
𝑑𝑡

= 𝑘_𝐺_𝑎𝑐𝑡 ∙ (𝑅𝐺 + 𝐿𝑅𝐺) − 𝑘_𝐺_ℎ𝑦𝑑 ∙ 𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡 
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𝑑𝐺𝑠𝑎𝐺𝐷𝑃
𝑑𝑡

= 𝑘_𝐺_ℎ𝑦𝑑 ∙ 𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡 − 𝑘_𝐺_𝑟𝑒𝑎𝑠𝑠𝑜𝑐 ∙ 𝐺𝑠𝑎𝐺𝐷𝑃 ∙ 𝐺𝑠𝑏𝑦 
 

𝑑𝐺𝑠𝑏𝑦
𝑑𝑡

= 𝑘_𝐺_𝑎𝑐𝑡 ∙ (𝑅𝐺 + 𝐿𝑅𝐺) − 𝑘_𝐺_𝑟𝑒𝑎𝑠𝑠𝑜𝑐 ∙ 𝐺𝑠𝑎𝐺𝐷𝑃 ∙ 𝐺𝑠𝑏𝑦 
 
cAMP 
Parameter Description Value Units Source 
ACtot total adenylyl cyclase 70.57e-3 µM adapted 
ATP total ATP 5.0e3 µM 5-6 
PDEtot total phosphodiesterases 22.85e-3 µM 5 
IBMX isobutylmethylxanthine concentration 0.0 µM 6 
FSK forskolin concentration 0.0 µM 6 
k_AC_basal basal AC activity 0.2e-3 1/ms 5-6 
Km_AC_basal basal AC affinity for ATP 1.03e3 µM 5-6 
k_AC_Gsa AC activity with Gs-alpha activation 8.5e-3 1/ms 6 
Km_AC_Gsa AC:Gs-alpha affinity for ATP 315.0 µM 5-6 
kf_AC_Gsa AC activation by Gs-alpha 1 1/[µM  ms] 6 
kr_AC_Gsa AC activation by Gs-alpha 0.4 1/ms 6 
k_AC_FSK AC activation by forskolin 7.3e-3 1/ms 6 
Km_AC_FSK AC:FSK affinity for ATP 860.0 µM 6 
kf_AC_FSK AC activation by forskolin 1 1/[µM  ms] 6 
kr_AC_FSK AC activation by forskolin 44 1/ms 6 
k_cAMP_PDE cAMP degradation by PDEs 5.0e-3 1/ms 6 
k_cAMP_PDEp cAMP degradation by phosphorylated PDEs 10.0e-3 1/ms 260 
Km_PDE_cAMP PDE affinity for cAMP 1.3 µM 5-6 
Kd_PDE_IBMX PDE inhibition by IBMX 30.0 µM 5-6 
k_PKA_PDE PDE phosphorylation by PKA 7.5e-3 1/ms 260 
k_PP_PDE PDE inhibition by IBMX 1.5e-3 1/ms 260 

 
𝑐𝐴𝑀𝑃 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡 − (𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 + 2 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 + 2 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼)

− (𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 + 2 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 + 2 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼) 
 

𝐴𝐶 = 𝐴𝐶𝑡𝑜𝑡 − 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 
 

𝐺𝑠𝑎𝐺𝑇𝑃 = 𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡 − 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 
 

𝑑𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃
𝑑𝑡

= 𝑘𝑓_𝐴𝐶_𝐺𝑠𝑎 ∙ 𝐺𝑠𝑎𝐺𝑇𝑃 ∙ 𝐴𝐶 − 𝑘𝑟_𝐴𝐶_𝐺𝑠𝑎 ∙ 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 
 

𝐴𝐶_𝐹𝑆𝐾 =
𝐹𝑆𝐾 ∙ 𝐴𝐶

𝐾𝑑_𝐴𝐶_𝐹𝑆𝐾
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𝑃𝐷𝐸_𝐼𝐵𝑀𝑋 =
𝑃𝐷𝐸𝑡𝑜𝑡 ∙ 𝐼𝐵𝑀𝑋
𝐾𝑑_𝑃𝐷𝐸_𝐼𝐵𝑀𝑋

 

 
𝑃𝐷𝐸 = 𝑃𝐷𝐸𝑡𝑜𝑡 − 𝑃𝐷𝐸_𝐼𝐵𝑀𝑋 − 𝑃𝐷𝐸𝑝 

 
𝑑𝑃𝐷𝐸𝑝
𝑑𝑡

= 𝑘𝑃𝐾𝐴𝑃𝐷𝐸 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑃𝐷𝐸 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝐷𝐸𝑝 
 

𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡
𝑑𝑡

=
𝑘_𝐴𝐶_𝑏𝑎𝑠𝑎𝑙 ∙ 𝐴𝐶 ∙ 𝐴𝑇𝑃
𝐾𝑚_𝐴𝐶_𝑏𝑎𝑠𝑎𝑙 + 𝐴𝑇𝑃

+
𝑘_𝐴𝐶_𝐺𝑠𝑎 ∙ 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 ∙ 𝐴𝑇𝑃

𝐾𝑚_𝐴𝐶_𝐺𝑠𝑎 + 𝐴𝑇𝑃

+
𝑘_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝑇𝑃

𝐾𝑚_𝐴𝐶_𝐹𝑆𝐾 + 𝐴𝑇𝑃
−
𝑘_𝑐𝐴𝑀𝑃_𝑃𝐷𝐸 ∙ 𝑃𝐷𝐸 ∙ 𝑐𝐴𝑀𝑃
𝐾𝑚_𝑃𝐷𝐸_𝑐𝐴𝑀𝑃 + 𝑐𝐴𝑀𝑃

−
𝑘_𝑐𝐴𝑀𝑃_𝑃𝐷𝐸𝑝 ∙ 𝑃𝐷𝐸𝑝 ∙ 𝑐𝐴𝑀𝑃
𝐾𝑚_𝑃𝐷𝐸_𝑐𝐴𝑀𝑃 + 𝑐𝐴𝑀𝑃

 

 
PKA 
Parameter Description Value Units Source 
PKAItot total type 1 protein kinase A 0.59 µM 5 
PKAIItot total type 2 protein kinase A 0.059 µM adapted 
PKItot total protein kinase inhibitor 0.18 µM 5-6 
kf_RC_cAMP cAMP association with PKA 1 1/[ µM ms] 5-6 
kr_RC_cAMP cAMP association with PKA 1.64 1/ms 5-6 
kf_RCcAMP_cAMP cAMP association with PKA 1 1/[ µM ms] 5-6 
kr_RCcAMP_cAMP cAMP association with PKA 9.14 1/ms 5-6 
kf_RcAMPcAMP_C catalytic subunit dissociation 4.375 1/[ µM ms] 5-6 
kr_RcAMPcAMP_C catalytic subunit dissociation 1 1/ms 5-6 
kf_PKA_PKI PKA inhibition by PKI 1 1/[ µM ms] 5-6 
kr_PKA_PKI PKA inhibition by PKI 0.2e-3 1/ms 5-6 

 
𝑃𝐾𝐼 = 𝑃𝐾𝐼𝑡𝑜𝑡 − 𝑃𝐾𝐴𝐶𝐼_𝑃𝐾𝐼 − 𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 

 
𝑑𝑅𝐶_𝐼
𝑑𝑡

= −𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 
 

𝑑𝑅𝐶𝑐𝐴𝑀𝑃_𝐼
𝑑𝑡

= −𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 + 𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼 ∙ 𝑐𝐴𝑀𝑃
− 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 

 
𝑑𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 + 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑐𝐴𝑀𝑃 − 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼
+ 𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 
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𝑑𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼
+ 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 

 
𝑑𝑃𝐾𝐴𝐶𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 + 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶

∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 − 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐾𝐼 + 𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼
∙ 𝑃𝐾𝐴𝐶𝐼_𝑃𝐾𝐼 

 
𝑑𝑃𝐾𝐴_𝐶𝐼_𝑃𝐾𝐼

𝑑𝑡
= −𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼_𝑃𝐾𝐼 + 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐾𝐼 

 
𝑑𝑅𝐶_𝐼𝐼
𝑑𝑡

= −𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 
 

𝑑𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼
𝑑𝑡

= −𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 + 𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃
− 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 

 
𝑑𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 + 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃 − 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼
+ 𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 

 
𝑑𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼
+ 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 

 
𝑑𝑃𝐾𝐴𝐶𝐼𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 + 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶

∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 − 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑃𝐾𝐼 + 𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼
∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 

 
𝑑𝑃𝐾𝐴_𝐶𝐼𝐼_𝑃𝐾𝐼

𝑑𝑡
= −𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 + 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑃𝐾𝐼 
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I-1/PP1 
Parameter Description Value Units Source 
PP1tot total phosphatase 1 0.89 µM 5-6 
I1tot total inhibitor 1 0.3 µM 5-6 
k_PKA_I1 PKA phosphorylation of inhibitor 1 60e-3 1/ms 5-6 
Km_PKA_I1 PKA phosphorylation of inhibitor 1 1.0 µM 5-6 
Vmax_PP2A_I1 PP2A dephosphorylation of phospholamban 14.0e-3 µM/ms 5-6 
Km_PP2A_I1 PP2A dephosphorylation of phospholamban 1.0 µM 5-6 
kf_PP1_I1 PP1 inhibition by inhibitor 1 1.0 1/[µM ms] 5-6 
kr_PP1_I1 PP1 inhibition by inhibitor 1 1.0e-3 1/ms 5-6 

 
𝐼1 = 𝐼1𝑡𝑜𝑡 − 𝐼1𝑝𝑡𝑜𝑡 

 
𝑃𝑃1 = 𝑃𝑃1𝑡𝑜𝑡 − 𝐼1𝑝_𝑃𝑃1 

 
𝐼1𝑝 = 𝐼1𝑝𝑡𝑜𝑡 − 𝐼1𝑝_𝑃𝑃1 

 
𝑑𝐼1𝑝_𝑃𝑃1

𝑑𝑡
= 𝑘𝑓_𝑃𝑃1_𝐼1 ∙ 𝑃𝑃1 ∙ 𝐼1𝑝 − 𝑘𝑟_𝑃𝑃1_𝐼1 ∙ 𝐼1𝑝_𝑃𝑃1 

 
𝑑𝐼1𝑝𝑡𝑜𝑡
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝐼1 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝐼1
𝐾𝑚_𝑃𝐾𝐴_𝐼1 + 𝐼1

−
𝑉𝑚𝑎𝑥_𝑃𝑃2𝐴_𝐼1 ∙ 𝐼1𝑝𝑡𝑜𝑡
𝐾𝑚_𝑃𝑃2𝐴_𝐼1 + 𝐼1𝑝𝑡𝑜𝑡

 

 
LCC 
Parameter Description Value Units Source 
LCCtot total L-type Ca channel 0.025 µM 5-6 
PKACII_LCCtot total PKA local to L-type Ca channel 0.025 µM 5-6 
PP1_LCC total PP1 local to L-type Ca channel 0.025 µM 5-6 
PP2A_LCC total PP2A local to L-type Ca channel 0.025 µM 5-6 
epsilon AKAP-mediated scaling factor 10 - 5-6 
k_PKA_LCC PKA phosphorylation of LCC 54e-3 1/ms 5-6 
Km_PKA_LCC PKA phosphorylation of LCC 21 µM 5-6 
k_PP1_LCC PP1 dephosphorylation of LCC 8.52e-3 1/ms 5-6 
Km_PP1_LCC PP1 dephosphorylation of LCC 3 µM 5-6 
k_PP2A_LCC PP2A dephosphorylation of LCC 10.1e-3 1/ms 5-6 
Km_PP2A_LCC PP2A dephosphorylation of LCC 3 µM 5-6 

 

𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶 =
𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶𝑡𝑜𝑡

𝑃𝐾𝐴𝐼𝐼𝑡𝑜𝑡
∙ 𝑃𝐾𝐴𝐶𝐼𝐼 

 
𝐿𝐶𝐶𝑎 = 𝐿𝐶𝐶𝑡𝑜𝑡 − 𝐿𝐶𝐶𝑎𝑝 
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𝑑𝐿𝐶𝐶𝑎𝑝
𝑑𝑡

=
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝐾𝐴_𝐿𝐶𝐶 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑎

𝐾𝑚_𝑃𝐾𝐴_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑎

−
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝑃2𝐴_𝐿𝐶𝐶 ∙ 𝑃𝑃2𝐴_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑎𝑝

𝐾𝑚_𝑃𝑃2𝐴_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑎𝑝
 

 
𝐿𝐶𝐶𝑏 = 𝐿𝐶𝐶𝑡𝑜𝑡 − 𝐿𝐶𝐶𝑏𝑝 

 
𝑑𝐿𝐶𝐶𝑏𝑝
𝑑𝑡

=
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝐾𝐴_𝐿𝐶𝐶 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑏

𝐾𝑚_𝑃𝐾𝐴_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑏

−
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝑃1_𝐿𝐶𝐶 ∙ 𝑃𝑃1_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑏𝑝

𝐾𝑚_𝑃𝑃1_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑏𝑝
 

 
 
PLB 
Parameter Description Value Units Source 
PLBtot total phospholamban 106 µM 6 
k_PKA_PLB PKA phosphorylation of phospholamban 54e-3 1/ms 5-6 
Km_PKA_PLB PKA phosphorylation of phospholamban 21 µM 5-6 
k_PP1_PLB PP1 dephosphorylation of phospholamban 8.5e-3 1/ms 5-6 
Km_PP1_PLB PP1 dephosphorylation of phospholamban 7.0 µM 5-6 

 
𝑃𝐿𝐵 = 𝑃𝐿𝐵𝑡𝑜𝑡 − 𝑃𝐿𝐵𝑝 

 
𝑑𝑃𝐿𝐵𝑝
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝑃𝐿𝐵 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐿𝐵
𝐾𝑚_𝑃𝐾𝐴_𝑃𝐿𝐵 + 𝑃𝐿𝐵

−
𝑘_𝑃𝑃1_𝑃𝐿𝐵 ∙ 𝑃𝑃1 ∙ 𝑃𝐿𝐵𝑝
𝐾𝑚_𝑃𝑃1_𝑃𝐿𝐵 + 𝑃𝐿𝐵𝑝

 

 
PLM 
Parameter Description Value Units Source 
PLMtot total phospholemman 48 µM adapted 
k_PKA_PLM PKA phosphorylation of phospholemman 54e-3 1/ms adapted 
Km_PKA_PLM PKA phosphorylation of phospholemman 21 µM adapted 
k_PP1_PLM PP1 dephosphorylation of phospholemman 8.5e-3 1/ms adapted 
Km_PP1_PLM PP1 dephosphorylation of phospholemman 7.0 µM adapted 

 
𝑃𝐿𝑀 = 𝑃𝐿𝑀𝑡𝑜𝑡 − 𝑃𝐿𝑀𝑝 

 
𝑑𝑃𝐿𝑀𝑝
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝑃𝐿𝑀 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐿𝑀
𝐾𝑚_𝑃𝐾𝐴_𝑃𝐿𝑀 + 𝑃𝐿𝑀

−
𝑘_𝑃𝑃1_𝑃𝐿𝑀 ∙ 𝑃𝑃1 ∙ 𝑃𝐿𝑀𝑝
𝐾𝑚_𝑃𝑃1_𝑃𝐿𝑀 + 𝑃𝐿𝑀𝑝
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TnI 
Parameter Description Value Units Source 
TnItot total troponin I 70 µM 6 
PP2A_TnI total PP2A local to troponin I 0.67 µM 6 
k_PKA_TnI PKA phosphorylation of troponin I 54e-3 1/ms 6 
Km_PKA_TnI PKA phosphorylation of troponin I 21 µM 6 
k_PP2A_TnI PP2A dephosphorylation of troponin I 10.1e-3 1/ms 6 
Km_PP2A_TnI PP2A dephosphorylation of troponin I 4.1 µM 6 

 
𝑇𝑛𝐼 = 𝑇𝑛𝐼𝑡𝑜𝑡 − 𝑇𝑛𝐼𝑝 

 
𝑑𝑇𝑛𝐼𝑝
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝑇𝑛𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑇𝑛𝐼
𝐾𝑚_𝑃𝐾𝐴_𝑇𝑛𝐼 + 𝑇𝑛𝐼

−
𝑘_𝑃𝑃2𝐴_𝑇𝑛𝐼 ∙ 𝑃𝑃2𝑎_𝑇𝑛𝐼 ∙ 𝑇𝑛𝐼𝑝

𝐾𝑚_𝑃𝑃2𝐴_𝑇𝑛𝐼 + 𝑇𝑛𝐼𝑝
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Mouse Ventricular Myocyte Excitation-Contraction Coupling 
 
General Paramters 
Parameter Description Value Units Source 
F Faraday's constant 96.5 C/mmol 184 
T temperature 298 K - 
R universal gas constant 8.314 J/[mol K] 184 
Cm membrane capacitance 1 µF/cm2 184 
Acap capacitive membrane area 1.387e-4 cm2 adapted 
Csa cell surface area capacitance 1.387e-4 µF adapted 
Vmyo cytoplasmic volume 25.84e-6 µL 184 
VSR sarcoplasmic reticulum volume 1.3902e-6 µL adapted 
VSS dyadic subspace volume 5.168e-13 µL adapted 
Istimmax paced stimulus amplitude -20 pA/pF 184 
Ko extracellular potassium 5.4e3 µM 184 
Mgi intracellular magnesium 1e3 µM 189 
Cao extracellular calcium 1.8e3 µM 184 
Nao extracellular sodium 140e3 µM 184 

 
Nernst Potentials 
 

𝐸𝐶𝑎 =
𝑅𝑇
2𝐹

∙ log �
𝐶𝑎𝑜
𝐶𝑎𝑖�

 
 

𝐸𝐾 =
𝑅𝑇
𝐹
∙ log �

𝐾𝑜
𝐾𝑖�

 
 

𝐸𝑁𝑎 =
𝑅𝑇
𝐹
∙ log �

𝑁𝑎𝑜
𝑁𝑎𝑖 �

 
 
Ca2+ Buffering 
Parameter Description Value Units Source 
CaMtot total cytosolic calmodulin 24 µM 189 
TnCLtot total low-affinity troponin sites 70 µM 189 
TnCHtot total high-affinity troponin sites 140 µM 189 
Myosintot total myosin 140 µM 189 
CSQNtot total SR calsequestrin 2.6e3 µM 189 
CaSRbtot total SR membrane buffer 47 µM 175 
CaSLtot total inner sarcolemmal buffer 42 µM 175 
CaSLhtot total high affinity sarcolemmal buffer 15 µM 175 
CaATPtot total ATP buffer 5000 µM 175 
CaPCrtot total phosphocreatine buffer 12000 µM 175 
kon_CaM kon for Ca2+ binding to  cytosolic calmodulin 45e-3 1/[µM ms] 189 
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Parameter Description Value Units Source 
koff_CaM koff for Ca2+ binding to cytosolic calmodulin 238e-3 1/ms 189 
kon_TnCL kon for Ca2+ binding to low-affinity troponin 32.7e-3 1/[µM ms] 189 
koff_TnCL koff for Ca2+ binding to low-affinity troponin 19.6e-3 1/ms 189 
kon_TnCHCa kon for Ca2+ binding to high-affinity troponin 2.37e-3 1/[µM ms] 189 
koff_TnCHCa koff for Ca2+ binding to high-affinity troponin 0.032e-3 1/ms 189 
kon_TnCHMg kon for Mg2+ binding to high-affinity troponin 0.003e-3 1/[µM ms] 189 
koff_TnCHMg koff for Mg2+ binding to high-affinity troponin 3.33e-3 1/ms 189 
kon_MyosinCa kon for Ca2+ binding to myosin 13.8e-3 1/[µM ms] 189 
koff_MyosinCa koff for Ca2+ binding to myosin 0.46e-3 1/ms 189 
kon_MyosinMg kon for Mg2+ binding to myosin 0.0157e-3 1/[µM ms] 189 
koff_MyosinMg koff for Mg2+ binding to myosin 0.057e-3 1/ms 189 
kon_CaSRb kon for Ca2+ binding to SR membrane 60e-3 1/[µM ms] 175 
koff_CaSRb koff for Ca2+ binding to SR membrane 100e-3 1/ms 175 
kon_CaSL kon for Ca2+ binding to sarcolemmal membrane 100e-3 1/[µM ms] 175 
koff_CaSL koff for Ca2+ binding to sarcolemmal membrane 1300e-3 1/ms 175 
kon_CaSLh kon for Ca2+ binding to high affinity 

l  
100e-3 1/[µM ms] 175 

koff_CaSLh koff for Ca2+ binding to high affinity 
l  

30e-3 1/ms 175 
kon_CaATP kon for Ca2+ binding to ATP 100e-3 1/[µM ms] 175 
koff_CaATP koff for Ca2+ binding to ATP 20 1/ms 175 
Ki_MgATP Mg2+ competition for ATP 83.3 µM 175 
kon_CaPCr kon for Ca2+ binding to phosphocreatine 100e-3 1/[µM ms] 175 
koff_CaPCr koff for Ca2+ binding to phosphocreatine 7107.3 1/ms 175 
Km_CSQN Km for Ca2+ binding to calsequestrin 650 µM 189 

 
𝑑𝑇𝑛𝐶𝐿𝐶𝑎

𝑑𝑡
= 𝑘𝑜𝑛_𝑇𝑛𝐶𝐿 ∙ 𝐶𝑎𝑖 ∙ (𝑇𝑛𝐶𝐿𝑡𝑜𝑡 − 𝑇𝑛𝐶𝑙𝐶𝑎) − 𝑘𝑜𝑓𝑓_𝑇𝑛𝐶𝐿 ∙ 𝑇𝑛𝐶𝑙𝐶𝑎 

 
𝑑𝑇𝑛𝐶𝐻𝐶𝑎

𝑑𝑡
= 𝑘𝑜𝑛_𝑇𝑛𝐶𝐻𝐶𝑎 ∙ 𝐶𝑎𝑖 ∙ (𝑇𝑛𝐶𝐻𝑡𝑜𝑡 − 𝑇𝑛𝐶𝐻𝐶𝑎 − 𝑇𝑛𝐶𝐻𝑀𝑔)

