
A Holistic System Support for Persistent Memory

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Sihang Liu

July 2022

© 2022 Sihang Liu

Acknowledgments

My PhD career is full of challenges. The support from my parents, advisor, mentors, collaborators,

and friends helped me go through this process. First of all, I would like to thank my parents, Jianfeng

Liu and Jiwen Shi, who have been very supportive during my PhD career. I grew up in a family full

of engineers and scientists. My father, Jianfeng Liu, and my grandparents Linbiao Shi and Yifang

Li, encouraged me to explore engineering when I was a child. And my mother, Jiwen Shi, a medical

technician, introduced scientific research to me when I was in elementary school. I really appreciate

that I was exposed to engineering and scientific research in my childhood.

Next, I would like to thank my advisor, Samira Khan, who has been extremely supportive during

my PhD career. During the early stage of my PhD, Samira tightly worked with me through brain-

storming, experimentation, paper writing, and presentation. Beyond the technical aspects, Samira

is also very supportive of my career, including award applications and the academic job search. It

is impossible for me to receive a PhD degree without her advice and support.

I would also like to thank my mentors who constantly give me support and advice. I would like to

thank Valeria Bertacco, who hosted my summer research internship—my first experience in computer

architecture research—when I was an undergraduate student at the University of Michigan. After

that, I was exposed to persistent memory research—a direction I took throughout my PhD—during

my research internship in Tom Wenisch’s lab at the University of Michigan. The research experience

at Tom’s lab has inspired me to pursue a PhD degree in the area of computer systems and architecture.

After joining the University of Virginia as a PhD student, Tom still gave me valuable advice, both

on my research and career development. During my visit at Tom’s lab, Aasheesh Kolli was my

mentor, who has been supporting my research not only when I was at Michigan but also after I

joined Virginia. Hassan Wassel was my mentor from the Google PhD Fellowship Program. This

mentorship helped me better understand real-world research problems in the industry and build my

i

Acknowledgments ii

research vision. I would also like to thank Gennady Pekhimenko, Baishakhi Ray, Kevin Sakdron,

Mircea Stan, Steven Swanson, Yuan Tian, and Jishen Zhao, who provided me with valuable advice

on both my research and academic job application.

During my PhD, I was fortunate to work closely with a number of collaborators. I would like to thank

Kevin Angstadt, Rachata Ausavarungnirun, Jianfeng Chi, Amel Fatima, Michael Ferdman, Daniel

Gruss, Zichao Hu, Suraaj Kanniwadi, Yasunari Kato, Samira Khan, Andreas Kogler, Aasheesh Kolli,

Suyash Mahar, Gennady Pekhimenko, Han Jie Qiu, Baishakhi Ray, Jinglei Ren, Tajana Rosing,

Martin Schwarzl, Korakit Seemakhput, Yasas Senvenati, Muhammad Shahbaz, Faysal Shezan, Yun

Joon Soh, Kevin Song, Steven Swanson, Yuan Tian, Hassan Wassel, Yizhou Wei, Tom Wenisch,

Vinson Young, Jishen Zhao, Hanzhi Zhou, and Minxuan Zhou.

Among my collaborators, I would like to additionally thank my labmates in ShiftLab at the University

of Virginia: Amel Fatima, Suraaj Kanniwadi, Yasunari Kato, Suyash Mahar, Korakit Seemakhput,

Yasas Senvenati, and Yizhou Wei. I still remember the good old days when I worked closely with

them till midnight, before conference deadlines.

Besides research, I am also fortunate to work with a group of people from the Computer Architecture

Student Association (CASA) during my PhD. First, I would like to thank Emily Ruppel, the co-chair

and a co-founder of the Computer Architecture Long-term mentoring (CALM), a program affiliated

with CASA. And, I would like to thank other co-founders of CALM, Elba Garza, Yueying Li, Suyash

Mahar, Abdulrahman Mahmoud, Gururaj Saileshwar, and Annus Zulfiqar, who helped make this

mentoring program possible. Besides, I would also like to thank Joel Emer, Saugata Ghose, and

Talia Ringer, who have provided precious advice to CALM.

My PhD career is a six-year journey. I was fortunate to be accompanied by friends who I could

share my happiness and sadness with, especially during the quarantine period due to COVID-19. I

would like to thank Weilin Xu, Aihua Chen, Suya, Xida Ren, and Jianfeng Chi for the dinners and

picnics; Zhongzheng Tian, Yang Yang, Jiayu Zhou, and Farzana Ahmed Siddique for the fantastic

hiking experience in Virginia; Yi Jiang for introducing photography to me, a hobby that helped me

stay positive during the pandemic days; Sergiu Mosanu, Tom Tracy, Vaibhav Verma for the great

time in the bar after work; Dengwang Tang and Ye Fei for hosting me during my trip back to Ann

Arbor; Yi Zhang for showing me around Princeton; Zixuan Wang for showing me the campus of

UCSD during my visit at San Diego.

Abstract

Persistent memory (PM) technologies, such as Intel’s Optane memory, unify memory and storage

and deliver both data persistence and high-performance. PM systems allow programs to directly

manage their persistent data in memory, as opposed to the conventional way that goes through the

file system. Though performant, integrating this new memory technology would require significant

changes throughout the system stack. First, programs that directly manage persistent data need

to guarantee data recovery after a failure, as the file system is bypassed. However, it is hard

and error-prone to ensure failure-recovery as programs need to carefully manage writes to PM.

Second, PM is both a memory and a storage device, which requires various memory and storage

supports, such as memory encryption and integrity verification that secure the data and memory

deduplication for better bandwidth. Among these supports, the security guarantees are critical but

can significantly increase the access latency. Moreover, these supports should also follow the existing

crash consistency guarantees. Third, even with data encryption and integrity verification, there can

be other vulnerabilities in a real PM system. For example, Intel’s Optane PM uses multiple levels

of caches and buffers to improve performance, which can lead to new side channels.

My thesis aims to provide system supports to overcome these new challenges. We hypothesize that

a whole-system-level redesign, from programming support to hardware, that ensures correctness,

security, and high-performance, is necessary in order to integrate persistent memory into practi-

cal systems. On the software side, to ensure the failure-recovery correctness, we have developed

testing tools, PMTest and XFDetector, to help programmers detect failure-recovery issues; and a

test case generator, PMFuzz, to generate high-coverage test cases. On the hardware side, we have

proposed efficient and secure hardware-software co-designs for PM systems. Further on, we have

reverse-engineered the commercial Optane PM from Intel, and exploited its covert and side-channel

vulnerabilities.

iii

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Sihang Liu

This dissertation has been read and approved by the Examining Committee:

Samira Khan, Advisor

Kevin Skadron, Chair

Baishakhi Ray

Mircea Stan

Yuan Tian

Thomas Wenisch

Accepted for the School of Engineering and Applied Science:

Engineering Dean, Dean, School of Engineering and Applied Science

July 2022

iv

Contents

1 Introduction 1
1.1 Theme 1: Correctness guarantees for PM programming 3
1.2 Theme 2: Secured and high-Performance PM systems 3
1.3 Theme 3: Side-channel vulnerabilities in PM hardware 4
1.4 Summary . 5

2 Background 6
2.1 Persistent Memory Technologies . 6
2.2 Software Systems for Persistent Memory . 7

2.2.1 Programming with Low-Level Primitives . 7
2.2.2 Programming with PM Libraries . 8
2.2.3 Crash Consistency Bugs . 9

2.3 Hardware Systems for Persistent Memory . 10
2.3.1 Crash consistency support from the PM hardware systems. 10
2.3.2 Encryption in PM Hardware . 10
2.3.3 Other Memory and Storage Support for PM Hardware Systems 12

2.4 Security Implications of Persistent Memory Systems 13
2.4.1 Side-Channel Attacks . 13
2.4.2 Hardware System inside Optane PM . 14

3 Software Support for Persistent Memory Systems 16

3ATesting Framework for Persistent Memory Programs 17
3A.1 Introduction . 17
3A.2 Crash-consistency Testing . 20
3A.3 Key Ideas of PMTest . 22

3A.3.1 Key Ideas in Testing Crash Consistency . 22
3A.3.2 Integrating the Key Ideas into PMTest . 24

3A.4 Implementation of PMTest . 25
3A.4.1 Overview of PMTest . 25
3A.4.2 PMTest Interface . 26
3A.4.3 Operation Tracking . 26
3A.4.4 The Checking Engine . 27
3A.4.5 System Integration . 30

3A.5 Flexibility of PMTest . 31
3A.5.1 Implementation of Customized Checkers. 31
3A.5.2 Adaption to Other Persistency Models. 33

3A.6 Evaluation . 34
3A.6.1 Methodology . 34
3A.6.2 Performance Evaluation . 34
3A.6.3 Bug Detection Evaluation . 36

3A.7 Discussion . 38
3A.7.1 The Use of PMTest . 39
3A.7.2 Programmer’s Effort using PMTest . 39

v

CONTENTS vi

3A.7.3 Impact of incorrect use of PMTest . 39
3A.7.4 Future Work . 40

3BTesting for Persistent Memory Programs across System Failures 41
3B.1 Introduction . 41
3B.2 Background and Motivation . 44

3B.2.1 Need for An End-to-End, Cross-Failure Testing 44
3B.2.2 Causes of Inconsistency . 47

3B.3 Cross-Failure Bugs . 49
3B.3.1 Cross-Failure Race . 49
3B.3.2 Cross-Failure Semantic Bug . 50
3B.3.3 Summary . 51

3B.4 Key Ideas of XFDetector . 52
3B.4.1 Data Consistency . 52
3B.4.2 Failure Injection . 53

3B.5 Implementation of XFDetector . 53
3B.5.1 An Overview of XFDetector . 53
3B.5.2 Software Interface . 54
3B.5.3 Tracing Mechanism . 55
3B.5.4 Detection Procedure . 55
3B.5.5 Extensibility . 59

3B.6 Evaluation . 61
3B.6.1 Methodology . 61
3B.6.2 Performance . 61
3B.6.3 Detection Capability . 62

3B.7 Discussion . 64

3CTest Case Generation for Persistent Memory Programs 66
3C.1 Introduction . 66
3C.2 Background and Motivation . 69

3C.2.1 Nontrivial Bugs in PM Programming . 69
3C.2.2 Requirements for Fuzzing PM Programs . 71

3C.3 High-Level Design of PMFuzz . 74
3C.3.1 Normal PM Image Generation . 74
3C.3.2 Crash Image Generation . 75
3C.3.3 Coverage for PM Path . 76

3C.4 Implementation of PMFuzz . 78
3C.4.1 Overview . 78
3C.4.2 PM Operation Tracking . 78
3C.4.3 Fuzzing Feedback Logic . 80
3C.4.4 Execution Derandomization . 81
3C.4.5 Detailed Fuzzing Procedure . 81
3C.4.6 Test Case Management . 82
3C.4.7 Optimization Strategies . 83

3C.5 Evaluation . 84
3C.5.1 Methodology . 84
3C.5.2 PM Path Coverage . 86
3C.5.3 Synthetic Bug Detection . 87
3C.5.4 New Real-world Bugs Found by PMFuzz . 87

3C.6 Discussion . 90

4 Secured and Efficient Hardware for Persistent Memory Systems 92

4ACrash Consistency in Encrypted Persistent Memory Systems 93
4A.1 Introduction . 93

CONTENTS vii

4A.2 Crash Consistency for Encrypted PM Systems . 96
4A.3 Counter-Atomicity . 97

4A.3.1 Requirement . 97
4A.3.2 Enforcing Counter-atomicity . 98

4A.4 Selective Counter-Atomicity . 100
4A.4.1 The Overhead of Full Counter-Atomicity . 101
4A.4.2 Not All Writes Equally Affect Recoverability 101
4A.4.3 Definition and Primitives . 103

4A.5 Implementing Selective Counter-Atomicity . 105
4A.5.1 System Integration . 105
4A.5.2 Hardware Implementation . 106

4A.6 Evaluation . 109
4A.6.1 Methodology . 109
4A.6.2 Workloads . 111
4A.6.3 Results . 111

4A.7 Discussion . 116

4BOptimizing Memory and Storage Support for Persistent Memory Systems 117
4B.1 Introduction . 117
4B.2 Performance Overhead of BMOs . 120
4B.3 Overview . 121

4B.3.1 Key Ideas . 121
4B.3.2 Requirements . 125

4B.4 JANUS . 126
4B.4.1 High-level of Janus . 126
4B.4.2 Backend Memory Operations . 126
4B.4.3 Hardware Support . 128
4B.4.4 Software Support for Optimization . 132
4B.4.5 Compiler Support . 134
4B.4.6 Real-World Considerations . 135

4B.5 Evaluation . 136
4B.5.1 Methodology . 136
4B.5.2 Results . 137

4B.6 Future Works . 141

5 Side-channel Attacks in Optane Persistent Memory 143
5.1 Introduction . 143
5.2 Reverse-engineering and Attack Primitives . 146

5.2.1 System Configuration . 146
5.2.2 Overall hierarchy in Optane . 147
5.2.3 Read-Modify-Write Buffer . 148
5.2.4 Address-Indirection-Translation Buffer . 150
5.2.5 Wear-leveling . 151
5.2.6 Read-Write Contention . 154
5.2.7 Summary of Attack Primitives . 155

5.3 Local Cross-Core Covert Channel . 155
5.3.1 Attack Model . 155
5.3.2 Attack Design . 156
5.3.3 Attack Setup . 157
5.3.4 Results . 157

5.4 Keystroke Attack . 158
5.4.1 Attack Model . 159
5.4.2 Attack Design . 159
5.4.3 Attack Setup . 159

CONTENTS viii

5.4.4 Results . 160
5.5 Remote Covert Channel . 162

5.5.1 Attack Model . 162
5.5.2 Attack Design . 162
5.5.3 Attack Setup . 163
5.5.4 Results . 164

5.6 Remote Note Board Attack . 165
5.6.1 Attack Model . 165
5.6.2 Attack Design . 166
5.6.3 Attack Setup . 166
5.6.4 Results . 167

5.7 Discussion . 168
5.7.1 Future Works . 168
5.7.2 Defense Mechanisms . 168

6 Related Works 170
6.1 Software Systems for Persistent Memory . 170

6.1.1 Persistent Memory Libraries . 170
6.1.2 File systems for Persistent Memory . 171
6.1.3 Testing for Persistent Memory Software . 171

6.2 Hardware Systems for Persistent Memory . 172
6.2.1 Memory Persistency . 172
6.2.2 Hardware-based Crash Consistency Mechanisms 172
6.2.3 Security Guarantees in PM Hardware Systems 173

7 Conclusions 174

Bibliography 177

List of Tables

2.1 A description of the existing backend memory operations in PM systems. 13

3A.1 Tools for testing crash consistency. 21
3A.2 Summary of PMTest functions. 27
3A.3 System Configuration. 34
3A.4 Real workloads from WHISPER benchmark suite [1] (YCSB from [2]). 35
3A.5 Summary of synthetic bugs for PMTest validation. 37
3A.6 Summary of the known bugs in the commit history and the new bugs detected by

PMTest. 37

3B.1 Data consistency requirements in different crash consistency mechanisms. 48
3B.2 XFDetector software interface. 55
3B.3 The evaluated system. 60
3B.4 The evaluated PM programs. 61
3B.5 The synthetic bugs for validation. 63

3C.1 System configuration. 84
3C.2 Comparison points. 85
3C.3 Tested PM programs, and synthetic bug detection. 87

4A.1 The consistency states affecting counter-atomicity in different stages of a transaction
with undo-logging. 103

4A.2 System configuration. Tests are single-thread and single-core unless explicitly men-
tioned. 110

4B.1 Software interface of Janus for pre-execution. 130
4B.2 System configuration. 136
4B.3 Evaluated workloads. 137

5.1 System hardware and software configuration. 146
5.2 Local covert channel (n = 100). 158
5.3 Comparison with existing cross-core covert channels without shared memory. 158
5.4 Error rates of the keystroke side-channel. 161
5.5 Remote covert channel under different levels of background noise (n = 100). 164
5.6 Comparison with existing remote covert channels (local network, without background

noise). 164
5.7 Note Board attack accuracy under different noise types and time gaps (n = 10). . . . 167

ix

List of Figures

2.1 Buggy examples using (a) low-level functions and (b) a transactional interface. . . 8
2.2 The counter-mode encryption technique: (a) encrypting data during a write access,

and (b) decrypting data during a read access. 11
2.3 Reduction in latency with the counter-mode encryption technique during a read

access. 11
2.4 (a) Inconsistent decryption if counter write fails, (b) Inconsistent decryption if data

write fails, and (c) Consistent decryption if data and counter writes are atomic. . . 12
2.5 Components inside an Optane DIMM. 15
2.6 Internal memory hierarchy of an Optane DIMM. 15

3A.1 Different PM system stacks and sample codes. 21
3A.2 Checking mechanism based on the semantics of (a) the x86 persistency model [3]

and (b) HOPS [1]. 23
3A.3 (a) A trace of PM operations. (b) The order between PM operations. (c) The persist

interval of writes. 24
3A.4 Examples of testing programs using (a) the low-level checkers and (b) checkers for

transactions. 25
3A.5 A high-level view of PMTest (shaded components can be customized by programmers). 25
3A.6 An example of checking a trace. 29
3A.7 (a) The master and worker threads and (b) the workflow of PMTest. 30
3A.8 System integration of PMTest for (a) user-space programs and (b) kernel modules. 31
3A.9 Performance of testing microbenches. 35
3A.10 Performance of testing real workloads. 35
3A.11 Execution time of Memcached with PMTest. 36
3A.12 New bugs found in (a) PMFS, and (b, c) PMDK applications. 38

3B.1 An example of an inconsistency in program’s post-failure execution. 44
3B.2 An example of an inconsistency in program’s pre-failure execution. 45
3B.3 Causes of inconsistency after system failure. 46
3B.4 Cross-failure bugs from the example of (a) Figure 3B.1 and (b) Figure 3B.2. 47
3B.5 Two classes of cross-failure bugs. 51
3B.6 Examples of detecting (a) a cross-failure race and (b) a cross-failure semantic bug

based on the data consistency status of PM locations. 52
3B.7 An overview of XFDetector. 54
3B.8 XFDetector’s (a) frontend and (b) backend. 56
3B.9 Transitions of the persistence state. 57
3B.10 Transitions of the consistency state. 58
3B.11 (a) The pre- and post-failure traces, (b) the states in the shadow PM, and (c) the

code demonstrating the steps of the detection procedure. 58
3B.12 Performance of XFDetector: (a) wall-clock time and (b) slowdown over pure Pin

and original program. 62
3B.13 The execution time of micro benchmarks with variable numbers of pre-failure trans-

actions. 62

x

LIST OF FIGURES xi

3B.14 New bugs detected by XFDetector in (a) Hashmap-Atomic, (b) Redis, and (c) libp-
memobj. 63

3C.1 A buggy PM-based B-Tree (Example 1). 69
3C.2 A general fuzzing procedure. 71
3C.3 A buggy PM-based database (Example 2). 71
3C.4 PM program execution procedures that generate (a) a normal image, and (b) a crash

image. 72
3C.5 (a) An invalid image produced by direct mutation, (b) a normal image produced by

program logic, and (c) a crash image produced by program logic. 72
3C.6 Persistent data layout in (a) an Ext2 file system [4], (b) a PM-based B-Tree, and

(c) a PM-based database. 72
3C.7 Example of control-flow dependency between failures and the recovery procedure. . 75
3C.8 PM path examples (nodes in blue are PM nodes). 77
3C.9 High-level workflow of PMFuzz. 78
3C.10 (a) Code instrumentation, and (b) the corresponding state of the PM counter-map

for tracking PM operations. 79
3C.11 Fuzzing procedure of PMFuzz. 82
3C.12 Tree of PM images and input commands. 82
3C.13 PM path coverage. 86
3C.14 New crash consistency bugs found by PMFuzz: (a) Bug 1 and (b) Bug 6. 88
3C.15 New performance bugs found by PMFuzz: (a) Bug 7, (b) Bug 8, (c) Bug 9–11, and

(d) Bug 12. 89
3C.16 An example from RB-Tree that demonstrates the trade-off between programmability

and performance. 90

4A.1 An example of inconsistency while adding a node to a persistent linked list. 96
4A.2 Different counter-atomic designs. 98
4A.3 Timeline of read and write accesses with three different design shown in Figure 4A.2. 98
4A.4 The timeline of write accesses in a full counter-atomicity design vs. an ideal design

that does not enforce counter-atomicity. 101
4A.5 Timeline showing three stages of a transaction with undo-logging under full counter-

atomicity and selective counter atomicity. 104
4A.6 Implementation of an undo-logging transaction with selective counter-atomicity prim-

itives. 105
4A.7 The high-level overview of a system using the selective counter-atomicity primitives. 106
4A.8 Hardware implementation. The new components are represented with shaded gray,

and the persistent structures protected by ADR is shown in red. 106
4A.9 Performance comparison of different design points. The runtime is normalized to

the no-encryption design (lower is better). 112
4A.10 Throughput of multithreaded workloads, normalized to the single-core no-encryption

design (higher is better). 113
4A.11 Write Traffic to PM normalized to the no-encryption design (lower is better). . . . 113
4A.12 Evaluating SCA with different sizes of counter cache. (a) Average speedup over a

128 kB counter cache (higher is better). (b) Average counter cache miss rate (lower
is better). 114

4A.13 The runtime of SCA with different sizes of transaction, normalized to the ideal
design (lower is better). 115

4A.14 Varying (a) read latency, and (b) write latency. 116

4B.1 Write latency (a) without and (b) with BMOs. 121
4B.2 Optimize encryption and deduplication by: (a) parallelizing sub-operations, and (b)

categorizing sub-operations by external dependency for pre-execution. 123

LIST OF FIGURES xii

4B.3 Timeline of an undo log with (a) serialized, (b) parallelized and (c) pre-executed
BMOs. 123

4B.4 An example of pre-executing BMOs in an undo-logging transaction. 125
4B.5 High-level of Janus (HW changes are shaded). 126
4B.6 The dependency graph of backend operations. 127
4B.7 Detailed hardware mechanism of Janus. 129
4B.8 Two PM transactions optimized by Janus. 134
4B.9 Speed up of Janus over the serialized design with different number of cores. 138
4B.10 Comparison with the ideal case where BMO latency is not on critical path. 138
4B.11 Speed up of Janus over the serialized design with automated and manual instru-

mentation. 139
4B.12 Speedup of Janus over the serialized design with variable deduplication ratios and

different algorithms. 139
4B.13 Speedup of Janus over the serialized design with different transaction sizes. 140
4B.14 Speedup of Janus over the serialized design with variable number of BMO units and

buffer entries. 140

5.1 Optane read latency with variable memory sizes. 147
5.2 Hit and miss latencies of RMW and AIT buffers. 147
5.3 RMW (a) associativity using variable bitmasks and (b) replacement policy using

different access patterns. 150
5.4 Effect of CLFLUSH to RMW buffer. 150
5.5 AIT (a) associativity using variable bitmasks and (b) replacement policy using dif-

ferent access patterns. 151
5.6 (a) latency of wear-leveling compared to normal writes and (b) a histogram of wear-

leveling latency. 152
5.7 Number of writes to trigger one wear-leveling event. 152
5.8 Experiments for reverse-engineering: (a) counter granularity and (b) remapping

granularity of wear-leveling. 153
5.9 Effect of read-write contention. 153
5.11 A demonstration for the local covert channels. 157
5.12 Keystroke side-channel attack. 159
5.13 The inter-keystroke timings (∆T) from the typer (top) and the RMW side-channel

(bottom). 160
5.14 The time distribution of the reference typers compared to the error’s distribution of

the RMW side-channel. 161
5.15 Remote covert channel. 162
5.16 Histogram of the remote request RTT (n = 100). 163
5.17 Remote Note Board attack. 165

Chapter 1

Introduction

The advancement in memory technologies brings a new type of memory, persistent memory (PM)

or non-volatile memory (NVM), that offers data persistence similar to storage devices, such as Solid

State Drives (SSDs), while delivering performance close to dynamic random-access memory (DRAM).

With Intel’s release of Optane DC Persistent Memory [5], this new class of memory technology has

finally become available to the industry, researchers, and developers. There are also other PM tech-

nologies such as ReRAM [6] and STT-RAM [7] under research that promise better performance.

These PM devices are placed on the memory bus, alongside DRAM, and can be accessed through a

byte-addressable load/store interface. Therefore, the adoption of PM blurs the boundary between

storage and memory, moving the persistent domain from storage to the main memory. This uni-

fication of storage and memory brings a significant performance improvement to applications that

manage and manipulate persistent data, such as file systems [8–11] and databases [12–16].

The benefit from adopting PM is prominent, however, accessing persistent data through a level of

indirection in the file systems or databases overshadows the benefit of this fast memory technology.

As PM enables direct access to the persistent storage at a fine granularity, programs can bypass such

indirection and manage their persistent data through a direct, byte-addressable load/store memory

interface. However, the opportunity of achieving better performance by managing persistent data

directly also brings new challenges to the system design. The first challenge is in the development

of correct programs for the new PM system. One major requirement of persistent data is their

recoverability to a consistent state in event of a system crash (e.g., unexpected power outage and

1

2

system crash). This requirement is also known as the crash consistency guarantee. In a conventional

system, programs access persistent data through file systems that manage data recovery after power

cycles or unexpected failures. In comparison, PM systems provide direct access capabilities to move

the file system overheads off the critical path. Although this mode provides better performance,

programs need to directly manage persistent data and leave the burden of maintaining their crash

consistency to programmers, which is difficult and error-prone. With the release and integration

of Intel’s DC Persistent Memory, there is an urgent need for assisting programmers to develop

PM-optimized programs and ensure their crash consistency guarantee.

The second challenge is to design secure and efficient PM hardware systems. As PM is not only a

type of memory but also a storage device, it needs system support that has been applied to storage

devices, such as encryption, integrity verification, wear-leveling, deduplication, and compression.

These various kinds of system support ensure security and reliability, and optimize the bandwidth

and capacity of PM. These system supports should be low-overhead and work with the PM-based

programs seamlessly. However, a naive integration of these supports into PM hardware can lead to a

degradation in performance. For example, integrity verification can lead to hundreds of nanoseconds

of extra latency to memory accesses. Even worse, additional memory operations in these memory

and storage supports can break the crash consistency guarantees. For example, each data block in a

counter-mode encryption system [17] requires an additional counter for encryption. If the versions

of data and the counter do not match, the data block will fail to decrypt. Existing PM hardware

systems, however, do not provide such a guarantee. To solve these issues, a redesign of PM hardware

system stack will be necessary.

The third challenge is in the potential side-channel vulnerabilities in PM devices. The PM storage

media itself, such as Intel’s Optane technology, cannot deliver the DRAM-like performance through

the DDR interface directly. To bridge the performance gap between the PM storage media and the

DDR memory interface, the commercial PM device introduces buffers and caches, as well as internal

memory remappings [18–22]. Prior works on hardware side-channel attacks, such as Spectre [23] and

Meltdown [24], have exploited transient execution in the processor to break the existing isolation

provided by the operating system. As the Optane PM is a complicated system, there can be new

security concerns. Thus, there is a need to study and mitigate the potential vulnerabilities before

attackers can exploit them in real life.

1.1. THEME 1: CORRECTNESS GUARANTEES FOR PM PROGRAMMING 3

Thesis Statement: We hypothesize that a whole-system-level redesign, from programming sup-

port to hardware, that ensures correctness, security, and high-performance, is necessary in order to

integrate persistent memory into practical systems.

1.1 Theme 1: Correctness guarantees for PM programming

The performance benefit of PM comes from not only its faster storage media but also the direct

access to persistent data, without going through file system indirections. However, the programs

are still expected to be recoverable in event of a failure. To meet the requirements for recovery, the

programs need to integrate failure-recovery mechanisms such as redo/undo logging, shadow paging,

and checkpointing, by carefully managing writes to PM. Therefore, programming for PM is hard

and error-prone. We refer to programming errors that cause programs to fail in recovery as crash

consistency bugs. This research theme aims to assist programming for PM systems.

In Chapter 3A, we introduce our testing tool, PMTest [25], that exposes the low-level and persistence

of PM writes to programmers, and then checks the ordering and persistence states against a specifica-

tion. Violations of the specified ordering and persistence requirements indicate the implementation

is buggy and cannot lead to a consistent recovery.

Further, we find that recovery correctness not only depends on the normal execution before failure

but also the recovery procedure that restores data. If either stage fails, the program can end up in a

non-recoverable state. In Chapter 3B, we present XFDetector [26], a testing tool that increases the

testing scope from program’s normal execution phase to the whole duration of program’s execution.

By placing failures in the program and attempting to recover from the failure, XFDetector tests

both the normal execution stage and the recovery procedure end-to-end.

PMTest and XFDetector make it possible to detect crash consistency bugs. However, detecting

these bugs sometimes requires strong tests. For example, a procedure during recovery may require

a certain state on the PM image to trigger. Therefore, in Chapter 3C, we introduce PMFuzz [27], a

test case generator for covering program paths that can lead to crash consistency bugs.

1.2 Theme 2: Secured and high-Performance PM systems

Different from conventional memory systems, PM is not only a type of memory but also a storage

device. Therefore, a practical PM system would require supports that guarantee security and relia-

1.3. THEME 3: SIDE-CHANNEL VULNERABILITIES IN PM HARDWARE 4

bility and optimize for capacity and bandwidth. For example, encryption and integrity verification

guarantee security, compression and deduplication improve PM bandwidth, and wear-leveling ex-

tends PM’s lifetime and reliability. This theme focuses on the security guarantee as it is one of the

most important aspects. Counter-mode encryption is a commonly used memory encryption method,

where a random counter value is encrypted and then XORed with the plaintext to generate an en-

crypted block. Therefore, during decryption, the counter value and the encrypted data block need to

match. However, simply integrating encryption into the PM system can break the crash consistency

guarantees. If an encrypted data block is not written atomically with its counter, they can mismatch

in case of a failure. In Chapter 4A, we propose an efficient design that ensures crash consistency in

an encrypted PM system, which we refer to as counter atomicity [28]. Counter atomicity ensures

that the encrypted data block and the counter always become persistent in PM at the same time,

i.e., atomically. To reduce the atomicity overhead, we further relax the requirements by selectively

applying counter atomicity to writes that immediately affect the crash consistency guarantees in a

program, which we refer to as selective counter atomicity.

Besides the impact on recoverability, we find that these memory and storage support, including the

aforementioned encryption operation, can increase the write latency. For example, integrity verifica-

tion can take hundreds of nanoseconds [29]. As crash consistency mechanisms in PM programs add

additional ordering constraints to writes, the write latency is placed on the critical path. To optimize

the increased write latency due to these memory and storage operations, we propose Janus [30] in

Chapter 4B. Janus is a software-hardware co-design that takes two key methods to optimize the

write latency. First, in Janus, memory and storage operations are divided into smaller steps such

that they can be executed in parallel. Second, Janus provides a software interface that allows for

these operations to be executed ahead of time, before the write happens, as soon as they have their

address and/or data dependencies resolved. For example, in a key-value insertion function, the data

dependency of the value update is known at the function call, and its address dependency is known

as soon as after lookup.

1.3 Theme 3: Side-channel vulnerabilities in PM hardware

Although data on PM can be secured using encryption and integrity verification, there can be

other vulnerabilities in real PM systems. Prior works [18–22] have suggested that the commercially-

available PM, Intel’s Optane DC Persistent Memory (DCPMM) [5] is not a monolithic device;

1.4. SUMMARY 5

instead, it contains buffers, caches, and wear-leveling mechanisms for better performance and en-

durance. Therefore, attackers can leverage these hardware structures in the Optane DIMM to

establish covert channels and perform side-channel attacks to break the existing system-level isola-

tion.

To assess the hardware side-channel vulnerabilities, in Chapter 5, we first reverse-engineer the Optane

module to have a more thorough understanding of its internal hardware structures, including the

cache associativity and replacement policy, and the wear-leveling mechanism. Then, we build attack

primitives based on the reverse-engineered designs. Overall, we provide four attack primitives: (1)

Optane’s Read-Modify-Write (RMW) buffer, (2) the Address-Indirection-Translation (AIT) buffer,

(3) read-write contentions, and (4) the wear-leveling event that can lead to significant latency increase.

Then, we demonstrate four attacks and covert channels based on primitive 1–3: a keystroke attack

that monitors user’s inputs using primitive 1, a remote covert channel based on the wear-leveling

latency, and a remote, asynchronous covert channel using the persistence property of the wear-

leveling mechanism.

1.4 Summary

The thesis is organized as the following. First, Chapter 2 introduces the background on PM sys-

tems, covering both the software, hardware, and security aspects. In Chapter 3, we will first talk

about two testing frameworks that guarantee correct persistence and ordering, and end-to-end cor-

rectness with consideration for the recovery procedure. Then, we will describe a test case generator

that enables efficient testing. In Chapter 4, we will talk about software-hardware co-designs that

guarantee efficiency and crash consistency in PM hardware systems that integrates memory and

storage operations for security, endurance, and bandwidth optimization. In Chapter 5, we further

assess the side-channel vulnerability of the existing Optane PM from Intel, and demonstrate side-

channel attacks and covert channels in Optane-based PM systems. Finally, Chapter 7 summarizes

the thesis.

Chapter 2

Background

In this chapter, we provide the necessary background to understand the rest of the thesis. We first

introduce both experimental and commercial PM technologies (Section 2.1). Then, we introduce the

existing software (Section 2.2) and hardware support (Section 2.3) for PM that enables the recovery

of persistent data in case of a failure and meets practical requirements for security, endurance,

and memory bandwidth. Finally, we describe the security implications of the persistent memory

hardware (Section 2.4).

2.1 Persistent Memory Technologies

Persistent memory (PM) technologies are a new class of memory technology that aims to deliver

high performance and byte-addressability, similar to DRAM, and at the same time, maintain data

persistence, similar to hard drives. There have been many proposals on PM technologies. For

example, the phase-change memory (PCM) [31] places a phase-change material in between two

electrodes, which can be programmed to a high-conductive and a low-conductive phase to represent

bit values of 1 and 0. The resistive random-access memory (ReRAM) [6] is similar to PCM except

that it uses a metal oxide layer to control the resistance and record 0s and 1s. ReRAM cells can

also work as multi-level cells (MLCs) to store multiple bits by further differentiating the resistance

levels [32] (e.g., four resistance levels can represent two bits). The spin-transfer torque random-access

memory (STT-RAM) [7] uses the spin of electrons to present different values. These technologies

are mainly in an experimental stage, whereas Intel has already released its Optane PM [5] that uses

6

2.2. SOFTWARE SYSTEMS FOR PERSISTENT MEMORY 7

their 3D XPoint technology. A system with Optane can have tens of TBs of PM installed on the

memory bus, alongside the DRAM modules. Compared to conventional storage devices, such as

SSDs and HDDs, Optane PM allows programs to better leverage the low access latency by directly

managing persistent data in PM. A common approach is to perform the direct access is to create a

PM image in a file system with the direct access support (e.g., Ext4-DAX), map it to the program’s

address space, and manipulate the persistent data with loads and stores [33]. This way, programs

can bypass the OS indirections, such as the file system, to shorten the data path. Next, we take a

further look into the software systems for PM.

2.2 Software Systems for Persistent Memory

The elimination of file system indirections improves performance, but introduces additional require-

ments to the programs. PM-optimized programs need to maintain persistent data in a recoverable

state in case of a failure, which we refer to as the crash consistency guarantee. Due to the reordering

and buffering in the memory hierarchy, the order a write becomes persistent may differ from the

program order. For example, if the program performs two writes to location A and B on PM, where

the write to A happens before the one to B in program order. Without enforcing the persist ordering,

the write to B can become persistent before the one to A, as cache replacement and memory reorder-

ing are not under program’s control. To support programming for PM systems, hardware platforms

have introduced instructions to maintain a correct persist ordering. For example, in an x86 system,

a sequence of “CLWB;SFENCE” instructions [3] ensures that a cache line will be persisted prior to

subsequent writes (referred to as a persist_barrier()); in an ARM system, similar functionalities

can be implemented using a sequence of “DC CVAP;DSB” instructions [34].

2.2.1 Programming with Low-Level Primitives

These primitive operations make it possible to implement crash-consistent programs for PM systems.

However, using these primitives directly is difficult as the programmers need to understand the

hardware platforms and carefully manage writes at a fine granularity. We provide a simple example

to show the difficulty associated with using these low-level primitives. Figure 2.1a shows a function

that tries to update the value of an array element in a crash-consistent manner. The program takes

the undo logging approach that backs up the data before performing the modification in place, such

that there is always a consistent copy (either the backup or the original data) for recovery. Following

this approach, it first creates a backup copy (line 2) and sets it to be valid (line 3). Then, it persists

2.2. SOFTWARE SYSTEMS FOR PERSISTENT MEMORY 8

void ArrayUpdate(int index, item_t new_val) {
 backup.val = array[index]; //Backup the old value
 backup.valid = true; //Set the backup as valid
 persist_barrier();
 array[index] = new_val; //Update to the new value
 backup.valid = false; //Set the backup as invalid
 persist_barrier();
}

void appendList(item_t new_val) {
 TX_BEGIN {
 node_t *new_node = makeNode(new_val);//Create a new node
 TX_ADD(list.head, sizeof(node_t*)); //Backup old head
 List.head = new_node; //Update head
 List.length++; //Increment length
 } TX_END
}

1
2
3
4
5
6
7
8

(a)

(b)

Missing backup:
TX_ADD(&list.length,sizeof(int));

Missing persist_barrier()

1
2
3
4
5
6
7
8

Figure 2.1: Buggy examples using (a) low-level functions and (b) a transactional interface.

the backup (line 4), followed by updating the array index in place (line 5), and invalidates the backup

copy (line 6). Finally, it persists the in-place update and invalidation (line 7). This example seems

correct as it places a persist_barrier after the backup and after the in-place update assuming

that these barriers will ensure that the update is only performed after the backup gets persisted.

However, it still misses two persist_barriers: (i) one right after the creation of the backup copy

(between line 2 and 3), and (ii) another right after updating the new array index (between line 5

and 6). Omitting anyone can render the array unrecoverable in event of a failure. If a failure occurs

at line 6, it is possible that due to hardware reordering valid has persisted while the actual data

has not. Therefore, after recovery, the array will treat the stale value in memory as the updated one.

As the example shows, using such low-level primitives is hard, especially for complex code bases.

There is a need for a testing framework to identify and resolve such bugs.

2.2.2 Programming with PM Libraries

To simply the programming effort, there have been works that develop PM libraries and provide

higher-level software interfaces, such as transactions and persistent data structures for better pro-

grammability. For example, Intel’s PMDK library [35] provides a transaction interface. The proce-

dure within a PM transaction is expected to be failure-atomic, i.e., either recover to a state before

the transaction has happened or complete the transaction. There are also libraries from academia,

such as Mnemosyne [36], NV-Heaps [37], and MOD [38]. These libraries are built upon the hard-

ware primitives but abstract away the low-level details for easy programming. For example, with the

transactional interface from PMDK [35], programmers can create a failure-atomic transaction with

2.2. SOFTWARE SYSTEMS FOR PERSISTENT MEMORY 9

a pair of TX_BEGIN and TX_END, and use TX_ADD() to create a backup (snapshot) of the persistent

object before modifying it such that the object can roll back to its old data value if the transac-

tion fails to complete due to a crash. Next, we demonstrate another example that uses the PMDK

transaction interface.

Figure 2.1b shows an insertion function of a linked list that appends a new node to the head. The

code seems correct as the programmer wraps up the entire procedure into a transaction and adds

the head to the log for recovery. However, this function is not crash consistent as the programmer

mistakenly assumes that the length of the linked list will get persisted automatically and misses

backing it up (via a TX_ADD()). Therefore, if a failure happens after the length has been incremented

but before the transaction completes (between line 6 and 7), the program will not be able to recover

the correct length of the linked list. The correct implementation should call TX_ADD() to backup the

length field before line 6. We argue that even though transactional libraries are supposed to make

persistent programming easier, it is still very likely to introduce subtle crash consistency bugs.

2.2.3 Crash Consistency Bugs

In the example of Figure 2.1a, the programmer intended to set/unset the valid bit after persisting

the backup/update, but misses the persist_barriers. Similarly, in the example of Figure 2.1b,

the programmer intended to make both the linked list and its length recoverable, but forgets to

backup the length. We conclude that the major difficulty in detecting crash consistency bugs in

crash-consistent software is that it is difficult to ensure the program operates on its persistent data

in the way that programmers intend to. Even if the algorithm for crash consistency is correct,

the implementation can be wrong as the programmers cannot directly infer how writes to PM get

persisted from looking at the code. Fences and writeback operations do not provide an intuitive

interface for programmers to reason about (i) whether a memory location/object has persisted, and

(ii) the order in which different memory locations/objects persist, the two fundamental requirements

to reason about crash consistency. To assist programming for PM systems, in Chapter 3A and 3B,

we introduce two testing frameworks, PMTest [25] and XFDetector [26] that expose the hard-to-

detect crash consistency bugs. For more efficient testing, in Chapter 3C, we further demonstrate a

test case generator, PMFuzz [27], that generates test cases for PM programs.

2.3. HARDWARE SYSTEMS FOR PERSISTENT MEMORY 10

2.3 Hardware Systems for Persistent Memory

In this section, we introduce PM hardware systems that not only enable crash consistency guarantees

but also meet practical requirements for security, endurance, and memory bandwidth.

2.3.1 Crash consistency support from the PM hardware systems.

The examples we have demonstrated so far are based on the existing platform that uses Intel’s Op-

tane PM. To achieve better performance, there have also been research proposals that introduce new

hardware features. One approach is to design a more efficient persistency model [39] to reduce the

overhead of persisting data. For example, DPO [40], HOPS [1], PMEM-Spec [41], and Themis [42]

propose more efficient persistency models over Intel’s system. On the other hand, there are also

hardware systems that ensure crash consistency through hardware extensions. Intel processors have

provided Asynchronous DRAM Refresh (ADR) [43] that lifts up the persistence domain to the write

queue in the memory controller to reduce the latency of data persistence. Beyond the write queue,

Intel recently introduced an extended Asynchronous DRAM Reference (eADR) scheme [44] that

further lifts up the persistence domain all the way to the caches, eliminating the need for cache

write-back/flush operations. There are also proposes from academia. For example, Kiln [45] and

ATOM [46] propose hardware-based crash-consistent transactions by integrating persistent caches

to hold temporal data during a transaction; in case of a failure, persistent data in the cache can

still recover the in-flight transactions. ThyNVM [47] on the other hand, is a hardware-based check-

pointing mechanism that saves the volatile processor and memory state to PM to enable resumption

after system failures. These hardware proposals minimize the programming effort and reduce the

overhead in maintaining crash consistency.

In summary, these hardware systems for PM enable crash consistency, either through primitive

operations that apply to writes or more transparent, specialized hardware extensions. However,

besides crash consistency, the PM hardware also needs to make sure the data is secure to protect

from attackers who have physical access to the PM device.

2.3.2 Encryption in PM Hardware

A common approach to secure the data is to encrypt/decrypt data on every memory access using an

encryption engine located in PM controller. Unfortunately, memory reads are on the critical path

of the program execution. Thus, the additional latency to decrypt data can significantly degrade

2.3. HARDWARE SYSTEMS FOR PERSISTENT MEMORY 11

OTP
Generation

Encrypted
Data

(a)

Plaintext Data

OTP

Address Counter Plaintex
Data

(b)

Encrypted Data

OTP

Address Counter

Key

OTP
GenerationKey

Encryption during a
write access

Decryption during
a read access

Figure 2.2: The counter-mode encryption technique: (a) encrypting data during a write access, and (b) decrypting
data during a read access.

(a)

(b)

Memory Read

Memory Read

Decryption (OTP)

Decryption

time

Plaintext

Plaintext

shorter latency

Serialized

Parallelized

Figure 2.3: Reduction in latency with the counter-mode encryption technique during a read access.

the overall performance. To hide the decryption latency, prior works propose to use the counter-

mode encryption that makes it possible to parallelize the read access and decryption of data in

PM systems [17,48–51]. In this technique, data is not directly encrypted, instead, a unique counter

associated with each write access is encrypted to generate a bit string called one-time-padding (OTP)

(shown in Equation 2.1). This OTP is XORed with the plaintext data to generate the encrypted

data (shown in Equation 2.2, Figure 2.2a). As a result, during a memory read access, the OTP is

generated using the associated counter while data is still being fetched from PM. When the read

access completes, the encryption engine XORs this OTP with the fetched encrypted data to generate

the plaintext (shown in Equation 2.3, Figure 2.2b).

OTP = En(address|counter, key) (2.1)

EncryptedCacheline = OTP ⊕ plaintext (2.2)

plaintext = OTP ⊕ EncryptedCacheline (2.3)

As counters are required to encrypt and decrypt data for all memory accesses, the counters are

buffered on-chip in a counter cache [52], such that the encryption engine does not need to perform

an extra memory read access to fetch the counter value. Figure 2.3a shows the serialized decryption

technique that adds additional latency to read accesses and Figure 2.3b shows that the read access

is faster with the counter-mode encryption technique as the read access and decryption can be

performed in parallel.

The main problem with providing crash consistency for an encrypted PM system is that each en-

crypted data is associated with a counter in the counter-mode encryption, but this relationship is

2.3. HARDWARE SYSTEMS FOR PERSISTENT MEMORY 12

Data

time time time

pe
rs
is
t_
ba
rr
ie
r

Inconsistent Inconsistent Consistent

(a) (b) (c)

Counter Counter Data Counter

Data

Figure 2.4: (a) Inconsistent decryption if counter write fails, (b) Inconsistent decryption if data write fails, and (c)
Consistent decryption if data and counter writes are atomic.

not exposed to the crash consistency mechanisms. While decrypting a cache line after a crash, the

memory controller assumes that each memory address has its latest counter in PM. However, de-

cryption will fail if the versions of data and counter are not in sync (either data or counter in PM

is stale). Figure 2.4 demonstrates that a system failure can result in out-of-sync data and counter.

Every write access to PM consists of two separate write requests, one for the encrypted data and

the other for the counter. If a system failure occurs after the data write reaches PM and before the

counter write does, the memory controller would observe a stale counter value upon system recovery,

introducing inconsistency in data recovery, as shown in Figure 2.4a. Similar inconsistency occurs if

a failure happens after the counter reaches PM but the data has not yet been persistent, as shown in

Figure 2.4b. As OriginalV al = En(address|counter, key)⊕EncryptedV al, then decryption failure

happens in these two cases:

En(address|counterstale, key)⊕ EncryptedV alnew ̸= OriginalV al

En(address|counternew, key)⊕ EncryptedV alstale ̸= OriginalV al

(2.4)

Therefore, to enable correct encryption in PM systems, it is necessary to ensure consistency between

the data and its associated counter. In Chapter 4A, we describe a design that ensures this consistency

by ensuring the data and its counter are updated atomically, as shown in Figure 2.4c.

2.3.3 Other Memory and Storage Support for PM Hardware Systems

So far, we have introduced the background on encryption in PM systems. Besides encryption that

ensures data confidentiality, there are also other requirements in practical PM systems. Attackers can

also tamper with the data on PM. Thus, to ensure the integrity of data, recent works also use integrity

verification techniques [57–59]. Moreover, PM has a limited lifetime [31,94]. A practical PM system

needs to overcome the limitation in lifetime. Prior works have proposed wear-leveling [54, 92, 93]

and error correction [88–90] techniques to mitigate the lifetime issue. PM also has a limited write

bandwidth compared to that of read [95–97]. A common way of overcoming the write bandwidth is

to reduce the write traffic using compression [78–87,98,99] or deduplication [73–77] techniques. We

summarize the existing flavors of memory and storage support for PM in Table 2.1. These memory

2.4. SECURITY IMPLICATIONS OF PERSISTENT MEMORY SYSTEMS 13

Table 2.1: A description of the existing backend memory operations in PM systems.

Type Backend Operation Description Extra Write Latency

Security

Encryption [28,48–
50,53–59]

Ensures data confidentiality.
Counter-mode encryption is
typically used in PM.

40 ns [28,48]

Integrity
Verification [29,48,
57–64]

Ensures the integrity of data
preventing unauthorized
modification. Typically, a Merkle
Tree (a hash tree) is used to verify
memory integrity.

360 ns (assume a 9-layer
Merkle Tree) [48]

ORAM [65–72]
Hides the memory access pattern
by changing the location of data
after every access.

∼ 1000 ns [67]

Bandwidth

Deduplication [73–
77]

Reduce write accesses that have
duplicated data to reduce the
write bandwidth.

91–321 ns [77]

Compression [78–87] Reduce the size of memory
accesses to save the bandwidth. 5–30 ns [83,85]

Endurance
Error
Correction [88–90]

Corrects memory error. Typical
solutions include error-correcting
code and pointers.

0.4–3 ns [91]

Wear-
leveling [54,92,93]

Spreads out writes requests to
even out memory cell wear-out. ∼ 50 µs [18]

and storage supports happen in the background, at the memory controller, and are transparent to

the processor, therefore, we collectively refer to them as backend memory operations (BMOs). In

conventional programs, reads are on the critical path of execution. Hence, these BMOs optimize for

read latency, like the counter-mode encryption operation introduced in Section 2.3.2. However, to

satisfy the crash consistency guarantees, the write latency can also be on the critical path of PM

programs, introducing new research problems on optimizing the write latency. In Chapter 4B, we

provide a software-hardware co-design that mitigates the latency of BMOs.

2.4 Security Implications of Persistent Memory Systems

Operations that ensure data security in PM hardware, as introduced in Section 2.3 prevents attackers

from reading or tampering data. In this section, we introduce the background on side-channel attacks,

which assesses the security aspects of PM from a different angle.

2.4.1 Side-Channel Attacks

Instead of directly exploiting information leakage vulnerabilities in interfaces, side channels observe

the behavior of a target system [100], e.g., power consumption, EM radiation, or timing, and deduce

2.4. SECURITY IMPLICATIONS OF PERSISTENT MEMORY SYSTEMS 14

secrets from this meta-information.

Cache attacks target the caches of modern processors, with the most techniques being Prime+Probe

[101, 102] and Flush+Reload [103]. Both enable a local attacker to observe cache activities of co-

located programs via timing differences in memory accesses. Both techniques were used to build

fast and stealthy covert channels [103–109], i.e., side channels with a colluding victim exfiltrating

data. NetCAT [110] showed that cache timing differences can even be induced and exploited over

the network on systems with RDMA or DDIO support. However, Intel recommends disabling

RDMA and DDIO in untrusted networks to mitigate the attack. More recently, cache attacks gained

substantial attention as building blocks of transient-execution attacks [23, 24, 111–116]. Schwarz et

al [117] demonstrated that such attacks can also be exploited remotely.

Previous works reverse-engineered undocumented hardware to assess their attack surface and secu-

rity relevance. For example, DRAMA exploits DRAM row buffers to establish a covert channel and

monitor memory accesses [118], which is enabled by reverse-engineering DRAM addressing functions.

Gras et al. [119] exploit the Translation-Lookaside Buffer (TLB) to leak sensitive information such as

cryptographic keys, which is enabled by reverse-engineering the TLB internal behavior. These exam-

ples show that with co-location and hardware sharing in the cloud, side channels are an immediate

threat. We need to find and mitigate these new attacks before they are exploited.

2.4.2 Hardware System inside Optane PM

An Optane PM module consists of several components [120], as shown in Figure 2.5. As a single

Optane storage chip has limited performance, these internal components bridge the performance gap.

First, an Optane DIMM integrates multiple Optane storage chips that can be accessed in parallel

for higher bandwidth. Second, similar to flash chips in SSDs [121–123], Optane chips also have a

limited write endurance [124]. Therefore, the Optane controller performs wear-leveling by changing

the mapping between the physical and Optane’s internal addresses after a number of accesses. Thus,

each access performs a physical-to-internal address translation before accessing the Optane media.

Third, to hide such translation latency, the DIMM has SRAM and DRAM caches to buffer both

data and address translation. Finally, the Optane DIMM uses residual capacitors to back up these

volatile caching structures to ensure persistence.

As an Optane PM module is a sophisticated system with buffers, caches, and specialized controllers,

software developers need to model the performance and runtime behavior to optimize software

2.4. SECURITY IMPLICATIONS OF PERSISTENT MEMORY SYSTEMS 15

○ Multiple storage media chips
○ Controller (with SRAM buffers)

○ DRAM buffer
○ Capacitors (to writeback buffers)

Figure 2.5: Components inside an Optane DIMM.

Write-pending
Queue (512B)

Load-store
Queue (4kB)

Read-Modify-Write
Buffer (16kB)

Addr-Indirection-
Translation Buffer

(16MB)

CPU Optane DIMM

64B Read/Write 256B Read/Write

Optane
Storage
Media

4kB Read/Write 4kB Read/Write

Figure 2.6: Internal memory hierarchy of an Optane DIMM.

systems for Optane. Thus, prior works have characterized the performance metrics of Optane [18–22].

Figure 2.6 illustrates Optane’s internal hierarchy, according to their characterizations and Intel’s

official documentation. On the CPU side, the Write-Pending Queue (WPQ) issues 64B read/write

accesses to Optane PM. Correspondingly, on the Optane side, the Load-Store Queue (LSQ) accepts

the incoming 64B accesses. After the LSQ, accesses are coalesced into 256B blocks. These merged

accesses then enter a Read-Modify-Write (RMW) buffer, which caches 64 entries of 256B blocks (a

total of 64 kB of data), similar to data caches in the CPU. The RMW buffer is also used as a write-

back cache, i.e., besides reads, writes also use the RMW. As introduced earlier, the physical address

is translated to an Optane-internal address at 4 kB granularity. Thus, if an access misses the RMW

buffer, it is translated before accessing the storage media. An Address-Indirection-Translation (AIT)

buffer maintains a DRAM-based lookup structure to cache 4096 translation entries (covers 16MB of

data in total), much like the CPU’s TLB that caches virtual-to-physical address translation.

As Optane has an internal memory system, like CPUs, we study its security properties and whether

it facilitates new side-channel attacks in Chapter 5. Existing characterization works [18–22] do not

permit such security insights, as security-critical aspects like replacement policy and associativity

are unclear.

