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Executive Summary

Careful construction of properly scoped agent-based models can offer meaningful

insights about financial markets and lead to improved decision aides for financial

regulators and other stakeholders. However, it is of critical importance to back these

models with sound empirical analysis and careful consideration of market institu-

tions. Analysis of financial data is increasingly difficult due to the sheer volume of

data, but also due to complex market structures. Open out-cry markets have been

replaced with electronic distributed-access systems, and trading strategies are highly

automated, no longer subject to human response times. This dissertation presents a

new agent-based model for analyzing fragmented markets, and provides an empirical

analysis that demonstrates the sea change in financial markets.

In the first part of this dissertation, we survey the literature on constructing agent-

based models of financial markets. The survey provides a comprehensive review of a

number of topics regarding the design, implementation and analysis of agent-based

financial markets. The survey also contributes to the discussion of the methodological

distinction between several classes of models that are commonly referred to as agent-

based models.

Next, we introduce a model designed to analyze strategic behavior in a multi-

market setting. In our model, the prevalence of order routing is an experimental

variable. The model allows us to study the causal relationship between certain types

of strategic behavior and the statistical properties of a multi-market system. The

unique approach to the specification of strategic behavior in a multi-market system

is a methodological contribution to the literature on agent-based financial markets.
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Finally, we provide an empirical analysis of the fragmented market for a sample

of Nordic equities. The institutional setting is ideal in that the platforms are identi-

cal and centrally located, but securities trade in different currencies, which provides

enough of an economic friction for us to observe the evolution of market inefficiencies

as market structure changes throughout the sample period. Correlations, arbitrage

opportunities and trade throughs are analyzed. We document the drastic transfor-

mation in markets with respect to the speed of exchanges and the response times

of market participants. The analysis highlights the need for models that explicitly

account for the mechanics and structure of markets.

In summary, this dissertation contributes to the literature on agent-based mod-

eling, multi-market systems and and market efficiency with a new model of multi-

market trading and an empirical analysis of a fragmented market for equities.
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Chapter 1

Introduction

NASDAQ introduced the first electronic market in 1971. At that time, market

participants in over 400 cities could receive quotes in “5 or 6 seconds,” and the system

handled “more than a million messages” on a busy, high volume day [1]. NASDAQ’s

new computerized market was a resounding success prompting one author to worry

that the “high level of automation” might cause operators to become “extremely

bored” and unable to support the complex system that they created, and that was

in 1972 [2]! But, it was not until around 1998, after the passage of Regulation

ATS (Alternative Trading Systems), that electronic trading really began to take off

[3]. The introduction new electronic trading networks led to an increase in financial

market fragmentation. Not much later, in 2001, came the decimalization of U.S.

equities and Reg National Market System, both of which put pressure on exchanges

and participants to develop more sophisticated electronic platforms [4].

Needless to say, computerization and automation of the financial systems con-
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tinues. The reduction in computing costs (illustrated in Figure 1.1) has led to the

increased adoption of computing throughout every aspect of the business [5]. Traders

have all but abandoned open outcry markets for fully automated systems. Nearly

every aspect of market structure, including access, anonymity, products, protocols,

and transparency are affected by the computerization of markets. Simply put, com-

puting allows market participants to do more: offer new products, open new ex-

changes, trade more markets, transact with counter-parties around the world, and,

ultimately, do more business. The cost of storing data has also decreased affording

traders, exchanges, governments and other market participants the opportunity to

record details the of their activity. All of the above reminds us that the financial

market is a complex system, and with a paper trail!
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Figure 1.1: Cost of computation. Cost of a million computations in 2006 USD as

calculated by William Nordhaus (2001).

Traders already take advantage of the data recorded about the economy by build-

ing models to evaluate the risk and reward of individual trades, but efforts at the

same level of sophistication by regulators to understand the economy as a whole

are largely absent [6]. Economists have long viewed markets and the economy as a

complex system, but models from that perspective capable of informing policy de-

cisions are still a work in progress. Farmer (2009) strongly advocates for a holistic

approach to the agent-based modeling of economy, but concedes that it is an “am-

bitious” project [6]. Cliff and Northrop (2012) also advocate for agent-based models
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of financial markets, but point out that such an undertaking is a “major endeavor

. . . requiring national-scale levels of investment” [7]. Levin and Lo (2015) even argue

that the economy has “crossed a threshold of complexity where the system is evolv-

ing faster than regulators and regulations can keep pace” [8]. Where does this leave

aspiring modelers?

Agent-based modeling of the economy is a daunting prospect, but properly scoped,

empirically validated, theoretically sound agent-based models that respect the real

institutions of markets already contribute to understanding of financial markets. In

the remainder of this introduction, we highlight a number of existing models to

provide context for the work presented in this dissertation.

Complexity Economics and the Santa Fe Model

The fundamental motivation for agent-based modeling of economies and financial

markets is complexity economics, which recognizes that the economy or the market

is not in equilibrium, but rather in a constant state of flux in which all participants are

constantly reacting to changes in global or high-level patterns that they in aggregate

have created through their their local interactions [9]. The Santa Fe Artificial Stock

Market is an early and important agent-based model that is still under active use

and study. A recent contribution is that of Norman Ehrentreich in which the model

is used to demonstrate that evolutionary mechanisms alone can not guarantee that

only optimal trading rules will survive [10].
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Decimalization

Darley and Outkin (2007) present a model of the NASDAQ market built to explore

the consequences of decimalization [11]. At the time, NASDAQ was facing a mandate

from the SEC to implement the move from one sixteenth of a dollar to $0.01 tick sizes

in the equity markets. Darley and Outkin were commissioned to build a simulation

model to predict unintended consequences. (See Harris (1997) for an outline of the

arguments for and against decimalization as they stood at the time [12].) Darley and

Outkin used their agent-based financial model to make detailed predictions about

price discovery, volume, wealth effects, spreads and trading strategies. We do not

attempt to evaluate the quality of the predictions here, but rather highlight that

the model was successfully applied to the evaluation of an important policy decision

prior to the availability of empirical data.

Mortgage prepayments

Geanakoplos et al. (2012) describe a agent-based model developed to address the

mortgage prepayment problem, and later used to understand the housing crash and

financial crisis of 2008. Correct prediction of prepayments is critical to proper valu-

ation of mortgage-back securities. Conventional approaches use “exogenously spec-

ified functional forms to describe aggregate behavior” whereas the model developed

by Geanakoplos and his associates directly model the heterogenous population of

borrowers and their prepayment decisions [13]. The model, found to be “generally

superior to aggregate modeling,” is another successful example of agent-based mod-

eling applied in the private sector to evaluate financial decisions.
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Market design

The design of the U.S. equity market comes up frequently in debate. Budish, Cramp-

ton and Shim (2015), for example, argue that financial exchanges should use frequent

batch auctions in lieu of operating continuous limit order books [14]. Wah and Well-

man (2013) use a agent-based simulation to evaluate the allocative efficiency of a

fragmented market under two different market designs, the continuous limit order

book and frequent batch auctions [15] The model is an important contribution to

the literature since it demonstrates the value and need to explicitly model the real

mechanics of markets, and is another example of an agent-based model that can

directly contribute to policy discussions.

Flash crashes

The market event of May 6th, 2010, now well known as the Flash Crash, is an

example of how fast automated markets can move. The flash crash may have been

a perfect storm that hit a relatively immature new electronic market structure, but

there are still lessons to be learned. Events like the flash crash are intimately related

to market structure, and can not be explained by fundamental information or the

rational behavior of market participants. Debate about the causes of the flash crash

are ongoing, but it is clear that the event is closely tied to the highly automated

and distributed market environment [16]. Agent-based models provide a powerful

framework for analyzing alternative hypothesis about the flash crash, as well as

better understanding the mechanics of the event. Paddrik et al (2012) explore the

hypothesis of a large order flow imbalance and the reaction of different classes of
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traders [17]. Vuorenmaa and Wang (2014) also explore the mechanics of an order flow

imbalance coupled with automated market making strategies [18]. Leal et al (2016)

study the interaction of low- and high-frequency traders to better understand how

flash crash dynamics [19]. These works demonstrate the power and convenience of

agent-based approaches to understanding the dynamics associated with increasingly

complicated and distributed market structures.

Summary

The above selection of agent-based models illustrate the numerous decision problems

and market dynamics that can be analyzed with agent-based models. With these

models in mind, we embark on a thorough review of the methodology, followed by

presentation of a new agent-based model of a distributed market structure, and

finally, an empirical analysis that highlights the evolution of financial market data

and the need for creative new approaches to analyzing financial markets.
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Chapter 2

Methodology

2.1 Abstract

An agent-based model is a computer simulation driven by the individual decisions

of programmed agents. Such models provide a promising alternative to traditional

economic modeling in that they can fully capture the diversity of agents and the

institutional detail of the underlying an economic system. In this chapter, we provide

a methodological review of the agent-based approach to modeling financial markets.

We review the research strategy, which is organized into a discussion of formulation,

implementation, verification and validation. We conclude the paper with a review of

the domain focusing on modeling market participants and market structure.
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2.2 Introduction

Agent-based modeling provides a powerful framework for modeling a heterogenous

population of economic actors, market mechanisms, and institutions that are often

absent from traditional theoretical models. In this paper, we introduce agent-based

modeling by answering several basic questions about the method. We then provide a

survey of agent-based modeling of financial markets organized around major design

points.

2.2.1 What is agent-based modeling?

We begin this survey with the obvious question: what is agent-based modeling?

Agent-based modeling is a simulation-based methodology that has found applica-

tions in a number of fields including anthropology (Epstein and Axelrod (1996),

ecology (Grimm and Railsback, 2005), economics (Tesfatsion and Judd, 2005), polit-

ical science (Marchi and Page, 2014), and others [20, 21, 22, 23]. Agent-based mod-

eling involves the simulated interaction of a heterogenous population of autonomous

agents. For general introductions to agent-based modeling, see the monographs by

Miller and Page (2007) and Railsback and Grimm (2012), Wilensky and Rand (2015),

and Namatame and Chen (2016) [24, 25, 26, 27].

The specification of an agent-based model includes a set of agents, a topology and

an environment [28]. The agents have individual rules of behavior and internal states.

The topology provides a spatial orientation for the agents where “nearby agents are

more likely to interact and better able to influence each other” [29]. Examples
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include a grid, a network or euclidean space. The environment consists of non-agent

entities that may influence the decisions of agents. Models are typically analyzed

with numerical simulations.

2.2.2 Why agent-based modeling for the study of financial

markets?

Why choose agent-based modeling for the study of financial markets? Bankes (2002),

in a survey of research presented at a colloquium of the National Academy of Sci-

ences, identifies three basic reasons researchers cite for their selection of agent-based

modeling as a methodology [30].