− 𝑘𝑜𝑓𝑓_𝑇𝑛𝐶𝐻𝐶𝑎 ∙ 𝑇𝑛𝐶𝐻𝐶𝑎 
 

𝑑𝑇𝑛𝐶𝐻𝑀𝑔
𝑑𝑡

= 𝑘𝑜𝑛_𝑇𝑛𝐶𝐻𝑀𝑔 ∙ 𝑀𝑔𝑖 ∙ (𝑇𝑛𝐶𝐻𝑡𝑜𝑡 − 𝑇𝑛𝐶𝐻𝐶𝑎 − 𝑇𝑛𝐶𝐻𝑀𝑔)

− 𝑘𝑜𝑓𝑓_𝑇𝑛𝐶𝐻𝑀𝑔 ∙ 𝑇𝑛𝐶𝐻𝑀𝑔 
 

𝑑𝑀𝑦𝑜𝑠𝑖𝑛𝐶𝑎
𝑑𝑡

= 𝑘𝑜𝑛_𝑀𝑦𝑜𝑠𝑖𝑛𝐶𝑎 ∙ 𝐶𝑎𝑖 ∙ (𝑀𝑦𝑜𝑠𝑖𝑛𝑡𝑜𝑡 − 𝑀𝑦𝑜𝑠𝑖𝑛𝐶𝑎 −𝑀𝑦𝑜𝑠𝑖𝑛𝑀𝑔)

− 𝑘𝑜𝑓𝑓_𝑀𝑦𝑜𝑠𝑖𝑛𝐶𝑎 ∙ 𝑀𝑦𝑜𝑠𝑖𝑛𝐶𝑎 
 
𝑑𝑀𝑦𝑜𝑠𝑖𝑛𝑀𝑔

𝑑𝑡
= 𝑘𝑜𝑛_𝑀𝑦𝑜𝑠𝑖𝑛𝑀𝑔 ∙ 𝑀𝑔𝑖 ∙ (𝑀𝑦𝑜𝑠𝑖𝑛𝑡𝑜𝑡 − 𝑀𝑦𝑜𝑠𝑖𝑛𝐶𝑎 −𝑀𝑦𝑜𝑠𝑖𝑛𝑀𝑔)

− 𝑘𝑜𝑓𝑓_𝑀𝑦𝑜𝑠𝑖𝑛𝑀𝑔 ∙ 𝑀𝑦𝑜𝑠𝑖𝑛𝑀𝑔 
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𝑑𝐶𝑎𝑀𝐶𝑎
𝑑𝑡

= 𝑘𝑜𝑛_𝐶𝑎𝑀 ∙ 𝐶𝑎𝑖 ∙ (𝐶𝑎𝑀𝑡𝑜𝑡 − 𝐶𝑎𝑀𝐶𝑎) − 𝑘𝑜𝑓𝑓_𝐶𝑎𝑀 ∙ 𝐶𝑎𝑀𝐶𝑎 
 

𝑑𝐶𝑎𝑆𝑅𝑏
𝑑𝑡

= 𝑘𝑜𝑛_𝐶𝑎𝑆𝑅𝑏 ∙ 𝐶𝑎𝑖 ∙ (𝐶𝑎𝑆𝑅𝑏𝑡𝑜𝑡 − 𝐶𝑎𝑆𝑅𝑏) − 𝑘𝑜𝑓𝑓_𝐶𝑎𝑆𝑅𝑏 ∙ 𝐶𝑎𝑆𝑅𝑏 
 

𝑑𝐶𝑎𝑆𝐿
𝑑𝑡

= 𝑘𝑜𝑛_𝐶𝑎𝑆𝐿 ∙ 𝐶𝑎𝑖 ∙ (𝐶𝑎𝑆𝐿𝑡𝑜𝑡 − 𝐶𝑎𝑆𝐿) − 𝑘𝑜𝑓𝑓_𝐶𝑎𝑆𝐿 ∙ 𝐶𝑎𝑆𝐿 
 

𝑑𝐶𝑎𝑆𝐿ℎ
𝑑𝑡

= 𝑘𝑜𝑛_𝐶𝑎𝑆𝐿ℎ ∙ 𝐶𝑎𝑖 ∙ (𝐶𝑎𝑆𝐿ℎ𝑡𝑜𝑡 − 𝐶𝑎𝑆𝐿ℎ) − 𝑘𝑜𝑓𝑓_𝐶𝑎𝑆𝐿ℎ ∙ 𝐶𝑎𝑆𝐿ℎ 
 

𝑑𝐶𝑎𝐴𝑇𝑃
𝑑𝑡

= 𝑘𝑜𝑛_𝐶𝑎𝐴𝑇𝑃 ∙ 𝐶𝑎𝑖 ∙ (𝐶𝑎𝐴𝑇𝑃𝑡𝑜𝑡 − 𝐶𝑎𝐴𝑇𝑃) − 𝑘𝑜𝑓𝑓_𝐶𝑎𝐴𝑇𝑃

∙ �1 +
𝑀𝑔𝑖

𝐾𝑖_𝑀𝑔𝐴𝑇𝑃�
∙ 𝐶𝑎𝐴𝑇𝑃 

 
𝑑𝐶𝑎𝑃𝐶𝑟
𝑑𝑡

= 𝑘𝑜𝑛_𝐶𝑎𝑃𝐶𝑅 ∙ 𝐶𝑎𝑖 ∙ (𝐶𝑎𝑃𝐶𝑅𝑡𝑜𝑡 − 𝐶𝑎𝑃𝐶𝑅) − 𝑘𝑜𝑓𝑓_𝐶𝑎𝑃𝐶𝑅 ∙ 𝐶𝑎𝑃𝐶𝑟 
 

𝐶𝑎𝐵𝑆𝑅 =
1

1 + 𝐶𝑆𝑄𝑁𝑡𝑜𝑡 ∙ 𝐾𝑚_𝐶𝑆𝑄𝑁
(𝐾𝑚_𝐶𝑆𝑄𝑁 + 𝐶𝑎𝑆𝑅)2

 

 
Ca2+-Induced Ca2+-Release 
Parameter Description Value Units Source 
NCaRU number of Ca2+ release units 50000 - 185 
r_xfer Ca2+ flux rate from SS to cytosol 220 1/ms 185 
PCaL unitary LCC permeability 27.39e-13 cm3/s adapted 
JRyRmax unitary Ca2+ flux rate through RyR 31.36 1/ms adapted 
fL L-type Ca2+ channel rate constant 0.85 1/ms 185 
aL L-type Ca2+ channel rate constant 12.88782 - 185 
bL L-type Ca2+ channel rate constant 32.1948 - 185 
gammaL L-type Ca2+ channel rate constant 4.170162e-3 1/[µM ms] adapted 
omegaL L-type Ca2+ channel rate constant 0.0269659 1/ms 185 
k12 ryanodine receptor rate constant 125.3571e-6 1/[µM2 ms] adapted 
k21 ryanodine receptor rate constant 1250 1/ms 185 
k23 ryanodine receptor rate constant 235.8 1/[µM2 ms] 185 
k32 ryanodine receptor rate constant 9.6 1/ms 185 
k34 ryanodine receptor rate constant 1.415 1/[µM2 ms] 185 
k43 ryanodine receptor rate constant 13.65 1/ms 185 
k45 ryanodine receptor rate constant 0.07 1/ms 185 
k54 ryanodine receptor rate constant 93.385e-6 1/[µM2 ms] 185 
k56 ryanodine receptor rate constant 18.87 1/[µM2 ms] 185 
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Parameter Description Value Units Source 
k65 ryanodine receptor rate constant 30 1/ms 185 
Parameter Description Value Units Source 
k25 ryanodine receptor rate constant 2.358 1/[µM2 ms] 185 
k52 ryanodine receptor rate constant 0.001235 1/ms 185 
SRmax RyR luminal sensitivity 0.3 - 183,337 
SRmin RyR luminal sensitivity 2 - 183,337 
SREC50 RyR luminal sensitivity 0.5 - 183,337 
SRH RyR luminal sensitivity 1 - 183,337 
r_leak passive SR leak rate through RyRs 0.0053 1/ms adapted 

 
Local dyadic Ca2+ concentrations 
 

𝐶𝑎𝑆𝑆1 =
𝑟_𝑙𝑒𝑎𝑘 ∙ 𝐶𝑎𝑆𝑅 + 𝑟_𝑥𝑓𝑒𝑟 ∙ 𝐶𝑎𝑖

𝑟_𝑙𝑒𝑎𝑘 + 𝑟_𝑥𝑓𝑒𝑟
 

 

𝐶𝑎𝑆𝑆2 =

𝑃𝐶𝑎𝐿
𝑉𝑠𝑠 ∙ 2𝑉𝐹

𝑅𝑇 ∙ 0.341 ∙ 𝐶𝑎𝑜

𝑒
2𝑉𝐹
𝑅𝑇 − 1

+ 𝑟_𝑙𝑒𝑎𝑘 ∙ 𝐶𝑎𝑆𝑅 + 𝑟_𝑥𝑓𝑒𝑟 ∙ 𝐶𝑎𝑖

𝑃𝐶𝑎𝐿
𝑉𝑠𝑠 ∙ 2𝑉𝐹

𝑅𝑇 ∙ 1

1 − 𝑒
−2𝑉𝐹
𝑅𝑇

+ 𝑟_𝑙𝑒𝑎𝑘 + 𝑟_𝑥𝑓𝑒𝑟
 

 

𝐶𝑎𝑆𝑆3 =
(𝐽𝑅𝑦𝑅𝑚𝑎𝑥 + 𝑟_𝑙𝑒𝑎𝑘) ∙ 𝐶𝑎𝑆𝑅 + 𝑟_𝑥𝑓𝑒𝑟 ∙ 𝐶𝑎𝑖

𝐽𝑅𝑦𝑅𝑚𝑎𝑥 + 𝑟_𝑙𝑒𝑎𝑘 + 𝑟_𝑥𝑓𝑒𝑟
 

 

𝐶𝑎𝑆𝑆4 =

𝑃𝐶𝑎𝐿
𝑉𝑠𝑠 ∙ 2𝑉𝐹

𝑅𝑇 ∙ 0.341 ∙ 𝐶𝑎𝑜

𝑒
2𝑉𝐹
𝑅𝑇 − 1

+ (𝐽𝑅𝑦𝑅𝑚𝑎𝑥 + 𝑟_𝑙𝑒𝑎𝑘) ∙ 𝐶𝑎𝑆𝑅 + 𝑟_𝑥𝑓𝑒𝑟 ∙ 𝐶𝑎𝑖

𝑃𝐶𝑎𝐿
𝑉𝑠𝑠 ∙ 2𝑉𝐹

𝑅𝑇 ∙ 1

1 − 𝑒
−2𝑉𝐹
𝑅𝑇

+ 𝐽𝑅𝑦𝑅𝑚𝑎𝑥 + 𝑟_𝑙𝑒𝑎𝑘 + 𝑟_𝑥𝑓𝑒𝑟
 

 
LCC and RyR rate constants 
 

𝑎𝑙𝑝ℎ𝑎𝐿 = 0.835399 ∙ 𝑒0.0269241∙(𝑉−35) 
 

𝑏𝑒𝑡𝑎𝐿 = 0.0331584 ∙ 𝑒−0.0934594∙(𝑉−35) 
 

𝑦𝐶𝑎𝑖𝑛𝑓 =
0.95

1 + 𝑒
𝑉+25
5

+ 0.05 

 

𝑡𝑎𝑢𝑦𝐶𝑎 =
340

1 + 𝑒
𝑉+30
12

+ 60 

 

𝑘𝑏𝑦 =
𝑦𝐶𝑎𝑖𝑛𝑓
𝑡𝑎𝑢𝑦𝐶𝑎
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𝑘𝑓𝑦 =
1 − 𝑦𝐶𝑎𝑖𝑛𝑓
𝑡𝑎𝑢𝑦𝐶𝑎

 

 
𝜆1,2 = 𝑎𝑙𝑝ℎ𝑎𝐿 

 
𝜆2,1 = 𝑏𝑒𝑡𝑎𝐿 

 
𝜆2,3 = 𝑓𝐿 

 
𝜆3,2 = 𝑔𝐿 

 
𝜆1,4,𝐶𝑎𝑆𝑆1 = 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆1 

 
𝜆1,4,𝐶𝑎𝑆𝑆3 = 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆3 

 
𝜆4,1 = 𝑜𝑚𝑒𝑔𝑎𝐿 

 
𝜆4,5 = 𝑎𝐿 ∙ 𝑎𝑙𝑝ℎ𝑎𝐿 

 

𝜆5,4 =
𝑏𝑒𝑡𝑎𝐿
𝑏𝐿

 
 

𝜆2,5,𝐶𝑎𝑆𝑆1 = 𝑎𝐿 ∙ 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆1 
 

𝜆2,5,𝐶𝑎𝑆𝑆3 = 𝑎𝐿 ∙ 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆3 
 

𝜆5,2 =
𝑜𝑚𝑒𝑔𝑎𝐿

𝑏𝐿
 

 
𝜆6,7 = 𝑎𝑙𝑝ℎ𝑎𝐿 

 
𝜆7,6 = 𝑏𝑒𝑡𝑎𝐿 

 
𝜆7,8 = 𝑓𝐿 

 
𝜆8,7 = 𝑔𝐿 

 
𝜆6,9,𝐶𝑎𝑆𝑆1 = 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆1 

 
𝜆6,9,𝐶𝑎𝑆𝑆3 = 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆3 

 
𝜆9,6 = 𝑜𝑚𝑒𝑔𝑎𝐿 

 
𝜆9,10 = 𝑎𝐿 ∙ 𝑎𝑙𝑝ℎ𝑎𝐿 
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𝜆10,9 =
𝑏𝑒𝑡𝑎𝐿
𝑏𝐿

 
 

𝜆7,10,𝐶𝑎𝑆𝑆1 = 𝑎𝐿 ∙ 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆1 
 

𝜆7,10,𝐶𝑎𝑆𝑆3 = 𝑎𝐿 ∙ 𝑔𝑎𝑚𝑚𝑎𝐿 ∙ 𝐶𝑎𝑆𝑆3 
 

𝜆10,7 =
𝑜𝑚𝑒𝑔𝑎𝐿

𝑏𝐿
 

 
𝜆1,6 = 𝑘𝑓𝑦 

 
𝜆2,7 = 𝑘𝑓𝑦 

 
𝜆3,8 = 𝑘𝑓𝑦 

 
𝜆4,9 = 𝑘𝑓𝑦 

 
𝜆5,10 = 𝑘𝑓𝑦 

 
𝜆6,1 = 𝑘𝑏𝑦 

 
𝜆7,2 = 𝑘𝑏𝑦 

 
𝜆8,3 = 𝑘𝑏𝑦 

 
𝜆9,4 = 𝑘𝑏𝑦 

 
𝜆10,5 = 𝑘𝑏𝑦 

 
 

𝑘𝑙𝑢𝑚𝑒𝑛 = 𝑆𝑅𝑚𝑎𝑥 −
𝑆𝑅𝑚𝑎𝑥 − 𝑆𝑅𝑚𝑖𝑛

1 + �𝑆𝑅𝐸𝐶50
𝐶𝑎𝑆𝑅 �

𝑆𝑅𝐻 

 
𝑘12 = 𝑘12 ∙ 𝑘𝑙𝑢𝑚𝑒𝑛 

 
𝑘23 = 𝑘23 ∙ 𝑘𝑙𝑢𝑚𝑒𝑛 

 
𝑘54 = 𝑘54 ∙ 𝑘𝑙𝑢𝑚𝑒𝑛 

 

𝑘25 =
𝑘25

𝑘𝑙𝑢𝑚𝑒𝑛
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𝑘45 =
𝑘45

𝑘𝑙𝑢𝑚𝑒𝑛
 

 
𝜌1,2,𝐶𝑎𝑆𝑆1 = 𝑘12 ∙ 𝐶𝑎𝑆𝑆12 

 
𝜌1,2,𝐶𝑎𝑆𝑆2 = 𝑘12 ∙ 𝐶𝑎𝑆𝑆22 

 
𝜌2,1 = 𝑘21 

 
𝜌2,3,𝐶𝑎𝑆𝑆1 = 𝑘23 ∙ 𝐶𝑎𝑆𝑆12 

 
𝜌2,3,𝐶𝑎𝑆𝑆2 = 𝑘23 ∙ 𝐶𝑎𝑆𝑆22 

 

𝜌3,4,𝐶𝑎𝑆𝑆3 =
𝑘32 ∙ 𝑘43

𝑘34 ∙ 𝐶𝑎𝑆𝑆32 + 𝑘43
 

 

𝜌3,4,𝐶𝑎𝑆𝑆4 =
𝑘32 ∙ 𝑘43

𝑘34 ∙ 𝐶𝑎𝑆𝑆42 + 𝑘43
 

 
𝜌2,4,𝐶𝑎𝑆𝑆1 = 𝑘24 ∙ 𝐶𝑎𝑆𝑆12 

 
𝜌2,4,𝐶𝑎𝑆𝑆2 = 𝑘24 ∙ 𝐶𝑎𝑆𝑆22 

 

𝜌4,2,𝐶𝑎𝑆𝑆1 =
𝑘52 ∙ 𝑘65

𝑘56 ∙ 𝐶𝑎𝑆𝑆12 + 𝑘65
 

 

𝜌4,2,𝐶𝑎𝑆𝑆2 =
𝑘52 ∙ 𝑘65

𝑘56 ∙ 𝐶𝑎𝑆𝑆22 + 𝑘65
 

 

𝜌3,4,𝐶𝑎𝑆𝑆3 =
𝑘45 ∙ 𝑘34 ∙ 𝐶𝑎𝑆𝑆32

𝑘34 ∙ 𝐶𝑎𝑆𝑆32 + 𝑘43
 

 

𝜌3,4,𝐶𝑎𝑆𝑆4 =
𝑘45 ∙ 𝑘34 ∙ 𝐶𝑎𝑆𝑆42

𝑘34 ∙ 𝐶𝑎𝑆𝑆42 + 𝑘43
 

 

𝜌4,3,𝐶𝑎𝑆𝑆1 =
𝑘65 ∙ 𝑘54 ∙ 𝐶𝑎𝑆𝑆12

𝑘56 ∙ 𝐶𝑎𝑆𝑆12 + 𝑘65
 

 

𝜌4,3,𝐶𝑎𝑆𝑆2 =
𝑘65 ∙ 𝑘54 ∙ 𝐶𝑎𝑆𝑆22

𝑘56 ∙ 𝐶𝑎𝑆𝑆22 + 𝑘65
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LCC and RyR state transitions 
 
𝑑𝐿𝑅1
𝑑𝑡

= −�𝜆1,2 + 𝜆1,4,𝐶𝑎𝑆𝑆1 + 𝜆1,6 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅1 + 𝜆2,1 ∙ 𝐿𝑅2 + 𝜆4,1 ∙ 𝐿𝑅4 + 𝜆6,1

∙ 𝐿𝑅6 + 𝜌2,1 ∙ 𝐿𝑅11 
 
𝑑𝐿𝑅2
𝑑𝑡

= −�𝜆2,1 + 𝜆2,3 + 𝜆2,5,𝐶𝑎𝑆𝑆1 + 𝜆2,7 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅2 + 𝜆1,2 ∙ 𝐿𝑅1 + 𝜆3,2 ∙ 𝐿𝑅3
+ 𝜆5,2 ∙ 𝐿𝑅5 + 𝜆7,2 ∙ 𝐿𝑅7 + 𝜌2,1 ∙ 𝐿𝑅12 

 
𝑑𝐿𝑅3
𝑑𝑡

= −�𝜆3,2 + 𝜆3,8 + 𝜌1,2,𝐶𝑎𝑆𝑆2� ∙ 𝐿𝑅3 + 𝜆2,3 ∙ 𝐿𝑅2 + 𝜆8,3 ∙ 𝐿𝑅8 + 𝜌2,1 ∙ 𝐿𝑅13 
 
𝑑𝐿𝑅4
𝑑𝑡

= −�𝜆4,1 + 𝜆4,5 + 𝜆4,9 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅4 + 𝜆1,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅1 + 𝜆5,4 ∙ 𝐿𝑅5 + 𝜆9,4

∙ 𝐿𝑅9 + 𝜌2,1 ∙ 𝐿𝑅14 
 
𝑑𝐿𝑅5
𝑑𝑡

= −�𝜆5,2 + 𝜆5,4 + 𝜆5,10 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅5 + 𝜆2,5,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅2 + 𝜆4,5 ∙ 𝐿𝑅4 + 𝜆10,5

∙ 𝐿𝑅10 + 𝜌2,1 ∙ 𝐿𝑅15 
 
𝑑𝐿𝑅6
𝑑𝑡

= −�𝜆6,1 + 𝜆6,7 + 𝜆6,9,𝐶𝑎𝑆𝑆1 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅6 + 𝜆1,6 ∙ 𝐿𝑅1 + 𝜆7,6 ∙ 𝐿𝑅7 + 𝜆9,6

∙ 𝐿𝑅9 + 𝜌2,1 ∙ 𝐿𝑅16 
 
𝑑𝐿𝑅7
𝑑𝑡

= −�𝜆7,2 + 𝜆7,6 + 𝜆7,8 + 𝜆7,10,𝐶𝑎𝑆𝑆1 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅7 + 𝜆2,7 ∙ 𝐿𝑅2 + 𝜆6,7 ∙ 𝐿𝑅6
+ 𝜆8,7 ∙ 𝐿𝑅8 + 𝜆10,7 ∙ 𝐿𝑅10 + 𝜌2,1 ∙ 𝐿𝑅17 

 
𝑑𝐿𝑅8
𝑑𝑡

= −�𝜆8,3 + 𝜆8,7 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅8 + 𝜆3,8 ∙ 𝐿𝑅3 + 𝜆7,8 ∙ 𝐿𝑅7 + 𝜌2,1 ∙ 𝐿𝑅18 
 
𝑑𝐿𝑅9
𝑑𝑡

= −�𝜆9,4 + 𝜆9,6 + 𝜆9,10 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅9 + 𝜆4,9 ∙ 𝐿𝑅4 + 𝜆6,9,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅6 + 𝜆10,9

∙ 𝐿𝑅10 + 𝜌2,1 ∙ 𝐿𝑅19 
 
𝑑𝐿𝑅10
𝑑𝑡

= −�𝜆10,5 + 𝜆10,7 + 𝜆10,9 + 𝜌1,2,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅10 + 𝜆5,10 ∙ 𝐿𝑅5 + 𝜆7,10,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅7
+ 𝜆9,10 ∙ 𝐿𝑅9 + 𝜌2,1 ∙ 𝐿𝑅20 