Chapter 3

Software Support for Persistent

Memory Systems

16

Chapter 3A

Testing Framework for Persistent

Memory Programs

3A.1 Introduction

Programming in PM systems for crash consistency is hard and error-prone, as we have introduced in

Section 2.2. The two fundamental guarantees required by any crash-consistent software are durability

and ordering. A durability guarantee from the PM system is required to enforce data to reliably reach

persistence. As the cache hierarchies are volatile in our current systems, simply executing a store

instruction to a PM location does not ensure that the new value is persistent. To solve this problem,

the x86 ISA introduced new optimized instructions (e.g., CLWB [3]) to efficiently writeback cache

lines to memory. We refer to the act of making a cache line persistent (through a writeback or other

means [1, 40]) as a persist operation.

Enforcing ordering is another fundamental necessity for any crash-consistent software. An ordering

guarantee from the PM system is required for crash-consistent software to explicitly order persist op-

erations as the hardware can reorder instructions in the processor and cache hierarchy. For example,

the commonly used undo logging mechanism [37,125] requires the undo log entry to be created and

persisted before the associated data gets modified. x86 systems provide ordering guarantees through

the SFENCE instruction. However, different architectures provide durability and ordering guarantees

through architecture-specific instructions [3,34]. While developing crash-consistent software for PM

17

3A.1. INTRODUCTION 18

systems, programmers must carefully use these low-level primitives for correctness. Relying on such

low-level, architecture-specific primitives to develop software is hard and error-prone. Even with

the help of transactional libraries that build upon these low-level primitives [35–37, 126], program-

mers still need to understand the specification of the durability and ordering guarantees provided

by these libraries to properly use them. The major difficulty arises from the fact that the order of

persist operations executed in the hardware can be different from the program order. As a result,

programmers cannot determine whether the crash consistency algorithm is correctly implemented,

i.e., whether the order specified in the crash-consistent software will not result in a runtime ordering

that violates the required ordering of the persist operations. We refer to the bugs that cause PM

program to fail recovery as crash consistency bugs.

We argue that developers will greatly benefit from a testing infrastructure that can help identify the

improper use of low-level primitives or high-level libraries. While prior works have developed tools

to assist development of crash-consistent software, they are all specific to certain file systems [127] or

user-space libraries [128,129]. These tools rely on exhaustive search space exploration of all possible

ordering or binary instrumentation of the program, leading to a significant performance overhead.

For example, Yat [127], a tool that tests Intel’s persistent memory file system (PMFS [130]) can take

more than 5 years to test all possible orderings in a trace with around 100k PM operations. In this

chapter, we argue that an effective testing tool needs to meet two requirements. First, the testing

mechanism needs to be fast so that programmers can reason about the durability and ordering of the

persistent operations and detect bugs in the development phase. Second, the testing must support

a myriad of crash-consistent software that will be built with various architecture-specific low-level

primitives and high-level libraries. It also needs to support different persistency models that order

persists in various ways. For example, Intel and ARM uses a strict ordering of writes [3, 34], while

recent academic proposals relax this ordering [1, 39, 40]). In this chapter, we propose PMTest, a

crash consistency testing framework that is, unlike prior work, both flexible and fast.

Flexible. Our key idea is based on the observation that regardless of the difference in crash-

consistent software (kernel modules, or custom applications using architecture-specific low-level

primitives or high-level libraries), they all fundamentally rely on two types of operations in order to

provide the durability and ordering guarantee: enforcing persisting a write and enforcing ordering

between writes. To this end, we propose two low-level checkers that developers can debug their soft-

ware with: isPersist() and isOrderedBefore(), that check whether (i) certain persistent objects

have been persisted since their last update and (ii) if a certain persist operation has been ordered

3A.1. INTRODUCTION 19

before another, enabling testing of the two fundamental properties of any crash-consistent software.

Similar to assertions [131, 132] used in programs, these two checkers can be instrumented in the

code, which provides a way to expose the ordering and durability of the persistent operations to the

software (details in Section 3A.4.4). On top of that, programmers can use the PMTest framework

to build custom, high-level checkers in the software based on the two low-level checkers for different

libraries and persistency models (details in Section 3A.5). High-level checkers can automate the

process of debugging crash-consistent software built with PM libraries.

Fast. PMTest enables high-speed testing by inferring the ordering of persist operations without

exhaustively testing all possible orders. The key idea is to track the PM operations (e.g., writes,

cache writeback, fence) at runtime and deduce the time interval during which a write may persist. An

overlapping time interval for two write operations implies that the two writes are not strictly ordered;

the ending time of the interval determines at what point in the program the write is guaranteed to

persist.

We evaluate the capability of PMTest bug detection in two ways. First, PMTest detects 45 manu-

ally created bugs (synthetic and reproduced from the commit history) in WHISPER [1], a bench-

mark suite for PM. Second, PMTest detected 3 new bugs in a file system (PMFS) and in appli-

cations developed using a transactional library (PMDK). These bugs have been reported to Intel

and have been fixed with proper credit to PMTest [133, 134]. Further, our experiments also re-

veal that PMTest checkers can help programmers understand the persistency guarantees of PM

libraries.

Contributions. The main contributions of this chapter are the follows:

• We design and implement PMTest, a tool to detect crash consistency bugs in PM applications.

To our knowledge, PMTest is the first tool that is both flexible and fast.

• PMTest is flexible as it enables the design of specific checkers in the software for different

libraries and persistency models. Currently, PMTest supports user-space transaction memory

libraries Mnemosyne [36] and PMDK [35] and Intel’s kernel-space PM-optimized file system

PMFS [130] under the x86 persistency model [3].

• PMTest is fast as it detects the violation in durability and ordering of PM operations without

exhaustively testing all possible reorderings. Our evaluation shows that PMTest is 7.1× faster

than the state-of-the-art tool [128].

3A.2. CRASH-CONSISTENCY TESTING 20

• PMTest detects 45 synthetic/reproduced bugs and found 3 new bugs in PMDK applications [35]

and PMFS [130].

3A.2 Crash-consistency Testing

In Section 2.2, we have demonstrated that it is difficult to implement correct crash-consistent soft-

ware for PM systems. With low-level hardware primitives, programmers need to carefully manage

writes to persistent data. Even with the aid from higher-level libraries, programmers still need

to have a good understanding of the failure-recovery requirements of their programs and correctly

use the library methods. We believe that programmers will greatly benefit from a testing frame-

work to help identify crash consistency bugs. Such frameworks should ideally meet the following

requirements.

Flexible. We expect that PM systems will spur the development of many custom crash-consistent

software and a testing framework must be flexible to support as many as possible. First, there

are three types of crash-consistent software systems: (i) user-space applications using high-level

libraries such as NV-Heaps [37], Mnemosyne [36], and PMDK [35], (ii) user-space applications using

ISA-specific low-level primitives, such as PM database [135] and key-value stores [136], and (iii)

kernel-space file systems using low-level primitives, such as PMFS [130] and NOVA [9]. Second,

the other variation in crash-consistent software comes from the different ordering and durability

guarantees provided by different PM systems, or more specifically, different persistency models that

define the rules for the order of persists [39] (e.g., the strict persistency model from x86 [3] and the

relaxed model proposed by HOPS [1]). The persistency model is enforced using low-level primitives

from the underlying hardware, e.g., clwb and sfence in x86, and ofence and dfence in HOPS.

In the future, we expect to see a great variety of crash-consistent software running on various PM

systems. Figure 3A.1 shows three possible system stacks and their code examples: (a) a crash-

consistent software system developed on top of the Mnemosyne library [36] runs on a system with

x86 persistency model, (b) a crash-consistent software system built with the PMDK library [35]

runs on the HOPS persistency model that supports more relaxed fences [1], and (c) a persistent

kernel module using low-level functions (e.g., PMFS [130]). Ideally, a testing framework should be

flexible enough to support all kinds of crash-consistent software systems running on a variety of PM

systems.

3A.2. CRASH-CONSISTENCY TESTING 21

void ArrayUpdate(...) {
 TX_BEGIN{
 ...
 TX_ADD(array[index]);
 array[index]=new_val;
 ...
 } TX_END
}

void ArrayUpdate(...) {
 ...
 log_append(array[index]);
 log_flush();
 array[index]=new_val;
 ...
}

void ArrayUpdate(...) {
 ...
 bck.val=array[index];
 bck.valid=1;
 clwb(&bck,sizeof(bck));
 sfence();
 array[index]=new_val;
 ...
}User Space User Space

Kernel

SW
H
W

Figure 3A.1: Different PM system stacks and sample codes.

Table 3A.1: Tools for testing crash consistency.

Tool Name Speed Flexibility Target Software Kernel?
Yat [127] Low Low PMFS [130] Yes
Pmemcheck [128] Medium Low PMDK [35] No
PMTest (this work) High High Various types Yes

Fast. We identify that an efficient crash consistency testing mechanism needs to meet two perfor-

mance requirements. First, a crash-consistency testing solution needs to be able to identify issues

in the programs as fast as possible. Second, an efficient crash-consistency testing mechanism needs

to maintain a low performance overhead to the target program; it is favorable that programmers

can reason about their code at runtime and modify the code as necessary to reduce the overhead

of post-production patching [137]. However, no prior tools can meet both the flexibility and fast

requirements.

We categorize the prior tools into three groups. First, there is a large body of crash consistency bug

detection tools developed for conventional file systems running on block devices [138–143]. Unfortu-

nately, these tools are designed for block-addressable file systems [138–143], and therefore, cannot

be applied to PM-specific crash-consistent software. Second, the tool, Yat [127], that tests Intel’s

PM-based file system PMFS [130] executes at an extremely slow speed because it takes an exhaus-

tive method in bug detection. It permutes all possible persist reorderings to detect if a particular

ordering can recover consistently after a crash. Such an exhaustive method is extremely slow and

according to the authors, can take more than five years to test an application with around 100k PM

operations [127]. Third, there have been faster testing tools developed for specific PM libraries. For

example, Pmemcheck [128] (around 20x slowdown) and Persistence Inspector [129] are binary in-

3A.3. KEY IDEAS OF PMTEST 22

strumentation platforms designed specifically for the PMDK library. They provide built-in checkers

for PMDK operations and cannot be easily extended for other user-space libraries or kernel-space

system software. Table 3A.1 summarizes the capabilities of these tools and it is evident that they

cannot satisfy both requirements of speed and flexibility.

3A.3 Key Ideas of PMTest

In this work, we propose PMTest, a framework for detecting crash consistency bugs in different crash-

consistent software systems running on a variety of PM systems. First, we present our high-level

ideas in testing . Then, we discuss how these key ideas are applied to PMTest.

3A.3.1 Key Ideas in Testing Crash Consistency

The goal of this work is to design a crash consistency testing framework that is, unlike prior works,

both flexible and fast. Our keys ideas to meet these requirements are as follows:

Flexible. We observe that regardless of the difference in the crash-consistent software systems

(kernel module, user-space library, or custom application using architecture-specific low-level primi-

tives), they all fundamentally rely on two types of operations in order to provide the durability and

ordering guarantee: enforcing a memory location persists and enforcing ordering between persists.

Figure 3A.1 shows that at the lowest level, they all rely on low-level primitives that provide these

two guarantees (shown by the blue arrows). Our key idea is to provide two generic “checkers” that

programmers can instrument their code with to verify whether certain memory locations/objects

have been persisted since the last write to them and the order in which certain memory location-

s/objects have persisted. These generic checkers allow programmers to ascertain the state of the

PM on any kind of PM system, making it easy to reason about crash consistency. The two generic

checkers are: (i) isPersistent() checks whether certain memory locations/objects have been per-

sisted since their last update; (ii) isOrderedBefore() checks whether a certain address has been

persisted before another (details in Section 3A.4.4).

Similar to the commonly used assertions [131, 132], these two checkers can be placed in the code,

providing a way to expose the ordering and durability of the PM operations at the application level.

Figure 3A.2a and 3A.2b demonstrate how these two checkers make the ordering information visible

to applications in systems using the x86 and HOPS persistency model, respectively. Even though the

systems are different, the same two low-level checkers in both examples check: (i) whether A persists

3A.3. KEY IDEAS OF PMTEST 23

write A
clwb A
sfence
write B
clwb B
sfence
isOrderedBefore A B
isPersist A
isPersist B

write A
ofence
write B
dfence
isOrderedBefore A B
isPersist A
isPersist B

Figure 3A.2: Checking mechanism based on the semantics of
(a) the x86 persistency model [3] and (b) HOPS [1].

before B, and (ii) whether both A and B have been persisted at the end. PMTest, under-the-hood

uses PM system-specific information to determine if the checker conditions have been met on the

system under test.

Fast. Our key idea is to track the PM operations (e.g., write, CLWB, SFENCE in x86 systems) at

runtime and deduce the time interval during which a write may persist. We refer to this time

interval as a persist interval. PMTest’s superior performance comes from validating the programmer

specified checkers from the inferred persist interval, rather than checking all possible orderings of

relevant persists. The rules that deduce the persist interval and validate the checking of durability

and ordering guarantee for a certain persistency model are referred to as checking rules. For example,

in x86 systems, a PM write may persist any time between its execution and a subsequent SFENCE,

assuming that there exists an intervening CLWB to the associated cache line in between the write

and SFENCE. This is due to the fact that the hardware can reorder operations as long as they

are executed before the SFENCE. Note that even though the hardware can re-order instructions, x86

implicitly guarantees the ordering of a write operation and a subsequent CLWB to the same address [3].

Therefore, the persist interval of a write can span from the last SFENCE to the subsequent SFENCE that

comes after the associated CLWB. To validate checkers, we use the persist intervals for the relevant

memory locations to infer if the checker conditions are being met. We break a thread’s execution into

epochs separated by an SFENCE. We use an epoch as a unit of time and have a timestamp increment

at every SFENCE. A persist interval of (E1, E2) suggests the corresponding write may persist any

time between epoch number E1 and E2. Therefore, the checking rule for isPersist() is defined

as determining if the persist interval of the associated memory location ends before the checker.

Similarly, the isOrderedBefore() is checked by determining if one persist interval ends before the

other starts.

We provide an example to show how to infer the persist interval from the trace and how it can be

used by our two basic checkers in an x86 system. Figure 3A.3a shows a trace of PM operations, where

3A.3. KEY IDEAS OF PMTEST 24

sfence
write A
clwb A
write B
sfence
isOrderedBefore A B
isPersist B

sfence

sfence

1
2
3
4
5
6
7

sfence

sfence

Figure 3A.3: (a) A trace of PM operations. (b) The order between PM operations. (c) The persist interval of writes.

the programmers want to check two issues: if A always persists before B, and if B has been persisted

after the last SFENCE. Assuming the first SFENCE starts the first epoch (E = 1), the persist interval

for address A is (1, 2), as the write to address A, and the subsequent CLWB are both issued before

the next SFENCE (the start of the second epoch, E = 2). For address B, the persist interval is (1,∞)

as the write to B is in the first epoch, so it may persist as early as the first epoch. However, without

a subsequent CLWB for address B, it is never guaranteed to persist (at least in the code snippet). As

the persist intervals of A and B overlap, the checker, isOrderedBefore() for A persisting before

B fails. The subsequent isPersist() for address B also fails as the persist interval for B extends

to ∞.

3A.3.2 Integrating the Key Ideas into PMTest

So far, we have introduced the key ideas that ensure both flexibility and high-speed testing. Next,

we introduce how we apply our key ideas to the two major steps of PMTest:

Program Annotation. The assertion-like, low-level checkers: isOrderedBefore() and isPersist(),

provide a system-independent interface for testing. Figure 3A.4a shows how to place these checkers to

detect crash consistency bugs. Similar to using low-level primitives for programming crash-consistent

software, using these low-level checkers requires manual effort. Therefore, to ease programmers’ bur-

den, PMTest provides high-level checkers that are built on top of the low-level ones. Figure 3A.4b

shows a pair of high-level checkers placed before and after a transaction, which automatically detects

whether all modified persistent objects have been written back at the end of a transaction. Program-

mers (e.g., PM library developers) can also build their custom checkers using our low-level checkers

(details in Section 3A.5.1). We show that these high-level checkers can effectively detect bugs with

minimal programmer’s effort in Section 3A.6.3.

Runtime Testing. PMTest determines whether the injected checkers are met or not by inferring

the interval in which a write to PM can become persistent based on the underlying persistency model.

The superior performance makes it possible to perform testing during execution time. For better

3A.4. IMPLEMENTATION OF PMTEST 25

...
sfence
write A
clwb A
write B
sfence
isOrderedBefore A B
isPersist B
...

(b)(a)

Check if A persists before B

Check if B has been written back

TX_CHECK_START();
TX_BEGIN {
 ...
 write A
 write B
 ...
} TX_END
TX_CHECK_END();

Check if all persistent objects
have been written back

Automatically Injected:
 isPersist A
 isPersist B

Figure 3A.4: Examples of testing programs using (a) the low-level checkers and (b) checkers for transactions.

Annotation

Testing Results
WARN/FAIL

@<file>:<line>

Checking
Engine

Checking Rules

❷
❶ CCS

Offline Online

Track
PM Ops

Trace Result

❸

Figure 3A.5: A high-level view of PMTest (shaded components can be customized by programmers).

efficiency, PMTest pipelines the execution of the test program and the checking engine by running

them on different threads. The test program under execution produces a trace of all the key events.

Meanwhile, the checking engine lags behind program execution and consumes the trace produced

(details in Section 3A.4.4). Decoupling program execution from checker validation provides a marked

improvement in performance.

3A.4 Implementation of PMTest

This section describes the implementation of PMTest and how it can be integrated into a real system

to perform testing.

3A.4.1 Overview of PMTest

Figure 3A.5 illustrates a high-level view of PMTest. The procedure of testing a program consists of

offline and online steps. In the offline step, programmers annotate the test program using low-level

and/or high-level checkers following the program specification of the crash consistency mechanism

(step Ê). For example, low-level checkers should be inserted to check the programmer intended

crash-consistent behavior, where the high-level checkers for transactions can be added by wrapping

up the transactions (as shown in Figure 3A.3). In the online step, PMTest executes with the

annotated (and compiled) program. During execution time, PMTest tracks PM operations in the

application and passes the trace to the checking engine (step Ë, details in Section 3A.4.3). The

checking engine tests whether the trace meets the requirements specified by the checkers (step Ì,

details in Section 3A.4.4). The checking engine depends on the checking rules to detect the bugs. We

3A.4. IMPLEMENTATION OF PMTEST 26

discuss the rules for x86 systems in Section 3A.4.4 (already integrated in PMTest) and the rules for

HOPS [1] in Section 3A.5.2. The new checking rules for other persistency models can be integrated

into PMTest by programmers. The checking engine reports WARNING outputs for performance bugs

(e.g., redundant writebacks) and FAIL outputs for crash consistency bugs (e.g., missing a fence),

together with the file names and line numbers of the failing checkers.

3A.4.2 PMTest Interface

PMTest incorporates a flexible software interface that is C and C++ compatible. Table 3A.2 sum-

marizes the functions offered by PMTest. There are four types of functions. The first category is

for initializing and enabling the testing functionalities of the framework. Programmers can select

the region for testing by wrapping the code with a pair of PMTest_START and PMTest_END functions.

The second category of functions allows programmers to operate on persistent objects. By default,

all accesses to PM between PMTest_START and PMTest_END are tracked by PMTest. Programmers

may exclude objects from tracking using PMTest_EXCLUDE() function. Already excluded objects

can be tracked again using PMTest_INCLUDE(). To allow programmers to check the persistency

status of a variable outside its scope (e.g., outside the function where it is declared), we provide

three functions: PMTest_REG_VAR, PMTest_UNREG_VAR, and PMTest_GET_VAR that allow program-

mers to register the address of a persistent object with a name and check its persistency status

later. The third category of functions enables the communication from the test program to the

checking engine. Programmers can divide a program into independent sections (e.g., transactions)

using PMTest_SEND_TRACE for better testing speed. Once the execution of a section is complete,

PMTest can start testing it on a separate thread while the program is executing the next sec-

tion. The function PMTest_GET_RESULT blocks the program execution until all previously generated

traces have been tested. The last category of functions are checkers, including two low-level checkers:

IsOrderedBefore() and isPersist(), and the high-level checkers for transactions. The high-level

checkers for PMDK test three issues: (i) if a transaction has completed, (ii) if the persistent objects

within the transaction have been added to the undo log before modification, and (iii) if there are

unnecessary writebacks and redundant logs that constitute the performance bugs.

3A.4.3 Operation Tracking

A trace in PMTest consists of the PM operations executed by crash-consistent software and the

checkers placed by programmers. Each PM operation in the trace has associated metadata that

3A.4. IMPLEMENTATION OF PMTEST 27

Table 3A.2: Summary of PMTest functions.

Function Name Description

Framework

PMTest_INIT Initialize PMTest
PMTest_EXIT Exit and clean up PMTest
PMTest_THREAD_INIT Initialize per thread PMTest tracking
PMTest_START Enable PMTest tracking and testing
PMTest_END Disable PMTest tracking and testing

PM Object

PMTest_EXCLUDE Remove a persistent object from testing scope
PMTest_INCLUDE Add a persistent object back to testing scope
PMTest_REG_VAR Register the address and size of a variable name
PMTest_UNREG_VAR Unregister a variable name
PMTest_GET_VAR Get the address and size of a variable by its name

Communication PMTest_SEND_TRACE Send the current trace to PMTest checking engine
and start a new trace

PMTest_GET_RESULT Block the program execution until all existing traces
have been tested

Checker
isPersist Check if a persistent object has been persisted
isOrderedBefore Check the order of two persists
TX_CHECKER_START Start checking transactions
TX_CHECKER_END End checking transactions

consists of the operation type, memory address, operation size and the file and line number of this

operation. Similarly, the metadata for each checker consists of the type of checker, the address

and size of the persistent object that the checker is testing in PMTest. All PM operations and

checkers are recorded in the trace in program order. When the program calls PMTest_SEND_TRACE(),

PMTest passes the current trace to the backend checking engine and starts a new trace.

In our evaluation, we extend the existing tracking mechanism in the PM benchmark suite, WHIS-

PER [1], which converts all PM operations into macros for benchmarking purposes. We extend their

tracking method by adding PMTest tracking functions to generate the aforementioned metadata for

PM operations (e.g., writes, CLWB and SFENCE in x86). For other crash-consistent software systems,

it is possible to either integrate a WHISPER-like tracking mechanism or to use a toolchain (e.g.,

through an LLVM [144] pass) that injects a tracking function for each PM operation.

3A.4.4 The Checking Engine

After generating a trace of PM operations and checkers from the application, the next step is

to validate the trace against the specified checkers. At the high-level, the checking engine tracks a

persistency status for each persistent object in the trace. During testing, PMTest sequentially iterates

over the trace. If the trace component is a PM operation, PMTest updates the persistency status;

if the trace component is a checker, PMTest examines the persistency status to determine whether

the asserted condition is met or not. Next, we describe the details of maintaining the persistency

status in PMTest, and discuss how it updates and checks the status in an x86 system.

3A.4. IMPLEMENTATION OF PMTEST 28

Persistency Status. PMTest maintains a shadow memory that represents the persistency status

of each modified address. As PMTest traces and checks PM operations at a coarse granularity, it

maintains the shadow memory as an interval tree [145], where the address is the interval and per-

sistency status is the value in the interval, As a result, update and lookup operations to the shadow

memory have a complexity of O(log n), where n is the length of the trace. As traces are independent,

every trace has its shadow memory. To track the persistency status, the shadow memory keeps two

types of structures, a global status for the entire system, and a local status for each address in the

shadow memory. The following is the description of the fields for x86 systems:

• global_timestamp (global status): A global epoch counter that is incremented on every SFENCE

encountered in the trace.

• persist_interval (local status): The interval in which certain memory location(s) may persist.

• flush_interval (local status): The interval in which certain memory location(s) may be ex-

plicitly written back to PM.

Update to Persistency Status. PMTest iterates over the trace and performs the following

updates to the persistency status for each PM operation:

• write(addr,size) modifies an address range of [addr , addr + size) in the shadow memory. It first

clears all existing persist_intervals and flush_intervals within the address range and sets the

persist_intervals as (global_timestamp,∞). That is, this write may persist at any time moving

forward.

• clwb(addr,size) writes back an address range of [addr , addr + size) and the flush_interval

is set as (global_timestamp,∞). That is, a writeback for these addresses has been issued and it

may happen at any time moving forward. If there is an existing flush_interval, PMTest raises a

WARNING (Section 3A.5.1).

• SFENCE enforces the ordering of prior write and CLWB operations. First, it increments the

global_timestamp. Second, it updates the flush_interval of prior clwbs so that the inter-

vals end at the current global_timestamp, i.e, the writeback is complete. Third, it updates the

persist_interval of prior clwbs so that the intervals end at the current global_timestamp, i.e,

the write persisted.

Checking Rules. Similarly, when encountered a checker in the trace, PMTest applies the following

checking rules:

3A.4. IMPLEMENTATION OF PMTEST 29

write(0x10,64)
clwb(0x10,64)
sfence()
write(0x50,64)
isPersist(0x50,64)
isOrderedBefore
 (0x10,64,0x50,64)

1
2
3
4
5
6

(a) Trace (b) Update steps

❶
❷
❸
❹

0
0
1
1

(0,∞)
(0,∞) (0,∞)
(0,1)
(0,1)

(0,1)

FIOp# T

(0,1) (1,∞)

FI
0x10~0x4f 0x50~0x8f

❺ Not persistent
❻ 0x10 will persist before 0x50

PI PI

Figure 3A.6: An example of checking a trace.

• isPersist(addr,size) checks whether data in the address range [addr , addr + size) has been

written to PM by checking whether the persist_intervals in this address range end before the

current global_timestamp.

• isOrderedBefore(addrA,sizeA,addrB,sizeB) checks whether all writes to the address range

[addrA, addrA+ sizeA) can persist before any write to [addrB , addrB + sizeB) by checking if

any of the persist_intervals in [addrB , addrB + sizeB) overlap with any of the those in

[addrA, addrA+ sizeA).

Example. Figure 3A.6a shows a sample trace, and Figure 3A.6b shows how each operation (OP#)

updates the PMTest persistency status, including global_timestamp (T), persist_intervals (PIs),

and flush_intervals (FIs). Initially, T is 0.

Line 1: The write updates the PI for address 0x10 to (0,∞) .

Line 2: The CLWB updates the FI for address 0x10 to (0,∞).

Line 3: The SFENCE first increments the timestamp T. Then, it updates the FI of its preceding

CLWB to (0, 1), indicating this writeback will take effect before line 3. It also updates the PI for 0x10

to (0, 1), indicating that this write has persisted.

Line 4: The write updates the PI for address 0x50 to (1,∞).

Line 5: The isPersist() checker examines the PI of 0x50. As (0,∞) does not end before the

current T, this checker reports a FAIL output as indicated by the red arrow.

Line 6: The IsOrderedBefore() checker compares the PIs of 0x10 and 0x50. As they do not

overlap, this checker passes as indicated by the green arrow.

Execution of The Checking Engine. To reduce the overhead in the runtime testing,

PMTest adopts a multithreaded checking mechanism consists of a master thread and a pool of

worker threads, as shown in Figure 3A.7a. The master thread dispatches the traces passed from the

test program (details about communication between the program and PMTest in Section 3A.4.5)

3A.4. IMPLEMENTATION OF PMTEST 30

(a)

TX 1 TX 2 TX nPersistent
Program

PMTest

Worker 1

Worker 2

PMTest_INIT()

TX 1 Trace

Dispatch to worker 1

TX 2 Trace

Complete

Time

Complete

Testing TX 1

Testing TX 2

Dispatch to worker 2

(pass via shared data/kernel FIFO)

❶
❷

❸

❹
❺

❻

PMTest_SEND_TRACE()

Initialization

(b)

Figure 3A.7: (a) The master and worker threads and (b) the workflow of PMTest.

to the task queue of the worker threads following a round-robin scheduling algorithm. Each worker

thread tests its trace independently and sends the testing result back to the result queue in the mas-

ter thread. Figure 3A.7b demonstrates the workflow of this mechanism. The program first creates

and initializes an instance of PMTest by calling PMTest_INIT() (step Ê). Then, the program starts

the execution of transaction 1 (step Ë). After transaction 1 (TX1) completes, the program passes its

trace to PMTest by calling PMTest_SEND_TRACE() (step Ì). Then, PMTest immediately dispatches

this trace to a worker (worker 1) thread in the worker pool. The worker thread tests the trace and

completes (step Î). In the meanwhile, PMTest receives and tests the trace of TX2 using worker 2

(step Ï).

3A.4.5 System Integration

In this section, we describe PMTest’s mechanism for user-space programs and kernel modules.

User-space Crash-consistent Software. Figure 3A.8a shows the system stack of testing a user-

space crash-consistent software. The user-space crash-consistent software runs in the same process as

the PMTest checking engine. To efficiently pass traces from the test program to the checking engine,

we use a thread-safe, concurrent queue, where the test program pushes the traces to the queue and

the testing module pops the head of the queue. PMTest also supports multithreaded programs. To

manage the tracking of traces on different threads, PMTest maintains a per-thread data structure

that maintains the trace of different threads. To initialize this structure, the programmers need to call

PMTest_THREAD_INIT() when a thread is created. Note that PMTest only detects crash consistency

bugs that is due to incorrect PM operations in one thread. We leave the crash consistency issues

due to improper thread synchronization as a future work.

3A.5. FLEXIBILITY OF PMTEST 31

Pass via
kernel FIFO

Kernel

User SpacePMTest

(b)(a)

User Space

Persistent MemoryPersistent Memory

Pass via shared memory
PMTest
LibraryPMTest

Testing Input

Workload

PMTest
LibraryCrash-consistent SW

Crash-consistent SW
(Kernel Module)

Figure 3A.8: System integration of PMTest for (a) user-space programs and (b) kernel modules.

Kernel Modules. Crash-consistent kernel modules typically manage persistent data for user-space

applications running on top (e.g., serve as a file system). Figure 3A.8b illustrates how PMTest is

integrated to test kernel modules. During execution, PMTest performs tracking in the kernel module

in the same way as user-space programs. However, kernel programming has limited library support

and has a strict constraint on the runtime performance. Therefore, PMTest checks the traces in the

user space. To efficiently pass the trace from the kernel to the user-space checking engine, we use a

kernel FIFO [146, 147] (created as /proc/PMTest) with 1024 trace entries. Currently, PMTest only

tracks PM operations in one thread of the kernel module due to the limitation of kernel thread

libraries. To prevent an exceptional case where the kernel FIFO becomes full and rejects new traces,

PMTest maintains an interruptible wait queue [147] in the library. The kernel module put itself on

the wait queue if the kernel FIFO is full. It gets interrupted and resumes execution when the FIFO

is less than half full.

3A.5 Flexibility of PMTest

So far, we have discussed the design of PMTest that enables fast testing for both user-space programs

and kernel modules. In this section, we discuss how PMTest further enables testing of different

libraries and systems.

3A.5.1 Implementation of Customized Checkers.

Customizing checkers can ease programmers’ burden on debugging and improving the capability

of PMTest. To implement more checkers, programmers need to add new methods to the checking

engine module, which can be built on top of the existing low-level checkers. If the customized checker

requires tracking more operations than the ones have been tracked by PMTest, the programmer can

extend our tracking interface. We first present our high-level checkers designed for PMDK [35], and

then present other checkers that detects performance bugs.

3A.5. FLEXIBILITY OF PMTEST 32

Library-Specific Checkers

Library-specific, high-level checkers can automate the debugging for crash-consistent software devel-

oped with high-level libraries. We implement the following checkers for PMDK transactions. While

these two checkers are designed for the PMDK transactions, they can be easily extended to other

transactional libraries.

Check Incomplete Transactions. A typical bug in using transactions is the program fails to

persist all updates when the transaction ends. To detect this type of bugs, we provide a pair of

functions TX_CHECKER_START and TX_CHECKER_END that let programmers label the scope of the

transaction. The TX_CHECKER_END automatically injects isPersist() for all modified persistent

objects at the end of the trace for this scope. Using this checker, programmers can make sure that

all transaction updates have persisted. Programmers can exclude the updates that do not require

crash consistency protection in the transaction using the PMTest_EXCLUDE() function.

Check Missing Backup Logs. Another typical bug in using transactions is that programmers

forget to log persistent objects before they get modified (e.g., the bug in Figure 2.1b). A correct

implementation should use TX_ADD() to log persistent objects before modifying them, such that

these objects can be recovered in event of a failure and be written back when the transaction ends.

To detect such bugs, we extend the PMTest library to track objects logged by TX_ADD() (or functions

with similar functionality), together with other operations. The checking engine maintains another

interval tree, log tree, that keeps tracks of the logged memory addresses. When testing a trace from

a transaction, the checking engine examines if the addresses under modification exist in the log tree

before they get modified by a write.

Performance Checkers

We provide the implementation of two checkers for detecting unnecessary operations that can

cause performance slowdown. PMTest reports a warning (WARN) when detecting such performance

bugs.

Check Unnecessary Writeback. Enforcing the writeback of unmodified data can cause perfor-

mance degradation. A typical scenario is coarse-grain writeback of persistent objects. Another

possible scenario is that programmers writeback the same persistent object twice. The checking

engine detects this types of bugs automatically when testing traces. The first case can be detected

if a CLWB operates on a memory location that does not yet have a persist_interval, i.e., writing

3A.5. FLEXIBILITY OF PMTEST 33

back a PM location that has not been modified. The second case can be detected if a CLWB operates

on a memory location with an existing flush_interval, i.e., placing a second CLWB after an existing

one to the same PM location.

Check Duplicated Log. Logging the same persistent object more than once is unnecessary and

can cause performance degradation. We implement a checker to detect this performance bug for

PMDK transactions. When the program logs a persistent object, PMTest looks up the address of

this object in the log tree. If it already exists, PMTest reports a WARNING.

3A.5.2 Adaption to Other Persistency Models.

To adapt PMTest to other persistency modules, programmers need to track new system-specific PM

operations and add new checking rules for these operations. Implementing new checking rules may

require changing the global and local status fields in the shadow memory.

Recent works have proposed alternative persistency models that feature better performance and

flexibility [1, 40, 148]. The hands-off persistence system (HOPS) [1] introduces two new primitives:

ofence and dfence. The light-weight ofence guarantees all preceding write accesses reach PM prior

to all write accesses after it; the heavier dfence stalls the processing until all writes to PM have been

persisted. As PMTest provides a generic API for checkers, we only need to change the fields in the

shadow memory and implement new rules in the backend checking engine. In the shadow memory,

we still keep the global_timestamp and the persist_interval, but remove the flush_interval

as HOPS does not use CLWB and SFENCE to enforce ordering and durability. Then, we make the

following updates to the rules in Section 3A.4.4:

• ofence ensures the persist order without writing back the data from cache to PM. Therefore, this

operation increments the global_timestamp.

• dfence ensures both ordering and writeback. It first increments the global_timestamp, and then

updates the persist_intervals of prior writes to end at the current global_timestamp.

• isPersist(addr,size) checks if a write has persisted by checking whether

the persist_intervals in address range [addr , addr + size) end before the current

global_timestamp.

3A.6. EVALUATION 34

Table 3A.3: System Configuration.

Server HP ProLiant DL360 Gen10

Processor Intel Skylake, 2.1GHz, 8 cores, 16 threads, 11 MB L3 [150]

Memory Volatile: 64 GB DDR4, 2666 MHz
Non-Volatile: 64 GB Battery-backed NVDIMM

OS Ubuntu 14.04, Linux kernel 4.4.135

Compiler gcc/g++ 4.8.4, O3 optimization

• isOrderedBefore(addrA,sizeA,addrB,sizeB) checks whether the write to addrA per-

sists before the one to addrB. As the fences already ensure persist order, PMTest checks

whether all the persist_intervals in range [addrA, addrA+ sizeA) start before those in

[addrB , addrB + sizeB).

3A.6 Evaluation

In this section, we evaluate the performance and bug detection capability of PMTest.

3A.6.1 Methodology

To evaluate the performance and bug detection of PMTest, we use a real system as shown in Ta-

ble 3A.3. We use a set of battery-backed NVDIMMs as the PM and map them to the system

following the method in [149]. We use programs from the WHISPER benchmark suite [1] to evalu-

ate both performance and bug detection. PMTest performs testing using one worker thread unless

explicitly indicated. The execution times shown in this section are the average of ten runs.

3A.6.2 Performance Evaluation

Microbenchmark. We evaluate PMTest using five PMDK-based single-threaded microbench-

marks. We test each program with 100K insertions (each insertion is a transaction). Figure 3A.9a

compares PMTest with Pmemcheck. It is important to note the checkers used for PMTest provides

higher bug-detection capabilities than those present in PMDK. The x-axis varies the size of the

transaction and the y-axis shows the execution time normalized with the original versions without

any testing tool. First, PMTest is 5.2-8.9× faster than Pmemcheck (7.1× avg.). Second, as the

transaction size increases, the overhead in PMTest decreases as it tracks PM operations at a coarse

granularity. In comparison, the slowdown from Pmemcheck does not change noticeably as it is based

on the low-level binary instrumentation. Third, the overhead from the non-transactional HashMap

3A.6. EVALUATION 35

0
5

10
15
20
25
30

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

S
lo

w
d

o
w

n

Transaction Size (Byte)

PMTest Pmemcheck

C-Tree B-Tree RB-Tree
HashMap
(w/ TX)

HashMap
(w/o TX)

(a) Performance of PMTest vs. Pmemcheck.

0
1
2
3
4
5

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

S
lo

w
d

o
w

n

Transaction Size (Byte)

PMTest Framework Checker

C-Tree B-Tree RB-Tree HashMap
(w/ TX)

HashMap
(w/o TX)

(b) Overhead breakdown of PMTest.

Figure 3A.9: Performance of testing microbenches.

Table 3A.4: Real workloads from WHISPER benchmark suite [1] (YCSB from [2]).

Workload Library Input Client

Memcached Mnemosyne Memslap (100 k ops/client, 5% set),
YCSB (100 k ops/client, 50% update)

Redis PMDK redis-cli (LRU test, 1 M keys)

PMFS Low-level NFS (Filebench, 8 clients),
(kernel module) primitives MySQL (OLTP-complex, 4 clients)

1.00
1.25
1.50
1.75
2.00

Memcached Memcached Redis PMFS PMFS Average

S
lo
w
d
o
w
n

+Memslap +YCSB +LRU +OLTP +Filebench

Figure 3A.10: Performance of testing real workloads.

is higher than other cases due to its more intensive use of low-level PM operations. We further

present the overhead breakdown of PMTest as a stack diagram in Figure 3A.9b, where the bottom

bar shows the basic overhead from tracking PM operations and running the PMTest framework, and

the top bar shows the extra overhead from the checkers. As PMTest decouples the checking from

program’s execution, checking only contributes 18.9%-37.8% of the total overhead. We conclude

that PMTest has a relatively low performance overhead.

Real Workloads. We evaluate three real workloads shown in Table 3A.4, where each of them

has its own load-generating client(s). We place the checkers to test whether all updates in the

transactions (as specified by WHISPER) are persistent in PMFS [130] and Mnemosyne [36], and use

our transaction checkers in Redis. Figure 3A.10 shows the performance of these workloads running

3A.6. EVALUATION 36

1
2
3
4
5

1 2 4
S

lo
w

d
o

w
n

#Memcached threads

(Single PMTest worker)

Memslap YCSB

(a)

1
2
3
4
5

1 2 4

S
lo
w
d
o
w
n

#PMTest workers (Four
Memcached threads)

Memslap YCSB

(b)

1
2
3
4
5

1 2 4

S
lo
w
d
o
w
n

Same # PMTest workers

and Memcached threads

Memslap YCSB

(c)

Figure 3A.11: Execution time of Memcached with PMTest.

with PMTest. The y-axis shows the execution time normalized to the original versions without any

testing tool. The slowdown from PMTest is between 1.33-1.98× (1.69× avg.). As Redis is based

on PMDK, we also test it with Pmemcheck and observes a 22.3× slowdown (13.6× slower than

PMTest). Compared to the previous microbenchmarks, the slowdown is much lower as the real

workloads are less intensive in accessing PM. We conclude that PMTest is efficient at testing real

workloads.

Scalability. We further analyze the scalability of PMTest using Memcached. We set the number

of clients equal to the number of Memcached threads. We manually place checkers to its underlying

library, Mnemosyne, to check the consistency of its persistent map. Figure 3A.11a presents the

result with variable Memcached threads. As the number of threads in Memcached increases, the

slowdown from PMTest increases with both Memslap and YCSB clients due to an increased number

of traces generated by the workload. To perform testing more efficiently, we increase the number

of PMTest worker threads, as shown in Figure 3A.11b. As the number of workers increases, the

slowdown decreases. Then, we increase both the number of workers and Memcached threads at the

same time. Figure 3A.11c shows the slowdown slightly increase as both threads increase due to the

inter-thread communication overhead. We conclude that PMTest can effectively reduce the testing

time when testing PM-operation intensive programs.

3A.6.3 Bug Detection Evaluation

To validate the bug detection capability of PMTest, we first systematically create random synthetic

bugs in PMDK workloads [35]. Table 3A.5 lists the synthetic bugs we have validated (total 42)1. For

the programs that uses transactions, we use two pairs of TX_CHECKER_START and TX_CHECKER_END;

for the one uses low-level functions, we place 12 isPersist() and 6 isOrderedBefore() checkers

(the overall benchmark codebase is about 2.6 k LOC). PMTest reported all the synthetic bugs we
1All tested bugs and injected checkers can found at https://pmtest.persistentmemory.org.

https://pmtest.persistentmemory.org

3A.6. EVALUATION 37

Table 3A.5: Summary of synthetic bugs for PMTest validation.

Bug Type Description #Cases #Checkers

Lo
w

-l
ev

el Ordering Missing or misplacement of
ordering enforcement 4

18
(Low-level
checkers)Writeback Missing or misplacement of the

writeback operations 6

Performance Writeback the same persistent
object more than once 2

T
ra

ns
ac

ti
on Backup Missing or misplaced backup of

persistent objects 19 2
(High-
level

checkers)
Completion Incomplete transactions due to

improper termination 7

Performance Log the same persistent object
more than once 4

Table 3A.6: Summary of the known bugs in the commit history and the new bugs detected by PMTest.

File Line Description

K
no

w
n xips.c [151] 207, 262 Flush the same persistent buffer twice

files.c [152] 232 Flush an unmapped buffer
rbtree_map.c [153] 379 Modify a tree node without logging it

N
ew

journal.c [154] 632 Flush redundant data when committing

btree_map.c [155] 201 Modify a tree node without logging it
367 Log the same object twice

introduced. Then, we reproduced the bugs from the developers’ commit history of the workloads that

we have previously tested. PMTest also reported these bugs accurately. And finally, during testing,

we found three new bugs in PMFS and PDMK applications (Table 3A.6). Figure 3A.12 demonstrates

the new bugs we have found using PMTest. We simplify the code for readability.

Bug 1 (performance): Figure 3A.12a shows a snippet of code from journal.c in PMFS. The

function first sets the log entry (le) at line 3. Then, it flushes the modified log entry to PM at line 4.

Finally, it flushes the entire transaction (trans) at line 6. PMTest reports a WARN of duplicated

flush at line 6. Because the log entry is part of the transaction, the second flush writes back the

log entry again. A better implementation should flush only the remaining part of the transaction at

line 6.

Bug 2 (correctness): Figure 3A.12b shows a snippet of code from btree_map.c in PMDK. This

function modifies a node without logging it. PMTest reports this bug at line 4 and other lines that

modify this object. The correct implementation should call TX_ADD(node) before line 4. Bug fix

3A.7. DISCUSSION 38

void pmfs_commit_logentry(...) {
 ...
 le->gen_id=...; //update log entry
 pmfs_flush_buffer(le,...);
 ... //no update to “le” in between
 pmfs_flush_transaction(...,trans);
 ...
}

1
2
3
4
5
6
7
8

(a)

Flush the log entry

Flush the whole transaction -
the log entry is flushed again

tree_map_node
bree_map_create_split_node(...) {
 ...
 node->items[c-1]=EMPTY_ITEM;
 ...//other updates to node
} //This function is inside a TX

1
2
3
4
5
6

(b)

Modify without adding to the log

void btree_map_insert_item
 (tree_map_node node,...) {
 TX_ADD(node);
 ... // perform insertion
}

void btree_map_rotate_left(...,node,...) {
 ...
 btree_map_insert_item(node,...);
 ...
 TX_ADD(node);
 ... // perform rotation
 node->slots[0]=... //modify node
 ...
} //Both functions are wrapped in same TX

(c)

1
2
3
4
5

6
7
8
9

10
11
12
13
14

Add node to log
Add node to log again

Call

Figure 3A.12: New bugs found in (a) PMFS, and (b, c) PMDK applications.

from Intel can be found at [133].

Bug 3 (performance): Figure 3A.12c is another snippet of code from btree_map.c. The function

on the right side first calls the function on the left side and then rotates a tree node. PMTest detects

a duplicated TX_ADD() at line 10, that should be removed. The function on the left side adds node to

the log, while the function on the right side adds the same node to the log again. As both functions

belong to the same transaction, double logging is unnecessary. This bug is subtle as the two log

operations are not in the same function. Bug fix from Intel can be found at [134].

We found the two new bugs in PMDK applications using our high-level checkers for PMDK by placing

a pair of TX_CHECKER_START and TX_CHECKER_END around the outermost transaction. We found the

bug in PMFS by sending the current trace to the checking engine when the update in journal.c

commits. The built-in performance-bug checker reports this unnecessary writeback. Therefore, we

conclude that using the high-level, automated checkers effectively debugs the program and incurs a

minimum effort.

3A.7 Discussion

In this section, we discuss the opportunities and potential issues with using PMTest, and the future

works in testing crash-consistent software.

3A.7. DISCUSSION 39

3A.7.1 The Use of PMTest

We find out that PMTest can help programmers demystify the semantics of library functions. For

example, in a program with nested PMDK transactions (an inner and an outer transaction), we first

apply a pair of TX_CHECKER_START() and TX_CHECKER_END() to the inner transaction. PMTest re-

ports that the updates in the inner transaction are not persisted before the end of the inner TX_END.

However, all updates to PM are supposed to be persistent when the transaction terminates. Then,

we move the checkers to the outer transaction and found that PMTest does not report any bug.

Analyzing PMDK source code, we found that updates are guaranteed to be persisted only when

the outermost transaction ends. PMTest can help programmers check whether library semantics are

consistent with what they expect.

3A.7.2 Programmer’s Effort using PMTest

Ensuring the crash consistency guarantee relies on two types of correctness: (i) algorithmic correct-

ness (e.g., redo/undo logging, checking pointing, etc.), and (ii) implementation correctness of that

algorithm (e.g., placing the writebacks and fences in the correct place). Even when the program-

mers use the algorithm of the logging mechanism in a correct manner, the reordering of instructions

makes it hard for the programmers to intuitively infer the correctness of the implementation (as

shown in Figure 2.1). Placing the low-level checkers in the code increases the programmer’s effort.

However, now programmers can assert the expected behavior of the program, and therefore, can

ensure the implementation correctness. On the other hand, programmers who use the high-level

checkers to test programs (built using the high-level libraries) do not need to understand the low-

level algorithm and implementation to ensure crash consistency. Therefore, the high-level checkers

minimize programmers’ effort. Expert developers of PM libraries can create high-level checkers for

their libraries to enable an easy-to-use testing interface for future users of their libraries. This way,

ordinary programmers can use those high-level checkers to test their crash-consistent software built

with high-level libraries.

3A.7.3 Impact of incorrect use of PMTest

The low-level checkers exposed by PMTest work in a similar way as assertions do in conventional

programs. Incorrect use of the checkers can cause false alarms and lead the programmer to believe the

implementation is incorrect, but will never introduce any new error or bug to the code. In comparison,

the high-level checkers require minimal programmers’ effort and can mostly be automated. For

3A.7. DISCUSSION 40

example, while checking the PMDK library in our evaluation, we only added 9 lines of C code

(for initialization, termination, etc.), where the insertion of the high-level checkers were automated.

Therefore, we recommend that only the expert programmers use the low-level checkers to avoid any

misuse of PMTest interface.

3A.7.4 Future Work

In this section, we describe the future directions.

Dynamic v.s. Static Testing. PMTest takes a dynamic approach that detects crash consistency

bugs on the trace that has been executed. This method is limited by the execution path that

the program takes based on the input. Therefore, PMTest aims for fast testing in order to cover

more input sets. In comparison, static testing methods can overcome the limitation of coverage,

while cannot handle issues related to dynamically allocated memory and pointers. Therefore, static

methods tend to set more false alarms compared to dynamic ones. We leave the research on detecting

crash consistency bugs statically as a future work.

Testing Multithreaded Crash-consistent Software. In this work, we provided support for

multithreaded programs by tracking trace individually on different threads. This support is sufficient

for most cases. For example, multithreaded transactions in PMDK are independent as one thread

writes back all its persistent data before releasing the lock. WHISPER also shows that inter-thread

dependency is rare in persistent programs [1]. We leave debugging crash consistency issues due to

improper thread synchronization as a future work.

Chapter 3B

Testing for Persistent Memory

Programs across System Failures

3B.1 Introduction

In Chapter 3A, we have introduced our runtime testing framework, PMTest [25] that detects crash

consistency bugs by checking the persistence and ordering properties of PM operations at runtime.

Required by the crash consistency guarantee, that is a program returns to a consistent state and

resumes the execution after a failure, a testing tool is expected to detect inconsistencies during the en-

tire procedure of execution, recovery, and resumption. Therefore, testing the program during normal

execution only covers part of the testing scope. In this chapter, we identify that a crash-consistent

program must ensure a correct interaction between the execution stage before and after the failure.

Therefore, a program first needs to correctly implement certain crash consistency mechanisms (e.g.,

undo/redo logging [35, 36, 125, 156–159], checkpointing [47, 160], or shadow paging [161, 162]) to en-

sure data consistency before failure. And second, after failure, the associated recovery procedure

must properly restore PM to a consistent state. We refer to the stages before and after the failure

as the pre-failure and post-failure stages. The pre- and post-failure stages are required to work col-

laboratively to guarantee crash consistency. If the interaction between the two stages is incorrect,

the program might not recover to a consistent state. In the previous undo logging example, even if

the program correctly maintains undo logs during the pre-failure stage, the post-failure execution

41

3B.1. INTRODUCTION 42

might still read inconsistent data if the recovery procedure does not correctly roll back incomplete

updates according to the undo logs. Hence, both the pre- and post-failure execution stages are criti-

cal to the crash consistency guarantee. In this work, we seek to test the crash consistency guarantee

holistically, considering both the pre- and post-failure execution stages.

In order to holistically detect crash consistency bugs, we first need to precisely define the incorrect

interactions between the pre- and post-failure execution stages. In this work, we categorize such

interactions into two classes: (1) cross-failure race, and (2) cross-failure semantic bug. Next, we

explain both scenarios in detail.

The most common incorrect interaction is that the post-failure execution may read data that is not

guaranteed to have persisted in all possible interleavings during the pre-failure stage. Analogous to

data races in multithreaded programs, the post-failure execution acts as a “thread” that executes

“concurrently” with the pre-failure execution. Without properly orchestrating the “concurrent ex-

ecution” by enforcing the persistence and the ordering of writes to PM, the post-failure execution

might read from locations that were not persisted before the failure. We refer to this scenario as a

cross-failure race. However, not every cross-failure race leads to a crash consistency issue. Instead,

much like races on synchronization primitives that are inherent, cross-failure races are sometimes

necessary to enable a correct recovery. For example, suppose the validity of an undo log is indicated

by a valid bit. During the post-failure execution, the recovery code must read this valid bit to

check whether the undo log needs to be applied to overwrite a potentially inconsistent location. The

pre-failure write that sets the valid bit inherently races with the post-failure read, but the recovery

outcome is well defined for all possible scenarios of the race. We refer to such intentional races as

benign cross-failure races, as they do not lead to crash consistency issues.

Even in the absence of cross-failure races, the program can still be semantically incorrect and cause

inconsistencies across the failure. For example, under the checkpointing-based recovery mechanism,

the post-failure execution should read only from data in the most recent committed checkpoint.

Data in earlier checkpoints have been persisted, and accesses to it during recovery do not race, yet

these data differ from the latest checkpoint. As such, reading from older checkpoints during the post-

failure stage violates the semantics of the crash consistency mechanism. Similar to the cross-failure

race, this buggy scenario can only be detected in the event of a failure. However, the difference is

a cross-failure race returns a non-deterministic outcome but such a scenario is always buggy if the

program fails at a certain point. Therefore, we refer to the second type of incorrect interaction as a

3B.1. INTRODUCTION 43

cross-failure semantic bug.

We collectively refer to these two classes of programming errors as cross-failure bugs. In both

cases, the program reads from PM locations that are regarded as inconsistent, either because the

update to the location is not guaranteed to be persisted before failure, or it is treated as invalid

by the semantics of the crash consistency mechanism. The goal of this chapter is to build upon

our definitions of the cross-failure bugs to provide a tool that automatically detects these bugs

and validates a PM program’s crash consistency guarantee. We propose XFDetector (Xross-Failure

Detector) that detects inconsistencies across both the pre- and post-failure stages. At the high-level,

XFDetector takes two steps in detection. First, at runtime, XFDetector traces PM operations in

both the pre- and post-failure stages. Second, XFDetector replays the two traces and updates a

shadow PM to reflect the status of each PM location based on the operations in the trace, such as

whether updates have been persisted and data is semantically consistent. The status then enables the

detection of cross-failure bugs. In order to generate both the pre- and post-failure traces for testing,

XFDetector atomically injects failure points into the PM program. Based on our observation that

a program can only enter a consistent state after an explicit writeback to PM (e.g., a CLWB followed

by an SFENCE), XFDetector only injects failures to such points to reduce the number of post-failure

executions.

The contributions of this chapter are the following:

• This work shows that the crash consistency guarantee relies on the correct interaction between

the pre- and post-failure stage of a PM program.

• We categorize the incorrect cross-failure interactions into two classes: (1) cross-failure race,

where the post-failure execution reads from non-persisted data, and (2) cross-failure semantic

bug, where the post-failure execution reads from semantically inconsistent data.

• Based on the categorization and definition, we implement XFDetector1, a tool that automat-

ically injects failures into programs, and detects cross-failure bugs by replaying traces of the

pre- and post-failure stages.

