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Abstract

Software Defined Network (SDN) technologies have enabled the introduction of new services such

as dynamic Layer-1 (L1) circuits and Layer-2 (L2) virtual circuits (VCs). Our objective is to fully

realize high-rate circuits/VCs with almost zero packet loss for large dataset transfers. A multi-

domain SDN dynamic Layer-2 (L2) VC was used to conduct experiments to achieve this objective.

The results showed that a combination of (i) Circuit TCP (CTCP), in which the sending rate is

held fixed, and (ii) Token Bucket Filter (TBF) rate shaper at the sending host, is best to achieve,

high-throughput transfers. However, packet losses were still observed on these L2 VCs. Therefore,

a new study was presented using more controlled environments.

A new experimental study was undertaken in a single-rack testbed in which packet losses

and delays could be deliberately controlled. Three cases were emulated: (i) single circuit/rate-

guaranteed VC for a single large transfer from a server, (ii) multiple simultaneous large trans-

fers from a server, and (iii) semi-rate-guaranteed VC. CTCP and the TBF queueing discipline of

the Linux traffic control (tc) utility are recommended for the first case, and parameter selection

methods are provided. For the second case, the tc Hierarchical Token Bucket (HTB) discipline

is required to support multiple transfers, each on a distinct VC with its own rate and Round-Trip

Time (RTT). Our experiments showed that dynamic additions and deletions of classes are possi-

ble without impact on ongoing large-transfer flows. For the third case, CTCP is recommended if

the throughput of the large transfer is of primary concern, while HTCP is recommended if higher

consideration should be given to the other flows.

The thesis also provides insight and lessons learned about the to Linux TCP/IP stack. Three

layers were considered: (i) Application layer, (ii) Transport layer, and (iii) Data-link layer. New
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findings, which are beneficial to networking researchers are presented. We also provide insights

into how to monitor flows using tools such as tcpdump, tshark, and tcptrace.
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Chapter 1

Introduction

Research and Education Network (REN) providers have recently started offering high-speed dy-

namic Layer-2 (L2) networking services, in addition to basic IP-routed service, to universities

and research laboratories. To support dynamic L2 path services, switches should be configurable.

Control-plane protocols are required to create new path-based entries in the switch forwarding ta-

bles. OpenFlow/Software Defined Network (SDN) technologies have simplified the support of

such dynamic rate-guaranteed L2-path services, also known as virtual circuit (VC) services, as the

control-plane software can be implemented in SDN controllers external to the switches. Internet2

and ESnet, two US backbone REN providers, have deployed SDN controllers [2, 3] and Layer-2

switches to support dynamic L2 path service.

1.1 Objective

The objective of this work is to develop solutions that enable the effective use of dynamic L2

path services for large dataset transfers. Specifically, these solutions address the questions of what

transport layer protocol to use, and how to configure link-layer mechanisms within the end hosts

that are engaged in the data transfer. These solutions should enable the data-transfer application to

fully leverage a high-speed rate-guaranteed L2 path.

1
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1.2 Motivation

Many scientific researchers rely on networks to access national super-computing facilities to run

applications, or to download scientific datasets from external storage sites. For example, consider

the scientific discipline of high-energy physicists. Experiments are conducted on the Large Hadron

Collider (LHC), located near Geneva, Switzerland. The A Toroidal LHC ApparatuS (ATLAS)

experiment is one of seven particle-detector experiments constructed on the LHC, and datasets

created in this experiment are transferred to large storage systems located at Brookhaven National

Lab (BNL) in New York. BNL acts as the Tier-1 site in the US for the ATLAS experiment, which

means physicists located in the US will access the BNL high-performance computers to execute

their applications on the ATLAS data, and/or download the original or analyzed datasets from the

BNL storage systems over the WAN to local computing systems in their own institutions. A 100-

MB dataset is generated each second, which adds up to about 1 PB each year.

There are two problems with moving large datasets over the current Internet. First, there are

issues associated with throughput of the large data-transfers flows themselves, and second, the large

data-transfer flows can have adverse effects on other flows.