 
𝑑𝐿𝑅11
𝑑𝑡

= −�𝜌2,1 + 𝜆1,2 + 𝜆1,4,𝐶𝑎𝑆𝑆1 + 𝜆1,6 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅11 + 𝜌1,2,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅1 + 𝜆2,1 ∙ 𝐿𝑅12 + 𝜆4,1 ∙ 𝐿𝑅14 + 𝜆6,1 ∙ 𝐿𝑅16 + 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅21
+ 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅31 

 



191 
 

𝑑𝐿𝑅12
𝑑𝑡

= −�𝜌2,1 + 𝜆2,1 + 𝜆2,3 + 𝜆2,5,𝐶𝑎𝑆𝑆1 + 𝜆2,7 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅12
+ 𝜌1,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅2 + 𝜆1,2 ∙ 𝐿𝑅11 + 𝜆3,2 ∙ 𝐿𝑅13 + 𝜆5,2 ∙ 𝐿𝑅15 + 𝜆7,2 ∙ 𝐿𝑅17
+ 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅22 + 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅32 

 
𝑑𝐿𝑅13
𝑑𝑡

= −�𝜌2,1 + 𝜆3,2 + 𝜆3,8 + 𝜌2,3,𝐶𝑎𝑆𝑆2 + 𝜌2,4,𝐶𝑎𝑆𝑆2� ∙ 𝐿𝑅13 + 𝜌1,2,𝐶𝑎𝑆𝑆2 ∙ 𝐿𝑅3 + 𝜆2,3

∙ 𝐿𝑅12 + 𝜆8,3 ∙ 𝐿𝑅18 + 𝜌3,2,𝐶𝑎𝑆𝑆4 ∙ 𝐿𝑅23 + 𝜌4,2,𝐶𝑎𝑆𝑆2 ∙ 𝐿𝑅33 
 
𝑑𝐿𝑅14
𝑑𝑡

= −�𝜌2,1 + 𝜆4,1 + 𝜆4,5 + 𝜆4,9 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅14 + 𝜌1,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅4
+ 𝜆1,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅11 + 𝜆5,4 ∙ 𝐿𝑅15 + 𝜆9,4 ∙ 𝐿𝑅19 + 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅24
+ 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅34 

 
𝑑𝐿𝑅15
𝑑𝑡

= −�𝜌2,1 + 𝜆5,2 + 𝜆5,4 + 𝜆5,10 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅15 + 𝜌1,2,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅5 + 𝜆2,5,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅12 + 𝜆4,5 ∙ 𝐿𝑅14 + 𝜆10,5 ∙ 𝐿𝑅20 + 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅25
+ 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅35 

 
𝑑𝐿𝑅16
𝑑𝑡

= −�𝜌2,1 + 𝜆6,1 + 𝜆6,7 + 𝜆6,9,𝐶𝑎𝑆𝑆1 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅16 + 𝜌1,2,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅6 + 𝜆1,6 ∙ 𝐿𝑅11 + 𝜆7,6 ∙ 𝐿𝑅17 + 𝜆9,6 ∙ 𝐿𝑅19 + 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅26
+ 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅36 

 
𝑑𝐿𝑅17
𝑑𝑡

= −�𝜌2,1 + 𝜆7,2 + 𝜆7,6 + 𝜆7,8 + 𝜆7,10,𝐶𝑎𝑆𝑆1 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅17
+ 𝜌1,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅7 + 𝜆2,7 ∙ 𝐿𝑅12 + 𝜆6,7 ∙ 𝐿𝑅16 + 𝜆8,7 ∙ 𝐿𝑅18 + 𝜆10,7
∙ 𝐿𝑅20 + 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅27 + 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅37 

 
𝑑𝐿𝑅18
𝑑𝑡

= −�𝜌2,1 + 𝜆8,3 + 𝜆8,7 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅18 + 𝜌1,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅8 + 𝜆3,8

∙ 𝐿𝑅13 + 𝜆7,8 ∙ 𝐿𝑅17 + 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅28 + 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅38 
 
𝑑𝐿𝑅19
𝑑𝑡

= −�𝜌2,1 + 𝜆9,4 + 𝜆9,6 + 𝜆9,10 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅19 + 𝜌1,2,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅9 + 𝜆4,9 ∙ 𝐿𝑅14 + 𝜆6,9,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅16 + 𝜆10,9 ∙ 𝐿𝑅20 + 𝜌3,2,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅29
+ 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅39 

 
𝑑𝐿𝑅20
𝑑𝑡

= −�𝜌2,1 + 𝜆10,5 + 𝜆10,7 + 𝜆10,9 + 𝜌2,3,𝐶𝑎𝑆𝑆1 + 𝜌2,4,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅20 + 𝜌1,2,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅10 + 𝜆5,10 ∙ 𝐿𝑅15 + 𝜆7,10,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅17 + 𝜆9,10 ∙ 𝐿𝑅19 + 𝜌3,2,𝐶𝑎𝑆𝑆3
∙ 𝐿𝑅30 + 𝜌4,2,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅40 
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𝑑𝐿𝑅21
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆1,2 + 𝜆1,4,𝐶𝑎𝑠𝑠3 + 𝜆1,6 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅21 + 𝜌2,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅11
+ 𝜆2,1 ∙ 𝐿𝑅22 + 𝜆4,1 ∙ 𝐿𝑅24 + 𝜆6,1 ∙ 𝐿𝑅26 + 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅31 

 
𝑑𝐿𝑅22
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆2,1 + 𝜆2,3 + 𝜆2,5,𝐶𝑎𝑆𝑆3 + 𝜆2,7 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅22 + 𝜌2,3,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅12 + 𝜆1,2 ∙ 𝐿𝑅21 + 𝜆3,2 ∙ 𝐿𝑅23 + 𝜆5,2 ∙ 𝐿𝑅25 + 𝜆7,2 ∙ 𝐿𝑅27
+ 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅32 

 
𝑑𝐿𝑅23
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆4 + 𝜆3,2 + 𝜆3,8 + 𝜌3,4,𝐶𝑎𝑆𝑆4� ∙ 𝐿𝑅23 + 𝜌3,2,𝐶𝑎𝑆𝑆4 ∙ 𝐿𝑅23 + 𝜆2,3

∙ 𝐿𝑅22 + 𝜆8,3 ∙ 𝐿𝑅28 + 𝜌4,3,𝐶𝑎𝑆𝑆2 ∙ 𝐿𝑅33 
 

𝑑𝐿𝑅24
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆4,1 + 𝜆4,5 + 𝜆4,9 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅24 + 𝜌2,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅14
+ 𝜆1,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅21 + 𝜆5,4 ∙ 𝐿𝑅25 + 𝜆9,4 ∙ 𝐿𝑅29 + 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅34 

 
𝑑𝐿𝑅25
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆5,2 + 𝜆5,4 + 𝜆5,10 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅25 + 𝜌2,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅15
+ 𝜆2,5,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅22 + 𝜆4,5 ∙ 𝐿𝑅24 + 𝜆10,5 ∙ 𝐿𝑅30 + 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅35 

 
𝑑𝐿𝑅26
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆6,1 + 𝜆6,7 + 𝜆6,9,𝐶𝑎𝑆𝑆3 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅26 + 𝜌2,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅16
+ 𝜆1,6 ∙ 𝐿𝑅21 + 𝜆4,5 ∙ 𝐿𝑅24 + 𝜆10,5 ∙ 𝐿𝑅30 + 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅35 

 
𝑑𝐿𝑅27
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆7,2 + 𝜆7,6 + 𝜆7,8 + 𝜆7.10.𝐶𝑎𝑆𝑆3 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅27 + 𝜌2,3,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅17 + 𝜆2,7 ∙ 𝐿𝑅22 + 𝜆6,7 ∙ 𝐿𝑅26 + 𝜆8,7 ∙ 𝐿𝑅28 + 𝜆10,7 ∙ 𝐿𝑅30
+ 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅37 

 
𝑑𝐿𝑅28
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆8,3 + 𝜆8,7 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅28 + 𝜌2,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅18 + 𝜆3,8

∙ 𝐿𝑅23 + 𝜆7,8 ∙ 𝐿𝑅27 + 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅38 
 
𝑑𝐿𝑅29
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆9,4 + 𝜆9,6 + 𝜆9,10 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅29 + 𝜌2,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅19
+ 𝜆4,9 ∙ 𝐿𝑅24 + 𝜆6,9,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅26 + 𝜆10,9 ∙ 𝐿𝑅30 + 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅39 

 
𝑑𝐿𝑅30
𝑑𝑡

= −�𝜌3,2,𝐶𝑎𝑆𝑆3 + 𝜆10,5 + 𝜆10,7 + 𝜆10,9 + 𝜌3,4,𝐶𝑎𝑆𝑆3� ∙ 𝐿𝑅30 + 𝜌2,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅20
+ 𝜆5,10 ∙ 𝐿𝑅25 + 𝜆7,10,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅27 + 𝜆9,10 ∙ 𝐿𝑅29 + 𝜌4,3,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅40 

 
𝑑𝐿𝑅31
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆1,2 + 𝜆1,4,𝐶𝑎𝑆𝑆1 + 𝜆1,6� ∙ 𝐿𝑅31 + 𝜌2,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅11
+ 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅21 + 𝜆2,1 ∙ 𝐿𝑅32 + 𝜆4,1 ∙ 𝐿𝑅34 + 𝜆6,1 ∙ 𝐿𝑅36 
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𝑑𝐿𝑅32
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆2,1 + 𝜆2,3 + 𝜆2,5,𝐶𝑎𝑆𝑆1 + 𝜆2,7� ∙ 𝐿𝑅32 + 𝜌2,4,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅12 + 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅22 + 𝜆1,2 ∙ 𝐿𝑅31 + 𝜆3,2 ∙ 𝐿𝑅33 + 𝜆5,2 ∙ 𝐿𝑅35
+ 𝜆7,2 ∙ 𝐿𝑅37 

 
𝑑𝐿𝑅33
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆2 + 𝜌4,3,𝐶𝑎𝑆𝑆2 + 𝜆3,2 + 𝜆3,8� ∙ 𝐿𝑅33 + 𝜌2,4,𝐶𝑎𝑆𝑆2 ∙ 𝐿𝑅13 + 𝜌3,4,𝐶𝑎𝑆𝑆4

∙ 𝐿𝑅23 + 𝜆2,3 ∙ 𝐿𝑅32 + 𝜆8,3 ∙ 𝐿𝑅38 
 

𝑑𝐿𝑅34
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆4,1 + 𝜆4,5 + 𝜆4,9� ∙ 𝐿𝑅34 + 𝜌2,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅14
+ 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅24 + 𝜆1,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅31 + 𝜆5,4 ∙ 𝐿𝑅35 + 𝜆9,4 ∙ 𝐿𝑅39 

 
𝑑𝐿𝑅35
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆5,2 + 𝜆5,4 + 𝜆5,10� ∙ 𝐿𝑅35 + 𝜌2,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅15
+ 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅25 + 𝜆2,5,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅32 + 𝜆4,5 ∙ 𝐿𝑅34 + 𝜆10,5 ∙ 𝐿𝑅40 

 
𝑑𝐿𝑅36
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆6,1 + 𝜆6,7 + 𝜆6,9,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅36 + 𝜌2,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅16
+ 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅26 + 𝜆1,6 ∙ 𝐿𝑅31 + 𝜆7,6 ∙ 𝐿𝑅39 + 𝜆9,6 ∙ 𝐿𝑅39 

 
𝑑𝐿𝑅37
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆7,2 + 𝜆7,6 + 𝜆7,8 + 𝜆7,10,𝐶𝑎𝑆𝑆1� ∙ 𝐿𝑅37 + 𝜌2,4,𝐶𝑎𝑆𝑆1

∙ 𝐿𝑅17 + 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅27 + 𝜆2,7 ∙ 𝐿𝑅32 + 𝜆6,7 ∙ 𝐿𝑅36 + 𝜆8,7 ∙ 𝐿𝑅38
+ 𝜆10,7 ∙ 𝐿𝑅40 

 
𝑑𝐿𝑅38
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆8,3 + 𝜆8,7� ∙ 𝐿𝑅38 + 𝜌2,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅18 + 𝜌3,4,𝐶𝑎𝑆𝑆3

∙ 𝐿𝑅28 + 𝜆3,8 ∙ 𝐿𝑅33 + 𝜆7,8 ∙ 𝐿𝑅37 
 
𝑑𝐿𝑅39
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆9,4 + 𝜆9,6 + 𝜆9,10� ∙ 𝐿𝑅39 + 𝜌2,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅19
+ 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅29 + 𝜆4,9 ∙ 𝐿𝑅34 + 𝜆6,9,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅36 + 𝜆10,9 ∙ 𝐿𝑅40 

 
𝑑𝐿𝑅40
𝑑𝑡

= −�𝜌4,2,𝐶𝑎𝑆𝑆1 + 𝜌4,3,𝐶𝑎𝑆𝑆1 + 𝜆10,5 + 𝜆10,7 + 𝜆10,9� ∙ 𝐿𝑅40 + 𝜌2,4,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅20
+ 𝜌3,4,𝐶𝑎𝑆𝑆3 ∙ 𝐿𝑅30 + 𝜆5,10 ∙ 𝐿𝑅35 + 𝜆7,10,𝐶𝑎𝑆𝑆1 ∙ 𝐿𝑅37 + 𝜆9,10 ∙ 𝐿𝑅39 

 
𝑃𝐶𝑎𝑆𝑆2 = 𝐿𝑅3 + 𝐿𝑅13 + 𝐿𝑅33 

 
𝑃𝐶𝑎𝑆𝑆3 = 𝐿𝑅21 + 𝐿𝑅22 + 𝐿𝑅24 + 𝐿𝑅25 + 𝐿𝑅26 + 𝐿𝑅27 + 𝐿𝑅28 + 𝐿𝑅29 + 𝐿𝑅30 

 
𝑃𝐶𝑎𝑆𝑆4 = 𝐿𝑅23 

 
𝑃𝐶𝑎𝑆𝑆1 = 1 − 𝑃𝐶𝑎𝑆𝑆2 − 𝑃𝐶𝑎𝑆𝑆3 − 𝑃𝐶𝑎𝑆𝑆4 
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LCC current and RyR fluxes 
 
𝐼𝐶𝑎,𝐿

=
𝑁𝐶𝑎𝑅𝑈
𝐶𝑠𝑎

∙ 𝑃𝐶𝑎𝐿 ∙
4𝑉𝐹2

𝑅𝑇

∙
𝑃𝐶𝑎𝑆𝑆2 ∙ �𝐶𝑎𝑆𝑆2 ∙ 𝑒

2𝑉𝐹
𝑅𝑇 − 0.341 ∙ 𝐶𝑎𝑜� + 𝑃𝐶𝑎𝑆𝑆4 ∙ �𝐶𝑎𝑆𝑆4 ∙ 𝑒

2𝑉𝐹
𝑅𝑇 − 0.341 ∙ 𝐶𝑎𝑜�

𝑒
2𝑉𝐹
𝑅𝑇 − 1

 

 
𝐽𝑅𝑦𝑅 = 𝑁𝐶𝑎𝑅𝑈 ∙ 𝐽𝑅𝑦𝑅𝑚𝑎𝑥 ∙ (𝑃𝐶𝑎𝑆𝑆4 ∙ (𝐶𝑎𝑆𝑅 − 𝐶𝑎𝑆𝑆4) + 𝑃𝐶𝑎𝑆𝑆3 ∙ (𝐶𝑎𝑆𝑅 − 𝐶𝑎𝑆𝑆3)) 
 
Subspace Ca2+ handling 
 

𝐽𝑥𝑓𝑒𝑟 = 𝑁𝐶𝑎𝑅𝑈 ∙ 𝑟𝑥𝑓𝑒𝑟
∙ �𝑃𝐶𝑎𝑆𝑆1 ∙ (𝐶𝑎𝑆𝑆1 − 𝐶𝑎𝑖) + 𝑃𝐶𝑎𝑆𝑆2 ∙ (𝐶𝑎𝑆𝑆2 − 𝐶𝑎𝑖) + 𝑃𝐶𝑎𝑆𝑆3
∙ (𝐶𝑎𝑆𝑆3 − 𝐶𝑎𝑖) + 𝑃𝐶𝑎𝑆𝑆4 ∙ (𝐶𝑎𝑆𝑆4 − 𝐶𝑎𝑖)� 

 
𝐽𝑆𝑅𝑙𝑒𝑎𝑘 = 𝑁𝐶𝑎𝑅𝑈 ∙ 𝑟𝑥𝑓𝑒𝑟

∙ �𝑃𝐶𝑎𝑆𝑆1 ∙ (𝐶𝑎𝑆𝑅 − 𝐶𝑎𝑆𝑆1) + 𝑃𝐶𝑎𝑆𝑆2 ∙ (𝐶𝑎𝑆𝑅 − 𝐶𝑎𝑆𝑆2) + 𝑃𝐶𝑎𝑆𝑆3
∙ (𝐶𝑎𝑆𝑅 − 𝐶𝑎𝑆𝑆3) + 𝑃𝐶𝑎𝑆𝑆4 ∙ (𝐶𝑎𝑆𝑅 − 𝐶𝑎𝑆𝑆4)� 

 
𝐶𝑎𝑆𝑆 = 𝑃𝐶𝑎𝑆𝑆1 ∙ 𝐶𝑎𝑆𝑆1 − 𝑃𝐶𝑎𝑆𝑆2 ∙ 𝐶𝑎𝑆𝑆2 − 𝑃𝐶𝑎𝑆𝑆3 ∙ 𝐶𝑎𝑆𝑆3 − 𝑃𝐶𝑎𝑆𝑆4 ∙ 𝐶𝑎𝑆𝑆4 

 
Ca2+ Channels 
Parameter Description Value Units Source 
g_ICab Ca background current 0.000035 mS/µF adapted 
Vmax Na/Ca exchange rate 0.65 pA/pF adapted 
KmNai Na/Ca exchanger Na affinity 12e3 µM 189 
KmCai Na/Ca exchanger Ca affinity 3.6 µM 189 
KmCao Na/Ca exchanger Ca affinity 1.4e3 µM 189 
ksat Na/Ca exchanger 0.27 - 189 
eta Na/Ca exchanger 0.35 - 189 
IpCamax sarcolemmal Ca pump 0.006 pA/pF adapted 
Km_IpCa sarcolemmal Ca pump Ca affinity 0.289 µM adapted 
Kfb SERCA forward Ca affinity 0.3 µM 189 
Krb SERCA reverse Ca affinity 2.1e3 µM 189 
N sarcoplasmic reticulum Ca pump 1.787 - 189 
vmax SERCA max forward rate 328.9e-3 µM/ms adapted 

 
Ca2+ Background Current 
 

𝐼𝐶𝑎𝑏 = 𝑔_𝐼𝐶𝑎𝑏 ∙ (𝑉 − 𝐸𝐶𝑎) 
 



195 
 

Na+/Ca2+ Exchanger 
 

𝐾𝑚𝑁𝑎𝑜_𝑁𝑎𝐶𝑎 = �𝐾𝑚𝑁𝑎𝑖_𝑁𝑎𝐶𝑎3 ∙
𝐾𝑚𝐶𝑎𝑜_𝑁𝑎𝐶𝑎
𝐾𝑚𝐶𝑎𝑖_𝑁𝑎𝐶𝑎�

1/3

 

 
𝑠𝑠𝐶𝑎𝑖 = 𝐶𝑎𝑖 + 3 ∙ (𝐶𝑎𝑖 − 0.1) 

 
𝐼𝑁𝑎𝐶𝑎

=
𝑉𝑚𝑎𝑥

1 + 𝑘𝑠𝑎𝑡 ∙ 𝑒(𝑒𝑡𝑎−1)∙𝑉𝐹𝑅𝑇

∙
𝑁𝑎𝑖3 ∙ 𝐶𝑎𝑜 ∙ 𝑒𝑒𝑡𝑎∙

𝑉𝐹
𝑅𝑇 − 𝑁𝑎𝑜3 ∙ 𝑠𝑠𝐶𝑎𝑖 ∙ 𝑒(𝑒𝑡𝑎−1)∙𝑉𝐹𝑅𝑇

𝐾𝑚𝐶𝑎𝑜 ∙ 𝑁𝑎𝑖3 + 𝐾𝑚𝑁𝑎𝑜 ∙ 𝑠𝑠𝐶𝑎𝑖 + 𝐾𝑚𝑁𝑎𝑖 ∙ 𝐶𝑎𝑜 ∙ (1 + 𝑠𝑠𝐶𝑎𝑖
𝐾𝑚𝐶𝑎𝑖) + 𝐾𝑚𝐶𝑎𝑖 ∙ 𝑁𝑎𝑜3 ∙ (1 + 𝑁𝑎𝑖3

𝐾𝑚𝑁𝑎𝑖3) + 𝑁𝑎𝑖3 ∙ 𝐶𝑎𝑜 + 𝑁𝑎𝑜3 ∙ 𝑠𝑠𝐶𝑎𝑖
 

 
Sarcolemmal Ca2+ ATP-ase 
 

𝐼𝑝𝐶𝑎 = 𝐼𝑝𝐶𝑎𝑚𝑎𝑥 ∙
𝐶𝑎𝑖2

𝐾𝑚_𝐼𝑝𝐶𝑎2 + 𝐶𝑎𝑖2
 

 
Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPase 
 

𝐽𝑢𝑝 = 𝑣𝑚𝑎𝑥 ∙
�𝐶𝑎𝑖𝐾𝑓𝑏�

𝑁
− �𝐶𝑎𝑆𝑅𝐾𝑟𝑏 �

𝑁

1 + �𝐶𝑎𝑖𝐾𝑓𝑏�
𝑁

+ �𝐶𝑎𝑆𝑅𝐾𝑟𝑏 �
𝑁 

 
Na+ Channels 
Parameter Description Value Units Source 
g_INa fast Na channel 13 mS/µF 184 
g_INab Na background current 0.002 mS/µF adapted 
INaKmax Na/K pump max exchanger current 2 pA/pF adapted 
Km_Nai Na/K pump Na affinity 18.8e3 µM 177 
Km_Nao Na/K pump K affinity 1.5e3 µM 184 

