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Abstract 
The ability to track and monitor injurious biomechanical movement patterns has become a critical area of 
development in the fields of sports and rehabilitation. Lower extremity injurious movements have been 
linked as risk factors associated with anterior cruciate ligament (ACL) injuries. With an annual incidence 
rate of 200,000 to 400,000 cases in the US, ACL rupture is a common problem in younger populations 
participating in medium to high intensive activities. While surgical reconstruction is commonly done for 
such injuries, the ability restore normal joint function and mitigate long-term development of early onset 
osteoarthritis is difficult to understand. However, through the study of ACL injury mechanisms, there may 
be the development of a process to design training programs aimed at prevention. This involves objective 
observation of contributing motions that occur causing an ACL rupture. One common example is the 
dynamic knee valgus collapse, which is usually described as excessive medial collapse of the knee. The 
aim of the following project was to use a custom on-body motion-capture wearable to gather data on the 
dynamic knee valgus collapse. The data was then analyzed using various machine learning algorithms to 
determine the accuracy of classifying a knee valgus collapse versus a normal knee abduction including K-
Nearest Neighbors, Logistic Regression, and a Recurrent Neural Network called the Long Short-Term 
Memory algorithm. The testing accuracy of each model was compared against that of the current research 
standard of detecting human movement patterns, the K-Nearest Neighbors model. The Long Short-Term 
Memory algorithm demonstrated the highest level of accuracy statistically significant at a p-value of 
0.01891 with a Logistic Regression model demonstrating a mean time of classification of 0.0004 s. Thus, 
the use of an on-body motion capture wearable paired with machine learning based classification can 
provide an effective and cost-efficient methodology for ACL injury preventative care.  
 
Keywords: ACL, motion capture, machine learning, preventative care, dynamic knee valgus collapse

Introduction 
Anterior Cruciate Ligament (ACL) rupture is a common 
orthopedic injury suffered as a result of sports 
participation. There are over 200,000 to 400,000 cases of 
ACL rupture in the U.S. alone where 70% of these are 
non-contact (without direct blow to the knee) based and 
these types of injuries are considered the most 
predominant method mechanism of the injury itself 1. 
These include injuries that occur during jumps or lateral 
cutting maneuvers during athletic activities where dynamic 
neuromuscular control deficits can cause eventual ACL 
rupture 2. Furthermore, there is approximately a two to 
eight times higher risk in female athletes compared to male 
athletes 3. Currently, the “typical” patterns of an ACL 
rupture is defined as a low-velocity twisting injury or 
valgus/external rotation strain followed by immediate pain 

and swelling which implies hemarthrosis. One common 
example of such a movement pattern is the dynamic knee 
valgus collapse, or the excessive medial collapse of the 
knee 4.Some major repercussions following an ACL injury 
include temporary or long-term disability, absence from 
other activities, high costs from operative or rehab 
treatment, and early onset osteoarthritis (OA) 5.  
 
The current treatment recommended following ACL 
rupture is surgical reconstruction in order to facilitate a 
return to desired daily activities, including sports. 
However, the estimated annual health-care cost of these 
surgeries is approximately $3 billion in the U.S. alone. The 
decision to recommend this operative reconstruction is 
multi-factorial and individualized to each patient. Still, 
following ACL reconstruction many athletes fear return 
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back to their intensive sports activities due to reinjury 
concerns 3. Thus, a new focus has developed to potentially 
track and prevent lower extremity injurious movement 
patterns that may be a cause of future ACL rupture, such 
as the dynamic knee valgus collapse. A gold-standard 
method seen today is using reflective anatomical markers 
which are then recorded using highspeed motion analysis 
camera systems which are commonly referred to as optical 
motion capture (OMC) systems 1. These systems present 
not only the ability to track position but also attitude 
(posture) of the movements along with accounting for 
issues with drift that were common with on-body motion 
capture systems 6. While OMC systems are considered 
gold-standard when it comes to tracking and monitoring 
human motion, they have many drawbacks as well. Not 
only are these systems extremely expensive but they are 
also limited in terms of their use off the field for athletes 
who are usually injured when on the field. Furthermore, 
most OMC systems today have one other common 
problem: they are unable to get an accurate sense of joint 
angle measurements which leads to the infeasibility of 
creating accurate 3D-model reconstructions for further 
analysis. This applies primarily to marker based OMC 
systems where marker-less (use of just cameras) systems 
rely heavily on the resolution of the camera and may face 
occlusion problems thus not actually detecting the object 
to be tracked 7. 
 