We first describe the issues associated with throughput when large datasets are transferred over

the Internet. Currently, the global service offered on the Internet is best-effort, which means that

bandwidth resources are not reserved prior to data transfer. Without resource reservation, competing

(bursty) flows can cause the occupancy levels of router buffers to increase suddenly, which could

then cause packet drops. The IP layer does not offer reliable service; instead it is a protocol that

simply delivers packets from source to destination. The protocol layer that makes the end-to-end

packet delivery reliable is TCP. The TCP sender detects and recovers from packet losses using

retransmissions. This basic error control scheme is augmented with a congestion control scheme

in which TCP sender lowers its sending rate every time a packet loss is detected on the assumption

that the packet loss occurred because of router buffer overflows. Prior to 1988 when a congestion-

control was added to TCP [4], there were repeated congestion collapses of the NSFnet (which was

the precursor to today’s Internet).



Chapter 1. Introduction 3

The consequence of the TCP sender decreasing its rate when packet loss is detected is that the

overall throughput drops especially on high Bandwidth-Delay Product (BDP) paths. The sending

rate is increased as acknowledgments arrive at the sender indicating successful packet delivery, and

therefore the higher the delay between the sender and the receiver, the slower the recovery. Dart et

al. [5] demonstrated that a low packet loss rate as low as 0.005% can cause a significant drop in data-

transfer throughput on high-BDP paths. The occurrence of packet losses on IP-routed paths, and

consequent lowering and increasing of TCP sending rate, results in variable throughput, and cor-

respondingly variable transfer completion times. Co-scheduling algorithms (e.g., joint scheduling

of compute and network resources, or visualization displays and network resources), or workflow

management systems [6], need predictable transfer times. Networking solutions that can guarantee

a certain throughput for a transfer can offer predictable transfer times.

The second problem noted above was that large data-transfer flows can have adverse effects

on other flows. As link rates increase, the range between the fastest and slowest flows increases.

In other words, when link rates were 64 kbps, and each phone call needed 64 kbps, there was

no difference in the rates required by different types of flows. Today, with 100 Gbps links, it is

possible to engineer a single data transfer to occur at rates close to 100 Gbps, while there are still

co-existing audio flows that require 64 kbps, or even lower rates with compression. Consequently,

a high-rate data-transfer flow could have adverse effects on real-time audio/video flows that have

stringent delay requirements. Prior work [7] reported experimental results that a single high-rate

large-sized flow (referred to as α flow) can cause increased packet delays and/or packet losses in

other flows, along with measurements obtained from ESnet that showed spikes in network traffic

attributed to a single α flow on a 10 Gbps link.

These above-described problems with moving large datasets across IP-routed networks moti-

vated us to look for alternative networking solutions. Dynamic L2 path service offered on SDNs

is the alternative networking solution considered in this work. Unlike in IP-routed service where

resources are not reserved for a flow, in dynamic L2 path service, packet losses are prevented by re-

serving bandwidth resources during circuit/virtual-circuit (VC) setup prior to data transfer. If there

are no packet losses due to router/switch buffer overflows, high throughput, close to the rate of the
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provisioned circuit/VC rate, can be achieved. Furthermore, transfer time becomes more predictable,

which resolves the co-scheduling and workflow management systems issue. With circuits/VCs, α

flows can be isolated to prevent adverse effects on other flows. Flow isolation is done by mecha-

nisms such as policing flows and scheduling packets, and directing packets of α flows to separate

switch/router buffers.

While circuit/VC networks offer the above-stated advantages, there are associated disadvan-

tages. The main disadvantage of circuit/VC service is that it not as scalable as connectionless

IP-routed service because of the per-flow policing and scheduling (QoS-control) actions required

in switches. A typical switch can perform these QoS-control actions on tens of flows, while a

backbone-network link typically carries tens of thousands of flows simultaneously. A second dis-

advantage is the circuit/VC setup delay. On WANs, this delay could be on the order of 100ms,

which means on a high-rate circuit, a file has to be large enough to make the circuit-setup delay

overhead a small part of the total transfer time.

To address these disadvantages, we propose the use of rate-guaranteed dynamic L2 path service

only to move datasets that are large enough that the transmission delay (size divide by circuit/VC

rate) is much larger than the propagation delay. Setting a high threshold for the dataset size also

ensures that relatively few flows require circuit/VC service, which addresses the scalability issue.