The first reason that Bankes cites is the “unsuitability of competing modeling

formalisms.” Traditional approaches such as differential equations and statistical

modeling lead to restrictive assumptions such as “linearity, homogeneity, normality,

and stationarity.” For example, in economics, the “analytical convenience” of the

representative agent is criticized as being neither “descriptive of actual behavior nor

useful as a normative model” [31, 32]. Computational methods, such as agent-based

simulation, allow such assumptions to be relaxed.

Simulation modeling, however, has not been wholly embraced by the economics

community. According to Lehtinen and Kuorikoski (2007) this is due to the fact that

simulation “does not fit the conception of understanding inherent in mainstream eco-

nomics – economists’ understanding is constituted by analytical derivation from a set

of fundamental economics axioms” [33]. Simulation results may be rejected on the

grounds that the “deductive links between the assumptions and the consequences are
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not transparent” and therefore do not enhance economic understanding, which raises

the question: are agent-based models suitable for developing economic theory? Is

a computational methodology a substitute for the “assumption-theorem-proof” ap-

proach, or is it merely complimentary [34]? Figure 2.1 orients agent-based modeling

within the existing literature on financial markets. The figure is a simplification, and

only provides some basic intuition for the structure of the literature.

The second reason Bankes cites is that the agent-based approach provides a nat-

ural representational formalism. Consider the canonical example of a flock of birds

[35]. Reynolds finds that three simple rules, collision avoidance, velocity matching,

and centering, lead to convincing simulation of flocking. It seems natural to model a

flock by specifying the individual rules of behavior of a single bird, but quite daunt-

ing to come up with an equation of their flight trajectories. Access to modeling

individual behavior directly and explicitly is a strength of agent-based modeling,

especially given the centrality of economic agents in financial markets. The agent-

based approach also allows for explicit specification of market institutions and market

structure.

The final reason is emergence: the materialization of “novel and coherent struc-

tures, patterns and properties during the process of self-organization in complex

systems” [36]. In other words, agent-based models allow us to study how micro-

motives lead to macro-behaviors [37]. Schelling’s pioneering model of segregation is

an early example of emergence in the economics literature. Households situated on a

grid take turns following simple relocation rules according to their preferences. The

procedure continues until each household is satisfied. Figure 2.2 illustrates one of
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Figure 2.1: Diagram of the literature. How does agent-based modeling fit in

with existing economics literature? This figure depicts the relevant literature along

two axes. The vertical axis reflects the level of instiutional detail that is explicitly

included in the model. The horizonal axis represents the solution concept. In the

bottom left of the model, we have neoclassical models, which represent the most

general class of models that have to do with markets. Moving veritically, we add

more and more institutional detal. The models on the left-hand side are solved

analytically, whereas models on the right-hand side are generally solved numerically

through simulation.
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Figure 2.2: Schelling’s model. In Schelling’s model of segregation, households

are distributed on a grid. Despite the majority of households favoring integration,

the resulting neighborhoods are segregated. The figure shows the initial random

distribution of housesholds on the left. The right-hand side shows the outcome,

which is an example of emergence.
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Schelling’s original experiments in which a random distribution of households even-

tually organizes into segregated neighborhoods despite the fact that the majority

of households prefer integration. In the context of financial markets, we might ask

how flash crashes in financial markets arise from a the trading strategies of market

participants in a particular market structure [17]. Bankes points out the difficulties

with identifying emergent phenomena, reminding the reader that most studies “rely

on human observers to declare emergence to have occurred based on graphical com-

puter outputs.” As an aside, it is important that emergent behavior is rigorously

quantified.

In summary, agent-based modeling is a preferred framework for the following

reasons:

1. Unsuitability of competing approaches

2. Natural representational formalism

3. Evolutionary modeling and emergent behavior

2.2.3 What is the research strategy?

The goal of agent-based models is to provide superior understanding of complex sys-

tems and provide explanations of emergent phenomena. The goal of an individual

model is usually the provision of an explanation for phenomena that are not ade-

quately accounted for by existing theories. Below we provide a rough outline of an

agent-based research strategy based on the survey by Hedstrom et al [38].

• Identify phenomena lacking a satisfactory explanation
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• Formulate hypothesis of micro-level mechanisms

• Translate hypotheses into a computational model

• Simulate the model to derive the macro-level results

• Compare the simulations results with empirical data

Stylized facts

The phenomena of interest in the agent-based modeling of financial markets are the

stylized facts. The stylized facts are statistical regularities “common across a wide

range of instruments, markets and time periods” [39]. Pagan (1996) establishes a

number of stylized facts of financial market time-series, and concludes that “statisti-

cal approaches to the modeling of financial series have possibly reached the limits of

their usefulness,” a comment which one might interpret as motivation for a genera-

tive, agent-based approach [40]. Stylized facts range from statistical concepts, such

as the distribution of returns, spread, depth and volume to more abstract notions

such as stock market bubbles and crashes, and leverage effects [41, 42]. As the data

quality and availability improves, we expect the stylized facts of financial markets to

converge to a stable set of broadly observable features. To see what has been accom-

plished in this area, see the work of Chen, Chang and Du (2012), which identifies the

stylized facts that are reproducible by different classes of agent-based models [43].
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Generating hypotheses

The second step is to formulate hypotheses about the relevant “micro-level mecha-

nisms,” and develop a conceptual model. In this stage, we need to identify entities

and state variables and design the agents. The design of agents raises a number of

practical questions: Do the agents observe the environment or learn? Do they make

predictions? How are the agents initialized? Does the population evolve? Are there

stochastic elements of the model? Random shocks, for example, such as a hurricane

or economic depression. In this stage, we specify the model on a conceptual level

and determine an experimental design. It is helpful to follow an established protocol,

such as the OOD protocol to ensure that all aspects of the conceptual model are well

defined [44].

Implementing the model

Next is the translation of the conceptual model into a computational model: an

exercise in software engineering. A number software packages are available for agent-

based simulation, but many simulations are necessarily developed from scratch [45,

46]. Rossiter (2015) outlines three basic requirements of a simulation implementation

[47]:

• automated reproducibility

• cohesive, loosely-coupled design

• testability
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Goodman, Fanelli and Ioannidis (2016) identify “methods reproducibility” as

“the ability to implement, as exactly as possible, the experimental and computa-

tional procedures, with the same data and tools, to obtain the same results” [48].

Automated reproducibility takes this notion a step further and requires automated

recreation of the computing environment, which can be of critical importance since

computer architecture and underlying libraries may affect results.

Cohesive, loosely-coupled design simply refers to the application of software best

practices, for example, the use of design patterns. Good design will lead to “mod-

eling flexibility” — “the ability to model a system whose operating procedures can

have any amount of complexity” (Law 2007, Ch. 3.4.1) [49]. Modeling flexibility

is of critical importance in simulation since we are often comparing alternative sys-

tem designs. In agent-based modeling of financial markets, we may be comparing

alternative market mechanisms and market institutions as well as a variety of agent

specifications.

Testability requires simulations to provide a suite of unit tests or regression tests

that automate the traditional process of verification, which is the essential process of

ensuring that the implementation or coding of the computational model is consistent

with the conceptual model [50]. Verification is not to be conflated with validation,

which refers to examination of the validity of modeling assumptions with respect to

existing theoretical and empirical knowledge.

At the core of simulation models is random number generation. Random number

generation (RGN) is usually available out of the box in most programming languages.

However, being that it is a critical component of that analysis, it is worth taking the
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time to ensure that is of sufficient quality for simulation analysis. Random number

generation provided in some early programming languages is known to be unusable

for monte-carlo style analysis. L’Ecuyer and Simard (2007) provide a comprehensive

review of RGN algorithms and provide a package (TestU01) to evaluate random

number generators [51]. We now review a few common structural components of

agent-based models that that require RNG.

Agent activation

How are the agents activated, i.e., how do they take turns? It is a subtle considera-

tion, but one that may significantly affect outcomes [52]. Radax and Rengs (2010)

survey the literature on activation schemes for agent-based models [53]. Their sur-

vey points out that the topic is somewhat neglected in the agent-based modeling

literature, and they recommend drawing on the cellular automata literature. There

are two basic modes of activation: synchronous and asynchronous. Classical cellular

automata update synchronously [54]. Variations of the update scheme, however, are

found to affect the dynamics [55]. Activation in agent-based modeling is often asyn-

chronous (sequential). A simple choice for activation is to select an agent uniformly

at random. Ultimately, we’d prefer simulation results to be robust across activa-

tion regimes, and it is recommended that such design choices are varied as part of a

sensitivity analysis.
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Agent initialization

Another decision point for agent-based modelers is agent initialization. For example,

how much of a particular resource is an agent endowed with? Where does an agent

start in a spatial sense? Consider again the Schelling model: each location on the

grid is intialized randomly as either a type of household or empty. Aspects of the

topology, such as the lattice on which households exist in Schellings model, are

generated randomly. However, initialization based on empirical distributions can

sometimes prove critical to an analysis.

For example, Gabix et al (2003) highlight the importance of considering the

distribution of the size of market participants in explanations of financial market

fluctuations [56]. Toth et al (2011) and Mastromatteo, Toth, and Bouchaud (2014)

employ similar ideas in agent-based models which account for the size-distribution

of “meta-orders” [57, 58] Large parent orders are often broken up into smaller child

orders, which may be submitted and executed over a a few minutes, several days

or even months. The size distribution of such orders can explain certain statistical

features of the order flow.

Simulation analysis

Simulations are generally classified as finite-horizon simulations or steady-state sim-

ulations. A steady-state simulation, i.e. a non-terminating simulation, may have

steady-state parameters that reach an equilibrium value or periodicity [59]. The

type of simulation governs the method of output analysis. There are well-known

statistical methods for analyzing both finite-horizon and steady state systems [60].
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A finite-horizon model, such as the model of Schelling, requires replications. When

simulating steady-state systems one may decide to proceed with independent repli-

cations or batch observations in a single run [61]. Batching “ameliorates the effects

of initialization bias”, but may produce correlated batch means, where as replication

“yields independent sample means, but may suffer from initialization bias.” Agent-

based modelers should also be wary of typical problems with steady-state simulation

such as initialization bias, i.e. steady-state simulations often require a “warm up”

period. Welch’s method is a practical approach to dealing with the problem of initial

transience [62].

2.3 Modeling financial markets

We now turn to the domain specific details of the agent-based modeling of financial

markets. We consider each component, agents, topology, and environment, from a

financial market perspective.

2.3.1 Agents

An artificial agent in the most general sense is an entity that perceives its environment

through sensors and acts upon the observations through actuators [63]. In the context

of financial markets, agents observe the market process and fundamental information

about the securities being traded and initiate trades based on their observations.

According to LeBaron (2001), an agent’s directive is to “digest the large amounts of

time series information generated during a market simulation, and convert this into
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portfolio decisions” [64]. However, as LeBaron notes, there are many ways to process

that data, and thus many ways to define agents. Furthermore, not every agent is

identically motivated to trade.