• XFDetector has detected four new bugs in three pieces of PM software: one of PMDK’s

examples, a PM-optimized Redis [14] database, and a PMDK library function [35].
1XFDetector is available at https://xfdetector.persistentmemory.org.

https://xfdetector.persistentmemory.org

3B.2. BACKGROUND AND MOTIVATION 44

void recover_alt() {
 ... // Apply undo logs
 int count = 0;
 // Traverse list and get length
 node_t cur_node = list.head;
 for(; cur_node; count++)
 cur_node = cur_node->next;
 // Overwrite inconsistent length
 list.length = count;
}

void append(node_t* new_node) {
 TX_BEGIN {
 new_node->next = head;
 TX_ADD(list.head);
 head = new_node;
 list.length++;
 } TX_END
}

1
2
3
4
5
6
7
8

void recover() {
 ... // Apply undo logs
}

void pop() {
 TX_BEGIN {
 if (list.length) {
 TX_ADD(list.head);
 list.head = head->next;
 list.length--;
 }
 } TX_END
}

9
10
11
12
13
14
15
16
17
18
19
20
21

Read

Read

22
23
24
25
26
27
28
29
30
31

Read

Correct Post-Failure

Figure 3B.1: An example of an inconsistency in program’s post-failure execution.

3B.2 Background and Motivation

In this section, we first introduce programming for persistent memory (PM) systems and its difficul-

ties. Then, we discuss the cause of inconsistencies across failure.

3B.2.1 Need for An End-to-End, Cross-Failure Testing

In Chapter 3A, we have described our testing framework, PMTest [25], that performs a runtime test-

ing to check whether the normal execution of a PM program meets the requirements for persistence

and ordering. However, only testing the normal execution stage is insufficient as crash consistency

has two fundamental requirements: (1) the program needs to correctly follow crash consistency

mechanism to ensure data consistency before a failure happens, and (2) the recovery code needs to

correctly restore the PM status back to a consistent state after a failure and resume the previously

preempted execution. For simplicity, we refer to the phase before failure as the pre-failure stage,

and after failure as the post-failure stage. Next, we will show two examples that fail to meet these

requirements.

Example 1: Inconsistency in the post-failure execution. Figure 3B.1 shows a snippet of code

that appends a new_node to a persistent linked list. To guarantee crash consistency, it wraps the

updates in a transaction (indicated by TX_BEGIN and TX_END). Within the transaction, it adds the

current PM object to an undo log with a TX_ADD() function (line 4), such that if a failure happens in

the middle of the transaction, the recovery program can roll back the logs and restore to a consistent

state. However, the program does not add length to the undo log. As a result, if a failure happens

between line 6 and 7, it is unknown if the length of the linked list has been persisted. Whether or

3B.2. BACKGROUND AND MOTIVATION 45

void update(int idx,
item_t new_item) {

 backup.idx = idx;
 backup.val = arr[idx];
 persist_barrier();
 valid = 0;
 persist_barrier();
 arr[idx] = new_item;
 persist_barrier();
 valid = 1;
 persist_barrier();
}

1
2
3
4
5
6
7
8
9

10
11
12

void recover() {
 if (valid) {
 arr[backup.idx] = backup.val;
 }
}

13
14
15
16
17

...
valid = 1;
...
valid = 0;
...
Correct Pre-Failure

Figure 3B.2: An example of an inconsistency in program’s pre-failure execution.

not this inconsistent length can lead to a bug depends on the post-failure execution.

In the naive implementation, the program executes the following steps after the failure: First, it

executes the recover() function (line 9) that rolls back the incomplete transaction with undo logs.

Second, it resumes the program’s normal execution. Let’s assume the next operation on the linked

list is pop() (line 13-21), which removes the head node and decrements its length. As the length

was not added to the transaction in the pre-failure execution, the resumption execution keeps using

the inconsistent value (as indicated by the red arrows). If the linked list was initially empty before

calling the append() function and the updated length (equals to 1) happens to be persisted before

the failure, the resumption execution can even have a segmentation fault as the “if” statement at

line 15 becomes “true” and tries to remove a node from the empty linked list.

To recover the linked list to a consistent state without requiring the logged length, recover_alt()

traverses the linked list and gets the number of nodes (line 26-28) after applying the undo logs. Then,

it overwrites the length with the correct value (line 30), making the variable length consistent.

During traversal, the program reads from the consistent value of head as it has been backed up by

the transaction (indicated by the green arrow). And, after executing the recover_alt() function,

the function pop() also accesses a consistent version of length that has been overwritten during the

recovery (indicated by the green arrows). Note that the update to length at line 30 does not need

to be covered by a transaction because its value always gets reset during recovery. Compared to

adding length to the transaction during the pre-failure stage, this fix is more efficient as the recovery

procedure only happens once for each failure. Thus, we refer to this example as an inconsistency

in the post-failure stage. However, even with a correct implementation of recover_alt(), existing

works in crash consistency testing [25, 128] can report a false positive as they only check the pre-

failure stage.

Example 2: Inconsistency in the pre-failure execution. Figure 3B.2 shows a snippet of

3B.2. BACKGROUND AND MOTIVATION 46

Pre-Failure Post-Failure

XFDetector (This Work)

Prior Works [25,128]

Figure 3B.3: Causes of inconsistency after system failure.

code that updates a location idx in a persistent array (arr). To guarantee crash consistency, the

update() function first backs up the old data and the updated index (line 3-4). Then, it issues

a persist_barrier()to writeback the backup and sets a valid bit (line 6). After writing back

valid with another persist_barrier(), it performs the in-place update to the array (line 8). And

finally, it persists the updates and resets the valid bit (line 9-11). Even though this example places

a persist_barrier()at the correct places, the pre-failure code is still semantically incorrect as

valid is set to wrong values (corrections are shown in the green box). As a result, the recovery

function always performs the wrong operation: If a failure happens before the in-place update has

been written back (line 8), the recovery program observes a valid = 0 and does not roll back the

potentially non-persisted update. And, if a failure happens after the update() function (line 12)

has completed, the recovery program rolls back with the stale data that is semantically inconsistent.

Although the bug fix can apply to both pre- and post-failure stages, the more appropriate way is to

change the values in the pre-failure stage as the variable valid refers to the validity of the backup.

For this reason, we refer to this bug as an inconsistency in pre-failure stage. As the consequence of

this bug appears after the failure, prior works [25,128] cannot detect the bug either.

From these two examples, we conclude that it is hard to guarantee crash consistency, not only

because PM programming requires a good knowledge of PM low-level instructions and libraries, but

also because the pre- and post-failure stages in the program need to work seamlessly. The inability

to implement a correct crash consistency mechanism for the pre-failure execution leaves inconsistent

data in PM, making it impossible for post-failure execution to restore PM to a consistent state. On

the other hand, an incorrect recovery and resumption execution is unable to consistently restore

PM. Figure 3B.3 summarizes these two buggy scenarios where the inconsistencies can be due to the

pre-failure and/or post-failure execution. Prior works [25,128] have provided testing tools to detect

crash consistency bugs in the pre-failure stage (the shaded area). However, without performing an

end-to-end test with both stages involved, it is impossible to cover all buggy scenarios.

3B.2. BACKGROUND AND MOTIVATION 47

length

head

backup

valid

arr[idx]

(b)(a)

undo_log ...

Figure 3B.4: Cross-failure bugs from the example of (a) Figure 3B.1 and (b) Figure 3B.2.

3B.2.2 Causes of Inconsistency

We categorize the incorrect interactions between the pre- and post-failure execution into two classes.

The first class of bugs happens when the post-failure execution reads from data that may have not

been persisted before the failure. Prior works have suggested that there is a similarity between

multithreaded programs and the recovery in certain crash-consistent programs. Lucia et al. model

intermittent computing in energy-harvesting devices as concurrency [163, 164]. Chakrabarti et al.

make an analogy between races in multithreaded programs and buggy scenarios in their failure-

atomic programming model [159]. We further generalize this interaction in PM programs — the

execution before and after a failure can be modeled as a writer and a reader from two concur-

rent threads. In the conventional data race, a race happens when at least one of the concurrent

accesses to the same memory location is a write [165]. In PM programs, although the pre- and post-

failure execution cannot perform real concurrent accesses as they happen in different times, this

contentious interaction is still similar to a data race as the value returned by the read after a failure

is indeterminate, depending on when the failure happens. Therefore, such a read from a potentially

non-persisted location may cause undefined behaviors afterward. We refer to reading data that is not

guaranteed to be persisted in the post-failure stage as a cross-failure race. Figure 3B.4a illustrates

the cross-failure race (indicated by the red arrow) between the pre- and post-failure stages in the

example of Figure 3B.1. Due to a post-failure bug, the program fails to overwrite the potentially

non-persisted length modified by the pre-failure “writer”, and thus, the post-failure “reader” can

access a non-deterministic value.

The second class of bugs happens when the post-failure program reads semantically inconsistent

data. Different from the cross-failure race, where the persistence of data is unknown, this type

of cross-failure interaction is always incorrect as the actual implementation violates the semantics

3B.2. BACKGROUND AND MOTIVATION 48

Table 3B.1: Data consistency requirements in different crash consistency mechanisms.

Mechanism Description Data Consistency

Undo logging
[35,37,166–168]

Keeps a backup of the old data before
performing the in-place update. If a failure
happens during the transaction, the recovery
mechanism reverts the update with the
backup.

If the transaction has been
committed, the updated data is
consistent. Otherwise, the log is
consistent.

Redo logging
[36,169,170]

Performs updates to the log instead of
updating in place. If a failure happens
during the transaction, the recovery
mechanism discards the incomplete redo log.

If the redo log has not been
committed, the existing data is
consistent. Otherwise, the
committed log is consistent.

Checkpointing
[47,160,171]

Creates a checkpoint (i.e., snapshot) of
persistent data periodically. After a failure,
the recovery mechanism reverts to the last
committed checkpoint.

Data in the latest committed
checkpoint is consistent.

Shadow paging
[126,162,172]

Performs copy-on-write such that data under
modification has a separate copy. Once all
updates to the shadow object are completed,
the mechanism swaps the original data with
the shadow object (e.g., by atomically
updating a persistent pointer).

If the shadow object has been
committed, data in the shadow
object is consistent. Otherwise,
the old data is consistent.

Operational
logging [173,174]

Logs operations instead of data. If a failure
happens during the operation, the recovery
mechanism re-executes the logged operation
to overwrite the incomplete operation.

Logged operations are consistent.

Checksum-based
recovery
[36,141,175]

Determines the consistency status of the
modified data using checksums. If a failure
happens, the recovery program first reads
the data in place and then uses its checksum
to determine the consistency.

Data protected by the
corresponding checksum is
consistent.

of the intended crash consistency mechanism. Therefore, we name the act of reading data that is

semantically inconsistent during the post-failure stage as a cross-failure semantic bug. Figure 3B.4b

shows the cross-failure semantic bug in the example of Figure 3B.2. Due to the pre-failure bug that

incorrectly sets the values of valid, the post-failure recovery program reads from a semantically

inconsistent backup. Because the valid bit is incorrectly set by the program implementation, the

status after the recovery is always incorrect.

Together, we refer to these two classes of programming errors as cross-failure bugs. We refer to data

on a PM location as inconsistent if it contains updates that are not guaranteed to be written back

before a failure, and/or it is semantically inconsistent according to the crash consistency mechanism.

A cross-failure bug happens due to the post-failure stage reading data from such inconsistent PM

locations that are modified during the pre-failure stage. The goal of this work is to detect cross-failure

bugs in PM programs by considering both the pre- and post-failure stages holistically.

3B.3. CROSS-FAILURE BUGS 49

3B.3 Cross-Failure Bugs

In order to detect both types of cross-failure bugs, we first need to precisely define the buggy

scenarios. Therefore, in this section, we provide definitions for the cross-failure race and the cross-

failure semantic bug.

3B.3.1 Cross-Failure Race

Definition: The post-failure execution reads from data modified by the pre-failure execution that

is not guaranteed to be persisted before the failure.

The first type of cross-failure race covers the most general case of inconsistent data on PM —

it happens when writes to PM are not guaranteed to be written back before a failure. As data

may not be persistent, the post-failure execution can read incompletely updated data, leading to

inconsistencies after failure. Reading the variable length during post-failure recovery in Figure 3B.1

is a typical example of a cross-failure race as length is not guaranteed to be persisted before failure.

Its unknown persistence status can lead to uncertainties during the post-failure stage. To formalize

the cross-failure race, we first define the following notations:

• Wx: A write to the PM location x.

• Rx: A read from the PM location x.

• Mx: A read/write from/to the PM location x.

• F : A failure point that preempts execution.

We then define the following ordering notations:

• Mx <hb F : Mx happens before the failure F .

• Wx ≤p Wy: Wy may not persist before Wx is persisted.

• Wx ≤p F : Wx has been persisted before the failure F .

Therefore, we define a pre-failure write Wx as: Wx <hb F , and a post-failure read Rx as F <hb Rx.

A read Rx has a cross-failure race with Wx iff:

Wx <hb F
∧

F <hb Rx

∧
¬ (Wx ≤p F) . (3B.1)

In other words, if a write is not guaranteed to be persisted before the failure, reading its location

during the post-failure execution can cause a cross-failure race. Next, we introduce a special case of

the cross-failure race that does not lead to inconsistencies but is necessary for recovery.

3B.3. CROSS-FAILURE BUGS 50

Benign Cross-Failure Race: A program intentionally reads from potentially non-persisted data

modified by the pre-failure execution, without causing inconsistencies.

Cross-failure races can cause inconsistencies, however, not all cross-failure races lead to inconsisten-

cies. Instead, it is sometimes necessary to read potentially non-persisted data to correctly recover

from a failure, analogous to the inherent data races on synchronization primitives. We refer to such

intentional reads to inconsistent data as the benign cross-failure race. For example, reading the valid

bit of undo logs during the post-failure recovery is regarded as a benign race, as the valid bit en-

ables the recovery program to determine which version is consistent. The checksum-based recovery

mechanism (last row in Table 3B.1) is another example of the benign cross-failure race, as the post-

failure recovery needs to read potentially non-persisted data and its associated checksum to verify

data consistency. In these scenarios, a write to such location inherently races with the post-failure

read, while the outcome is always well defined and thus, does not cause any inconsistency. Benign

cross-failure races are typically used to determine the consistency status of other PM objects.

3B.3.2 Cross-Failure Semantic Bug

Definition: The post-failure execution reads from data updated during the pre-failure stage that is

semantically inconsistent according to the program.

The second type of cross-failure bug covers inconsistencies defined by the program semantics. PM

programs typically follow certain crash consistency mechanisms. Even if a PM location is persisted

before failure, it can still be semantically inconsistent if it violates the corresponding data consistency

requirements. Table 3B.1 lists the data consistency requirements of common crash consistency mech-

anisms. Among these different mechanisms, we identify that most crash consistency mechanisms

keep two versions of data: a consistent version for recovery and another for the current update. The

version that is regarded as consistent by the crash consistency mechanism can be safely read dur-

ing the post-failure execution. Whereas, the inconsistent version should be discarded or overwritten.

These mechanisms typically use a commit variable to indicate whether a set of PM addresses belongs

to a consistent version. Data in a set of PM addresses are regarded as consistent only if they were

updated between the last two updates to the associated commit variable. For example, in the undo

logging mechanism, the program first logs the original data and sets the commit variable (a valid

bit) of the log. Then, it performs the in-place update and unsets the commit variable. If a failure

3B.3. CROSS-FAILURE BUGS 51

Cross-Failure Semantic Bugs

Cross-Failure Race
Benign Cross-Failure Race

Other Bugs

Figure 3B.5: Two classes of cross-failure bugs.

happens after the last update to the commit variable, then the in-place update is the consistent

version, as it was modified between the last two updates to the commit variable.

We formalize this commonly used version-based crash consistency mechanism by introducing some

extra notations:

• Cxi
: The i-th write to the PM address x that alters the consistency status of other PM addresses.

We refer to the write as a commit write and variable on x as a commit variable.

• Sx: A set of PM addresses, i.e., {m1...mn}, associated with the commit variable on x.

In programs that consist of more than one commit variable, their associated PM address sets need

to be disjoint, i.e., given two commit variables on address x and y, then

Sx ∩ Sy = ∅. (3B.2)

Let the last commit write be the n-th write to x, i.e., Cxn
, The PM addresses in S are semantically

consistent iff:

∀mi ∈ Sx, Cxn−1
≤p Wmi

∧
Wmi

≤p Cxn
. (3B.3)

3B.3.3 Summary

The Venn diagram in Figure 3B.5 summarizes the two classes of cross-failure bugs. The first class

of cross-failure bug is the cross-failure race that reads data not guaranteed to be persisted before

a failure, unless it is an intended benign cross-failure race. The second class is the cross-failure

semantic bug that reads semantically inconsistent data. As the focus of this work is to detect crash

consistency bugs due to cross-failure interactions, we do not consider other types of bugs. Next, we

describe our key ideas for detection based on the definition of these cross-failure bugs.

3B.4. KEY IDEAS OF XFDETECTOR 52

Persistence

W
R
I
T
E

0
x
1
0

C
L
W
B

0
x
1
0

S
F
E
N
C
EOperation

Semantic
Consistency

Operation

(a) (b)

Inconsistent Consistent

Time Time

Not Persisted Persisted

0x10 0x50 0x900x10

W
R
I
T
E

0
x
5
0

C
L
W
B

0
x
5
0

S
F
E
N
C
E

W
R
I
T
E

0
x
9
0

C
L
W
B

0
x
9
0

S
F
E
N
C
E

Update to Commit Var

Figure 3B.6: Examples of detecting (a) a cross-failure race and (b) a cross-failure semantic bug based on the data
consistency status of PM locations.

3B.4 Key Ideas of XFDetector

So far, we have described the definitions of the cross-failure bug. It would be greatly helpful to

programmers if there is a way to detect them. In this work, we propose XFDetector, a Xross-Failure

Detector. At the high-level, XFDetector traces PM operations in both the pre- and post-failure

stages, and then detects inconsistencies due to buggy interactions between these two stages. In

the design and implementation of XFDetector, we answer two research questions: (1) What is a

proper approach to determine data consistency in order to detect cross-failure races and semantic

bugs? (2) What is an efficient way to inject failures into the program to cover all cross-failure

interactions?

3B.4.1 Data Consistency

Challenge. Detecting inconsistencies across the failure requires determining whether data read

by the post-failure execution is consistent. However, data consistency is not self-contained by data

but depends on program’s manipulation of persistent data. The challenge is to determine data

consistency based on the program execution.

Solution. The consistency status of persistent data changes as the program performs updates to

PM. Therefore, to capture the updates, XFDetector traces PM operations (e.g., WRITE, CLWB and

SFENCE) in the pre- and post-failure execution stages. To detect cross-failure bugs, XFDetector

implements a shadow PM that records the status of each PM location. XFDetector first replays the

pre-failure trace and then the corresponding post-failure trace. XFDetector updates the status of the

shadow PM while replaying the traces, and checks if the post-failure accesses satisfy the conditions

described in Section 3B.3.

Figure 3B.6a shows an example of detecting a cross-failure race based on the persistence of data.

A PM location, 0x10, first gets modified and then the persistence status becomes not persisted as

3B.5. IMPLEMENTATION OF XFDETECTOR 53

this update is not guaranteed to be written back. Then, a sequence of CLWB and SFENCE writes

back this location and thus, changing the status to persisted. Figure 3B.6b shows another example

that detects cross-failure semantic bugs by determining the data consistency status according to

the updates to the commit variable (indicated by the blue arrows). There are two updates to the

locations 0x50 and 0x90 that have been persisted before the failure. However, being persistent does

not mean the locations are consistent. As the location 0x90 is last modified between the last two

updates to the commit variable, it is regarded as semantically consistent, while the other location

0x50 is not.

3B.4.2 Failure Injection

Challenge. XFDetector needs to inject failures during the program execution in order to trigger

both the pre- and post-failure stages. We refer to such injected failures as failure points. To capture

all incorrect cross-failure interactions, the naive solution is to inject failure points for all possible

interleavings of PM updates, considering the PM status can change after each update. However,

this exhaustive method is extremely costly as XFDetector needs to perform post-failure execution

for every failure point.

Solution. We observe that updates to PM are not guaranteed to be persisted until explicitly

written back (e.g., using a persist_barrier()). We refer to a point in the program that explicitly

writes back data to PM before any future PM operations as an ordering point. As such, persistent

data can only transition from an inconsistent state to a consistent state after an ordering point.

Therefore, it is only necessary to check the consistency status immediately before each ordering

point. Based on this observation, XFDetector only injects failure points before each ordering point2.

The ordering points that XFDetector concerns about include both low-level operations (e.g., SFENCE)

and high-level functions that enforce writeback (e.g., TX_ADD() in PMDK [35]).

3B.5 Implementation of XFDetector

3B.5.1 An Overview of XFDetector

Figure 3B.7 shows an overview of XFDetector’s detection procedure that consists of three steps: (1)

an offline step that requires annotation of the region-of-interest (RoI) in both the pre- and post-
2Checksum-based mechanism is an exception that data consistency relies on the verification of the checksum. We

briefly discuss how to inject additional failure points for this mechanism in Section 3B.5.5.

3B.5. IMPLEMENTATION OF XFDETECTOR 54

Detection ResultsAnnotation For Each Failure Point

Offline Online: Frontend Online: Backend

Pre-Failure Trace

Post-Failure Trace

❶ ❸
❹

❺

❻
Failure Point

Instrumentation
PM

Program XFDetector
❷

Execution

Figure 3B.7: An overview of XFDetector.

failure stages, (2) an online frontend that injects failure points and generates traces, and (3) an

online backend that detects and reports cross-failure bugs based on the traces. The following is an

overview of the detection procedure: First, the programmer annotates the source code and compiles

it with XFDetector library (step Ê). Second, XFDetector automatically instruments the program

with failure points before its execution begins (step Ë). During execution, it follows a procedure

of execute pre-failure stage – suspend at the failure point – execute the corresponding post-failure

stage, until it completes or reaches the termination point (step Ì). During execution, it generates

both the pre-failure (step Í) and post-failure traces (step Î). Finally, as the frontend is tracing, the

backend performs detection and reports the detection results (step Ï).

3B.5.2 Software Interface

XFDetector provides a C/C++-compatible interface as listed in Table 3B.2. XFDetector has two

types of functions. The first type controls the detection procedure and allows programmers to select

the region-of-interest (RoI) for detection. The second type is used for annotating the source code

to support detection. For trusted code (e.g., implementation of library functions), programmers

can choose to skip the injection of failure points and bug detection. Programmers can also add

additional failure points on demand. To expose crash consistency semantics in programs directly

built on low-level primitives, XFDetector allows programmers to register the commit variable and

its associated PM objects. By default, if there is only one commit variable and no object is specified,

it covers all PM locations. During the execution of XFDetector, reads from the selected commit

variables are marked as benign cross-failure races, without being reported as bugs. Both types of

functions take two arguments, condition and stage, which allow programmers to manage when

the function takes effect. It is worth pointing out that programmers only need to use the functions

to select the region for detection, without any need for additional annotation when testing programs

that are built on top of PM libraries. The functions for annotation are needed only when testing

programs that directly use low-level primitives or the implementation of PM libraries.

3B.5. IMPLEMENTATION OF XFDETECTOR 55

Table 3B.2: XFDetector software interface.

Function Description

Control
RoIBegin(condition, stage) Mark a region for XFDetector detectionRoIEnd(condition, stage)
completeDetection(condition, stage) Terminate detection

Detection
Annotation

skipFailureBegin(condition) Mark a region that skips failure pointsskipFailureEnd(condition)
addFailurePoint(condition) Add additional failures
skipDetectionBegin(condition, stage) Mark a region that skips detectionskipDetectionEnd(condition, stage)
addCommitVar(variable) Mark a commit variable and

associated addressaddCommitRange(variable, addr, size)

3B.5.3 Tracing Mechanism

XFDetector’s tracing mechanism generates a trace of low-level instructions, including PM reads and

writes, fences, and writeback operations. XFDetector leverages PMDK’s address derandomization

option to map PM locations to a predefined virtual address range to distinguish PM operations,

and keeps the virtual address of each PM object the same across different executions to simplify

the detection process (by setting the PMEM_MMAP_HINT environment variable [176]). Due to the

high performance overhead from tracing at such fine granularity, XFDetector optimizes the tracing

procedure for programs built on PMDK [35] by skipping the trace of internal implementation but

only maintaining a trace of library function calls, such as PM transactions and allocations. This

way, the user code is traced at instruction granularity and internal library code is traced at function

granularity. In the trace entry, XFDetector keeps track of the operation’s instruction pointer, and

the source/destination addresses and their sizes. The instruction pointer is used for backtracing the

bug, and the address and size differentiates PM objects.

3B.5.4 Detection Procedure

The detection procedure in XFDetector consists of two parts: a frontend that injects failures and

traces PM operations, and a backend that detects bugs based on the traces.

Frontend. We implement the frontend based on Intel’s Pin [177] to perform tracing and failure

injection. In order to inject failures for testing, before executing the program, the frontend first

locates all ordering points in the binary and then instruments the binary with failure handlers before

each ordering point (as described in Section 3B.4). After instrumentation, the frontend performs

tracing and failure injection during execution (as shown in Figure 3B.8a). In the pre-failure stage,

3B.5. IMPLEMENTATION OF XFDETECTOR 56

Pre-failure:

Pre-failure RoI

Post-failure:
Post-failure RoIPM

Suspend

Execute

Tracing

Tracing
Copy

Complete

Complete

❶

❸

❹
❺

❷
(a)

Pre-failure:

Post-failure:
(b)

Pre-failure Trace

Post-failure Trace

Write ...

Read ...

Replay

Replay

Check consistency
Update consistency

Send Trace Send Trace

TimestampConsist.Addr

❻

➑Shadow
PM

Next failure point

➐

Persis.

Figure 3B.8: XFDetector’s (a) frontend and (b) backend.

XFDetector collects a trace of PM writes and library functions (step Ê). When encountering a

failure point (i.e., failure handler) within the RoI, XFDetector suspends the program (step Ë),

makes a copy of the current PM image (a pool file on PM) (step Ì)3, and spawns its post-failure

execution (step Í). Then, in the post-failure stage, XFDetector generates another trace (step Î)

until it reaches the annotated termination point (or naturally terminates). Then it continues the

pre-failure execution and moves on to the next failure point (step Ï). During the remaining pre-

failure execution, XFDetector incrementally traces new operations instead of starting over from the

beginning for better performance. While tracing, the frontend sends the already completed trace to

the backend (through a pre-failure trace FIFO and a post-failure trace FIFO) for detection. This

way, the detection procedure can overlap with tracing. Next, we describe the backend detection

mechanism.

Backend. XFDetector maintains a shadow PM with the following fields for each PM address to

record their status: (1) a persistence state field that can be unmodified (U), modified (M), writeback-

pending (W), and persisted (P), (2) a consistency state field that can be consistent (C) or inconsistent

(IC) according to program semantics, and (3) a timestamp Tlast that indicates the last time the

address was modified. XFDetector uses the PM state field to detect the cross-failure race, the

consistency state field to detect the cross-failure semantic bug, and the timestamp to update the

consistency state based on the commit variable. Each commit variable keeps another timestamp

Tprelast that indicates the pre-last time it was modified. Each timestamp is obtained from a global

timestamp that increments after each ordering point.
3The copy of PM image contains all updates (including those not persisted before the failure point). XFDetector

maintains a shadow PM to track which locations have been persisted for the purpose of detection.

3B.5. IMPLEMENTATION OF XFDETECTOR 57

Figure 3B.9: Transitions of the persistence state.

During the detection procedure, XFDetector replays the traces in the order of pre-failure and post-

failure:

Pre-failure Trace: XFDetector’s backend replays the pre-failure trace by updating the shadow PM

for each write and each library function that modifies PM (step Ð). XFDetector updates both the

persistence state and consistency state according to the operations in the trace. For the persistence

state of a PM location, XFDetector follows the finite-state machine in Figure 3B.9. In brief, a WRITE

changes the state to modified, a CLWB changes the modified state to writeback-pending, and finally,

an SFENCE changes the state to persisted4. For consistency state, this work supports common crash

consistency mechanisms that use commit variables and those that are built on PMDK transactional

functions5. Figure 3B.10 shows the consistency state transition of a PM location m according

to the updates to its associated commit variable x (Cx refers to a write to the commit variable),

where the location m can be inconsistent in two ways: being uncommitted or stale. In brief, an

uncommitted location becomes consistent after an update to the commit variable, and a stale location

first gets updated and then becomes consistent after being committed. XFDetector handles PMDK

transactional functions in a similar way to PMTest [25], where objects that have been added to

the transaction are regarded as consistent. During the update of the shadow PM, XFDetector

also reports performance bugs that use unnecessary PM operations (e.g., redundant writebacks as

indicated by the yellow edges in Figure 3B.9), and unnecessary library functions (e.g., duplicated

TX_ADD() functions for the same PM object).

Post-failure Trace: XFDetector then replays the corresponding post-failure trace (step Ñ). Different

from processing the pre-failure trace, writes in post-failure change the consistency status to consistent

as they overwrite the old data. Inconsistencies introduced by these writes will be tested later when

this code region runs as the pre-failure stage. For each read, XFDetector first checks the consistency

state and then the persistence state of the target location, as reading a consistent location is certainly

bug-free, while reading a persisted location can still be semantically inconsistent. Reading a commit
4XFDetector also handles non-temporal writes and other types of fence.
5We reserve an extensibility as discussed in Section 3B.5.5 to support other crash consistency mechanisms.

3B.5. IMPLEMENTATION OF XFDETECTOR 58

Inconsistent
Uncommited

(IC)

Consistent
(C)

Inconsistent
Stale
(IC)

WRITE m

Init.

WRITE x (Cx)WRITE m

WRITE m

WRITE x (Cx) WRITE x (Cx)

Figure 3B.10: Transitions of the consistency state.

WRITE 0x100 16
WRITE 0x110 4
CLWB 0x100 64
SFENCE
WRITE 0x200 16

Pre-Failure:

Post-Failure:

Addr Persis. State

READ 0x110 1
READ 0x100 16
...

Shadow PM:

(a)

(b)

(c)

void update(int idx,
 item_t new_val) {
 backup=arr[idx];
 valid=1;//commit var
 persist_barrier();
 arr[idx]=new_val;
 persist_barrier();
...}

void recovery() {
 if (valid) {
 arr[idx]=backup;
 }
 ...
}

1
2
3
4
5

6
7

Consist. Tlast

❹P

❻ F1/F2

0x100-0x10F

0x200-0x20F
0x110-0x113

❶M ❸W IC
❷M

❶ 0
❸W ❹P

❺M

IC

IC
❷ 0
❺ 1

➐ F1

F1

F2

F1

F2

backup
valid

arr[idx]

➐ F2

Trace:
<op> <addr> <size>

Figure 3B.11: (a) The pre- and post-failure traces, (b) the states in the shadow PM, and (c) the code demonstrating
the steps of the detection procedure.

variable is a benign cross-failure race and not regarded as a bug. On detection of a cross-failure bug,

XFDetector reports the file name and the line number of the reader and the last writer that cause

the bug. Next, we illustrate the detection procedure with an example.

Example. Figure 3B.11 demonstrates the detection procedure, where Figure 3B.11a, 3B.11b, and

3B.11c show the pre- and post-failure trace, the shadow PM, and the code, respectively. The valid

variable is marked as a commit variable because it decides the validity of the backup and the in-place

update. XFDetector injects a failure point before each of the two ordering points (F1 and F2 before

each persist_barrier()), and each failure point triggers their corresponding post-failure execution.

We take the first two entries (line 6 and 7) from the post-failure trace for demonstration. Initially, the

global timestamp is 0 and all PM addresses in the example are unmodified. Next, we demonstrate the

detection step-by-step. Line 1: creates backup and updates its PM status to modified. Line 2: sets

valid and updates its PM status to modified. As there is no update before the commit timestamp,

XFDetector does not change the consistency state of any PM location. F1: the first failure triggers

the post-failure execution. Line 6 (F1): reads from valid (the commit variable). Line 7 (F1): reads

from backup for rolling back. However, as the PM state of backup is modified, XFDetector reports

a cross-failure race. Then, it continues pre-failure execution from F1. Line 3: writes back a cache

line that contains both backup and valid, and updates both PM status to writeback-pending. Line

4: places an SFENCE to make sure previous pending writebacks are complete, and increments the

3B.5. IMPLEMENTATION OF XFDETECTOR 59

global timestamp. Line 5: updates the variable arr in-place and the persistence status becomes

modified. F2: the second failure triggers the post-failure execution. Line 6 (F2): reads from valid

(the commit variable). Line 7 (F2): reads from backup for rolling back. However, as the consistency

state is inconsistent, XFDetector reports a cross-failure semantic bug. This bug is due to backup

not being updated before the last update to the commit variable (valid). In summary, XFDetector

reports a cross-failure race at the first failure point (F1), and a cross-failure semantic bug at the

second failure point (F2).

Optimizations. XFDetector takes the following optimization strategies for better efficiency with-

out degrading its detection capability. (1) Eliminate unnecessary consistency checks: In the post-

failure stage, there can be multiple reads from the same PM location that was modified during

the pre-failure stage. XFDetector only checks the first read and skips the rest as the result would

be the same. (2) Eliminate unnecessary failure points: In the pre-failure stage, there can be two

ordering points without any PM operations in between (e.g., two consecutive calls to PM library

functions with ordering points). XFDetector does not inject a failure point in the middle for better

performance.

Complexity. Assuming there are F failure points in the pre-failure stage, and each correspond-

ing post-failure execution has P operations on average, the complexity of the detection procedure

is O (F · P). We observe that the post-failure execution in most crash consistency mechanisms

takes a small, constant number of steps to recover from the failure. For example, an undo logging

mechanism only recovers the last incomplete transaction. Therefore, the detection time scales lin-

early with the number of failure points in most scenarios. We evaluate XFDetector’s scalability in

Section 3B.6.2.

3B.5.5 Extensibility

This section describes the extensibility of XFDetector to support other PM systems and detect other

types of bugs.

Extending Operation Tracing. XFDetector decouples the frontend tracing from the backend

detection. The frontend of XFDetector is built on Intel’s Pin [177] for fine-grained, automated trac-

ing. Although Pin is limited to user-space programs and Intel processors, the backend of XFDetector

3B.6. EVALUATION 60

Table 3B.3: The evaluated system.

CPU Intel Xeon Gold 6230, 2.1 GHz, 20 cores

PM 2×128 GB Intel DCPMM, App Direct mode, Interleaved

DRAM 4×16 GB DDR4, 2666 MT/s

OS Ubuntu 18.04, Linux kernel 4.15

Tools & Libs gcc/g++-7.4, Pin-3.10, PMDK-1.6, ndctl-61.2

can be attached to other tracing frameworks, such as the software-directed tracing in WHISPER [1]

and PMTest [25].

Extending Detection Capability. We summarize the possible approaches for extending XFDe-

tector as the following points. First, XFDetector functions (Table 3B.2) can work as building blocks

to support other PM libraries. Take our implementation as an example, we skip the detection of

PMDK’s internal transactions but instead explicitly add a failure point for each library function

that contains ordering points. This way, XFDetector only needs to handle programmer’s code. Sec-

ond, if the target program applies a crash consistency mechanism that does not follow the approach

described in Section 3B.3.2, programmers may need to modify the tool and provide extra annota-

tions. For example, to support a version-based mechanism that does not take the latest copy but

uses a specific one in the log, programmers need to add extra timestamps to track when the log

was committed. The checksum-based mechanism is another example, where the consistency status

is not determined by a commit variable but uses a pair of data and its associated checksum. To

test the correctness of the checksum implementation, programmers may manually place a failure

point using XFDetector’s library function or modify the failure injection mechanism to automati-

cally add more failure points between ordering points. Third, if a cross-failure bug is beyond the

capability of XFDetector, the failure injection framework can work in cooperation with conventional

debugging techniques. For example, bugs that depend on data values, such as creating a log using

incorrect data, cannot be detected because XFDetector does not track data values. To detect such

bugs, programmers may place assertions to check data values in the post-failure code and then use

XFDetector’s failure injection mechanism to trigger the post-failure execution.

3B.6. EVALUATION 61

Table 3B.4: The evaluated PM programs.

Lines of code (LOC)
Name Type Original Annotation

Microbench

B-Tree Transaction 981 4
C-Tree Transaction 698 4
RB-Tree Transaction 855 4
Hashmap-TX Transaction 741 4
Hashmap-Atomic Low-level 837 5

Real-world Memcached Low-level 23k 10
Redis Transaction 66k 6

3B.6 Evaluation

3B.6.1 Methodology

We evaluate our tool, XFDetector in a real system (Table 3B.3) with Intel’s Optane DC Persistent

Memory Module (DCPMM). PM is mounted with the DAX option to bypass OS indirections [178].

Table 3B.4 lists the evaluated PM programs, including 5 micro benchmarks from PMDK [35] exam-

ples and 2 real-world workloads: Redis [14] and Memcached [12]. The transaction-based programs

are built with PMDK’s libpmemobj, and the low-level ones are built with libpmem. We annotate

the source code with XFDetector interface for cross-failure bug detection. Table 3B.4 lists the lines

of code (LOC) of the original version and our annotation. We modify the Makefile to link the test

program with the shared object of XFDetector’s interface for all workloads. We mark the entire

program as RoI (both pre- and post-failure) for the micro benchmarks, and select the code region

that performs updates to PM objects as the pre-failure RoI and the region that performs recovery

as the post-failure RoI for larger real-world workloads.

3B.6.2 Performance

Execution Time. This experiment evaluates the execution time of XFDetector. We run each

workload with one transaction/query that performs an insertion, and another one for each failure

point. Figure 3B.12a shows the wall-clock time (seconds) of XFDetector for each workload. XFDe-

tector takes an average of 40.6 seconds to analyze one insertion operation. We further break down

the execution time into two parts: the pre- and post-failure stages. We observe that the post-failure

takes the majority of the execution time as XFDetector spawns the post-failure execution for each

failure point. We further compare the execution time of XFDetector with a “Pure Pin” configuration

where the Pintool only traces the PM read/write operations, and the original program that runs

3B.6. EVALUATION 62

0

20

40

60

B
T

re
e

C
T

r
ee

R
B

T
re

e

H
a

sh
-T

X

H
a

sh
-A

to
m

ic

M
em

ca
c

h
e

d

R
ed

is

A
v

er
a

g
e

E
x
ec

u
ti

o
n

 T
im

e
(s

) Post-Failure Pre-Failure

(a)

1

10

100

1000

B
T

re
e

C
T

r
ee

R
B

T
re

e

H
a

sh
-T

X

H
a

sh
-A

to
m

ic

M
em

ca
c

h
e

d

R
ed

is

A
v

er
a

g
e

S
lo

w
d

o
w

n

Over Pure Pin Over Original

(b)

Figure 3B.12: Performance of XFDetector: (a) wall-clock time and (b) slowdown over pure Pin and original program.

0

250

500

750

1000

0

1000

2000

3000

4000

1
1
0

2
0

3
0

4
0

5
0 1

1
0

2
0

3
0

4
0

5
0 1

1
0

2
0

3
0

4
0

5
0 1

1
0

2
0

3
0

4
0

5
0 1

1
0

2
0

3
0

4
0

5
0 #

F
a
il
u

r
e
 P

o
in

ts

E
x
e
c
u

ti
o
n

 T
im

e
 (

s)

#Transactions

Execution Time #Failure Points

C-TreeB-Tree RB-Tree Hash-AtomicHash-TX

Figure 3B.13: The execution time of micro benchmarks with variable numbers of pre-failure transactions.

without any tool (Figure 3B.12b). On average (Geo. mean), XFDetector is 12.3× slower than “Pure

Pin” and 400.8× slower than the original program. We conclude that the repeated post-failure ex-

ecution is the major bottleneck, and Pintool is the secondary bottleneck. However, the post-failure

executions are independent as they operate on a copy of the original PM image, and therefore, can

be parallelized. We leave the parallelized detection as a future work.

Scalability. This experiment scales the number of transactions performed in the pre-failure stage

during detection. As real-world workloads execute upon query, we scale the number of pre-failure

transactions in micro benchmarks and keep the post-failure constant (one transaction). The primary

axis in Figure 3B.13 indicates the execution time (wall-clock time) of detection with variable numbers

of pre-failure transactions, and the secondary axis indicates the number of failure points in the pre-

failure stage. This experiment shows that the execution time increases linearly as the number of

failure points increases.

3B.6.3 Detection Capability

In this section, we first validate the debugging capability of XFDetector, and then demonstrate the

new bugs we found.

Validation. Table 3B.5 summarizes the synthetic bugs that we have validated using XFDetec-

tor. We first validate XFDetector’s detection capability with the bug suite from PMTest [25]. As

3B.6. EVALUATION 63

Table 3B.5: The synthetic bugs for validation
(R: cross-failure race, S: cross-failure semantic bug, and P: performance bug).

PMTest Bug Suite Additional
Name R S P R S

B-Tree 8 N/A 2 4 /
C-Tree 5 N/A 1 1 /
RB-Tree 7 N/A 1 1 /
Hashmap-TX 6 N/A 1 3 /
Hashmap-Atomic 10 N/A 2 3 4

1
2
3
4
5
6
7
8
9

int util_pool_create_uuids(){
 ...
 // set pool metadata
 util_poolset_create_set();
}

(b)

Without protection by transaction,
post-failure can read inconsistent
num_dict_entries.

void hash_atomic_insert(...){
 ...
 hash_map->count++;
 pmemobj_persist(...);
 hash_map->count_dirty=0;
 ...
}

10
11
12
13
14
15
16 Post-failure can read from

potentially uninitialized count.

PMEMobjpool* pmemobj_createU(){
 ...
 util_pool_create(...);//create
 ...
}
void util_pool_create(...) {
 util_pool_create_uuids(...);
}

1
2
3
4
5
6
7
8

9
10
11
12
13

Failure happens during
metadata initialization.

void initPersistentMemory(void){
 ... // open pool and get root
 root->num_dict_entries = 0;
 ...
}

1
2
3
4
5

(c)

void create_hashmap(...){
 // initialize
 hashmap->seed = seed;
 hashmap->hash_fun_a = rand();
 ...
 POBJ_ALLOC(...); // allocate PM
 ...
 pmemobj_persist(...);
}

(a)

Updates to hashmap metadata may not persist.
Post-failure can read inconsistent hash functions.

Figure 3B.14: New bugs detected by XFDetector in
(a) Hashmap-Atomic, (b) Redis, and (c) libpmemobj.

cross-failure semantic bugs are beyond PMTest’s scope, we create additional synthetic, cross-failure

semantic bugs on top of the Hashmap-Atomic example which is built on low-level primitives. We do

not create cross-failure semantics bugs for other workloads as the commit variables are managed by

their transactional library functions. We also create other cross-failure race bugs for better valida-

tion. The validation shows that XFDetector is effective in detecting these synthetic bugs and covers

more types of bugs than existing works [25,128].

New Bugs. XFDetector found new bugs that have not been identified by prior works. Bug 1 is

found in a PMDK example, Hashmap-Atomic (hashmap_atomic.c:132-138) that uses the low-level

operations to ensure crash consistency. The initialization function (create_hashmap) assigns hashing

functions and their seed as part of the hashmap’s metadata (line 3 and 4 in Figure 3B.14a). These

updates are not protected by any crash consistency mechanism. Therefore, if a failure happens before

3B.7. DISCUSSION 64

they are written back (line 8), the post-failure program can read from invalid function pointers and an

invalid seed value that are not completely persisted to PM, leading to a cross-failure race. Bug 2 is

also found in the Hashmap-Atomic example (hashmap_atomic.c:280), where the program accesses

a potentially uninitialized PM location (count). The program allocates a piece of PM when creating

the hashmap (line 4 in Figure 3B.14a). If a failure happens right after the allocation, the post-failure

program can read the variable count (line 12) that may not be initialized. This example happens to

use an allocator that implicitly initializes the location with zeros. However, with a different allocator,

the implicit initialization is not guaranteed, and therefore, can lead to a cross-failure race as the pre-

failure program creates an unmodified PM location that is read by the post-failure execution. We only

annotated a commit variable, count_dirty, to detect these two bugs. Bug 3 is found in Redis [14]

(server.c:4029), where the Redis server initializes PM (Figure 3B.14c). Similar to the previous

bug, the initialization procedure is not protected by a transaction, and therefore, a failure in the

middle of the initialization can lead to a cross-failure race. We did not manually expose any program

semantics to detect such bug as Redis is transaction-based. Bug 4 is found in PMDK’s libpmemobj

library (obj.c:1324). The PM pool creation function, pmemobj_createU(), initializes a region of

PM and sets its metadata (through util_pool_create_uuids()) as demonstrated in Figure 3B.14c.

All data have been persisted at the end of the creation function, however, there is no consistency

guarantee in the middle. A failure point injected in the middle of the creation process can cause

the created PM pool to have incomplete metadata. Then, the post-failure program tries to open

the pool for recovery but fails. Although the post-failure open() operation is a syscall and out the

scope of tracing, XFDetector’s failure injection mechanism makes this bug observable. We conclude

that XFDetector is effective at detecting cross-failure bugs with minimum annotation.

3B.7 Discussion

In this section, we discuss the assumptions and the scope of this work.

Detection Scope. XFDetector can detect cross-failure bugs due to reading non-persisted or se-

mantically inconsistent data. The detection mechanism takes into account the address and the order

of PM updates instead of data values (except for commit variables that can affect the procedures in

the post-failure stage). Therefore, programming errors such as writing incorrect data values to non-

commit variables (e.g., log incorrect data) are out of the scope. Section 3B.5.5 has described the way

to extend the capability by incorporating conventional debugging methods with XFDetector.

3B.7. DISCUSSION 65

Multithreaded PM Programs. The frontend of XFDetector is thread-safe by using thread-

local storage and Pin’s locking primitives, and the backend runs in a separate process without

being interfered by the multithreaded workload. Therefore, programmers do not need to adjust

XFDetector to test multithreaded programs. The concurrent threads in our workloads perform PM

operations on independent tasks (e.g., each thread takes a different request), and therefore, we do

not implement cross-failure bug detection for collaborative updates to PM from concurrent threads.

However, XFDetector can be extended to support such scenarios by sharing a global timestamp

among multiple threads and introduce more program-specific rules for consistency checking.

External Dependency. XFDetector executes the post-failure stage on a temporal copy of the

original PM image. Therefore, external events (e.g., I/O) can possibly cause variation among differ-

ent post-failure executions. However, we did not observe any external events that change the PM

status in the evaluated workloads.

Chapter 3C

Test Case Generation for

Persistent Memory Programs

3C.1 Introduction

So far, we have introduced two testing frameworks. In Chapter 3A, we introduced our runtime testing

framework, PMTest [25], that detects violations against the ordering and persistence requirements.

In Chapter 3B, we introduced an end-to-end testing framework, XFDetector [26], that detects the

correct failure-recovery behavior by introducing failures during the execution. However, there is

another major issue remains unsolved—to detect a crash consistency bug, the buggy procedure needs

to be executed. For example, to reproduce a bug in PMDK [134] that was reported by PMTest [25],

the inputs to a B-Tree-based key-value store need to be carefully designed, in order to execute a

program path that triggers B-Tree’s insertion and rebalancing procedures. Hence, even with the aid

of PM testing tools, bugs cannot be detected without having inputs to trigger the required execution

path. In this chapter, we aim to assist PM programming by generating test cases to cover nontrivial

crash consistency and performance bugs.

Due to the already complicated programming for PM systems, a tool for test case generation ideally

should not place an additional burden on programmers. Fuzzing, a widely-used test case generation

method, perfectly satisfies this demand as it requires minimum knowledge about the target code

base and has been proven to be effective [179–183]. At a high-level, a fuzzer iteratively generates

66

3C.1. INTRODUCTION 67

new test cases by mutating existing ones, where high-value test cases, such as those that explore

new branches, are reused in future iterations. Although fuzzing is an effective method, we identify

that in order to generate test cases for PM programs efficiently, additional requirements need to be

satisfied.

First, PM programs maintain the persistent state on PM devices (e.g., as a PM image in a DAX file

system), different from conventional programs. A PM program takes not only the regular program

input (e.g., a command that inserts a key-value pair) but also a PM image which contains an existing

persistence state. As the procedure of loading an existing PM image and performing operations on

top can also face crash consistency bugs [26, 184], it is necessary for a fuzzer to provide PM images

as inputs. Fuzzers for conventional programs perform mutation to generate regular inputs (e.g.,

commands). In comparison, PM images have a much larger exploration space (e.g., tens of MBs).

Therefore, generating PM images through direct mutation is ineffective and will likely produce invalid

images. For example, a randomly mutated PM image may have illegal pointers that may cause the

program to abort in the beginning without exploring any useful paths. Even though recent works

have designed fuzzers for file system images, they require a well-defined image layout [185,186]. As

PM programs tend to customize the persistent data management, methods taken by file system

fuzzers are not suitable for PM image generation. Therefore, the first challenge is to efficiently

generate valid PM images.

Second, PM programs also need to recover from PM images that are resulted from failures during

program execution, which we refer to as crash images. Prior works have shown that the recovery

procedure is also susceptible to crash consistency bugs [26, 184]. Therefore, the fuzzer needs to

generate not only normal PM images but also crash images for thorough testing. However, a

program can fail at any point during execution, leading to a potentially infinite number of crash

images. Therefore, the second challenge is to generate crash images that are most effective for

testing.

Finally, PM programs may contain procedures for different purposes, not limited to managing PM,

especially in real-world workloads. On the other hand, only PM operations are critical to crash

consistency bugs—performing writes to PM without taking care of their ordering can leave incon-

sistent data on PM, and reading from them can cause the later execution to behave incorrectly [26].

However, traditional coverage metrics, such as branch coverage, used by conventional fuzzers do

not target procedures with the most concerned PM operations. Therefore, the third challenge is to

3C.1. INTRODUCTION 68

design a fuzzer that can target PM-related procedures.

The new requirements for test case generation are critical to systematically testing PM programs.

However, existing fuzzers are incapable of meeting these requirements. In this paper, we develop

PMFuzz (available at https://pmfuzz.persistentmemory.org), a fuzzer that aims to generate test

cases for detecting crash consistency and performance bugs in PM programs. Next, we describe the

three high-level ideas of our design.

PM Image Generation. Existing fuzzers either do not target large PM images or require a fixed

image layout, as directly mutating an image can likely generate invalid images that cannot explore

useful paths. Therefore, an effective image generation method should guarantee valid PM images.

We observe that a PM image is essentially an outcome of input commands. Therefore, our key idea

is to leverage the program logic to mutate an existing PM image. PMFuzz incrementally generates

the image by applying the fuzzing logic on the input commands. And eventually, the PM image will

be thoroughly mutated through the iterative fuzzing procedure.

Crash Image Generation. In addition to taking normal images as inputs, PM programs can

also execute on crash images that are caused by failures. Although a failure can occur at any point

during execution, the recovery procedure typically depends on a few key variables that are stored in

the image. For example, an undo-log-based program performs the following steps: back up the old

data in the undo log, set the valid bit of the log, perform in-place update, and finally unset the valid

bit. In case of a failure, the recovery procedure will take one of these two paths depending on the

value of the valid bit: one path applies the undo log and the other directly resumes the execution.

As such, there is a control-flow dependency between the execution before and after the failure. Based

on this dependency, only two failure images are needed to cover both paths: one with the valid bit

set to one and another set to zero. Our key idea is to minimize the number of crash images by only

generating the images that can affect the control-flow in the recovery procedure.

Coverage of PM Path. As crash consistency and performance bugs are caused by the misuse

of PM operations, achieving high coverage of these bugs requires the fuzzer to perform a targeted

fuzzing on program paths with PM operations. To enable this prioritization, we first define the PM

path as a path that consists of program statements with PM operations (e.g., read, write, writeback,

etc.). Then, PMFuzz monitors the statistics of PM paths during fuzzing, and prioritizes test cases

https://pmfuzz.persistentmemory.org

3C.2. BACKGROUND AND MOTIVATION 69

void btree_remove(node_t* node){
 TX_BEGIN{
 ... // remove a node
 if (!parent &&

D_RO(node)->n<BTREE_MIN)
 bree_rebalance(...);
 }TX_END
}
void btree_rebalance(
 node_t lsb, node_t node,
 node_t parent, int p){
 node_t* lsb=parent->slots[p-1];
 if(lsb && lsb->n > BTREE_MIN)
 rotate_left(lsb, node,parent,p);
}

void rotate_left(node_t lsb,
 node_t node,note_t parent,int p){
 ...
 TX_ADD(node);
 btree_insert(node,0,...);
 TX_ADD_FIELD(parent,items[p]);
 D_RW(parent)->items[p-1]=...;
 ...
}
void btree_insert(node_t node,...,int p){
 if (node->items[p].key){
 TX_ADD(node);
 memmove(&D_RW(node)->items[p + 1],
 &D_RW(node)->items[p],size);
 } ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Need to satisfy multiple conditions

Performance bug:
No need to log twice

Crash consistency bug:
Wrong index logged

Figure 3C.1: A buggy PM-based B-Tree (Example 1).

that cover new PM paths. By focusing on PM paths, PMFuzz can efficiently generate more test

cases that target crash consistency and performance bugs.

Based on the key insights above, we implement PMFuzz on top of an open-source fuzzer,

AFL++ [182], and evaluate it in a real PM system. Our contributions are the following:

• PMFuzz is the first test case generator for detecting crash consistency and performance bugs

in PM programs.

• We evaluate PMFuzz using eight representative PM programs in a real PM system. On average,

PMFuzz covers 4.6× more PM paths over the well-known fuzzer, AFL++, within 4 hours of

fuzzing.

• Even though these PM programs have been extensively tested by prior works [25,26,128,129],

we detect 12 new real-world bugs with PMFuzz’s systematic test case generation.

3C.2 Background and Motivation

Chapter 3A and 3B have described two testing frameworks that detect crash consistency bugs. Both

tools require that the program path that leads to the crash consistency bug needs to be executed in

order to detect such a bug. However, it is not always trivial to trigger a buggy program path. Next,

we show two examples of non-trivial bugs.