By using on-body 9-axis inertial motion units/sensors or 
IMUs our group will be able to solve many of the 
problems associated with the gold standard OMC systems. 
This first includes that the cost of these on-body sensors 
are drastically lower than purchasing multi-camera setups 
to track human motion. Second, prior research into IMU 
development for tracking human motion has solved many 
of the drift and calibration problems of the sensors that 
were originally present 8. With this massive improvement, 
these on-body systems provide more accurate readings of 
joint angles which can then be implemented even further 
to not only capturing human motion but also using 
machine learning to predict or detect potential movement 
patterns. Lastly, the use of a cheaper, smaller, and accurate 
on-body motion capture system provides the ability to be 
used anywhere at any time, especially on the field for 
athletes.  
 
In regards to utilization of machine learning on top of data 
collected from an on-body motion capture system, 
currently the analysis of human motion is limited to the 
classification of discrete movement patterns or recognition 
of human motion itself such as walking vs. sitting. There is 

a limited scope of work when it comes to predicting the 
onset of a specific movement pattern and the severity with 
which it may occur. Current classification models used for 
human motion include those based on Human Markov 
Models (HMMs), the K-nearest neighbors (KNN) 
algorithm and support vector machine (SVMs) 9. However, 
there are a limited number of studies analyzing the 
accuracy of the various classification methods present in 
machine learning literature along with no models present 
to analyze the prediction of the onset of specific movement 
patterns over time. Some of the current models 
implemented in prior studies as mentioned above will be 
used as a standard accuracy value to which compare to for 
all the other models. Algorithms such as long short-term 
memory (LSTM) which is a type of recurrent neural 
network (RNN) or a multi-layer perceptron (MLP) 
demonstrate a greater accuracy with the analysis of the 
features extracted from the on-body motion capture 
system. 
 
Thus, the motion-capture paired with machine learning 
driven software capstone project will initially complete the 
testing of a custom wearable, the selection of a controlled 
exercise to determine classification of a dynamic knee 
valgus collapse or an injurious movement pattern 
associated with an ACL rupture, and confidence in the data 
collection capability of the wearable. Additionally, the 
capstone project will then delve into the comparison of 
various machine learning models to classify the onset of a 
knee valgus collapse on in-house collected datasets in 
preparation for an IRB approved biomedical pilot study 
with a team of physical therapists at Mary Baldwin 
University in Staunton, VA.  
 
The work of this project was also performed under the 
umbrella of a UVA student-led startup, Brave Virtual 
Worlds LLC. This venture aims to develop a motion-
capture platform to be used by athletes across sports to 
help increase performance and reduce avoidable injuries.  

Results 

Testing of On-Body Motion-Capture Wearable 
The project entailed using a custom motion-capture 
wearable developed by a research group within the UVA 
Electrical & Computer Engineering department. Through 
the use of a mobile application paired with the wearable, 
functionality tests were conducted to ensure that the device 
was in fact able to relay spatial and motion data relative to 
real-world observations. This included testing the device 
twice via a member of the Brave Virtual Worlds startup  
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team and on the field with a pro-golfer at The Club at 
Glenmore in Crozet, VA (Fig. 1). These resulted in 
determining that the global position and orientation of the 
data sent from the wearable were in fact in accordance to 
the real-world by observing a 3D simulation.  

Selection of Controlled Exercise and Data Validation 
An exercise was selected to conduct an exploratory study 
of whether or not the proposed on-body motion capture 
system can detect a dynamic knee valgus collapse. A prior 
study demonstrated the use of the single-limb step down 
exercise in females between the ages 20-30 to assess the 
relationship between frontal-plane hip and knee angles, 
hip-muscle strength, and electromyographic (EMG) 
recruitment 10. This similar methodology was used as an 
exercise protocol for the use of the proposed technology. 
Following establishing this protocol, the on-body motion 
capture system was assessed on members of the capstone 
project performing a normal single limb step-down and 
valgus-collapse single-limb step down. This determined if 
the data being read from the motion capture system is in 
the correct orientation and can actually detect the event of 
a single-limb step down exercise. The data specifically 
focused on was that of the sensor attached to the lower leg 
below the knee.  
 
The dataset collected exhibited a clear pattern of a single 
limb-step down both during the step-down and the step-up 
(Fig. 2). This pattern was most clearly seen in the w-, x-, 
and z-axes of the quaternion or spatial data obtained which 
illustrates that the data can in fact be used for pattern-
based classification. The y-axis demonstrated the most 

noise which was attributed to the fact that this axis is the 
most sensitive when performing the single-limb step down 
according to how the sensor was placed on the leg.  

Machine Learning Implementation 
 
Following validation of the data being collected, over 100 
preliminary datasets were collected via the team of physical 
therapists at Mary Baldwin University. These datasets were 
then processed and analyzed through four main machine 
learning algorithms: KNN, Logistic Regression using 
scikit-learn, a custom Logistic Regression using gradient 
ascent, and LSTM. All of these models required normalized  
 
data, where the spatial data was normalized between 0° and 
180° for the conversion to Euler angles from the spatial data 
obtained as raw values from the motion-capture wearable.   