According to a taxonomy of traders provided by Harris (2001), there are utilitar-

ian traders, speculators, dealers, and even futile traders [65]. According to Harris,

utilitarian traders include, asset exchangers, hedgers, gamblers and fledglings (among

others). Hedgers trade to manage risk. Asset exchangers convert from one type of

holding to a holding of more immediate value. Gamblers trade for the thrill of it.

Fledglings trade to determine if trading may be profitable. Speculators process infor-

mation to predict future prices. Speculators may trade on fundamental information

about the value of an asset or on technical information related to the trading process,

or even a combination of both. Dealers exist to intermediate markets. Futile traders

are irrational or victimized market participants that do not profit from their activity.

The variety of financial market participants presents a tough modeling challenge.

Traditionally, economics has solved this problem by working with a perfectly rational

representative agent. So, how do designers of artificial markets approach the design of

agents? Let’s assume we abandon the perfectly rational agent and attempt to respect

the heterogeneity of participants and their cognitive and informational limitations. It

is a tall order; why? Holland and Miller (1991) put the challenge this way: “Usually,

there is only one way to be fully rational, but there are many ways to be less rational”

[66]. In other words, when we abandon the rational agent model, we’re met with

a modeling problem with many degrees of freedom. Developing agents based on

evolutionary principles is one particular approach to addressing the problem [67].
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Clearly, agents vary widely with respect to their motivations and how they ob-

serve and learn from their environments, and modeling them is a difficult and open

problem. So, where to start? Consider the extreme case of an agent that does not

observe, does not learn and selects from its space of actions randomly. Here, you

have what is known as a zero-intelligence agent. On the other end of the spec-

trum you have an agent that learns from its observations, makes predictions based

on internal models, and evolves its behavior accordingly, i.e., an agent that relies

on artificial intelligence. While the models on the two extremes of this spectrum

are, broadly speaking, agent-based models, they represent distinct methodological

approaches [68].
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Figure 2.3: Starting in the middle. Illustration of the relationship between tradi-

tional agent-based models and the models of econophysics. A traditional agent-based

model of a financial market starts with a model or models of strategic behavior and

demonstrates the emergence of certain statistical characteristics of prices. The mod-

els of econophysics start with a model of order flow and do not explicitly account for

the strategic origin of those orders.

As Schinckus points out, strictly statistical methods and agent-based methods are

often associated in the literature, but represent very different approaches to modeling

agents. What is the link between these two methodologies? Let us first consider the

work of Mike and Farmer (2008). In their paper, they develop a rather sophisticated

model for order placement and order cancelation. The order flow parameters are

estimated empirically, and the statistical properties of the resulting price process are

compared to those of the actual price series. The methodology is motivated by the

fact that market participants are incredibly diverse, their motivations and strategies
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are unobservable, and all in all, their behavior hard to model. The approach relies

only on observable quantities in the system: the input — the order activity, and the

output — the price process. Consider an explanation of the approach given in their

own words:

The methodological approach that we have taken here can be viewed as

a divide and conquer strategy. We have tackled the problem of price

formation by starting in the middle. Rather than trying to immediately

derive a model based on strategic motivations, we have empirically char-

acterized behavioral regularities in order flow. From here one can work in

two directions, either working forward to understand the relation between

order flow and price formation, or working backward to understand the

strategic motivations that give rise to the regularities in the first place.

Models of this type have the advantage of avoiding the need to directly model

human (agent) behavior. Clearly, this type of model is not an agent-based models

in the traditional sense. It is a purely statistical models, often referred to as an

econophysics models, which adopts the approach of modeling aggregate order flow

statistically without considering the individual strategic origin of that order flow.

However, we can still provide an agent interpretation. Simply put, agents exist for a

fleeting moment in which they submit a single order.

Importantly, these statistical models are still able to include whatever degree of

institutional and mechanical detail the modeler deems necessary or correct. Models

of this type also naturally lend themselves to the traditional process of model devel-

opment and evaluation employed in predictive modeling, i.e. develop the model on
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a subset of data and evaluate it on a hold-out set of data.

Now, on to the left side of Figure 2.3. How do you go about designing a popula-

tion of agents? How do these models deal with heterogeneity of market participants

and the “many degrees of freedom” problem? An early approach to the problem is

to only consider a limited number of classes of agents, i.e. the few-type model [?].

The canonical example of an n-type model is the class of models that pit “funda-

mentalists” versus “chartists” [69]. Fundamentalists base their trading activity on

analysis of economic fundamentals, e.g. a firm’s annual report. Chartists base their

trading activity on historical prices and “technical analysis.” [70] for example, study

a model in which the fraction of agents that believe in the mean-reversion of prices

to fundamental values varies dynamically in a market where the remainder of the

agents base their expectations on historical trends.

Alternatively, one might consider the evolutionary approach to agent construc-

tion. Agents are initialized with simple internal models, but are endowed with the

ability to learn and adapt those rules through an evolutionary mechanism [71]. Early

works used genetic programming to evolve double auction strategies that ultimately

out-performed hand-coded strategies [72]. Evolving agents with genetic program-

ming is well-known in the agent-based modeling community due to its application in

the Santa Fe Artificial Stock Market [73, 10]. Genetic programming has also been

employed as a mechanism for agents to improve strategies based on technical analysis

[74].
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2.3.2 Environment and Topology

Where do agents live? Do they move around? Who are their neighbors? What can

the agents observe? A topology and environment, defined by the modeler, answers

these questions. Traditionally, agents are oriented on a grid or network as shown in

Figure 2.4. In the case of financial market modeling, topology also defines aspects of

the market structure. We may be tempted to think of network of traders that transact

directly with each other, but a more common scenario is a centralized exchange. In

taking a closer look at the topology of agent-based financial markets, we review

market structure concepts and the market mechanisms themselves.

Figure 2.4: Neighborhoods. Illustration of neighboorhoods.

Market Structure

Market structure, in the most general sense, refers to the competitive organization

of an industry. However, when the term is used specifically in the context of fi-

nancial markets it often refers to the financial firms, exchange, products, rules and

systems that make up that market. In our discussion of market structure, we re-

view two important concepts for agent-based modelers: market access and market
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fragmentation.

Market Access

Market access is an important aspect of market structure. It defines the venues at

which agents can trade. Markets are no longer “physically convened” (for the most

part), and are instead “distributed access systems” [65]. In a distributed access

system, a market participant does not necessarily need to be located on the premises

of an exchange, and interaction with markets takes place electronically over computer

networks. While some participants may invest heavily in computer infrastructure

colocated with the exchange, others may use brokers or other less costly means.

Market access has important consequences in terms of the strategic behavior, and is

therefore an important consideration when developing an agent-based model.

Market Fragmentation

Markets may also be fragmented, i.e. the same or nearly the same security may trade

in on a number of different venues. Market fragmentation increases the complexity

of modeling agents since now trading decisions involve not only the how to trade, but

also where to trade. Moreover, the existence of more than one market introduces the

possibility that the properties of those markets may diverge. For example, a security

may trade on a continuous limit order book at two different exchanges, but those

exchanges could have different fees or margin requirements. Markets may also have

different trading rules and protocols. For example, U.S. equities trade on open limit

order book, but also trade on dark pools [75]. The United States has a notoriously
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complex equity market structure. Reg NMS places specific requirements on where

and how U.S. equities can be traded. Agent-based modeling offers researchers a

flexible platform for evaluating alternative market structures and regulations.

Market Mechanisms

In an agent-based model of financial markets, a market mechanism plays a defining

role in how agents interact. A typical approach is to mimic a dealer market by mod-

eling price formation as function of excess demand, i.e. ∆P = f(D(P )) where D(P )

is the excess demand at price P and f is an increasing function [76, 77, 69]. Fi-

nancial markets, however, have largely transitioned from being quote-driven markets

to order-driven markets, and such an approach eliminates the possibility of model-

ing continuous markets. More recent work explicitly models the limit order book

mechanism, which underlies the majority of financial trading globally.

In a limit order book, illustrated in Figure 2.5, agents may continuously place

orders, modify those orders, and transact against the resting orders of other partici-

pants. (See Gould (2013) for a detailed review of limit order books [78].) Adopting

a limit order book mechanism has important modeling implications since now our

agents need to know how to trade in addition to making a decision to buy or sell.

However, from a statistical point of view, we can now observe more data related to

an agent’s strategy. Limit order books are either level-based or order-based. In an

order-based book, the placement, modification and cancelation of each individual

order is observable. In a level-based book, only the total number of orders and total

number of participants at each price is available. Both types of data can be used to
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empirically validate artificial agents.

2.4 Conclusion

Our introduction to agent-based modeling of financial markets provides a review

of the methodology, as well as detailed discussion of major design points including

the design of agents and the design of the markets (environment and topology).

Agent-based modeling is still in its infancy when it comes to producing predictive

models and decision-aides for regulators and other stakeholders. However, it provides

a realistic experimental platform for the evaluation of new rules, structures and

regulations, and we expect it to be an area of continuing growth and interest.
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Chapter 3

Crossed and Locked Quotes

3.1 Abstract

Financial markets are often fragmented, introducing the possibility that quotes in

identical securities may become crossed or locked. There are a number of theoretical

explanations for the existence of crossed and locked quotes, including competition,

simultaneous actions, inattentiveness, fee structure and market access. In this paper,

we perform a simulation experiment designed to examine the effect of simple order

routing procedures on the properties of a fragmented market consisting of a single

security trading in two independent limit order books. The quotes in the two markets

are connected solely by the routing decision of the market participants. We report

on the health of the consolidated market as measured by the duration of crossed

and locked states, as well as the spread and the volatility of transaction prices in

the consolidated market. We aim to quantify exactly how the prevalence of order
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routing among a population of market participants affects properties of the consoli-

dated market. Our model contributes to the zero-intelligence literature by treating

order routing as an experimental variable. Additionally, we introduce a parsimonious

heuristic for limit order routing, allowing us to study the effects of both market order

routing and limit order routing. Our model refines intuition for the sometimes subtle

relationships between the prevalence of order routing and various market measures.

Our model also provides a benchmark for more complex agent-based models.

3.2 Introduction

Financial market participants face a competitive and diverse multi-venue financial

system. Brokers and traders monitor a multitude of market feeds, which they rely

upon to manage their trading operations. The number and variety of venues increases

the complexity of trading decisions. Orders may be routed to a large number of

exchanges, which may vary widely with respect to the trading platform, fees and

rebates, liquidity and transparency.

Despite the complexity of the trading landscape, prices across venues should

largely agree; the law of one price in financial markets should hold so far as traders

can identify and act on arbitrage opportunities [79]. However, arbitrage is not the

only type of strategic behavior that aligns quotes and prices across venues. Mar-

ket participants with access to multiple trading venues route new orders and revise

existing orders according to the state of the market as a whole.

Understanding the interaction of competing markets is of critical importance
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for policy-makers. Zero-intelligence (ZI) models have proven useful in the analysis

of individual limit order book markets, but have not been widely applied to study

multi-market systems. We propose an extension to the standard ZI model to a multi-

market setting by introducing order routing as an experimental variable. Prior to

discussing the model in detail, we first discuss the explanatory power of ZI models,

and discuss how our model in particular contributes to the existing literature.