3C.2.1 Nontrivial Bugs in PM Programming

Example 1: A buggy B-Tree. Figure 3C.1 (Example 1) shows a simplified code snippet

of a B-Tree that is implemented with PMDK’s transaction library. The btree_remove() and

btree_insert() procedures are wrapped inside a pair of TX_BEGIN and TX_END to ensure a con-

3C.2. BACKGROUND AND MOTIVATION 70

sistent recovery after failure. Within the procedure, TX_ADD() is used to make a backup of the

persistent data before it is modified. B-Tree is a commonly-used structure for key-value stores,

where each node contains a number of keys. To remove an existing key from a B-Tree, the program

first calls btree_remove(). After removal, if the number of keys (n) becomes less than BTREE_MIN,

it rebalances the tree by calling btree_rebalance() (line 4-6), which left-rotates the modified node

if the number of keys in its left sibling (lsb) exceeds BTREE_MIN (line 13-14). During the rotation

process, rotate_left() calls the insertion function btree_insert() (line 18), which then checks

the validity of the key (line 23), and performs the rotation (line 28-29). Finally, after insertion,

rotate_left() updates items in its parent node (line 21-22).

Although this example seems to be correct as the whole procedure is wrapped in a transaction, there

are two bugs. The first one is a crash consistency bug, where the program updates the (p-1)-th

item (line 22) but logs the p-th item by mistake (line 21). In case of a failure at line 22, the item

being modified can be lost as it has not been backed up by the log. The second one is a performance

bug, where rotate_left() and btree_insert() attempt to log the same node twice (line 19 and

27), leading to unnecessary performance degradation.

These bugs in Example 1 have one major similarity that is they cannot be directly observed by

programmers. A crash consistency bug, such as incorrect ordering or backup, does to affect the

current volatile state, thus is not visible until a failure occurs during the buggy procedure. And,

a performance bug, such as using excessive ordering or unnecessary logging, does not affect the

ongoing execution. To make these bugs visible to programmers, there have been tools tailored

for PM programming [25, 26, 128, 129]. These tools keep track of PM operations at runtime, and

then detect violations against the crash consistency guarantees. These tools have the capability of

detecting the bugs in Example 1. Nonetheless, they all require the buggy program path to be executed

in order to detect the violations. In Example 1, the program needs to satisfy two if conditions to

detect the crash consistency bug (line 21-22). Even harder, triggering the performance bug (line 27)

requires satisfying all three if conditions. Therefore, a test case generator becomes a necessity to

cover such nontrivial program paths. Next, we introduce fuzzing, a widely-used technique for test

case generation.

3C.2. BACKGROUND AND MOTIVATION 71

Test Cases

Mutation

Execution

Seed
(Initial)

Test Case
Selector

Stat Monitor
(e.g., branch coverage)

Mutated Test CasesFavored Test Cases

Statistics

Figure 3C.2: A general fuzzing procedure.

int main(...){
 ...
 db=pmemobj_open(path);
 recover(db);
 PMReconstruct(db);
 string cmd=parser();
 if(cmd==“put”)
 tablePut(...);
 else if(cmd==“get”)
 tableGet(...);
 ...
}
void recover(db_t *db){
 db->verifyCheckSum();
 db->applyLogs();
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

entry_t *GetEntry(int key){
 for(auto& it : table){
 int index=it.lookup(key);
 ...
 }
 return ...
}
void PutEntry(int key, item_t val){
 int index=hash(key);
 //called within a transaction
 TX_ADD_FIELD(D_RO(pm)->table[index], en);
 if(D_RW(pm)->ptable[index].empty()){
 D_RW(pm)->ptable[index]->en=newEntry(val);
 }else{
 D_RW(pm)->ptable[index]->tail->en=newEntry(val));
 } ...
}

Lookup from volatile table

Updates to persistent table

Recover persistent state

Load PM image

Crash consistency bug: Tail was not backed up

PM Code Regions

Figure 3C.3: A buggy PM-based database (Example 2).

3C.2.2 Requirements for Fuzzing PM Programs

A test case generator for testing PM programs should avoid introducing additional burdens on

programmers, given the already complicated nature of PM programming. Fuzzing is a well-known

technique that automatically generates test cases while minimizing programmers’ effort [179–183].

Figure 3C.2 shows a typical procedure of fuzzing—a fuzzer takes a set of initial test cases (or seeds),

performs mutation on those test cases, executes the target program, monitors the execution statistics,

and finally uses the statistics (e.g., branch coverage) to select high-value test cases. These high-value

test cases will then be used in the next iteration of fuzzing. Using a fuzzer, the if-conditions in

Figure 3C.1 (Example 1) are likely to be covered. However, we identify that there are additional

needs from PM programs that conventional fuzzers do not meet. Next, we provide another example

of a PM crash consistency bug to motivate the new requirements.

Example 2: A buggy PM database. Figure 3C.3 (Example 2) is a simplified example of a

database based on the PMDK transaction [35]. It maintains the persistent data in PM and buffers a

volatile table in DRAM for faster lookup, similar to the PM-based Redis [14]. During execution, the

main() function first loads the existing persistent data that were stored on PM, which we refer to as

a PM image (line 3), calls recover() to restore the persistence state (e.g., recover from a previous

failure), and then loads the PM structures to the volatile table. Upon requests, the database calls

corresponding functions, such as GetEntry() and PutEntry(). GetEntry() (line 18) looks up the

key in the volatile table, and PutEntry() (line 25) updates the key-value pair in the persistent

3C.2. BACKGROUND AND MOTIVATION 72

Figure 3C.4: PM program execution procedures that generate
(a) a normal image, and (b) a crash image.

Figure 3C.5: (a) An invalid image produced by direct mutation, (b) a normal image produced by program logic, and
(c) a crash image produced by program logic.

Figure 3C.6: Persistent data layout in (a) an Ext2 file system [4], (b) a PM-based B-Tree, and (c) a PM-based
database.

ptable. In this example, there is a crash consistency bug in PutEntry(). A new entry is appended

to the tail of the indexed list in ptable when the list is not empty (line 32), whereas the previous

log operation only covers the first item in the list (line 28). Thus, in case a failure happens at line

32, the update to tail can be interrupted and remains in an inconsistent state. Next, we summarize

the additional requirements that traditional fuzzers need to expose PM bugs.

Requirement 1: PM images as input. A PM program typically takes PM image(s) as part of

the input to maintain their persistent state, as demonstrated by the procedure in Figure 3C.4a, and

the main() function of Figure 3C.3 (Example 2). Prior works have shown that the procedure that

loads PM images can be buggy [26]. Therefore, a fuzzer for PM programs needs to generate not

only the basic input commands but also PM images for testing. More importantly, the generated

PM image is required to be valid, so that the program can execute a useful path, without failing

basic image checks or triggering exceptions. However, directly fuzzing PM images through mutation

3C.2. BACKGROUND AND MOTIVATION 73

is challenging—the search space of a PM image (tens of MBs) is huge, and it is hard to construct

a valid PM image. Figure 3C.5a demonstrates a PM image of a database being randomly mutated,

where the mutation lies in the middle of the key and its entry pointer. Execution using this invalid

image is likely to abort due to segmentation faults. Recent fuzzers have proposed to mutate file

system images [185,186] based on the preknowledge of the data layout of file systems. Figure 3C.6a

shows the simplified layout of an Ext2 file system [4], where the sizes and locations are known based

on the Ext2 format. In comparison, PM programs tend to customize the way they manage persistent

data. Figure 3C.6b demonstrates the layout of Example 1, where the structures of tree nodes and

logs are seemly rigid but do not follow a specific format—the nodes and undo-log entries are all

allocated in the image at runtime. Figure 3C.6c shows the layout of Example 2. Despite the use of

a similar undo-logging mechanism, the data layout still differs from that of Example 1, due to their

fundamental algorithmic differences.

Requirement 2: Crash images as input. PM programs are expected to be recoverable from

unexpected failures. Thus, they may also load PM images caused by failures. For clarity, we refer

to a PM image that is an outcome of an uninterrupted execution as a normal image, and an image

that results after a failure as a crash image. Figure 3C.4b shows a procedure, where a PM program

takes an existing PM image and executes a series of input commands. During execution, a failure

occurs and results in a crash image. After the program restarts after the failure, it needs to execute

the recovery procedure. For example, Figure 3C.3 (Example 2) validates the image checksum (line

14) and rolls back the prior updates using the logged data (line 15). In order to detect bugs during

the recovery procedure, a crash image is also a necessity for the input test case. However, failures

may happen at any point during execution, and therefore, can lead to an infinite number of crash

images.

Requirement 3: Targeting PM operations. The crash consistency bugs and performance

bugs are caused by PM operations, such as PM writes that modifies the state, and PM reads that

loads an existing state [26]. Therefore, test case generation should be focused on program paths

that perform PM operations. In real-world PM programs, such as database applications, there

are both volatile and persistent code regions. In Figure 3C.3 (Example 2), only a fraction of the

code is performing PM operations, as marked by the green boxes. As such, a fuzzer should ideally

focus on the interesting paths with PM operations. However, traditional coverage metrics, such as

3C.3. HIGH-LEVEL DESIGN OF PMFUZZ 74

branch coverage, which are widely adopted by traditional fuzzers do not target these PM-related

paths.

3C.3 High-Level Design of PMFuzz

So far, we have described the new requirements for fuzzing PM programs. In this work, we propose

PMFuzz, a fuzzer that aims to efficiently generate test cases for debugging PM programs. Next, we

discuss the challenges and our high-level design.

3C.3.1 Normal PM Image Generation

Challenge. PM programs require that a fuzzer generates valid PM images to explore useful pro-

gram paths. Conventional fuzzers are only capable of fuzzing small inputs thus do not meet this

requirement. Even though file system fuzzers target large file system images, they require a well-

formulated rule and image layout [185,186]. In comparison, a PM image is not only large (e.g., tens

of MBs) but also highly customized. Thus, fuzzing PM images is beyond the capability of existing

fuzzers. Therefore, the first challenge is how can PMFuzz efficiently generate PM images?

Observation. As the data layout of a PM program can be largely customized, directly generating a

valid PM image with permutation is hard. However, the outcome of the program logic itself always

results in a valid persistent state. As Figure 3C.4 demonstrates, the PM program incrementally

mutates the PM image with input commands. Therefore, instead of directly fuzzing the PM image,

a more effective alternative is to indirectly fuzz the input commands, which in turn will mutate the

image from one valid state to another.

Solution. Based on this observation, our key idea is to fuzz the input commands and reuse the

program logic to generate a PM image that is guaranteed to be a valid persistent state. At the

high-level, the procedure of fuzzing PM images follows these steps: (1) Mutate input commands, (2)

perform execution on top of an existing PM image, (3) collect the output PM image, and (4) reuse

the generated PM images and repeat these steps. As PMFuzz continues to recursively operate on

existing PM images, a thorough mutation on the PM image will eventually be done by the program

logic itself. Figure 3C.5b demonstrates that executing an update command creates an output PM

image that has a valid mutation on the value of “Entry pointer”. Thus we conclude that leveraging

program logic can efficiently generate valid PM images.

3C.3. HIGH-LEVEL DESIGN OF PMFUZZ 75

void updateHashTable(int key, int new_val){
 //Details removed for demonstration
 backup.key=key;
 backup.val=HashTable.find(key)->val;
 persist_barrier();
 backup.valid=1;
 persist_barrier();
 HashTable.find(key)->val=new_val;
 persist_barrier();
 backup.valid=0;
 persist_barrier();
}

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23

void Recover(){
 if(backup.valid){
 HashTable.find(key)->val
 =backup.val;
 ...
 HashTable.verifyCksum();
 }else{
 HashTable.verifyCksum();
 ...
 }
}

Control-flow depends on key variables

Case 1

Case 2

Figure 3C.7: Example of control-flow dependency between failures and the recovery procedure.

3C.3.2 Crash Image Generation

Challenge. As PM programs are expected to recover from failures, they may also take crash

images as the input. However, there can be an infinite number of crash images because failure can

happen at any point in the program. Thus, the second challenge is how PMFuzz can generate crash

images that are most effective?

Observation. Figure 3C.7 shows an example of updating a hash table using low-level PM primi-

tives. The program first backs up the existing key and value (line 3-4), sets the backup to be valid

(line 6), performs the in-place update in the destination entry (line 8), and finally invalidates the

backup (line 10). In case this procedure is interrupted by a failure, the program has a recovery()

function. If the backup is valid (line 14), it rolls back the updates (line 15-16) and then verifies the

checksum of the hash table (line 18). Otherwise, it verifies the checksum directly (line 20). Given

a crash image that is generated during the procedure of updateHashTable(), the two paths during

recovery() (as indicated by Case 1 and 2) only depend on the value of backup.valid. Therefore,

even though a failure can happen at any point during the execution, not all resulting crash images

are important for the coverage.

Solution. Inspired by the prior works that model the relationship between PM program recovery

and failures [26,159,163,164], we model the relationship between the program path during recovery

and the prior procedure during the normal execution as a control-flow dependency. The significance

of a crash image boils down to whether it can lead to a persistent state that affects the control-flow

in the procedure after failure. Updates that can lead to a different control-flow are typically applied

to key variables that determine the consistency state. For example, the update to backup.valid

in Figure 3C.7 alters the consistency state. Other examples include commit bits in undo/redo logs,

and timestamps in checkpointing mechanisms. Usually, updates to such a commit variable are

wrapped with ordering points (e.g., using a persist_barrier()), such that the commit variable

always persists after the prior PM updates but before the successive ones.

3C.3. HIGH-LEVEL DESIGN OF PMFUZZ 76

Following this observation, our approach that reduces the number of crash images is two-fold. First,

PMFuzz focuses on placing failures at ordering points to reduce the number of failure images. Second,

PMFuzz also places additional failure points probabilistically, at a configurable rate. This way, even if

the program is completely buggy, i.e., with a large number of misplaced ordering points, PMFuzz will

still generate failure images for debugging. In both cases, crash images are generated by interrupting

the execution of input commands. Therefore, all crash images maintain valid persistent states of the

program. Back to the example in Figure 3C.5, by placing a failure at the point where an undo log

of the entry has been persisted but the item has not been updated, the output image will contain

the old value in the “Log entry” of the crash image. During the recovery procedure, the program

will use this “Log entry” to reconstruct the table.

3C.3.3 Coverage for PM Path

Challenge. PM programs can contain various procedures but only those with PM operations can

lead to crash consistency and performance bugs. The third challenge is how can PMFuzz efficiently

generate test cases that target PM operations?

Observation. As prior testing works for PM programs [25,26,128,184] have shown, crash consis-

tency bugs (and also performance bugs) occur due to inappropriate PM accesses. Therefore, PMFuzz

should target code regions that perform PM operations, E.g., PM reads, writes, writeback/flush prim-

itives, and fences. However, PM reads and writes cannot be easily distinguished from regular volatile

ones as they only differ in the address. Prior testing tools have been using dynamic instrumentation

to keep track of these operations at the cost of tens- to hundreds-time overhead [26, 128, 129, 184].

As one of the key design principles of fuzzing is to achieve high execution efficiency, dynamic instru-

mentation is not a feasible choice. Despite the difficulties, we find that it is not necessary to track

at the instruction granularity; instead, accesses to PM are typically wrapped with functions. PM

libraries tend to restrict the way programs interact with PM. For example, the transaction library

from Intel’s PMDK [35], libpmemobj [187], exposes D_RO and D_RW (direct read-only/read-write)

functions to obtain pointers to objects in PM. And, the lower-level PM library, libpmem [176], also

provide methods, such as pmem_persist(), to write-back persistent data. Therefore, the tracking

granularity can be lifted to the function-level to reduce the performance overhead.

Solution. Based on the two observations, our key idea is to identify PM operations by tracking

them at the granularity of PM library functions. Having PM operations being tracked, we can

3C.3. HIGH-LEVEL DESIGN OF PMFUZZ 77

Figure 3C.8: PM path examples (nodes in blue are PM nodes).

further design a PM-specific coverage metric to enable a targeted fuzzing on the PM-related program

paths (see Section 3C.4.2 for details about the mechanism). Next, we formally define the program

path that contains PM operations.

• Control-flow Graph (CFG). A CFG of a program procedure is a directed graph represented by

a tuple of ⟨N,E⟩; N is the set of nodes, where each node n represents unique program statement;

E ⊂ N ×N is the set of edges, where an edge eij represents execution flow between nodes ni and

nj .

• Program Path (π). A program path in a CFG is a sequence of nodes π = ⟨n0, n1, ...⟩, such

that there is an edge along the CFG between two consecutive nodes of the sequence.

• PM Node (p). A CFG node p ∈ N is a PM node if it performs at least one PM operation.

• PM Path (πPM). A PM path is a PM node sequence πPM = ⟨p0, p1, ...⟩, such that, there is at

least one edge along the CFG between two consecutive PM nodes in the sequence.

Figure 3C.8 shows two example CFGs, where nodes in blue are PM nodes that have PM operations.

Based on the definitions above, in the CFG of Figure 3C.8a, the path of Node 1-2-6 is not a PM

path due to the absence of PM operations, but the path of Node 1-3-5-6 does as it contains an

edge between PM Node 3 and 5. In Figure 3C.8b, the path of Node 7-8-11 and Node 7-9-11 are

regarded as the same PM path (marked as PM Path I), because they share the same PM nodes.

In comparison, the path of Node 7-9-10-11 is unique because it contains a new PM Node, Node 10

(marked as PM Path II). By tracking PM paths, PMFuzz prioritizes test cases that explore new PM

paths. Therefore, PMFuzz can more efficiently generate test cases for detecting crash consistency

and performance bugs.

3C.4. IMPLEMENTATION OF PMFUZZ 78

Testing
Tool

Annotation PM Path
Feedback

Bug Report

Input Commands
PM Image (normal/crash img.)

Test Case

PMFuzz
Compiler

PMFuzz
Generator

Executable with
Instrumented PM Operations

❷ ❸

❹

❶ ❺

Figure 3C.9: High-level workflow of PMFuzz.

3C.4 Implementation of PMFuzz

In this section, we first present an overview of PMFuzz’s workflow and then describe the details

about the implementation.

3C.4.1 Overview

PMFuzz is developed on top of a well-known fuzzer AFL++ [182]. It generates test cases to cover

crash consistency and performance bugs in PM programs. Figure 3C.9 shows the high-level workflow.

First, PMFuzz compiler instruments the source code to keep track of PM operations (step Ê and Ë).

Then, PMFuzz takes the compiled program and performs fuzzing. The fuzzing procedure executes

multiple instances of the PM program for better efficiency. During the execution of each program

instance, PMFuzz monitors the coverage of the PM path and provides feedback to the fuzzing logic

such that it can target PM-related operations (step Ì) that are most critical to crash consistency

bugs. After completing the execution of an instance, it saves the generated test case if it has explored

a new PM path (step Í). Each test case contains input commands and a PM image (both normal

and crash images). Finally, PMFuzz sends the test cases to a testing tool (e.g., XFDetector [26] or

Pmemcheck [128]) for bug detection (step Î).

3C.4.2 PM Operation Tracking

PMFuzz focuses on generating test cases that cover program paths that contain PM operations,

such as read/write accesses, and writeback and fence primitives. As Section 3C.3.3 has introduced,

PMFuzz tracks these operations at the granularity of PM library functions. To enable this tracking,

PMFuzz first performs static instrumentation using PMFuzz’s compiler pass (based on LLVM [144])

and then tracks them dynamically during runtime. Next, we describe these two steps in detail.

(1) Static Instrumentation. PMFuzz tracks PM operations at function-granularity. We take

an approach similar to Intel’s Valgrind tool, Pmemcheck [128] and place PM operation hints inside

the PMDK library. As programmers are typically agnostic about the low-level library implemen-

3C.4. IMPLEMENTATION OF PMFUZZ 79

PM Counter-Map
1

void btreeSplitNode(...){
 for(int i=c; i<BTREE_ORDER; ++i){
 if(i!=BTREE_ORDER-1){
 D_RW(right)->items[...]=...
 D_RW(node)->items[i].key=0;
 D_RW(node)->items[i].value=NULL;
 }
 D_RW(right)->slots[i - c]=...
 D_RW(node)->slots[i]=NULL;
 } //loop end
...

1 1 2
BTREE_ORDER=4
c=2

Ⓐ
Ⓑ
Ⓒ

Ⓓ

1
2
3
4
5
6
7
8
9

10
11

Ⓐ

Ⓑ

Ⓑ

Ⓒ

Ⓒ

Ⓓ Ⓐ

Ⓔ

PM Operation Transitions:
(Mapped to random indices)

(a) (b)

Ⓔ

Ⓓ

Ⓔ

2

Figure 3C.10: (a) Code instrumentation, and (b) the corresponding state of the PM counter-map for tracking PM
operations.

tation, this approach does not require any modification to programmers’ application code. More

specifically, PMFuzz tracks libpmem [176] functions that perform low-level PM operations, as well as

libpmemobj [187] functions that provide the transaction interface. We also develop a compiler pass

to support custom PM libraries. Users only need to annotate the declaration of each PM-operation

function, and the compiler pass will automatically instrument the application code. Then, PMFuzz

compiles the PM program and inserts a tracking function before each PM operation (i.e., library

function’s call site). Each tracking function is associated with a unique ID that marks its PM oper-

ation. Figure 3C.10a demonstrates a simplified btreeSplitNode() function that highlights five PM

operations, and marks their IDs with circled-letters. Next, we describe how PMFuzz keeps track of

the path at runtime using the unique ID of PM operations.

(2) Dynamic Tracking. A PM path consists of a series of transitions between PM operations.

Inspired by the way AFL [179] tracks branches, PMFuzz encodes the transition between two PM

operations based on their unique IDs, and updates a PM counter-map according to the encoded

value of this transition. Algorithm 1 demonstrates the transition encoding and PM counter-map

update. First, the tracking mechanism reads the current PM operation’s ID (curID), which has

been assigned during compile-time (line 3). Second, it encodes the transition from the previous PM

operation (with prevID) to the current one by XORing the two IDs (line 4). This way, a transition

is encoded as an ID that serves as the index (loc) to a PM counter-map. The counter indicates the

number of visits of this transition, as every visit of this transition increments this counter value by 1

(line 5). For lower storage overhead, each counter value is encoded with an 8-bit integer. Third, to

preserve the direction of this transition, the tracking mechanism right-shifts the curID by 1 bit before

moving toward the next PM operation (line 6). Figure 3C.10b shows the state of a PM counter-map

after btreeSplitNode() completes the for-loop (line 2-10), using input arguments listed in the text

box. Next, we describe how PMFuzz’s fuzzing logic monitors the statistics of the PM path.

3C.4. IMPLEMENTATION OF PMFUZZ 80

Algorithm 1: Update to PM counter-map
begin updatePMCounterMap(Op,PMCounterMap)

if Op ∈ PMOps then // When Op is a PM operation
curID = Op.ID // Get ID of the current OP
loc = curID ⊕ prevID // Encode transitions between OPs
PMCounterMap[loc] + + // Increment counter
prevID = curID ≫ 1 // Right-shift one bit to track direction

return PMCounterMap

Algorithm 2: PM path prioritization
begin PMPathFeedback(TestCase)

foreach loc ∈ PMCounterMap do
if unseen(PMCounterMap[loc]) then

Favored = 2 // High priority
else if diffCounter(PMCounterMap[loc]) then

Favored = 1 // Medium priority
else

Favored = 0 // Low priority
TestCase.Favored = Max (Favored ,TestCase.Favored)

return TestCase

3C.4.3 Fuzzing Feedback Logic

The core fuzzing algorithm of PMFuzz provides feedback for future test case generation in order to

optimize PM path coverage based on the statistics. As PMFuzz is built on top of AFL++ [182],

we take a similar approach as AFL++, where we prioritize branch coverage, but also integrate an

additional targeted fuzzing algorithm for PM operations. Algorithm 2 presents the prioritization

algorithm of PMFuzz, which examines each location in the PM counter-map and sets the Favored

value of the corresponding test case. Test cases with unseen PM counter-map locations are set as

high-priority, those with significantly different counter values are set as medium-priority, and the

remaining ones that are identical or with minor counter value differences are treated as low-priority.

After each iteration of fuzzing, PMFuzz discards low-priority cases unless AFL++’s branch coverage

logic favors them. In the next iteration of fuzzing, test cases with higher priority are more likely

to be mutated to generate new test cases. This algorithm is effective but requires zero-randomness

during execution, i.e., the same test case always produces the same path and PM image. Otherwise,

the feedback on PM path coverage is unstable and the fuzzing outcomes are not reproducible. Next,

we describe the derandomization approach.

3C.4. IMPLEMENTATION OF PMFUZZ 81

3C.4.4 Execution Derandomization

As stated above, we notice that PM programs generally have nondeterministic execution due to three

major sources of randomness. PMFuzz mitigates the randomness in the following approaches.

(1) UUID of PM Images. Each PM image created by the PMDK library [35] is associated

with a universally unique identifier (UUID). The UUID is randomly generated during the image

creation time. Therefore, it is hard to determine whether two PM images are generated from the

same input or not, as the UUID in each PM image is always unique. We eliminate this randomness

by overloading the UUID assignment function in PMDK (also extensible to other libraries) with our

version that sets the UUID to a constant value.

(2) Address Randomization. The address randomization mechanism for both volatile and per-

sistent addresses is another source of randomness. First, volatile addresses are randomized by the

address space layout randomization (ASLR) technique. Because PM images may keep these random

volatile pointers for convenience, we disable ASLR in the Linux kernel [188]. This method makes

sure that the volatile pointers would not introduce randomness to PM images. Second, persistent ad-

dresses are randomized when the PMDK library maps a PM image to the virtual address space. We

derandomize the persistent addresses by setting PMDK’s environment variable PMEM_MMAP_HINT that

forces the PM image to be mapped to the same virtual address every time it executes [176].

(3) External Randomness. Not only PM programs but their dependent external libraries also

use time-dependent or other nondeterministic random number generators. Due to time-dependent

randomness, the same input test case can lead to different execution paths. We remove this source

of randomness by loading the Preeny library [189] before fuzzing. Preeny overwrites the calls to

random number generators using its derand module, making sure that the random numbers remain

the same in each run.

3C.4.5 Detailed Fuzzing Procedure

Figure 3C.11 demonstrates the fuzzing procedure. First, PMFuzz spawns several instances of the

annotated PM program with seed test cases (step Ê). For each instance, it tracks the PM path at

runtime. Upon observing a new PM path, it saves this test case for further PM image generation, and

provides positive feedback to the input command fuzzing logic as described in Section 3C.4.3 (step Ë).

In the PM image generation procedure, PMFuzz generates two types of PM images: normal images

3C.4. IMPLEMENTATION OF PMFUZZ 82

Annotated
Program

Input Commands
Crash Image

Normal Image

New PM Path?

PM Image

PM Path

Input
Command

Fuzzing

Input Commands
Image

Failure Points
Duplicate?

N
XFDetector Result

Execution Failures
Yes

Input Command + PM Image

Execution
(+ Path Tracking)

With Failure

No Failure

PM Image
Reduction

❷
❸

❹

❶

❺

Figure 3C.11: Fuzzing procedure of PMFuzz.

Figure 3C.12: Tree of PM images and input commands.

and crash images (step Ì). A crash image is generated by placing failures at each ordering point

and additional failures at random locations (Section 3C.3.2); a normal image is the final outcome

without any failure during the procedure. Then, the generated images go through a reduction

procedure that eliminates any images that are identical to the previously generated ones (step Í).

The derandomization methods introduced in Section 3C.4.4 ensure that the same input test case

always produces the same image. PMFuzz performs image reduction by looking up the image’s

hash value (SHA-256) in a dictionary that keeps the hash values of all prior images. Finally, both

the newly generated commands and the resulting PM images will be reused as inputs in the next

iteration of fuzzing (step Î).

3C.4.6 Test Case Management

During fuzzing, test cases (input commands + a PM image) are generated recursively, by mutating

prior test cases. PMFuzz efficiently manages the test cases by leveraging the dependencies among

test cases. Figure 3C.12 demonstrates the dependencies, where each node is a PM image (the root

is an empty image), and each edge represents the input command + failure location that are used to

mutate the image. The image management method serves three main purposes. First, it makes the

fuzzing procedure reproducible, as each test case and its resulting PM image can be tracked by the

dependency. To reproduce a particular test case, the user can simply execute the input commands

on top of its parent image. Second, test case tracking allows PMFuzz to incrementally generate

test cases, by loading an existing PM image and executing a set of mutated input commands (the

execution time is limited to 150 ms in this design), as Section 3C.4.5 has shown. Finally, the testing

3C.4. IMPLEMENTATION OF PMFUZZ 83

tool attached to PMFuzz (e.g., XFDetector [26] and Pmemcheck [128]) can also avoid executing

redundant test cases. The testing tool only needs to execute a minimum set of test cases that cover

new PM paths, without needing to start from prior test cases that contain the root image. For

example, the test tool starts from test cases that contain the empty root image. Thus, to test the

execution that produces image D, the testing tool only needs to execute Input 4 on top of image

B, as the execution that takes its predecessor (Input 1 + Root) has been covered by the previous

testing iterations.

3C.4.7 Optimization Strategies

In this section, we introduce three major optimizations in PMFuzz that improve the fuzzing effi-

ciency.

(1) System Call Reduction. The fuzzing procedure takes multiple system calls when opening

and closing PM images. The system call overhead can be further amplified when PMFuzz executes

multiple fuzzing instances simultaneously. AFL++ comes with an optimization that creates multiple

fuzzing instances using its fork server’s copy-on-write mechanism (via fork()). It would significantly

reduce the system call overhead of loading PM images if we can also copy-on-write persistent data on

PM images. However, this method does not apply to PM images because they are memory-mapped

(i.e., a file mapped to the program’s virtual address space). To take advantage of the fork server

in AFL++, when the PM program is opening a PM image, we first overload the mmap() function

with our version that copies data from PM to a location on the heap of the program. Second, we

use AFL++’s fork server to create multiple fuzzing instances, while carrying the persistent data

that have been loaded from the PM image to the heap. Finally, before the PM program closes the

image, we overload the munmap() function and save the updates back to the PM image as long as

the execution has discovered new PM paths (based on the method in Section 3C.4.3). We validate

this design to ensure that this optimization does not change the behavior by comparing the PM

trace collected before and after applying this optimization (using Intel’s Pin tool [177]).

(2) Test Case Storage. Fuzzing is a repeated process that generates a large number of test

cases. Therefore, a PM device alone may not be sufficient to store all test cases. In our experiment,

PMFuzz generated approximately 1.5 TB of data during a 4-hour period of fuzzing, primarily due

to the PM images. Although PM images occupy a significant amount of space, we observe that the

fuzzing procedure is periodical—PMFuzz takes a PM image as the input, spawns multiple fuzzer

3C.5. EVALUATION 84

Table 3C.1: System configuration.

CPU Intel Xeon, 2.1 GHz, 20 cores

Memory 4×16 GB DDR4, 2666 MT/s
2×128 GB Intel DCPMM, Interleaved, App Direct Mode

SSD 2 TB, NVMe, PCI-E 3.0 ×4

OS Ubuntu 18.04, Linux kernel v5.4

Environment AFL++-2.63, LLVM-9, Clang-9, PMDK-1.8, Pin-3.13

instances, saves the generated images, and starts over again by taking the newly-generated PM

images as inputs. In each iteration of fuzzing, only a small fraction of PM images will be taken as

inputs. And, the generated PM images will not be used until the next iteration begins. Based on this

observation, PMFuzz moves the generated test cases from the PM device to a hard drive (e.g., SSD)

and compresses the generated PM images (using the LZ77 [190] algorithm). PMFuzz decompresses

and moves an image back to PM, only when it is selected as the input. This optimization effectively

reduces the storage requirement.

3C.5 Evaluation

3C.5.1 Methodology

System Configuration. We evaluate PMFuzz in a system with Intel’s Cascade Lake processors

and DC Persistent Memory Modules (DCPMMs), as listed in Table 3C.1. The PM devices (i.e.,

DCPMMs) are configured in the App Direct Mode and mounted with the DAX option to bypass OS

indirections.

PM Programs. To evaluate PMFuzz, we choose PM programs (listed in Table 3C.3) built on

top of Intel’s PMDK (v1.8) [35] library, including simple key-value store structures [35] and real-

world workloads [12, 14], similar to those tested by prior works [25, 26, 128, 129]. We use PMDK’s

mapcli [191] to drive the key-value stores, and use Preeny [189] to convert the socket-based commu-

nication interface of the databases to a command-line-based version.

Comparison Points. PMFuzz is developed on top of AFL++ (v2.63 [192]) with the integration

of state-of-the-art fuzzing techniques, including LAF-Intel [193] and AFL-Sensitive [194]. Therefore,

we take AFL++ as the main baseline fuzzer. To better demonstrate the impact of each PMFuzz

3C.5. EVALUATION 85

Table 3C.2: Comparison points.

Input Fuzz Img Fuzz PM Path Opt Sys Opt
PMFuzz (All Feat.) Yes Yes (Indirect) Yes Yes

PMFuzz w/o SysOpt Yes Yes (Indirect) Yes No

AFL++ Yes No No No

AFL++ w/ SysOpt Yes No No Yes

AFL++ w/ ImgFuzz No Yes (Direct) No No

feature, we develop other alternative designs that are based on AFL++ and PMFuzz (listed in

Table 3C.2). The details about the features are described below.

• Input Fuzz (Input Fuzzing) is a feature that mutates the input commands.

• Img Fuzz (PM Image Fuzzing) is a feature that mutates the PM image. The PM image is

indirectly mutated using the program itself in the comparison point of PMFuzz but is directly

mutated in AFL++ w/ ImgFuzz. As the baseline AFL++ does not support the mutation of both

the image and the command input at the same time, we only enable image fuzzing in AFL++ w/

ImgFuzz.

• PM Path Opt (PM Path Optimization) is a feature that enables the targeted fuzzing on PM

paths (introduced in Section 3C.4.3).

• Sys Opt (System-level Optimization) is a feature that reduces the system call and storage over-

head (introduced in Section 3C.4.7).

Note that, in all comparison points, we enable the derandomization techniques (described in Sec-

tion 3C.4.4) and use a list of basic commands and a PM image as the seed test case for fuzzing.

Detection Tool. PMFuzz is a test case generator that provides high-value test cases to the back-

end testing tools for PM programs. We leverage the most recent PM testing work XFDetector [26]

as the testing tool attached to PMFuzz, which executes with PM programs and detects crash consis-

tency and performance bugs. In addition, we use Intel’s Pmemcheck [128] to detect synthetic bugs

within the library (e.g., transaction, recovery, image creation, etc.).

Synthetic Bug Injection. To evaluate the effectiveness of test cases generated by PMFuzz, we

place synthetic bugs in PM programs and the PDMK library, similar to the method taken by prior

works [25,26]. More specifically, we take the following approaches.

3C.5. EVALUATION 86

PMFuzz PMFuzz w/o SysOpt AFL++

AFL++ w/ SysOpt AFL++ w/ ImgFuzz

0

500

1000

1500

2000
RB-Tree

0

1000

2000

3000
B-Tree

0

500

1000

1500

2000
Hashmap-TX

N
um

be
r o

f C
ov

er
ed

 P
M

 P
at

h

0

500

1000

1500

2000
Hashmap-Atomic

0

200

400

600
R-Tree

0

500

1000

1500

2000
Skip-List

0

30

60

90

120

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00

Memcached

0

30

60

90

120

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00

Redis

Duration of Fuzzing (H:MM)

Figure 3C.13: PM path coverage.

• Remove/misplace writebacks (flushes) and fences to break the persistence requirement.

• Reorder PM writes that are originally ordered with write-backs and fences, to break the ordering

requirement.

• Remove/misplace backup function calls to corrupt data in transaction-based programs.

• Place semantically incorrect code to cause incorrect recovery in programs based on low-level

primitives, such as setting a wrong value to the commit variables.

3C.5.2 PM Path Coverage

Figure 3C.13 compares the number of unique PM paths covered by PMFuzz and the comparison

points during 4-hour fuzzing. We summarize the results as the following points. (1) PMFuzz achieves

3C.5. EVALUATION 87

Table 3C.3: Tested PM programs, and synthetic bug detection.

Program Name #Synthetic
Bugs

#Covered by
AFL++ SysOpt

#Covered by
PMFuzz

Simple
KV-store

B-Tree 17 13 17
RB-Tree 14 10 14
R-Tree 16 12 16
Skip-List 12 8 12
Hashmap-TX 21 16 21
Hashmap-Atomic 14 10 14

Real-world
Workloads

Memcached 17 14 17
Redis 14 9 14

a significant increase in PM path coverage over AFL++ (Geo-mean 4.6×) because it efficiently

mutates PM images, performs a targeted fuzzing on PM path, and consumes a low system overhead.

(2) The PM path coverage is significantly lower without our system optimizations (PMFuzz w/o

SysOpt), demonstrating that the system-level optimizations are essential to fuzzing PM programs.

(3) AFL++ with system optimizations (AFL++ w/ SysOpt) outperforms AFL++ (Geo-mean 1.4×),

but still cannot provide comparable coverage to PMFuzz. (4) AFL++ with PM image fuzzing

(AFL++ w/ ImgFuzz) has poor coverage progress due to the large search space within PM images.

Finally, the two databases, Memcached and Redis have fewer PM paths as compared to other key-

value store structures. The primary reason is that only a relatively small fraction of code manages

PM. Additionally, it takes much longer to execute them due to their higher complexity.

3C.5.3 Synthetic Bug Detection

Table 3C.3 lists the number of synthetic bugs tested and detected by PMFuzz. We compare PMFuzz

with AFL++ w/ SysOpt in this experiment, as this configuration performs the best among the non-

PMFuzz comparison points. We observe that PMFuzz generates test cases that detect all synthetic

bugs, 1.4× over AFL++ w/ SysOpt, due to PMFuzz’s effective PM image generation (both normal

and crash images) and the focus on PM paths. Worth pointing out that the software development

for PM is currently in an early stage. Therefore, the existing workloads are relatively simple. We

expect that PMFuzz will show a more prominent advantage over conventional fuzzers while testing

future real-world PM programs.

3C.5.4 New Real-world Bugs Found by PMFuzz

Despite the fact that prior works [25,26,128] have intensively tested PM programs listed in Table 3C.3,

test cases generated by PMFuzz help detect new real-world bugs.

3C.5. EVALUATION 88

PMEMoid create_hashmap(...) {
 ...
 D_RW(hashmap)->seed=seed;
 D_RW(hashmap)->fun=rand();
 D_RW(hashmap)->buckets=TX_ALLOC(...);
 ...
}

int hashmap_create(...){
 TX_BEGIN(pop) {
 TX_ADD_DIRECT(hashmap);
 hashmap=TX_NEW(...);
 ...
 create_hashmap(pop,*hashmap,seed);
 } TX_END
}

1
2
3
4
5
6
7
8

hashmap_creation is undone if failure happens
but is not called again after recovery.
The program is supposed to check the completion
of creation and redo in case of failure

9
10
11
12
13
14
15

(a)

int main(...){
 pmemobj_open(...);
 ... // TX auto-recover
 while(...) {
 // execute commands
 }
}
void hashmap_atomic_init(...){
 ...
 if(D_RO(hashmap)->count_dirty){
 ... // reset counter
}

1
2
3
4
5
6
7
8
9

10
11
12

(b)

Designed for transactions
that recover automatically

Hashmap-Atomic is built with
low-level primitives.
Need to call recovery function.

Figure 3C.14: New crash consistency bugs found by PMFuzz: (a) Bug 1 and (b) Bug 6.

New Crash Consistency Bugs. Bug 1-5: Figure 3C.14a is a simplified code snippet from

Hashmap-TX (hashmap_tx.c:402), where create_hashmap uses a transaction (line 2-7) to allo-

cate space and initialize the hash table. PMFuzz created two crash images before and within the

allocation. When taking the crash images for the next fuzzing iteration, both of them report a seg-

mentation fault when the program attempts to dereference the pointer to hashmap. We found that

hashmap_create is called when starting with an empty PM image. In case the procedure fails, the

whole creation procedure is undone by the transaction, leaving hashmap a NULL pointer. However,

because the program does not call hashmap_create again afterward, the following execution assumes

a fully initialized hash table. Other 4 transactional workloads, including B-Tree, RB-Tree, R-Tree,

and Skip-List also have similar bugs during initialization. Although the prior failure-aware testing

tool XFDetector [26] can detect this type of bugs with a simple test case of an empty PM image,

due to the programmer’s effort in understanding and annotating the source code, XFDetector did

not take the buggy code region into consideration.

Bug 6: Figure 3C.14c shows two functions: main() is a driver program for PMDK’s key-value store,

Mapcli (mapcli:205). The other function, hashmap_atomic_init(), is a procedure in Hashmap-

Atomic (hashmap_atomic.c:452). This code snippet has a crash consistency bug as the main()

function assumes all key-value store structures can automatically recover using transactions, but

overlooks the low-level-primitive-based Hashmap-Atomic. Detecting this bug requires a test case

that has counter_dirty=true (line 10), which is not easy to reach without a PM-specific test case

generator.

New Performance Bugs. Bug 7: Figure 3C.15a is a code snippet from Memcached

(pslab.c:317) that creates a new pslab_pool. It starts with setting up a few metadata entries,

and then flushes the whole pool. Finally, it sets a valid bit (surrounded with ordering points) to

3C.5. EVALUATION 89

//rbtree_map just allocated with TX_ALLOC
int rbtree_map_insert(...){
 TX_BEGIN(pop){
 node n = TX_NEW(...);
 ...
 rbtree_map_insert_bst(map,n);
 ...
 while(D_RO(NODE_P(n))->color==RED){
 n = rbtree_map_recolor(...);
 }
 TX_SET(RB_FIRST(map),color,BLACK);
 }TX_END
}
void rbtee_map_insert_bst(...){
 node *dst = &RB_FIRST(map);
 ...
 TX_SET(n, ...);
}
tree_map_node rbtree_map_recolor(...){
 if (D_RO(uncle)->color == RED) {
 ...
 }else{
 if (NODE_IS(n, !c)) {
 n = NODE_P(n);
 rbtree_map_rotate(map, n, c);
 }
 TX_SET(NODE_P(n), color, BLACK);
 }
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

(c)

n is created with TX_NEW,
no need to log again

rbtree_map was just created with
TX_ALLOC, no need to log again

int pslab_create(...){
 pslab_pool = pmem_map_file(...);
 // Initialize PM
 ...
 pmem_memset_nodrain(pslab_pool,0...);
 ...
 PSLAB_WALK(fp) {
 pmem_memset_nodrain(fp,0,...);
 }
 pmem_persist(pslab_pool,length);
 // Commit updates
 pslab_pool->valid;
 pmem_member_persist(pslab_pool,valid);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(a)

int hm_tx_create(...){
 TX_BEGIN(pop){
 TX_ADD_DIRECT(map);
 // map allocated with TX_ALLOC
 *map=TX_ZNEW(...);
 create_hashmap(pop,*map,seed);
 }
}
int create_hashmap(...) {
 ...
 // TX_ADD again
 TX_ADD(hashmap);
 D_RW(hashmap)->seed=seed;
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(b)

Parent of n added during
rotation. No need for TX_SET.

int btree_map_insert(...){
 ...
 TX_BEGIN(pop) {
 if (btree_map_is_empty(...)){
 ...
 }else{
 dest=btree_map_find_dest_node(...);
 ...
 btree_map_insert_item(dest,...);
 }
 } TX_END
 ...
}
void
btree_map_insert_item(dest,...){
 TX_ADD(node);
 ...
}

(d)

1
2
3
4
5
6
7

 8
9

10
11
12
13
14
15
16
17
18 node added when executing

btree_map_find_dest_node().
No need to add again.

Unnecessary flushes

Flush the whole pool

Figure 3C.15: New performance bugs found by PMFuzz: (a) Bug 7, (b) Bug 8, (c) Bug 9–11, and (d) Bug 12.

commit the creation (line 12). There are two redundant flushes (line 5 and 8) to the metadata as

line 10 flushes the whole pslab_pool.

Bug 8: Figure 3C.15b is a code snippet from Hashmap-TX that performs insertion

(hashmap_tx.c:90). Line 12 calls a redundant TX_ADD() to back up a node that was previous

allocated by TX_ZNEW() (line 5) which has logged this object.

Bug 9–11: Figure 3C.15c is a code snippet from RB-Tree showing the procedure of an insertion

function that contains three performance bugs (rbtree_map.c:215). Bug 9 is at line 17 that uses

TX_SET() to update the transaction-allocated node n, which introduces a redundant log operation.

Bug 10 is at line 11 that logs RB_FIRST(map), which is the first entry in the tree, before performing

the update. However, if the tree was just transaction-allocated (comment at line 1), it is unnecessary

to log it again. Bug 11 is at line 27 that uses TX_SET() to update the parent of node n, which has

been backed up if rbtree_map_recolor() executes rbtree_map_rotate() first. These performance

bugs can be detected by prior testing tools but require a specific test case to trigger. In particular,

Bug 9 can be detected only when testing a newly allocated tree, and Bug 11 requires the if-condition

3C.6. DISCUSSION 90

void rbtree_map_rotate(...){
 tree_map_node child=D_RO(node)->slots[!c];
 ...
 TX_ADD(node);
 TX_ADD(child);
 ...
 D_RW(child)->slots[c]=node;
 D_RW(node)->parent=child;
}

1
2
3
4
5
6
7
8
9

node and child are swapped in this function

Backup node and child

Figure 3C.16: An example from RB-Tree that demonstrates the trade-off between programmability and performance.

at line 20 to be false but line 23 to be true.

Bug 12: B-Tree has a performance bug as shown in Figure 3C.15d (btree_map.c:276).

btree_map_insert() first finds the destination using btree_map_find_dest_node() and then in-

serts the node using btree_map_insert_item(). TX_ADD() at line 16 is unnecessary because node

has been added when finding the destination (performs modification if tree-split is needed).

Efficiency of Test Case Generation. PMFuzz is also efficient in generating test cases that

detect those bugs. To cover Bug 1–5, 7, and 8, PMFuzz only took 2 seconds of wall-clock time—as

soon as the first batch of test cases was generated, since those bugs are located in the initialization

step. For the rest of the bugs, Bug 9 and 10 are detected by the same case that took 91 seconds to

generate; Bug 6, 11, and 12 took 37, 77, and 88 seconds, respectively. The fuzzing time was longer

as covering those bugs requires relatively more complex program paths.

3C.6 Discussion

In this section, we discuss the trade-offs between programmability and performance, and then the

potentials for extending PMFuzz to accommodate other types of PM software systems.

Performance Bug Trade-offs. In the PMDK library, a redundant TX_ADD() does not create

additional logs. All logged locations are kept track of using a range tree. Before creating a new log

entry, the library looks up the location in the range tree to make sure it has not been logged before.

With this mechanism, it is safe to call TX_ADD() without checking conditions, such as whether the

object has been backed up or allocated with a transactional interface. Nonetheless, the unnecessary

range tree lookup can still lead to performance penalties (e.g., Bug 9–12). Therefore, we expect

highly-optimized PM programs to avoid these redundant calls to transactional functions.

On the other hand, it is sometimes hard to completely remove performance bugs. Figure 3C.16

shows an example from RB-Tree (rbtree_map.c:189), where rbtree_map_rotate() swaps node

with its child (line 7 and 8). If this function is called multiple times, i.e., keep rotating until the

3C.6. DISCUSSION 91

tree is balanced, the two TX_ADD() calls (line 3 and 4) can apply to objects that have already been

logged. However, it is hard to tell whether or not a node has been logged as the rotation depends

on the value of each node. Instead, it is easier to implement the rotation procedure by logging both

nodes in the beginning to avoid any crash consistency issues. Therefore, we do not treat this type

of issue as a performance bug.

Integration with PM Kernel Modules. There have been works that develop PM-optimized

file systems for other programs to manage persistent data [8–11, 161, 195]. These file systems are

implemented as kernel modules but different from conventional file systems, they customize the

persistent data, much like the user-space PM programs. Thus, it is hard to directly mutate their

PM images. PMFuzz runs in the user-space as it is built upon AFL++ [182]. Nonetheless, it is

possible to convert kernel-mode file systems into user-space programs, using libraries such as Linux

Kernel Library (LKL) [196], or execute them on a virtual machine [181, 184]. This way, PMFuzz

can be integrated into such frameworks to generate test cases for kernel-mode, PM-optimized file

systems. We leave this direction as a future work.

Multithreading. PM programs may run in multithreaded mode for better throughput. PMFuzz

is built on top of AFL++ which is thread-safe. However, multithreading introduces randomness due

to various conditions of thread interleavings. As randomness prevents the fuzzer from converging

to good coverage, it is not recommended to run PMFuzz with multithreading-enabled programs.

On the other hand, recent works have pointed out potential persistency issues with multithreaded

execution [197,198]. PMFuzz’s targeted fuzzing on PM operations can generate high-value test cases

for such scenarios, with an extended focus on PM-related multithread synchronization primitives.

We leave test case generation for multithreaded PM programs as a future work.

Chapter 4

Secured and Efficient Hardware for

Persistent Memory Systems

92

Chapter 4A

Crash Consistency in Encrypted

Persistent Memory Systems

4A.1 Introduction

Chapter 3 focuses on challenge in ensuring crash consistency of PM software systems, i.e., persistent

data can be recovered to a consistent state in event of a system failure. An orthogonal challenge in

designing PM systems concerns with the security of persistent data. Data in PM remains persistent

across system failures. Therefore, vulnerable to malicious attackers who have physical access to the

devices [50,54,55]. Encryption is an effective solution to protect PM data from the attackers. In an

encrypted PM system, every read access to memory needs to pay an additional penalty for decrypting

data in the memory controller. A common memory encryption technique referred to as the counter-

mode encryption [17], has been adopted for PM to reduce the high overhead of decryption latency

during a memory read access [48–51,54,199]. The counter-mode encryption technique associates each

cache line of data with a counter such that the cache line is encrypted with a bit string generated

with the associated counter. The same bit string is used to decrypt the cache line on subsequent

read accesses to memory. The counter-mode encryption hides the decryption latency by generating

the bit string for decryption using the counter buffered on-chip in a counter cache, while the data is

still being fetched from memory [48, 52, 199]. In this work, we show that, even though the counter-

mode encryption technique hides the decryption latency for the critical memory read accesses, it

93

4A.1. INTRODUCTION 94

does not readily extend to PM systems that require data to be recoverable in a consistent state

across system failures. As the counters and data are located in different addresses, every write to

PM generates two write requests: one for the encrypted data and the other for the counter. These

two writes to PM (for the encrypted data and counter) have to be performed atomically to ensure

that persistent data in memory can be decrypted across system failures. For example, if the system

fails after the encrypted data reaches PM, but before its counter has been persisted, the memory

controller will try to decrypt that data using a stale counter value upon recovery and will fail to

recover the original data. We refer to the constraint of counter and encrypted data being updated

in PM atomically as counter-atomicity and argue that the encrypted PM systems need to provide

support for counter-atomicity to ensure crash consistency in PM systems.

Ensuring counter-atomicity is challenging as existing systems cannot atomically write two accesses

to memory. One solution to this problem is to extend the cache line to co-locate data and its

counter in the same cache line and then, use a wider memory bus to write back the extended cache

line atomically using just one write access. Unfortunately, this design is impractical as widening

the memory bus to accommodate an extra counter requires extra pins in the memory interface,

exacerbating the problem of limited memory bandwidth [200–202]. The goal of this work is to

design an PM system that enforces counter-atomicity at a low cost and a low overhead.

We propose a simple hardware mechanism to enforce counter-atomicity in a PM system. A special

write queue in the memory controller ensures that either both data and its counter of a write access

have been persisted or neither of them has been persisted. Unfortunately, ensuring counter-atomicity

for every write access to memory potentially makes each pair of data and counter write sequential.

It results in a significant performance degradation, restricting the optimizations through reordering,

buffering, and coalescing of writes in the memory controller. However, we observe that it is still

possible to decrypt and recover data consistently even when all writes are not enforced to be counter-

atomic. Our key insight is that only a small subset of writes to PM need counter-atomicity to be

strictly enforced in order to maintain recoverability of the persistent data. For example, the insertion

of a new node to a persistent linked list in PM consists of two sets of writes: one set of writes creates

a new node with valid data and the other updates the head pointer of the list to point to the new

node. The writes related to the creation of the new node have to reach PM before the write to the

pointer to ensure the recoverability of the list in a consistent state. Therefore, the writes to the new

node do not affect the recoverability of the linked list until the write to the pointer reaches PM. The

writes to the node and the corresponding counter updates can be coalesced, buffered or reordered

4A.1. INTRODUCTION 95

as long as they are performed before the write to the pointer, while the write to the pointer itself

requires strict counter-atomicity. This observation also extends to the common crash consistency

mechanisms, such as undo/redo logging, shadow copying, etc., which rely on versioning of data

updates to ensure crash consistency. For example, the logging mechanism maintains one version of

data in the log and another version in the original data structure. It ensures that at a given point

in time, only one of the versions is modified so that the other version can be used to recover data if

there is a crash during the update. As the version of data being modified plays no role in recovery,

strictly enforcing counter-atomicity for those writes is not necessary. Therefore, we propose that PM

writes that do not manipulate the recoverable state provide a window during the program execution

when the data and counter writes can be reordered to significantly improve performance. We refer

to this design as selective counter-atomicity (details in Section 4A.4). We propose necessary software

interface and hardware support to selectively enforce counter-atomicity in a PM system (details in

Section 4A.5).

To summarize, the contributions of this work are:

• We show that the commonly used counter-mode encryption does not extend to the PM systems

that require data to be recoverable in a consistent state across system failures. This is the

first work to introduce the requirement of counter-atomicity that ensures both data and the

associated counter have to be persisted atomically in order to guarantee crash consistency in

an encrypted PM system.

• We introduce selective counter-atomicity by demonstrating that it is not required to enforce

counter-atomicity for all writes. We observe that the common PM crash consistency mech-

anisms rely on versioning of data. Data updates to one of the versions do not immediately

affect the consistent state, and therefore, it is possible to selectively enforce counter-atomicity

for only the writes that manipulate the recoverable state. The rest of the data and counter

writes can be coalesced, buffered, and reordered to improve performance.

• Our evaluation demonstrates that selective counter-atomicity improves performance by

6/11/22/40% over enforcing counter-atomicity for all writes in a system with 1/2/4/8 cores,

and it performs within 5% of an ideal design that does not have any overhead in enforcing

counter-atomicity in our evaluated system configurations.