1.3 Contributions

The main contribution of this thesis is a novel cross-layer design that leverages transport- and link-

layer protocols to enable the full use of high-rate circuits/VCs to achieve high-throughput transfers.

In evaluating this design, we answer several questions: (i) how to set values of parameters of the

transport- and link-layer protocols, (ii) how to support the dynamic addition/deletion of circuits/VCs

for servers that support multiple simultaneous α flows, and (iii) how to choose a transport-layer

protocol for semi-rate guaranteed VCs. Also, the thesis provides insights and lessons learned about

the Linux networking stack and presents new findings that could be beneficial to networking re-

searchers. This work was reported in two publication [8, 9].
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1.4 Thesis organization

Chapter 2 provides background information, and reviews related work. Chapter 3 describes our

proposed cross-layer design and experimental evaluation. Chapter 4 describes a series of experi-

ments designed to obtain an in-depth understanding of the Linux network stack, offers insights and

describes lessons learned. The thesis is concluded in Chapter 5.



Chapter 2

Background and Related Work

Section 2.1 provides relevant background material, and Section 2.2 reviews related work.

2.1 Background

Background information on path-based networking, Software-Defined Networking (SDN), Re-

search and Education Networks (RENs), and a specific multi-domain SDN that was used in our

work, are described in Sections 2.1.1, 2.1.2, 2.1.3 and 2.1.4, respectively.

2.1.1 Path-based Networking

Before describing path-based networking, we provide a overview of different types of switches, and

corresponding networks.

Table 2.1: Types of switches

XXXXXXXXXXXXXX

Admission
control(control-plane)

Multiplexing
(data-plane) Circuit-multiplexing Packet-multiplexing

Connectionless N/A
Packet switch,

e.g., IP routers, Ethernet switches

Connection-oriented
Circuit switch, e.g.,

SONET, OCS switches

Virtual-circuit (VC) switch, e.g.,
MultiProtocol Label Switching

(MPLS), VLAN

6
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Table 2.1 classifies switches into three types based on the multiplexing technique used on

the data-plane, and the presence or absence of admission control on the control-plane. There

are two types of multiplexing: (i) circuit multiplexing (position-based, where “position” means

time-slot, frequency, and space), and (ii) packet multiplexing (header-based). Circuit-multiplexing

techniques include: Time-Division Multiplexing (TDM), Frequency-Division Multiplexing (FDM),

and Wavelength-Division Multiplexing (WDM). In TDM, multiple signals share a communication

medium by sending data in their assigned timeslots, while in FDM/WDM (the term WDM is used

in optical networks), multiple signals share a communication medium by sending data on different

frequencies/wavelengths. In packet-multiplexing mode, a link is shared between packets of multi-

ple flows, with the packet header carrying information that identifies the flow to which the packet

belongs.

If the switch controller runs an admission-control procedure, the switch is connection-oriented,

while there is no admission-control software in a connectionless switch. Since a position (timeslot,

frequency and space unit) needs to be assigned to a flow on both the input link and output link of

a circuit switch before the switch receives user data, circuit switches are necessarily connection-

oriented. As Table 2.1 shows SONET and Optical Circuit Switches (OCS) are examples of circuit

switches. If a packet switch controller includes admission-control software, it is a connection-

oriented packet switch, also called a virtual-circuit (VC) switch. Examples of VC switches shown

in Table 2.1 include MultiProtocol Label Switching (MPLS) and Virtual LAN (VLAN) switches. A

connectionless packet switch controller does not run admission-control software. Packet switches

operated in this mode are also referred to as datagram routers. Examples of connectionless packet

switches shown in Table 2.1 are IP routers and Ethernet switches.

All switch controllers require a routing table that maps destination addresses to output ports.

These tables can be computed on servers external to the switches and downloaded to the switch con-

trollers, or these tables can be computed by routing software running within the switch controllers.

The latter solution usually coexists with a distributed routing protocol for message exchanges be-

tween switch controllers to learn topology, reachability and optionally loading conditions.