ZI models provide explanations by focusing on the deterministic mechanisms at

play within a given system. The approach differs from the usual methods of economic

theorizing, where the focus is on the strategic behavior of agents. Not only do ZI

models differ from the standard game-theoretic models of economics, but they also

differ from agent-based models. While agent-based models often do include realistic

implementations of market mechanisms, their focus is usually on local interactions

and the evolution of strategies or agent compositions. While ZI models may be

viewed as simple agent based models, their mode of explanation is fundamentally

different.

ZI models provide a mechanism-based explanation, with the idea that “proper

explanations should detail the cogs and wheels of the causal process through which

the outcome to be explained was brought about” [80]. In a ZI model of financial

markets, however, we admit defeat with respect to the possibility of modeling all

of the possible strategies at play. Instead, we provide a simple random model of

aggregate order flow. The order flow model is a maximum entropy distribution

across allowable actions within the market. With a model of order flow in place, we

can then isolate the effects of the mechanisms, which in our case, are the limit order
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book and the order routing procedures.

ZI models have a long history, dating back to work by Becker [81]. More re-

cently, ZI models have demonstrated remarkable predictive power when order flow

parameters are fit to data [82]. ZI models have also been used to theorize about

fundamental properties of markets such as liquidity and price impact [83]. ZI models

have also proven useful for the evaluation of competing realize variance estimators

[84]. In addition, ZI models have been used to compare the allocative efficiency of

alternative market structures and latencies [85].

In this work, we present a two-market model where order routing is the only

mechanism that integrates prices across markets. Our experimental design varies

the prevalence of limit order and market order routing. Agents either have access to

both markets, in which case they may route their orders, or have access to only one

market, in which case their orders may trade through better quotes. The primary

contribution is the study of the prevalence of order routing on various market mea-

sures, including spread, volatility and crossed or locked states. Prior work does not

focus on order routing as the experimental variable. We present new results based

on a unique experimental design. Along these lines, the contribution of the paper

includes development of intuition with regards to the above relationships. Addition-

ally, we introduce a parsimonious heuristic for limit order routing, which allows us

to study the effects of both market order routing and limit order routing. Finally,

our model provides baseline results with which to compare more complex models.
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3.2.1 Limit Order Book

A limit order book is a continuously evolving record of outstanding orders to buy or

sell a financial product. When a limit order is submitted to an exchange it is either

matched with another outstanding order, queued in the limit order book, or rejected.

Limit orders have a price, quantity and side, which are the primary attributes that

govern how they are processed. The price and quantity of a limit order are restricted

to multiples of the tick size and lot size, respectively. The tick size is the minimum

price increment (e.g. a penny). The lot size is the minimum quantity that may be

traded in a single transaction (e.g. 100 shares). A limit order may be rejected if

it does not adhere to these restrictions. A limit order only executes if there exists

an appropriately priced order on the opposite side of the market. Limit orders are

queued in the book if they cannot be executed. Queued orders may be modified or

canceled.

The queued orders establish the best bid and ask prices. Market participants

seeking to trade immediately will buy at the best ask price and sell at the best bid

price. The queued orders are executed according to rules of precedence. The primary

rule of precedence is price. The secondary rule of precedence is time. The limit order

book is essentially a FIFO queue in which orders are executed based on price and

origination time. However, orders may also be matched on a pro-rata basis, and

matching algorithms, in general, may vary across exchanges and products.

Generally speaking, exchanges offer limit order book functionality beyond the

basics required to operate a continuous double auction. Limit orders may have

additional attributes that govern specific aspects of their display and execution. For

45



example, some exchanges offer the ability to place hidden orders. Other attributes

might control details of execution (e.g. immediate-or-cancel, fill-or-kill or all-or-

none). In the United States, exchanges have introduced order types that are tied to

specifics of the market structure (e.g. orders pegged to the national best bid and

offer).

For modeling purposes, we choose to focus on only the core functionality required

for the operation of a continuous double auction. Going forward, we make a few

simplifying assumptions. First, the only order types will be market orders or limit

orders with unit quantity. Unit order quantities eliminate the need for logic to handle

partial executions. Instructions may be placed for the creation of a new order or the

cancelation of an existing order.

Fig 3.1 depicts the evolution of the limit order book as a new limit order to buy

and a market order to sell arrive. The best bid and ask at time t are denoted b(t)

and a(t), respectively. In the figure, a buy limit order increases the depth at the

best bid. Depth is the aggregate quantity available at a particular price. A market

order to buy consumes the remaining depth at a(t), subsequently increasing both

the spread, a(t)− b(t), and mid-quote, (a(t) + b(t)) / 2.
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Figure 3.1: Limit order book diagram. A new buy limit order arrives at price

b(t) increasing the depth from 2 to 3. A new buy market order executes at the best

ask increasing the spread and changing the mid-quote.

Limit order books, and financial time-series more generally, may exhibit a number

of statistical features, commonly referred to as stylized fact [78]. The stylized facts

of an order book vary across securities and markets, and may be effected by external

factors, such as wider market volatility. For the purposes of our analysis, the primary

focus is on the interaction of bid and ask quotes in a two-market system. However, we
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also examine transaction price volatility. While there are a number of other stylized

facts of financial markets, we feel that we have selected those most relevant to the

goal of the analysis.

3.2.2 Market Fragmentation

Many countries have opened the door for competition in their financial markets. In

the United States, equity trades are distributed across 11 exchanges and over 40 alter-

native trading systems. There are also over 200 broker-dealers who internalize client

orders [86]. In Europe, the Markets in Financial Instruments Directive (MiFID) also

increased competition in equity trading [87]. Securities also trade in other countries

and in different currencies. Competition among exchanges can benefit investors, but

market fragmentation underlies a number of controversial practices related to high

frequency trading [88]. Understanding how individual markets are linked together is

critical for our ability to assess the quality and function of the overall market [89].

In a fragmented market, traders must determine how attractive each venue is for

trading. When a market participant makes an investment decision that decision is

translated into a stream of orders, which may be routed to a number of available

exchanges. Market participants may also trade on alternative venues, such as dark

pools. Decision-makers must weigh a number of factors, such as price, liquidity, fees

and rebates. Orders that are not appropriately routed may trade through better

quotes.

A trade-through is a transaction that executes at quotes that are inferior to

quotes simultaneously available in another market. For example, if b1(t) > b2(t)
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and a market sell order executes in market 2, a trade-through occurs. Given the

opportunity, a rational market participant would prefer to sell at a higher price and

route the order to market 1 since it has superior quotes. The United States has

regulations that are designed to protect retail order flow. For example, Reg NMS

(Rule 610.d and Rule 611) establishes specific rules regarding trade-throughs and the

display of crossed or locked quotes. Many markets, however, have no such restrictions

and quotes across markets are connected only by the behavior of market participants.

Market participants may also seek to exploit arbitrage opportunities. An oppor-

tunity for instantaneous profit exists if a bid price in one market is greater than

an ask price in another. The size of the arbitrage opportunity is constrained by

the depth available at each price. In a two-market setting, markets are crossed if

b1(t) > a2(t) or b2(t) > a1(t). Markets are locked if b1(t) = a2(t) or b2(t) = a1(t)

(Fig 3.2). Crossed markets represent a theoretical arbitrage opportunity, which may

be difficult to exploit in practice.
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Figure 3.2: Crossed and locked quotes. Market 1 and Market 2 are crossed since

a1(t) < b2(t). Market 3 and Market 4 are locked since a3(t) = b4(t).

Crossed and locked markets arise naturally in fragmented markets. Cao, Ghysels

and Hatheway (2000) find locked and crossed markets in the pre-opening period are

used by dealers to signal information [90]. Shkilko, Van Ness and Van Ness (2008)

find that the national best bid and offer is locked or crossed roughly 10.5% of the time

for NASDAQ stocks and approximately 4% of the time for NYSE stocks and cite

a number of potential causes, including simultaneous actions, lack of coordination,
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infrastructure issues, as well as differential fees and rebates [91]. Garvey and Murphy

(2006) find markets locked 14% of the time and crossed 0.5% of the time for a sample

of 20 NASDAQ stocks and conclude that institutional traders should be able to

exploit arbitrage opportunities presented by crossed markets [92].

In this paper, we quantify the relationship between order routing and the time

markets spend in cross or locked states. We also report the effect of order routing

on other statistical properties of the consolidated limit order book.

3.3 Methods

Our methodology is motivated by the zero-intelligence approach popularized by Gode

and Sunder (1993) and applied widely in both economics and finance [93]. The key

notion is that the mechanics of the system, in our case the limit order book and

the order routing algorithms, are of utmost importance, and potentially dominate

specifications of strategic behavior. From an agent-based modeling perspective, the

model is populated with simple randomly behaving agents that interact within a

given market structure.

The approach has a number of origins and motivations. In our case, we seek

to avoid making detailed assumptions regarding the strategic behavior of agents

(beyond routing) since that behavior varies widely and is difficult to model. More

generally, we seek a balance between the idea of “keeping it simple” and “keeping

it descriptive” [94, 95]. Specifically, our model builds on a line of work that models

order arrivals and cancellations as a random process [96, 97, 98, 99, 100, 101]. We
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adopt a model of order flow based on Smith et al (2003).

3.3.1 Single-Market Model

In the single market setting, the limit order book is modeled as a multi-dimensional

Markov process (Eq. (3.1)), where negative components represent bid depth and

positive components represent ask depth.

Xi(t) = {X1
i (t), . . . Xn

i (t)} ∈ Zn (3.1)

The best bid and ask prices at time t in market i, as mentioned previously, are

denoted bi(t) and ai(t), respectively. If the bid side of the market is cleared out the

best bid is set to 0. If the ask side of the market is cleared out, the best ask is set

to n. Any given state transition consists of the addition or subtraction of a vector

ej, which is the j th row of an identity matrix of size n, i.e. for state x ∈ Zn, all

transitions are for the form x → x ± ej. Each transition represents the addition or

cancelation of a limit order or the execution of a market order.

For convenience, the process is defined by the arrival rates of limit orders, market

orders and cancellations. Limit orders arrive uniformly at random relative to the

opposite quotes according to a band ν. Limit orders arrive at a rate of ` per price

per unit time. The total limit order arrival rate is 2ν`. Buy limit orders are uniformly

distributed across the prices P b
i = {ai(t)−ν, ai(t)−1}. Sell limit orders are uniformly

distributed across the prices P a
i = {bi(t)+1, bi(t)+ν}. Market orders arrive at rate m

per side per unit time making the total market order arrival rate 2m. Cancellations

occur at a rate c per unit depth per unit time. The arrival rate of cancellations at
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price p̂ is c|X p̂
i (t)|. The total arrival rate of cancellations at time t is c(

∑n
p=1 |X

p
i (t)|).