Fig. 1. Images of testing custom motion capture wearable. The wearable was tested on both a member of the Brave Virtual Worlds 
team and a golfer at The Club at Glenmore to determine spatial and motion data functionality relative to the real world. The images 
depict both a person wearing the wearable along with a 3D representation on a custom mobile application developed for the device. 

Fig. 2. Representation of Quaternion Data. This illustrates the 
4 axes of data collected from one motion capture sensor and how 
it shows a pattern following that of a single-limb step down 
exercise as highlighted by the red portion.  
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The KNN algorithm utilized Euclidean distance as the 
metric of distance between neighboring data points which is 
how the model evaluates which class a new data point falls 
under. It was evaluated using 5-fold cross validation to 
ensure that the algorithm was not over or underfitting the 
data. This model provided a standard to compare against for 
mean testing accuracy, 79.48%.  
 
The Logistic Regression algorithm using the scikit-learn 
library available in Python. This is an important tool used in 
simple machine learning analysis to developed black-boxed 
models without the need of developing custom loss or 
optimization functions. The custom Logistic Regression 
algorithm utilized the loss function of gradient ascent which 
helps maximize the likelihood function of determining the 
outcome of the model, in this case a linear regression line 
acting as a boundary between the two classifications of 
valgus collapse and normal knee abduction. Both of these 
algorithms demonstrated the fastest times when it came to 
classifying new data, 0.0051 s for the scikit-learn based 
model and 0.0004 for the custom model.  
 
The LSTM model architecture was broken into 5 layers, a 
simple model for preliminary analysis of time-series spatial 
data and was developed using the industry standard machine 
learning analysis libraries in Python, Keras and Tensorflow 
(Fig. 3). The first layer was a masking layer that eliminated 
a masking value of -10 which was done on the datasets to 
ensure that each set was the same length when processed 

into the LSTM model. The next layer was an LSTM layer 
consisting of 128 units which was the average 
dimensionality of the output space. The following layer was 
a Dropout layer that served the purpose of minimizing 
potential overfitting of the model onto the data. Lastly, two 
Dense layers were added to actually perform the final binary 
classification of each dataset as a valgus collapse or normal 
knee abduction. This model resulted the highest accuracy of 
all four models, with a mean validation accuracy of 88.75% 
and mean testing accuracy of 90.00%.  
 
All of the metrics used to compare each model are 
summarized in Table 1. This table looked at mean validation 
accuracy to ensure that each model was appropriately 
evaluating the data, mean testing accuracy as the primary 
metric, the mean F1 score which is a metric that 
encompasses both precision and recall of a machine 
learning model, and the mean time it takes for each model 
to classify new data. The means were taken over five trials 
of running each model.   

 
The mean testing accuracy metric was then used to run 
multiple paired t-tests to compare each model to the 
research standard, the KNN algorithm (Fig. 4). The 
statistical results demonstrated that the only model 
statistically significantly different was the LSTM model 
with a p-value of 0.01891 (𝛼 = 0.05).  

Discussion 

The novel methodology of using a custom on-body motion 
capture wearable paired with assessment of various 
machine learning models provides a new way of 
preventative care for ACL ruptures or injuries. As discussed 
in this paper,  

Table 2. Summary of Metrics for Machine Learning Models. 
This table shows the four metrics used to compare across models.  
Accuracy was gauged via the mean validation and testing 
accuracies, the F1 score provided precision and recall, and mean 
testing time indicates real-time implementation capability. 
 

Algorithm Mean Val. 
Acc (%) 

Mean 
Testing Acc. 

(%) 

Mean F1 
Score 

Mean Testing 
Time (s) 

KNN 79.07 79.48 0.7630 0.0217 
Logistic 
Regression 
(scikit-
learn) 

82.00 76.31 0.8093 0.0051 

Logistic 
Regression 
w/gradient 
ascent 

81.01 78.42 0.8048 0.0004 

LSTM 88.75 90.00 0.8683 1.116 
 
  

Fig. 3. LSTM Model Architecture. This flowchart illustrates the 
breakdown of the five layers used to compose the LSTM model: 
Masking layer, LSTM layer, Dropout Layer, and two Dense 
layers 
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the project completed testing of the custom wearable 
through functionality testing followed by selection of a 
controllable exercise and assessing data collection 
capabilities. Afterwards, four machine learning models or 
algorithms were compared to determine the efficacy of 
using machine learning in detecting or classifying the onset 
of a specific movement patterns, in this case the dynamic 
knee valgus collapse. The project exemplified the use of 
both research and industry standard data analytics for 
classifying human motion towards the detection of injurious 
movement patterns.  
 