4A.2. CRASH CONSISTENCY FOR ENCRYPTED PM SYSTEMS 96

 2 3 1
new_node

head pointer (new) head pointer (old)

item

 0
❶

❷

❸

 0xffaa0x
ffb

b

next
pointer

(a) The steps in adding a new node to a persistent linked list.

0xffbb
10 14

new_node->item

head

new_node->next

0xffaa
10

null
12

3
11

step

counter

counter

counter

0xffaa
10

0xffaa
13

3
11

0xffaa
13

3
11

persist_barrier

❶
Node Creation

❷
Node Update

❸
Head Update

(b) The timeline of the data and counter update at each step. The shaded boxes represent the updated values in each step.

Data encrypted with counter=14

Fail to decrypt

Memory Read

Decryption

time

OTP generated with counter=10

(c) Recovery fails due to inconsistent data and counter values of the head pointer.

Figure 4A.1: An example of inconsistency while adding a node to a persistent linked list.

4A.2 Crash Consistency for Encrypted PM Systems

Encrypting PM is highly important for protecting data, as attackers who have physical access to

a PM module can access information stored in the persistent memory [50, 54]. Section 2.3.2 shows

that directly applying the existing crash consistency mechanism to an encrypted PM system does

not guarantee a consistent recovery of data in case of a power failure or system crash. In this section,

we further demonstrate the consequences of the inconsistency between data and counter using an

example.

Figure 4A.1a demonstrates a linked list where each node contains an item and a next pointer to

the consecutive node, and the head pointer points to the most recently added node. Adding a new

node involves three steps as shown in the Figure: The first step creates a new node (step 1). The

step 2 updates the next pointer of the new node, so that it is inserted in front of the current

head of the list. Finally, in step 3 , the head pointer is updated so that it points to the new node.

When the linked list is encrypted, each update in the linked list becomes associated with a counter

update. Figure 4A.1b shows the plaintext data and counter values at each step, where the shaded

boxes represent the updated values. In the beginning, the head points to the next node and its

associated counter value is “10”. At step 1 and 2 , the new node is updated with its item and

the new pointer value and the associated counters are also updated with new values. At step 3 ,

the head pointer is updated to point to the new node and the latest counter value for the head

becomes “14”. This means that the value of the head pointer gets encrypted with the latest counter

4A.3. COUNTER-ATOMICITY 97

“14” before it is persisted to memory. However, if a failure happens before the new counter value

“14” gets persisted to PM, the values of the head pointer and its associated counter in PM become

out-of-sync. During the recovery, the decryption engine will try to decrypt that the head pointer

with the stale counter (“10”), making decryption unsuccessful (shown in Figure 4A.1c). Potentially,

the value of the head pointer can become a random number after the incorrect decryption, causing

the program to mistakenly access a random location in memory. To support crash consistency in an

encrypted PM, we argue that it is required to enforce an atomic behavior of the counter and data

writes, which we refer to as counter-atomicity.

This chapter targets two goals. First, demonstrate that the encrypted data and associated counter

need to be atomic in order to support crash consistency in encrypted PM systems (Section 4A.3.1).

Second, discuss the challenges of the possible solutions to provide this counter-atomicity to enforce

an atomic behavior of the counter and data writes (Section 4A.3.2). Third, propose an efficient

hardware-software design to enforce counter-atomicity based on the key observation that not all

writes need to be counter-atomic (Section 4A.4).

4A.3 Counter-Atomicity

The key to maintaining crash consistency in an encrypted PM system using counter-mode encryption

technique is to guarantee that data and the associated counter are persisted in an atomic manner.

We refer to this requirement as counter-atomicity for crash consistency in an encrypted PM. In this

section, first we define the requirement of counter-atomicity. Then, we discuss the trade-offs in the

designs that meet the requirement of counter-atomicity.

4A.3.1 Requirement

A counter-atomic write operation needs to guarantee that either both data and its counter asso-

ciated with the write access have persisted (the counter-atomic write is complete) or neither data

nor its counter has persisted (the counter-atomic write is incomplete) in case of a system crash.

This requirement prevents a mismatch in version for data and counter values in a counter-atomic

write.

4A.3. COUNTER-ATOMICITY 98

 Cache

En

Data (64B) Counter (8B)

Encrypted PM

De

72-bit bus

Encrypt with the
counter from cache

Decrypt with the
counter from memory

❶

❸❷

❹

+ counter (72B)
encrypted

data

(a) The co-located data and counter
design with a wider bus.

Encrypted PM

Cache Counter$

En De

72-bit bus

Encrypt with the
counter from cache

Decrypt with the
counter from cache

❶

❷

+ counter (72B)
encrypted

data

(b) The co-located data and counter
design with a wider bus and a counter

cache.

❶

❷

(c) The separate data and counter
design with the existing bus and a

counter cache.

Figure 4A.2: Different counter-atomic designs.

(a) The co-located data and counter design with a wider bus.

(b) The co-located data and counter design with a wider bus and a counter cache.

Write data (64B) Read data (64B)

time

Write counter

De/Encryption Latency

Access Latency

time

Encrypt w/ counter (from cache)Decrypt w/ counter (from cache)

(c) The separate data and counter design with the existing bus and a counter cache.

Figure 4A.3: Timeline of read and write accesses with three different design shown in Figure 4A.2.

4A.3.2 Enforcing Counter-atomicity

In this section, we describe the challenges in enforcing counter-atomicity, propose simple hardware

designs to solve the challenges, and discuss the trade-offs in each design.

Challenge 1: How to ensure data and counter reach PM at the same time?

In today’s systems, there is no guarantee that the separate counter and data writes will reach the

PM at the same time. If a failure happens in the middle of the counter and data writes, that data

cannot be decrypted due to the mismatch in the versions of data and counter. A naïve solution is to

write both data and the associated counter together with one memory access by co-locating them

in the same access. To accommodate the extra counter, such a design requires (i) increasing the

size of the cache line in the last-level cache (LLC), and (ii) increasing the width of the memory bus.

As every cache line of data needs an 8B counter in the counter-mode encryption (as shown in prior

works [51,52,199]), a typical cache line size will increase from 64B to 72B and the memory width will

increase from 64-bit to 72-bit. We refer to this design as the co-located data and counter design with

a wider bus. Figure 4A.2a shows the high-level organization of this design. During a write access,

the memory controller first encrypts the data (step 1) and then writes the encrypted data and its

counter simultaneously to PM using the wider bus (step 2). However, this design is not efficient as

4A.3. COUNTER-ATOMICITY 99

it serializes the read access and the decryption process. The memory controller first needs to fetch

both data and its counter from memory (step 3) and only then it can decrypt that data using the

co-located counter fetched from PM (step 4). Such a serialized design violates the main benefit

of the counter-mode encryption technique. Figure 4A.3a shows the timeline of the serialized read

access and write access of this design. However, it is possible to mitigate the decryption overhead

by adding a counter cache, as shown in Figure 4A.2b. The cached counters enable overlapping the

decryption process with the read access. While the missed cache line is being fetched from the PM

(step 1), the memory controller starts generating the OTP using the counter from the counter cache

(step 2). However, in this design, if the requested counter is not in the counter cache, the memory

access results in a counter cache miss and the memory controller fetches the entire cache line again,

as the data and counter are co-located and the access granularity is 72B. We refer to this design as

the co-located data and counter design with a wider bus and a counter cache. Figure 4A.3b shows

the timeline of this improved design, where the read latency overlaps the decryption latency if the

counter cache lookup results in a hit.

Trade-offs. The benefit of co-locating the data and counter in one memory access is that this design

eliminates any chance of having the data and counter values out-of-sync in PM and therefore, always

guarantees that the writes will be counter-atomic. However, as the cache line size increases to 72B

(64B data + 8B counter), this design requires increasing the memory bus width from 64-bit to 72-bit.

As a result, the counter writeback requires extra pins and wires in the memory bus, exacerbating

the problem of limited memory bandwidth [200–202]. We believe that widening the memory bus

is not practical and study alternative designs that can enforce counter-atomicity with the existing

memory interface.

Challenge 2: How to enforce counter-atomicity without changing the memory inter-

face?

The major drawback in the two aforementioned designs (Figure 4A.2a and 4A.2b) is that they require

an expensive and impractical change in the memory interface. Therefore, a more practical design is

to write back data and counters using separate write requests, but provide some hardware support

to ensure that the write accesses are counter-atomic: a memory write request is marked as complete

only when both data and counter have become persistent. We propose a simple hardware support

in the memory controller that tracks data and the associated counter in the write queue and ensures

4A.4. SELECTIVE COUNTER-ATOMICITY 100

that the write access is blocked until both the data and counter become persistent. We discuss the

details of the implementation of this design in Section 4A.5.

Figure 4A.2c shows the high-level organization of this design. As the data and counter are written

separately with two different write accesses, they are not co-located in PM. Instead, the counters

are stored in a separate address space. For the same reason, the memory bus remains unchanged

(64-bit). The read access is similar to the previous designs where the read access and decryption

happen in parallel (step 1). When the read access misses the counter in the counter cache, the

memory controller fetches a whole cache line of counters from memory (step 2). Figure 4A.3c

shows the timeline of this design. The latency to complete a write request becomes higher as a single

write request now consists of two accesses (one for the data cache line and one for the counter cache

line).

Trade-offs. This simple implementation not only mitigates the overhead of the serialized read

access and decryption latency, but also ensures counter-atomicity without changing the memory

interface. However, this mechanism leads to performance degradation as every write access becomes

counter-atomic, blocking other dependent writeback requests if either the data or counter write

request has not yet been persisted and therefore, can potentially serialize all write accesses. We

refer to this design that always writes back data and counter in a counter-atomic manner as the

full counter-atomicity design. In Section 4A.4, we propose an optimization where only a subset of

the write accesses needs to maintain counter-atomicity, but still guarantees that the system remains

crash consistent.

4A.4 Selective Counter-Atomicity

In this section, first, we discuss the high overhead of enforcing full counter-atomicity (Section 4A.4.1).

Then we propose to mitigate its overhead by selectively enforcing counter-atomicity to a small subset

of writes without affecting the recoverability of programs in a consistent state based on the obser-

vation that not all writes equally affect consistent data recovery (Section 4A.4.2). We refer to this

design as selective counter-atomicity and provide necessary interface and primitives to leverage it in

different persistent applications (Section 4A.4.3).

4A.4. SELECTIVE COUNTER-ATOMICITY 101

time

1 2 3
1 2 3

Data Writes

Counter Writes

(a) Full counter-atomicity.

time

Data Writes

Counter Writes

1~3

1~3

saved

(b) Without counter-atomicity.

Figure 4A.4: The timeline of write accesses in a full counter-atomicity design vs. an ideal design that does not
enforce counter-atomicity.

4A.4.1 The Overhead of Full Counter-Atomicity

Enforcing counter-atomicity is necessary to make sure that data in PM is consistent across system

failures. In this design, a write access is complete only when both the data and associated counter

are persistent. Strictly enforcing counter-atomicity for all writes to PM leads to high performance

overhead in two ways. First, every write access has to initiate a corresponding counter write access.

It doubles the amount of write traffic as our design writes back data and counter at a cache line

granularity with two separate write accesses. Though a write access needs to update only one counter

for the whole cache line of data, in this design, the counter is updated at a cache line granularity,

which unnecessarily increases the write traffic. In multi-core systems, this extra contention between

data and counter writeback becomes more prominent. Second, the write access blocks dependent

writes until both the data and counter write accesses are complete. Figure 4A.4a shows the timeline

of a sequence of updates in a full counter-atomicity design, where the white and shaded boxes

represent the write accesses for the data and counters, respectively. The figure demonstrates the

worst-case scenario where each write access is dependent on the prior one. The second write access

has to wait until the first one completes and the third write access has to wait until the second

one completes. In comparison to this design, a write access does not wait for its counter write to

complete to make forward progress in an ideal design that does not require counter-atomicity. As

a result, the write accesses can be reordered, coalesced, and written back in parallel, as shown in

Figure 4A.4b. In the next section, we propose a design that reduces the overhead of the full counter-

atomicity design leveraging the key insight that not all writes need to be counter-atomic to ensure

consistent data recovery in a PM system.

4A.4.2 Not All Writes Equally Affect Recoverability

We make an observation that not all write accesses equally affect the recoverability of data in

persistent applications. Persistent applications usually build upon some transactional interface to

4A.4. SELECTIVE COUNTER-ATOMICITY 102

provide crash consistency across system failures. For example, undo logging, redo logging, shadow

logging, journaling, etc. provide a guarantee that data can be recovered in a consistent state even if

there is a failure during an update [36,125,126,161,173,203]. All these mechanisms guarantee crash

consistency by maintaining two versions of data. For example, the logging mechanism maintains

one version in the log and another version in the original data structure. Therefore, the program

ensures that only one of the versions is being actively modified at a given point in time. While

one of the versions of data is being modified, the other unmodified version is used for recovering

the consistent state, if there is any crash. As the version of data being modified plays no role in

recovery, it is not required to strictly enforce counter-atomicity for the writes to that version of data.

However, these updates to the modified version need to be persisted in PM before the old version

becomes stale and the modified version becomes the updated new consistent version. Therefore, it

is possible to guarantee a consistent recovery even without strictly enforcing counter atomicity for

all writes as long as these updates are persisted in PM before they start affecting the recoverability

of the system.

Key Insight. Based on the observation that a subset of writes to PM does not immediately affect

the crash consistent recovery of the underlying data structure, but instead affects consistent recovery

only after a certain future point in program execution, our key insight is to relax the requirement of

counter-atomicity during these windows of program execution. Therefore, instead of enforcing full

counter-atomicity for all writes, we allow coalescing, buffering, and reordering of both the data and

counter writes during these windows of program execution, as long as they are drained to PM at the

end of the window. Based on this key insight, we propose the selective counter-atomicity design that

only enforces counter-atomicity for a subset of write accesses to provide better performance without

affecting the crash consistency guarantee.

Selective Counter-Atomicity in a Transaction. In this section, we show how selective counter-

atomicity can be applied to improve the performance of a transaction implemented using undo-

logging. Each transaction consists of three stages as shown in prior works [1, 35,125]:

1. Prepare. A log entry is created to back up the data being modified.

2. Mutate. The data structure is modified in-place. As a consistent state of the data is available

in the backup created in the prepare stage, this in-place modification does not affect

the recoverability of data.

4A.4. SELECTIVE COUNTER-ATOMICITY 103

Table 4A.1: The consistency states affecting counter-atomicity in different stages of a transaction with undo-logging.

Stage Backup Data Counter-Atomicity
Prepare 8 Inconsistent 4 Consistent 8 Unnecessary
Mutate 4 Consistent 8 Inconsistent 8 Unnecessary
Commit ? Unknown ? Unknown 4 Necessary

3. Commit. Once data modification is finished, the transaction is committed by invalidating the

backup log entry created in the prepare stage and marking the new modified state

as the current consistent state.

We summarize these stages in Table 4A.1 and show when counter-atomicity is necessary for each

stage. During the prepare stage, the backup copy of the data in the log is being modified and

therefore, cannot be used for consistent recovery, while the original data is unmodified and used to

recover data in a consistent state. These writes to PM in the prepare stage do not immediately affect

the recoverability and do not need to be strictly counter-atomic. Similarly, during the mutate stage,

the backup copy in the log is consistent and can be used for consistent recovery, while the original

data is being modified and thus, is not used for recovery. Therefore, the writes in the mutate stage

do not immediately affect the recoverability and do not need strict counter-atomicity. On the other

hand, the write in the commit stage atomically invalidates the backup log entry. The consistent

version of data remains in the log entry until the commit stage, which switches the consistent state

from the log to the modified data in the original place. As the write in this stage immediately affects

the recovery of data in a consistent state by marking which version of data to use during the recovery

procedure, the writes in this stage need to be strictly counter-atomic.

Figure 4A.5 shows the timeline of writes in different stages of a transaction with both selective

counter-atomicity and full counter-atomicity (detailed performance analysis in Section 4A.6.3). Fig-

ure 4A.5a shows the case where enforcing full counter-atomicity serializes the writes in each stage.

On the other hand, selective counter-atomicity allows the counter and data write accesses in the

prepare and mutate stages to be reordered such that the write accesses can be performed in parallel

(as shown in Figure 4A.5b). However, this figure shows that counter-atomicity must be enforced for

the write accesses in the commit stage.

4A.4.3 Definition and Primitives

A selective counter-atomicity design has two requirements, (i) strictly enforce counter-atomicity only

for those updates that immediately affect the recoverability of data in a consistent state, and (ii)

4A.4. SELECTIVE COUNTER-ATOMICITY 104

CommitPrepare Mutate

1

1 2

2 3

3 4

4 5

5

persist_barrier
Data Writes

Counter Writes

time

(a) Full counter-atomicity.

timePrepare CommitMutate saved

1~2

1~2 5

5Data Writes

Counter Writes

3~4

3~4

(b) Selective counter-atomicity.

Figure 4A.5: Timeline showing three stages of a transaction with undo-logging under full counter-atomicity and
selective counter atomicity.

allow coalescing, buffering and reordering of all other data and counter writes during the program

execution until they affect the recoverability of data. To this end, we propose two new primitives

to extend Intel’s persistency support [3]. We expose two counter-related primitives to the high-level

program in order to let the programmers leverage the benefits of selective counter-atomicity:

CounterAtomic variables. Any variable that immediately affects the recoverability of the under-

lying data structure must be defined as CounterAtomic. The hardware is responsible to ensure that

any update to this variable will write back the encrypted value and the associated counter atomically.

For example, the head pointer in Figure 4A.1 must be annotated as CounterAtomic in a selective

counter-atomicity design.

counter_cache_writeback() function. Selective counter-atomicity allows reordering of write ac-

cesses (both data and counters) that do not immediately affect consistent recovery of data. However,

the programmer needs to ensure that all data and counter values for these writes are persisted to PM

before the point in program execution where they start affecting the recoverability. We introduce a

function that writes back the programmer-specified counter cache lines, so that the counters for the

updated addresses persist to PM on demand.

Discussion. The primitives above aims to maximize the performance of the PM systems by trading

off programmability, similar to the primitives offered by memory persistency models [1, 3, 40]. The

responsibility of their correct usage rests with the programmer. However, we expect that expert-

crafted libraries, such as PMDK [35], will abstract away these low-level primitives from regular

programmers.

An example of using the primitives. Figure 4A.6 shows an example of using the selective

counter-atomicity primitives while implementing a transaction with undo-logging. The three stages

of the transaction (prepare, mutate and commit in Table 4A.1) are separated by persist_barrier

4A.5. IMPLEMENTING SELECTIVE COUNTER-ATOMICITY 105

1 struct Backup {
2 item_t item;
3 CounterAtomic bool valid;
4 };
5
6 //Undo-logging transaction to modify data
7 void UndoTx(Backup* log, item_t* data) {
8 // prepare: creating a valid backup for data in log
9 PrepareLog(log, data);

10 counter_cache_writeback(log);
11 persist_barrier();
12 // mutate: modify data in-place
13 MutateData(data);
14 counter_cache_writeback(data);
15 persist_barrier();
16 // commit: invalidate backup log
17 log->valid = false;
18 persist_barrier();
19 }

Figure 4A.6: Implementation of an undo-logging transaction with selective counter-atomicity primitives.

to make sure the writes from these stages reach PM before the next stage starts. There are two

changes in the transaction to leverage the benefits of selective counter-atomicity. First, the writes

from the prepare and mutate stages do not require strict counter-atomicity. Therefore, we allow

buffering and reordering of the corresponding data and counter writes. However, before moving on

to the next stage of the transaction, we add the counter_cache_writeback() function to writeback

the latest data and counter values to memory. Second, the write to the valid variable in the backup

log entry (line 17) invalidates the log entry and commits the transaction. This write access requires

counter-atomicity as it switches the current consistent data from the log to the modified in-place

data. Hence, we annotate the corresponding variable valid as CounterAtomic.

4A.5 Implementing Selective Counter-Atomicity

In this section, we provide the necessary hardware support to selectively enforce counter-atomicity.

First, we describe how the selective counter-atomicity design is integrated in a system with an

encrypted PM. Then, we describe the hardware implementation in the memory controller that

enforces counter-atomicity.

4A.5.1 System Integration

Figure 4A.7 shows the high-level overview of a system that supports counter-atomicity. On the soft-

ware side, the programmer annotates the counter-atomic variables with CounterAtomic primitive

and inserts the counter_cache_writeback() operations to the program according to the require-

ment in Section 4A.4. The annotation enables the memory controller to differentiate the counter-

4A.5. IMPLEMENTING SELECTIVE COUNTER-ATOMICITY 106

CounterAtomic
Counter_cache_writeback()

Figure 4A.7: The high-level overview of a system using the selective counter-atomicity primitives.

Processors

LLC

Encryption
Engine

Counter
Cache

PM
Coordinator

0x100

Data Write Queue

Counters Encrypted Data

00x100 1

❸

Encrypted PM

Failure ?

Battery

❶ ❾

❷

❺

❹

❿

⓫
❽ ❽

⓬

Counters

0x200:dirty

1

counter_cache_writeback(0x200)

Ready? ⓭ Ready? ⓭

Counter Write Queue

❻❼

Figure 4A.8: Hardware implementation. The new components are represented with shaded gray, and the persistent
structures protected by ADR is shown in red.

atomic writes from the non-counter-atomic ones and write back counter cache lines properly. Next,

we discuss the hardware support for counter-atomicity.

4A.5.2 Hardware Implementation

Figure 4A.8 depicts the memory controller in our design that supports (i) encryption and (ii) counter-

atomicity. The encryption support consists of an encryption engine and a counter cache. The

counter-atomicity support consists of a data write queue and a counter write queue. Data encrypted

by the encryption engine is sent to the data write queue, and counters are sent to the counter write

queue. Next, we describe both encryption and counter-atomicity support in detail.

Encryption and Decryption Support

In this section, we describe the encryption and decryption process in the encryption engine using

the counters from the counter cache, and the necessary steps when the counters are not available in

4A.5. IMPLEMENTING SELECTIVE COUNTER-ATOMICITY 107

the counter cache.

Decryption for Read Accesses. When the processor issues a read request, the PM coordinator

performs the read access from PM. At the same time, the encryption engine accesses the counter

cache and uses the counter to generate the OTP for the requested memory location, parallelizing

the read access and the decryption process. Then, the memory controller decrypts data by XORing

the encrypted data and the OTP, completing the read access.

Encryption for Write Accesses. When the processor issues a write request, first, the encryption

engine generates a new counter by incrementing the global counter, and accesses the counter cache

to update the stale counter. Second, it generates the OTP with the new counter value. Third, the

PM coordinator XORs the plaintext data with the OTP and sends the encrypted data to the data

write queue.

Counter Cache Miss. As our system accesses memory at a cache line granularity, the memory

controller fetches a cache line of counters (eight counters) that contains the requested counter from

the PM when a read or write access misses the counter cache. If a read access misses the counter

cache, it has to stall and wait for the counter to be fetched from the PM. Whereas, if a write access

misses the counter cache, it does not stall, as a new counter that is generated for each write access

is used for encryption. After the missing counter cache line is fetched from memory, the encryption

engine updates the newly generated counter in the counter cache.

Counter-Atomicity Support

We have shown the hardware support for encrypting and decrypting data. Next, we describe the

key mechanisms in the memory controller that guarantee counter-atomicity.

Hardware Support for Counter-Atomic Writes. We extend Intel’s persistency support to en-

sure counter-atomicity of writes. Intel’s persistency support relies on the hardware ADR mechanism

that ensures that any write request buffered in the write queue of the memory controller will be

written back to PM with some backup power in case of a power failure [43, 204]. Therefore, this

mechanism guarantees that any write request that reaches the write queue will always get persisted

to the PM. We extend this ADR support to both the data write queue and the counter write queue

and ensure that only the entries that have both the data and associated counter in the write queues

get persisted to PM on event of a power failure. To track the data and its counter, we add an extra

ready bit to each data write queue and counter write queue entry. The ready bits in both write

4A.5. IMPLEMENTING SELECTIVE COUNTER-ATOMICITY 108

queues are set only when both the data and counter writes have been accepted by the corresponding

write queues. To make sure any failure does not stop the operation that sets the ready bits in both

write queues, this operation is also protected with the ADR support.

A counter-atomic write takes three steps to complete. (i) The PM coordinator sends the encrypted

data to the data write queue, and at the same time, the encryption engine sends the associated

counter cache line to the counter write queue. (ii) When the counter-atomic data write reaches

the data write queue, the memory controller checks whether or not the counter write queue has the

associated counter entry. If yes, it then sets the ready bit in both entries to 1. Otherwise, the ready bit

remains 0. The memory controller performs the same steps when the counter from a counter-atomic

write reaches the counter write queue. (iii) Both write queues only persist the entries that have

the ready bit set and any unready entry remains blocked until its ready bit is set. During a system

failure, both write queues only drain the ready entries. Note that the regular non-counter-atomic

write queue entries are always set to be ready.

The practicality of extending the ADR support. In our evaluated system, we use a 64-entry

(4kB) data write queue and a 16-entry (1kB) counter write queue (hardware overhead details in

Section 4A.6.3). The ADR mechanism only has to drain an additional 1kB of counter write queue

in this case. As future systems are considering flushing the entire processor cache hierarchy (10s

of MBs) [204], we believe that our additional overhead is modest and can be implemented in the

immediate future. We would like to emphasize that even though our hardware mechanism to enforce

counter-atomicity relies on the ADR support, in reality, it can be implemented in the hardware using

any available hardware mechanism (e.g., hardware logging) that guarantees that the data and counter

write queue entries are persistent in case of failure.

Steps During a Counter-Atomic Write. The following is an example of a counter-atomic write

to the physical address 0x100 (Figure 4A.8). Step 1 : The processor issues a counter-atomic write

access to the physical address 0x100. Both the PM coordinator (step 2) and the encryption engine

(step 3) receive the write. Step 4 : Let’s assume that the counter for 0x100 is available in the

counter cache. The encryption engine increments the global counter and updates the counter value

in the counter cache accordingly. Then it computes the OTP and sends the latest counter to the

counter write queue. Step 5 : The PM coordinator XORs the plaintext data with the OTP generated

by the encryption engine, and sends the encrypted data to the data write queue. Step 6 : The data

write queue receives the data entry from the PM coordinator and checks the counter write queue but

4A.6. EVALUATION 109

does not find the counter entry. Therefore, this entry is unready. Step 7 : The counter write queue

receives the counter entry from the encryption engine and checks the data write queue. Step 8 : As

the associated data write queue entry has been inserted, the memory controller marks both entries

as ready, completing the write request.

Steps During a Counter Cache Writeback. Similar to the data cache writeback, the

counter_cache_writeback() function writes back a user-specified cache line of counters (eight

counters) from the counter cache to PM without invaliding the cache line, if the requested ad-

dress hits the counter cache and the counter cache line is marked as dirty. In this operation, the

ready bit of the counter write queue entry is always set to 1. The following is an example that

writes back the counters for the address 0x200 (Figure 4A.8). Step 9 : the processor issues a

counter_cache_writeback() operation with the address 0x200. Step 10 : The counter cache looks up

the requested counter cache line and finds that it is dirty. As each counter cache entry has eight

counters, this operation writes back all of them. Step 11 : The encryption engine inserts the counter

cache line to the counter write queue.

Steps During a System Failure. Step 12 : When a failure occurs, the ADR support gets triggered.

Both the counter and data write queues start draining the pending write entries. Step 13 : Both

write queues check the ready bit and only drain the ready entries, making sure that the data and

counter in memory are always in sync.

4A.6 Evaluation

In this section, we first describe the evaluation methodology and provide a short description of the

evaluated designs, and present detailed evaluation results of each design.

4A.6.1 Methodology

We model the hardware design described in Section 4A.5 in the cycle-accurate simulator Gem5 [205].

The simulated system consists of x86 out-of-order processors, and an 8 GB phase change memory

(PCM) [6, 31] with a DDR3 interface (Table 4A.2). Table 4A.2 lists the system parameters used

in our evaluation. The counter cache in our implementation is 1 MB, 16-way set associative. As

each counter is 8 B, a 1 MB counter cache can store 128 k counters. However, we show results with

different sizes of counter cache in Section 4A.6.3.

4A.6. EVALUATION 110

Table 4A.2: System configuration. Tests are single-thread and single-core unless explicitly mentioned.

Processor Out-of-Order Cores, 4.0 GHz

L1 D/I cache 64 kB/32 kB per core (private), 8-way

L2 cache 2 MB per core (shared), 8-way

Counter cache 1 MB per core (shared), 16-way

Memory Data read/write queue: 32/64 entries
controller Counter write queue: 16 entries

Memory 8 GB PCM, 533 MHz [40],
tRCD/tCL/tCWD/tFAW /tWTR/tWR

= 48/15/13/50/7.5/300 ns [6]

En/decryption 40 ns latency [48]

The following are the evaluated designs:

• No-encryption design. A PM system without any encryption.

• Ideal design. An encrypted and crash consistent PM system using the counter-mode encryp-

tion technique but without any counter-atomicity overhead.

• Co-located data and counter design (Co-located). An encrypted and crash consistent

PM system using a 72-bit memory bus, where the counter used for encryption is co-located

with the corresponding data within each cache line (Section 4A.3.2).

• Co-located data and counter with a separate counter cache design (Co-located

w/ C-Cache). Similar to the prior design with a wider memory bus (Co-located), but the

counters are separately buffered in the counter cache and written back to PM using one access

co-locating both the data and counter (Section 4A.3.2). Note that these two designs require

adding extra pins in the memory bus, which is expensive.

• Full counter-atomicity design (FCA). An encrypted and crash consistent PM system with

the existing memory bus, where counter-atomicity is enforced for every write operation using

our proposed hardware mechanism in the memory controller (Section 4A.3.2).

• Selective counter-atomicity design (SCA). Similar to the previous design (FCA). How-

ever, writes are counter-atomic only when necessary (Section 4A.4).

Next, we describe the implement details of Intel’s persistency support in our simulation environment.

The implementation requires two supports. (i) Hardware support for the clwb instruction that writes

back cache lines. (ii) Hardware support for sfence that ensures that any store instruction preceding

4A.6. EVALUATION 111

the sfence instruction in the program order completes before any store instruction that comes after

the fence. First, we model the clwb instruction in the simulator by writing back the user-specified

cache lines to PM without invalidating them. Second, we implement the support for sfence by

ensuring that all outstanding clwb instructions are completed before an sfence instruction can retire.

We instrument our workloads with clwb and sfence instructions in the appropriate places.

4A.6.2 Workloads

We evaluate five PM workloads that manipulate different persistent data structures. Our evaluated

workloads are similar to the ones used in prior works on persistent memory systems [37, 40, 47,

197].

• Array Swap. Swaps random items in a persistent array.

• Queue. Randomly en/dequeues items to/from a persistent queue.

• Hash Table. Inserts random values to a persistent hash table.

• B-Tree. Inserts random values into a persistent B-tree.

• Red-Black Tree. Inserts random values into a persistent red-black tree.

4A.6.3 Results

We first evaluate the impact of different designs (listed in Section 4A.6.1) on performance and

throughput. Then we compare the write traffic in these designs. Last, we evaluate the sensitivity of

the results when we vary different parameters.

Single-Core Performance.

In this experiment, we compare the performance improvement of different designs. Figure 4A.9

demonstrates the runtime of different design point normalized to the no-encryption design. The

observations are as follows. First, the selective counter-atomicity design improves performance on

average by 6.3% over the full counter-atomicity design, and is only 11.7% slower than the no-

encryption design (due to the benefit from reordering and buffering of writes). Second, the co-

located design without any counter cache significantly slows down the performance, on average

81.1% slower than the selective counter-atomicity design (due to the serialized read and decryption).

The co-located design with a counter cache is slightly faster than the selective counter-atomicity

4A.6. EVALUATION 112

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Array Queue Hash B-Tree RB-Tree Average

N
o
rm

a
li

ze
d

R
u

n
ti

m
e

SCA FCA Co-located Co-located w/ C-Cache

Figure 4A.9: Performance comparison of different design points. The runtime is normalized to the no-encryption
design (lower is better).

design (0.7% faster), and only degrades the performance on average by 10.9% compared to the no-

encryption design. However, co-locating the data and counter is impractical due to invasive changes

in the memory subsystem. We conclude that using selective counter-atomicity is an efficient and

practical design that guarantees crash consistency of an encrypted PM system.

Multi-Core Performance

This experiment evaluates different design points in a multi-core system, where each thread performs

the same operations on different cores. Figure 4A.10 demonstrates the throughput of different de-

signs. For each workload, the x-axis shows the number of cores, and the y-axis shows the throughput

(number of transactions per second) normalized to the single-core no-encryption design. We make

the following observations. First, the throughput of the selective counter-atomicity design is very

close to that of the ideal design and is significantly better than the full counter-atomicity and the

co-located design. As the number of cores increases, the benefit of selective counter-atomicity over

full counter-atomicity also increases. In a 1/2/4/8-core system, selective counter-atomicity improves

performance on average by 6.3/11.5/21.8/40.3% over full counter-atomicity. On the other hand,

the throughput of selective counter-atomicity comes within 4.7% of the ideal design in all system

configurations. Therefore, we conclude that selective counter-atomicity is highly scalable compared

to other designs. Second, the co-located design with a counter cache has similar performance as

the selective counter-atomicity design, as they use the same counter cache. However, it performs

better in some workloads in four and eight core configurations because the co-located designs use a

wider memory bus (72 bits instead of 64 bits) and faces less congestion on the memory bus. Third,

we notice that two workloads (Queue and RB-Tree) exhibit relatively poor scalability with selective

counter-atomicity. We find that there is a high fraction of counter-atomic writes in their data struc-

tures, leading to contention in the memory controller. We conclude that selective counter-atomicity

ensures scalability without changing the memory interface.

4A.6. EVALUATION 113

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 80

1

2

3

4

5

N
o
rm

a
li

ze
d

 #
T

ra
n

sa
c
ti

o
n

s/
se

c
Array Queue Hash B-Tree RB-Tree

NoEncryption

Ideal

SCA
FCA

Co-located
Co-located w/ C-Cache

Figure 4A.10: Throughput of multithreaded workloads, normalized to the single-core no-encryption design (higher is
better).

1.0

1.1

1.2

1.3

Array Queue Hash B-Tree RB-Tree Average

N
o

rm
a
li

ze
d

B
y

te
s

W
ri

tt
en

SCA FCA Co-located Co-located w/ C-Cache

Figure 4A.11: Write Traffic to PM normalized to the no-encryption design (lower is better).

Write Traffic

Figure 4A.11 shows the write traffic to the PM normalized to the no-encryption design. We first

observe that selective counter-atomicity on average reduces the write traffic by 8.1% compared to

the full counter-atomicity design. This is because selective counter-atomicity buffers and coalesces

the counter updates and writebacks at the end of a transaction, therefore, reduces the counter write

traffic to PM. Second, the write traffic in designs that co-locate data and counters are similar as

they enforce counter write back together with every data write to memory. The selective counter-

atomicity design reduces the write traffic on average by 6.6% compared to these two designs.

Reducing the write traffic not only provides better performance, but also improves the lifetime of

PM. Selective counter-atomicity can improve the PM lifetime by 6.6% assuming a uniform wear-

leveling technique [54] (an orthogonal design consideration in the PM systems). The improvement

will be higher if we consider compressing the counters using techniques proposed by some prior

works [80,83].

Sensitivity to Counter Cache Size

Figure 4A.12 compares the performance of the selective counter-atomicity design when we vary the

counter cache size from 128 kB to 8 MB and run workloads with footprints ranging from 100 MB to

1000 MB. Figure 4A.12a and 4A.12b show the average speedup and miss rate with different counter

cache sizes over the smallest 128 kB counter cache. We observe that as the size of the counter

4A.6. EVALUATION 114

1.00

1.02

1.04

1.06

1.08

1.10

100MB 500MB 1000MBA
v

g
 S

p
ee

d
u

p
 o

v
er

1
2

8
K

B
 C

o
u

n
te

r
C

a
ch

e

Workload Footprint

(a)

0.0

0.1

0.2

0.3

0.4

100MB 500MB 1000MBA
v
g
 C

o
u

n
te

r
C

a
ch

e

M
is

s
R

a
te

Workload Footprint

(b)

Figure 4A.12: Evaluating SCA with different sizes of counter cache. (a) Average speedup over a 128 kB counter
cache (higher is better). (b) Average counter cache miss rate (lower is better).

cache increases, both the speedup and miss rate improve for all workloads. While increasing the

footprint of the workload decreases the benefit from a larger counter cache. For example, an 8 MB

counter cache improves the performance by 9% over a 128 kB counter cache when the workloads

have 100 MB footprint. On the other hand, the improvement is only 2.4% with 1000 MB workloads.

Similarly, using an 8 MB counter cache decreases the miss rate by 23.3% with a 100 MB workload,

while the miss rate decreases by 15.4% with a 1000 MB workload. We conclude that using a large

counter cache lead to better performance, but as the footprint of workload increases, the performance

becomes less sensitive to the counter cache size. In this work, we evaluate a 1MB counter cache per

core, similar to a prior PM encryption work [199].

Sensitivity to Transaction Size

In this experiment, we evaluate the overhead of selective counter-atomicity with variable transac-

tion size. Figure 4A.13 compares the performance of selective counter-atomicity when varying the

transaction size from 64 B to 4 kB. The x-axis shows the number of cache lines committed at each

transaction. The y-axis shows the runtime normalized to the corresponding ideal design that do

not enforce counter-atomicity. We observe that when the transaction size is small, the overhead of

selective counter-atomicity is on average 7.5%. The overhead decreases as the size of transaction

increases, and becomes less than 1% in all cases when processing transactions with a size similar

to a page (4 kB). Specifically, the overhead becomes as low as 0.1% for the B-Tree. As the size

of the transaction increases, the fraction of counter-atomic write gets smaller, which amortizes the

overhead of counter-atomicity. We conclude that the overhead of selective counter-atomicity will be

negligible in PM applications that manipulate a large dataset within a transaction.

4A.6. EVALUATION 115

1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

Number of Cache Lines (64B per cache line)

1.00
1.02
1.04
1.06
1.08
1.10
1.12

N
o
rm

a
li

ze
d

 R
u

n
ti

m
e

Array Queue Hash B-Tree RB-Tree

Figure 4A.13: The runtime of SCA with different sizes of transaction, normalized to the ideal design (lower is better).

Sensitivity to PM latency

In this experiment, we compare the performance of selective counter-atomicity with the design that

co-locates both the counter and data (Section 4A.3.2) with varying PM latency (Figure 4A.14) to

understand the performance sensitivity of selective counter-atomicity to different PM technologies.

First, we keep the write latency fixed (same as the PCM latency) and vary the read latency from

10× slower to 4× faster (similar to the DRAM latency). Then we keep the read latency fixed and

vary the write latency in a similar way. We have the following conclusions from the results. First,

Figure 4A.14a shows that as read latency decreases, selective counter-atomicity is on average 29.3%

to 75.6% faster than the co-located design. This is due to the fact that the serialized decryption

overhead in the co-located design becomes more prominent with a lower read latency and therefore,

by parallelizing the memory read access and the decryption process, selective counter-atomicity

provides better performance. Second, Figure 4A.14b shows that selective counter-atomicity is on

average 38.9% to 74% faster than the co-located design when we decrease the write latency. The

reason is that the performance of the co-located design is not very sensitive to the write latency, as

writes are usually not on the critical path and it uses a wider bus to writeback data and counter

atomically. However, selective counter-atomicity needs to writeback the counters through the same

bus as data, and therefore, lowering the write latency provides a significant benefit by reducing

the bandwidth contention between data and counters. Third, selective counter-atomicity provides a

significant performance benefit (29.3%/38.9% for read/write) even when the PM speed is 10× slower

than the PCM. It demonstrates that selective counter-atomicity is effective, even when the write

latency is very high. We believe that future systems will optimize PM for lower latency and higher

throughput, hereby adopting selective counter-atomicity will lead to better performance.

4A.7. DISCUSSION 116

1.00

1.20

1.40

1.60

1.80

2.00

1
0

x
 s

lo
w

er

5
x

 s
lo

w
er

3
x

 s
lo

w
er

P
C

M

2
x

 f
a

st
er

4
x

 f
a

st
er

(i
d

ea
l)

A
v

er
a

g
e

S
p

ee
d

u
p

 o
f

S
C

A
 o

v
er

 C
o

-l
o

ca
te

d

(a) Read Latency

1.00

1.20

1.40

1.60

1.80

2.00

1
0

x
 s

lo
w

er

5
x

 s
lo

w
er

3
x

 s
lo

w
er

P
C

M

2
x

 f
a

st
er

4
x

 f
a

st
er

(i
d

ea
l)

A
v

er
a

g
e

S
p

ee
d

u
p

 o
f

S
C

A
 o

v
er

 C
o

-l
o

ca
te

d

(b) Write Latency

Figure 4A.14: Varying (a) read latency, and (b) write latency.

Overhead Analysis

Finally, we analyze the overhead from the additional structures used to provide selective counter-

atomicity. Similar to the prior hardware memory encryption techniques, we use a counter cache and

an encryption engine [48,52,199]. The size of our counter cache is 1 MB per core, similar to the one

employed by Awad et al. [199]. Our proposed design, selective counter-atomicity, requires only an

additional 16-entry (1 kB in size) counter write queue at the memory controller.

4A.7 Discussion

This paper targets a non-volatile memory that has similar read latency and slower write latency

compared to DRAM, as adopted in prior work [1,6,31,36,37,39,40,45,46,125,126,135,158,197,199,

206–210]. The true potential of a persistent memory can be exploited when the PM is on the memory

bus with a low access latency. In these cases, the encryption latency becomes a significant bottleneck

in memory read accesses and therefore, it is essential to optimize this overhead by parallelizing read

and decryption with cached counters [48,50]. However, the commodity PM chips are yet to become

commercialized in a wide scale and the current PM products still place PM over the PCIe bus with a

latency close to high-end SSDs [211–215]. We do not evaluate these systems as the encryption latency

is small compared to the overall access latency. We believe that the future systems will perfect the

PM technologies over time and harness its true potential by placing PM on the memory bus. Our

proposed technique to optimize counter-atomicity would be highly valuable in those systems.

Chapter 4B

Optimizing Memory and Storage

Support for Persistent Memory

Systems

4B.1 Introduction

As Chapter 3 has described, crash-consistent software for PM systems exhibit a unique property—

they place writes to memory on the critical path of program execution. For conventional software,

only reads to memory are on the critical path, while writes may be buffered, coalesced and reordered

on the way to memory for better performance. However, for crash-consistent software, the order of

writes to memory is severely constrained to ensure data recoverability across failures [1,25,39,40,135].

Furthermore, crash-consistent software often has to guarantee the durability of data. For example,

programmers executing a database transaction expect that data modified within a transaction be-

comes persistent when the transaction completes. Therefore, all the writes issued to persistent data

within a transaction have to reach all the way to PM (or more specifically, the persistent domain)

before the transaction completes. The x86 and ARM ISA introduced new instructions [3, 34] that

programmers can use to ensure that writes reach the persistent domain to provide durability guar-

antees required in crash-consistent software. However, these durability guarantees imply that writes

to persistent data fall on the critical path of program execution.

117

4B.1. INTRODUCTION 118

Placing recoverable data on PM not only moves writes onto the critical path, it further degrades

performance by increasing the latency of writes. The latency increases due to additional constraints

on maintaining persistent data in PM. For example, the PM encryption operation introduced in

Chapter 4A places the encryption latency onto the write path. Likewise, protecting the integrity of

persistent data using integrity verification techniques further adds on additional operations that for

verification [50, 54, 55, 57–59]. Furthermore, most PM technologies suffer from a limited bandwidth

and wear out after a certain number of writes, necessitating deduplication, compression, and/or

wear-leveling of PM writes [73–77,87]. All these encryption, integrity protection, deduplication, and

compression operations, collectively referred to as backend memory operations (BMOs) henceforth,

are performed at the memory controller and significantly increase the PM write latency. Moreover,

since writes fall on the critical path of the crash-consistent software, the increase in write latency

significantly degrades application performance. In this work, our goal is to minimize the latency

overhead in write operations caused by these BMOs in PM systems.

The key challenge here is in figuring out how to optimize these seemingly dependent, monolithic

operations. When viewed as dependent, indivisible operations, common latency optimizations (e.g.,

parallelization) are precluded. For example, in a system with encryption and compression, perform-

ing compression before encryption is a reasonable approach, while performing them in parallel is not,

as compression can change the address mapping of the compressed data which will then invalidate

the encryption output that used the old address. Our key insight to optimize these BMOs is that

when they are viewed as monolithic, indivisible operations, they have to be performed in series,

however, if each BMO is viewed as a series of sub-operations, there exist many opportunities to

optimize individual sub-operations across BMOs.

By viewing each BMO as a series of sub-operations, we can optimize them for latency using two mech-

anisms: (i) parallelization of sub-operations across BMOs and (ii) pre-execution of sub-operations

without waiting until the PM write reaches the memory controller. First, when BMOs are viewed as

a series of sub-operations, there are many opportunities for parallelization as some sub-operations

across BMOs do not have any dependencies among them and can be executed in parallel. For ex-

ample, even though deduplication should happen before encrypting data, the first sub-operation of

deduplication calculates and looks up the hash of the data value in the write request and can be

executed in parallel with the first sub-operation of PM encryption that uses the address of the write

to generate a one-time pad (details in Section 4B.3.1).

4B.1. INTRODUCTION 119

Second, while parallelization of the sub-operations helps speeding up the BMOs, we observed that

significant performance gains are still left on the table. Our key observation is that the parallelized

approach does not start any of the sub-operations until the write access reaches the memory con-

troller, however, the inputs necessary for the sub-operations are available much earlier in practice.

For example, undo-logging [35,37,125,130] is frequently used in crash consistent PM programs. An

undo-logging transaction creates a backup copy of the data before modifying it. Before the modifi-

cation takes place, the address and data for modification are already known during the backup step.

Therefore, the BMOs for the update can be pre-executed as soon as the data and address become

known at the backup step. We categorize sub-operations as address-dependent, data-dependent, or

both. They can be pre-executed as soon as the address and/or data is available. Pre-execution of

these sub-operations decouples them from the original write and moves them off the critical path,

delivering a significant performance gain.

Based on these two key ideas, we introduce Janus, a generic and extensible framework that paral-

lelizes and pre-executes BMOs in PM systems by decomposing them into smaller sub-operations.

It provides a hardware implementation for parallelization and pre-execution, and exposes an inter-

face to the software to communicate the address and data values of write requests before the write

reaches the memory controller. However, several challenges need to be addressed both in the design

of the hardware and the software interface of Janus. The challenges in the hardware design are as

follows: First, the pre-executed results of the various sub-operations for the individual writes should

not change the processor or memory state until the corresponding write operation happens. Second,

the pre-execution should not be dependent on any stale processor or memory state to maintain

correctness of the results. To address these challenges, we maintain an intermediate result buffer

(IRB) in the memory controller to store the pre-executed results and isolate them from any other

processor or memory state. We also track the address and data of the write operations in IRB to

detect and invalidate any stale pre-execution results.

The challenges in the software interface design are the following: First, with PM still being in a

nascent stage of adoption, the software interface must be generic and extensible to systems with

different BMOs. We only expose the address and the input data in the interface, decoupling the

interface from the BMOs implemented in the system. Second, the software interface needs to be easy-

to-use and applicable to different PM-based programs. We address this issue by providing a variety of

functions that are suitable for different PM programming models. We show that the frequently used

crash-consistent software mechanisms, such as undo-logging, are particularly amenable to leveraging

4B.2. PERFORMANCE OVERHEAD OF BMOS 120

Janus’s pre-execution interface and programmers can manually insert these pre-execution requests

to gain significant performance improvement. However, we also provide a compiler pass to automat-

ically instrument the source code to alleviate programmer’s burden. We describe our design and our

proposed solutions to these challenges in Section 4B.4.

The contributions of this work are as follows:

• We show that it is possible to optimize the BMOs in PM systems by decomposing these

seemingly monolithic, dependent operations into a series of sub-operations.

• We propose a generic and extensible solution to optimize the sub-operations by categorizing

their dependencies. First, we show that independent sub-operations across BMOs can be

executed in parallel. Second, we show that the sub-operations can be pre-executed as soon as

their inputs are available, which moves the latency of BMOs off the critical path of the writes.

• We propose Janus, the first system that parallelizes and pre-executes BMOs before the actual

write takes place. Janus provides a generic interface that decouples different BMOs at the

hardware from the software.

• We exhibit the effectiveness of Janus by evaluating a PM system that integrates encryption,

integrity verification, and deduplication as the BMOs in the hardware. Our experimental

results show that Janus achieves on average a 2.35× speedup while executing a set of applica-

tions where pre-execution requests are inserted manually over a baseline system that performs

the BMOs serially. In comparison, instrumenting programs by our automated compiler pass

achieves on average a 2.00× speedup over the serialized baseline.

4B.2 Performance Overhead of BMOs

Section 2.3.3 has introduced various memory and storage support operations, i.e., BMOs, that make

PM more secure and robust. A major challenge is that these operations add extra latency to writes,

as they all require certain computation or cache lookup before actually performing the write access.

To maintain the correctness, BMOs should follow certain dependencies among themselves. For

example, a system with encryption, deduplication and integrity verification, these BMOs should

happen in the order of deduplication, encryption, and integrity information update during a write

access. Deduplication first tells whether the write is necessary or not. Then, the encryption engine

4B.3. OVERVIEW 121

Volatile PersistentAccess PM

Access PMWith BMOs

Without BMOs

Extra Latency

(a)

(b)

Cache
Writeback

Cache
Writeback

Memory
Controller

Backend Memory Operations
Memory

Controller

Critical Path

Figure 4B.1: Write latency (a) without and (b) with BMOs.

encrypts the data if the write is not a duplicate. Finally, the integrity mechanism (e.g., Bonsai

Merkle Tree [29]) updates the message authentication code (MAC) and hash tree to protect the

encrypted data and counters. The ordering constraints serialize the latency from different BMOs,

which is in the order of hundred nanoseconds.

Figure 4B.1 demonstrates the latency breakdown of a write access. We assume a system with the

Intel Asynchronous DRAM Refresh (ADR) technique [43] that ensures the write queues are in the

persistence domain. Therefore, writes to PM become persistent (or non-volatile) as soon as they are

placed in the write queue in the memory controller, as the ADR technique can flush the write queue

to PM in case of a crash. Without any BMOs (Figure 4B.1a), only the writeback from the cache

hierarchy to the memory controller is exposed on the critical path, which typically takes around 15

ns in modern processors (e.g., Intel i7 processor [216]). The subsequent operations in the memory

controller and the actual PM device write operations do not contribute to the critical write latency.

However, with BMOs (Figure 4B.1b), both the writeback and the BMO latency are exposed on the

critical path, as until BMOs are completed, the write cannot be placed in the write queue and hence

cannot be considered persistent. As these BMOs add extra hundreds of nanoseconds of latency, the

critical latency increases by more than 10 times.

4B.3 Overview

In this section, we describe our key ideas in optimizing the BMOs and providing the crash consistency

guarantee.

4B.3.1 Key Ideas

The BMOs need to execute in series if we regard them as monolithic, indivisible operations. However,

we observe that BMOs can be further decomposed into smaller sub-operations. We first demonstrate

decomposing two commonly used BMOs in PM systems: counter-mode encryption [28,48–50,53,56–

58] and deduplication [73–77]. Next, we take a two-pronged approach to minimizing their latency:

4B.3. OVERVIEW 122

(1) parallelize BMOs as much as possible, and (2) pre-execute BMOs to move their latency off the

critical path.

Decomposing BMOs. The counter-mode encryption [17] is an efficient encryption scheme that

indirectly encrypts data blocks using unique counters. Its hardware implementation typically en-

crypts a unique counter together with the address of the data block into a bitstream called one-time

padding (OTP), and then it XORs this bitstream with the data block to complete the encryption.

To accelerate the read access, the hardware mechanism buffers these counters in an on-chip counter

cache so that decryption can begin without waiting for data to be fetched from PM, reducing the

read latency. During a write access, it performs three sub-operations : (E1) generate a new counter,

(E2) generate the one-time padding: OTP = En(counter|address), and (E3) encrypt data with

an XOR operation: EncData = OTP ⊕ Data. As encryption begins only when both the data and

address of the write access reaches the encryption engine, the whole latency is added to the write

access.

On the other hand, the deduplication mechanism detects whether writes contain a value that already

exists in memory and cancels the write if a duplicated value is found. The hardware mechanism

maintains a deduplication table that stores the hashes (fingerprints) of existing data blocks to detect

duplicates, and an address mapping table to redirect the writes to the existing copy of data in memory.

During a write access, a deduplication operation consists of four sub-operations: (D1) hash data,

(D2) lookup the hash value in the deduplication table, (D3) update the address mapping table, and

(D4) encrypt the new address mapping table entries and writeback to PM. To integrate encryption

and deduplication, We assume a scheme similar to DeWrite, where the counter and deduplication

address mapping co-locate in the same metadata entry [77]. Next, we describe the parallelization

and pre-execution of the decomposed BMOs.

Parallelization. We observe that there are two types of dependencies between the previously

decomposed sub-operations: intra-operation dependency and inter-operation dependency. Intra-

operation dependency describes the dependency between sub-operations within one BMO, while,

inter-operation dependency describes the dependency between sub-operations between different

BMOs. We demonstrate the dependencies as a dependency graph in Figure 4B.2a. Two sets of

sub-operations can happen in parallel as long as there is no incoming inter- or intra-operation de-

pendency path from one set to another. Formally, let a node of sub-operation be Op, a set of Op

be S, and a path from Op1 to Op2 be Op1 ⇝ Op2, S1 and S2 can execute in parallel, i.e., S1 ∥ S2,

4B.3. OVERVIEW 123

Inter-operation dependencyIntra-operation dependency External dependency
Sub-operation without external dependency Sub-operation with external dependency

Addr-dependent

Addr- and data-dependent

Data-dependent

(a) (b)

D2.

Write to PM

Encryption
E1-E2

Merge
Sub-ops

Deduplication
D1-D2

Deduplication
D3-D4

Encryption
E3

Write to PM
(Encryption) (Deduplication) (Encryption) (Deduplication)

Can execute in parallel
Address Data Address Data

SE1-2

SE3

SD1-3

SD4

Hash Data

Lookup
Dedup Table

D1.