3.3.2 Multi-Market Model

The multi-market model is the process Y (t) defined in Eq. (3.2), which models the

simultaneous evolution of two limit order books. The index of price p in market 2 in

the joint process is p+n. Events originate in each book according to the same rates as

the single-market model, but events originating in one book may be routed to another

based on the markets’ combined state. Market orders are routed with probability

α. Limit orders are routed with probability β. Orders that are not routed execute

or accrue in their home markets. The arrival rates for the multi-market model are

summarized in Table 3.1.

Y (t) = (X1(t)X2(t)) = {Y 1(t), . . . , Y 2n(t)} ∈ Z2n (3.2)

Table 3.1: Aggregate arrival rates for the multi-market model
Order Side Route Rate
Limit Bid No ν(1− β)`
Limit Bid Yes νβ`
Limit Ask No ν(1− β)`
Limit Ask Yes νβ`
Market Bid No (1− α)m
Market Bid Yes αm
Market Ask No (1− α)m
Market Ask Yes αm

Cancelation n/a n/a c
∑2n

i=1 |Y i(t)|

The arrival rates for events in the multi-market model.
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With arrival rates defined, we must connect order arrivals to updates of the state

of the limit order book. Market orders decrease depth at the best bid and ask prices

in their target markets. Limit orders increase depth in their target market at their

specified price. Recall that bid depth is represented by a negative number, so a new

limit order to buy at price p̂ in market 2, which is not being routed, results in the

state transition y → y − ep̂+n, where ej is the j th row of an identity matrix of size

2n.

The target markets are defined by the routing mechanisms which are as follows.

Market orders are simply routed to the markets with the best opposite quote. If

the opposite quotes are identical, the order remains in its originating market. The

market order routing mechanism is described formally in Table 3.2. Limit order rout-

ing is more involved. Limit orders are classified into three groups: non-improving,

improving and marketable. The routing of each type is treated differently. The

classification and routing procedure for limit orders is provided in Table 3.3.

Table 3.2: Market order routing
Side Condition Market
Bid a1(t) < a2(t) 1
Bid a1(t) > a2(t) 2
Bid a1(t) = a2(t) h
Ask b1(t) > b2(t) 1
Ask b1(t) < b2(t) 2
Askd b1(t) = b2(t) h

Market orders are simply routed to the market with the most favorable quote.

Non-improving limit orders are routed according to priority, which is defined as

the depth between a new bid price p̂ ∈ P b
i (t) and the best ask in market i as defined
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Table 3.3: Limit order classification
Side Price Classification Routing
Bid p̂ ≤ max{b1(t), b2(t)} Non-improving Priority
Bid max{b1(t), b2(t)} < p̂ < min{a1(t), a2(t)} Improving Ticks to opposite quote
Bid min{a1(t), a2(t)} ≤ p̂ Executable Executing market
Ask min{a1(t), a2(t)} ≤ p̂ Non-improving Priority
Ask max{b1(t), b2(t)} < p̂ < min{a1(t), a2(t)} Improving Ticks to opposite quote
Ask p̂ ≤ max{b1(t), b2(t)} Executable Executing market

Classification of limit orders for routing procedures.

by Eq. (3.3). Analogously, the depth between a new ask price p̂ ∈ P a
i (t) and the

best bid in market i is defined by Eq. (3.4). A non-improving limit order at price p̂

is routed to the market with the least depth between the new order and the opposite

quote. The routing for non-improving limit orders is given in Table 3.4. The routing

of a non-improving limit order is illustrated in Fig 3.3.

dbi(p̂, t) =

ai(t)∑
p=p̂

|Xp
i (t)| (3.3)

dai (p̂, t) =

p̂∑
p=bi(t)

|Xp
i (t)| (3.4)

55



Table 3.4: Non-improving priority routing mechanism
Side Condition Destination
Bid db1(p̂, t) < db2(p̂, t) 1
Bid db1(p̂, t) > db2(p̂, t) 2
Bid db1(p̂, t) = db2(p̂, t) h
Ask da1(p̂, t) < da2(p̂, t) 1
Ask da1(p̂, t) > da2(p̂, t) 2
Ask da1(p̂, t) = da2(p̂, t) h

Routing procedures for non-improving limit orders. Limit orders originating with
price p̂ are routed according to the conditions in the table where h indicates the
originating market.

Figure 3.3: Order routing policy. A new buy limit order at price p̂ = b2(t) =

b1(t) + 1 arrives and is routed to market 1 since it will have better priority at that

price, i.e. db1(p̂, t) < db2(p̂, t). In market 1, a new limit order to buy at p̂ is first in the

queue with no depth ahead toward the best ask. In market 2, the same order is third

in the queue. A new market order to sell is routed to market 2 since b2(t) > b1(t).
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Improving limit orders are routed according to the distance in ticks to the opposite

quote. The routing of improving limit orders is provided in Table 3.5. If the distance

to the opposite quote is 0 in one of the two markets, then the order is marketable

and will execute in that market.

Table 3.5: Limit order routing for improving orders
Side Condition Destination
Bid a1(t)− p̂ < a2(t)− p̂ 1
Bid a1(t)− p̂ > a2(t)− p̂ 2
Bid a1(t)− p̂ = a2(t)− p̂ h
Ask p̂− b1(t) < p̂− b1(t) 1
Ask p̂− b1(t) > p̂− b1(t) 2
Ask p̂− b1(t) = p̂− b1(t) h

Classification of limit orders for routing procedures.

Simulation Procedure

The procedure for simulating the model is based on the standard stochastic sim-

ulation algorithm, also known as the Gillespie algorithm [102]. An outline of the

algorithm is as follows.

1. Initialize the state Y (t) at t = 0 and select a duration T for the simulation to

run.

2. Denote the arrival rates λi(t) for all possible events i = 1 . . .m.

3. Calculate the sum of the transition rates λ(t) =
∑m

i λi(t).
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4. Simulate the time, τ , until the next transition by drawing from an exponential

distribution with mean 1 / λ(t).

5. Choose the transition type by drawing from a discrete distribution where the

probability of event i is λi(t) / λ(t).

6. Update the process according to the interarrival time and transition type.

7. Repeat steps 2-6 until t > T .

The model is initialized with a depth of 5 lots at the best ν prices on each side of

the market. The best bid and best ask in each market is set to bn/2c and bn/2c+1,

respectively. For all replications, the model is warmed up to avoid initialization bias.

We use Welch’s graphical method to determine the warm-up period [59]. In brief, the

method consists of averaging over replications and then examining a moving average

of the various output quantities. Fig 3.4 displays the moving average of several

output quantities for α = 0.05 and β = 0.05. The output is based on 10 replications

of approximately 100,000 epochs. The values are averaged at each epoch and the

moving average is calculated with respect to the last 1000 observations. Using this

approach, we end the initial warm up period at ts = 650, which is equivalent to

approximately 100,000 epochs.

The embedded Markov chain associated with Y (t) is simulated by normalizing

the arrival rates of individual events by λ(t) given in equation Eq. (3.5), which is the

sum of the rates given in Table 3.1. At each discrete epoch, the clock is advanced

according by τ , which is drawn from an exponential distribution with mean 1 / λ(t),
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and the state is updated according to the model. The model terminates when t > T .

Statistics are calculated for ts < t < T where T = 1650.

Figure 3.4: Welch’s graphical method for identifying the warm-up period

for the simulation.

λ(t) = 4v`+ 4m+ c
2n∑
p=1

|Y p(t)| (3.5)

3.4 Results and Discussion

The main results are summarized by response surfaces for crossed and locked states

as α and β are varied between 0 and 1. We also report on mean spread and volatility

of the market as defined by the consolidated books. The results are based on 30
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replications of length T − ts = 1000 for each parameterization of α and β. We

also report on the sensitivity of the main results to 10% changes in the arrival of

market and limit order parameters ` and m. We expect some sensitivity as these two

parameters drive the spread and volatility of the single market model.

Gatheral and Oomen (2010) use the single market model to evaluate alternative

procedures for computing realized variance. They use parameters ` = 1, m = 5,

c = 0.2, ν = 10, which they find results in a microstructure noise ratio similar to

that of stocks in the DJ30. Our main results are estimated with parameters ` = 1,

m = 5, c = 0.2, ν = 20, which results in an average depth in each market of 150

lots. Increasing the band v from 10 to 20 results in a higher mean depth across the

markets, which also results in additional stability. With ν = 20, neither side of the

book emptied out across all of our replications. Earlier simulations with ν = 10 were

not stable for some values of α and β, which resulted in extreme price moves when

the book emptied out on either the buy or sell side. The model, in general, is stable

over a wide range of the parameters. Our goal is not to replicate the stylized facts

of any particular market, but to study the effects of order routing under reasonable

assumptions of order flow, spread and volatility.

The size of the price grid is n = 10, 000, which is large enough that results are

not affected by the bounds of the grid. We present the main results as response

surfaces and then report on a sensitivity analysis of order flow parameters. Specific

parameters, replications and other simulation details are given alongside the results.
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Order Routing Results

The probability of market routing and limit routing, as defined earlier, is varied

between 0 and 1 by increments of 0.05. At any given time, the state of the market

is classified as either crossed, locked or normal. The average portion of time that

the market spends in a crossed, locked or normal state, as a function of market and

limit order routing, is reported in Fig 3.5, Fig 3.6 and Fig 3.7, respectively. Each

point in the lattice of the wireframe represents the mean of the outputs across 30

replications. Crossed and locked market durations fall rapidly as routing is increased.

Markets are locked 7.2% of the time and crossed 7.1% of the time when α = 1 and

β = 0. When β = 1, all limit orders are routed eliminating the possibility of crossed

or locked markets.

Figure 3.5: Percentage of time markets are crossed.
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Figure 3.6: Percentage of time markets are locked.
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Figure 3.7: Percentage of time markets are normal (neither crossed nor

locked).

Fig 3.8 reports the mean spread of the consolidated order book, i.e. min{a1(t), a2(t)}−

max{b1(t), b2(t)}. Note that the spread in the consolidated book can be negative

when β 6= 1. Order routing increases the mean consolidated spread by eliminating

episodes where it is non-positive. Consider, however, the case when β = 1, where the

consolidated spread is strictly positive. The spread is increasing with α since routed

market orders are more likely to affect the best quotes.
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Figure 3.8: Mean spread in the consolidated book.

Volatility, like the other statistics we report, is calculated online. We define

volatility to be the variance of the differences in transaction prices. The variance is

computed using the well-known recursion given in Eq. 3.6 and Eq. 3.7 where µ1 = x1

and φ = 0 [103]. The kth transaction price is denoted xk. When the simulation

terminates the variance is given as φ / (K − 1) where K is the total number of

transactions. Market order routing decreases volatility as expected. Routed market

orders execute at the best bid and ask in the consolidated book, which is by definition

a smaller price range. When all market orders are routed to the best quotes (α = 1),

there appear to be two competing effects when limit order routing is increased. With

relatively few routed orders, an increase draws the market nearer, whereas later,
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more routing increases the spread, resulting in higher price volatility. Fig 3.9 reports

volatility as a function of α and β. Spread and volatility results for several discrete

cases are reported in Table 3.6.