 
Fast Na+ Current 
 

𝐼𝑁𝑎 = 𝑔_𝐼𝑁𝑎 ∙ 𝑂𝑁𝑎 ∙ (𝑉 − 𝐸𝑁𝑎) 
 

𝑎𝑁𝑎11 =
3.802

0.1027 ∙ 𝑒
−(𝑉+2.5)

17 + 0.2 ∙ 𝑒
−(𝑉+2.5)

150
 

 

𝑏𝑁𝑎11 = 0.1917 ∙ 𝑒
−(𝑉+2.5)
20.3  

 

𝑎𝑁𝑎12 =
3.802

0.1027 ∙ 𝑒
−(𝑉+2.5)

17 + 0.23 ∙ 𝑒
−(𝑉+2.5)

150
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𝑏𝑁𝑎12 = 0.2 ∙ 𝑒
−(𝑉+2.5)
20.3  

 

𝑎𝑁𝑎13 =
3.802

0.1027 ∙ 𝑒
−(𝑉+2.5)

17 + 0.25 ∙ 𝑒
−(𝑉−2.5)

150
 

 

𝑏𝑁𝑎13 = 0.22 ∙ 𝑒
−(𝑉−7.5)
20.3  

 

𝑎𝑁𝑎3 = 7𝑒 − 7 ∙ 𝑒
−(𝑉+7)
7.7  

 
𝑏𝑁𝑎3 = 0.0084 + 0.00002 ∙ (𝑉 + 7) 

 

𝑎𝑁𝑎2 =
1

0.188495 ∙ 𝑒
−(𝑉+7)
16.6 + 0.393956

 

 

𝑏𝑁𝑎2 =
𝑎𝑁𝑎13 ∙ 𝑎𝑁𝑎2 ∙ 𝑎𝑁𝑎3

𝑏𝑁𝑎13 ∙ 𝑏𝑁𝑎3
 

 

𝑎𝑁𝑎4 =
𝑎𝑁𝑎2
1000

 
 

𝑏𝑁𝑎4 = 𝑎𝑁𝑎3 
 

𝑎𝑁𝑎5 =
𝑎𝑁𝑎2
95000

 
 

𝑏𝑁𝑎5 =
𝑎𝑁𝑎3

50
 

 
𝑑𝐶𝑁𝑎1
𝑑𝑡

= −(𝑏𝑁𝑎12 + 𝑎𝑁𝑎13 + 𝑏𝑁𝑎3) ∙ 𝐶𝑁𝑎1 + 𝑎𝑁𝑎12 ∙ 𝐶𝑁𝑎2 + 𝑏𝑁𝑎13 ∙ 𝑂𝑁𝑎
+ 𝑎𝑁𝑎3 ∙ 𝐼𝐹𝑁𝑎 

 
𝑑𝐶𝑁𝑎2
𝑑𝑡

= −(𝑏𝑁𝑎11 + 𝑎𝑁𝑎12 + 𝑏𝑁𝑎3) ∙ 𝐶𝑁𝑎2 + 𝑎𝑁𝑎11 ∙ 𝐶𝑁𝑎3 + 𝑏𝑁𝑎12 ∙ 𝐶𝑁𝑎1
+ 𝑎𝑁𝑎3 ∙ 𝐼𝐶𝑁𝑎2 

 
𝑑𝐼𝐹𝑁𝑎
𝑑𝑡

= −(𝑏𝑁𝑎2 + 𝑎𝑁𝑎3 + 𝑎𝑁𝑎4 + 𝑏𝑁𝑎12) ∙ 𝐼𝐹𝑁𝑎 + 𝑎𝑁𝑎2 ∙ 𝑂𝑁𝑎 + 𝑏𝑁𝑎3 ∙ 𝐶𝑁𝑎1
+ 𝑏𝑁𝑎4 ∙ 𝐼𝑁𝑎1 + 𝑎𝑁𝑎12 ∙ 𝐼𝐶𝑁𝑎2 

 
𝑑𝐼𝑁𝑎1
𝑑𝑡

= −(𝑏𝑁𝑎4 + 𝑎𝑁𝑎5) ∙ 𝐼𝑁𝑎1 + 𝑎𝑁𝑎4 ∙ 𝐼𝐹𝑁𝑎 + 𝑏𝑁𝑎5 ∙ 𝐼𝑁𝑎2 
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𝑑𝐼𝑁𝑎2
𝑑𝑡

= −𝑏𝑁𝑎5 ∙ 𝐼𝑁𝑎2 + 𝑎𝑁𝑎5 ∙ 𝐼𝑁𝑎1 
 

𝑑𝐼𝐶𝑁𝑎2
𝑑𝑡

= −(𝑏𝑁𝑎11 + 𝑎𝑁𝑎12 + 𝑎𝑁𝑎3) ∙ 𝐼𝐶𝑁𝑎2 + 𝑎𝑁𝑎11 ∙ 𝐼𝐶𝑁𝑎3 + 𝑏𝑁𝑎12 ∙ 𝐼𝐹𝑁𝑎
+ 𝑏𝑁𝑎3 ∙ 𝐼𝐶𝑁𝑎 

 
𝑑𝐼𝐶𝑁𝑎3
𝑑𝑡

= −(𝑎𝑁𝑎11 + 𝑎𝑁𝑎3) ∙ 𝐼𝐶𝑁𝑎3 + 𝑏𝑁𝑎11 ∙ 𝐼𝐶𝑁𝑎2 + 𝑏𝑁𝑎3 ∙ 𝐶𝑁𝑎3 
 

𝑑𝑂𝑁𝑎
𝑑𝑡

= −(𝑏𝑁𝑎13 + 𝑎𝑁𝑎2) ∙ 𝑂𝑁𝑎 + 𝑎𝑁𝑎13 ∙ 𝐶𝑁𝑎 + 𝑏𝑁𝑎2 ∙ 𝐼𝐹𝑁𝑎 
 

𝐶𝑁𝑎3 = 1 − (𝑂𝑁𝑎 + 𝐶𝑁𝑎1 + 𝐶𝑁𝑎2 + 𝐼𝐹𝑁𝑎 + 𝐼𝑁𝑎1 + 𝐼𝑁𝑎2 + 𝐼𝐶𝑁𝑎2 + 𝐼𝐶𝑁𝑎3) 
 
Na+ Background Current 
 

𝐼𝑁𝑎𝑏 = 𝑔_𝐼𝑁𝑎𝑏 ∙ (𝑉 − 𝐸𝑁𝑎) 
 
Na+/K+ ATPase 
 

𝐼𝑁𝑎𝐾 = 𝐼𝑁𝑎𝐾𝑚𝑎𝑥 ∙ 𝑓𝑁𝑎𝐾 ∙
𝑁𝑎𝑖3.2

𝐾𝑚_𝑁𝑎𝑖3.2 + 𝑁𝑎𝑖3.2 ∙
𝐾𝑜

𝐾𝑚_𝐾𝑜 + 𝐾𝑜
 

 

𝜎 =
1
7
∙ �𝑒

𝑁𝑎𝑜
67300−1� 

 

𝑓𝑁𝑎𝐾 =
1

1 + 0.1245 ∙ 𝑒
−0.1𝑉𝐹
𝑅𝑇 + 0.0365 ∙ 𝜎 ∙ 𝑒

−𝑉𝐹
𝑅𝑇

 

 
K+ Channels 
Parameter Description Value Units Source 
g_IKtof fast transient outward K current 0.26 mS/µF adapted 
g_IKss non-inactivating steady-state K current 0.047 mS/µF adapted 
g_IKs slow delayed rectifier K current 0.00575 mS/µF 184 
IKr_kb rapid delayed rectifier K current 0.036778 1/ms 184 
IKr_kf rapid delayed rectifier K current 0.023761 1/ms 184 
g_IKr rapid delayed rectifier K current 0.078 mS/µF 184 
g_IKur ultra-rapid delayed rectifier K current 0.2 mS/µF adapted 
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Fast Transient Outward K+ Current 
 

𝐼𝐾𝑡𝑜𝑓 = 𝑔_𝐼𝐾𝑡𝑜𝑓 ∙ 𝑎𝑡𝑜𝑓3 ∙ 𝑖𝑡𝑜𝑓 ∙ (𝑉 − 𝐸𝐾) 
 

𝛼𝑎 = 0.18064 ∙ 𝑒0.03577∙(𝑉+30) 
 

𝛽𝑎 = 0.3956 ∙ 𝑒−0.06237∙(𝑉+30) 
 

𝛼𝑖 =
0.000152 ∙ 𝑒

−(𝑉+13.5)
7

0.0067083 ∙ 𝑒
−(𝑉+33.5)

7 + 1
 

 

𝛽𝑖 =
0.00095 ∙ 𝑒

𝑉+33.5
7

0.051335 ∙ 𝑒
𝑉+33.5

7 + 1
 

 
𝑑𝑎𝑡𝑜𝑓
𝑑𝑡

= 𝛼𝑎 ∙ (1 − 𝑎𝑡𝑜𝑓) − 𝛽𝑎 ∙ 𝑎𝑡𝑜𝑓 
 

𝑑𝑖𝑡𝑜𝑓
𝑑𝑡

= 𝛼𝑖 ∙ (1 − 𝑖𝑡𝑜𝑓) − 𝛽𝑖 ∙ 𝑖𝑡𝑜𝑓 
 
Non-Inactivating Steady-State K+ Current 
 

𝐼𝐾𝑠𝑠 = 𝑔_𝐼𝐾𝑠𝑠 ∙ 𝑎𝐾𝑠𝑠 ∙ (𝑉 − 𝐸𝐾) 
 

𝑎𝑠𝑠 =
1

1 + 𝑒−(𝑉+22.5)/7.7 
 

𝜏𝐼𝐾𝑠𝑠 = 39.3 ∙ 𝑒−0.0862∙𝑉 + 13.17 
 

𝑑𝑎𝐾𝑠𝑠
𝑑𝑡

=
𝑎𝑠𝑠 − 𝑎𝐾𝑠𝑠

𝜏𝐼𝐾𝑠𝑠
 

 
Rapid Delayed Inward Rectifier K+ Current 
 

𝐼𝐾𝑟 = 𝑔_𝐼𝐾𝑟 ∙ 𝑂𝐾 ∙ �𝑉 −
𝑅𝑇
𝐹
∙ ln �

0.98 ∙ 𝐾𝑜 + 0.02 ∙ 𝑁𝑎𝑜
0.98 ∙ 𝐾𝑖 + 0.02 ∙ 𝑁𝑎𝑖 �

� 

𝛼𝑎0 = 0.022348 ∙ 𝑒0.1176∙𝑉 
 

𝛽𝑎0 = 0.047002 ∙ 𝑒−0.0631∙𝑉 
 

𝛼𝑎1 = 0.013733 ∙ 𝑒0.038198∙𝑉 
 

𝛽𝑎1 = 0.0000689 ∙ 𝑒−0.04178∙𝑉 
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𝛼𝑖 = 0.090821 ∙ 𝑒0.023391∙(𝑉+5) 
 

𝛽𝑖 = 0.006497 ∙ 𝑒−0.03268∙(𝑉+5) 
 

𝑑𝐶𝐾1
𝑑𝑡

= −(𝛽𝑎0 + 𝐼𝐾𝑟_𝑘𝑓) ∙ 𝐶𝐾1 + 𝛼𝑎0 ∙ 𝐶𝐾0 + 𝐼𝐾𝑟𝑘𝑏 ∙ 𝐶𝐾2 
 

𝑑𝐶𝐾2
𝑑𝑡

= −(𝐼𝐾𝑟_𝑘𝑏 + 𝛼𝑎1) ∙ 𝐶𝐾2 + 𝐼𝐾𝑟𝑘𝑓 ∙ 𝐶𝐾1 + 𝛽𝑎1 ∙ 𝑂𝐾 
 

𝑑𝐼𝐾
𝑑𝑡

= −𝛽𝑖 ∙ 𝐼𝐾 + 𝛼𝑖 ∙ 𝑂𝐾 
 

𝑑𝑂𝐾
𝑑𝑡

= −(𝛽𝑎1 + 𝛼𝑖) ∙ 𝑂𝐾 + 𝛼𝑎1 ∙ 𝐶𝐾2 + 𝛽𝑖 ∙ 𝐶𝐾𝐼 
 

𝐶𝐾0 = 1 − 𝐶𝐾1 − 𝐶𝐾2 − 𝑂𝐾 − 𝐼𝐾 
 
Slow Delayed Inward Rectifier K+ Current 
 

𝐼𝐾𝑠 = 𝑔_𝐼𝐾𝑆 ∙ 𝑛𝐾𝑠2 ∙ (𝑉 − 𝐸𝐾) 
 

𝑎𝑛 =
0.00000481333 ∙ (𝑉 + 26.5)

1 − 𝑒−0.128∙(𝑉+26.5)  
 

𝛽𝑛 = 0.0000953333 ∙ 𝑒−0.038∙(𝑉+26.5) 
 

𝑑𝑛𝐾𝑠
𝑑𝑡

= 𝛼𝑛 ∙ (1 − 𝑛𝐾𝑠) − 𝛽𝑛 ∙ 𝑛𝐾𝑠 
 
Ultra-Rapid Delayed Inward Rectifier K+ Current 
 

𝐼𝐾𝑢𝑟 = 𝑔_𝐼𝐾𝑢𝑟 ∙ 𝑎𝑢𝑟 ∙ 𝑖𝑢𝑟 ∙ (𝑉 − 𝐸𝐾) 
 

𝑎𝑠𝑠 =
1

1 + 𝑒−(𝑉+22.5)/7.7 
 

𝜏𝑎𝑢𝑟 = 0.493 ∙ 𝑒−0.0629∙𝑉 + 2.058 
 

𝑖𝑠𝑠 =
1

1 + 𝑒(𝑉+45.2)/5.7 
 

𝜏𝑖𝑢𝑟 = 1200 −
170

1 + 𝑒
𝑉+45.2
5.7
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𝑑𝑎𝑢𝑟
𝑑𝑡

=
𝑎𝑠𝑠 − 𝑎𝑢𝑟

𝜏𝑎𝑢𝑟
 

 
𝑑𝑖𝑢𝑟
𝑑𝑡

=
𝑖𝑠𝑠 − 𝑖𝑢𝑟
𝜏𝑖𝑢𝑟

 

 
Time-Independent Inward Rectifier K+ Current 
 

𝐼𝐾1 =
0.25 ∙ 𝐾𝑜
𝐾𝑜 + 210

∙
𝑉 − 𝐸𝐾

1 + 𝑒0.0896∙(𝑉−𝐸𝐾) 
 
Membrane Potential 
 
𝑑𝑉
𝑑𝑡

=
−1
𝐶𝑚

∙ (𝐼𝐶𝑎𝐿 + 𝐼𝑝𝐶𝑎 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝐶𝑎𝑏 + 𝐼𝑁𝑎 + 𝐼𝑁𝑎𝑏 + 𝐼𝑁𝑎𝐾 + 𝐼𝐾𝑡𝑜𝑓 + 𝐼𝐾1
+ 𝐼𝐾𝑠 + 𝐼𝐾𝑢𝑟 + 𝐼𝐾𝑠𝑠 + 𝐼𝐾𝑟 + 𝐼𝑠𝑡𝑖𝑚) 

 
Ion Concentrations 

 
𝑑𝐶𝑎𝑖
𝑑𝑡

= 𝐽𝑥𝑓𝑒𝑟 ∙
𝑉𝑠𝑠
𝑉𝑚𝑦𝑜

− �𝐽𝑢𝑝 +
𝐶𝑠𝑎

2 ∙ 𝑉𝑚𝑦𝑜 ∙ 𝐹
∙ (𝐼𝐶𝑎𝑏 + 𝐼𝑝𝐶𝑎 − 2 ∙ 𝐼𝑁𝑎𝐶𝑎)�

− (𝑑𝑇𝑛𝐶𝐿𝐶𝑎 + 𝑑𝑇𝑛𝐶𝐻𝐶𝑎 + 𝑑𝑀𝑦𝑜𝑠𝑖𝑛𝐶𝑎 + 𝑑𝐶𝑎𝑀𝐶𝑎 + 𝑑𝐶𝑎𝑆𝑅𝑏
+ 𝑑𝐶𝑎𝑆𝐿 + 𝑑𝐶𝑎𝑆𝐿ℎ + 𝑑𝐶𝑎𝐴𝑇𝑃 + 𝑑𝐶𝑎𝑃𝐶𝑅) 

 
𝑑𝐶𝑎𝑆𝑅
𝑑𝑡

= 𝐶𝑎𝐵𝑆𝑅 ∙ �𝐽𝑢𝑝 ∙
𝑉𝑚𝑦𝑜
𝑉𝑆𝑅

+ 𝐽𝑅𝑦𝑅 ∙
𝑉𝑆𝑆
𝑉𝑆𝑅

− 𝐽𝑆𝑅𝑙𝑒𝑎𝑘 ∙
𝑉𝑆𝑆
𝑉𝑆𝑅�

 
 

𝑑𝑁𝑎𝑖
𝑑𝑡

=
−𝐶𝑠𝑎

2 ∙ 𝑉𝑚𝑦𝑜 ∙ 𝐹
∙ (𝐼𝑁𝑎 + 𝐼𝑁𝑎𝑏 + 3 ∙ 𝐼𝑁𝑎𝐾 + 3 ∙ 𝐼𝑁𝑎𝐶𝑎) 

 
𝑑𝐾𝑖
𝑑𝑡

=
−𝐶𝑠𝑎

2 ∙ 𝑉𝑚𝑦𝑜 ∙ 𝐹
∙ (𝐼𝐾𝑡𝑜𝑓 + 𝐼𝐾1 + 𝐼𝐾𝑠 + 𝐼𝐾𝑠𝑠 + 𝐼𝐾𝑢𝑟 + 𝐼𝐾𝑟 − 2 ∙ 𝐼𝑁𝑎𝐾 + 𝐼𝑠𝑡𝑖𝑚) 
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β1-Adrenergic Signaling Effects 
 
 Ca2+ Buffering 

𝑘𝑜𝑓𝑓_𝑇𝑛𝐶𝐿 = �0.5524 ∙
𝑇𝑛𝐼𝑝
𝑇𝑛𝐼𝑡𝑜𝑡

+ 0.9923� ∙ 𝑘𝑜𝑓𝑓_𝑇𝑛𝐶𝐿 
  
L-Type Ca2+ Channel 
 

𝑓𝑚𝑜𝑑𝑒1 = −0.4212 ∙
𝐿𝐶𝐶𝑎𝑝
𝐿𝐶𝐶𝑡𝑜𝑡

+ 1.0413 
 

𝑔𝐿 =
0.161214 ∙ 𝑓𝑚𝑜𝑑𝑒1 + 0.545455
−0.189663 ∙ 𝑓𝑚𝑜𝑑𝑒1 + 0.545455

 

 

𝑃𝐶𝑎𝐿 = �1.3047 ∙
𝐿𝐶𝐶𝑏𝑝
𝐿𝐶𝐶𝑡𝑜𝑡

+ 0.8509� ∙ 𝑃𝐶𝑎𝐿 
 
Na+/K+ ATPase 
 

𝐾𝑚_𝑁𝑎𝑖 = �1.0099 ∙
𝑃𝐿𝑀𝑝
𝑃𝐿𝑀𝑡𝑜𝑡

− 0.3551� ∙ 𝐾𝑚_𝑁𝑎𝑖 
 
Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPase 
 

𝐾𝑓𝑏 = �1.0071 − 0.545 ∙
𝑃𝐿𝐵𝑝
𝑃𝐿𝐵𝑡𝑜𝑡�

∙ 𝐾𝑓𝑏 
 
Transgenic Mouse Myocytes 
 
PLM-KO 
Parameter Description Value Units Source 
JRyRmax unitary Ca2+ flux rate through RyR 23.52 1/mS adapted 

 
PLB-KO 
Parameter Description Value Units Source 
g_INab Na background current 0.0048 mS/µF adapted 
INaKmax Na/K pump max exchanger current 1.6 pA/pF adapted 
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Appendix 2 
 
 
Angiotensin II Receptor-Stimulated 
Fibrosis Model 
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AT1 and AT2 Receptor Binding 
Parameter Description Value Units Source 
AngIItot total Angiotensin II 0.0060535 µM 338-339 
AT1Rtot total Type 1 Ang II receptor 0.160308 µM 243 
AT2Rtot total Type 2 Ang II receptor 0.011972 µM 243 
kon_AngII_AT1R kon for AT1R activation 1e-5 1/[ µM ms] 243 
koff_AngII_AT1R koff for AT1R activation 9.5e-9 1/ms 243 
kon_AngII_AT2R kon for AT2R activation 1e-6 1/[ µM ms] 243 
koff_AngII_AT2R koff for AT2R activation 9.5e-9 1/ms 243 

 
𝐴𝑛𝑔𝐼𝐼 = 𝐴𝑛𝑔𝐼𝐼𝑡𝑜𝑡 − 𝐴𝑇1𝑅_𝐴𝑛𝑔𝐼𝐼 –𝐴𝑇2𝑅_𝐴𝑛𝑔𝐼𝐼 

 
𝐴𝑇1𝑅 = 𝐴𝑇1𝑅𝑡𝑜𝑡 − 𝐴𝑇1𝑅_𝐴𝑛𝑔𝐼𝐼 

 
𝐴𝑇2𝑅 = 𝐴𝑇2𝑅𝑡𝑜𝑡 − 𝐴𝑇2𝑅_𝐴𝑛𝑔𝐼𝐼 

 
𝑑𝐴𝑇1𝑅_𝐴𝑛𝑔𝐼𝐼

𝑑𝑡
= 𝑘𝑜𝑛_𝐴𝑛𝑔𝐼𝐼_𝐴𝑇1𝑅 ∙ 𝐴𝑛𝑔𝐼𝐼 ∙ 𝐴𝑇1𝑅 − 𝑘𝑜𝑓𝑓_𝐴𝑛𝑔𝐼𝐼_𝐴𝑇1𝑅 ∙ 𝐴𝑇1𝑅_𝐴𝑛𝑔𝐼𝐼 

 
𝑑𝐴𝑇2𝑅_𝐴𝑛𝑔𝐼𝐼

𝑑𝑡
= 𝑘𝑜𝑛_𝐴𝑛𝑔𝐼𝐼_𝐴𝑇2𝑅 ∙ 𝐴𝑛𝑔𝐼𝐼 ∙ 𝐴𝑇2𝑅 − 𝑘𝑜𝑓𝑓_𝐴𝑛𝑔𝐼𝐼_𝐴𝑇2𝑅 ∙ 𝐴𝑇2𝑅_𝐴𝑛𝑔𝐼𝐼 

 
Ras Activation 
Parameter Description Value Units Source 
Rastot total Ras 0.4 µM 340 
k_AT1R_Ras Ras activation by AT1R 0.0039 1/ms 341-342 
Km_AT1R_Ras AT1R affinity for AT1R 0.386 µM 341-342 
k_SHP_Ras SHP-mediated Ras deactivation 0.0054 1/ms 232-233 
Km_SHP_Ras SHP-mediated Ras deactivation 0.23 µM 232-233 