In connectionless packet-switched networks, the routing table is sufficient for packet forward-
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ing. In high-speed routers, the routing table (also called Routing Information Base, or RIB) stored

in the switch controller (which is a processor with memory) is copied to a forwarding table (also

called Forwarding Information Base or FIB) in each line (interface) card. When packets arrive on

interfaces, the FIB is consulted to determine the outgoing interface on which to forward the packet

based on the destination address carried in the packet header.

Connection-oriented switches also have a controller that store a routing table similar to the

one stored in connectionless switch controllers. The difference is that this routing table is used

only in the circuit/VC setup phase. The controller also runs signaling protocol software to handle

requests for circuit/VC setup and release. Steps to set up a circuit/VC from node A to node B

in a distributed solution are summarized as follows: (i) node A sends a request message to the

first switch on the path. For circuits and VCs, the setup message contains the destination node B.

In addition, a circuit-setup message specifies the required circuit rate, while a VC-setup message

specifies a traffic descriptor (e.g., peak rate, average rate, and mean burst size) and QoS information

(e.g, packet loss rate, delay, delay variance). (ii) The switch controller parses the setup request, and

looks up the routing table for the next hop to reach the destination. (iii) The controller checks

its Connection Admission Control (CAC) table to see if the requested bandwidth can be granted

(or equivalently, the required QoS measures can be supported for the specific traffic description in

VC setups). It selects timeslots and/or frequencies in circuit siwtches, and labels in VC switches.

(iv) The switch updates the CAC table, and configures a timeslot/frequency/label mapping with the

selected timeslots and/or frequencies in circuit switches, and labels in VC switches, (v) The switch

then constructs a setup-request message and sends it to the next hop. The previous steps is repeated

at every switch on the end-to-end path until the setup messages reaches the destination, node B. If

the setup procedure was successful at each switch on the path, a confirmation message will sent in

the reverse direction from node B to node A. If not, the setup request is rejected.

If a circuit was established successfully, user-data arriving in an timeslot/frequency on an input

interface to a switch will be forwarded by the switch to the output interface indicated in the times-

lot/frequency mapping table on the specified output-side timeslot/frequency. A VC switch performs

a similar action after first demultiplexing each packet, extracting the label carried in the packet, and
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then consulting the label mapping table to determine the output interface and corresponding label

to use in the header of the forwarded packet.

Policing and scheduling mechanisms are implemented at switches to support Quality of Ser-

vice (QoS). Scheduling is performed at egress interfaces to decide which packet to transmit next.

Weighted Fair Queueing (WFQ) and Priority Queueing (PQ) are examples of schedulers. In WFQ,

multiple virtual queues are created on egress interfaces. Each queue is assigned bandwidth (either

strictly restricted for just this queue or shared among all virtual queues) and buffer space. PQ can

be combined with WFQ.

Policing is performed at ingress interfaces to ensure that a flow does not exceed its assigned

rate (circuit/VC rate). If a new packet arrival causes the flow-rate to exceed the circuit/VC assigned

rate, the policier marks the packet as being out-of-profile. Different actions can be configured to

handle out-of-profile packets. For example, out-of-profile packets could be dropped, directed to a

low-priority queue, or packets could be probabilistically droped.

2.1.2 Software-Defined Networking (SDN)

The circuit setup procedure described in Section 2.1.1 assumed that signaling protocols were im-

plemented in a switch. For decades, the networking community designed distributed protocols for

scalability. The SDN concept is changing this paradigm to a centralized approach.

The main idea of SDN is to move most of the software that runs on a switch controller to

an external server. This includes routing-protocol software, routing-table precomputation software

(e.g., software that runs Dijkstra’s algorithm based on received routing-protocol messages), and

signaling software (for handling signaling protocol messages for circuit/VC setup and release) in

circuit/VC switches. What is left behind on the switch controller is simple software that can receive,

parse and act on messages for configuring the forwarding table. In connectionless packet-switches,

this forwarding table is as described in Section 2.1.1, mapping destination addresses to output

ports. In circuit/VC switches, this forwarding table corresponds to the timeslot/frequency/label

mapping table of our description in the Section 2.1.1. One example protocol used for this purpose

is OpenFlow, and the forwarding/label mapping table is referred to as an OpenFlow table. The
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OpenFlow protocol has been extended to include wavelengths for optical circuit switches (v. 1.4.0).