Update Addr
Mapping Table

D3.

Encrypt
Metadata

XOR

Encrypt

Generate
New Counter

E1.

E2.

E3.

D4.

Can execute in parallel

Figure 4B.2: Optimize encryption and deduplication by: (a) parallelizing sub-operations, and (b) categorizing
sub-operations by external dependency for pre-execution.

Figure 4B.3: Timeline of an undo log with (a) serialized, (b) parallelized and (c) pre-executed BMOs.

if and only if ∀Op1 ∈ S1 and ∀Op2 ∈ S2, ∄Op1 ⇝ Op2 ∧ ∄Op2 ⇝ Op1.

Next, we apply our theory to the example in Figure 4B.2. We mark the intra- and inter-operation

dependencies with black and green edges, respectively. The intra-operation dependencies in each

BMOs follows the order of steps. And, there are two inter-operation dependencies: D4 depends on

E1 as the address mapping co-locates with counter, and E3 depends on D2 as the memory controller

cancels duplicated writes. According to these dependencies, we can circle out the sub-operations that

are independent in each backend operations (blue boxes): SE1−2 and SD1−3 are independent, and

SE3 and SD4 are independent. Therefore, they can be executed in parallel. By parallelizing groups

of sub-operations, we reduce the serialization overhead. Figure 4B.3a shows the execution timeline of

an undo-logging transaction that consists of three steps (each with PM writes): backup, update, and

commit. In the serialized approach, deduplication and encryption operations are serialized for each

step of the transaction. However, by parallelizing independent sub-operations, the execution latency

of the three steps in an undo-logging transaction can be reduced, as shown in Figure 4B.3b.

4B.3. OVERVIEW 124

Pre-execution. So far, we have exploited the parallelism between BMOs by decomposing them into

sub-operations. We further observe that the BMOs process two types of external inputs: the data

and address of a write. These external inputs are different from any intermediate inputs generated

and used between different sub-operations of the same BMO. Accordingly, apart from the inter-

and intra-operation dependencies introduced earlier, external inputs introduce a new dependency,

external dependency (marked as yellow arrow), that takes into account the external input of each sub-

operation. A sub-operation is dependent on an external input if there exists an external dependency

edge from the input. We merge nodes without any external dependency (marked in white) with their

preceding nodes with external dependency (marked in gray). Figure 4B.2b shows the simplified graph

after the merge operation. A set of merged sub-operations is externally dependent on an external

input if there exists an external dependency edge from the input or a path that indirectly connects

the input to one/some of its sub-operation node (via inter- and intra-operation dependency edges).

Formally, let the set of merged sub-operation nodes be S, an input (address or data of a write) be

In, then S has an external dependency to In if and only if ∃Op ∈ S, In ⇝ Op.

Based on the type of external input, we categorize sub-operations into three types: address-

dependent, data-dependent, and address- and data-dependent. In the example of Figure 4B.2b,

E1-E2 are address-dependent, D1-D2 are data-dependent, and E3 and D3-D4 are both address-

and data-dependent. The external dependency implies that as soon as the external inputs are

available, the BMOs can start execution even before the actual write access reaches the memory con-

troller. Next, we use a code example to explain how we can exploit the opportunity of pre-executing

BMOs.

Example. Figure 4B.4 shows an example of updating an array using an undo-logging transaction

that follows three steps: backup the old data, perform the in-place update, and commit the update.

In this example, the address and data for the in-place update are known before the backup step (at

line 1). Similarly, the address and data for the commit (validate the in-place update) are known

before the commit step (at line 5). Therefore, the pre-execution of the BMOs for the in-place update

and the commit steps can be overlapped with the previous steps of the undo-logging transactions,

moving them off the critical path. Figure 4B.3c shows the timeline of this pre-execution. By pre-

executing the BMOs that have already been parallelized, we can gain a significant speedup.

4B.3. OVERVIEW 125

void arrayUpdate(int index, item_t new_val) {
 // backup old value
 backup(index);
 // in-place update
 update(index, new_val);
 // commit undo-logging transaction
 commit(index);
}

1
2
3
4
5
6
7
8

The address and data for update are known

The address and data for commit are known

Figure 4B.4: An example of pre-executing BMOs in an undo-logging transaction.

4B.3.2 Requirements

Pre-executing the BMOs before the actual write happens provides a significant benefit. However,

the pre-execution should not affect the correctness of the normal execution. We summarize the

requirements on the hardware support for pre-execution as follows:

1. Does not affect processor state. The pre-execution should not affect the processor or memory

state, i.e., it should not change the data or metadata in memory, cache or register files.

2. Invalidates stale pre-execution results. The pre-execution should not be dependent on a

stale processor or memory state. i.e., if the processor or memory state used in the pre-execution has

been modified before the actual write access, the pre-execution result becomes invalid.

On the other hand, we need to provide an interface to let the software leverage the hardware support.

We summarize the requirements on the software interface as follows:

3. Extensible interface. The software interface needs to be generic and extensible to systems

with different BMOs, i.e., programs developed with the same interface should be compatible even

though the BMOs change in the hardware.

4. Programmable. The software interface needs to be easy-to-use for different programming

models that ensure crash consistency (e.g., undo /redo/shadow logging), and should abstract away

the memory layout.

Section 4B.4.3 presents our solution to meet the two requirements for the hardware support, and

Section 4B.4.4 presents our software support that meets the two requirements on the software inter-

face.

4B.4. JANUS 126

Optimized
BMO Logic

PMPM
Program

Optimization
Binary

(Annotation/
Compiler)

Execution
Pre-execution
Request / Write

SW HW

❸
❷

❶ ❹
❻

❺

Write

Memory
Controller

Intermediate
Result Buffer

Processor

Figure 4B.5: High-level of Janus (HW changes are shaded).

4B.4 JANUS

In this section, we first describe the high-level design of our proposed system and then provide the

details of the hardware mechanism (Section 4B.4.3) and software support (Section 4B.4.4).

4B.4.1 High-level of Janus

The goal of this work is to reduce the overhead of BMOs in write accesses using a software-hardware

co-design. Figure 4B.5 shows an overview of Janus. On the software side, programmers annotate the

PM programs using our software interface (step Ê). To further reduce the programming effort, we

provide a compiler pass that automatically instruments the program. We present the use of Janus

interface in Section 4B.4.4 and the design of our compiler pass in Section 4B.4.5. On the hardware

side, the processor issues pre-execution requests to the memory controller during the execution of the

annotated programs (step Ë). The processing of pre-execution requests consists of two parts. First,

the optimized BMOs logic of Janus executes the sub-operations of the requests in parallel (step Ì).

Then, it stores the temporal results in the intermediate result buffer (step Í). When the actual

writes arrive at the memory controller, they do not need to go through the BMOs, instead, they use

the pre-executed results from the intermediate result buffer (step Î) and complete the access to PM

(step Ï).

In the rest of this section, we first introduce the integration of three common BMOs in PM sys-

tems. Then, we present Janus hardware details in Section 4B.4.3, and the software interface in

Section 4B.4.4. Finally, we discuss the solutions to potential exceptions when integrating Janus in

real systems in Section 4B.4.6.

4B.4.2 Backend Memory Operations

BMOs are integrated into memory and storage systems for different purposes, such as ensuring

confidentiality and integrity, improving the lifespan, mitigating the write bandwidth limitation, etc.

If we treat each of them as an entity, it seems difficult to execute them in parallel as the output

of one operation flows into another. However, by breaking them down into smaller steps, we can

4B.4. JANUS 127

Figure 4B.6: The dependency graph of backend operations.

leverage the underlying parallelism. There has been a myriad of BMOs, as shown in Table 2.1. To

better demonstrate our idea, we take the two BMOs introduced in Section 4B.3: encryption and

deduplication, together with another popular BMO, integrity verification. Figure 4B.6 presents the

break down of the three BMOs.

As we already described the operations in encryption and deduplication in Section 4B.3, here we

introduce the steps in an integrity verification technique. The Bonsai Merkle Tree [29] is an integrity

verification scheme designed for memory encrypted under counter-mode. The leaf nodes of the

tree are counters and the intermediate nodes are hashes of their child nodes. Therefore, the root

hash is essentially the hash of all leaf nodes. Keeping the root hash in a secured non-volatile

register ensures the integrity of the entire memory [29, 57]. Each data block is protected by a

message authentication code (MAC) that consists of the encrypted data and its counter, i.e., MAC =

Hash(EncData, Counter). During a read accesses, the integrity verification mechanism compares

the root hash computed from the counter read from memory with the existing root to verify the

integrity. During a write access, this mechanism updates the integrity information in the following

steps (Figure 4B.6b): First, the integrity verification mechanism computes the hash of leaf nodes

(step I1), and then it keeps computing higher-level intermediate nodes all the way to the root (step

I2-I3). The intra-operation dependencies between these steps are indicated by black arrows. In this

mechanism, the write access includes this long latency of hashing. For example, if we assume each

4B.4. JANUS 128

intermediate node is the hash of eight lower-level nodes, then the height of the Merkle Tree is 9 in

a system with only 4GB PM, resulting in a 360 ns latency for each write.

The integration of integrity verification with the other two BMOs introduces an extra step: the

encryption operation needs to compute the MAC for Integrity verification before writing data back

to PM (step E4). Similar to the prior work, DeWrite [77], the Merkle Tree in our mechanism is built

on the co-located address mapping and counter so that the metadata storage can be minimized.

Therefore, the integration also introduces new inter-operation dependencies (green edges). The

integrity verification support needs to take the latest counters or the remapping address (if duplicate)

to update the Merkle Tree. Thus, step I1 depends on E1 and D2 (edge E1→I1 and D2→I1). To

mitigate the extra latency on writes, we first apply the rule for parallelization (Section 4B.3.1). Based

on the intra-operation dependency edges, three sets of sub-operations E3-E4, I1-I3 and D3-D4 can

execute in parallel as there is no edge between any pair of these sub-operation sets. Then, we apply

the rule for pre-execution. We mark the nodes with external-dependency in gray. After merging the

nodes without external-dependency (marked in white) to the ones with external-dependency, we find

out that E1-E2 are address-dependent, D1-D2 are data-dependent, and the rest are both address-

and data-dependent. These regions can be pre-executed once the dependencies are resolved. Next,

we describe the hardware support that enables pre-execution.

4B.4.3 Hardware Support

In this section, we describe the hardware support that meets the two requirements that we outlined

in Section 4B.3.2.

Hardware Support for Pre-execution

Does not affect processor state. The pre-execution of BMOs should not change the processor

or memory state. Therefore, Janus stores the temporary results in an Intermediate Result Buffer

(IRB). Figure 4B.7c shows the fields in each IRB entry (and their sizes). IRB needs to support

two basic functionalities: identify different pre-execution requests, and store and provide the pre-

executed results. First, Janus uses a PRE_ID for each request in order to make sure the pre-execution

requests are unique. Considering that different threads can be executing the same program and can

have the same PRE_ID, each entry contains another field, ThreadID that distinguishes the requests

from different threads. As recent works have proposed deferred commit [125, 166], a transaction

may not have all the updates written back to PM before the transaction completes, causing more

4B.4. JANUS 129

Pre-execution
Request Queue

Optimized BMO
Processing Logic

Decoder

Pre-execution
Operation Queue

Cache-line-sized
Operation

Pre-execution
Request ❶

❷
❸

Processor

LLC

M
em

or
y

C
on

tr
ol

le
r

Write Access❺

DataAddr/valuePRE_ID ThreadID TransactionID ProcAddr Size Func
16b 16b 16b 42b 64b 32b 3b

Sub-operation Results

DataPRE_ID ThreadID TransactionID Intermediate Results CompleteProcAddr
16b 16b 16b 42b 512b 576b 1b

Intermediate
Result Buffer ❹

Sub-operation
Results

Pre-execution Request Queue Entry (before decode)

Pre-execution Operation Queue Entry (after decode)

Pre-execution Operation Write Access

Same?

E1 E3 E4

I1 I2 I3

D1 D3 D4

Encryption

Integrity
Verification

Deduplication

Parallelized
Backend Memory

Operations

Only Addr-dependent

(c) Intermediate Result Buffer (IRB)

(d) Optimized BMO Processing Logic

Time

Data

Addr
E2

D2

Inter-operation dependencyExternal dependency

Only Data-dependent

(a) Janus Hardware

(b) Entry of Two Pre-execution Queues

(Fields to identify pre-execution operations)

Figure 4B.7: Detailed hardware mechanism of Janus.

than one transactions with the same PRE_ID to co-exist. Each IRB entry further contains another

field, TransactionID, that distinguishes pre-execution requests across different transactions. These

three fields (PRE_ID, Thread_ID and Transaction_ID) are assigned by the software interface which

we will introduce in Section 4B.4.4. Using these fields, together with the physical address of the

write (ProcAddr), Janus can uniquely identify pre-execution requests. Second, Janus needs to buffer

pre-execution results for the actual write access when it arrives at the memory controller. The

IntermediateResults field stores the intermediate results at cache line granularity. Considering

the actual write access can arrive before the BMOs completes, a complete bit indicates whether all

BMOs have completed or not.

Invalidates stale pre-execution results. The pre-execution becomes invalid if the memory or

processor state it depends on has changed. Therefore, Janus invalidates the intermediate results from

pre-execution by detecting any changes to the input memory or processor state. We summarize the

potential cause of invalidation as the following two: (1) The input dependent data can be modified

after the program issues the pre-execution request (e.g., due to cache line sharing, eviction or buggy

4B.4. JANUS 130

Table 4B.1: Software interface of Janus for pre-execution.

Type Function Description

Common PRE_INIT(pre_obj* obj)
Initialize an pre_objwith a unique
PRE_ID, the current ThreadID and
TransactionID.

Immediate
Execution

PRE_BOTH(pre_obj* obj, void* addr,
void* data, int size) Pre-execute all sub-operations.

PRE_ADDR(pre_obj* obj, void* addr,
int size)

Pre-execute address-dependent
sub-operations.

PRE_DATA(pre_obj* obj, void* data,
int size)

Pre-execute data-dependent
sub-operations.

PRE_BOTH_VAL(pre_obj* obj, void*
addr, int data_val)

Use an integer as the data.
Pre-execute all sub-operations.

Deferred
Execution

PRE_BOTH_BUF(pre_obj* obj, void*
addr, void* data, int size)

Buffer pre-execution for all
sub-operations.

PRE_ADDR_BUF(pre_obj* obj, void*
addr, int size)

Buffer pre-execution for
address-dependent sub-operations.

PRE_DATA_BUF(pre_obj* obj, void*
data, int size)

Buffer pre-execution for
data-dependent sub-operations.

PRE_START_BUF(pre_obj* obj) Start executing buffered
pre-execution requests for pre_obj.

program that modifies the input data for pre-execution). In order to detect any stale value used in

pre-execution, Janus keeps a copy of the data value that has been used for pre-execution in the Data

field of IRB entry. When the write access arrives, IRB compares the data from the write access with

this copy. If they are the same, the write access can safely use the intermediate results and complete

the write to PM. Otherwise, data-dependent sub-operations have to be reprocessed using its new

data. (2) Apart from the actual writes, pre-execution results buffered in the IRB may also depend

on metadata structures employed by the BMOs. If these metadata structures are modified in such a

way that they invalidate any prior pre-executed sub-operations, the pre-executed results must also

be invalidated in the IRB. For example, pre-executing a deduplication sub-operation might identify

that the current write (say to location B) is a duplicate of some prior write (say to location A).

Therefore, the IRB stores the pre-execution result that the write to B is a duplicate of the value

at A. However, before the pre-execution result is consumed, if an intervening write to location A

changes the value of location A, then the pre-execution result in the IRB will be invalidated. In

Janus, we extend BMOs to ensure that metadata changes trigger an IRB lookup and invalidates any

stale pre-execution results.

4B.4. JANUS 131

Hardware Integration

Figure 4B.7a shows the detailed hardware mechanism. First, the processor sends the requests to a

Pre-execution Request Queue that buffers the requests (step Ê). It supports two types of requests:

(1) requests that start immediately, and (2) requests that are buffered in the queue and wait until

the hardware receives an explicit start command. In the latter case, the requests with coalescing

addresses will be merged within the queue for better efficiency (details in Section 4B.4.4). Second, a

decoder decodes the request from the Pre-execution Request Queue into cache-line-sized operations

and sends them to a Pre-execution Operation Queue (step Ë). Therefore, the pre-execution opera-

tions after the decoder stage all have one-cache-line granularity. Note that systems that perform

BMOs at larger granularities (e.g., 256 B block for deduplication) can also be supported by mod-

ifying the decoder. Figure 4B.7b shows the fields in both queue entries. Third, the Pre-execution

Operation Queue sends the decoded operations to the Optimized BMO Processing Logic (step Ì),

and at the same time, it creates a new IRB entry. Figure 4B.7d shows the execution flow of the

Optimized BMO Logic (correspond to the design in Figure 4B.6), where independent sub-operations

can be executed in parallel and can be pre-executed if their external dependency is resolved. Finally,

the Optimized Backend Operation Logic writes the pre-execution results to the previously created

Intermediate Result Buffer entry (step Í), which keeps track of the pre-execution at a cache line

granularity, i.e., each entry in the buffer keeps the pre-execution result of one cache line. When the

actual write access arrives, it can lookup the intermediate results from the IRB using its ProcAddr

(step Î). Note that the IRB, the Pre-execution Request Queue, and the Pre-execution Operation

Queue have a fixed number of entries. If the buffer/queue is full, it drops newer requests. We

discuss the software interface for our hardware mechanism in Section 4B.4.4, and discuss the sys-

tem integration and exception handling in Section 4B.4.6. We present the hardware overhead in

Section 4B.5.2.

Apart from the performance overhead, maintaining crash consistency is another issue as the BMOs

have their own metadata. The unreconstructable metadata structures, the ones that cannot be

rebuild using the data in PM, need to be kept up to date in PM when data gets updated. In the

BMOs we have considered, there are three structures that cannot be reconstructed: counters for

encryption, the deduplication address remapping table, and the root of the Merkle Tree. A recent

work [28] has proposed counter-atomicity that atomically writes back both the encrypted data and its

counter to PM in an encrypted PM system. In this work, we extend this atomicity to a more general

metadata atomicity that writes back all unreconstructable metadata to PM atomically, ensuring

4B.4. JANUS 132

that the processor can still read correct data during recovery. Note that the root of the Merkle

Tree is typically protected by a non-volatile register in the secured processor [29, 57]. Therefore, it

does not require any metadata atomicity. In order to reduce the atomicity overhead, Janus also

follows the selective method on atomicity proposed by prior work [28], where only the writes that

can immediately affect the crash consistency status (e.g., write that commits a transaction) requires

metadata atomicity.

4B.4.4 Software Support for Optimization

Extensible. BMOs for PM can vary in different systems. A program developed with a software

interface should be compatible with systems using different BMOs, without a need for additional

software modifications. Therefore, Janus only exposes the two fundamental external dependencies

to the software: the address and data of the write access. Table 4B.1 shows the software interface for

pre-executing BMOs. Next, we explain how Janus provides an interface that can adapt to different

PM programming models.

Programmable. Janus provides a structure, pre_obj, that has its unique PRE_ID and keeps track of

the current ThreadID and TransactionID. These three elements enables the hardware to distinguish

different pre-execution requests. To perform pre-execution on a object stored in PM, the programmer

first needs to create a pre_obj and initialize it using PRE_INIT. Then, Janus provides two types of

interfaces that enables programmers pre-execute the data structure that have either its address or

data value available before the actual write to PM. Functions are identified by the field Func in the

Pre-execution Request Queue entry (Figure 4B.7b).

The first type of function is for immediate execution. Janus provides three functions: PRE_BOTH,

PRE_ADDR and PRE_DATA. Programmers can use them according to the availability of the dependent

address or data. The input addresses are all virtual addresses from the program, and will be

translated to processor-visible physical address (ProcAddr). Upon calling these functions, the pre-

execution requests will be sent to the backend operation right away. Janus provides a special function,

PRE_VAL, that takes a 64-bit integer value instead of the pointer to data. This function is designed to

pre-execute transaction commit operations that typically set a valid bit or switches a pointer.

The second type is for deferred execution. Janus allows programs to buffer pre-execution requests

using a class of functions that ends with the BUF suffix. These buffered requests can be executed to-

gether with the PRE_START_BUF function. Deferred execution provides more flexibility in scheduling

4B.4. JANUS 133

the requests if the data structure to be pre-executed does not operate on a huge chunk of data, rather

manipulates several elements in the structure separately. By buffering the requests for each element,

the pre-execution buffer can merge the inputs before execution, leading to better efficiency.

Guideline for using the software interface. The hardware of Janus prevents misuse of the

interface from causing any correctness issue. However, improperly placed Janus functions can lead

to slowdown due to unused or discarded pre-execution. To effectively use the software interface,

programmers need to be aware the following issues: (1) Between the pre-execution function call and

the actual write operation, there should not be any update to the same location, or to the conflicting

cache line. Although the underlying hardware mechanism can detect and fix such violations, the

misuse can lead to a slowdown. (2) When using PRE_DATA alone, the data block must be cache-line-

aligned (e.g., using alignment malloc). As the hardware tracks the pre_obj at cache line granularity,

it is impossible to determine whether the data block shares its cache line with other data blocks

without the address. Therefore, it is better to call pre-execution functions with PRE_ADDR or wait

until both address and data become known if the programmer is not certain about the alignment.

(3) As it takes a significant amount of time to execute the backend operations, it is better to place

the pre-execution function calls sufficiently far away from the actual write. A simple and reasonable

way to insert the pre-execution function call for a write request is to find the last update at that

location and to insert that function right after that update.

Examples. Figure 4B.8a shows an example using the immediate-execution interface. First, we

observe that the value used in the update operation (val) is available right after the function call

(assuming nodes are cache-line-aligned). Therefore, a PRE_DATA function can be placed at line 4 to

pre-execute the data-dependent BMOs. Then, we observe that the program uses an undo log to back

up the node before modification (line 11). Therefore, it is possible to issue a pre-execution request

for the address-dependent BMOs by inserting a PRE_ADDR function at line 8. Using these two pre-

execution requests, we move the latency from BMOs off the critical path of the actual write (line 11).

Figure 4B.8b shows an example of using the deferred-execution interface. The address and data for

updates to field1 and field2 are already available after line 4. However, the two separate updates

can be sharing a cache line (assuming the fields are not cache-line-aligned). The safe way to avoid

invalidation of requests is to use the PRE_BUF function to buffer the pre-execution requests for

each field and let them coalesce in the Pre-execution Request Queue. Then, placing a PRE_START_BUF

function afterward will trigger the execution (line 10).

4B.4. JANUS 134

void updateTree(int key, item_t val) {
 pre_t pre_obj;
 // assume val is cache-line-aligned
 PRE_DATA(&pre_obj, &val,

sizeof(item_t));
 // find tree node with key
 node* location = find(key);
 PRE_ADDR(&pre_obj, location,

sizeof(item_t));
 // add old val to undo log
 undo_log(location);
 // update val
 location->val = val;
 // writeback updates
 clwb(&location->val, sizeof(item_t));
 sfence();
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

void updateTable(int id, item_t val1,
 item_t val2) {

 // lookup entry location
 entry* location = tableLookup(id);
 pre_t pre_obj;
 PRE_BOTH_BUF(&pre_obj, &location->field1,

&val1, sizeof(item_t));
 PRE_BOTH_BUF(&pre_obj, &location->field2,

&val2, sizeof(item_t));
 PRE_START_BUF(&pre_obj);
 // backup old entry
 undo_log(location);
 // update fields
 location->field1 = val1;
 location->field2 = val2;
 // writeback updates
 clwb(location, sizeof(entry));
 sfence();
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(a) (b)

Figure 4B.8: Two PM transactions optimized by Janus.

4B.4.5 Compiler Support

The software interface of Janus is easy-to-use, but it still requires a good understanding of the pro-

gram. To alleviate programmer’s effort, we provide a compiler pass that automatically instruments

the program with Janus functions.

Compiler Design

We develop our compiler pass on LLVM 7.0.0 [144]. The compiler pass analyzes and instruments

the intermediate representation (IR) of the source code in the following steps. (1) The first step

is to locate the blocking writeback operations (e.g., a clwb() followed by an sfence()), as these

operations are responsible for moving the write latency on the critical path. (2) The next step is

to perform a dependency analysis on the writeback objects. Our compiler pass takes two different

analysis approaches for the data and the address of these objects. For address, it tracks dependencies

of the address generation IR instructions of the object; for data, it tracks the modification to

the memory address of the object. (3) The final step is to inject Janus functions (PRE_DATA and

PRE_ADDR). The compiler pass injects them as far away from the actual writeback as possible in order

to provide a better performance benefit. The injection approach is different for address and data.

For address, it hoists the previously tracked dependent IR instructions for address generation to the

beginning of the function, and places a PRE_ADDR function after the address generation is complete;

for data, it places a PRE_DATA function between the last two updates on the object. It inserts the

function as close as possible to the pre-last update using the data value assigned by the last update.

Note that for both data and address, if the writeback operation depends on a conditional statement

(e.g., if/else), our pass conservatively inserts the pre-execution function under the same conditional

4B.4. JANUS 135

statement to avoid introducing potentially useless pre-execution requests. We evaluate our compiler

pass in Section 4B.5.2 and compare it with our best-effort manual instrumentation.

Limitations

The compiler pass has the following limitations. First, it conservatively injects pre-execution func-

tions within the same function as the writeback operation to guarantee correctness. Second, it can

only inject pre-execution functions where both data and address dependencies can be resolved in

compile time. For example, when a loop writes back an array of data, our pass cannot inject pre-

execution for writebacks in the loop due to the lack of runtime information about the loop. Third,

due to the lack of dynamic memory information, our compiler pass does not handle cache line sharing.

We discuss future works that can mitigate these limitations in Section 4B.6.

4B.4.6 Real-World Considerations

This section described various scenarios that might arise while integrating Janus into real sys-

tems.

Unused pre-execution result. A buggy program can issue useless pre-execution requests without

issuing a subsequent write access that uses the pre-executed result. Therefore, a useless pre-execution

result can get stuck in the IRB. Janus takes a twofold approach to solve this problem: (1) Add an

age register to each IRB entry, and discard an entry when the age register reaches its maximum

lifetime. (2) Clear all entries belonging to a certain thread when that thread terminates.

Unused pre-execution request. A buggy program can also issue buffered pre-execution requests

without starting their execution with a PRE_START_BUF function, causing congestion in the Pre-

execution Request Queue. Janus solves this problem by using a fixed size FIFO for this queue. When

the queue is full, it discards the buffered pre-execution requests at the top of the queue to make space

for the new requests. Note that discarding pre-execution requests will never cause any correctness

issue, but can result in missed opportunities to improve performance.

Memory swap. OS can swap memory to the disk and swap it back later. In this case, the physical

address (ProcAddr) can be different. Our solution is to let the memory controller clear out all

Intermediate Result Buffer entries that belong to the address range that will be swapped out.

4B.5. EVALUATION 136

Table 4B.2: System configuration.

Processor Out-of-Order, 4 GHz

L1 D/I cache 64 kB/32 kB per core, private, 8-way

L2 cache 2 MB per core, shared, 8-way

Counter cache 512 kB per core, shared, 16-way

Merkle Tree cache 512 kB per core, shared, 16-way

Pre-exec. Request Queue 16 entries per core, shared
Pre-exec. Operation Queue 64 entries per core, shared

BMO Units
4 units per core (execute 4 BMOs in
parallel), shared, perform at cache-line
granularity

Intermediate Result Buffer 64 entries per core, shared

Memory
4 GB PCM, 533 MHz [28,40,197],
tRCD/tCL/tCWD/tFAW /tWTR/tWR =
48/15/13/50/7.5/300 ns [6]

Backend Operation Latency
AES-128 (Encryption): 40 ns [28,48],
SHA-1 (Integrity): 40 ns [48],
MD5 (Deduplication): 321 ns [77]

4B.5 Evaluation

4B.5.1 Methodology

We model and evaluate a PM system that has three BMOs: encryption, integrity verification and

deduplication (introduced in Section 4B.3.1 and 4B.4.3) using the cycle-accurate Gem5 simula-

tor [205]. The system configuration is shown in Table 4B.2. The memory system is backed by

Intel’s ADR [43] support where all write accesses accepted by the write queue can drain to PM in

case of a failure. The encryption and deduplication mechanisms follow a recent work [77], where

the encryption counter and the deduplication address mapping table share the same metadata entry

to minimize the storage overhead, i.e., if data is duplicated, the metadata entry stores the address

mapping, otherwise, it stores the counter. The Merkle Tree is built on the co-located counter or dedu-

plication address mapping to protect the integrity of both. We use selective counter-atomicity [28]

to ensure crash consistency of counter-mode encryption, and extend this support to the other un-

reconstructable metadata, including the address remapping table in the deduplication mechanism

and the message authentication code (MAC) in the integrity verification mechanism. We store the

root of the Merkle Tree in a non-volatile register in the secured processor, as proposed in previous

works [29, 57]. Similar to the ratio in prior deduplication works [76, 77], our main results use a

deduplication ratio of 0.5. We also present the performance in other deduplication ratios in Sec-

tion 4B.5.2. We evaluate and compare two system designs:

4B.5. EVALUATION 137

Table 4B.3: Evaluated workloads.

Workload Description
Array Sway Swap random items in an array
Queue Randomly en/dequeue items to/from a queue
Hash Table Insert random values to a hash table
RB-Tree Insert random values to a red-black tree
B-Tree Insert random values to a b-tree
TATP Update random records in the TATP benchmark [217]
TPCC Add new orders from the TPCC benchmark [218]

1. Serialized: Serialized backend operations.

2. Janus: Pre-execute the parallelized BMOs.

Our evaluation uses seven PM-optimized transactional workloads (listed in Table 4B.3), which are

inspired by recent works [28, 40, 166], We evaluate the serialized design with the original program

that only supports metadata atomicity. Then we manually instrument Janus primitives to evaluate

Janus. We compare the manual and automated instrumentation through our compiler pass in

Section 4B.5.2.

4B.5.2 Results

This section presents the results of our evaluation that compares the performance of the two design

points. The workloads are single-threaded unless explicitly mentioned.

Single- and Multi-core Performance

In this experiment, we test the single- and multi-core performance of our design. Figure 4B.9

presents the speedup of Janus. Janus provides on average 2.35 ∼ 1.87× speedup in 1∼8-core

systems, respectively, over the serialized baseline system. We observe three broad trends from our

results. (1) The speedup from pre-execution decreases as the number of cores increases because

the memory bus contention increases when there are more threads executing in parallel, leading

to a higher queuing latency in the memory controller. As a result, the ratio of BMO overhead

decreases and the benefit of pre-executing BMOs also decreases. (2) The gain from pre-execution

depends on the characteristics of the workloads: The speedup in B-Tree, TATP and TPCC is higher

than that in Hash Table and RB-Tree. The reason is Hash Table and RB-Tree first look up the

update location and then perform the update at that location. As a result, the address-dependent

pre-execution request has a smaller window to execute and many times cannot complete before the

4B.5. EVALUATION 138

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

S
p

ee
d

u
p

 o
v
er

 S
er

ia
li
ze

d

Number of Cores

Parallelization Pre-execution
Array Swap Queue Hash Table B-Tree RB-Tree TATP TPCC Avg

Figure 4B.9: Speed up of Janus over the serialized design with different number of cores.

1

4

7

10

13

16

Array Swap Queue Hash B-Tree RB-Tree TATP TPCC Avg

S
lo

w
d

o
w

n
 o

v
er

N
o
n

-b
lo

ck
in

g
 W

it
eb

a
ck

Serialized Janus

Figure 4B.10: Comparison with the ideal case where BMO latency is not on critical path.

actual write arrives. (3) Parallelization delivers a lower speedup compared to pre-execution because

parallelization only reduces BMO latency, while pre-execution moves it off the critical path.

Comparison with Non-blocking Writeback

In this experiment, we evaluate an ideal case where the writeback requests do not block the execu-

tion. Therefore, the BMO latency is not on writes’ critical path. We want to evaluate how much

performance is lost when writes move on the critical path in crash consistent software and how much

performance Janus can recover from that. Figure 4B.10 shows the slowdown of the serialized base-

line and Janus over the ideal case. We observe that the serialized baseline introduces almost 4.93×

slowdown when the BMO latency falls on the critical path. Janus improves the performance by

2.35× by pre-execution and parallelization of the BMOs. However, it still incurs a 2.09× slowdown

compared to the ideal scenario. There are two reasons behind the performance gap between Janus

and the ideal case. First, not all BMOs can be pre-executed, as sometimes there is not enough

gap between the point where the data and address are known and where the actual write happens.

Second, not all pre-execution requests can complete before the actual write access arrives. We found

that in our experiments, on average, only 45.13% BMOs have been completely pre-executed.

Automated vs. Manual Instrumentation

In this experiment, we evaluate the performance of the automated instrumentation of Janus functions

using our compiler pass. Figure 4B.11 shows the speedup of Janus with the manual and automated

instrumentation over the serialized baseline. In most cases, the performance difference is within 12%.

We notice two special cases. (1) The automated solution does not provide a significant performance

4B.5. EVALUATION 139

1

2

3

4

5

6

Array Swap Queue Hash Table B-Tree RB-Tree TATP TPCC AvgS
p

ee
d

u
p

 o
v

er
 S

er
ia

li
ze

d Janus (Manual) Janus (Auto)

Figure 4B.11: Speed up of Janus over the serialized design with automated and manual instrumentation.

1
2
3
4

5
6

0
.2

5

0
.5

0
.7

5

0
.2

5

0
.5

0
.7

5

0
.2

5

0
.5

0
.7

5

0
.2

5

0
.5

0
.7

5

0
.2

5

0
.5

0
.7

5

0
.2

5

0
.5

0
.7

5

0
.2

5

0
.5

0
.7

5

S
p

ee
d

u
p

 o
v

er

S
er

ia
li

ze
d

Deduplication Ratio

MD5 CRC

Array Swap Queue Hash Table B-Tree RB-Tree TATP TPCC

Figure 4B.12: Speedup of Janus over the serialized design with variable deduplication ratios and different algorithms.

benefit in RB-Tree and Queue. The static compiler cannot handle loops and pointers (discussed in

Section 4B.4.5), which severely affects these two workloads. (2) The automated instrumentation is

slightly faster in TPCC. We found that the instrumentation enabled other compiler optimizations

on the program, such as hoisting the address generation. On average, the automated solution is

only 13.3% slower than our best-effort manual instrumentation. We conclude that our compiler pass

effectively finds opportunities for pre-execution and improves performance.

Different Deduplication Ratios and Algorithms

In this experiment, we test three deduplication ratios: 0.25, 0.5 and 0.75, and compare two different

hashing algorithms: MD5 and CRC-32. The design using CRC-32 follows the method in [77], which

has a lower overhead. Figure 4B.12 shows the speedup of Janus in systems using the MD5 and CRC-

32 hashing algorithm. We observe that the speedup of Janus is almost the same under different

deduplication ratios with MD5. In contrast, a higher deduplication ratio improves the benefit with

the lightweight CRC-32. As MD5 takes around 4× longer than CRC-32, the BMOs dominate the

write overhead. Therefore, the performance gain with MD5 is not impacted by the deduplication

ratio. Even with CRC-32, the increase in speedup is small because BMOs contribute to most of the

overhead, despite the benefit of deduplication.

Variable Transaction Sizes

In this experiment, we vary the size of the data update in each transaction from 64 B to 8 kB.

As TATP and TPCC are real-world workloads that cannot be easily scaled without changing their

semantics, we scale the first five workloads in this experiment. Figure 4B.13 shows the speedup

4B.5. EVALUATION 140

1.0

2.0

3.0

4.0
5.0

6.0

7.0

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

S
p

ee
d

u
p

 o
v

er
 S

er
ia

li
ze

d

Size of Update in Each Transaction (Bytes)

Parallelization Pre-execution

Array Swap Queue Hash Table B-Tree RB-Tree

Figure 4B.13: Speedup of Janus over the serialized design with different transaction sizes.

1.0

2.0

3.0

4.0

5.0

1X 2X 4X

U
nl

im
ite

d
1X 2X 4X

U
nl

im
ite

d
1X 2X 4X

U
nl

im
ite

d
1X 2X 4X

U
nl

im
ite

d
1X 2X 4X

U
nl

im
ite

d
1X 2X 4X

U
nl

im
ite

d

S
p

ee
d

u
p

 o
v
er

 S
er

ia
li
ze

d

Number of BMO Unit and Buffer

Array Swap Queue Hash Table B-Tree RB-Tree Avg

Figure 4B.14: Speedup of Janus over the serialized design with variable number of BMO units and buffer entries.

of Janus (parallelized and pre-executed) over the serialized baseline. We observe that the speedup

from pre-execution increase with the size of transaction in the beginning, then it starts decreasing

at a certain point in all workloads. In comparison to that, the speedup from parallelization keeps

increasing but at a slow rate. The reasons are as follows: (1) Pre-execution benefits from a larger

transaction size. However, at some point, the units and buffers for BMOs become full. The benefit

is maximum at that point and then starts declining after that. (2) On the contrary, the benefit

from parallelization is not affected by the BMOs resources. Therefore, the more writes the processor

executes, the higher the benefit. We conclude that the speedup from pre-execution can benefit the

performance the most when the write intensity is within a certain limit.

Variable Pre-execution Units and Buffer Size

The previous experiment has shown that the units and buffers for BMOs can become the bottleneck

when processing large transactions. Therefore, in this experiment, we scale the number of units and

buffers, while the size of transaction is fixed (8 kB) for each of the five scalable workloads. We test

the speedup of Janus over the serialized baseline with 1×, 2× and 4× of the default number of units

and buffers (listed in Table 4B.2). We also include a case with unlimited resources. Figure 4B.14

shows that as the BMOs units and buffer size increases, the performance also increases. However,

the speedup in most cases saturates when the BMOs units and buffers are no longer the performance

bottleneck. B-Tree is an exception. It exhibits a high demand for pre-execution resources and can

gain a significant benefit with unlimited resources.

4B.6. FUTURE WORKS 141

Overhead Analysis

Table 4B.2 in Section 4B.5.1 lists the size of buffers and queues that support pre-execution. The size

of each Pre-execution Request Queue entry and Pre-execution Operation Queue entry is 119 bits

and 103 bits, respectively. The size of each IRB entry is 148 B. In Janus, we have 16 Pre-execution

Request Queue entries, 64 Pre-execution Operation Queue entries, and 64 IRB entries. Therefore,

the total storage overhead from queues and buffers is 9.25 kB, which is 0.51% of the LLC size. The

4-wide BMOs in our design take 300 k gates (according to [219,220]), which only incurs a 0.065 mm2

die area with 14 nm technology.

4B.6 Future Works

This section discusses future works on memory and storage support for PM systems.

More precise compiler instrumentation. The limitation of our compiler pass boils down to

the unavailable dynamic information during the static compilation time. There are two directions

to mitigate this limitation. (1) Improving the dependency analysis on pointers can allow safe but

more aggressive pre-execution. Techniques such as SVF [221, 222] can be greatly useful. (2) Uti-

lizing dynamic analysis techniques can provide runtime information and enable more optimization

opportunities, such as pre-executing BMOs outside of its function or outside its loop.

Tools for misuse detection. Section 4B.4.4 has described the guidelines on using Janus interface

in order to gain the best performance. Future works can provide tools to detect misuse of the

interface. There are three typical misuse scenarios: (1) Modifications on pre-execution object. Tools

can detect whether the pre-executed address and/or data have been invalidated between the pre-

execution function and the actual write. Address invalidation can be detected by monitoring memory

de-allocation operations and data invalidations can be detected by monitoring assignments to the

source of the data. (2) Useless pre-execution functions. Pre-execution on objects that do not affect

the critical path is unnecessary. Tools can detect whether the pre-execution matches a subsequent

blocking writeback. (3) Insufficient pre-execution window. The execution of BMOs takes a significant

amount of time. The program should leave enough window between the pre-execution function

and the actual write in order to maximize the benefit. A static tool can estimate the number of

instructions in this window to determine whether the BMO latency can be perfectly overlapped; a

4B.6. FUTURE WORKS 142

dynamic tool can monitor the completion status of pre-execution functions and thereby adjust the

instrumentation.

Chapter 5

Side-channel Attacks in Optane

Persistent Memory

5.1 Introduction

Chapter 4B focuses on providing security guarantees for persistent data, and at the same time,

achieving high performance. Instead of directly obtaining secret data, side-channel attack is another

approach that indirectly infers information. Microarchitectural side-channel attacks use information

from the microarchitecture layer to infer secrets on the software layer. Targets of side-channel attacks

include hardware and software caches [103, 223–226] and branch predictors [227–229]. For example,

Prime+Probe [223] can observe memory accesses at a cache set granularity, and Flush+Reload [103]

further improves the granularity to a single cache line. Recently, transient-execution attacks [111],

such as Spectre- and Meltdown-type attacks [23, 24, 112–116, 230], rely on side channels and have

shown significant impact, drawing extensive attention. Especially in today’s cloud environments,

multiple users are co-located on the same server and share hardware components for better resource

utilization [231]. Thus, side-channel attacks have become a prominent issue.

A successful microarchitectural side-channel attack requires detailed knowledge about the target mi-

croarchitecture. However, this knowledge, relevant for the security of the overall system, is usually

not publicly documented but propriety. Therefore, prior works reverse-engineered hardware com-

ponents to assess their relevance for security. For example, DRAMA [118] reverse-engineered the

143

5.1. INTRODUCTION 144

DRAM addressing to establish a covert channel and spy on co-located processes; Gras et al., [119]

reverse-engineered the translation-lookaside buffer (TLB) to leak sensitive information, such as cryp-

tographic keys. Consequently, it is crucial to reverse-engineer newer technologies to assess their

security properties before they are widely deployed and potentially threaten the users.

One such newer technology is a new type of memory, namely persistent memory. As Intel has

released the Optane DC Persistent Memory (DCPMM) [232], this technology becomes commercially

available.1 Optane persistent memory DIMMs are installed on the memory bus alongside regular

DRAM DIMMs, and deliver performance close to DRAM but persistence similar to hard drives. To

leverage its high performance and persistence, systems usually expose Optane persistent memory

directly to applications by mounting it in the direct access (DAX) mode (e.g., the EXT4 file system

has a DAX mode optimized for Optane [233,234]). The DAX mode bypasses the file system, allowing

programs to use load and store instructions to directly operate on persistent data. Therefore, Optane

memory is good for storage-class applications, such as key-value stores [235–237] and databases [238–

240]. As Amazon and Google offer Optane memory [241,242] already to cloud users, we need to ask

the question: Does Optane persistent memory introduce new side-channel attacks that undermine

system security and confidentiality?

In this chapter, we answer this question in the affirmative. We study and exploit side channels

in the new Optane persistent memory. The foundation of our side-channel attacks is a thorough

reverse-engineering of the microarchitectural (internal hardware) components of the Optane persis-

tent memory. We identify and quantify correlations between memory access patterns and timing

differences induced by Optane persistent memory. More concretely, we study the internal cache

hierarchy and the controlling logic that prolongs the device lifetime via wear-leveling. As Optane is

transparent to the processor via the DDR-T protocol [243], these elements of the Optane microar-

chitecture are not architecturally visible but only indirectly through timing differences.

Our reverse-engineering is the first to reveal security-critical low-level details of Optane’s internal

cache structures, E.g., their cache associativity and replacement policies, and the execution logic

of the wear-leveling mechanism. Consequently, we construct four attack primitives for novel side-

channel attacks and covert channels, based on (1) the Read-Modify-Write (RMW) buffer caching

recently accessed cache lines in Optane, (2) the Address-Indirect-Translation (AIT) buffer caching

recently used physical-to-internal address mappings, (3) read-write contention, inducing timing dif-
1Optane DC Persistent Memory is different from the older Optane-based NVMe SSD. For simplicity, we refer to

Optane DC Persistent Memory as Optane persistent memory (or Optane in short) afterward.

5.1. INTRODUCTION 145

ferences due to the conflicting concurrent operations, and (4) wear-leveling events, that induce

latency-increasing effects.

In this chapter, we showcase four novel attacks using Optane persistent memory. First, we evaluate

local cross-core covert channels based on our attack primitives, where the sender and receiver are co-

located on the same server, sharing the same Optane DIMM. Even with isolation from the operating

system, i.e., no direct data sharing and communication, the sender is able to transmit secrete data

by creating timing differences via Optane internal structures. We evaluate three covert channels

using attack primitives 1–3 described above.

Second, we present a keystroke timing attack, where a remote typer saves text into Intel’s Optane-

optimized key-value store, pmemkv [235,244,245]. A co-located attacker monitors the Optane DIMM’s

to observe events that update the typer’s text in the key-value store. Thus, the attacker can record

the inter-keystroke timing and potentially infer the typer’s inputs.

Third, we present a remote covert channel, where sender and receiver run on different servers with

network access to the pmemkv key-value store. The sender and receiver have a key that they can

both update to communicate openly but want to exchange information covertly. That is, they do

not exchange information directly using the values, i.e., the values can be completely unrelated text.

We show that the high wear-leveling latency of the Optane memory is large enough (around 50µs)

for measurement across the network.

Finally, we present a remote Note Board attack, exploiting the persistence of Optane memory. Sim-

ilar to the third attack, the sender and receiver are located on different servers, without direct

message exchange. They do not probe the pmemkv server simultaneously. Instead, the sender stores

a message on a covert Note Board, for the receiver to retrieve at a later time. This Note Board uses

the internal properties of Optane behind a key-value store, by selectively applying repeated updates

to different keys to set the wear-leveling metadata. As the wear-leveling metadata is persistent, even

after 24 hours or reboots, the Note Board message can still be retrieved.

To summarize, this chapter makes the following contributions:

• We present the first side-channel security analysis of Intel Optane persistent memory, for

which we reverse-engineer the cache hierarchy, cache sizes, associativity, replacement policies,

read-write contention, and wear-leveling.

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 146

Table 5.1: System hardware and software configuration.

CPU Intel Cascade Lake, 2.1GHz, 20 cores
DRAM 6x16GB DDR4, 2666MT/s

Optane 1x128GB Intel Optane DCPMM,
App Direct mode, mounted as EXT4-DAX

NIC Intel X550-T2, 10Gbps
Switch Mikrotik CRS305-1G-4S, 10Gbps

Env. Ubuntu 18.04, Linux kernel v5.4,
gcc/++-7.5, PMDK v1.9, ndctl v68, ipmctl v02.00.00.3852

• We construct four attack primitives from our reverse-engineering, exploiting the timing of the

RMW buffer, the AIT buffer, read-write contention, and wear-leveling.

• We demonstrate local and remote attacks, E.g., a remote keystroke timing attack on a remote

typer, a remote covert channel where sender and receiver covertly communicate across the

network, as well as local covert channels.

• We demonstrate a novel type of covert attack, exploiting the persistence property of wear-

leveling in Optane memory. Our Note Board attack lets an attacker covertly store a secret

message on a server using Optane, which a receiver can read even after 24 hours or a system

reboot.

5.2 Reverse-engineering and Attack Primitives

Section 2.4.2 has shown that the Optane PM module is a complicated device, which is likely to

be susceptible to side-channel attacks. In this section, we start with the foundation to the attack

primitives—our reverse-engineering of low-level details of Optane. We then construct four new attack

primitives based on the side channels in the different components.

5.2.1 System Configuration

Table 5.1 lists our system configuration: a Lenovo SR650 server with an Intel Xeon Cascade Lake

CPU (20 cores) and an Optane DC Persistent Memory Module (DCPMM) installed alongside DRAM

modules, running Ubuntu 18.04 (kernel v5.4). Optane runs in the App Direct mode for direct

access using an Optane configuration tool, ipmctl [246]. The software system is configured with

a compatible environment, including Intel’s persistent memory controlling tool, ndctl [247], and

a library for persistent memory, PMDK [248]. We mount Optane as EXT4-DAX [233, 234] for

direct management of the persistent data, the typical setup of Optane [20,248]. Through the paper,

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 147

64 25
6

1k
B

4 k
B

16
kB

64
kB

25
6k

B
1M

B
4M

B
16
M
B

64
MB

200

300

400

RMW buffer size

AIT buffer size

Memory footprint (Bytes)

R
ea

d
la

te
nc

y
(n

s)
Figure 5.1: Optane read latency with variable memory sizes.

100 150 200 250 300 350 400 450 500

0 %
10 %
20 %
30 %
40 %

Read latency (ns)

Fr
eq

ue
nc

y
(%

)

RMW Hit RMW Miss but AIT Hit AIT Miss

Figure 5.2: Hit and miss latencies of RMW and AIT buffers.

we follow this setup, with the exception of reverse-engineering (Section 5.2), where we disable the

prefetcher to reduce the noise. In all case studies (Section 5.3–5.6), we enable all prefetchers to

create a realistic environment.

5.2.2 Overall hierarchy in Optane

First, we reverse-engineer the internal cache hierarchy, i.e., the number of caches and cache sizes.

We perform a unit test to find out the relationship between the memory footprint and the read

latency. We take an approach similar to prior Optane characterization work [18]: the test program

allocates variable-sized memory pools on Optane, and in each region, the program randomly reads

64B chunks of data following a pointer-chasing pattern. As the program only accesses each 64B

chunk once, CPU caching does not affect the timing. Optane has large cache line sizes as discussed

in Section 2.4.2 (256B for RMW and 4 kB for AIT). Therefore, the first 64B read brings data into

the Optane-internal caches, and future accesses to adjacent 64B blocks in the same Optane-internal

cache line may become hits (if not evicted). This way, the footprint-latency relation can reveal

Optane’s cache sizes.

Figure 5.1 shows memory footprint (x-axis) and average read latency over 100 runs (y-axis). We

observe two knee points, one at 16 kB and one at 16MB. The first knee point is the Read-Modify-

Write (RMW) buffer, and the second is the Address-Indirection-Translation (AIT) buffer. Figure 5.2

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 148

shows the distribution of AIT and RMW latencies. On average (n = 100), a read that hits RMW

takes 157.3 ns (σ = 1.5%), misses RMW but hits AIT takes 350.6 ns (σ = 6.1%), and misses both

RMW and AIT takes 426.5 ns (σ = 1.2%). Note that the latency values in Figure 5.1 for RMW/AIT

hits are higher because the first access to each RMW/AIT cache line is a miss but subsequent ones

are hits. In summary, our results are consistent with prior works [18–21,249].

We next focus our reverse-engineering on two internal cache structures (RMW buffer and AIT buffer)

and two major effects (wear-leveling and internal read-write contention).

5.2.3 Read-Modify-Write Buffer

So far, we know the RMW buffer, the first caching structure an Optane access encounters, is 16 kB

with a cache line size of 256B. To enable side-channel attacks, there are two key properties: the cache

replacement policy and its associativity. This section presents our reverse-engineering approach and

our conclusions on these properties. In addition, we present our findings on instructions that can

flush RMW entries.

Associativity

A set-associative cache usually determines the cache set using certain address bits—addresses that

share certain common bits go to the same cache set. Inspired by prior work on CPU cache reverse-

engineering [250], we take an approach that masks off different bits (i.e., set as the same value)

and measure the Optane access latency. However, different from their approach, which directly

uses performance counters to observe the latency, we measure the average access latency with a

pointer-chasing approach similar to previous works on cache eviction [251,252]. Specifically, our test

program masks off bits from bit 8 (the bit after 256B RMW cache line’s block offset) to bit 21 (start

counting from bit 0). In a set-associative cache, when bits that determine the cache set are masked

off, the measured cache size is reduced, i.e., the knee point where read latency starts to increase

comes early. We present the result in Figure 5.3a, where the x-axis is the memory footprint, the

y-axis is the average read latency, and each legend indicates a curve with the labeled bit masked

off (start counting from bit 0). Unlike a set-associative cache, we find that the measured RMW

buffer size stays largely the same with different bitmasks. Note that we present five bitmasks for

clarity; other bitmasks also have no latency effect. Thus, we conclude that the RMW buffer is fully

associative.

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 149

Replacement Policy

We reverse-engineer the replacement policy of the RMW buffer, i.e., in which order cache lines are

replaced. We design a unit test that first fills up the RMW buffer with N distinct 256B blocks, and

then accesses them again in different orders: same order as first round, reverse order, and random

order. According to prior works that reverse-engineers cache replacement policies [251,253], an LRU

cache has only hits in the second round if N is below the capacity, i.e., 64 for RMW, regardless of

the access order. However, for N > 64, misses will happen. When accessing the same set of blocks

in the same order as the first round, all reads are misses for an LRU cache, as the next read evicts

the oldest line, which is exactly the next line to read. Figure 5.3b shows the RMW miss rate under

these three access orders (100 runs each) and variable N values. Our result matches the behavior

of an LRU cache, where the miss rate suddenly reaches 100 % when N > 64. In contrast, with the

second reverse round, the first accesses still hit, which is better than the random access order. The

random access order also has a higher miss rate than the reverse order. We conclude that the RMW

buffer uses LRU replacement.

RMW Cache Flush

Though prior works have studied the caching effect in Optane [18–21, 249], there has not been any

study on whether it is possible to flush data from the RMW buffer to gain direct access to the AIT

buffer. We start with testing the CLFLUSH instruction. Figure 5.4 presents two histograms: one for

the normal RMW hit latency and another for the case with a CLFLUSH to the whole 256B RMW

cache line between two reads. We observe that the normal RMW hit latency is 157.3 ns (n = 100,

σ = 1.5%); whereas with a CLFLUSH in between, the latency is 350.6 ns (n = 100, σ = 6.2%), which

is similar to an RMW miss. We also evaluated other cache flush/write-back instructions, CLFLUSHOPT

and CLWB, and find that they both flush the RMW buffer.

Conclusion: The RMW buffer is a fully-associative cache with LRU replacement policy.2 CPU

instructions, such as CLFLUSH and CLWB, not only flushes CPU caches but also flushes RMW cache

lines.
2Due to the high overhead of maintaining a true LRU policy, real-world processors tend to use pseudo LRU [254–256],

which is also likely the case for Optane.