 
𝑅𝑎𝑠 = 𝑅𝑎𝑠𝑡𝑜𝑡 − 𝑅𝑎𝑠𝑎𝑐𝑡 

 
𝑑𝑅𝑎𝑠𝑎𝑐𝑡

𝑑𝑡
=
𝑘_𝐴𝑇1𝑅_𝑅𝑎𝑠 ∙ 𝐴𝑇1𝑅_𝐴𝑛𝑔𝐼𝐼 ∙ 𝑅𝑎𝑠

𝐾𝑚_𝐴𝑇1𝑅_𝑅𝑎𝑠 + 𝑅𝑎𝑠
−
𝑘_𝑆𝐻𝑃_𝑅𝑎𝑠 ∙ 𝑆𝐻𝑃𝑝 ∙ 𝑅𝑎𝑠𝑎𝑐𝑡
𝐾𝑚_𝑆𝐻𝑃_𝑅𝑎𝑠 + 𝑅𝑎𝑠𝑎𝑐𝑡

 

 
Raf / MEK / ERK Activation 
Parameter Description Value Units Source 
Raftot total Raf 0.013 µM 340 
k_Ras_Raf Raf phosphorylation by Ras 1.53e-6 1/ms 343 
Km_Ras_Raf Ras affinity for Raf 0.117 µM 343 
k_PP2A_Raf Raf dephosphorylation by PP2A 3.365e-6 1/ms 239 
Km_PP2A_Raf PP2A affinity for Raf 8.07e-3 µM 343 
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𝑅𝑎𝑓 = 𝑅𝑎𝑓𝑡𝑜𝑡 − 𝑅𝑎𝑓𝑝 
 

𝑑𝑅𝑎𝑓𝑝
𝑑𝑡

=
𝑘_𝑅𝑎𝑠_𝑅𝑎𝑓 ∙ 𝑅𝑎𝑠𝑎𝑐𝑡 ∙ 𝑅𝑎𝑓
𝐾𝑚_𝑅𝑎𝑠_𝑅𝑎𝑓 + 𝑅𝑎𝑓

−
𝑘_𝑃𝑃2𝐴_𝑅𝑎𝑓 ∙ 𝑃𝑃2𝐴 ∙ 𝑅𝑎𝑓𝑝
𝐾𝑚_𝑃𝑃2𝐴_𝑅𝑎𝑓 + 𝑅𝑎𝑓𝑝

 

 
Parameter Description Value Units Source 
MEKtot total MEK 1.4 µM 340 
k_Raf_MEK MEK phosphorylation by Raf 9e-4 1/ms 340 
Km_Raf_MEK Raf affinity for MEK 0.3769 µM 340 
k_PP2A_MEK MEK dephosphorylation by PP2A 1e-5 1/ms 340 
Km_PP2A_MEK PP2A affinity for MEK 0.06 µM 343 

 
𝑀𝐸𝐾 = 𝑀𝐸𝐾𝑡𝑜𝑡 −𝑀𝐸𝐾𝑝 

 
𝑑𝑅𝑎𝑓𝑝
𝑑𝑡

=
𝑘_𝑅𝑎𝑠_𝑀𝐸𝐾 ∙ 𝑅𝑎𝑓𝑝 ∙ 𝑀𝐸𝐾
𝐾𝑚_𝑅𝑎𝑓_𝑀𝐸𝐾 + 𝑀𝐸𝐾

−
𝑘_𝑃𝑃2𝐴_𝑀𝐸𝐾 ∙ 𝑃𝑃2𝐴 ∙ 𝑀𝐸𝐾𝑝
𝐾𝑚_𝑃𝑃2𝐴_𝑀𝐸𝐾 + 𝑀𝐸𝐾𝑝

 

 
Parameter Description Value Units Source 
ERKtot total ERK 0.96 µM 340 
k_MEK _ERK ERK phosphorylation by MEK 2.2e-4 1/ms 340 
Km_MEK_ERK MEK affinity for ERK 0.35 µM 340 
k_MKP_ERK ERK dephosphorylation by PP2A 2.1e-4 1/ms 340 
Km_MKP_ERK PP2A affinity for ERK 0.06 µM 343 

 
𝐸𝑅𝐾 = 𝐸𝑅𝐾𝑡𝑜𝑡 − 𝐸𝑅𝐾𝑝 

 
𝑑𝐸𝑅𝐾𝑝
𝑑𝑡

=
𝑘_𝑀𝐸𝐾_𝐸𝑅𝐾 ∙ 𝑀𝐸𝐾𝑝 ∙ 𝐸𝑅𝐾
𝐾𝑚_𝑀𝐸𝐾_𝐸𝑅𝐾 + 𝐸𝑅𝐾

−
𝑘_𝑀𝐾𝑃_𝐸𝑅𝐾 ∙ 𝑀𝐾𝑃𝑝 ∙ 𝐸𝑅𝐾𝑝
𝐾𝑚_𝑀𝐾𝑃_𝐸𝑅𝐾 + 𝐸𝑅𝐾𝑝

 

 
MEKK / SEK / JNK Activation 
Parameter Description Value Units Source 
MEKKtot total MEKK 0.1 µM 233 
k_Ras_MEKK Raf phosphorylation by MEKK 3.12e-6 1/ms 233 
Km_Ras_MEKK Ras affinity for MEKK 0.117 µM 233 
k_MKP_MEKK MEKK dephosphorylation by MKP 3.365e-6 1/ms 233 
Km_MKP_MEKK MKP affinity for MEKK 8.07e-3 µM 233 

 
𝑀𝐸𝐾𝐾 = 𝑀𝐸𝐾𝐾𝑡𝑜𝑡 − 𝑀𝐸𝐾𝐾𝑝 

 
𝑑𝑀𝐸𝐾𝐾𝑝

𝑑𝑡
=
𝑘_𝑅𝑎𝑠_𝑀𝐸𝐾𝐾 ∙ 𝑅𝑎𝑠𝑎𝑐𝑡 ∙ 𝑀𝐸𝐾𝐾
𝐾𝑚_𝑅𝑎𝑠_𝑀𝐸𝐾𝐾 + 𝑀𝐸𝐾𝐾

−
𝑘_𝑀𝐾𝑃_𝑀𝐸𝐾𝐾𝑝 ∙ 𝑀𝐾𝑃𝑝 ∙ 𝑀𝐸𝐾𝐾𝑝
𝐾𝑚_𝑀𝐾𝑃_𝑀𝐸𝐾𝐾 + 𝑀𝐸𝐾𝐾𝑝
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Parameter Description Value Units Source 
SEKtot total SEK 1.2 µM 344 
k_MEKK_SEK SEK phosphorylation by MEKK 9e-6 1/ms 233 
Km_MEKK_SEK MEKK affinity for SEK 0.03769 µM 233 
k_MKP_SEK SEK dephosphorylation by MKP 1e-4 1/ms 233 
Km_ MKP _SEK MKP affinity for SEK 12 µM 233 

 
𝑆𝐸𝐾 = 𝑆𝐸𝐾𝑡𝑜𝑡 − 𝑆𝐸𝐾𝑝 

 
𝑑𝑆𝐸𝐾𝑝
𝑑𝑡

=
𝑘_𝑀𝐸𝐾𝐾_𝑆𝐸𝐾 ∙ 𝑀𝐸𝐾𝐾𝑝 ∙ 𝑆𝐸𝐾

𝐾𝑚_𝑀𝐸𝐾𝐾_𝑆𝐸𝐾 + 𝑆𝐸𝐾
−
𝑘_𝑀𝐾𝑃_𝑆𝐸𝐾 ∙ 𝑀𝐾𝑃𝑝 ∙ 𝑆𝐸𝐾𝑝
𝐾𝑚_𝑀𝐾𝑃_𝑆𝐸𝐾 + 𝑆𝐸𝐾𝑝

 

 
Parameter Description Value Units Source 
ERKtot total ERK 1.2 µM 344 
k_MEK _ERK ERK phosphorylation by MEK 2.2e-6 1/ms 233 
Km_MEK_ERK MEK affinity for ERK 0.035 µM 233 
k_MKP_ERK ERK dephosphorylation by PP2A 2.8e-4 1/ms 233 
Km_MKP_ERK PP2A affinity for ERK 12 µM 233 

 
𝐽𝑁𝐾 = 𝐽𝑁𝐾𝑡𝑜𝑡 − 𝐽𝑁𝐾𝑝 

 
𝑑𝐽𝑁𝐾𝑝
𝑑𝑡

=
𝑘_𝑆𝐸𝐾_𝐽𝑁𝐾 ∙ 𝑆𝐸𝐾𝑝 ∙ 𝐽𝑁𝐾
𝐾𝑚_𝑆𝐸𝐾_𝐽𝑁𝐾 + 𝐽𝑁𝐾

−
𝑘_𝑀𝐾𝑃_𝐽𝑁𝐾 ∙ 𝑀𝐾𝑃𝑝 ∙ 𝐽𝑁𝐾𝑝
𝐾𝑚_𝑀𝐾𝑃_𝐽𝑁𝐾 + 𝐽𝑁𝐾𝑝

 

 
Phosphatase Activation 
Parameter Description Value Units Source 
SHPtot total SHP 0.1 µM 345-346 
k_AT2R_SHP SHP activation by AT2Rs 1.7e-4 1/ms 234-235 
Km_AT2R_SHP AT2R affinity for SHP 1.4e-3 µM 347 
k_SHP_SHP SHP auto-dephosphorylation by SHP 2.5e-7 1/ms 234-235 
Km_SHP_SHP SHP affinity for SHP 0.9 µM 234-235 

 
𝑆𝐻𝑃 = 𝑆𝐻𝑃𝑡𝑜𝑡 − 𝑆𝐻𝑃𝑝 

 
𝑑𝑆𝐻𝑃𝑝
𝑑𝑡

=
𝑘_𝐴𝑇2𝑅_𝑆𝐻𝑃 ∙ 𝐴𝑇2𝑅_𝐴𝑛𝑔𝐼𝐼 ∙ 𝑆𝐻𝑃

𝐾𝑚_𝐴𝑇2𝑅_𝑆𝐻𝑃 + 𝑆𝐻𝑃
−
𝑘_𝑆𝐻𝑃_𝑆𝐻𝑃 ∙ 𝑆𝐻𝑃𝑝 ∙ 𝑆𝐻𝑃𝑝
𝐾𝑚_𝑆𝐻𝑃_𝑆𝐻𝑃 + 𝑆𝐻𝑃𝑝
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Parameter Description Value Units Source 
PP2Atot total PP2A 0.22 µM 348 
CaMKII total CaMKII 0.2 µM 111 
k_AT2R_PP2A PP2A activation by AT2R 2.5e-4 1/ms 239 
Km_ AT2R_PP2A PP2A affinity for AT2R 1.7 µM 239 
k_CaMKII_PP2A CaMKII phosphorylation of PP2A 1.75e-6 1/ms 239 
Km_ CaMKII_PP2A CaMKII affinity for PP2A 5.1 µM 349-350 

 
𝑃𝑃2𝐴𝑝 = 𝑃𝑃2𝐴𝑡𝑜𝑡 − 𝑃𝑃2𝐴 

 
𝑑𝑃𝑃2𝐴
𝑑𝑡

=
𝑘_𝐴𝑇2𝑅_𝑃𝑃2𝐴 ∙ 𝐴𝑇2𝑅_𝐴𝑛𝑔𝐼𝐼 ∙ 𝑃𝑃2𝐴𝑝

𝐾𝑚_𝐴𝑇2𝑅_𝑃𝑃2𝐴 + 𝑃𝑃2𝐴𝑝
−
𝑘_𝐶𝑎𝑀𝐾𝐼𝐼_𝑃𝑃2𝐴 ∙ 𝐶𝑎𝑀𝐾𝐼𝐼 ∙ 𝑃𝑃2𝐴

𝐾𝑚_𝐶𝑎𝑀𝐾𝐼𝐼_𝑃𝑃2𝐴 + 𝑃𝑃2𝐴
 

 
Parameter Description Value Units Source 
MKPtot total ERK 0.2 µM 343 
k_AT2R_MKP MKP activation by AT2R 2.25e-4 1/ms 237 
Km_AT2R_MKP MKP affinity for AT2R 1.9 µM 237 
k_PP2A_MKP MKP dephosphorylation by PP2A 1e-6 1/ms 237 
Km_PP2A_MKP PP2A affinity for MKP 1 µM 237 

 
𝑀𝐾𝑃 = 𝑀𝐾𝑃𝑡𝑜𝑡 −𝑀𝐾𝑃𝑝 

 
𝑑𝑀𝐾𝑃𝑝
𝑑𝑡

=
𝑘_𝐴𝑇2𝑅_𝑀𝐾𝑃 ∙ 𝐴𝑇2𝑅_𝐴𝑛𝑔𝐼𝐼 ∙ 𝑀𝐾𝑃

𝐾𝑚_𝐴𝑇2𝑅_𝑀𝐾𝑃 + 𝑀𝐾𝑃
−
𝑘_𝑃𝑃2𝐴_𝑀𝐾𝑃 ∙ 𝑃𝑃2𝐴 ∙ 𝑀𝐾𝑃𝑝
𝐾𝑚_𝑃𝑃2𝐴_𝑀𝐾𝑃 + 𝑀𝐾𝑃𝑝
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Appendix C 
 
 
cAMP Compartmentation Model 
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Classical vs. Nuclear PKA (nucPKA) Model 
 
Endogenous Adenylyl Cyclases 
Parameter Description Classical nucPKA Units Source 
ACtot total adenylyl cyclase 10 10 µM 5 
kf_AC_FSK adenylyl cyclase activation by FSK 1.286e-4 6.181e-4 1/[µM s] fitted 
kr_AC_FSK adenylyl cyclase activation by FSK 5.659e-3 2.720e-2 1/s fitted 
k_AC_basal basal AC activity 5.334e-3 5.801e-3 1/s fitted 
k_AC_FSK FSK-stimulated AC activity 0.2077 0.2195 1/s fitted 

 
cAMP / PKA Transport 
Parameter Description Classical nucPKA Units Source 
V_pm volume of plasma membrane 0.04 0.04 pL 351 
V_cyt volume of cytosol 2 2 pL 351 
V_nuc volume of nucleus 0.5 0.5 pL 352 
D_cAMP_pm_cyt cAMP diffusion rate 2.453e-3 2.507e-3 pL/s fitted 
D_cAMP_cyt_nuc cAMP diffusion rate 5.339e-3 2.832e-3 pL/s fitted 
D_PKA_pm_cyt PKA diffusion rate 1.209e-3 2.80e-2 pL/s fitted 
D_PKA_cyt_nuc PKA diffusion rate 1.060e-4 9.509e-4 pL/s fitted 

 
Soluble Adenylyl Cyclases 
Parameter Description Classical nucPKA Units Source 
E_sAC_pm_basal plasma membrane sAC 0.40501 0.5639 mM/s fitted 
E_sAC_pm_step plasma membrane sAC 3.342e-3 1.403e-3 mM/s fitted 
E_sAC_cyt_basal cytosolic sAC 6.544e-2 5.828e-2 mM/s fitted 
E_sAC_cyt_step cytosolic sAC 0.4953 0.2825 mM/s fitted 
E_sAC_nuc_basal nuclear sAC 7.107e-3 5.326e-3 mM/s fitted 
E_sAC_nuc_step nuclear sAC 2.850e-2 4.141e-2 mM/s fitted 

 
Phosphodiesterases 
Parameter Description Classical nucPKA Units Source 
PDEtot_pm total PDE at membrane 0.9443 0.8539 mM fitted 
PDEtot_cyt total PDE at cytosol 1.492e-3 2.415e-2 mM fitted 
PDEtot_nuc total PDE at nucleus 0.2313 0.4260 mM fitted 
k_PDE cAMP hydrolysis rate 0.15 0.15 1/s 261 
k_PDEp cAMP hydrolysis rate 0.375 0.375 1/s 261 
Km_PDE PDE affinity for cAMP 1 1 mM 261 
k_PKA_PDE PDE phosphorylation 0.015 0.015 1/[mM s] 260 
k_PP_PDE PDE dephosphorylation 0.005 0.005 1/s 260 
KI_IBMX PDE inhibition by IBMX 11 11 

 
 
 
 
 
 

mM 260 
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PKA 
Parameter Description Classical nucPKA Units Source 
k_f_a PKA activation by cAMP 5 5 1/[mM s] 260 
k_r_a PKA activation by cAMP 1 1 1/s 260 
k_f_b PKA activation by cAMP 0.4 0.4 1/[mM s] 260 
k_r_b PKA activation by cAMP 0.2 0.2 1/s 260 
k_act PKA activation by cAMP 70 70 1/s 260 
k_deact PKA activation by cAMP 0.75 0.75 1/[mM2 s] 260 
 
Phosphatases 
Parameter Description Classical nucPKA Units Source 
PP_pm total membrane phosphatase 2.497 2.599 mM fitted 
PP_cyt total cytosolic phosphatase 2.512 2.144 mM fitted 
PP_nuc total nuclear phosphatase 2.501 2.430 mM fitted 
 
ICUE / AKAR FRET Reporters 
Parameter Description Classical nucPKA Units Source 
ICUEtot_pm total membrane ICUE 0.065 0.065 mM estimated 
ICUEtot_cyt total cytosolic ICUE 0.15 0.15 mM estimated 
ICUEtot_nuc total nuclear ICUE 0.25 0.25 mM estimated 
k_f_ICUE ICUE activation by cAMP 5 5 1/[mM s] 260 
k_r_ICUE ICUE activation by cAMP 10 10 1/s 276 
AKARtot_pm total membrane AKAR 0.69 0.69 mM estimated 
AKARtot_cyt total cytosolic AKAR 1.25 1.25 mM estimated 
AKARtot_nuc total nuclear AKAR 3.48 3.48 mM estimated 
k_PKA_AKAR AKAR phosphorylation 21 21 1/s 4 
Km_PKA_AKAR AKAR phosphorylation 54 54 mM 4 
k_PP_AKAR AKAR dephosphorylation 8.5 8.5 1/[mM s] 4 
 
Plasma Membrane Equations 
 
𝑐𝐴𝑀𝑃_𝑝𝑚 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚 − 𝑅𝑎𝐶_𝑝𝑚 − 𝑅𝑏𝐶_𝑝𝑚 − 2 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 − 𝑅𝑎_𝑝𝑚 − 𝑅𝑏_𝑝𝑚

− 2 ∙ 𝑅𝑎𝑏_𝑝𝑚 − 𝐼𝐶𝑈𝐸𝑐_𝑝𝑚 
 

𝑃𝐷𝐸_𝑝𝑚 = 𝑃𝐷𝐸𝑡𝑜𝑡_𝑝𝑚 − 𝑃𝐷𝐸𝑝_𝑝𝑚 
 

𝐼𝐶𝑈𝐸_𝑝𝑚 = 𝐼𝐶𝑈𝐸𝑡𝑜𝑡_𝑝𝑚 − 𝐼𝐶𝑈𝐸𝑐_𝑝𝑚 
 

𝐴𝐾𝐴𝑅_𝑝𝑚 = 𝐴𝐾𝐴𝑅𝑡𝑜𝑡_𝑝𝑚 − 𝐴𝐾𝐴𝑅𝑝_𝑝𝑚 
 

𝐴𝐶 = 𝐴𝐶𝑡𝑜𝑡 − 𝐴𝐶_𝐹𝑆𝐾 
 

𝑑𝐴𝐶_𝐹𝑆𝐾
𝑑𝑡

= 𝑘𝑓_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶 ∙ 𝐹𝑆𝐾 − 𝑘𝑟_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶_𝐹𝑆𝐾 
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𝐸_𝐴𝐶 = 𝑘_𝐴𝐶_𝑏𝑎𝑠𝑎𝑙 ∙ 𝐴𝐶 + 𝑘_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶_𝐹𝑆𝐾 

 
𝐸_𝐴𝐶_𝑝𝑚 = 𝐸_𝐴𝐶 + 𝐸_𝑠𝐴𝐶_𝑝𝑚 

 
𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚

𝑑𝑡
= 𝐸_𝐴𝐶_𝑝𝑚 −

𝑃𝐷𝐸_𝑝𝑚 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑘_𝑃𝐷𝐸

𝑐𝐴𝑀𝑃_𝑝𝑚 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝑃𝐷𝐸𝑝_𝑝𝑚 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑘_𝑃𝐷𝐸𝑝

𝑐𝐴𝑀𝑃_𝑝𝑚 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝐷_𝑐𝐴𝑀𝑃_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑝𝑚

∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡) 
 

𝑑𝑃𝐷𝐸𝑝_𝑝𝑚
𝑑𝑡

= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝐶_𝑝𝑚 ∙ 𝑃𝐷𝐸_𝑝𝑚 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝑃_𝑝𝑚 ∙ 𝑃𝐷𝐸𝑝_𝑝𝑚 
 
𝑑𝑅_𝑝𝑚
𝑑𝑡

= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅_𝑝𝑚 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑝𝑚 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑝𝑚
− 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 

 
𝑑𝑅𝑎_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎_𝑝𝑚 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑝𝑚 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚

∙ 𝑅_𝑝𝑚 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 
𝑑𝑅𝑏_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏_𝑝𝑚 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅_𝑝𝑚

+ 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 

𝑑𝑅𝑎𝑏_𝑝𝑚
𝑑𝑡

= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏) ∙ 𝑅𝑎𝑏_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎_𝑝𝑚 + 𝑘_𝑓_𝑎
∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏_𝑝𝑚 + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 

 
𝑑𝑅𝐶_𝑝𝑚

𝑑𝑡
= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝐶_𝑝𝑚 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑝𝑚 + 𝑘_𝑟_𝑏