As a concept, the idea of OpenFlow/SDN is not new. But the reason for the successful de-

ployment of SDN, which has primarily occurred in datacenters, is a lowering of costs, both capital

expenses (CAPEX) and operating expensse (OPEX). For example, if a datacenter has 1 million

servers (e.g., Google datacenters), then assuming 48-port switches, a total of 20,834 switches is

required to connect the servers. The cost of a 48-port switch is high (on the order of 10K) because

of software-engineer salaries. Software run on the switches can typically only be modified by engi-

neers employed by the switch vendor. Datacenter providers, especially Google, recognized that if

most of the software could be removed from the switch controller and run externally on the datacen-

ter provider’s own servers, this software could be modified and upgraded using external software

engineers. Furthermore, the software could be open-source, lowering costs even further.

In addition, such an external deployment of the controller software allows service providers

(e.g., datacenter providers or ISPs) to add new features to the software to introduce new services.

In the old model, feature requests from service providers are prioritized by the switch vendor,

which could add significant delays to the deployment of new services, especially for smaller service

providers.

2.1.3 Research and Education Networks (RENs)

University campuses and research laboratories are interconnected via regional RENs and backbone

(core) RENs. Internet2 [1] is a US-wide backbone REN, which each region (typically US state) has

its own regional REN. For example, the universities in Virginia, including University of Virginia

(UVA), connect their campus networks to a network operated by Mid-Atlantic Research Infrastruc-

ture Alliance (MARIA). MARIA’s network is connected to the Internet2’s network via a 100 Gb/s

Ethernet link.

Internet2 operates three networks, an IP-routed Layer-3 (L3) network, an Ethernet-switched

Layer-2 (L2) network, and optical circuit-switched WDM Layer-1 (L1) network. Networking ser-

vices are offered by each of these layers. Relevant to our work is the L2 network and the cor-

responding service, which Internet2 calls Advanced Layer 2 Service (AL2S), and hence this L2
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network and the AL2S service is explained in further detail.

Fig. 2.1 shows the Internet2’s AL2S network [1], which consists of 39 OpenFlow-enabled Eth-

ernet switches. These switches are operated in VC mode, which means an SDN controller needs to

explicitly configure all the AL2S switches on the path before data can be transferred. The specific

SDN controller used in the AL2S network is called Open Exchange Software Suite (OESS) [2].

Below, we briefly describe how OESS is used to set up L2-paths (VCs) across a single domain

(the word “domain” is used here to describe a network that is owned and operated by a single

organization).

OESS learns the network topology by running a protocol called OpenFlow Discovery Protocol

(OFDP) [10]. OESS offers a GUI through which administrators and other users can request an

L2-path by specifying the endpoints, rate, start time, duration, and VLAN Identifiers (IDs). The

OESS runs a path computation algorithm to find a path between the user-specified endpoints using

its knowledge of the network topology. The OESS then sends an OpenFlow message to each switch

on the path to set up an entry in the OpenFlow table, which is the same as the label mapping

table described in Section 2.1.1. The label corresponds to the VLAN ID. A standard called IEEE

802.1Q [11] defines a header that carries a VLAN ID. One such header is added to each Ethernet

frame that is sent on the L2 path. Each OpenFlow switch then matches the VLAN ID and incoming

port to determine the outgoing port to which the packet should be directed. The switch modifies

the VLAN ID in the outgoing packet based on the VLAN ID listed for the output interface in the

OpenFlow table. This type of packet forwarding ensures that all packets of a flow take the same

path, which explains the name path-based networking.

2.1.4 A Multi-Domain SDN

As part of a parallel effort in our research group, a multi-domain SDN was deployed and configured

to offer users inter-domain dynamic L2 path service. This service was used in our work. Hence,

the multi-domain SDN deployment is described here briefly to provide readers some background

on the L2 paths used in our work.