µk = µk−1 + (xk − µk−1) / k (3.6)

φk = φk−1 + (xk − µk−1)(xk − µk) (3.7)

Figure 3.9: Volatility as measured by the variance of the difference in trans-
action prices.
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Table 3.6: Consolidated spread and volatility results
Routing Spread Volatility
α β Mean Std. Dev. Mean Std. Dev.
1 1 3.25 0.04 6.8 0.20
0 1 2.76 0.03 10.3 0.23
1 0 2.12 0.02 4.6 0.13

0.5 0.5 2.46 0.03 7.3 0.16

Replication results based on 30 replications with
` = 1,m = 5, c = 0.2, v = 20, n = 10, 000. The spread is reported for the
consolidated order book.

3.4.1 Sensitivity Analysis

The crossed and locked state durations, as well as spread and volatility, show some

sensitivity to the main parameters of the market. This is to be expected as limit

and market order arrival rates drive the characteristics of the single market model.

For each of the model outputs reported in the main results, we provide a response

surface as the market and limit arrival rates are varied by ±10%. Fig 3.10 and

Fig 3.11 report on crossed and locked state durations for α = 1 and β = 0. Fig 3.12

and Fig 3.13 report the sensitivity of spread and volatility to changes in market and

order arrival rates for α = 1 and β = 1.
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Figure 3.10: Sensitivity of crossed state duration. Proportion of time market

is in crossed state as a function of limit and market order arrival rates for α = 1 and

β = 0.
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Figure 3.11: Sensitivity of locked state duration. Proportion of time market

is in locked state as a function limit and market order arrival rates for α = 1 and

β = 0.
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Figure 3.12: Sensitivity analysis of the consolidated spread. Mean consoli-

dated spread as market and limit order arrival rates are varied for α = 1 and β = 1.
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Figure 3.13: Sensitivity analysis of volatility. Volatility of transaction prices

as a function limit and market order arrival rates for α = 1 and β = 1.

3.5 Conclusions

The zero-intelligence approach is a powerful modeling framework for examination of

fragmented markets. By modeling order routing as part of the market mechanism,

we maintain a parsimonious model of order-driven markets that has the potential to

explain stylized facts beyond crossed and locked markets. The model helps develop

intuition for the effects of simple order routing procedures on the statistical properties

of a multi-market system. The results also provide a benchmark against which more

complex agent-based models may be compared.

Empirical validation is also a possibility since all model parameters, including α
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and β, could potentially be estimated from data. The model has an interpretation in

terms of market demographics as well. For example, parameterizations of our model

can be interpreted as a markets consisting of a certain percentage of participants

with superior market access. We believe models of this type are uniquely capable

of examining complex market structures while simultaneously accounting for market

demographics. The model has the flexibility to be extended in a number of directions,

including examination of markets with asymmetric trading volume and more complex

market structures.
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Chapter 4

Correlations, Arbitrage and

Trade-throughs

4.1 Abstract

We study correlations, arbitrage opportunities, and trade-throughs in an action-

packed period for Nordic market structure during the 2009 through 2013 period.

The introduction of a a new trading platform at Nasdaq, centralized clearing and

an tick size harmonization initiative are just a few of the many events expected to

improve Nordic equity markets. The period also includes increased competition with

new exchanges entering the market. We study cross-listed Nordic equities traded

on the NASDAQ OMX platform and characterize changes in correlations, arbitrage

opportunities and trade-throughs.
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4.2 Introduction

In a fragmented financial market, prices and quotes no longer obey the normal me-

chanical restrictions of a limit order book. For example, the bid in one market may

exceed the ask, introducing the possibility of an arbitrage trade. In a single market,

such a bid would induce a transaction. In the same vein, a transaction to buy or

sell may occur at a quote that is less than optimal with respect to quotes available

in other markets. The law of one price suggests that arbitrage opportunities and

suboptimal transactions should be rare or even non-existent. But, there are “limits

to arbitrage,” and despite the best intentions of all market participants to maximize

profits and minimize costs, inefficiencies persist [79, 104, 105]. In this paper, we

undertake a study of market efficiency by examining correlations, arbitrage opportu-

nities, and trade-throughs in a selection of cross-listed Nordic equities. We document

the change in these quantities as markets evolve from 2009 to 2013.

4.2.1 Market Structure and Multi-market Trading

Markets are consolidated when all trade for a particular product occurs in the same

place, or, in the case of financial markets, on the same exchange. There is, in

fact, a natural tendency for markets to consolidate. The basic notion is that of a

network effect, in which the benefit from the use of a system grows with the number

of users (think Facebook). The more market participants, the more liquidity, and

more liquidity attracts more traders [65]. Historically, some exchanges have enjoyed

monopoly power, but those monopolies, such as the New York Stock Exchange, have
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been disrupted through a combination of regulation, technology and competition

[106]. While some exchanges still enjoy monopoly power on certain products, the

majority of financial markets are fragmented. Numerous exchanges and platforms

compete for order flow.

A market is fragmented when the same product or very similar products are

traded on more than one exchange. Harris (2002) outlines a number of causes of mar-

ket fragmentation including unequal size of trades, asymmetric information, unequal

patience, unequal access and varying levels of creditworthiness [65]. The hetero-

geneity of market participants makes the optimality of any single market mechanism

unlikely. While some market participants may prefer continuous trading in a limit

order book, others may prefer an upstairs-style market in which they simply nego-

tiate a price. New exchanges enter the market and cater to the variety of demands

arising from the diverse population of market participants. In our case, historical

mergers have resulted in populations of investors with demands to trade in a number

of different currencies.

Broadly speaking, fragmented markets are linked by various institutions, regula-

tions and strategic behavior. The National Market System in the United States is

an example of a regulation that provides explicit rules on how equity markets are

integrated. Exchanges are required to execute trades at the best available quotes

[107]. (See Reg NMS Rule 611(a)(1).) In Europe, MiFiD also provides a best exe-

cution directive that requires firms to take “all reasonable steps to obtain the best

possible result for their clients, taking into account price, costs, speed, likelihood of

execution and settlement, size, nature or any other consideration relevant to order

74



execution,” but offers firms a “considerable degree of flexibility” on how to meet the

requirement [108].

Naturally, this leads us to consider the role of the individual behavior in the in-

tegration of markets. Obviously, if participants have the required access to markets

they will attempt to exploit arbitrage opportunities. However, trading that aims

specifically to exploit mis-pricing is not the only type of behavior that links markets.

Many brokerages make order routing technology available to their clients in order

to improve execution quality [109]. Any type of strategic behavior that links mar-

kets relies on access to markets. There are, however, various costs and difficulties

associated with accessing markets, which can lead to market segmentation

A market is considered segmented if a subset of market participants do not have

access to all available venues. Consider a hypothetical two-market system in which

a stock trades at two different locations. One group of investors trades at both

locations, the other group only trades at the exchange nearest their office. The

market is fragmented since the same shares trade on two exchanges, and it is partially

segmented since some market participants only access one of the two exchanges.

In fact, markets tend to be partially segmented where a minority of sophisticated

participants invest in access to more markets than others.

National borders are a source of market segmentation. For example, traders

may be captive to their local exchange if accessing a market in another country or

currency proves to be too costly or too much of a hassle. Trading across national

borders also requires traders to understand new regulations and market institutions.

In our case, we study Nordic equities where the primary difficulty for investors is
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currency. Equities in the Stockholm market trade in Swedish Kronor, whereas the

same equities listed in the Helsinki market trade in euros.

There is a significant microstructure literature dedicated to the study of multi-

market trading. A well known approach is that of Hasbrouck (1995), which studies

the contribution of various venues to price discovery in U.S. equities [110]. Similar

approaches have been applied to international cross-listings [111]. There is also a

large literature that examines arbitrage opportunities in internationally cross-listed

stocks. De Jong, Rosenthal and Van Dijk (2009) study the returns of an arbitrage

strategy applied to dual listed companies [112]. Another recent examples is the study

by Gagnon and Karolyi (2010) of a large sample of stocks that are cross-listed in the

United States in the form of depository receipts [113].

The work is also related to the burgeoning literature on the speed of trading.

Menkveld and Zoican (2016) find that speeding up exchanges does not necessarily

improve liquidity [114]. Pagnotta and Philippon (2015) analyze a number of issues

around trading speed and fragmentation, and find that it is not optimal to limit

speed, and that it may be optimal to push slow venues to upgrade [115]. Menkveld

(2016) surveys a number of relevant issues related to the speed of trading [116].

In our study, we draw on a number of different literatures related to the study of

correlations, arbitrage and trade-throughs, and refer to relevant literature in each

section.
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4.2.2 Data and Sample Period

Our data consists of order book and trade data for a selection of cross-listed stocks

trading on the Nasdaq OMX Nordic. Nasdaq Nordic refers to Nasdaq operated

exchanges for Helsinki, Copenhagen, Stockholm, Iceland, Riga, Tallinn and Vilnius.

We identify six cross-listed securities, each of which are listed on the Stockholm and

Helsinki exchanges. Nordea Group is the lone security in our sample that is listed

on three exchanges, the third being Copenhagen. Our trade and quote data, with

microsecond granularity, was acquired from Reuters. Table 4.1 provides the currency

and Reuters market abbreviation for each of the three markets.

Exchange RIC suffix Currency
Nasdaq OMX Nordic Stockholm ST SEK
Nasdaq OMX Nordic Helsinki HE EUR
Nasdaq OMX Nordic Copenhagen CO DKK

Table 4.1: Reuters Identification Codes

In selecting our sample, we eliminate two stocks, Ericsson and Tieto, due to

either low absolute volume or low relative volume. We consider Nordea in Helsinki

and Stockholm only in order to avoid the additional complexity of a third currency.

(See Table 4.2 and Figure 6.2 and Figure 6.7 in the appendix.) The remaining stocks

are Nokia, Nordea Group, Stora Enso and Telia Sonera.

Nokia is the well known telecommunications company headquartered in the Helsinki

metropolitan area. Nordea Group is a Swedish bank that has grown through a num-

ber of mergers with Danish, Finnish, Norwegian and Swedish banks, which accounts

for its cross listing on three exchanges. Stora Enso is a paper company headquartered

in Helsinki. The company is a result of a merger the Swedish company Stora and
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Ericsson Nokia Nordea Stora Enso Telia Sonera Tieto
Year HE ST HE ST HE ST CO HE ST HE ST HE ST
2009 0.00 1.00 0.95 0.05 0.11 0.77 0.12 0.82 0.18 0.11 0.89 0.89 0.11
2010 0.00 1.00 0.92 0.08 0.11 0.82 0.07 0.78 0.22 0.10 0.90 0.89 0.11
2011 0.00 1.00 0.94 0.06 0.08 0.88 0.04 0.81 0.19 0.10 0.90 0.89 0.11
2012 0.00 1.00 0.82 0.18 0.10 0.83 0.07 0.77 0.23 0.10 0.90 0.89 0.11
2013 0.00 1.00 0.76 0.24 0.09 0.83 0.08 0.73 0.27 0.08 0.92 0.95 0.05

Table 4.2: Annual volume. Volume share in each currency within NASDAQ OMX
where HE is NASDAQ OMX Helsinki, ST is NASDAQ OMX Stockholm and CO is
NASDAQ OMX Copenhagen. Ericsson volume in HE is approximately 10−5 percent.

the Finnish company Enso Oyj, explaining the cross-listing. Finally, Telia Sonera,

a telecommunications company resulting from the merger of Swedish company Telia

and Finnish company Sonera.