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 150

256 1kB 4 kB 16kB 64 kB
100

200

300

400
Results of different bitmasks
overlap

Memory footprint (Bytes)

R
ea

d
la

te
nc

y
(n

s)

No mask mask bit 8
mask bit 9 mask bit 10
mask bit 20 mask bit 21

(a)

1 32 64 96 128
0

0.2

0.4

0.6

0.8

1

RMW cache lines (N)

R
M

W
m

is
s

ra
te

Same order
Reverse order
Random order

(b)

Figure 5.3: RMW (a) associativity using variable bitmasks and (b) replacement policy using different access
patterns.

100 150 200 250 300 350 400 450

0 %

20 %

40 %

Read latency (ns)

Fr
eq

ue
nc

y
(%

)

Normal RMW hit latency With CLFLUSH

Figure 5.4: Effect of CLFLUSH to RMW buffer.

5.2.4 Address-Indirection-Translation Buffer

Optane has an internal address, different from the physical address, to enable wear-leveling and

prolong the lifespan (Section 2.4.2). The AIT buffer caches the physical-to-internal mapping at 4 kB

granularity, like the TLB in a CPU.

Associativity

Similar to reverse-engineering the RMW buffer, a unit test reading from different addresses deter-

mines whether the measured AIT capacity changes when masking address bits. We first mask bit

12 (after the block offset of 4 kB pages), and gradually increase the position of the masked-off bit.

We measured the average latency over 100 runs with no bitmask (original latency) and all different

bitmasks (Figure 5.5a shows 5 of them). We observe that the knee point, indicating the AIT buffer’s

capacity, shifts to 8MB (1/2 of AIT capacity) when a bit between 12 and 19 is masked off but stops

reducing when the bitmask moves to bit 20. We further mask off bit 12-13 and find the knee point

becomes 4MB (1/4 AIT capacity), and mask off all bits between 12-19 and observe a knee point of

64 kB (1/256 of AIT capacity). Thus, 64 kB is the capacity of one set. As each cache line in the AIT

is 4 kB, one set contains 16 ways. Thus, the AIT is a 16-way set-associative cache, with bits 12-19

as index.

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 151

64 kB 1MB 16MB
100

200

300

400

500

Size of one set

Size of AIT

Memory footprint (Bytes)

R
ea

d
la

te
nc

y
(n

s)

No mask mask bit 12
mask bit 19 mask bit 20
mask bit 12-13 mask bit 12-19

(a)

0 8 16 24 32
0

0.2

0.4

0.6

0.8

1

AIT cache lines (N)

A
IT

m
is

s
ra

te

Same order
Reverse order
Random order

(b)

Figure 5.5: AIT (a) associativity using variable bitmasks and (b) replacement policy using different access patterns.

Replacement Policy

Like for the RMW buffer, we run a unit test reading a variable number of distinct AIT cache lines

(4 kB) in three orders: same, reverse, and random. All AIT cache lines have the same bitmask

(bit 12-19) to cache them in the same AIT set. To avoid the second round of accesses hitting the

RMW buffer, we shift them by 256B (i.e., original address + 256). Figure 5.5b presents the miss

rate results (over 100 runs), as the number of AIT cache lines (N) and access order vary. Similar

to the RMW results (Figure 5.3b), the miss rate increases when the number of AIT cache lines

reaches 13. Prior work suggested that the AIT buffer may have a prefetcher [18]. Therefore, the

miss rate may increase even before the size of each way (16). The same access order test has the

worst miss rate increase, the reverse order performs best, with random order in between. Thus, same

as in Section 5.2.3, we conclude that each set of the AIT buffer uses LRU replacement.

Conclusion: The AIT buffer is a 16-way set-associative cache (with 256 sets), with LRU

replacement.2

5.2.5 Wear-leveling

Wear-leveling in Optane remaps a physical address to a new page and migrates the existing data

after this location has been repeatedly written to. Prior work on Optane memory has identified a

significant latency increase after repeatedly writing 256B of data to the same location [18] (finer-

grained writes can be merged in the RMW buffer). We now perform a more thorough reverse-

engineering of wear-leveling.

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 152

0 50 100 150 200
0

20

40

60

Write count (×103)
W

ri
te

la
te

nc
y

(µ
s)

(a)

46 48 50 52

0 %
10 %
20 %
30 %
40 %

Wear-leveling latency (µs)

Fr
eq

ue
nc

y
(%

)

(b)

Figure 5.6: (a) latency of wear-leveling compared to normal writes and (b) a histogram of wear-leveling latency.

2 4 6 8 10 12

0 %
20 %
40 %
60 %
80 %

Number of writes (×103)

Fr
eq

ue
nc

y
(%

)

Write-flush only Write-flush-read

Figure 5.7: Number of writes to trigger one wear-leveling event.

Wear-leveling Timing

We first evaluate a unit test that repeatedly writes 256B of data to the same location on Optane,

similar to prior characterization work [18]. Figure 5.6a shows the write latency of a 256B block

(followed by a CLFLUSH) periodically increases. Figure 5.6b shows a latency histogram of 100 wear-

leveling events: the average write latency is 562.8 ns (n = 100, σ = 5.4%) but significantly increases

to an average of 49.6µs (n = 100, σ = 2.5%) during wear-leveling. This observation is also consistent

with prior work [18].

Effect of Reads and Writes to Wear-leveling

The wear-leveling latency is prominent but requires a large number of writes (>10 000) to trigger.

Different from prior works that only perform writes [18], in this experiment, we test the effect of

reads on wear-leveling counters. Figure 5.7 shows two histograms (both with 100 samples) on the

number of writes it takes to trigger a wear-leveling event, one with writes and flush only (same as the

experiment in Figure 5.6a), and another with a read to the same address after each write and flush

(i.e., Write+Flush+Read). We observe that, with a read following each write, the average number

of writes needed is 2625.7 (n = 100, σ = 10.8%), compared to 11 646.8 (n = 100, σ = 17.0%), if no

reads. In addition, we test a case of read-only but fail to observe wear-leveling. Therefore, the read

must be applied to a modified location to accelerate the wear-leveling effect.

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 153

0
25

6

1
kB

2
kB

4
kB

0

5000

10000

15000

Counter Granularity

Address distance:
offset · 256 (Bytes)

#
E

xt
ra

w
ri

te
s

to
tr

ig
ge

r
w

ea
r-

le
ve

lin
g

(a)

0

2
kB

4
kB

6
kB

8
kB

0

5000

10000

15000

Remap Granularity

Address distance:
offset · 256 (Bytes)

#
E

xt
ra

w
ri

te
s

to
tr

ig
ge

r
w

ea
r-

le
ve

lin
g

(b)

Figure 5.8: Experiments for reverse-engineering: (a) counter granularity and (b) remapping granularity of
wear-leveling.

300 400 500 600 700 800 900 1000 1100 1200

0 %
20 %
40 %
60 %
80 %

Read latency (ns)

Fr
eq

ue
nc

y
(%

)

Co-located reader (100 %) Co-located writer (10 %)
Co-located writer (30 %) Co-located writer (50 %)
Co-located writer (100 %) No co-located reader/writer

Figure 5.9: Effect of read-write contention.

Conclusion: The wear-leveling event has 88.1× higher latency than normal writes. With a read

following each write (same location), the number of writes needed to trigger wear-leveling can be

4.4× less. This finding makes it more practical to construct a wear-leveling-based channel.

Wear-leveling Granularity

Though prior characterization [18] has shown that the internal- to physical-address mapping has

a granularity of 4 kB, the wear-leveling granularity remains unknown. To use wear-leveling as an

attack primitive, we target two new research questions. (1) As the wear-leveling counter determines

whether a block needs to be remapped, what granularity does each wear-leveling counter cover? (2)

When a remapping happens, what is the granularity of remapping?

(1) Counter granularity. We take a novel approach that initializes the wear-leveling counter of

a 256B block and then checks how many extra writes it takes to trigger a wear-leveling event on

top of the initialized wear-leveling counter in nearby locations. This approach can determine the

granularity each wear-leveling counter covers. Based on this idea, the test program first performs

an initial of 5000 writes of 256B blocks to a 4 kB-aligned location A (with a flush after each write).

Then, it measures the number of additional 256B writes it takes to trigger a wear-leveling event at

location A + offset · 256. Figure 5.8a shows this number with variable offset values (average over

100 runs). We observe that, when offset · 256 = 0, the number of additional writes is around 5000.

5.2. REVERSE-ENGINEERING AND ATTACK PRIMITIVES 154

However, when offset · 256 > 0, the additional writes are always greater than 10 000, indicating that

the initial 5000 writes have not been taken into the counter. Therefore, the wear-leveling mechanism

has a counter granularity of 256B.

(2) Remapping granularity. We take another novel approach that initializes wear-leveling coun-

ters of a 256B block (i.e., location A), trigger wear-leveling at a nearby location A + offset · 256,

and measure how many extra writes it takes to trigger wear-leveling at A. If the other location

A + offset · 256 falls into the remapping granularity with A, it will take more writes to trigger

wear-leveling at A again as remapping has happened; otherwise, it will take less writes as the ini-

tialization of wear-leveling counters at A remains. Specifically, the test program first performs

5000 initial writes of 256B blocks to a 4 kB-aligned location A. Then, it keeps writing to location

A+ offset · 256 until wear-leveling is detected. Finally, it measures the number of writes to trigger

wear-leveling at location A. Figure 5.8b shows this number with variable offset values (n = 100).

We see that when offset · 256 < 4kB , the average number of extra writes to trigger a wear-leveling

is around 10 000 but halved when offset · 256 ≥ 4kB . Thus, the remapping granularity is 4 kB,

matching the AIT granularity.

Conclusion: The wear-leveling mechanism has a remapping granularity of 4 kB but each indi-

vidual 256B block has its own counter for wear-leveling. Once wear-leveling happens, the counters

in all 256B blocks are reset.

5.2.6 Read-Write Contention

Past characterizations on Optane [19, 20, 257] reveal that the read bandwidth of Optane is around

twice higher than that of writes, but they do not study how writes affect the timing of reads.

To understand read-write contention in Optane, we design a unit test program, where a main

thread performs random reads using pointer-chasing and another co-located thread performs random

reads/writes at the same time (to independent addresses). Both threads are pinned to different cores

using taskset. We further control the type of accesses in the other thread as well as the intensity.

Figure 5.9 demonstrates six histograms (n = 100 in each) for the read latency of the main thread,

with different types of co-located threads: 100 % read intensity and 30–100 % write intensity. We

observe that, with another reader thread of 100 % intensity, the main thread has a minor increase

in latency—389.5 ns (n = 100, σ = 2.8%) of normal read latency increased to 395.1 ns (n = 100,

σ = 2.8%). In comparison, with another writer thread, even at 10 % intensity, the increase in latency

5.3. LOCAL CROSS-CORE COVERT CHANNEL 155

is significant (average is 466.9 ns, n = 100, σ = 4.1%). And, with higher write intensity (100 %) in

the co-located thread, the read latency increases to 1047.9 ns (n = 100, σ = 2.9%).

Conclusion: In Optane persistent memory, writes can seriously content with reads and cause

read latency to increase. Therefore, it is possible to sense write activities from other programs

using a unit test of reads.

5.2.7 Summary of Attack Primitives

In summary, we build four attack primitives using the following timing channels:

• There is an exploitable difference of 193.3 ns between hit and miss latency of the RMW buffer

during read access.

• There is an exploitable difference of 75.9 ns between hit and miss latency of the AIT buffer

during read access.

• For read-write contention, the read latency has a significant increase of 658.4 ns with back-

ground write activities.

• A higher wear-leveling latency due to repeated writes—an increase of 49.0µs latency over

normal writes.

5.3 Local Cross-Core Covert Channel

In this case study, we evaluate local cross-core covert channels based on our attack primitives. The

transmission rates are upper bounds for the capacity of our side channels, following the methodology

of prior works [103–105,258–260].

5.3.1 Attack Model

We assume that sender and receiver are co-located on a server, using different cores, and share the

same Optane DIMM. They are isolated by the OS without any means to communicate. Sender and

receiver maintain separate memory-mapped files on an Optane DIMM, isolated by the file system.

The platform follows the same configuration as Section 5.2.1, with CPU prefetchers enabled. We

illustrate this setup in Figure 5.10.

5.3. LOCAL CROSS-CORE COVERT CHANNEL 156

5.3.2 Attack Design

To establish a covert channel, we use three attack primitives: the timing differences of the RMW

buffer, the AIT buffer, and read-write contention. Next, we explain the details.

RMW-based covert channel. As the RMW buffer is a cache-like structure, we take the

commonly-used Prime+Probe approach to establish the covert channel. The sender reads from

the sender’s file repeatedly when sending a bit of 1, and stays idle when sending a bit of 0 (step Ê).

In the meantime, the receiver keeps performing Prime+Probe (step Ë): first read from a set of

random locations (in a pointer-chasing pattern) on the receiver’s memory-mapped file (as prime),

wait for the sender’s activities, and read from these locations again (as probe). Thus, sender’s reads

will evict receiver’s reads from RMW and increase the probe latency. However, reads may hit CPU

caches before accessing the RMW buffer in Optane. Therefore, we take advantage of the larger cache

line size of the RMW buffer by shifting the accesses by 64B during probe. This way, the reaccesses

during probe can bypass CPU caches and check if the primed locations hit the RMW buffer.

AIT-based covert channel. Due to the similarities between the AIT and RMW buffers, we take

a similar Prime+Probe approach as the RMW buffer, except for two differences. First, besides the

CPU cache, a channel based on the AIT buffer also needs to avoid RMW cache hits. Based on

the reverse-engineering on RMW buffer flush (Section 5.2.3), the receiver’s program issues CLFLUSH

instructions to locations covered by the accesses during prime. Thus, accesses during probe can

bypass the RMW buffer and infer whether these locations hit the AIT buffer. Second, as the AIT

buffer is set-associative (Section 5.2.4), both the sender and the receiver only read from addresses

that belong to the same AIT set.

Read-write-contention-based covert channel. The sender writes to the sender’s file when

sending a bit of value 1 and stays idle when sending a bit value of 0 (step Ê). In parallel, the

receiver performs random reads (step Ë) following a pointer chasing pattern to create cache misses

(CPU caches, RMW buffer, and AIT buffer) and fetch data from the Optane media. As our reverse-

engineering in Section 5.2.6 has shown, the existence of writes can significantly degrade the read

latency. Thus, when detecting a significant increase in read latency, the receiver can determine that

the current bit is a 1.

5.3. LOCAL CROSS-CORE COVERT CHANNEL 157

Messaging via Covert Channel

Separate Files

Sender’s File

Receiver’s File

Shared Optane DIMM

Sender

Receiver

Same Server

Monitor
activities

Direct
read/write

RMW AIT
Optane
Media

Read/write contention:
Read latency probing

Cache eviction:
Prime+Probe

❶

❷

(c)(a) (b)

Figure 5.10: Local covert channels based on the (a) RMW buffer, (b) AIT buffer, and (c) read-write contention.

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000 Message:
1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0

Bits in the message

C
ha

nn
el

tim
in

g
(n

s)

RMW buffer AIT buffer Read-write Contention

Figure 5.11: A demonstration for the local covert channels.

5.3.3 Attack Setup

We run these local covert channels in a system described in Section 5.2.1. The sender and the receiver

create two separate files on a shared Optane DIMM, following our attack model (Section 5.3.1).

Because of the LRU replacement policy (Figure 5.3b and 5.5b), we find that the receiver only needs

to prime a few buffer entries, as long as the sender causes sufficient evictions. In the RMW-based

covert channel, the receiver primes 8 entries and probes them with a fixed threshold of 238 ns; in

the AIT-based covert channel, the receiver primes 3 entries and probes them with a fixed threshold

of 376 ns.

5.3.4 Results

Demonstration. Figure 5.11 demonstrates our approach. The x-axis shows the bit sequence in

the message and the y-axis shows the timing differences the receiver observes in each channel. When

sending a bit value of 1, the receiver’s prober can detect a latency increase. We observe that the

read-write contention has the most significant effect, which is consistent with our finding that writes

5.4. KEYSTROKE ATTACK 158

Table 5.2: Local covert channel (n = 100).

Channel BW (kbit/s) Acc (%) σBW σAcc

RMW 11.35 99.60 0.005% 0.17%
AIT 10.50 98.26 0.004% 1.81%
Contention 2.33 99.60 0.0003% 0.14%

Table 5.3: Comparison with existing cross-core covert channels without shared memory.

Methods Bandwidth Error Rate

DRAMA [118] 300 kB/s 1.8%
Prime+Probe [260] 67 kB/s 0.36%
Memory Bus Locking [261] 93B/s 0.09%
RAPL [264] 2.3B/s 0.89%
This work (with RMW buffer) 1.42 kB/s 0.4%

can seriously content with reads (Section 5.2.6). In comparison, the hit/miss timing difference in

RMW is less substantial, and is the lowest in AIT.

Bandwidth and accuracy. We evaluate each channel by having the sender transmit 1000 bits

to the receiver over 100 runs. Table 5.2 presents the results. We observe that the RMW- and AIT-

based channels have similar bandwidth, 11.35 and 10.50 kbit/s, but the contention-based channel

has a lower bandwidth of 2.33 kbit/s. Although the timing difference from read-write contention

is significant, the sender needs to spend more time performing writes due to the slower write per-

formance. Despite the bandwidth differences, all three covert channels have accuracy higher than

98 %.

Comparison with existing covert channels. Our cross-core covert channel does not rely on a

shared memory. Our results are in a similar range as other covert channels that do not rely on shared

memory [101, 102, 118, 261–264]. Compared to other cache-based covert channels [101, 102, 259],

similar techniques can be applied to improve the performance of the covert channel. The covert

channel noise can be further reduced by applying more advanced statistical and error-correction

techniques (e.g., the proposal by Maurice et al., [259]). Table 5.3 compares our Optane-based cross-

core covert channel with existing methods.

5.4 Keystroke Attack

In this section, we introduce a case study of the keystroke side-channel attack using Prime+Probe

on the RMW buffer.

5.4. KEYSTROKE ATTACK 159

❹❶

❷ ❸

Figure 5.12: Keystroke side-channel attack.

5.4.1 Attack Model

We assume a scenario where a victim types into a web interface, and each keystroke is sent to a

web server that maintains storage on Optane. For every keystroke typed by the victim, the website

sends an update request to the key-value store (KV-store) server in order to track the user’s latest

update. We assume that the attacker is co-located with the KV-store application in the same server

and shares the same Optane DIMM. However, the existing OS-level isolation disallows any direct

communication between the attacker and the KV-store.

5.4.2 Attack Design

Similar to a Prime+Probe attack, the attacker can infer keystrokes via the RMW side channel

as follows. The keystroke side-channel attack assumes an attack model as described in Figure 5.12.

First, the attacker types a letter which is transmitted via WebSockets to the KV-store server (step Ê).

The KV-store then stores the letter to the Optane memory (step Ë). In parallel, the attacker

constantly primes the RMW buffer (step Ì) and then probes the memory by reaccessing. The

attacker infers whether a key is inserted based on the timing of reaccesses (step Í). The Prime+Probe

approach is similar to the one in the RMW-based local covert channel (Section 5.3.2). When a key

was inserted due to the typer’s keystroke, the attacker can sense an increased latency in the probing

step; when the timing stays low, the attacker can deduce with a high probability that no data was

inserted into the KV-store, i.e., no keystroke activities.

5.4.3 Attack Setup

We run the experiment in our lab environment using two servers connected via a hardware switch

in the local network (configuration in Table 5.1). We choose Intel’s Optane-optimized KV-store

pmemkv [235, 244, 245] as the backend storage, which is then connected through WebSocket to save

the typer’s inputs. We use a public keystroke dataset containing inter-keystroke latencies from

100 different typers typing the same eight-letter password “try4-mbs” 10 times [265], resulting in a

5.4. KEYSTROKE ATTACK 160

0

500

1000

1500

∆
T

in
m

s Reference

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

Keystroke index

∆
T

in
m

s RMW side-channel

Figure 5.13: The inter-keystroke timings (∆T) from the typer (top) and the RMW side-channel (bottom).

total of 7000 inter-keystroke timings. The client (victim) simulates the individual typers by sending

keystrokes delayed by the prerecorded inter-keystroke timings. As Figure 5.2 shows, an RMW hit

can be clearly distinguished from a miss. Thus, we choose a fixed threshold of 285 ns to distinguish

RMW hits from misses. The attacker starts the Prime+Probe attack with a co-located program

and detects the inter-keystroke timings, by probing the RMW buffer every 9.52ms.

Our evaluation covers a noise-free scenario and scenarios with other co-located activities. We run

another pmemkv instance that shares the same Optane DIMM, which continuously processes random,

independent requests. As writes to Optane have higher latency impact (Section 5.2.6) and can

trigger wear-leveling (Section 5.2.5), we take a relatively update-heavy input [266,267], which consist

of 80 % read (GET) and 20 % update (PUT) requests. Under this ratio, we evaluate three levels of

request intensity: 70 %, 40 %, and 10 %, corresponding to High, Medium, and Low background noise

levels.

5.4.4 Results

To determine the accuracy of our attack, we calculate the timing difference between the ground-truth

latencies from the prerecorded dataset and the detected ones. We repeat the experiment 100 times

with all the 7000 inter-keystroke timings and observed an overall error rate of 1.04% in the no-noise

scenario. Figure 5.13 shows the results of one run in the time domain, where the difference between

the RMW side-channel and the ground-truth is negligible. Figure 5.14 shows further analysis of the

error distribution of the RMW channel compared to the timing distributions of the ground-truth.

The distribution of the ground-truth inter-keystroke timings (on average 271.90ms, σ = 53.47%)

is 82.4× larger compared to the error of the received timings over the RMW channel (on average

3.30ms, σ = 68.78%). We observe a maximum time difference between the RMW channel and the

5.4. KEYSTROKE ATTACK 161

0 100 200 300 400 500 600

0%

5%

10%

15%

20%

Time difference in ms

Fr
eq

ue
nc

y
(%

)

Error RMW Typer Distribution

Figure 5.14: The time distribution of the reference typers compared to the error’s distribution of the RMW
side-channel.

Table 5.4: Error rates of the keystroke side-channel.

Noise Error (%) σ

No 1.04 0.26 %
Low 28.66 16.54 %
Med 88.95 2.72 %
High 100.00 0.00 %

ground truth of about 20ms. The error rate of 1.04% consists of two distinct error types. First, the

inter-keystroke timing can be split into two RMW events, leading to smaller observed differences in

the RMW side-channel. Second, two inter-keystroke timings can be combined into a single RMW

event, leading to a larger observed time difference on the attacker end. In a real world attack,

the inter-keystroke timings of a user are typically independent from the previous keystroke timings,

leading to only one miss predicted keystroke. In some cases, the event splitting can also be corrected

when considering the probability of a given timing difference.

We also evaluate the impact of three different levels of background noise (see Table 5.4). Under low-

noise, the error rate is 28.66%. However, under higher noise levels, the side channel degrades to 100%

error under high-noise. This is in line with prior work on keystroke side-channel mitigation [268],

i.e., a low-frequency event like a keystroke is easily buried in a large amount of noise.

Comparison with existing keystroke attacks. Inter-keystroke timing have become a popular

showcase for software-based side-channel attacks. Some operating system interfaces allow observing

or inferring keystroke timings [269, 270]. Side-channel attacks exploited CPU usage [271], CPU

caches [104, 260] with Flush+Reload, CPU caches with Prime+Probe on L1 [272] and on L3 [268].

Crucial to all these attacks is a highly precise measurement of the keystroke timestamp. We note that

our attack is on par with the state-of-the-art, enabling the same end-to-end attacks. However, these

previous attacks have been local attacks, whereas ours works in a remote scenario. Two previous

works also explored the remote keystroke-timing scenario [110, 273]. Song et al., [273] mounted a

timing attack on packets sent over an SSH connection. While they also attack keyboard input of a

5.5. REMOTE COVERT CHANNEL 162

Sender Receiver

KV-store file
Optane DIMM

Remote sender/receiver

Messaging via Covert Channel

Recv 1: Detect wear-leveling
after fewer updates
Recv 0: Detect wear-leveling
after more updates

❷Send 1: Repeated update
requests to the same key
Send 0: Stay idle

❶

KV-store App
(pmemkv)

Figure 5.15: Remote covert channel.

remote user, they only provide quantitative data for the end-to-end password recovery but not for the

channel itself. Kurth et al., [110] mounted a remote keystroke-timing attack, on DDIO via RDMA.

While the experimental setup is slightly different, they also try to recover millisecond-accurate inter-

keystroke timings of a remote user. In a scenario without noise, they achieve an F-Score 0.66. For

comparison, our attack achieves an F-Score of 0.99 in the no-noise scenario.

Each inter-keystroke timing is statistically independent and our evaluation focuses on the mean

timing difference of the inter-keystroke timings compared to the ground truth. To infer written

language or guess passwords more advanced techniques such as machine learning can be applied [265,

269,273–276].

5.5 Remote Covert Channel

In this section, we introduce the third case study on a remote wear-leveling-based covert chan-

nel.

5.5.1 Attack Model

We assume the same scenario as in Figure 5.15, where sender and receiver are located on different

servers but have access to another KV-store server through the network (one-hop via a switch as

listed in Table 5.1); the sender and the receiver do not have a direct method of communication. In

the KV-store, they have access to common keys. However, the sender and the receiver stay stealthy,

without sending any direct messages via the KV-store. An example of such a shared KV-store can

be an online document that different users can update.

5.5.2 Attack Design

To communicate with the client, our server implementation uses the IPv4 protocol with TCP sockets

(SOCK_STREAM,AF_INET). As the number of writes to trigger a wear-leveling is stable (Section 5.2.5),

5.5. REMOTE COVERT CHANNEL 163

60 70 80 90 100 110 120 130

0 %
10 %
20 %
30 %
40 %

Request round-trip time (µs)
Fr

eq
ue

nc
y

(%
)

Normal requests Requests that trigger wear-leveling

Figure 5.16: Histogram of the remote request RTT (n = 100).

our high-leveling idea is to have the sender help trigger a wear-leveling event when sending a bit

value of 1. The sender continuously sends update requests to the KV-store server when sending a bit

value of 1, and stays idle when setting a bit value of 0 (step Ê). Correspondingly, the receiver also

sends repeated update requests to the server, and at the same time, count the number of update

requests to trigger a wear-leveling event (step Ë). When the sender is transmitting a bit value 1, the

receiver needs fewer requests to observe wear-leveling latency as compared to a bit value 0.

Challenges. However, there are two major challenges that can degrade the channel. (1) Requests

sent through the network are not as intensive as local experiments during the reverse-engineering. If

the time gap between two requests is large, the receiver cannot easily distinguish the wear-leveling

latency through the network as part of the wear-leveling latency has been overlapped with this

time gap. (2) To trigger wear-leveling, the writes need to update an entire, aligned 256B block

(Section 5.2.5). However, the allocation within the KV-store program does not guarantee 256B

alignment.

Solutions. We take two approaches to overcome these practical challenges. First, instead of one

thread, the sender issues four threads to send update requests to mitigate the time gap that may

overlap with the wear-leveling latency. Second, the sender updates a 512B block in the request (as

value). This way, the update at least covers one 256B block.

5.5.3 Attack Setup

The hardware platform follows the configuration in Table 5.1 (the CPU has prefetchers enabled).

On the software side, the server runs Intel’s pmemkv, a key-value store optimized for Optane [235].

The pmemkv interface takes both PUT and GET requests. Notably, for a PUT request, if the key already

exists and the size of value remains the same, pmemkv updates the value directly in-place; otherwise,

it creates a new key-value entry. During an update, pmemkv reads the existing value and makes a

5.5. REMOTE COVERT CHANNEL 164

Table 5.5: Remote covert channel under different levels of background noise (n = 100).

Noise BW (bit/s) Acc (%) #Pkt/bit σBW σAcc σ#Pkt/bit

No 10.01 98.87 2794.83 0.29% 1.05% 1.14%
Low 10.01 90.00 2789.54 0.29% 3.38% 1.03%
Med 10.00 88.57 2790.91 0.19% 3.14% 1.01%
High 10.01 88.40 2781.18 0.30% 3.02% 1.16%

Table 5.6: Comparison with existing remote covert channels (local network, without background noise).

Methods Bandwidth Error Rate

DDIO [110] 16 kbit/s 0.2%
This work (with wear-leveling) 10.01 bit/s 1.13%
NetSpectre [117] 1.07 bit/s <0.1%
Memory Deduplication [277] 0.08 bit/s 0.6%
FS Deduplication [278] 0.05 bit/s 2.5%

backup to maintain data recoverability. This procedure helps accelerate wear-leveling, according to

our reverse-engineering in Section 5.2.5. Similar to the keystroke attack, we also consider scenarios

that are noise-free and those with co-located activities (methodology in Section 5.4.3). In this

experiment, the sender transmits a 100-bit message to the receiver. And, we repeat this experiment

for 100 times.

5.5.4 Results

Bandwidth and accuracy. Figure 5.16 compares the round-trip time (RTT) between normal

requests and requests that trigger wear-leveling. On average, normal requests take 72.99µs (σ =

1.93%) and those with wear-leveling take 113.54µs (σ = 5.21%). Therefore, even with one event

of wear-leveling, the request timings are already distinguishable. Table 5.5 presents our results

under different background noise levels, as well as a basic scenario that does not have a co-located

pmemkv running in the background. Among the four scenarios, the bandwidth values are close

(around 10 bit/s) and the accuracy values remain good even with high background noise. As the

wear-leveling event has a latency of 49.6µs, significant compared to the tens-of-µs network latency,

it is not surprising that this channel is robust and stable. Further, as each update request (one

packet per request) contains both write and read (Section 5.5.3), the number of packets needed to

trigger a wear-leveling event (i.e., one bit in the message) is lower than pure writes (around 2800),

which is consistent with our observation in Section 5.2.5.

Comparison with existing remote covert channels. Table 5.6 compares our work with several

prior works on remote covert channel. Our work achieves a higher bandwidth than NetSpectre [117]

5.6. REMOTE NOTE BOARD ATTACK 165

Sender

KV-store File
Optane DIMM

KV-store App
(pmemkv)

Receiver

Time
❹ Receiver sends update

requests and monitors
wear-leveling events

❶ Sender sends repeated
update requests

❸ Receiver starts
after some time

Remote sender/receiver

❷/❺ Update
requests increment

wear-leveling
counters

“Note Board”

Repeatedly-updated locations:
about to trigger wear-leveling

Normal locations: take longer to
trigger wear-leveling

Figure 5.17: Remote Note Board attack.

and recent remote covert channels, based on memory deduplication [277], and file-system dedu-

plication [278], respectively. Compared to the DDIO covert channel on RDMA-capable network

interface [110], our bandwidth is lower. However, as we show in the next section, compared to their

work we achieve a significantly higher accuracy in the side-channel scenario both works evaluate.

Furthermore, as the timing difference is strong, there is no additional amplification of the signal

required [279–282]. There have also been other remote timing attacks, however, they did not report

the capacity of their covert channel [283–288].

5.6 Remote Note Board Attack

In this section, we describe another case study of a remote covert channel based on wear-leveling. As

Optane remains data over time and across power cycles, it is likely that the wear-leveling metadata

(e.g., counters) is also persistent. Thus, we evaluate whether the sender can leave a message on

Optane and let the receiver read from it later or after reboot.

5.6.1 Attack Model

Figure 5.17 presents the attack model, where we assume a system setup similar to the attack model

in Section 5.5.1, where the sender and the receiver are located in different servers and connected to

a common KV-store server via the network. We consider a web-API, where both the sender and

the receiver can update certain values (i.e., common keys in the KV-store) but cannot read the full

message. One example can be a survey with each field stored in an Optane-backed KV-store, where

users can repeatedly update via resubmission. However, unlike the real-time covert channel, the

sender in this scenario first leaves the message and the receiver reads the message later to stay more

stealthy during transmission.

5.6. REMOTE NOTE BOARD ATTACK 166

5.6.2 Attack Design

The attack takes in the following procedure. Initially, the sender issues repeated updates to the

pmemkv KV-store server (step Ê). By controlling the number of updates to the same key, the sender

can set the wear-leveling counter to a certain level (step Ë). Moreover, the sender repeats this

procedure for different keys to encode the whole message. Then, the sender goes offline, and the

receiver attempts to recover the message after some waiting time (step Ì). The receiver obtains the

message by probing different keys (step Í) and counting the number of updates needed to trigger

a wear-leveling event (step Î). A small number of update requests indicate the sender has left a

bit value of 1 by issuing a large number of initial update requests (otherwise, the bit is 0). As the

sender leaves a message on Optane and the receiver retrieves it after some time, we call it the Note

Board attack.

Challenges. First, the Note Board attack also faces the same challenges as our remote covert

channel (Section 5.5), regarding the request intensity and update granularity. We handle them in

the same way as Section 5.5.2. However, the Note Board attack transmits message through a range

of locations, not a single block. Thus, a new challenge is that a wear-leveling remapping may reset

other adjacent ones, as the remote sender has no control over memory allocation on the server.

Solutions. To overcome the new challenge, the sender allocates a large value of 4 kB. During the

update, the sender sets a 512B value within the 4 kB block. This way, the distance between two

updates is at least 4 kB, reducing the chance of remapping interference. However, the persistent

memory allocator contains metadata and may pad allocated blocks—the actual size of a value can

exceed 4 kB and still cause interference. Therefore, the sender further uses multiple key-values to

encode one bit in the message as redundancy.

5.6.3 Attack Setup

We use the same system as Section 5.5.3, with the KV-store server (based on Intel’s pmemkv [235])

running on a prefetcher-enabled CPU. We also evaluate the channel with no, low, medium, and high

noise levels (methodology in Section 5.4.3). For each noise level, we test three time gaps: 1 minute,

1 hour, and 1 day. In addition, we include a reboot scenario to evaluate this attack across power

cycles. Due to the long waiting time, we evaluate 10 tests per setting, where the sender transmits a

100 bit message to the receiver. To store this “Note Board”, the sender’s keys take 4MB out of the

total 256MB of the pmemkv storage on Optane. We pre-allocate files for all iterations of the attack

5.6. REMOTE NOTE BOARD ATTACK 167

Table 5.7: Note Board attack accuracy under different noise types and time gaps (n = 10).

Wait Time Noise Acc (%) σAcc

1 min
No

92.40 2.56 %
1 hour 92.30 3.61 %
1 day 92.77 3.35 %

1 min
Low

92.70 2.74 %
1 hour 92.00 4.00 %
1 day 91.70 3.17 %

1 min
Med

90.90 6.50 %
1 hour 90.90 3.82 %
1 day 90.10 2.48 %

1 min
High

89.70 3.02 %
1 hour 89.30 3.88 %
1 day 89.60 3.72 %

1 min High
(100 % Update)

89.40 4.25 %
1 hour 86.70 3.26 %
1 day 82.90 7.38 %

— Reboot 91.20 3.46 %

to prevent interference from prior runs through the wear-leveling counters, as the Optane locations

used by one iteration may be allocated to the next one.

5.6.4 Results

Table 5.7 presents our accuracy results. In scenarios without noise, the message can be successfully

retrieved from the wear-leveling-based Note Board at a high accuracy of more than 92 %, even

after 1 day of wait time. Although the background noise (i.e., other KV-store activities) has a

strong interference in the keystroke attack (Section 5.4), this wear-leveling-based method does not

degrade much due to the noise. Even under a high noise level, the accuracy can still be as good

as 89 %, and is insensitive against waiting time. There are two main reasons: (1) the wear-leveling

latency is two orders of magnitude higher than normal access latencies, which is hard to be interfered

during retrieval, and (2) it takes a large number of updates (> 10 000, Section 5.2.5) under normal

write access patterns—normal background activities rarely cause remap of Optane pages within the

Note Board region even after 1 day. We further increase the write intensity of the background

activity, from 20 % update requests (Section 5.4.3) to 100 %. Although the accuracy gets noticeably

lower, E.g., 82.90 % after 1 day of wait time, it still remains usable. Moreover, the Note Board

remains accurate after reboot (91.20 % accuracy), which confirms that the wear-leveling metadata

is persistent. We conclude that the Note Board attack is robust against normal interference, which

makes it harder to defend against. We propose a defense mechanism in Section 5.7.2.

5.7. DISCUSSION 168

Comparison with existing attacks. While there have been many remote covert channels already,

as we have discussed in Section 5.5.4, they differ from our Note Board attack as they are usually not

persistent and asynchronous. Instead, they are temporal, and require the sender and the receiver to

collude and transmit data synchronously.

5.7 Discussion

In this section, we discuss future works and our proposal for defense mechanisms.

5.7.1 Future Works

Other Optane-based side-channel attacks. In this work, we have provided the basic attack

primitives and presented four case studies. As Optane becomes more widely used, we expect more

use cases. For example, Optane can serve as the storage backend for general applications [31, 35]

and a large memory for scientific computing [289, 290]. We expect future research to explore other

types of side-channel attacks, such as workload detection, based on our attack primitives.

Attack on different Optane configurations. In this work, we study one Optane DIMM installed

alongside the DRAM. Optane also allows multiple DIMMs to be interleaved and work as a single,

large device [291], similar to RAID-0 of hard drives. As writes are divided among different DIMMs,

we expect different internal caching behaviors. Besides the persistent use cases, Optane memory can

also serve as a large volatile memory (i.e., Intel’s Memory Mode [291]). We expect future research

to investigate these alternative configurations.

5.7.2 Defense Mechanisms

In this section, we briefly describe three proposals for mitigating side-channel attacks on Optane

memory.

Mitigation of side channels from internal buffers. The internal buffers, RMW and AIT, are

structures that can lead to side channels. Similar to the defense mechanism for CPU cache side

channels, it is possible to divide these buffers for each application/user and provide isolation [292–

295]. Likewise, better replacement policies and hashing schemes [296–299] may also mitigate the

side channels of buffers in the Optane memory.

5.7. DISCUSSION 169

Attack primitive detection. Similar to attacks on CPU caches, attacks on Optane memory also

follow certain patterns, such as Prime+Probe. Therefore, prior solutions for detecting cache attacks

can also be useful for Optane memory [300–303]. Upon detection of repeated access patterns, the

hardware can throttle the accesses speed to Optane or change the replacement policy of internal

buffers (e.g., force buffer flush), in order to break the side channel. However, the wear-leveling

channel, which can be exploited using normal key-value updates, is hard to detect. Next, we describe

a proposal for mitigating the wear-leveling channel.

Wear-leveling timing mitigation. Wear-leveling causes a significant access delay, likely because

accesses cannot continue when an Optane-internal page is being remapped. Therefore, one mitigation

is to eliminate the stop-the-world wear-leveling. Instead, we propose an adaptive wear-leveling

mechanism. First, the device can perform wear-leveling early when the page is not being accessed

but thresholds are about to be reached, effectively working as a “garbage collector” in the background.

Second, as Optane (or other persistent memory [31,304,305]) tends to have a high write endurance

level (e.g., 107 per cell [306]), wear-leveling is not an urgent event; Optane can also postpone wear-

leveling when there are continuous writes to the same page. When the series of writes complete,

wear-leveling can happen in the background without hurting the performance or leaking sensitive

information. Note that, by keeping track of the wear-leveling counters, the Optane controller can still

balance the write endurance of different memory pages. For example, pages with more accumulative

writes will have a lower wear-leveling threshold. This way, it will be substantially harder for the

attacker leave a message on Optane using the wear-leveling counters.

Chapter 6

Related Works

In this chapter, we present a survey of related works on software and hardware systems for persistent

memory.

6.1 Software Systems for Persistent Memory

6.1.1 Persistent Memory Libraries

As Chapter 3 has shown, programming for PM is challenging. To reduce the programming bur-

den, developer from the industry and academia have developed PM libraries, such as PMDK [35],

Mnemosyne [36], and NV-Heaps [37] that provide transactional interface to ensure failure-atomicity

of updates to PM. To maintain crash consistency, these transactional approaches typically use undo

and/or redo logging to maintain a consistent copy of the persistent data that is under in-place

updates. Instead of performing in-place updates, out-of-place updates can also ensure crash consis-

tency. For example, MOD [38] performs atomic updates for failure-recovery. These PM libraries

make programming for PM systems easier but still require a correct crash consistency algorithm

and a good understanding of the library support. Our testing works in Chapter 3 can be adapted

to these PM libraries and assist programmers to implement correct programs. Besides library sup-

port, there are also frameworks that convert legacy code to a persistent version. For example,

Atlas [159], NVthreads [172], PMThreads [307], and SFR [166] use the synchronization primitives

in multithreaded programs as hints to covert existing programs into a crash-consistent, PM-based

version. iDO [168] and Clobber-NVM [308] take a different approach. They identify idempotent

170

6.1. SOFTWARE SYSTEMS FOR PERSISTENT MEMORY 171

code regions and convert them into failure-atomic code regions for PM. Although these tools perform

automated code conversion, PM-specific testing tools can still help to ensure end-to-end correctness,

as these frameworks and their converted code boil down to low-level PM accesses.

6.1.2 File systems for Persistent Memory

Conventional storage systems usually use SSDs and HDDs as the storage medium. The introduc-

tion of PM technologies provide an opportunity to perform load/store instructions directly to the

persistent data. However, software systems need to be redesigned to leverage this direct access

capability. To utilize the existing file system interface to access PM, there have been works that

develop PM-optimized file systems. For example, PMFS [130] is a PM-optimized POSIX file system

from Intel that optimizes for PM’s byte-addressable accesses. NOVA [9] is a log-based file system

optimized for PM-DRAM hybrid memory systems. SplitFS [11] reduces the system call overhead

by splitting responsibilities of data management from metadata management, where access to data

are performed directly in user-space while metadata is operated in the kernel. There are also many

other file systems for PM, such as BPFS [309], Mojim [310], Strata [311], NOVA-Fortis [10], and

SCMFS [312] are file systems. Regardless of the interface, these file systems internally still rely on

direct management of persistent data. Thus, testing frameworks can assist the development of these

PM-optimized file systems.

6.1.3 Testing for Persistent Memory Software

There have been specialized testing tools to help programmers detect crash consistency and perfor-

mance bugs in PM programs. For example, Intel has developed Pmemcheck [128] and Persistence

Inspector [129] on top of dynamic instrumentation tools to trace PM operations and perform testing.

These tools are specific to Intel’s PMDK library and have limited testing scope. To improve the

scope and library support, we develop PMTest [25] that supports a wider range of PM software

systems and cover more buggy scenarios. Further, we develop XFDetector [26] that extends the

testing scope by reasoning about the program execution before and after the failure. To support

these testing tools, we also develop PMFuzz [27] that uses the fuzzing approach to efficiently gener-

ate PM-specific test cases. Follow to our works, there have been other testing tools designed for PM

systems. For example, instead of runtime testing, Agamotto [313] performs symbolic execution,

and Witcher [314] uses a combination of static and dynamic trace analysis. Jaaru [315] is a testing

tool that uses model checking. Compared to Intel’s modeling checking tool, Yat [184], Jaaru signifi-

6.2. HARDWARE SYSTEMS FOR PERSISTENT MEMORY 172

cantly improves the execution time. These tools, including the testing works in this thesis, primarily

focus on a single-thread. There have also been recent works that target crash consistency bugs in

multithreaded programs, such as PMRace [316] and DURINN [317].

6.2 Hardware Systems for Persistent Memory

6.2.1 Memory Persistency

Memory persistency models ensure the order in which writes become persistent. Pelly et al. first

propose memory persistency [39] and followup research continue to optimize the performance of

persistency models. For example, DPO [40] is a more relaxed persistency model that decouples

the order of writes to PM from the volatile execution; HOPS [1] separates fences for ordering and

durability to reduce the blocking overhead due to persistence; PMEM-Spec [41] speculatively breaks

the ordering constraints of PM writes and recovers from misspeculation as if it is a system failure;

Themis [42] extends the x86 persistency model to provide ordering guarantees for common undo

logging programming pattern, without needing fences. These persistency models are provided by

the hardware system and are critical for the upper-level software to ensure the crash consistency

guarantees. Our notion of counter-atomicity for encrypted PM systems [28] (Chapter 4A) is orthog-

onal to persistency models. Instead of enforcing the ordering of writes to PM, counter-atomicity

ensures that the data and counter of the same write access are persisted atomically. Therefore,

counter-atomicity is applicable to any persistency model.

6.2.2 Hardware-based Crash Consistency Mechanisms

Providing the crash consistency guarantee is another important aspect in PM systems. Prior

works have proposed and implemented a variety of software and hardware solutions to main-

tain crash consistency. Hardware-based mechanisms include implementations of low-level prim-

itives such as DPO [40] and HOPS [1], and high-level hardware transactions such as Kiln [45],

ThyNVM [47], JUSTDO Logging [156] and ATOM [46]. Software-based solutions, such as NV-

Heaps [37], Mnemosyne [36], REWIND [158], Intel’s PMDK [35], LSNVMM [206], etc., abstract

away the low-level crash consistency mechanism and provide a high-level software interface for pro-

grammers to manage their persistent data. There are also PM-optimized file systems, such as Intel’s

PMFS [8], BPFS [161], NOVA [9], and SCMFS [195]. Our software-hardware co-design, Janus [30]

(Chapter 4B), can be integrated with these crash consistency mechanisms to improve performance.

6.2. HARDWARE SYSTEMS FOR PERSISTENT MEMORY 173

For example, PM transactions can overlap the latency of backend memory operations with other

transactional steps using our pre-execution technique.

6.2.3 Security Guarantees in PM Hardware Systems

There have been existing proposals that provides security guarantees. For example, there have been

works targeting PM encryption [28, 50, 56, 77, 199,318], designs that target data integrity [30, 57, 59,

319–322], and hardware support for the recoverability of PM systems with security guarantees [28,

318,323–325]. These works focus on integrity and confidentiality of data on PM. However, these PM

hardware system are still susceptible to side-channel attacks. In this thesis, we take a step further

to exploit the side-channel vulnerabilities in the existing Optane PM system (Chapter 5).

Chapter 7

Conclusions

Persistent memory (PM) technologies, such as Intel’s Optane PM, provide a class of high-

performance, byte-addressable, and durable memory. These new features allow the software to

directly manage their persistent data in memory, without going through the file system indirections.

We identify that integrating this new class of memory requires a redesign across the system stack.

First, it is hard and error-prone to implement crash-consistent programs that directly manage per-

sistent data. Second, PM requires the integration of different memory and storage supports, such

as memory encryption and integrity verification that secure the data and memory compression that

improves the bandwidth. However, a naive integration can lead to performance degradation and

even break the crash consistency guarantees. Third, there are also other vulnerabilities in real PM

systems. For example, the hardware structures in the commercially-available Optane PM can be

leveraged by side-channel attacks.

My thesis provides system supports to overcome these new challenges. We hypothesize that a

whole-system-level redesign, from programming support to hardware, that ensures correctness, se-

curity, and high performance, is necessary in order to integrate persistent memory into practical

systems.

To overcome the difficulties in ensuring the correct implementation of the crash consistency guaran-

tee, my research develops a series of testing tools to detect bugs that can lead to inconsistencies after

failure. More specifically, PMTest is a runtime testing tool that traces program execution and checks

whether the execution violates the requirements for persistence. Beyond runtime testing, XFDetec-

174

175

tor further extends the scope to the end-to-end execution—before and after the failure. Moreover,

we develop a test case generator, PMFuzz, that efficiently generates test cases for PM programs.

Overall, these testing works have detected 18 bugs in PM-based programs that are developed by the

industry.

On the hardware side, my research targets both the efficiency and security aspects of PM. First, we

propose a scheme of metadata atomicity to make sure that the metadata associated with PM opera-

tions becomes persistent atomically with the data. This way, even in case of a failure, the recovery

procedure can still use the correct metadata to restore the data. For example, in counter-mode

encryption, making the counter atomically persistent with the encrypted data guarantees the data

read during recovery can always be decrypted with the correct counter. Besides the consideration

of crash consistency, performance is another key aspect, especially when there is a combination of

operations associated with PM, such as encryption, integrity verification, and data deduplication.

We provide a hardware design, Janus, that parallelizes these operations and pre-executes them as

soon as the address and data of a future persist operation are known.

Finally, my thesis also exploits security vulnerabilities in the existing Optane PM. We find out that

the in-Optane buffering, caching, and wear-leveling mechanisms can be utilized as side channels that

leak secret information about the program. For example, an attacker can monitor the Optane access

latency to reveal the keystroke input to an Optane-backed key-value store; a sender can covertly

leave a message on an Optane-backed key-value store for a day through the timing variation from

the wear-leveling mechanism. Our research has shown that Optane PM has unique side-channel

vulnerabilities that need to be mitigated in future generations.

Moving forward, there are many new areas in PM research. One direction is to adapt PM into

larger-scale systems. As PM has a low memory access latency and high capacity, it can accelerate

storage-class applications. However, in large-scale systems, accesses to storage are usually from

remote servers, placing the network latency on the critical path and overshadowing the low PM

access latency. Thus, a research direction is to redesign the large-scale storage system to better

leverage the low access latency of PM. Besides serving as a persistent storage device, PM can also

provide large memory capacity (e.g., tens of TBs in a server) at a lower cost. Therefore, another

research direction is to leverage the capacity advantages of PM to enable workloads that have large-

memory footprints. The higher PM capacity can enable applications that would not be possible to

perform on a single server, without using memory swap or remote memory. Finally, as my research

176

has shown that it is possible to perform side-channel attacks through the Optane PM, a future

direction is to mitigate these vulnerabilities, such as timing side channels over the buffers and the

wear-leveling mechanism.

Bibliography

[1] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kimberly
Keeton. An analysis of persistent memory use with WHISPER. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2017.

[2] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (SoCC), 2010.

[3] Intel. Intel 64 and IA-32 architectures software developer’s manual. https://software.
intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf,
2019.

[4] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly & Associates Inc,
2005.

[5] Intel. Intel Optane DC persistent memory. https://www.intel.com/content/www/us/en/
architecture-and-technology/optane-dc-persistent-memory.html.

[6] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang, Shi-
meng Yu, and Yuan Xie. Overcoming the challenges of crossbar resistive memory architec-
tures. In Proceedings The 21st IEEE Symposium on High Performance Computer Architec-
ture, 2015.

[7] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu. Evaluating
STT-RAM as an energy-efficient main memory alternative. In Proceedings of International
Symposium on Performance Analysis of Systems and Software, 2013.

[8] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy,
Rajesh Sankaran, and Jeff Jackson. System software for persistent memory. In European
Conference on Computer Systems (EuroSys), 2014.

[9] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST), 2016.

[10] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase,
Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. Nova-fortis: A fault-tolerant
non-volatile main memory file system. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017.

177

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Bibliography 178

[11] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli, and Vijay
Chidambaram. SplitFS: Reducing software overhead in file systems for persistent memory.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP), 2019.

[12] Lenovo. Memcached-pmem. https://github.com/lenovo/memcached-pmem, 2018.

[13] Intel. https://software.intel.com/content/www/us/en/develop/articles/code-
sample-enable-your-application-for-persistent-memory-with-mysql-storage-
engine.html.

[14] Intel. Redis. https://github.com/pmem/redis/tree/3.2-nvml, 2019.

[15] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, Zili Shao, and Song
Jiang. NVMcached: An NVM-based key-value cache. In Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems (ApSys), 2016.

[16] Katelin A. Bailey, Peter Hornyack, Luis Ceze, Steven D. Gribble, and Henry M. Levy. Ex-
ploring storage class memory with key value stores. In Proceedings of the 1st Workshop on
Interactions of NVM/FLASH with Operating Systems and Workloads (INFLOW), 2013.

[17] Whitfield Diffie and Martin Hellman. Privacy and authentication: An introduction to cryp-
tography. Proceedings of the IEEE, 67(3):397–427, 1979.

[18] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and Jishen Zhao.
Characterizing and Modeling Non-Volatile Memory Systems. In 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[19] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Understanding the Idiosyncrasies of
Real Persistent Memory. Proc. VLDB Endow., 2020.

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven
Swanson. Basic performance measurements of the Intel Optane DC persistent memory mod-
ule. CoRR, abs/1903.05714, 2019.

[21] Jialiang Zhang, Nicholas Beckwith, and Jing Jane Li. GORDON: Benchmarking Optane DC
Persistent Memory Modules on FPGAs. In IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2021.

[22] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. Characterizing the
Performance of Intel Optane Persistent Memory: A Close Look at Its on-DIMM Buffering.
In Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys),
2022.

[23] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre Attacks: Exploiting Speculative Execution. In IEEE Symposium on Security
& Privacy (S&P), 2019.

[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading Kernel Memory from User Space. In USENIX Security Symposium,
2018.

[25] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. PMTest: A fast
and flexible testing framework for persistent memory programs. In Proceedings of the

https://github.com/lenovo/memcached-pmem
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://github.com/pmem/redis/tree/3.2-nvml

Bibliography 179

Twenty-Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2019.

[26] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli, and Samira
Khan. Cross-failure bug detection in persistent memory programs. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

[27] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. PMFuzz: Test case generation
for persistent memory programs. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2021.

[28] S. Liu, A. Kolli, J. Ren, and S. Khan. Crash consistency in encrypted non-volatile main
memory systems. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018.

[29] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin. Using address independent seed en-
cryption and bonsai merkle trees to make secure processors OS- and performance-friendly.
In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2007.

[30] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh Kolli, and Samira Khan.
Janus: Optimizing memory and storage support for non-volatile memory systems. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (ISCA), 2019.

[31] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable DRAM alternative. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA), 2009.

[32] Cong Xu, Dimin Niu, Naveen Muralimanohar, Norman P. Jouppi, and Yuan Xie.
Understanding the trade-offs in multi-level cell ReRAM memory design. In 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2013.

[33] Usharani Upadhyayula. Quick start guide: Provision intel optane dc persistent memory.
https://software.intel.com/content/www/us/en/develop/articles/quick-start-
guide-configure-intel-optane-dc-persistent-memory-on-linux.html, 2019.

[34] ARM. ARM architecture reference manual ARMv8, for ARMv8-A architecture profile.
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf, 2018.

[35] Intel. Persistent memory programming. https://pmem.io/.

[36] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persistent
memeory. In Proceedings of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

[37] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit
Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2011.

[38] Swapnil Haria, Mark D. Hill, and Michael M. Swift. MOD: Minimally ordered durable datas-
tructures for persistent memory. Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2020.

https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://pmem.io/

Bibliography 180

[39] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency. In Proceeding
of the 41st Annual International Symposium on Computer Architecture (ISCA), 2014.