The multi-domain SDN deployed by our group leveraged small OpenFlow networks called Dy-
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internet2 network by the numbers
 17 juniper mx960 routers supporting layer 3 service
 34 brocade and juniper switches supporting layer 2 service
 62 custom collocation facilities
 250+ amplification racks
 15,717 miles of newly acquired dark fiber
 8.8 tbps of optical capacity
 100 gbps of hybrid layer 2 and layer 3 capacity
 300+ ciena activeflex 6500 network elements
 2,400 miles partnered capacity with zayo communications in support of the northern tier region
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Figure 2.1: Internet AL2S network [1]

namic Network System (DYNES) [12] that were deployed as part of an earlier NSF funded project.

The DYNES networks were deployed at 40 universities and 11 regional networks across the US.

The DYNES instruments from eight universities were part of the multi-domain SDN deployment.

These eight universities were as follows: (i) U. Virginia (UVA), (ii) MAX GigaPoP (MAX), (iii) U.

Wisconsin, Madison (UWisc), (iv) University of New Hampshire (UNH), (v) Internet2 Lab (I2Lab),

(vi) Rutgers University, (vii) Indiana University (IU), and (viii) Colorado University (CU).

Each university-campus DYNES equipment, as shown in Fig. 2.2, consists of three hosts: Fast

Data Transfer (FDT) server, Inter-Domain Controller (IDC) host, perfSONAR (pS) [13] host, and

one Ethernet switch (which is OpenFlow enabled in some sites). The FDT server runs data-transfer

applications, the IDC host runs SDN controllers, and the pS host runs active-measurement tools

for monitoring network performance. Two SDN controllers are executed in the IDC host: OESS

(described in the Section 2.1.3), and On-Demand Secure Circuits and Advance Reservation System

(OSCARS) [3]. OESS is an intra-domain SDN controller that controls switches via OpenFlow,

while OSCARS supports inter-domain service.
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Figure 2.2: An illustration of our multi-domain dynamic L2 path service deployment

Some regional RENs such as Regional 1 in Fig. 2.2 run OSCARS and OESS controllers to

offer dynamic L2 path service while others such as Regional 2 in Fig. 2.2 offer only static L2 path

service and hence do not deploy OESS and OSCARS. As can be expected with the roll-out of a

new networking service, organizations will slowly deploy the service one-at-a-time. Static L2 path

service is available from most RENs and university campus networks, and can be used to bridge

gaps in the dynamic L2 service offering.

Background information on Internet2 AL2S was provided in Section 2.1.3. Besides OESS,

Internet2’s AL2S network runs OSCARS as illustrated in Fig. 2.2.

Next, we describe how an inter-domain VC is established dynamically. For the data-plane

experiments conducted in our work, we used this procedure to set up inter-domain VCs.

When the OESS receives an inter-domain L2-path provisioning request, it submits the request to

OSCARS on behalf of the user. In turn, OSCARS performs path selection with call admission con-

trol within its own domain to determine if the required bandwidth resources are available from the

specified start-time to the specified end-time. If successful, OSCARS sends a createReservation

message with endpoints, rate, start time and duration, to the OSCARS in the next domain, which is

selected based on the computed path. The procedure is executed in a daisy-chain fashion until the

OSCARS of the last domain on the end-to-end path is reached. If successful, Confirmation events

are sent from one domain’s OSCARS server to the next in the reverse direction. If resources are
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unavailable in the requested timeslots in any domain, path reservation fails. Reverse-direction mes-

sages are used to release resources held for the request in upstream domains, and the user request

is rejected.

Path provisioning occurs either automatically or upon receiving a createPath message from

the user just before the reservation start-time. This procedure also uses a daisy-chain of signal-

ing messages between OSCARS servers. When it is time for OSCARS to provision the circuit

in the local domain, it contacts the OESS for path provisioning. OESS takes the provisioning re-

quest from OSCARS, and provisions the path through its domain using the procedure described in

Section 2.1.3.

2.2 Related Work

Solutions to enable fast transfers of large datasets fall into two categories: transport-layer solutions

and application-layer solutions. Several enhancements to TCP, specifically its congestion-control

algorithm, have been proposed, e.g., FAST-TCP [14], CUBIC [15], and HTCP [16]. Of these,

HTCP has been recommended by ESnet [17]. HTCP increases its congestion window more aggres-

sively than Standard TCP; the increase parameter is varied depending upon the elapsed time since

the last congestion event. HTCP does not alter the multiplicative decrease algorithm used in Stan-

dard TCP. The reason we pursued a solution using rate-guaranteed VCs is that these TCP advances

still suffer from the problem of packet losses as the underlying network is connectionless (IP), and

also suffer from the problem of having adverse effects on other flows, as described in Chapter 1.