∙ 𝑅𝑏𝐶_𝑝𝑚 + 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 
𝑑𝑅𝑎𝐶_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎𝐶_𝑝𝑚 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑝𝑚 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚

∙ 𝑅𝐶_𝑝𝑚 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 
𝑑𝑅𝑏𝐶_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏𝐶_𝑝𝑚 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚

∙ 𝑅𝐶_𝑝𝑚 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
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𝑑𝑅𝑎𝑏𝐶_𝑝𝑚
𝑑𝑡

= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏 + 𝑘_𝑎𝑐𝑡) ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎𝐶_𝑝𝑚
+ 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏𝐶_𝑝𝑚 

 
𝑑𝐶_𝑝𝑚
𝑑𝑡

= −𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ (𝑅_𝑝𝑚 + 𝑅𝑎_𝑝𝑚 + 𝑅𝑏_𝑝𝑚) + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚

−
𝐷_𝑃𝐾𝐴_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑝𝑚
∙ (𝐶_𝑝𝑚 − 𝐶_𝑐𝑦𝑡) 

 
𝑑𝐼𝐶𝑈𝐸𝑐_𝑝𝑚

𝑑𝑡
= 𝑘𝑜𝑛_𝐼𝐶𝑈𝐸 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝐼𝐶𝑈𝐸_𝑝𝑚 − 𝑘𝑜𝑓𝑓_𝐼𝐶𝑈𝐸 ∙ 𝐼𝐶𝑈𝐸𝑐_𝑝𝑚 

 
𝑑𝐴𝐾𝐴𝑅𝑝_𝑝𝑚

𝑑𝑡
=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 ∙ 𝐶_𝑝𝑚 ∙ 𝐴𝐾𝐴𝑅_𝑝𝑚
𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 + 𝐴𝐾𝐴𝑅_𝑝𝑚

− 𝑘_𝑃𝑃_𝐴𝐾𝐴𝑅 ∙ 𝑃𝑃_𝑝𝑚

∙ 𝐴𝐾𝐴𝑅𝑝_𝑝𝑚 
 
Cytosol Equations 
 

𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑅𝑎𝐶_𝑐𝑦𝑡 − 𝑅𝑏𝐶_𝑐𝑦𝑡 − 2 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 − 𝑅𝑎_𝑐𝑦𝑡
− 𝑅𝑏_𝑐𝑦𝑡 − 2 ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 − 𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡 

 
𝑃𝐷𝐸_𝑐𝑦𝑡 = 𝑃𝐷𝐸𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑃𝐷𝐸𝑝_𝑐𝑦𝑡 

 
𝐼𝐶𝑈𝐸_𝑐𝑦𝑡 = 𝐼𝐶𝑈𝐸𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡 

 
𝐴𝐾𝐴𝑅_𝑐𝑦𝑡 = 𝐴𝐾𝐴𝑅𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝐴𝐾𝐴𝑅𝑝_𝑐𝑦𝑡 

 
𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡

𝑑𝑡
= 𝐸_𝐴𝐶_𝑐𝑦𝑡 −

𝑃𝐷𝐸_𝑐𝑦𝑡 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑘_𝑃𝐷𝐸

𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝑃𝐷𝐸𝑝_𝑐𝑦𝑡 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑘_𝑃𝐷𝐸𝑝

𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝐷_𝑐𝐴𝑀𝑃_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑐𝑦𝑡

∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚) −
𝐷_𝑐𝐴𝑀𝑃_𝑐𝑦𝑡_𝑛𝑢𝑐

𝑉_𝑐𝑦𝑡
∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐) 

 
𝑑𝑃𝐷𝐸𝑝_𝑐𝑦𝑡

𝑑𝑡
= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝑃𝐷𝐸_𝑐𝑦𝑡 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝑃_𝑐𝑦𝑡 ∙ 𝑃𝐷𝐸𝑝_𝑐𝑦𝑡 

 
𝑑𝑅_𝑐𝑦𝑡
𝑑𝑡

= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑐𝑦𝑡
− 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
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𝑑𝑅𝑎_𝑐𝑦𝑡
𝑑𝑡

= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑐𝑦𝑡 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡
∙ 𝑅_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 

 
𝑑𝑅𝑏_𝑐𝑦𝑡

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡

∙ 𝑅_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
 

𝑑𝑅𝑎𝑏_𝑐𝑦𝑡
𝑑𝑡

= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏) ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 + 𝑘_𝑓_𝑎
∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 

 
𝑑𝑅𝐶_𝑐𝑦𝑡

𝑑𝑡
= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏

∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 + 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
 
𝑑𝑅𝑎𝐶_𝑐𝑦𝑡

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡

∙ 𝑅𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
 
𝑑𝑅𝑏𝐶_𝑐𝑦𝑡

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡

∙ 𝑅𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
 
𝑑𝑅𝑎𝑏𝐶_𝑐𝑦𝑡

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏 + 𝑘_𝑎𝑐𝑡) ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡

+ 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 
 
𝑑𝐶_𝑐𝑦𝑡
𝑑𝑡

= −𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ (𝑅_𝑐𝑦𝑡 + 𝑅𝑎_𝑐𝑦𝑡 + 𝑅𝑏_𝑐𝑦𝑡) + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡

−
𝐷_𝑃𝐾𝐴_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑐𝑦𝑡
∙ (𝐶_𝑐𝑦𝑡 − 𝐶_𝑝𝑚) −

𝐷_𝑃𝐾𝐴_𝑐𝑦𝑡_𝑛𝑢𝑐
𝑉_𝑐𝑦𝑡

∙ (𝐶_𝑐𝑦𝑡 − 𝐶_𝑛𝑢𝑐) 
 

𝑑𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡
𝑑𝑡

= 𝑘𝑜𝑛_𝐼𝐶𝑈𝐸 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝐼𝐶𝑈𝐸_𝑐𝑦𝑡 − 𝑘𝑜𝑓𝑓_𝐼𝐶𝑈𝐸 ∙ 𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡 
 

𝑑𝐴𝐾𝐴𝑅𝑝_𝑐𝑦𝑡
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐴𝐾𝐴𝑅_𝑐𝑦𝑡
𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 + 𝐴𝐾𝐴𝑅_𝑐𝑦𝑡

− 𝑘_𝑃𝑃_𝐴𝐾𝐴𝑅 ∙ 𝑃𝑃_𝑐𝑦𝑡

∙ 𝐴𝐾𝐴𝑅𝑝_𝑐𝑦𝑡 
 
Nucleus Equations 
 

𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝑅𝑎𝐶_𝑛𝑢𝑐 − 𝑅𝑏𝐶_𝑛𝑢𝑐 − 2 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 − 𝑅𝑎_𝑛𝑢𝑐
− 𝑅𝑏_𝑛𝑢𝑐 − 2 ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 − 𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐 
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𝑃𝐷𝐸_𝑛𝑢𝑐 = 𝑃𝐷𝐸𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝑃𝐷𝐸𝑝_𝑛𝑢𝑐 
 

𝐼𝐶𝑈𝐸_𝑛𝑢𝑐 = 𝐼𝐶𝑈𝐸𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐 
 

𝐴𝐾𝐴𝑅_𝑛𝑢𝑐 = 𝐴𝐾𝐴𝑅𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝐴𝐾𝐴𝑅𝑝_𝑛𝑢𝑐 
 

𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐
𝑑𝑡

= 𝐸_𝐴𝐶_𝑛𝑢𝑐 −
𝑃𝐷𝐸_𝑛𝑢𝑐 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑘_𝑃𝐷𝐸

𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝑃𝐷𝐸𝑝_𝑛𝑢𝑐 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑘_𝑃𝐷𝐸𝑝

𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝐷_𝑐𝐴𝑀𝑃_𝑐𝑦𝑡_𝑛𝑢𝑐

𝑉_𝑛𝑢𝑐

∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡) 
 
𝑑𝑃𝐷𝐸𝑝_𝑛𝑢𝑐

𝑑𝑡
= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝑃𝐷𝐸_𝑛𝑢𝑐 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝑃_𝑛𝑢𝑐 ∙ 𝑃𝐷𝐸𝑝_𝑛𝑢𝑐 

 
𝑑𝑅_𝑛𝑢𝑐
𝑑𝑡

= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑛𝑢𝑐
− 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 

 
𝑑𝑅𝑎_𝑛𝑢𝑐

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎_𝑛𝑢𝑐 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑛𝑢𝑐 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐

∙ 𝑅_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝑏_𝑛𝑢𝑐

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏_𝑛𝑢𝑐 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐

∙ 𝑅_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝑎𝑏_𝑛𝑢𝑐

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏) ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎_𝑛𝑢𝑐 + 𝑘_𝑓_𝑎

∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏_𝑛𝑢𝑐 + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝐶_𝑛𝑢𝑐

𝑑𝑡
= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏

∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 + 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝑎𝐶_𝑛𝑢𝑐

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐

∙ 𝑅𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝑏𝐶_𝑛𝑢𝑐

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐

∙ 𝑅𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
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𝑑𝑅𝑎𝑏𝐶_𝑛𝑢𝑐
𝑑𝑡

= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏 + 𝑘_𝑎𝑐𝑡) ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐
+ 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 

 
𝑑𝐶_𝑛𝑢𝑐
𝑑𝑡

= −𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ (𝑅_𝑛𝑢𝑐 + 𝑅𝑎_𝑛𝑢𝑐 + 𝑅𝑏_𝑛𝑢𝑐) + 𝑘_𝑎𝑐𝑡

∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 −
𝐷_𝑃𝐾𝐴_𝑐𝑦𝑡_𝑛𝑢𝑐

𝑉_𝑛𝑢𝑐
∙ (𝐶_𝑛𝑢𝑐 − 𝐶_𝑐𝑦𝑡) 

 
𝑑𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐

𝑑𝑡
= 𝑘𝑜𝑛_𝐼𝐶𝑈𝐸 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝐼𝐶𝑈𝐸_𝑛𝑢𝑐 − 𝑘𝑜𝑓𝑓_𝐼𝐶𝑈𝐸 ∙ 𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐 

 
𝑑𝐴𝐾𝐴𝑅𝑝_𝑛𝑢𝑐

𝑑𝑡
=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐴𝐾𝐴𝑅_𝑛𝑢𝑐
𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 + 𝐴𝐾𝐴𝑅_𝑛𝑢𝑐

− 𝑘_𝑃𝑃_𝐴𝐾𝐴𝑅 ∙ 𝑃𝑃_𝑛𝑢𝑐

∙ 𝐴𝐾𝐴𝑅𝑝_𝑛𝑢𝑐 
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Classical vs. Nuclear PKA (nucPKA) vs. Nuclear AKAP (nucAKAP) Model 
 
cAMP / PKA Transport 
Parameter Description Classical nucPKA nucAKAP Units 
V_pm volume of plasma membrane 0.04 0.04 0.04 pL 
V_cyt volume of cytosol 2 2 2 pL 
V_nuc volume of nucleus 0.5 0.5 0.5 pL 
V_AKAP volume of nuclear AKAP - -  pL 
D_cAMP_pm_cyt cAMP diffusion rate 2.536e-3 2.268e-3 1.697e-2 pL/s 
D_cAMP_cyt_nuc cAMP diffusion rate 5.280e-3 5.888e-4 1.783e-2 pL/s 
D_cAMP_nuc_AKAP cAMP diffusion rate - - 5.850e-3 pL/s 
D_PKA_pm_cyt PKA diffusion rate 1.249e-2 2.729e-2 4.613e-3 pL/s 
D_PKA_cyt_nuc PKA diffusion rate 1.337e-4 4.026e-3 3.410e-5 pL/s 
D_PKA_nuc_AKAP PKA diffusion rate - - 3.910e-3 pL/s 

 
Soluble Adenylyl Cyclases 
Parameter Description Classical nucPKA nucAKAP Units 
E_sAC_pm_basal plasma membrane sAC 0.4048 0.5317 0.1663 mM/s 
E_sAC_pm_step plasma membrane sAC 2.973e-3 1.643e-3 8.556e-3 mM/s 
E_sAC_cyt_basal cytosolic sAC 6.482e-2 6.212e-2 2.121e-2 mM/s 
E_sAC_cyt_step cytosolic sAC 0.4943 5.915e-3 0.1726 mM/s 
E_sAC_nuc_basal nuclear sAC 7.637e-3 1.685e-3 1.059e-2 mM/s 
E_sAC_nuc_step nuclear sAC 3.640e-2 5.630e-2 3.941e-2 mM/s 

 
Phosphodiesterases 
Parameter Description Classical nucPKA nucAKAP Units 
PDEtot_pm total PDE at membrane 0.9427 0.9942 0.8963 mM 
PDEtot_cyt total PDE at cytosol 0.01430 0.02121 0.01124 mM 
PDEtot_nuc total PDE at nucleus 0.2309 0.2874 8.215e-3 mM 
PDEtot_AKAP total PDE at AKAP - - 0.1695 mM 
k_PDE cAMP hydrolysis rate 0.15 0.15 0.15 1/s 
k_PDEp cAMP hydrolysis rate 0.375 0.375 0.375 1/s 
Km_PDE PDE affinity for cAMP 1 1 1 mM 
k_PKA_PDE PDE phosphorylation  0.015 0.015 0.015 1/[mM s] 
k_PP_PDE PDE dephosphorylation 0.005 0.005 0.005 1/s 
KI_IBMX PDE inhibition by IBMX 11 11 

 
 
 
 
 
 

11 
 
 
 
 
 
 

mM 
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PKA 
Parameter Description Classical nucPKA nucAKAP Units 
k_f_a PKA activation by cAMP 5 5 5 1/[mM s] 
k_r_a PKA activation by cAMP 1 1 1 1/s 
k_f_b PKA activation by cAMP 0.4 0.4 0.4 1/[mM s] 
k_r_b PKA activation by cAMP 0.2 0.2 0.2 1/s 
k_act PKA activation by cAMP 70 70 70 1/s 
k_deact PKA activation by cAMP 0.75 0.75 0.75 1/[mM2 s] 
 
Phosphatases 
Parameter Description Classical nucPKA nucAKAP Units 
PP_pm total membrane phosphatase 2.494 2.518 2.519 mM 
PP_cyt total cytosolic phosphatase 2.511 2.579 2.397 mM 
PP_nuc total nuclear phosphatase 2.500 2.519 2.578 mM 
PP_AKAP total AKAP phosphatase - - 10.15 mM 
 
ICUE / AKAR FRET Reporters 
Parameter Description Classical nucPKA nucAKAP Units 
ICUEtot_pm total membrane ICUE 0.065 0.065 0.065 mM 
ICUEtot_cyt total cytosolic ICUE 0.15 0.15 0.15 mM 
ICUEtot_nuc total nuclear ICUE 0.25 0.25 0.25 mM 
k_f_ICUE ICUE activation by cAMP 5 5 5 1/[mM s] 
k_r_ICUE ICUE activation by cAMP 10 10 10 1/s 
AKARtot_pm total membrane AKAR 0.69 0.69 0.69 mM 
AKARtot_cyt total cytosolic AKAR 1.25 1.25 1.25 mM 
AKARtot_nuc total nuclear AKAR 3.48 3.48 3.48 mM 
k_PKA_AKAR AKAR phosphorylation  21 21 21 1/s 
Km_PKA_AKAR AKAR phosphorylation  54 54 54 mM 
k_PP_AKAR AKAR dephosphorylation 8.5 8.5 8.5 1/[mM s] 
 
Plasma Membrane Equations 
 
𝑐𝐴𝑀𝑃_𝑝𝑚 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚 − 𝑅𝑎𝐶_𝑝𝑚 − 𝑅𝑏𝐶_𝑝𝑚 − 2 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 − 𝑅𝑎_𝑝𝑚 − 𝑅𝑏_𝑝𝑚

− 2 ∙ 𝑅𝑎𝑏_𝑝𝑚 − 𝐼𝐶𝑈𝐸𝑐_𝑝𝑚 
 

𝑃𝐷𝐸_𝑝𝑚 = 𝑃𝐷𝐸𝑡𝑜𝑡_𝑝𝑚 − 𝑃𝐷𝐸𝑝_𝑝𝑚 
 

𝐼𝐶𝑈𝐸_𝑝𝑚 = 𝐼𝐶𝑈𝐸𝑡𝑜𝑡_𝑝𝑚 − 𝐼𝐶𝑈𝐸𝑐_𝑝𝑚 
 

𝐴𝐾𝐴𝑅_𝑝𝑚 = 𝐴𝐾𝐴𝑅𝑡𝑜𝑡_𝑝𝑚 − 𝐴𝐾𝐴𝑅𝑝_𝑝𝑚 
 

𝐴𝐶 = 𝐴𝐶𝑡𝑜𝑡 − 𝐴𝐶_𝐹𝑆𝐾 
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𝑑𝐴𝐶_𝐹𝑆𝐾
𝑑𝑡

= 𝑘𝑓_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶 ∙ 𝐹𝑆𝐾 − 𝑘𝑟_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶_𝐹𝑆𝐾 
 

𝐸_𝐴𝐶 = 𝑘_𝐴𝐶_𝑏𝑎𝑠𝑎𝑙 ∙ 𝐴𝐶 + 𝑘_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶_𝐹𝑆𝐾 
 

𝐸_𝐴𝐶_𝑝𝑚 = 𝐸_𝐴𝐶 + 𝐸_𝑠𝐴𝐶_𝑝𝑚 
 

𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚
𝑑𝑡

= 𝐸_𝐴𝐶_𝑝𝑚 −
𝑃𝐷𝐸_𝑝𝑚 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑘_𝑃𝐷𝐸

𝑐𝐴𝑀𝑃_𝑝𝑚 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝑃𝐷𝐸𝑝_𝑝𝑚 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑘_𝑃𝐷𝐸𝑝

𝑐𝐴𝑀𝑃_𝑝𝑚 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝐷_𝑐𝐴𝑀𝑃_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑝𝑚

∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡) 
 

𝑑𝑃𝐷𝐸𝑝_𝑝𝑚
𝑑𝑡

= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝐶_𝑝𝑚 ∙ 𝑃𝐷𝐸_𝑝𝑚 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝑃_𝑝𝑚 ∙ 𝑃𝐷𝐸𝑝_𝑝𝑚 
 
𝑑𝑅_𝑝𝑚
𝑑𝑡

= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅_𝑝𝑚 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑝𝑚 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑝𝑚
− 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 

 
𝑑𝑅𝑎_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎_𝑝𝑚 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑝𝑚 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚

∙ 𝑅_𝑝𝑚 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 
𝑑𝑅𝑏_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏_𝑝𝑚 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅_𝑝𝑚

+ 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 

𝑑𝑅𝑎𝑏_𝑝𝑚
𝑑𝑡

= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏) ∙ 𝑅𝑎𝑏_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎_𝑝𝑚 + 𝑘_𝑓_𝑎
∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏_𝑝𝑚 + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 

 
𝑑𝑅𝐶_𝑝𝑚

𝑑𝑡
= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝐶_𝑝𝑚 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑝𝑚 + 𝑘_𝑟_𝑏

∙ 𝑅𝑏𝐶_𝑝𝑚 + 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 
𝑑𝑅𝑎𝐶_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎𝐶_𝑝𝑚 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑝𝑚 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚

∙ 𝑅𝐶_𝑝𝑚 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
 
𝑑𝑅𝑏𝐶_𝑝𝑚

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏𝐶_𝑝𝑚 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚

∙ 𝑅𝐶_𝑝𝑚 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 
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𝑑𝑅𝑎𝑏𝐶_𝑝𝑚

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏 + 𝑘_𝑎𝑐𝑡) ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑎𝐶_𝑝𝑚

+ 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝑅𝑏𝐶_𝑝𝑚 
 
𝑑𝐶_𝑝𝑚
𝑑𝑡

= −𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝐶_𝑝𝑚 ∙ 𝐶_𝑝𝑚 ∙ (𝑅_𝑝𝑚 + 𝑅𝑎_𝑝𝑚 + 𝑅𝑏_𝑝𝑚) + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑝𝑚

−
𝐷_𝑃𝐾𝐴_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑝𝑚
∙ (𝐶_𝑝𝑚 − 𝐶_𝑐𝑦𝑡) 

 
𝑑𝐼𝐶𝑈𝐸𝑐_𝑝𝑚

𝑑𝑡
= 𝑘𝑜𝑛_𝐼𝐶𝑈𝐸 ∙ 𝑐𝐴𝑀𝑃_𝑝𝑚 ∙ 𝐼𝐶𝑈𝐸_𝑝𝑚 − 𝑘𝑜𝑓𝑓_𝐼𝐶𝑈𝐸 ∙ 𝐼𝐶𝑈𝐸𝑐_𝑝𝑚 

 
𝑑𝐴𝐾𝐴𝑅𝑝_𝑝𝑚

𝑑𝑡
=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 ∙ 𝐶_𝑝𝑚 ∙ 𝐴𝐾𝐴𝑅_𝑝𝑚
𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 + 𝐴𝐾𝐴𝑅_𝑝𝑚

− 𝑘_𝑃𝑃_𝐴𝐾𝐴𝑅 ∙ 𝑃𝑃_𝑝𝑚

∙ 𝐴𝐾𝐴𝑅𝑝_𝑝𝑚 
 
Cytosol Equations 
 

𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑅𝑎𝐶_𝑐𝑦𝑡 − 𝑅𝑏𝐶_𝑐𝑦𝑡 − 2 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 − 𝑅𝑎_𝑐𝑦𝑡
− 𝑅𝑏_𝑐𝑦𝑡 − 2 ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 − 𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡 

 
𝑃𝐷𝐸_𝑐𝑦𝑡 = 𝑃𝐷𝐸𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑃𝐷𝐸𝑝_𝑐𝑦𝑡 

 
𝐼𝐶𝑈𝐸_𝑐𝑦𝑡 = 𝐼𝐶𝑈𝐸𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡 

 
𝐴𝐾𝐴𝑅_𝑐𝑦𝑡 = 𝐴𝐾𝐴𝑅𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝐴𝐾𝐴𝑅𝑝_𝑐𝑦𝑡 

 
𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡

𝑑𝑡
= 𝐸_𝐴𝐶_𝑐𝑦𝑡 −

𝑃𝐷𝐸_𝑐𝑦𝑡 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑘_𝑃𝐷𝐸

𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝑃𝐷𝐸𝑝_𝑐𝑦𝑡 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑘_𝑃𝐷𝐸𝑝

𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝐷_𝑐𝐴𝑀𝑃_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑐𝑦𝑡

∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑝𝑚) −
𝐷_𝑐𝐴𝑀𝑃_𝑐𝑦𝑡_𝑛𝑢𝑐

𝑉_𝑐𝑦𝑡
∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐) 