Figure 4.1 shows the relative volume on each market for the selected stocks over

the sample period. In the case of each stock, there is a dominant market with the ma-

jority of volume, and a satellite market with a much smaller, but not inconsequential

share of volume. Nasdaq OMX Helsinki is the dominant market with the majority of

volume for Nokia and Store Enso. Nasdaq OMX Stockholm is the dominant market

for Nordea Group and Telia Sonera.

Interestingly, there is near parity in the number of messages in each venue as

shown in figure 4.2. Despite an imbalance in volumes, market makers still need to

keep quotes current across markets. Spreads and depths, as seen in figures 4.3 and

4.4, also appear to be relatively competitive in each of the four stocks, with spreads

appearing more competitive later in the period.

Prices and quotes in Swedish Kronor (SEK) are converted to euros (EUR) using

exchange rate data acquired from Olsen Associates. The foreign exchange data
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is provided in millisecond granularity. We use the contemporaneous mid-quote to

convert the bid and ask in stocks on NASDAQ OMX Stockholm to euro. Fig 6.1 in

the appendix shows the EUR to SEK exchange rate for the sample period.

Our sample period consists of years 2009 through 2013 and contains a number

of important changes to market structure. One of the most important changes is

the introduction of the INET platform by NASDAQ [117, 118]. At the time Bjørn

Sibbern of NASDAQ noted that it may be “the biggest change in 20 years” for

Nordic markets [119]. An updated platform is attractive for a number of reasons,

and should, in general, increase volume.

Central counter-party (CCP) clearing was also introduced in 2009 [120]. Accord-

ing to the press release from NASDAQ, the introduction of CCP enables netting of

trades, decreases margin requirements, requires fewer settlements, and overall, re-

duces costs. At the time, the president of NASDAQ OMX hailed it as “the biggest

structural change for the Nordic equity markets since trading became electronic in

the early 1990s,” and predicted a similar increase in volume.

Another important change in the market structure during the sample period is the

effort to harmonize tick sizes. NASDAQ OMX implemented a new tick size regime

in Stockholm on October 26, 2009 and in Helsinki and Copenhagen on January 4,

2010. NADAQ predicted that it would “lower the barrier for cross border trading”

[121]. Kjell (2015) found that the implementation of new tick sizes improved market

quality and encouraged trade [122].
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Figure 4.1: Monthly volume. Monthly volume for each stock in each venue.
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Figure 4.2: Market updates. Monthly market updates for each stock in each venue.
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Figure 4.3: Daily average spread. Spreads in this figure are averaged over time

and given as a percentage of price.
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Figure 4.4: Daily average depth. Depths are calculated from best prices and

averaged over time.
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4.2.3 Organization of the chapter

We motivate this work by posing a few basic questions about the speed and efficiency

of markets. First, are faster markets also more efficient markets in an informational

sense? Do arbitrage opportunities become more rare? Do the properties of arbitrage

opportunities, such as size and duration change in any significant way? Are trade-

throughs less frequent or less costly?

To answer these questions we organize our inquiry around three basic measure-

ments. The first is mid-quote return correlations at different sampling frequencies.

Second, we characterize arbitrage opportunities based on a 0.005 euro threshold and

a conversion of quotes to euros based on the EUR-SEK spot rate. Finally, we char-

acterize the frequency and cost of trade-throughs.

4.3 Correlations

Epps first documented that stock correlations decrease in sampling frequency [123].

In a recent paper, Budish, Crampton and Shim (2015) also point to the “break

down” of correlations at high-frequency, and note that “nothing in the current market

architecture that would allow different securities’ prices to move at exactly the same

time” [124]. The asynchronicity of market activity, which has long been a concern

of economists, is the primary working explanation for the so-called Epps effect [125,

126, 127]. The phenomenon is visible in Figure 4.5, which shows the mid-quote for

Nordea in euros in both Helsinki and Stockholm. Correlations appear to break down

as we zoom in on the price chart.
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Tóth and Kertész study the time evolution of the Epps effect and suggest that

“the phenomenon is related to the reaction time of market participants” [128, 129].

The correlation structure, in other words, can give us an idea about the speed with

which market participants react to new information and new quotes. During our

sample period, the reaction of market participants is most certainly improved by the

introduction of INET. For this reason, we expect an increase in correlations across

the board.

Correlations are calculated on a daily basis at intervals ranging from 1 millisecond

to approximately 2 minutes. To compute correlations, first, we calculate the mid-

quote for each stock in a pair. Quotes outside of Helsinki are converted to euro using

the contemporaneous spot FX mid-quote. We then resample the mid-quotes every 2p

milliseconds for p = 0 . . . 17. The lowest frequency sample is 217 milliseconds, which

is around 131 seconds, or roughly 2 minutes. Finally, we calculate the correlations

of the log returns in the standard way.

Figure 4.6 shows the range of the mean correlations for mid-quote returns on

an annual basis across the four cross listed securities. There is a clear upward shift

with correlations increasing clearly during the 2009 to 2013 period. Figures 6.20,

6.21, 6.22, 6.23 in the appendix show the individual annual correlation curves for

each of the 5 years. In our case, since we are studying cross-listed securities, we can

reasonably expect correlations to be near 1 at a reasonable sampling frequency.

Most interesting is the increase in correlations at very granular times in the

millisecond range. Figure 4.7 shows the increase in correlations for a 16 millisecond

resample. This is mostly likely an effect related to improvements in the technology
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infrastructure of the exchange, such as the introduction of INET. There appear to be

two regimes, a low correlation regime and a high correlation regime starting at the

beginning of 2010, which corresponds to the introduction of INET. Correlations in

Nokia increase almost five fold, whereas increases in correlations in the other three

stocks are more subdued. Our next question is, naturally, what happens to arbitrage

opportunities?
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Figure 4.5: Nordea mid-quotes. Mid-quotes are shown in a common currency,

the euro. Quotes in SEK are converted to euros using the mid-quote of the spot

exchange rate. 87
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figure is based on the average daily correlation for Nokia, Nordea Group, Stora Enso

and Telia. For each stock, we calculate the daily correlation of the mid-quote returns.

We then take the average for each year, 2009 through 20013. The filled curves show

the range of those averages across the four stocks for 2009 and 2013. Data for all 5

years is available in the appendix.
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4.4 Arbitrage opportunities

Arbitrage is a fundamental concept in finance, and plays a crucial role in the efficient

markets hypothesis (EMH). As summarized by Shleifer, the EMH relies on three basic

arguments [104]. First, market participants are assumed to be rational, and therefore

rationally value securities. Second, irrational participants, should they exist, trade

in a way that is essentially random. Their behavior cancels out and does not affect

prices. Finally, if irrational participants do happen to exist and manage to act in

unison, their affect on prices is mitigated or eliminated by arbitrageurs. Therein lies

the importance of arbitrage in financial markets.

In our study, we suspect arbitrage opportunities arise, again, due to the asyn-

chronous activity of traders in a fragmented market. As mentioned in the prior

section, our markets are mechanically independent. Even in a market where all

participants are doing their best to act rationally, the physics of the market and

the asynchronicity of activity leads to a system in which arbitrage opportunities are

likely to arise. Based on our analysis of correlations, we suspect that mis-pricings

exist at short time-horizons. Furthermore, we expect that these potential arbitrage

opportunities, should they exist, either decrease in duration or number as markets

become faster and more connected.

Practically speaking, the actual mechanics of exploiting an arbitrage trade are

too difficult to simulate. The details, including trading costs, taxes, and, in our

case, foreign exchange, are quite complicated. We seek to avoid these troubles by

developing a measure that gives an upper bound estimate on the value an arbitrage

opportunity. We define an arbitrage opportunity as a continuous period of time in
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Year Nokia Nordea Stora Telia
2009 18086 7729 3676 857
2010 1877 2103 896 243
2011 187 910 1428 122
2012 45 126 134 24
2013 110 330 463 155

Table 4.3: Annual number of arbitrage opportunities based on 0.005 euro threshold.

which the difference between crossed bid and ask prices exceed a threshold of 0.005

euros. With quotes converted to euros using the spot exchange rate, we consider an

arbitrage opportunity to exist if bh−as ≥ 0.005 euros or if bs−ah ≥ 0.05 euros where

bh and ah are the bid and ask in the Helsinki market and bs and as are the bid and

ask in euros in the Stockholm market. We calculate the value of the each discrete

arbitrage opportunity as either max{d(t)(bh(t)− as(t))} or max{d(t)(bs(t)− ah(t))}

where d(t) represents the available depth at the time of the transaction, which is the

minimum of the depth available at the bid and the depth at the ask.
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Figure 4.8: Cumulative number of arbitrage opportunities. cumulative num-

ber of arbitrage opportunities based on our 0.005 euro threshold. The calculation

aggregates the number of arbitrage opportunities in Nokia, Nordea Group, Stora

Enso and Telia Sonera over the 5 year sample period.

Figure 4.8 shows the cumulative number of arbitrage opportunities over our sam-

ple period taking into account all four stocks in the sample. Table 4.3 shows the

number of each individual stock. Clearly, the number of opportunities, based on

our definition and the 0.005 euro threshold, decreases significantly over the sample

period. Figure 4.9 shows the number of opportunities in the four individual stocks.

Later, we address a number of reasons why the observed number of arbitrage oppor-
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tunities are decreasing.

Figure 4.10 provides a distribution of the length of the arbitrage opportunities

in aggregate across all four stocks for the entire sample period. The obvious fact to

note about the distribution is that longer arbitrage opportunities are less frequent.

The vast majority of arbitrage opportunities exist for less than 10 seconds. There

are a number of reasons why such opportunities persist. First, despite our 0.005 euro

threshold, they may be too small to exploit. Second, since the value of an arbitrage

opportunity may change during its lifetime (e.g. depth increases at the active price),

it may be exploited later in its life when the value exceeds a threshold which is deemed

profitable to the arbitrageur. Finally, what appear to be arbitrage opportunities in

our data may not reflect “the truth on the ground” for market participants, a point

we’ll return to later.