The wearable was determined to be functional in accurately 
detecting spatial orientation of a user and their motion 
which was validated by the initial dataset collected on a 
single repetition of a single-limb step down exercise. This 
ensured that the wearable was usable as an analytical tool 
similar to that of OMCs or marker based tracking.  
 
Following this validation, the implementation of various 
machine learning models provided insight into how further 
analysis of the data collected can truly provide a way of 
detecting the onset of injurious movement patterns in an 
almost real-time instance. First, the implementation of the 
KNN model provided a baseline against which other models 
were compared against due to its prevalent use in current 
literature as a standard for detecting human motion. This 
involved outputting various metrics to gauge the differences 
between the models, including the mean validation/testing 
accuracies, the mean F1 scores, and mean testing times. 
Following these results, paired t-tests determined that the 

LSTM model presented the most different and accurate 
algorithm achieving an average accuracy of 90% relative to 
the ~79% seen when using the KNN model. However, the 
LSTM model was also the slowest when it came to testing 
it on new data points, with the fastest models being the two 
Logistic Regression models.  
 
Thus, the results demonstrated that machine learning is in 
fact a viable option when used to classify or even predict 
specific movement patterns. With LSTM, there are further 
possibilities of using complex neural network based 
models to further improve the accuracy, and the option of 
using new models such as Gated Recurrent Units (GRUs) 
which is another recurrent neural network more favorable 
towards smaller datasets. The main difference between 
both algorithms is that that GRU has two gates (reset and 
update) and LSTM has three gates (input, output, and 
forget) thus indicated that GRU has a less complex 
structure and more computationally efficient since it does 
not require a memory unit. 
 
Furthermore, with this novel methodology on using on-
body motion capture for preventative care purposes, new 
work can be performed on attempting to scale machine 
learning across multiple injurious patterns, not just the 
dynamic knee valgus collapse. Since the wearable 
encompasses the full body, it is possible to analyze each 
joint for potential movement issues to prevent injuries 
across the whole body.  
 
Overall, the project presented an affordable and efficient 
way of using motion capture to understand the kinematics 
of movement patterns that can lead to an ACL rupture. 
Under the umbrella of a UVA student startup, this research 
will also be applied within the product offerings of said 
startup to create a large motion capture platform capable to 
helping those participating in intensive activities to either 
improve their performance and even prevent injuries.  
 

Materials and Methods 
 
The following are the methods followed to produce the 
results seen in this paper, including the brief methodology 
used to design the motion capture wearable utilized in this 
project.  

Development of Motion Capture Wearable  
The on-body motion capture wearable was designed using 
custom electronics developed by a research group within the 

Fig 4. Bar chart of mean testing accuracies of each model. 
This graph illustrates the results of each paired t-test run against 
the standard KNN model with only the LSTM model 
demonstrating a statistically significant difference (* = 
statistically significant with p ≤ 0.05) 
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UVA Electrical and Computer Engineering department 
under the guidance of Harry C. Powell Jr. It was developed 
using KiCad for drafting the schematic of the electronics 
and sourcing parts from DigiKey. The electronics were then 
assembled locally in Charlottesville, VA at WWW 
Electronics Inc. Following manufacturing of the 
electronics, the housing frame for each one was designed in 
Autodesk Fusion 360 and 3D printed using both polylactic 
acid (PLA) and thermoplastic polyurethane (TPU). The 
medical-grade Velcro bands were sourced from 
FASTENation INC. to ensure maximum ergonomics when 
putting on the wearable. 

Machine Learning Implementation  
Each machine learning model was implemented using 
custom written Python scripts in VSCode. The main 
libraries used to implement each model were the following: 
Scikinematics for understanding spatial (quaternion) data, 
Numpy, Matplotlib, Scikit-learn, Keras, and Tensorflow. 
All of the data used for each model was processed into Euler 
angles: yaw, pitch, and roll. The data was also normalized. 
The mean of each dataset for each angle was used for the 
KNN and Logistic Regression models, versus the whole 
time-series dataset was used for LSTM.  

Planned IRB Study with Mary Baldwin University 
An IRB approved biomedical pilot study has currently been 
planned for June 2021 with Mary Baldwin University. This 
study will use the same exercise, the single-limb step down, 
to assess the ability of both the on-body motion capture 
wearable paired with machine learning versus the classic 
physical therapy assessment on exhibition of the knee 
valgus collapse in female subjects. This study will include 
around 20 subjects broken up into two groups and will occur 
over a duration of 6 weeks which includes a pre-testing 
phase, mid-testing phase, and post-testing phase to 
determine how accurate the wearable plus machine learning 
was over time and if it was able to improve the form of 
performing a knee valgus collapse for each subject.  

End Matter 
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