 
𝑑𝑃𝐷𝐸𝑝_𝑐𝑦𝑡

𝑑𝑡
= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝑃𝐷𝐸_𝑐𝑦𝑡 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝑃_𝑐𝑦𝑡 ∙ 𝑃𝐷𝐸𝑝_𝑐𝑦𝑡 

 
𝑑𝑅_𝑐𝑦𝑡
𝑑𝑡

= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑐𝑦𝑡
− 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
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𝑑𝑅𝑎_𝑐𝑦𝑡

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑐𝑦𝑡 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡

∙ 𝑅_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
 

𝑑𝑅𝑏_𝑐𝑦𝑡
𝑑𝑡

= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡
∙ 𝑅_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 

 
𝑑𝑅𝑎𝑏_𝑐𝑦𝑡

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏) ∙ 𝑅𝑎𝑏_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 + 𝑘_𝑓_𝑎

∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 
 

𝑑𝑅𝐶_𝑐𝑦𝑡
𝑑𝑡

= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏
∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 + 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 

 
𝑑𝑅𝑎𝐶_𝑐𝑦𝑡

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡

∙ 𝑅𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
 
𝑑𝑅𝑏𝐶_𝑐𝑦𝑡

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡

∙ 𝑅𝐶_𝑐𝑦𝑡 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 
 
𝑑𝑅𝑎𝑏𝐶_𝑐𝑦𝑡

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏 + 𝑘_𝑎𝑐𝑡) ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑎𝐶_𝑐𝑦𝑡

+ 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝑅𝑏𝐶_𝑐𝑦𝑡 
 
𝑑𝐶_𝑐𝑦𝑡
𝑑𝑡

= −𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐶_𝑐𝑦𝑡 ∙ (𝑅_𝑐𝑦𝑡 + 𝑅𝑎_𝑐𝑦𝑡 + 𝑅𝑏_𝑐𝑦𝑡) + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑐𝑦𝑡

−
𝐷_𝑃𝐾𝐴_𝑝𝑚_𝑐𝑦𝑡

𝑉_𝑐𝑦𝑡
∙ (𝐶_𝑐𝑦𝑡 − 𝐶_𝑝𝑚) −

𝐷_𝑃𝐾𝐴_𝑐𝑦𝑡_𝑛𝑢𝑐
𝑉_𝑐𝑦𝑡

∙ (𝐶_𝑐𝑦𝑡 − 𝐶_𝑛𝑢𝑐) 
 

𝑑𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡
𝑑𝑡

= 𝑘𝑜𝑛_𝐼𝐶𝑈𝐸 ∙ 𝑐𝐴𝑀𝑃_𝑐𝑦𝑡 ∙ 𝐼𝐶𝑈𝐸_𝑐𝑦𝑡 − 𝑘𝑜𝑓𝑓_𝐼𝐶𝑈𝐸 ∙ 𝐼𝐶𝑈𝐸𝑐_𝑐𝑦𝑡 
 

𝑑𝐴𝐾𝐴𝑅𝑝_𝑐𝑦𝑡
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 ∙ 𝐶_𝑐𝑦𝑡 ∙ 𝐴𝐾𝐴𝑅_𝑐𝑦𝑡
𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 + 𝐴𝐾𝐴𝑅_𝑐𝑦𝑡

− 𝑘_𝑃𝑃_𝐴𝐾𝐴𝑅 ∙ 𝑃𝑃_𝑐𝑦𝑡

∙ 𝐴𝐾𝐴𝑅𝑝_𝑐𝑦𝑡 
 
Nucleus Equations 
 

𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝑅𝑎𝐶_𝑛𝑢𝑐 − 𝑅𝑏𝐶_𝑛𝑢𝑐 − 2 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 − 𝑅𝑎_𝑛𝑢𝑐
− 𝑅𝑏_𝑛𝑢𝑐 − 2 ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 − 𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐 
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𝑃𝐷𝐸_𝑛𝑢𝑐 = 𝑃𝐷𝐸𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝑃𝐷𝐸𝑝_𝑛𝑢𝑐 

 
𝐼𝐶𝑈𝐸_𝑛𝑢𝑐 = 𝐼𝐶𝑈𝐸𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐 

 
𝐴𝐾𝐴𝑅_𝑛𝑢𝑐 = 𝐴𝐾𝐴𝑅𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝐴𝐾𝐴𝑅𝑝_𝑛𝑢𝑐 

 
𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐

𝑑𝑡
= 𝐸_𝐴𝐶_𝑛𝑢𝑐 −

𝑃𝐷𝐸_𝑛𝑢𝑐 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑘_𝑃𝐷𝐸

𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝑃𝐷𝐸𝑝_𝑛𝑢𝑐 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑘_𝑃𝐷𝐸𝑝

𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝐷_𝑐𝐴𝑀𝑃_𝑐𝑦𝑡_𝑛𝑢𝑐

𝑉_𝑛𝑢𝑐

∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑐𝑦𝑡) −
𝐷_𝑐𝐴𝑀𝑃_𝑛𝑢𝑐_𝐴𝐾𝐴𝑃

𝑉_𝑛𝑢𝑐
∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝐴𝐾𝐴𝑃) 

 
𝑑𝑃𝐷𝐸𝑝_𝑛𝑢𝑐

𝑑𝑡
= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝑃𝐷𝐸_𝑛𝑢𝑐 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝑃_𝑛𝑢𝑐 ∙ 𝑃𝐷𝐸𝑝_𝑛𝑢𝑐 

 
𝑑𝑅_𝑛𝑢𝑐
𝑑𝑡

= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑛𝑢𝑐
− 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 

 
𝑑𝑅𝑎_𝑛𝑢𝑐

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎_𝑛𝑢𝑐 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝑛𝑢𝑐 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐

∙ 𝑅_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝑏_𝑛𝑢𝑐

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏_𝑛𝑢𝑐 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐

∙ 𝑅_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝑎𝑏_𝑛𝑢𝑐

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏) ∙ 𝑅𝑎𝑏_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎_𝑛𝑢𝑐 + 𝑘_𝑓_𝑎

∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏_𝑛𝑢𝑐 + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝐶_𝑛𝑢𝑐

𝑑𝑡
= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏

∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 + 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 
𝑑𝑅𝑎𝐶_𝑛𝑢𝑐

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐

∙ 𝑅𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 
 



221 
 

𝑑𝑅𝑏𝐶_𝑛𝑢𝑐
𝑑𝑡

= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐
∙ 𝑅𝐶_𝑛𝑢𝑐 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 

 
𝑑𝑅𝑎𝑏𝐶_𝑛𝑢𝑐

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏 + 𝑘_𝑎𝑐𝑡) ∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑎𝐶_𝑛𝑢𝑐

+ 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝑅𝑏𝐶_𝑛𝑢𝑐 
 
𝑑𝐶_𝑛𝑢𝑐
𝑑𝑡

= −𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐶_𝑛𝑢𝑐 ∙ (𝑅_𝑛𝑢𝑐 + 𝑅𝑎_𝑛𝑢𝑐 + 𝑅𝑏_𝑛𝑢𝑐) + 𝑘_𝑎𝑐𝑡

∙ 𝑅𝑎𝑏𝐶_𝑛𝑢𝑐 −
𝐷_𝑃𝐾𝐴_𝑐𝑦𝑡_𝑛𝑢𝑐

𝑉_𝑛𝑢𝑐
∙ (𝐶_𝑛𝑢𝑐 − 𝐶_𝑐𝑦𝑡) −

𝐷_𝑃𝐾𝐴_𝑛𝑢𝑐_𝐴𝐾𝐴𝑃
𝑉_𝑛𝑢𝑐

∙ (𝐶_𝑛𝑢𝑐 − 𝐶_𝐴𝐾𝐴𝑃) 
 

𝑑𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐
𝑑𝑡

= 𝑘𝑜𝑛_𝐼𝐶𝑈𝐸 ∙ 𝑐𝐴𝑀𝑃_𝑛𝑢𝑐 ∙ 𝐼𝐶𝑈𝐸_𝑛𝑢𝑐 − 𝑘𝑜𝑓𝑓_𝐼𝐶𝑈𝐸 ∙ 𝐼𝐶𝑈𝐸𝑐_𝑛𝑢𝑐 
 

𝑑𝐴𝐾𝐴𝑅𝑝_𝑛𝑢𝑐
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 ∙ 𝐶_𝑛𝑢𝑐 ∙ 𝐴𝐾𝐴𝑅_𝑛𝑢𝑐
𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅 + 𝐴𝐾𝐴𝑅_𝑛𝑢𝑐

− 𝑘_𝑃𝑃_𝐴𝐾𝐴𝑅 ∙ 𝑃𝑃_𝑛𝑢𝑐

∙ 𝐴𝐾𝐴𝑅𝑝_𝑛𝑢𝑐 
 
Nuclear AKAP Equations 
 
𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝐴𝐾𝐴𝑃 − 𝑅𝑎𝐶_𝐴𝐾𝐴𝑃 − 𝑅𝑏𝐶_𝐴𝐾𝐴𝑃 − 2 ∙ 𝑅𝑎𝑏𝐶_𝐴𝐾𝐴𝑃

− 𝑅𝑎_𝐴𝐾𝐴𝑃 − 𝑅𝑏_𝐴𝐾𝐴𝑃 − 2 ∙ 𝑅𝑎𝑏_𝐴𝐾𝐴𝑃 − 𝐼𝐶𝑈𝐸𝑐_𝐴𝐾𝐴𝑃 
 

𝑃𝐷𝐸_𝐴𝐾𝐴𝑃 = 𝑃𝐷𝐸𝑡𝑜𝑡_𝐴𝐾𝐴𝑃 − 𝑃𝐷𝐸𝑝_𝐴𝐾𝐴𝑃 
 
𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝐴𝐾𝐴𝑃

𝑑𝑡
= −

𝑃𝐷𝐸_𝐴𝐾𝐴𝑃 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑘_𝑃𝐷𝐸

𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝑃𝐷𝐸𝑝_𝐴𝐾𝐴𝑃 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑘_𝑃𝐷𝐸𝑝

𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 + 𝐾𝑚_𝑃𝐷𝐸 ∙ �1 + 𝐼𝐵𝑀𝑋
𝐾𝐼_𝐼𝐵𝑀𝑋�

−
𝐷_𝑐𝐴𝑀𝑃_𝑛𝑢𝑐_𝐴𝐾𝐴𝑃

𝑉_𝐴𝐾𝐴𝑃

∙ (𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝐴𝐾𝐴𝑃 − 𝑐𝐴𝑀𝑃𝑡𝑜𝑡_𝑛𝑢𝑐) 
 

𝑑𝑃𝐷𝐸𝑝_𝐴𝐾𝐴𝑃
𝑑𝑡

= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝑃𝐷𝐸_𝐴𝐾𝐴𝑃 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝑃_𝐴𝐾𝐴𝑃
∙ 𝑃𝐷𝐸𝑝_𝐴𝐾𝐴𝑃 

 
𝑑𝑅_𝐴𝐾𝐴𝑃

𝑑𝑡
= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅_𝐴𝐾𝐴𝑃 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝐴𝐾𝐴𝑃 + 𝑘_𝑟_𝑏

∙ 𝑅𝑏_𝐴𝐾𝐴𝑃 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 
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𝑑𝑅𝑎_𝐴𝐾𝐴𝑃

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝑎_𝐴𝐾𝐴𝑃 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎_𝐴𝐾𝐴𝑃 + 𝑘_𝑓_𝑎
∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅_𝐴𝐾𝐴𝑃 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏_𝐴𝐾𝐴𝑃 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑎_𝐴𝐾𝐴𝑃
∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 

 
𝑑𝑅𝑏_𝐴𝐾𝐴𝑃

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝑏_𝐴𝐾𝐴𝑃 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏_𝐴𝐾𝐴𝑃 + 𝑘_𝑓_𝑏
∙ 𝑐𝐴𝑀𝑃𝐴𝐾𝐴𝑃 ∙ 𝑅_𝐴𝐾𝐴𝑃 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏_𝐴𝐾𝐴𝑃 − 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅𝑏_𝐴𝐾𝐴𝑃
∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 

 
𝑑𝑅𝑎𝑏_𝐴𝐾𝐴𝑃

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏) ∙ 𝑅𝑎𝑏_𝐴𝐾𝐴𝑃 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝑎_𝐴𝐾𝐴𝑃
+ 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝑏_𝐴𝐾𝐴𝑃 + 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝐴𝐾𝐴𝑃 

 
𝑑𝑅𝐶_𝐴𝐾𝐴𝑃

𝑑𝑡
= −(𝑘_𝑓_𝑎 + 𝑘_𝑓_𝑏) ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝐴𝐾𝐴𝑃

+ 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝑅_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 
 
𝑑𝑅𝑎𝐶_𝐴𝐾𝐴𝑃

𝑑𝑡
= −𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝑎𝐶_𝐴𝐾𝐴𝑃 − 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑓_𝑎
∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑟_𝑏 ∙ 𝑅𝑎𝑏𝐶_𝐴𝐾𝐴𝑃 − 𝑘_𝑑𝑒𝑎𝑐𝑡
∙ 𝑅𝑎_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 

 
𝑑𝑅𝑏𝐶_𝐴𝐾𝐴𝑃

𝑑𝑡
= −𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝑏𝐶_𝐴𝐾𝐴𝑃 − 𝑘_𝑟_𝑏 ∙ 𝑅𝑏𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑓_𝑏
∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑟_𝑎 ∙ 𝑅𝑎𝑏𝐶_𝐴𝐾𝐴𝑃 − 𝑘_𝑑𝑒𝑎𝑐𝑡
∙ 𝑅𝑏_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 

 
𝑑𝑅𝑎𝑏𝐶_𝐴𝐾𝐴𝑃

𝑑𝑡
= −(𝑘_𝑟_𝑎 + 𝑘_𝑟_𝑏 + 𝑘_𝑎𝑐𝑡) ∙ 𝑅𝑎𝑏𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑓_𝑏 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃
∙ 𝑅𝑎𝐶_𝐴𝐾𝐴𝑃 + 𝑘_𝑓_𝑎 ∙ 𝑐𝐴𝑀𝑃_𝐴𝐾𝐴𝑃 ∙ 𝑅𝑏𝐶_𝐴𝐾𝐴𝑃 

 
𝑑𝐶_𝐴𝐾𝐴𝑃

𝑑𝑡
= −𝑘_𝑑𝑒𝑎𝑐𝑡 ∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ 𝐶_𝐴𝐾𝐴𝑃 ∙ (𝑅_𝐴𝐾𝐴𝑃 + 𝑅𝑎_𝐴𝐾𝐴𝑃 + 𝑅𝑏_𝐴𝐾𝐴𝑃)

+ 𝑘_𝑎𝑐𝑡 ∙ 𝑅𝑎𝑏𝐶_𝐴𝐾𝐴𝑃 −
𝐷_𝑃𝐾𝐴_𝑛𝑢𝑐_𝐴𝐾𝐴𝑃

𝑉_𝐴𝐾𝐴𝑃
∙ (𝐶_𝐴𝐾𝐴𝑃 − 𝐶_𝑛𝑢𝑐) 
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Cardiac PKA Compartmentation 
Model 
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β-Adrenergic Receptor / Gsα 
Parameter Description Value Units Source 
ISO isoproterenol concentration (when used) 1 µM - 
b1ARtot total β1-adrenergic receptors 0.0132 µM 5-6 
Gstot total Gs protein 3.83 µM 5 
kf_LR β1-AR binding to ligand 1 1/[µM ms] 5-6 
kr_LR β1-AR binding to ligand 0.285 1/ms 5-6 
kf_LRG ligand bound β1-AR associating with G-protein 1 1/[µM ms] 5-6 
kr_LRG ligand bound β1-AR associating with G-protein 0.062 1/ms 5-6 
kf_RG unbound β1-AR associating with G-protein 1 1/[µM ms] 5-6 
kr_RG unbound β1-AR associating with G-protein 33.0 1/ms 5-6 
k_G_act Gs-alpha activation 16.0e-3 1/ms 5-6 
k_G_hyd Gs-alpha hydrolysis 0.8e-6 1/ms 5-6 
k_G_reassoc Gs-alpha reassociation 1.21 1/[µM ms] 5-6 
kf_bark β1-AR desensitization by β-arrestin 1.1e-6 1/ms 5-6 
kr_bark β1-AR resensitization 2.2e-6 1/ms 5-6 
kf_pka β1-AR desensitization by PKA 3.6e-6 1/[µM ms] 5-6 
kr_pka β1-AR resensitization 2.2e-6 1/ms 6 

 
𝑏1𝐴𝑅𝑎𝑐𝑡 = 𝑏1𝐴𝑅𝑡𝑜𝑡 − 𝑏1𝐴𝑅_𝑆464 − 𝑏1𝐴𝑅_𝑆301 

 
𝑏1𝐴𝑅 = 𝑏1𝐴𝑅𝑎𝑐𝑡 − 𝐿𝑅 − 𝐿𝑅𝐺 − 𝑅𝐺 

 
𝐺𝑠 = 𝐺𝑠𝑡𝑜𝑡 − 𝐿𝑅𝐺 − 𝑅𝐺 − 𝐺𝑠𝑏𝑦 

 
𝑑𝐿𝑅
𝑑𝑡

= 𝑘𝑓_𝐿𝑅 ∙ 𝐼𝑆𝑂 ∙ 𝑏1𝐴𝑅 − 𝑘𝑟_𝐿𝑅 ∙ 𝐿𝑅 
 

𝑑𝐿𝑅𝐺
𝑑𝑡

= 𝑘𝑓_𝐿𝑅𝐺 ∙ 𝐿𝑅 ∙ 𝐺𝑠 − 𝑘𝑟_𝐿𝑅𝐺 ∙ 𝐿𝑅𝐺 − 𝑘_𝐺_𝑎𝑐𝑡 ∙ 𝐿𝑅𝐺 
 

𝑑𝑅𝐺
𝑑𝑡

= 𝑘𝑓_𝑅𝐺 ∙ 𝑏1𝐴𝑅 ∙ 𝐺𝑠 − 𝑘𝑟_𝑅𝐺 ∙ 𝐺𝑠 − 𝑘_𝐺_𝑎𝑐𝑡 ∙ 𝑅𝐺 
 

𝑑𝑏1𝐴𝑅_𝑆464
𝑑𝑡

= 𝑘𝑓_𝑏𝐴𝑅𝐾 ∙ (𝐿𝑅 + 𝐿𝑅𝐺) − 𝑘𝑟_𝑏𝐴𝑅𝐾 ∙ 𝑏1𝐴𝑅_𝑆464 
 

𝑑𝑏1𝐴𝑅_𝑆301
𝑑𝑡

= 𝑘𝑓_𝑃𝐾𝐴 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑏1𝐴𝑅𝑎𝑐𝑡 − 𝑘𝑟_𝑃𝐾𝐴 ∙ 𝑏1𝐴𝑅_𝑆301 
 

𝑑𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡
𝑑𝑡

= 𝑘_𝐺_𝑎𝑐𝑡 ∙ (𝑅𝐺 + 𝐿𝑅𝐺) − 𝑘_𝐺_ℎ𝑦𝑑 ∙ 𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡 
 

𝑑𝐺𝑠𝑎𝐺𝐷𝑃
𝑑𝑡

= 𝑘_𝐺_ℎ𝑦𝑑 ∙ 𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡 − 𝑘_𝐺_𝑟𝑒𝑎𝑠𝑠𝑜𝑐 ∙ 𝐺𝑠𝑎𝐺𝐷𝑃 ∙ 𝐺𝑠𝑏𝑦 
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𝑑𝐺𝑠𝑏𝑦
𝑑𝑡

= 𝑘_𝐺_𝑎𝑐𝑡 ∙ (𝑅𝐺 + 𝐿𝑅𝐺) − 𝑘_𝐺_𝑟𝑒𝑎𝑠𝑠𝑜𝑐 ∙ 𝐺𝑠𝑎𝐺𝐷𝑃 ∙ 𝐺𝑠𝑏𝑦 
 
cAMP 
Parameter Description Value Units Source 
ACtot total adenylyl cyclase 49.7e-3 µM 5-6 
ATP total ATP 5.0e3 µM 5-6 
PDEtot total phosphodiesterases 22.85e-3 µM 5 
IBMX isobutylmethylxanthine concentration 0.0 µM 6 
FSK forskolin concentration 0.0 µM 6 
k_AC_basal basal AC activity 0.2e-3 1/ms 5-6 
Km_AC_basal basal AC affinity for ATP 1.03e3 µM 5-6 
k_AC_Gsa AC activity with Gs-alpha activation 8.5e-3 1/ms 6 
Km_AC_Gsa AC:Gs-alpha affinity for ATP 315.0 µM 5-6 
kf_AC_Gsa AC activation by Gs-alpha 1 1/[µM  ms] 6 
kr_AC_Gsa AC activation by Gs-alpha 0.4 1/ms 6 
k_AC_FSK AC activation by forskolin 7.3e-3 1/ms 6 
Km_AC_FSK AC:FSK affinity for ATP 860.0 µM 6 
kf_AC_FSK AC activation by forskolin 1 1/[µM  ms] 6 
kr_AC_FSK AC activation by forskolin 44 1/ms 6 
k_cAMP_PDE cAMP degradation by PDEs 5.0e-3 1/ms 6 
k_cAMP_PDEp cAMP degradation by phosphorylated PDEs 10.0e-3 1/ms 260 
Km_PDE_cAMP PDE affinity for cAMP 1.3 µM 5-6 
Kd_PDE_IBMX PDE inhibition by IBMX 30.0 µM 5-6 
k_PKA_PDE PDE phosphorylation by PKA 7.5e-3 1/ms 260 
k_PP_PDE PDE inhibition by IBMX 1.5e-3 1/ms 260 

 
𝑐𝐴𝑀𝑃 = 𝑐𝐴𝑀𝑃𝑡𝑜𝑡 − (𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 + 2 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 + 2 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼)

− (𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 + 2 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 + 2 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼) 
 

𝐴𝐶 = 𝐴𝐶𝑡𝑜𝑡 − 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 
 

𝐺𝑠𝑎𝐺𝑇𝑃 = 𝐺𝑠𝑎𝐺𝑇𝑃𝑡𝑜𝑡 − 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 
 

𝑑𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃
𝑑𝑡

= 𝑘𝑓_𝐴𝐶_𝐺𝑠𝑎 ∙ 𝐺𝑠𝑎𝐺𝑇𝑃 ∙ 𝐴𝐶 − 𝑘𝑟_𝐴𝐶_𝐺𝑠𝑎 ∙ 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 
 