Figure 4.11 provides a distribution of the values of the arbitrage opportunities

as defined previously. Again, less profitable opportunities are less frequent. In fact,

only a handful of arbitrage opportunities exceeding 100 euros exist in the entire five

year period across all four stocks. Our results point to remarkable efficiency of the

market considering our calculations are based on the spot rate of FX, which may or

may not be the effective rate for a trader.
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Figure 4.9: Number of arbitrage opportunities per stock.
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Figure 4.10: Length of arbitrage opportunities. Histogram of the length of the

arbitrage opportunities across all stocks in the sample for the five year time period.
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Figure 4.11: Value of arbitrage opportunities. Histogram of the value of the

arbitrage opportunities across all stocks in the sample for the five year time period.

We define the value of the arbitrage opportunity to be the profit from the transaction

if it were to be perfectly timed in a hypothetical market in which one could transact

in both stocks in euros.

4.5 Trade-throughs

A trade through (TT) is a transaction at a quote that is inferior to other simulta-

neously available quotes. In the United States, regulations restrict transactions that

result in trade-throughs. In Europe, however, there is no such restriction. Ende,
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Gomber and Lutat (2010) find that around 6.71% of transactions traded-through

superior quotes in a sample of EURO STOXX 50 securities [109]. Similarly, Storken-

maier and Wagener (2011) find that trade-throughs account for 5.2% to 8.7% of

volume in a 2009 observation period and for 4.7% to 6.9% of volume in a 2010 obser-

vation period using a sample of FTSE 100 stocks [130]. Kohler and von Wyss find

similar numbers for a sample of Swiss stocks examined over the time period of 2008

to 2010 [131].

In our analysis, we study trade-throughs by again using the EURSEK spot rate

to convert prices and quotes to euros. Denote the bid and ask prices in Helsinki

as bh(t) and ah(t), respectively. Recall that prices in Helsinki are quoted in euros.

Now, denote the bid prices and ask price in Stockholm as bs(t) and as(t), where

the prices are quoted in Swedish Kronor. We classify a transaction at time t at the

ask in Helsinki when ah(t) > (as(t)/x(t)) as a trade-through, where x(t) denotes

the EURSEK spot rate. Likewise, a transaction at the bid in Helsinki when bh(t) <

(bs(t)/x(t)) is classified as a trade-through. Trade-throughs in Stockholm are defined

analogously.

Volume of trade-throughs

Figure 4.12 gives the percentage of volume that trades through better quotes in each

of the markets for the five stocks in our sample. The volumes of trade throughs we

present are not comparable to those we quoted from earlier studies simply due to the

fact that the tick size of the exchange rates results in a much more granular price

grid. The price in one market may improve on a price in the other by fractions of a
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euro cent.

The first and obvious thing to note about the volume of trade-throughs is that

more transactions trade through superior quotes in the smaller markets by volume.

This is to be somewhat expected since we found spreads to be higher on average in

those markets. Qualitatively, the number of trade throughs appear to be converging

later in the sample period, with the exception of Telia Sonera. This fact, along with

spreads, suggests that the venues are becoming more competitive over the sample pe-

riod. Volume of trade throughs can only tell us so much, and in this case, the volume

primarily reflects differences in the spread. More interesting, and more economically

important, are the costs of trade throughs.

Cost of trade-throughs

Figure 4.13 gives the volume-average cost of the trade throughs for each side of the

market in each venue for the four stocks in the sample. The costs of trade throughs

are calculated as follows. Let vi(t) be the volume of the ith trade-through at the bid

in a given month in a given market at time t. For a total number of N trade throughs

at the bid in that market, the total volume of those trade-throughs is V =
∑N

i=1 vi(t).

We then define the average cost of trade throughs at the bid in Stockholm as

∑N
i=1 vi(t)((bs(t)/x(t))− bh(t))

V

Trade throughs as the ask and in Helsinki are defined analogously. The cost of

trade throughs appears to decrease throughout the sample period for Nokia. The

same can not be said about the other stocks in the sample. Nokia, is a well known
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stock internationally with an ADR listed on the New York Stock Exchange, which

may have resulted in more attention from arbitrageurs. Nokia, however, had lower

volume over the period than Nordea, which saw trade through costs remain even for

the period. Overall, the result of our trade through costs is ambiguous, but total

costs reflect a fairly efficient market.
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Figure 4.12: Volume of trade-throughs. Percentage of volume that trades

through better quotes
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Figure 4.13: Cost of trade-throughs. Difference between two available quotes at

the time of the trade-through averaged over volume.
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4.6 Conclusion

In this chapter, we’ve provided an analysis of correlations, arbitrage opportunities

and trade throughs in a sample of cross-listed Nordic equities. The sample pe-

riod, from 2009 to 2013, consisted of at least three major improvements to market

structure. Correlations at the millisecond level increased remarkably indicating an

improvement in the response time of market participants. Arbitrage opportunities,

based on a currency conversion using the spot FX rate, all but disappeared, sug-

gesting entrants that may be able to exploit those opportunities. Finally, we found

a significant decrease in the cost of trade-throughs in Nokia. Cost results for other

stocks in the sample were ambiguous.
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Chapter 5

Conclusion

Financial markets are evolving at a pace that will continue to challenge regulators

and policy makers. In an ideal world, such parties should have a platform to evaluate

new policies and ideas. In this dissertation, we present a simulation-based analysis

of a multi-market system alongside an empirical analysis of a fragmented market for

equities. In both cases, we were able to learn about the dynamics of distributed

markets, but the way forward for purely empirical approaches will be increasingly

difficult.

Researchers often turn to agent-based models when empirical analysis is expen-

sive or impossible. The global financial market is one of the largest and most complex

systems in the world, but it also has one of the most detailed paper trails. Financial

data are everywhere and vendors compete to sell that information to consumers. So,

why do we need agent-based models? Entire industries are built on the analysis of

financial data, but purely statistical approaches to the analysis of markets is compli-
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cated by the daunting complexity of the market structure, and a purely statistical

approach often discounts the importance of institutions and mechanics.

Agent-based models provide a platform to include real institutions and real mar-

ket mechanisms, and those models need not be entirely built from the ground up.

Statistically constructed agents allow us to avoid the extreme difficulty of modeling

an entire heterogenous population of economic actors. Instead, we can characterize

the population and the output of their strategic behavior statistically. This approach

has numerous advantages. Statistical agents allow more naturally for experimental

designs. Models can also be fit to data when strategic behavior is either unknown

or too difficult to model. Finally, statistical agents can be intermingled with de-

terministic, rules-based agents, providing additional flexibility and value for policy

evaluation.

In this dissertation, we contribute to a young and rapidly evolving field. Agent-

based models for analysis of financial markets and the economy at the level of national

policy is still a work in progress. Agent-based modeling, however, will become more

and more compelling as an alternative to traditional methods as computing power

and modeling platforms continue to improve. Empirical finance also needs to evolve

in order to keep up with the volume of data and complexity of market structure.

Ultimately, the analysis of financial markets will by necessity be an interdisciplinary

field. Financial economists will be well served to partner with computer scientists

and engineers to build models of financial markets and the economy.
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Chapter 6

Appendix

6.1 Appendix A: Nordic Market Supporting Fig-

ures

6.1.1 Volume

In this section of the appendix, we provide volume figures for all six of the cross-listed

securities considered for our sample. Table 6.1 gives the Reuters Identification Codes

for each of the securities. Figures 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 show monthly and

cumulative volume.

Ericsson Nordea Group Nokia Stora Enso Telia Sonera Tieto
ERICb.ST NDA.ST NOKI.ST STEr.ST TLSN.ST TIEN.ST
ERIBR.HE NDA1V.HE NOK1V.HE STERV.HE TLS1V.HE TIE1V.HE

NDA.CO

Table 6.1: Reuters Identification Codes for the 6 cross-listed stocks.
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Figure 6.1: Euro to Swedish Kronor exchange rate over the sample period.
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Figure 6.2: Volume for Ericsson.
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Figure 6.3: Volume for Nordea Group.

108



 1x10
6

 1x10
7

 1x10
8

 1x10
9

Jan-09 Jul-09 Jan-10 Jul-10 Jan-11 Jul-11 Jan-12 Jul-12 Jan-13 Jul-13
 0

 2x10
9

 4x10
9

 6x10
9

 8x10
9

 1x10
10

 1.2x10
10

 1.4x10
10

 1.6x10
10

V
o
lu

m
e

Date

Volume for Nordea Group

Stockholm
Helsinki

Cumulative

Figure 6.4: Volume for Nordea Group.
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Figure 6.5: Volume for Stora Enso.
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Figure 6.6: Volume for Telia Sonera.
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Figure 6.7: Volume for Tieto.
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6.1.2 Market Updates

In this section of the appendix, we provide market update figures for the four cross-

listed securities considered in our sample. Figures 6.8, 6.9, 6.10 and 6.11 show

monthly and cumulative market updates.
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Figure 6.8: Number of market updates for Nokia.
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Figure 6.9: Number of market updates for Nordea Group.
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Figure 6.10: Number of market updates for Stora Enso.
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Figure 6.11: Number of market updates for Telia Sonera.
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6.1.3 Spread

In this section of the appendix, we provide average daily spread figures for the four

cross-listed securities considered in our sample. Figures 6.12, 6.13, 6.14 and 6.15

show monthly and cumulative market updates.
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Figure 6.12: Average spread for Nokia.
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Figure 6.13: Average spread for Nordea Group.
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Figure 6.14: Average spread for Stora Enso.
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Figure 6.15: Average spread for Telia Sonera.
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6.1.4 Depth
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Figure 6.16: Average depth at top of book for Nokia.
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Figure 6.17: Average depth at top of book for Nordea Group.
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Figure 6.18: Average depth at top of book for Stora Enso.
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Figure 6.19: Average depth at top of book for Tela Sonera.
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6.1.5 Mid-quote correlation
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Figure 6.20: Mid-quote correlations for Nokia.
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Figure 6.21: Mid-quote correlations for Nordea Group.
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Figure 6.22: Mid-quote correlations for Stora Enso.
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Figure 6.23: Mid-quote correlations for Telia Sonera.
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6.1.6 Trade-through Volume
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Figure 6.24: Volume of trade-throughs for Nokia as a percentage of total volume.
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Figure 6.25: Volume of trade-throughs for Nordea as a percentage of total volume.
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Figure 6.26: Volume of trade-throughs for Stora Enso as a percentage of total volume.
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Figure 6.27: Volume of trade-throughs for Telia Sonera as a percentage of total
volume.
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6.1.7 Trade-through Costs
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Figure 6.28: Cost of trade-throughs in Nokia.
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Figure 6.29: Cost of trade-throughs in Nordea Group.

134



0.000

0.001

0.010

0.100

Jan-09 Jul-09 Jan-10 Jul-10 Jan-11 Jul-11 Jan-12 Jul-12 Jan-13 Jul-13 Jan-14

A
v
g
. 
co

st
 o

f 
tr

ad
e-

th
ro

u
g
h

Date

Buy in Stockholm
Sell in Stockholm

Buy in Helsinki
Sell in Helsinki

Figure 6.30: Cost of trade-throughs in Stora Enso.
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Figure 6.31: Cost of trade-throughs in Telia Sonera.
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