[40] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang Liu, Pe-
ter M. Chen, and Thomas F. Wenisch. Delegated persist ordering. In Proceedings of the
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.

[41] Jungi Jeong and Changhee Jung. PMEM-Spec: Persistent memory speculation (strict per-
sistency can trump relaxed persistency). In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2021.

[42] S. M. Shahri, S. Armin Vakil Ghahani, and A. Kolli. (Almost) Fence-less persist ordering. In
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020.

[43] David Mulnix. Intel Xeon Processor D product family technical overview. https://
software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-
technical-overview.

[44] Intel. eADR: New opportunities for persistent memory applications. https://www.intel.
com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-
for-persistent-memory-applications.html, 2021.

[45] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln: Closing
the performance gap between systems with and without persistence support. In Proceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2013.

[46] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. ATOM: Atomic durability
in non-volatile memory through hardware logging. In Proceedings of The 23rd IEEE Sympo-
sium on High Performance Computer Architecture (HPCA), 2017.

[47] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutlu.
ThyNVM: Enabling software-transparent crash consistency in persistent memory systems. In
Proceedings of the 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2015.

[48] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.
Efficient memory integrity verification and encryption for secure processors. In Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2003.

[49] Jun Yang, Youtao Zhang, and Lan Gao. Fast secure processor for inhibiting software piracy
and tampering. In MICRO, 2003.

[50] Vinson Young, Prashant J. Nair, and Moinuddin K. Qureshi. DEUCE: Write-efficient en-
cryption for non-volatile memories. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), 2015.

[51] Weidong Shi, Hsien-Hsin S. Lee, Mrinmo Ghosh, Chenghuai Lu, and Alexandra Boldyreva.
High efficiency counter mode security architecture via prediction and precomputation. In
Proceedings of the 32nd Annual International Symposium on Computer Architecture (ISCA),
2005.

https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

Bibliography 181

[52] Chenyu Yan, Brian Rogers, Daniel Englender, Yan Solihin, and Milos Prvulovic. Improving
cost, performance, and security of memory encryption and authentication. In Proceedings of
the 33rd Annual International Symposium on Computer Architecture (ISCA), 2006.

[53] Brain Rogers, Yan Solihin, and Milos Prvulovic. Memory predecryption: Hiding the latency
overhead of memory encryption. In Workshop on Architectural Support for Security and
Anti-Virus, 2004.

[54] Moinuddin K. Qureshi, Michele Franchescini, Vijayalakshmi Srinivasan, Luis Lastras, Bu-
lent Abali, and John Karidis. Enhancing lifetime and security of PCM-based main memory
with start-gap wear leveling. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2009.

[55] Siddhartha Chhabra and Yan Solihin. i-NVMM: A secure non-volatile main memory system
with incremental encryption. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA), 2011.

[56] Pengfei Zuo and Yu Hua. SecPM: A secure and persistent memory system for non-volatile
memory. In 10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
18), 2018.

[57] M. Ye, C. Hughes, and A. Awad. Osiris: A low-cost mechanism to enable restoration of se-
cure non-volatile memories. In 51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), 2018.

[58] Joydeep Rakshit and Kartik Mohanram. ASSURE: Authentication scheme for secure en-
ergy efficient non-volatile memories. In Proceedings of the 54th Annual Design Automation
Conference 2017 (DAC), 2017.

[59] S. Swami and K. Mohanram. ARSENAL: Architecture for secure non-volatile memories.
IEEE Computer Architecture Letters, 17(2):192–196, July 2018.

[60] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, and Mark Horowitz. Architectural support for copy and tamper resistant software.
In Proceedings of the 9th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2000.

[61] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.
AEGIS: Architecture for tamper-evident and tamper-resistant processing. In Proceedings of
the 17th Annual International Conference on Supercomputing (ICS), 2003.

[62] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and hash trees
for efficient memory integrity verification. In The Ninth International Symposium on High-
Performance Computer Architecture (HPCA), 2003.

[63] D. Williams and Emin Gun Sirer. Optimal parameter selection for efficient memory integrity
verification using merkle hash trees. In Third IEEE International Symposium on Network
Computing and Applications, 2004. (NCA 2004). Proceedings., 2004.

[64] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas. Design and
implementation of the AEGIS single-chip secure processor using physical random functions.
In Proceedings of the 32nd Annual International Symposium on Computer Architecture
(ISCA), 2005.

[65] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM: An extremely simple oblivious RAM protocol. In Pro-

Bibliography 182

ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Secu-
rity (CCS), 2013.

[66] L. Ren, C. W. Fletcher, X. Yu, M. van Dijk, and S. Devadas. Integrity verification for path
oblivious-RAM. In IEEE High Performance Extreme Computing Conference (HPEC), 2013.

[67] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas.
Design space exploration and optimization of path oblivious ram in secure processors. In
Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA),
2013.

[68] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Freecursive ORAM: [Nearly] free recursion and integrity verification for position-based obliv-
ious RAM. In Proceedings of the Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), 2015.

[69] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk,
and Srinivas Devadas. Constants count: Practical improvements to oblivious RAM. In 24th
USENIX Security Symposium (USENIX Security 15), 2015.

[70] R. Wang, Y. Zhang, and J. Yang. Cooperative Path-ORAM for effective memory bandwidth
sharing in server settings. In IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), 2017.

[71] R. Wang, Y. Zhang, and J. Yang. D-ORAM: Path-ORAM delegation for low execution inter-
ference on cloud servers with untrusted memory. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[72] A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li. Secure DIMM: Moving ORAM prim-
itives closer to memory. In 2018 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), 2018.

[73] Biplob Debnath, Sudipta Sengupta, and Jin Li. ChunkStash: Speeding up inline storage
deduplication using flash memory. In Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference (ATC), 2010.

[74] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun Shastry, Philip Shilane, Sun Zhen,
Vasily Tarasov, and Erez Zadok. Using hints to improve inline block-layer deduplication.
In 14th USENIX Conference on File and Storage Technologies (FAST), 2016.

[75] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri Narasimhan, Tony Zhang, and Ming
Zhao. CacheDedup: In-line deduplication for flash caching. In 14th USENIX Conference
on File and Storage Technologies (FAST), 2016.

[76] C. Wang, Q. Wei, J. Yang, C. Chen, Y. Yang, and M. Xue. NV-Dedup: High-performance
inline deduplication for non-volatile memory. IEEE Transactions on Computers (TC),
67(5):658–671, 2018.

[77] Pengfei Zuo, Yu Hua, Ming Zhao, Wen Zhou, and Yuncheng Guo. Improving the perfor-
mance and endurance of encrypted non-volatile main memory through deduplicating writes.
In 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018.

[78] B. Abali, H. Franke, D. E. Poff, R. A. Saccone, C. O. Schulz, L. M. Herger, and T. B. Smith.
Memory expansion technology (MXT): Software support and performance. IBM Journal of
Research and Development, 45(2):287–301, March 2001.

Bibliography 183

[79] Alaa Alameldeen and David Wood. Frequent pattern compression: A significance-based
compression scheme for L2 caches. Technical Report 1500, Computer Sciences Dept., UW-
Madison, 2004.

[80] Alaa R. Alameldeen and David A. Wood. Adaptive cache compression for high-performance
processors. In Proceedings of the 31st Annual International Symposium on Computer Archi-
tecture (ISCA), 2004.

[81] Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bi-
las. Using transparent compression to improve SSD-based I/O caches. In Proceedings of the
5th European Conference on Computer Systems (EuroSys), 2010.

[82] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas. C-Pack: A high-performance mi-
croprocessor cache compression algorithm. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 18(8):1196–1208, Aug 2010.

[83] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch,
and Todd C. Mowry. Base-delta-immediate compression: Practical data compression for on-
chip caches. In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, 2012.

[84] David Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P. Stevenson, and Omid Az-
izi. HICAMP: Architectural support for efficient concurrency-safe shared structured data
access. In Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2012.

[85] G. Pekhimnko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry. Linearly compressed pages: A low-complexity, low-latency main memory com-
pression framework. In 46th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2013.

[86] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis. MemZip: Exploring unconven-
tional benefits from memory compression. In IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), 2014.

[87] Dhananjoy Das, Dulcardo Arteaga, Nisha Talagala, Torben Mathiasen, and Jan Lindström.
NVM compression—hybrid flash-aware application level compression. In 2nd Workshop on
Interactions of NVM/Flash with Operating Systems and Workloads (INFLOW), 2014.

[88] Stuart Schechter, Gabriel H. Loh, Karin Strauss, and Doug Burger. Use ECP, not ECC, for
hard failures in resistive memories. In Proceeding of the 37th Annual International Sympo-
sium on Computer Architecture (ISCA), 2010.

[89] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck. Codes for asymmetric limited-
magnitude errors with application to multilevel flash memories. IEEE Transactions on In-
formation Theory, 56(4), 2010.

[90] W. Wen, Y. Zhang, Mengjie Mao, and Y. Chen. State-restrict MLC STT-RAM designs for
high-reliable high-performance memory system. In 51st ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), 2014.

[91] R. Naseer and J. Draper. Parallel double error correcting code design to mitigate multi-bit
upsets in SRAMs. In ESSCIRC 2008 - 34th European Solid-State Circuits Conference, 2008.

Bibliography 184

[92] Qingan Li, Yanxiang He, Yong Chen, Chun Jason Xue, Nan Jiang, and Chao Xu. A wear-
leveling-aware dynamic stack for PCM memory in embedded systems. In Proceedings of the
Conference on Design, Automation & Test in Europe (DATE), 2014.

[93] Huizhang Luo, Qingfeng Zhuge, Liang Shi, Jian Li, and Edwin H.-M. Sha. Accurate age
counter for wear leveling on non-volatile based main memory. Design Automation for Em-
bedded Systems, 2013.

[94] Intel Corporation. Revolutionary memory technology. http://www.intel.com/content/
www/us/en/architecture-and-technology/non-volatile-memory.html, 2018.

[95] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montano. Improving read perfor-
mance of phase change memories via write cancellation and write pausing. In The Sixteenth
International Symposium on High-Performance Computer Architecture (HPCA), 2010.

[96] Jianhui Yue and Yifeng Zhu. Accelerating write by exploiting PCM asymmetries. In Pro-
ceedings of the 2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), 2013.

[97] Kosuke Suzuki and Steven Swanson. The non-volatile memory technology database
(NVMDB). Technical Report CS2015-1011, Department of Computer Science & Engineer-
ing, University of California, San Diego, May 2015. http://nvmdb.ucsd.edu.

[98] Seokin Hong, Prashant Nair, Bulent Abali, Alper Buyuktosunoglu, Kyu Hyoun Kim, and
Michael Healy. Attache: Towards ideal memory compression by mitigating metadata band-
width overheads. In 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[99] Esha Choukse, Mattan Erez, and Alaa R. Alameldeen. Compresso: Pragmatic main memory
compression. In 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[100] Paul C. Kocher. Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and
Other Systems. In Annual International Cryptology Conference (CRYPTO), 1996.

[101] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level Cache Side-
Channel Attacks are Practical. In IEEE Symposium on Security & Privacy (S&P), 2015.

[102] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon. C5: Cross-
Cores Cache Covert Channel. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2015.

[103] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In USENIX Security Symposium, 2014.

[104] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template Attacks: Automat-
ing Attacks on Inclusive Last-Level Caches. In USENIX Security Symposium, 2015.

[105] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. A Faster and
More Realistic Flush+Reload Attack on AES. In 6th International Workshop on Construc-
tive Side-Channel Analysis and Secure Design (COSADE), 2015.

[106] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-Tenant Side-
Channel Attacks in PaaS Clouds. In Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2014.

http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html

Bibliography 185

[107] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Know Thy Neigh-
bor: Crypto Library Detection in Cloud. Proceedings on Privacy Enhancing Technologies
(PETS), 2015.

[108] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Lucky 13 Strikes
Back. In Proceedings of the 10th ACM symposium on Information, computer and communi-
cations security (AsiaCCS), 2015.

[109] Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi. Streamline: a fast,
flushless cache covert-channel attack by enabling asynchronous collusion. In Proceedings
of the 26th ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2021.

[110] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. NetCAT: Practical Cache Attacks from the Network. In IEEE Symposium on Secu-
rity & Privacy (S&P), 2020.

[111] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Systematic Evaluation of
Transient Execution Attacks and Defenses. In USENIX Security Symposium, 2019. Extended
classification tree and PoCs at https://transient.fail/.

[112] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security Symposium, 2018.

[113] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin,
Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval
Yarom. Fallout: Leaking Data on Meltdown-resistant CPUs. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2019.

[114] Stephan van Schaik, Alyssa Milburn, Sebastian österlund, Pietro Frigo, Giorgi Maisuradze,
Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue In-flight Data Load. In
IEEE Symposium on Security & Privacy (S&P), 2019.

[115] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary Data Sampling. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[116] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking Tran-
sient Execution through Microarchitectural Load Value Injection. In IEEE Symposium on
Security & Privacy (S&P), 2020.

[117] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss. NetSpectre:
Read Arbitrary Memory over Network. In European Symposium on Research in Computer
Security (ESORICS), 2019.

[118] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.
DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX Security Sym-
posium, 2016.

Bibliography 186

[119] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks. In USENIX Security
Symposium, 2018.

[120] Fumiyasu Ishibashi. Introducing Optane DC persistent memory. http://www.ipsj.
or.jp/sig/os/index.php?plugin=attach&refer=ComSys2019&openfile=ComSys2019-
IntelDCPMMver1.0.pdf, 2019.

[121] Li-Pin Chang and Chun-Da Du. Design and Implementation of an Efficient Wear-Leveling
Algorithm for Solid-State-Disk Microcontrollers. ACM Trans. Des. Autom. Electron. Syst.,
2010.

[122] Michael Wu and Willy Zwaenepoel. ENVy: A non-volatile, main memory storage system. In
Proceedings of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1994.

[123] Dawoon Jung, Yoon-Hee Chae, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. A Group-
Based Wear-Leveling Algorithm for Large-Capacity Flash Memory Storage Systems. In
Proceedings of the international conference on Compilers, architecture, and synthesis for
embedded systems (CASES), 2007.

[124] Intel. Product brief: Data center Intel Optane DC persistent memory. https://www.mouser.
cn/datasheet/2/612/optane-dc-persistent-memory-brief-1710301.pdf, 2019.

[125] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. High-
performance transactions for persistent memories. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

[126] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, and Jinglei Ren.
DudeTM: Building durable transactions with decoupling for persistent memory. In Proceed-
ings of the Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2017.

[127] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and Jeff Jackson. Yat:
A validation framework for persistent memory software. In USENIX Annual Technical Con-
ference (ATC), 2014.

[128] Eduardo Carellan. Discover persistent memory programming errors with pmemcheck. https:
//software.intel.com/content/www/us/en/develop/articles/discover-persistent-
memory-programming-errors-with-pmemcheck.html, 2018.

[129] Kevin Oleary. How to detect persistent memory programming errors using Intel Inspector
- Persistence Inspector. https://software.intel.com/content/www/us/en/develop/
articles/detect-persistent-memory-programming-errors-with-intel-inspector-
persistence-inspector.html, 2018.

[130] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy,
Rajesh Sankaran, and Jeff Jackson. System software for persistent memory. In Proceedings
of the Ninth European Conference on Computer Systems (EuroSys), 2014.

[131] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[132] Anna Zaks and Jordan Rose. https://llvm.org/devmtg/2012-11/Zaks-Rose-
Checker24Hours.pdf, 2012.

http://www.ipsj.or.jp/sig/os/index.php?plugin=attach&refer=ComSys2019&openfile=ComSys2019-IntelDCPMMver1.0.pdf
http://www.ipsj.or.jp/sig/os/index.php?plugin=attach&refer=ComSys2019&openfile=ComSys2019-IntelDCPMMver1.0.pdf
http://www.ipsj.or.jp/sig/os/index.php?plugin=attach&refer=ComSys2019&openfile=ComSys2019-IntelDCPMMver1.0.pdf
https://www.mouser.cn/datasheet/2/612/optane-dc-persistent-memory-brief-1710301.pdf
https://www.mouser.cn/datasheet/2/612/optane-dc-persistent-memory-brief-1710301.pdf
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf

Bibliography 187

[133] Intel. Btree: snapshot node before modifying it (PMDK). https://bit.ly/2BLZHCo, 2018.

[134] Intel. Btree: remove not needed snapshot (PMDK). https://bit.ly/367Jc1m, 2018.

[135] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. Let’s talk about storage & recov-
ery methods for non-volatile memory database systems. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (SIGMOD), 2015.

[136] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persistent Memcached:
Bringing legacy code to byte-addressable persistent memory. In Proceedings of the 9th
USENIX Conference on Hot Topics in Storage and File Systems (HotStorage), 2017.

[137] NIST. The economic impacts of inadequate infrastructure for software testing, 2002.

[138] Ashlie Martinez and Vijay Chidambaram. CrashMonkey: A framework to systematically test
file-system crash consistency. In Proceedings of the 9th USENIX Conference on Hot Topics
in Storage and File Systems (HotStorage), 2017.

[139] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Benjamin, Ashvin Goel,
and Angela Demke Brown. Recon: Verifying file system consistency at runtime. In Proceed-
ings of the 10th USENIX Conference on File and Storage Technologies (FAST), 2012.

[140] Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, and Ashvin Goel.
Checking the integrity of transactional mechanisms. Trans. Storage, 10(4), October 2014.

[141] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam. High-performance meta-
data integrity protection in the WAFL copy-on-write file system. In Proceedings of the 15th
Usenix Conference on File and Storage Technologies (FAST), 2017.

[142] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nicko-
lai Zeldovich. Using crash hoare logic for certifying the FSCQ file system. In Proceedings of
the 25th Symposium on Operating Systems Principles (SOSP), 2015.

[143] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button verifica-
tion of file systems via crash refinement. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (OSDI), 2016.

[144] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In Proceedings of the International Symposium on Code Generation
and Optimization, 2004.

[145] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

[146] Linus Torvalds. https://github.com/torvalds/linux/blob/master/include/linux/
kfifo.h, 2013.

[147] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers,
Third Edition. O’Reilly Media, Inc., 3rd edition, 2005.

[148] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Efficient persist barriers
for multicores. In Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), 2015.

[149] Persistent Memory Wiki. Persistent memory. https://nvdimm.wiki.kernel.org/, 2018.

https://bit.ly/2BLZHCo
https://bit.ly/367Jc1m
https://github.com/torvalds/linux/blob/master/include/linux/kfifo.h
https://github.com/torvalds/linux/blob/master/include/linux/kfifo.h
https://nvdimm.wiki.kernel.org/

Bibliography 188

[150] Intel Corporation. Intel Xeon Silver 4110 Processor. https://ark.intel.com/products/
123547/Intel-Xeon-Silver-4110-Processor-11M-Cache-2_10-GHz, 2017.

[151] Intel Corporation. PMFS: Remove duplicate flush buffer. https://github.com/snalli/
PMFS-new/commit/ded1b075eb911c469233433d83cb678ee800367c, 2015.

[152] Intel Corporation. PMFS: Remove unnecessary flushing from pmfs_fsync(). https:
//github.com/linux-pmfs/pmfs/commit/e293e14725aaf36d844bfc4a0cb3d4f99fba1f0b,
2013.

[153] Intel Corporation. Add missing undo log entry in rbtree example (PMDK). https:
//github.com/pmem/pmdk/commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-
f2692f0bb21a212d07a5d1bc2115c071, 2015.

[154] Intel Corporation. PMFS. https://github.com/snalli/PMFS-new/blob/
2c62f0a20f98afe128e59d5e7f0aff40489b27f7/journal.c, 2016.

[155] Intel Corporation. B-Tree (PMDK). https://github.com/pmem/pmdk/blob/
5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/libpmemobj/tree_map/
btree_map.c, 2018.

[156] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory
updates via JUSTDO logging. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2016.

[157] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson. From
ARIES to MARS: Transaction support for next-generation, solid-state drives. In Proceed-
ings of the ACM Symposium on Operating Systems Principles (SOSP), 2013.

[158] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. REWIND: Recovery write-
ahead system for in-memory non-volatile data-structures. PVLDB, 8(5):497–508, 2015.

[159] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging locks for
non-volatile memory consistency. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages & Applications (OOPSLA), 2014.

[160] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic. Optimizing checkpoints using
NVM as virtual memory. In IEEE 27th International Symposium on Parallel and Dis-
tributed Processing (IPDPS), 2013.

[161] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug
Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent memory. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2009.

[162] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan Miller. Reducing NVM writes with
optimized shadow paging. In 10th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2018.

[163] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model
for intermittent systems. In Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2015.

[164] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. Intermittent
Computing: Challenges and Opportunities. In 2nd Summit on Advances in Programming
Languages (SNAPL), 2017.

https://ark.intel.com/products/123547/Intel-Xeon-Silver-4110-Processor-11M-Cache-2_10-GHz
https://ark.intel.com/products/123547/Intel-Xeon-Silver-4110-Processor-11M-Cache-2_10-GHz
https://github.com/snalli/PMFS-new/commit/ded1b075eb911c469233433d83cb678ee800367c
https://github.com/snalli/PMFS-new/commit/ded1b075eb911c469233433d83cb678ee800367c
https://github.com/linux-pmfs/pmfs/commit/e293e14725aaf36d844bfc4a0cb3d4f99fba1f0b
https://github.com/linux-pmfs/pmfs/commit/e293e14725aaf36d844bfc4a0cb3d4f99fba1f0b
https://github.com/pmem/pmdk/commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/snalli/PMFS-new/blob/2c62f0a20f98afe128e59d5e7f0aff40489b27f7/journal.c
https://github.com/snalli/PMFS-new/blob/2c62f0a20f98afe128e59d5e7f0aff40489b27f7/journal.c
https://github.com/pmem/pmdk/blob/5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/libpmemobj/tree_map/btree_map.c
https://github.com/pmem/pmdk/blob/5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/libpmemobj/tree_map/btree_map.c
https://github.com/pmem/pmdk/blob/5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/libpmemobj/tree_map/btree_map.c

Bibliography 189

[165] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[166] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Peter M. Chen,
and Thomas F. Wenisch. Persistency for synchronization-free regions. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2018.

[167] David E. Lowell and Peter M. Chen. Free transactions with rio vista. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP), 1997.

[168] Qingrui Liu, Joseph Lzraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh, and Changhee
Jung. iDO: Compiler-directed failure atomicity for nonvolatile memory. In Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018.

[169] E. R. Giles, K. Doshi, and P. Varman. SoftWrAP: A lightweight framework for transactional
support of storage class memory. In 31st Symposium on Mass Storage Systems and Tech-
nologies (MSST), 2015.

[170] Michael Wu and Willy Zwaenepoel. eNVy: A non-volatile, main memory storage system. In
Proceedings of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1994.

[171] Ellis Giles, Kshitij Doshi, and Peter Varman. Continuous checkpointing of htm transactions
in nvm. In Proceedings of the 2017 ACM SIGPLAN International Symposium on Memory
Management (ISMM), 2017.

[172] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and Patrick Eug-
ster. NVthreads: Practical persistence for multi-threaded applications. In Proceedings of the
Twelfth European Conference on Computer Systems (EuroSys), 2017.

[173] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES: A
transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Systems, 17(1):94–162, 1992.

[174] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory OLTP
recovery. In IEEE 30th International Conference on Data Engineering (ICDE), 2014.

[175] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Iron file systems. In Proceedings
of the Twentieth ACM Symposium on Operating Systems Principles (SOSP), 2005.

[176] Intel. PMDK man page: libpmem. http://pmem.io/pmdk/manpages/linux/v1.6/libpmem/
libpmem.7.html.

[177] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), 2005.

[178] Intel. Quick start guide: Configure Intel Optane™ DC persistent memory modules on Linux.
https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-
optane-dc-persistent-memory-on-linux, 2019.

[179] Michal Zalewski. American fuzzy lop. https://lcamtuf.coredump.cx/afl/.

http://pmem.io/pmdk/manpages/linux/v1.6/libpmem/libpmem.7.html
http://pmem.io/pmdk/manpages/linux/v1.6/libpmem/libpmem.7.html
https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux
https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux
https://lcamtuf.coredump.cx/afl/

Bibliography 190

[180] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based greybox
fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

[181] David Drysdale. Coverage-guided kernel fuzzing with syzkaller, 2016.

[182] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++: Combining
incremental steps of fuzzing research. In 14th USENIX Workshop on Offensive Technologies
(WOOT), 2020.

[183] Google. OSS-Fuzz: Continuous fuzzing for open source software. https://github.com/
google/oss-fuzz.

[184] Philip Lantz, Dulloor Subramanya Rao, Sanjay Kumar, Rajesh Sankaran, and Jeff Jackson.
Yat: A validation framework for persistent memory software. In USENIX Annual Technical
Conference (ATC), 2014.

[185] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim. Fuzzing file
systems via two-dimensional input space exploration. 2019 IEEE Symposium on Security
and Privacy (SP), pages 818–834, 2019.

[186] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim.
Finding semantic bugs in file systems with an extensible fuzzing framework. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (SOSP), 2019.

[187] Intel. PMDK man page: libpmem. https://pmem.io/pmdk/manpages/linux/master/
libpmemobj/libpmemobj.7.html.

[188] Michael Boelen. Linux and ASLR: kernel/randomize_va_space. https://linux-audit.
com/linux-aslr-and-kernelrandomize_va_space-setting/, 2016.

[189] Yan Shoshitaishvili. Preeny. https://github.com/zardus/preeny/.

[190] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23(3):337–343, 1977.

[191] Intel. Pmdk mapcli. https://github.com/pmem/pmdk/blob/master/src/examples/
libpmemobj/map/mapcli.c.

[192] AFLplusplus. American fuzzy lop plus plus (afl++). https://aflplus.plus/.

[193] Laf Intel. Circumventing fuzzing roadblocks with compiler transformations. https:
//lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-
compiler-transformations/, 2016.

[194] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. Be sensitive and col-
laborative: Analyzing impact of coverage metrics in greybox fuzzing. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID), 2019.

[195] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A file system for storage class memory.
In Proceedings of 2011 International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2011.

[196] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The linux kernel library. In 9th RoEduNet
IEEE International Conference, 2010.

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://github.com/zardus/preeny/
https://github.com/pmem/pmdk/blob/master/src/examples/libpmemobj/map/mapcli.c
https://github.com/pmem/pmdk/blob/master/src/examples/libpmemobj/map/mapcli.c
https://aflplus.plus/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/

Bibliography 191

[197] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen, Satish
Narayanasamy, and Thomas F. Wenisch. Language-level persistency. In Proceedings of
the 44th Annual International Symposium on Computer Architecture (ISCA), 2017.

[198] William Wang and Stephan Diestelhorst. Persistent atomics for implementing durable lock-
free data structures for non-volatile memory (brief announcement). In Proceedings of the
31st ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’19, page 309–
311, New York, NY, USA, 2019. Association for Computing Machinery.

[199] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and William Horne. Silent
shredder: Zero-cost shredding for secure non-volatile main memory controllers. In Proceed-
ings of the Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[200] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens, N. Sakharnykh,
P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler, and W. J. Dally. Scaling the power
wall: A path to exascale. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 830–841, Nov 2014.

[201] ITRS. International technology roadmap for semiconductors: 2005 edition, assembly and
packaging. https://www.semiconductors.org/clientuploads/Research_Technology/
ITRS/2005/1_Executive%20Summary.pdf, 2005.

[202] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and Yan Solihin.
Scaling the bandwidth wall: Challenges in and avenues for CMP scaling. In Proceedings of
the 36th Annual International Symposium on Computer Architecture (ISCA), 2009.

[203] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Optimistic crash consistency. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2013.

[204] Storage Networking Industry Initiative (SNIA). NVDIMM messaging and FAQ. https://
www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.
pdf.

[205] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathi-
jit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The Gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[206] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda. Log-
structured non-volatile main memory. In USENIX Annual Technical Conference (ATC),
2017.

[207] Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry Hoffmann, and Frederic T. Chong.
Memory cocktail therapy: A general learning-based framework to optimize dynamic trade-
offs in NVMs. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017.

[208] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng Wu. Efficient sup-
port of position independence on non-volatile memory. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017.

[209] Tiancong Wang, Sakthikumaran Sambasivam, Yan Solihin, and James Tuck. Hardware sup-
ported persistent object address translation. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2017.

https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf
https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf

Bibliography 192

[210] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. Proteus: A flex-
ible and fast software supported hardware logging approach for NVM. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017.

[211] Billy Tallis. The Intel Optane SSD DC P4800X (375GB) review: Testing 3D XPoint perfor-
mance. https://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-
a-deep-dive-into-3d-xpoint-enterprise-performance, 2017.

[212] Gordon Mah Ung. Optane memory review: Why you may want Intel’s futuristic cache in
your PC. https://www.pcworld.com/article/3191706/storage/optane-memory-review-
why-you-may-want-intels-futuristic-cache-in-your-pc.html, 2017.

[213] Intel. Intel Optane SSD DC P4800X series. https://www.intel.com/content/www/us/en/
products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-
series.html.

[214] Everspin Technologies. Storage solutions achieve greater performance with MRAM. https:
//www.everspin.com.

[215] Arthur Sainio. NVDIMM - Changes are here so what’s next? https://www.snia.org/
sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What%27s%
20Next%20-%20final.pdf, 2016.

[216] David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon
5500 processors. https://software.intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf.

[217] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. Telecom application
transaction processing benchmark. http://tatpbenchmark.sourceforge.net/, 2011.

[218] Transaction Processing Performance Council (TPC)). Tpc-c. http://www.tpc.org/tpcc/
default.asp.

[219] Akashi Satoh and Tadanobu Inoue. ASIC-hardware-focused comparison for hash functions
MD5, RIPEMD-160, and SHS. INTEGRATION, the VLSI journal, 40(1):3–10, 2007.

[220] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact Rijndael hard-
ware architecture with S-box optimization. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 239–254. Springer, 2001.

[221] Y. Sui, D. Ye, and J. Xue. Detecting memory leaks statically with full-sparse value-flow
analysis. IEEE Transactions on Software Engineering, 40(2):107–122, Feb 2014.

[222] Yulei Sui and Jingling Xue. SVF: Interprocedural static value-flow analysis in LLVM. In
Proceedings of the 25th International Conference on Compiler Construction (CC), CC 2016,
pages 265–266, New York, NY, USA, 2016. ACM.

[223] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermeasures: the
Case of AES. In CT-RSA, 2006.

[224] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games – Bringing Access-
Based Cache Attacks on AES to Practice. In IEEE Symposium on Security & Privacy
(S&P), 2011.

[225] Colin Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.

https://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
https://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
https://www.pcworld.com/article/3191706/storage/optane-memory-review-why-you-may-want-intels-futuristic-cache-in-your-pc.html
https://www.pcworld.com/article/3191706/storage/optane-memory-review-why-you-may-want-intels-futuristic-cache-in-your-pc.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.everspin.com
https://www.everspin.com
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What%27s%20Next%20-%20final.pdf
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What%27s%20Next%20-%20final.pdf
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What%27s%20Next%20-%20final.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://tatpbenchmark.sourceforge.net/
http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcc/default.asp

Bibliography 193

[226] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Trachtenberg, Jason Hen-
nessey, Alex Ionescu, and Anders Fogh. Page Cache Attacks. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2019.

[227] Onur Acıiçmez, Çetin Kaya Koç, and Jean-pierre Seifert. On the Power of Simple Branch
Prediction Analysis. In Proceedings of the 2nd ACM symposium on Information, computer
and communications security (AsiaCCS), 2007.

[228] Onur Acıiçmez, Jean-Pierre Seifert, and Çetin Kaya Koç. Predicting secret keys via branch
prediction. In CT-RSA, 2007.

[229] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Ponomarev.
BranchScope: A New Side-Channel Attack on Directional Branch Predictor. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2018.

[230] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom. Foreshadow-NG:
Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution. https:
//foreshadowattack.eu/foreshadow-NG.pdf, 2018.

[231] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool, 2nd edition,
2013.

[232] Intel. Intel Optane DC Persistent Memory. https://www.intel.com/content/www/us/en/
architecture-and-technology/optane-dc-persistent-memory.html, 2021.

[233] The Linux Kernel Archives. Direct Access for files. https://www.kernel.org/doc/
Documentation/filesystems/dax.txt, 2021.

[234] Intel. Persistent Memory FAQ. https://software.intel.com/content/www/us/en/
develop/articles/persistent-memory-faq.html, 2020.

[235] Intel. pmemkv. https://github.com/pmem/pmemkv, 2022.

[236] Intel. Redis. https://github.com/pmem/redis/tree/3.2-nvml, 2017.

[237] Lenovo. Memcached-Pmem. https://github.com/lenovo/memcached-pmem, 2018.

[238] Intel. PMSE - Persistent memory storage engine for MongoDB. https://github.com/pmem/
pmem-rocksdb, 2018.

[239] Intel. PMEM-RocksDB. https://github.com/pmem/pmse, 2018.

[240] Intel. Code Sample: Enable Your Application for Persistent Memory with MySQL Stor-
age Engine. https://software.intel.com/content/www/us/en/develop/articles/
code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-
engine.html, 2019.

[241] Jeff Barr. Now Available – Amazon EC2 High Memory Instances with 6, 9, and 12 TB of
Memory, Perfect for SAP HANA. https://aws.amazon.com/blogs/aws/now-available-
amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-memory-perfect-for-
sap-hana/, 2018.

https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.html
https://github.com/pmem/pmemkv
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/lenovo/memcached-pmem
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmse
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://aws.amazon.com/blogs/aws/now-available-amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-memory-perfect-for-sap-hana/
https://aws.amazon.com/blogs/aws/now-available-amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-memory-perfect-for-sap-hana/
https://aws.amazon.com/blogs/aws/now-available-amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-memory-perfect-for-sap-hana/

Bibliography 194

[242] Nan Boden. Available first on Google Cloud: Intel Optane DC Persistent Memory. https://
cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-
optane-dc-persistent-memory, 2018.

[243] Dave Eggleston. Persistent Memory: Media, Attachment, and Usage. https://www.snia.
org/educational-library/persistent-memory-media-attachment-and-usage-2020,
2020.

[244] Andy Rudoff. Persistent Memory Programming Made Easy with pmemkv. https:
//www.snia.org/sites/default/files/SDC/2019/presentations/PM/Rudoff_Andy_
Persistent_Memory_Programming_Made_Easy_with_pmemkv.pdf, 2019.

[245] Steve Scargall. pmemkv: A Persistent In-Memory Key-Value Store, pages 141–153. Apress,
Berkeley, CA, 2020.

[246] Intel. IPMCTL: Utility for configuring and managing Intel Optane persistent memory mod-
ules (PMem). https://github.com/intel/ipmctl, 2021.

[247] Intel. NDCTL: Utility library for managing the libnvdimm. https://github.com/pmem/
ndctl, 2021.

[248] Intel. Persistent Memory Programming. https://pmem.io/, 2022.

[249] Frank T. Hady. Faster Access to More Data. https://www.intel.com/content/www/us/
en/architecture-and-technology/optane-technology/faster-access-to-more-data-
article-brief.html, 2019.

[250] Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. Reverse Engineering Intel Last-Level Cache Complex Addressing Using Perfor-
mance Counters. In International Symposium on Recent Advances in Intrusion Detection
(RAID), 2015.

[251] Henry Wong. Intel Ivy Bridge Cache Replacement Policy. http://blog.stuffedcow.net/
2013/01/ivb-cache-replacement/, 2013.

[252] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida, and
Kaveh Razavi. SMASH: Synchronized Many-sided Rowhammer Attacks From JavaScript.
In USENIX Security Symposium, 2021.

[253] Daniel Gruss, David Bidner, and Stefan Mangard. Practical Memory Deduplication Attacks
in Sandboxed JavaScript. In European Symposium on Research in Computer Security (ES-
ORICS), 2015.

[254] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. CacheQuery: Learning Replace-
ment Policies from Hardware Caches. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2020.

[255] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke. CacheAu-
dit: A Tool for the Static Analysis of Cache Side Channels. In USENIX Security Sympo-
sium, 2013.

[256] H. Ghasemzadeh, S. Mazrouee, and M.R. Kakoee. Modified pseudo LRU replacement al-
gorithm. In 13th Annual IEEE International Symposium and Workshop on Engineering of
Computer-Based Systems (ECBS), 2006.

https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://www.snia.org/educational-library/persistent-memory-media-attachment-and-usage-2020
https://www.snia.org/educational-library/persistent-memory-media-attachment-and-usage-2020
https://www.snia.org/sites/default/files/SDC/2019/presentations/PM/Rudoff_Andy_Persistent_Memory_Programming_Made_Easy_with_pmemkv.pdf
https://www.snia.org/sites/default/files/SDC/2019/presentations/PM/Rudoff_Andy_Persistent_Memory_Programming_Made_Easy_with_pmemkv.pdf
https://www.snia.org/sites/default/files/SDC/2019/presentations/PM/Rudoff_Andy_Persistent_Memory_Programming_Made_Easy_with_pmemkv.pdf
https://github.com/intel/ipmctl
https://github.com/pmem/ndctl
https://github.com/pmem/ndctl
https://pmem.io/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/faster-access-to-more-data-article-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/faster-access-to-more-data-article-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/faster-access-to-more-data-article-brief.html
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

Bibliography 195

[257] Tristian “Truth” Brown, Travis Liao, and Jamie Chou. Analyzing the Performance of Intel
Optane DC Persistent Memory in App Direct Mode in Lenovo ThinkSystem Servers. https:
//lenovopress.com/lp1083.pdf, 2019.

[258] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard.
ARMageddon: Cache Attacks on Mobile Devices. In USENIX Security Symposium, 2016.

[259] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss, Carlo
Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud. In Network and Distributed System Security
Symposium (NDSS), 2017.

[260] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+Flush: A
Fast and Stealthy Cache Attack. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2016.

[261] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-space: High-bandwidth
and Reliable Covert Channel Attacks inside the Cloud. ACM Transactions on Networking,
2014.

[262] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In
International Conference on Financial Cryptography and Data Security, 2017.

[263] Benjamin Semal, Konstantinos Markantonakis, Keith Mayes, and Jan Kalbantner. One
Covert Channel to Rule Them All: A Practical Approach to Data Exfiltration in the Cloud.
In IEEE International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2020.

[264] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio
Canella, and Daniel Gruss. PLATYPUS: Software-based Power Side-Channel Attacks on
x86. In IEEE Symposium on Security & Privacy (S&P), 2021.

[265] Chen Change Loy. Keystroke100 Dataset. http://personal.ie.cuhk.edu.hk/~ccloy/
downloads_keystroke100.html, 2021.

[266] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload
Analysis of a Large-Scale Key-Value Store. In ACM SIGMETRICS Performance Evaluation
Review (SIGMETRICS), 2012.

[267] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B. Gibbons, Ryan Johnson,
Ippokratis Pandis, and Radu Stoica. TPC-E vs. TPC-C: Characterizing the new TPC-E
benchmark via an I/O comparison study. ACM SIGMOD Record, 2011.

[268] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice, Raphael
Spreitzer, and Stefan Mangard. KeyDrown: Eliminating Software-Based Keystroke Timing
Side-Channel Attacks. In Network and Distributed System Security Symposium (NDSS),
2018.

[269] Kehuan Zhang and XiaoFeng Wang. Peeping Tom in the Neighborhood: Keystroke Eaves-
dropping on Multi-User Systems. In USENIX Security Symposium, 2009.

[270] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. No Pardon for the Interruption:
New Inference Attacks on Android Through Interrupt Timing Analysis. In IEEE Symposium
on Security & Privacy (S&P), 2016.

https://lenovopress.com/lp1083.pdf
https://lenovopress.com/lp1083.pdf
http://personal.ie.cuhk.edu.hk/~ccloy/downloads_keystroke100.html
http://personal.ie.cuhk.edu.hk/~ccloy/downloads_keystroke100.html

Bibliography 196

[271] Suman Jana and Vitaly Shmatikov. Memento: Learning Secrets from Process Footprints. In
IEEE Symposium on Security & Privacy (S&P), 2012.

[272] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, You, Get Off of
My Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In Proceedings
of the 16th ACM conference on Computer and communications security (CCS), 2009.

[273] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing Analysis of Keystrokes and
Timing Attacks on SSH. In USENIX Security Symposium, 2001.

[274] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t Interrupt Me While I Type: Infer-
ring Text Entered Through Gesture Typing on Android Keyboards. Proceedings on Privacy
Enhancing Technologies, 2016.

[275] Yohan Muliono, Hanry Ham, and Dion Darmawan. Keystroke Dynamic Classification using
Machine Learning for Password Authorization. Procedia Computer Science, 2018.

[276] Kwesi Elliot, Jonathan Graham, Yusef Yassin, Trenton Ward, John Caldwell, and Tawab At-
tie. A Comparison of Machine Learning Algorithms in Keystroke Dynamics. In International
Conference on Computational Science and Computational Intelligence (CSCI), 2019.

[277] Martin Schwarzl, Erik Kraft, Moritz Lipp, and Daniel Gruss. Remote Page Deduplication
Attacks. In Network and Distributed System Security Symposium (NDSS), 2022.

[278] Andrei Bacs, Saidgani Musaev, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
DUPEFS: Leaking Data Over the Network With Filesystem Deduplication Side Channels.
In 20th USENIX Conference on File and Storage Technologies (FAST), 2022.

[279] Rodney Owens and Weichao Wang. Non-interactive OS fingerprinting through memory de-
duplication technique in virtual machines. In International Performance Computing and
Communications Conference, 2011.

[280] Mathy Vanhoef and Tom Van Goethem. HEIST: HTTP Encrypted Information can be
Stolen through TCP-windows. In Black Hat US Briefings, Location: Las Vegas, USA, 2016.

[281] Tom Van Goethem, Mathy Vanhoef, Frank Piessens, and Wouter Joosen. Request and con-
quer: Exposing cross-origin resource size. In USENIX Security Symposium, 2016.

[282] Ben Titzer. What Spectre means for Language Implementers. https://pliss2019.github.
io/ben_titzer_spectre_slides.pdf, 2019.

[283] Xin-jie Zhao, Tao Wang, and Yuanyuan Zheng. Cache Timing Attacks on Camellia Block
Cipher. Cryptology ePrint Archive, Report 2009/354, 2009.

[284] Darshana Jayasinghe, Jayani Fernando, Ranil Herath, and Roshan Ragel. Remote cache
timing attack on advanced encryption standard and countermeasures. In Fifth International
Conference on Information and Automation for Sustainability (ICIAFs), 2010.

[285] Hassan Aly and Mohammed ElGayyar. Attacking aes using bernstein’s attack on modern
processors. In International Conference on Cryptology in Africa, 2013.

[286] Vishal Saraswat, Daniel Feldman, Denis Foo Kune, and Satyajit Das. Remote Cache-timing
Attacks Against AES. In Workshop on Cryptography and Security in Computing Systems,
2014.

[287] Onur Acıiçmez, Werner Schindler, and Cetin K. Koc. Cache Based Remote Timing Attack
on the AES. In CT-RSA, 2006.

https://pliss2019.github.io/ben_titzer_spectre_slides.pdf
https://pliss2019.github.io/ben_titzer_spectre_slides.pdf

Bibliography 197

[288] Tom Van Goethem, Christina Pöpper, Wouter Joosen, and Mathy Vanhoef. Timeless Tim-
ing Attacks: Exploiting Concurrency to Leak Secrets over Remote Connections. In USENIX
Security Symposium, 2020.

[289] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali. Single
Machine Graph Analytics on Massive Datasets Using Intel Optane DC Persistent Memory.
VLDB Endowment, 2020.

[290] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch, Phillip B.
Gibbons, and Julian Shun. Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs.
VLDB Endowment, 2020.

[291] Intel. Intel Optane DC persistent memor – Quick start guide. https://www.intel.
com/content/dam/support/us/en/documents/memory-and-storage/data-center-
persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf, 2020.

[292] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software cache-based
side channel attacks. In Proceedings of the 34th annual international symposium on Com-
puter architecture (ISCA), 2007.

[293] Dan Page. Partitioned Cache Architecture as a Side-Channel Defence Mechanism. Cryptol-
ogy ePrint Archive, Report 2005/280, 2005.

[294] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and
Ruby B Lee. Catalyst: Defeating last-level cache side channel attacks in cloud computing.
In IEEE International Symposium on High Performance Computer Architecture (HPCA),
2016.

[295] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache: Hybrid side-
channel-resilient caches for trusted execution environments. In USENIX Security Symposium,
2019.

[296] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. Secure hierarchy-
aware cache replacement policy (SHARP): Defending against cache-based side channel at-
tacks. In ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), 2017.

[297] Jingfei Kong, Onur Acıiçmez, Jean-Pierre Seifert, and Huiyang Zhou. Hardware-software
integrated approaches to defend against software cache-based side channel attacks. In IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2009.

[298] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks.
ACM Transactions on Architecture and Code Optimization (TACO), 8(4), 2011.

[299] Benjamin A. Braun, Suman Jana, and Dan Boneh. Robust and Efficient Elimination of
Cache and Timing Side Channels. arXiv:1506.00189, 2015.

[300] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A Real-Time Side-Channel
Attack Detection System in Clouds. In Research in Attacks, Intrusions, and Defenses
(RAID), 2016.

[301] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A. Adam Ding. SCADET: A Side-Channel
Attack Detection Tool for Tracking Prime+Probe. In IEEE International Conference on
Computer-Aided Design (ICCAD), 2018.

https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf

Bibliography 198

[302] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of cache-based side-
channel attacks using Hardware Performance Counters. Cryptology ePrint Archive, Report
2015/1034, 2015.

[303] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham Chaudhry, Vianney
Lapotre, and Guy Gogniat. NIGHTs-WATCH: A cache-based side-channel intrusion detector
using hardware performance counters. In Proceedings of the 7th International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP), 2018.

[304] Myoung-Jae Lee, Chang Bum Lee, Dongsoo Lee, Seung Ryul Lee, Man Chang, Ji Hyun Hur,
Young-Bae Kim, Chang-Jung Kim, David H Seo, Sunae Seo, U-In Chung, In-Kyeong Yoo,
and Kinam Kim. A fast, high-endurance and scalable non-volatile memory device made from
asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. Nature materials, 2011.

[305] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai,
S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, and M.-
J. Tsai. Evidence and solution of over-RESET problem for HfOX based resistive memory
with sub-ns switching speed and high endurance. In International Electron Devices Meeting
(IEDM), 2010.

[306] Kristian Vättö, Ian Cutress, and Ryan Smith. Analyzing Intel-Micron 3D XPoint: The
Next Generation Non-Volatile Memory. https://www.anandtech.com/show/9470/intel-
and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-
performance-endurance-than-nand, 2015.

[307] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Luján. PMThreads: Persis-
tent memory threads harnessing versioned shadow copies. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2020.

[308] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-NVM: Log less, re-execute more.
In Proceedings of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2021.

[309] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug
Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent memory. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP),
2009.

[310] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. Mojim: A reliable
and highly-available non-volatile memory system. In Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[311] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and Thomas
Anderson. Strata: A cross media file system. In Proceedings of the 26th Symposium on Op-
erating Systems Principles (SOSP), 2017.

[312] X. Wu and A. L. N. Reddy. SCMFS: A file system for storage class memory. In SC ’11:
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2011.

[313] Ian Neal, B. Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, S. Peter, and Baris
Kasikci. AGAMOTTO: How persistent is your persistent memory application? In Pro-
ceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2020.

https://www.anandtech.com/show/9470/intel-and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-performance-endurance-than-nand
https://www.anandtech.com/show/9470/intel-and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-performance-endurance-than-nand
https://www.anandtech.com/show/9470/intel-and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-performance-endurance-than-nand

Bibliography 199

[314] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail, Sunny Wadkar,
Dongyoon Lee, and Changwoo Min. Witcher: Systematic crash consistency testing for non-
volatile memory key-value stores. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP), 2021.

[315] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Jaaru: Efficiently model checking
persistent memory programs. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021.

[316] Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. Efficiently detecting concur-
rency bugs in persistent memory programs. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2022.

[317] Xinwei Fu, Dongyoon Lee, and Changwoo Min. DURINN: Adversarial memory and thread
interleaving for detecting durable linearizability bugs. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2022.

[318] Fan Yang, Youyou Lu, Youmin Chen, Haiyu Mao, and Jiwu Shu. No Compromises: Secure
NVM with crash consistency, write-efficiency and high-performance. In Proceedings of the
56th Annual Design Automation Conference (DAC), 2019.

[319] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair. Triad-NVM: Per-
sistency for integrity-protected and encrypted non-volatile memories. In Proceedings of the
46th International Symposium on Computer Architecture (ISCA), 2019.

[320] Mazen Alwadi, Kazi Abu Zubair, David Mohaisen, and Amro Awad. Phoenix: Towards
ultra-low overhead, recoverable, and persistently secure NVM. IEEE Transactions on De-
pendable and Secure Computing, 2022.

[321] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin. Persist level paral-
lelism: Streamlining integrity tree updates for secure persistent memory. In 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020.

[322] Zhengguo Chen, Youtao Zhang, and Nong Xiao. Cachetree: Reducing integrity verification
overhead of secure nonvolatile memories. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 40(7):1340–1353, 2021.

[323] Fan Yang, Youmin Chen, Haiyu Mao, Youyou Lu, and Jiwu Shu. ShieldNVM: An efficient
and fast recoverable system for secure non-volatile memory. ACM Trans. Storage, 2020.

[324] Pengfei Zuo, Yu Hua, and Yuan Xie. SuperMem: Enabling application-transparent secure
persistent memory with low overheads. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), 2019.

[325] K. A. Zubair and A. Awad. Anubis: Ultra-low overhead and recovery time for secure non-
volatile memories. In ACM/IEEE 46th Annual International Symposium on Computer Ar-
chitecture (ISCA), 2019.

	Introduction
	Theme 1: Correctness guarantees for PM programming
	Theme 2: Secured and high-Performance PM systems
	Theme 3: Side-channel vulnerabilities in PM hardware
	Summary

	Background
	Persistent Memory Technologies
	Software Systems for Persistent Memory
	Programming with Low-Level Primitives
	Programming with PM Libraries
	Crash Consistency Bugs

	Hardware Systems for Persistent Memory
	Crash consistency support from the PM hardware systems.
	Encryption in PM Hardware
	Other Memory and Storage Support for PM Hardware Systems

	Security Implications of Persistent Memory Systems
	Side-Channel Attacks
	Hardware System inside Optane PM

	Software Support for Persistent Memory Systems
	Testing Framework for Persistent Memory Programs
	Introduction
	Crash-consistency Testing
	Key Ideas of PMTest
	Key Ideas in Testing Crash Consistency
	Integrating the Key Ideas into PMTest

	Implementation of PMTest
	Overview of PMTest
	PMTest Interface
	Operation Tracking
	The Checking Engine
	System Integration

	Flexibility of PMTest
	Implementation of Customized Checkers.
	Adaption to Other Persistency Models.

	Evaluation
	Methodology
	Performance Evaluation
	Bug Detection Evaluation

	Discussion
	The Use of PMTest
	Programmer's Effort using PMTest
	Impact of incorrect use of PMTest
	Future Work

	Testing for Persistent Memory Programs across System Failures
	Introduction
	Background and Motivation
	Need for An End-to-End, Cross-Failure Testing
	Causes of Inconsistency

	Cross-Failure Bugs
	Cross-Failure Race
	Cross-Failure Semantic Bug
	Summary

	Key Ideas of XFDetector
	Data Consistency
	Failure Injection

	Implementation of XFDetector
	An Overview of XFDetector
	Software Interface
	Tracing Mechanism
	Detection Procedure
	Extensibility

	Evaluation
	Methodology
	Performance
	Detection Capability

	Discussion

	Test Case Generation for Persistent Memory Programs
	Introduction
	Background and Motivation
	Nontrivial Bugs in PM Programming
	Requirements for Fuzzing PM Programs

	High-Level Design of PMFuzz
	Normal PM Image Generation
	Crash Image Generation
	Coverage for PM Path

	Implementation of PMFuzz
	Overview
	PM Operation Tracking
	Fuzzing Feedback Logic
	Execution Derandomization
	Detailed Fuzzing Procedure
	Test Case Management
	Optimization Strategies

	Evaluation
	Methodology
	PM Path Coverage
	Synthetic Bug Detection
	New Real-world Bugs Found by PMFuzz

	Discussion

	Secured and Efficient Hardware for Persistent Memory Systems
	Crash Consistency in Encrypted Persistent Memory Systems
	Introduction
	Crash Consistency for Encrypted PM Systems
	Counter-Atomicity
	Requirement
	Enforcing Counter-atomicity

	Selective Counter-Atomicity
	The Overhead of Full Counter-Atomicity
	Not All Writes Equally Affect Recoverability
	Definition and Primitives

	Implementing Selective Counter-Atomicity
	System Integration
	Hardware Implementation

	Evaluation
	Methodology
	Workloads
	Results

	Discussion

	Optimizing Memory and Storage Support for Persistent Memory Systems
	Introduction
	Performance Overhead of BMOs
	Overview
	Key Ideas
	Requirements

	JANUS
	High-level of Janus
	Backend Memory Operations
	Hardware Support
	Software Support for Optimization
	Compiler Support
	Real-World Considerations

	Evaluation
	Methodology
	Results

	Future Works

	Side-channel Attacks in Optane Persistent Memory
	Introduction
	Reverse-engineering and Attack Primitives
	System Configuration
	Overall hierarchy in Optane
	Read-Modify-Write Buffer
	Address-Indirection-Translation Buffer
	Wear-leveling
	Read-Write Contention
	Summary of Attack Primitives

	Local Cross-Core Covert Channel
	Attack Model
	Attack Design
	Attack Setup
	Results

	Keystroke Attack
	Attack Model
	Attack Design
	Attack Setup
	Results

	Remote Covert Channel
	Attack Model
	Attack Design
	Attack Setup
	Results

	Remote Note Board Attack
	Attack Model
	Attack Design
	Attack Setup
	Results

	Discussion
	Future Works
	Defense Mechanisms

	Related Works
	Software Systems for Persistent Memory
	Persistent Memory Libraries
	File systems for Persistent Memory
	Testing for Persistent Memory Software

	Hardware Systems for Persistent Memory
	Memory Persistency
	Hardware-based Crash Consistency Mechanisms
	Security Guarantees in PM Hardware Systems

	Conclusions
	Bibliography