𝐴𝐶_𝐹𝑆𝐾 =
𝐹𝑆𝐾 ∙ 𝐴𝐶

𝐾𝑑_𝐴𝐶_𝐹𝑆𝐾
 

 

𝑃𝐷𝐸_𝐼𝐵𝑀𝑋 =
𝑃𝐷𝐸𝑡𝑜𝑡 ∙ 𝐼𝐵𝑀𝑋
𝐾𝑑_𝑃𝐷𝐸_𝐼𝐵𝑀𝑋
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𝑃𝐷𝐸 = 𝑃𝐷𝐸𝑡𝑜𝑡 − 𝑃𝐷𝐸_𝐼𝐵𝑀𝑋 − 𝑃𝐷𝐸𝑝 
 

𝑑𝑃𝐷𝐸𝑝
𝑑𝑡

= 𝑘_𝑃𝐾𝐴_𝑃𝐷𝐸 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑃𝐷𝐸 − 𝑘_𝑃𝑃_𝑃𝐷𝐸 ∙ 𝑃𝐷𝐸𝑝 
 

𝑃𝐷𝐸𝐴𝐶𝑇 =
𝑘_𝑐𝐴𝑀𝑃_𝑃𝐷𝐸 ∙ 𝑃𝐷𝐸 ∙ 𝑐𝐴𝑀𝑃
𝐾𝑚_𝑃𝐷𝐸_𝑐𝐴𝑀𝑃 + 𝑐𝐴𝑀𝑃

+
𝑘_𝑐𝐴𝑀𝑃_𝑃𝐷𝐸𝑝 ∙ 𝑃𝐷𝐸𝑝 ∙ 𝑐𝐴𝑀𝑃
𝐾𝑚_𝑃𝐷𝐸_𝑐𝐴𝑀𝑃 + 𝑐𝐴𝑀𝑃

 

 
𝑑𝑐𝐴𝑀𝑃𝑡𝑜𝑡

𝑑𝑡
=
𝑘_𝐴𝐶_𝑏𝑎𝑠𝑎𝑙 ∙ 𝐴𝐶 ∙ 𝐴𝑇𝑃
𝐾𝑚_𝐴𝐶_𝑏𝑎𝑠𝑎𝑙 + 𝐴𝑇𝑃

+
𝑘_𝐴𝐶_𝐺𝑠𝑎 ∙ 𝐴𝐶_𝐺𝑠𝑎𝐺𝑇𝑃 ∙ 𝐴𝑇𝑃

𝐾𝑚_𝐴𝐶_𝐺𝑠𝑎 + 𝐴𝑇𝑃

+
𝑘_𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝐶_𝐹𝑆𝐾 ∙ 𝐴𝑇𝑃

𝐾𝑚_𝐴𝐶_𝐹𝑆𝐾 + 𝐴𝑇𝑃
−
𝑘_𝑐𝐴𝑀𝑃_𝑃𝐷𝐸 ∙ 𝑃𝐷𝐸 ∙ 𝑐𝐴𝑀𝑃
𝐾𝑚_𝑃𝐷𝐸_𝑐𝐴𝑀𝑃 + 𝑐𝐴𝑀𝑃

−
𝑘_𝑐𝐴𝑀𝑃_𝑃𝐷𝐸𝑝 ∙ 𝑃𝐷𝐸𝑝 ∙ 𝑐𝐴𝑀𝑃
𝐾𝑚_𝑃𝐷𝐸_𝑐𝐴𝑀𝑃 + 𝑐𝐴𝑀𝑃

 

 
PKA / PKI Transport 
Parameter Description Value Units Source 
VnucF nuclear fractional volume 0.02 - 175 
DPKIcn PKI cytosol to nucleus diffusion rate 19.8e-6 1/ms - 
DPKACIIcn PKA cytosol to nucleus diffusion rate 1.190476e-7 1/ms - 
DPKACII_PKInc PKA-PKI active transport rate 3.2e-6 1/ms - 
PKIbias PKI nuclear expression bias 50 - - 

 
𝑃𝐾𝐼 = 𝑃𝐾𝐼𝑡𝑜𝑡 − 𝑃𝐾𝐴𝐶𝐼_𝑃𝐾𝐼 − 𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 − 𝑛𝑃𝐾𝐼 ∙ 𝑉𝑛𝑢𝑐𝐹 − 𝑛𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼

∙ 𝑉𝑛𝑢𝑐𝐹 
 

𝐽𝑃𝐾𝐴𝐶𝐼𝐼𝑐𝑛 = 𝐷𝑃𝐾𝐴𝐶𝐼𝐼𝑐𝑛 ∙ (𝑃𝐾𝐴𝐶𝐼𝐼 − 𝑛𝑃𝐾𝐴𝐶𝐼𝐼) 
 

𝐽𝑃𝐾𝐼𝑐𝑛 = 𝐷𝑃𝐾𝐼𝑐𝑛 ∙ �𝑃𝐾𝐼 −
𝑛𝑃𝐾𝐼

𝑃𝐾𝐼𝑏𝑖𝑎𝑠�
 

 
𝐽𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼𝑐𝑛 = −𝐷𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼𝑛𝑐 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 ∙ 𝑉𝑛𝑢𝑐𝐹 
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PKA 
Parameter Description Value Units Source 
PKAItot total type 1 protein kinase A 0.59 µM 5 
PKAIItot total type 2 protein kinase A 0.059 µM adapted 
PKItot total protein kinase inhibitor 0.18 µM 5-6 
kf_RC_cAMP cAMP association with PKA 1 1/[ µM ms] 5-6 
kr_RC_cAMP cAMP association with PKA 1.64 1/ms 5-6 
kf_RCcAMP_cAMP cAMP association with PKA 1 1/[ µM ms] 5-6 
kr_RCcAMP_cAMP cAMP association with PKA 9.14 1/ms 5-6 
kf_RcAMPcAMP_C catalytic subunit dissociation 4.375 1/[ µM ms] 5-6 
kr_RcAMPcAMP_C catalytic subunit dissociation 1 1/ms 5-6 
kf_PKA_PKI PKA inhibition by PKI 1 1/[ µM ms] 5-6 
kr_PKA_PKI PKA inhibition by PKI 0.2e-3 1/ms 5-6 

 
𝑑𝑅𝐶_𝐼
𝑑𝑡

= −𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 
 

𝑑𝑅𝐶𝑐𝐴𝑀𝑃_𝐼
𝑑𝑡

= −𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 + 𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼 ∙ 𝑐𝐴𝑀𝑃
− 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 

 
𝑑𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 + 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑐𝐴𝑀𝑃 − 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼
+ 𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 

 
𝑑𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼
+ 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 

 
𝑑𝑃𝐾𝐴𝐶𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 + 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶

∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼 − 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐾𝐼 + 𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼
∙ 𝑃𝐾𝐴𝐶𝐼_𝑃𝐾𝐼 

 
𝑑𝑃𝐾𝐴_𝐶𝐼_𝑃𝐾𝐼

𝑑𝑡
= −𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼_𝑃𝐾𝐼 + 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐾𝐼 

 
𝑑𝑅𝐶_𝐼𝐼
𝑑𝑡

= −𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 
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𝑑𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼
𝑑𝑡

= −𝑘𝑟_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 + 𝑘𝑓_𝑅𝐶_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃
− 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃 + 𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 

 
𝑑𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 + 𝑘𝑓_𝑅𝐶𝑐𝐴𝑀𝑃_𝑐𝐴𝑀𝑃
∙ 𝑅𝐶𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑐𝐴𝑀𝑃 − 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼
+ 𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 

 
𝑑𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼
+ 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 

 
𝑑𝑃𝐾𝐴𝐶𝐼𝐼

𝑑𝑡
= −𝑘𝑟_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶 ∙ 𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 + 𝑘𝑓_𝑅𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐶

∙ 𝑅𝐶𝑐𝐴𝑀𝑃𝑐𝐴𝑀𝑃_𝐼𝐼 − 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑃𝐾𝐼 + 𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼
∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 − 𝐽𝑃𝐾𝐴𝐶𝐼𝐼𝑐𝑛 

 
𝑑𝑃𝐾𝐴_𝐶𝐼𝐼_𝑃𝐾𝐼

𝑑𝑡
= −𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 + 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑃𝐾𝐼
− 𝐽𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼𝑐𝑛 

 
𝑑𝑛𝑃𝐾𝐼
𝑑𝑡

= 𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 − 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑛𝑃𝐾𝐼 +
𝐽𝑃𝐾𝐼𝑐𝑛
𝑉𝑛𝑢𝑐𝐹

 
 

𝑑𝑛𝑃𝐾𝐴𝐶𝐼𝐼
𝑑𝑡

= 𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 − 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑛𝑃𝐾𝐼

+
𝐽𝑃𝐾𝐴𝐶𝐼𝐼𝑐𝑛
𝑉𝑛𝑢𝑐𝐹

 
 

𝑑𝑛𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼
𝑑𝑡

= −𝑘𝑟_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼 + 𝑘𝑓_𝑃𝐾𝐴_𝑃𝐾𝐼 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝑛𝑃𝐾𝐼

+
𝐽𝑃𝐾𝐴𝐶𝐼𝐼_𝑃𝐾𝐼𝑐𝑛

𝑉𝑛𝑢𝑐𝐹
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I-1/PP1 
Parameter Description Value Units Source 
PP1tot total phosphatase 1 0.89 µM 5-6 
I1tot total inhibitor 1 0.3 µM 5-6 
k_PKA_I1 PKA phosphorylation of inhibitor 1 60e-3 1/ms 5-6 
Km_PKA_I1 PKA phosphorylation of inhibitor 1 1.0 µM 5-6 
Vmax_PP2A_I1 PP2A dephosphorylation of phospholamban 14.0e-3 µM/ms 5-6 
Km_PP2A_I1 PP2A dephosphorylation of phospholamban 1.0 µM 5-6 
kf_PP1_I1 PP1 inhibition by inhibitor 1 1.0 1/[µM ms] 5-6 
kr_PP1_I1 PP1 inhibition by inhibitor 1 1.0e-3 1/ms 5-6 

 
𝐼1 = 𝐼1𝑡𝑜𝑡 − 𝐼1𝑝𝑡𝑜𝑡 

 
𝑃𝑃1 = 𝑃𝑃1𝑡𝑜𝑡 − 𝐼1𝑝_𝑃𝑃1 

 
𝐼1𝑝 = 𝐼1𝑝𝑡𝑜𝑡 − 𝐼1𝑝_𝑃𝑃1 

 
𝑑𝐼1𝑝_𝑃𝑃1

𝑑𝑡
= 𝑘𝑓_𝑃𝑃1_𝐼1 ∙ 𝑃𝑃1 ∙ 𝐼1𝑝 − 𝑘𝑟_𝑃𝑃1_𝐼1 ∙ 𝐼1𝑝_𝑃𝑃1 

 
𝑑𝐼1𝑝𝑡𝑜𝑡
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝐼1 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝐼1
𝐾𝑚_𝑃𝐾𝐴_𝐼1 + 𝐼1

−
𝑉𝑚𝑎𝑥_𝑃𝑃2𝐴_𝐼1 ∙ 𝐼1𝑝𝑡𝑜𝑡
𝐾𝑚_𝑃𝑃2𝐴_𝐼1 + 𝐼1𝑝𝑡𝑜𝑡

 

 
LCC 
Parameter Description Value Units Source 
LCCtot total L-type Ca channel 0.025 µM 5-6 
PKACII_LCCtot total PKA local to L-type Ca channel 0.025 µM 5-6 
PP1_LCC total PP1 local to L-type Ca channel 0.025 µM 5-6 
PP2A_LCC total PP2A local to L-type Ca channel 0.025 µM 5-6 
epsilon AKAP-mediated scaling factor 10 - 5-6 
k_PKA_LCC PKA phosphorylation of LCC 54e-3 1/ms 5-6 
Km_PKA_LCC PKA phosphorylation of LCC 21 µM 5-6 
k_PP1_LCC PP1 dephosphorylation of LCC 8.52e-3 1/ms 5-6 
Km_PP1_LCC PP1 dephosphorylation of LCC 3 µM 5-6 
k_PP2A_LCC PP2A dephosphorylation of LCC 10.1e-3 1/ms 5-6 
Km_PP2A_LCC PP2A dephosphorylation of LCC 3 µM 5-6 

 

𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶 =
𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶𝑡𝑜𝑡

𝑃𝐾𝐴𝐼𝐼𝑡𝑜𝑡
∙ 𝑃𝐾𝐴𝐶𝐼𝐼 

 
𝐿𝐶𝐶𝑎 = 𝐿𝐶𝐶𝑡𝑜𝑡 − 𝐿𝐶𝐶𝑎𝑝 
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𝑑𝐿𝐶𝐶𝑎𝑝
𝑑𝑡

=
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝐾𝐴_𝐿𝐶𝐶 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑎

𝐾𝑚_𝑃𝐾𝐴_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑎

−
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝑃2𝐴_𝐿𝐶𝐶 ∙ 𝑃𝑃2𝐴_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑎𝑝

𝐾𝑚_𝑃𝑃2𝐴_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑎𝑝
 

 
𝐿𝐶𝐶𝑏 = 𝐿𝐶𝐶𝑡𝑜𝑡 − 𝐿𝐶𝐶𝑏𝑝 

 
𝑑𝐿𝐶𝐶𝑏𝑝
𝑑𝑡

=
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝐾𝐴_𝐿𝐶𝐶 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑏

𝐾𝑚_𝑃𝐾𝐴_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑏

−
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝑘_𝑃𝑃1_𝐿𝐶𝐶 ∙ 𝑃𝑃1_𝐿𝐶𝐶 ∙ 𝐿𝐶𝐶𝑏𝑝

𝐾𝑚_𝑃𝑃1_𝐿𝐶𝐶 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∙ 𝐿𝐶𝐶𝑏𝑝
 

 
PLB 
Parameter Description Value Units Source 
PLBtot total phospholamban 106 µM 6 
k_PKA_PLB PKA phosphorylation of phospholamban 54e-3 1/ms 5-6 
Km_PKA_PLB PKA phosphorylation of phospholamban 21 µM 5-6 
k_PP1_PLB PP1 dephosphorylation of phospholamban 8.5e-3 1/ms 5-6 
Km_PP1_PLB PP1 dephosphorylation of phospholamban 7.0 µM 5-6 

 
𝑃𝐿𝐵 = 𝑃𝐿𝐵𝑡𝑜𝑡 − 𝑃𝐿𝐵𝑝 

 
𝑑𝑃𝐿𝐵𝑝
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝑃𝐿𝐵 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐿𝐵
𝐾𝑚_𝑃𝐾𝐴_𝑃𝐿𝐵 + 𝑃𝐿𝐵

−
𝑘_𝑃𝑃1_𝑃𝐿𝐵 ∙ 𝑃𝑃1 ∙ 𝑃𝐿𝐵𝑝
𝐾𝑚_𝑃𝑃1_𝑃𝐿𝐵 + 𝑃𝐿𝐵𝑝

 

 
PLM 
Parameter Description Value Units Source 
PLMtot total phospholemman 48 µM 289 
k_PKA_PLM PKA phosphorylation of phospholemman 54e-3 1/ms 289 
Km_PKA_PLM PKA phosphorylation of phospholemman 21 µM 289 
k_PP1_PLM PP1 dephosphorylation of phospholemman 8.5e-3 1/ms 289 
Km_PP1_PLM PP1 dephosphorylation of phospholemman 7.0 µM 289 

 
𝑃𝐿𝑀 = 𝑃𝐿𝑀𝑡𝑜𝑡 − 𝑃𝐿𝑀𝑝 

 
𝑑𝑃𝐿𝑀𝑝
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝑃𝐿𝑀 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑃𝐿𝑀
𝐾𝑚_𝑃𝐾𝐴_𝑃𝐿𝑀 + 𝑃𝐿𝑀

−
𝑘_𝑃𝑃1_𝑃𝐿𝑀 ∙ 𝑃𝑃1 ∙ 𝑃𝐿𝑀𝑝
𝐾𝑚_𝑃𝑃1_𝑃𝐿𝑀 + 𝑃𝐿𝑀𝑝
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TnI 
Parameter Description Value Units Source 
TnItot total troponin I 70 µM 6 
PP2A_TnI total PP2A local to troponin I 0.67 µM 6 
k_PKA_TnI PKA phosphorylation of troponin I 54e-3 1/ms 6 
Km_PKA_TnI PKA phosphorylation of troponin I 21 µM 6 
k_PP2A_TnI PP2A dephosphorylation of troponin I 10.1e-3 1/ms 6 
Km_PP2A_TnI PP2A dephosphorylation of troponin I 4.1 µM 6 

 
𝑇𝑛𝐼 = 𝑇𝑛𝐼𝑡𝑜𝑡 − 𝑇𝑛𝐼𝑝 

 
𝑑𝑇𝑛𝐼𝑝
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝑇𝑛𝐼 ∙ 𝑃𝐾𝐴𝐶𝐼 ∙ 𝑇𝑛𝐼
𝐾𝑚_𝑃𝐾𝐴_𝑇𝑛𝐼 + 𝑇𝑛𝐼

−
𝑘_𝑃𝑃2𝐴_𝑇𝑛𝐼 ∙ 𝑃𝑃2𝐴_𝑇𝑛𝐼 ∙ 𝑇𝑛𝐼𝑝

𝐾𝑚_𝑃𝑃2𝐴_𝑇𝑛𝐼 + 𝑇𝑛𝐼𝑝
 

 
CREB 
Parameter Description Value Units Source 
CREBtot total CREB 0.9 µM adapted 
PP2A_CREB total PP2A local to CREB 0.12 µM adapted 
k_PKA_CREB PKA phosphorylation of CREB 54e-3 1/ms 5-6 
Km_PKA_CREB PKA phosphorylation of CREB 10 µM adapted 
k_PP2A_CREB PP2A dephosphorylation of CREB 8.5e-3 1/ms 5-6 
Km_PP2A_CREB PP2A dephosphorylation of CREB 2.46 µM adapted 

 
𝐶𝑅𝐸𝐵 = 𝐶𝑅𝐸𝐵𝑡𝑜𝑡 − 𝐶𝑅𝐸𝐵𝑝 

 
𝑑𝐶𝑅𝐸𝐵𝑝

𝑑𝑡
=
𝑘_𝑃𝐾𝐴_𝐶𝑅𝐸𝐵 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝐶𝑅𝐸𝐵

𝐾𝑚_𝑃𝐾𝐴_𝐶𝑅𝐸𝐵 + 𝐶𝑅𝐸𝐵
−
𝑘_𝑃𝑃2𝐴_𝐶𝑅𝐸𝐵 ∙ 𝑃𝑃2𝐴 ∙ 𝐶𝑅𝐸𝐵𝑝
𝐾𝑚_𝑃𝑃2𝐴_𝐶𝑅𝐸𝐵 + 𝐶𝑅𝐸𝐵𝑝

 

 
AKAR FRET Reporters 
Parameter Description Value Units Source 
AKARnestot total AKAR-NES 1.25 µM 301 
PP2A_AKARnes total PP2A local to AKAR-NES 0.5 µM 284 
k_PKA_AKARnes PKA phosphorylation of AKAR-NES 152e-3 1/ms 284 
Km_PKA_AKARnes PKA phosphorylation of AKAR-NES 16 µM 284 
k_PP2A_AKARnes PP2A dephosphorylation of AKAR-NES 8.5e-3 1/ms 5-6 
Km_PP2A_AKARnes PP2A dephosphorylation of AKAR-NES 7 µM 5-6 
AKARnlstot total AKAR-NLS 3.48 µM 301 
PP2A_AKARnls total PP2A local to AKAR-NLS 0.5 µM 284 
k_PKA_AKARnls PKA phosphorylation of AKAR-NLS 152e-3 1/ms 284 
Km_PKA_AKARnls PKA phosphorylation of AKAR-NLS 16 µM 284 
k_PP2A_AKARnls PP2A dephosphorylation of AKAR-NLS 8.5e-3 1/ms 5-6 
Km_PP2A_AKARnls PP2A dephosphorylation of AKAR-NLS 7 µM 5-6 
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𝐴𝐾𝐴𝑅𝑛𝑒𝑠 = 𝐴𝐾𝐴𝑅𝑛𝑒𝑠𝑡𝑜𝑡 − 𝐴𝐾𝐴𝑅𝑛𝑒𝑠𝑝 
 

𝑑𝐴𝐾𝐴𝑅𝑛𝑒𝑠𝑝
𝑑𝑡

=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅𝑛𝑒𝑠 ∙ 𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝐴𝐾𝐴𝑅𝑛𝑒𝑠

𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅𝑛𝑒𝑠 + 𝐴𝐾𝐴𝑅𝑛𝑒𝑠
−
𝑘_𝑃𝑃2𝐴_𝐴𝐾𝐴𝑅𝑛𝑒𝑠 ∙ 𝑃𝑃2𝐴 ∙ 𝐴𝐾𝐴𝑅𝑛𝑒𝑠𝑝
𝐾𝑚_𝑃𝑃2𝐴_𝐴𝐾𝐴𝑅𝑛𝑒𝑠 + 𝐴𝐾𝐴𝑅𝑛𝑒𝑠𝑝

 

 
𝐴𝐾𝐴𝑅𝑛𝑙𝑠 = 𝐴𝐾𝐴𝑅𝑛𝑙𝑠𝑡𝑜𝑡 − 𝐴𝐾𝐴𝑅𝑛𝑙𝑠𝑝 

 
𝑑𝐴𝐾𝐴𝑅𝑛𝑙𝑠𝑝

𝑑𝑡
=
𝑘_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅𝑛𝑙𝑠 ∙ 𝑛𝑃𝐾𝐴𝐶𝐼𝐼 ∙ 𝐴𝐾𝐴𝑅𝑛𝑙𝑠

𝐾𝑚_𝑃𝐾𝐴_𝐴𝐾𝐴𝑅𝑛𝑙𝑠 + 𝐴𝐾𝐴𝑅𝑛𝑙𝑠
−
𝑘_𝑃𝑃2𝐴_𝐴𝐾𝐴𝑅𝑛𝑙𝑠 ∙ 𝑃𝑃2𝐴 ∙ 𝐴𝐾𝐴𝑅𝑛𝑙𝑠𝑝
𝐾𝑚_𝑃𝑃2𝐴_𝐴𝐾𝐴𝑅𝑛𝑙𝑠 + 𝐴𝐾𝐴𝑅𝑛𝑙𝑠𝑝
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