Other advances include new transport protocols that run over UDP have also been proposed

for fast transfers: UDT [18], RAPID [19], and RBUDP [20]. UDT is a UDP-based user-space

protocol developed for high speed wide-area networks, where reliability and congestion control

are implemented in the user space. Another technology, called Remote Direct Memory Access

(RDMA) over Converged Ethernet (RoCE), has been studied experimentally to support fast data

transfers [21]. The UDP based transport-protocols are not as fast as TCP enhancements because

these are typically implemented in user-space. The RoCE solution suffers from the handicap of
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requiring special Network Interface Cards (NICs). Furthermore, packet losses on the path can

degrade performance [21].

Application-layer solutions include GridFTP [22] and Fast-Data Transfer (FDT) [23]. These

solutions tune TCP and other networking-stack parameters at senders and receivers, use parallel

TCP connections, stripe transfers using multiple servers at each end with parallel file systems [24,

25], and pipelining, which is especially useful if a dataset has many small files [26,27]. Other papers

have proposed the use of multi-hop path splitting [28]. The idea of multi-hop path splitting is to

split the path between the source and destination into a multiple-hop chain of intermediate nodes.

Multiple TCP connections are chained together sequentially on the end-to-end path between source

and destination. This solution improves TCP performance for two reasons: (i) the RTTs on each

chained connection is shorter than on a direct TCP source-to-destination, which allows for a more

rapid detection of, and recovery from, congestion, and (ii) Lost packets can be recovered faster

from a closer TCP end-point than the source. Multi-pathing at the transport layer was proposed

in MultiPath TCP (MPTCP) [29]. The key idea of multi-pathing is to stripe the data over multiple

paths that are used to transfer different chunks of data. Unlike in the GridFTP solution, which can be

used to run transfers over multiple parallel TCP connections with the segmentation and reassembly

of payload being handled at the application layer, MPTCP performs these functions in the transport

layer. Khanna et al. propose combining multi-hop path splitting with multi-pathing [30].

Finally, we describe work that is related to our work in its use of the Linux Traffic-Control tc

utility. Hanford et al. [31] proposed the use of tc with HTCP over best-effort IP networks to control

the sending rate. When sending from a Data Transfer Node (DTN) to another host, under-buffered

switches, slow firewalls and other slow network devices on the path could cause packet losses, and

corresponding drops in throughput. Hanford et al. proposed a tuning daemon that uses the ss

Linux utility to monitor active sockets at the sender, and suggests tc parameter settings to optimize

the large data transfer. Our work differs in its usage of tc as it targets transfers circuit/VCs, not

best-effort IP networks.



Chapter 3

A cross-layer design for large transfers across L2 paths

3.1 Introduction

The problem statement of this work is to determine what protocols/mechanisms to use at the

transport layer and link layer within end hosts in order to take full advantage of end-to-end rate-

guaranteed L2 paths. Chapter 1 described our motivation for this study. If new OpenFlow/SDN

technologies can be leveraged to dynamically setup rate-guaranteed end-to-end L2 paths, then

packet losses due to switch/router buffer overflows can be prevented, which in turn allows the

transfer to achieve high throughput. Further, by separating out the high-speed large-sized flows into

their own rate-guaranteed L2 paths, adverse effects of such α flows (also called elephant flows) on

other flows, especially delay-sensitive real-time flows, can be avoided.

We started by running experiments across inter-domain L2 paths that were created across the

multi-domain SDN that our research group deployed as described in Section 2.1.4 of Chapter 2.

The first part of this chapter describes how we leveraged a combination of a transport protocol

designed for rate-guaranteed circuits/VCs, and a Linux utility that allowed for rate control at the

sending host, to achieve high-throughput, low-loss transfers across inter-domain L2 paths. While

these results were encouraging, we found this production environment’ to have too many uncon-

strained variables. We use the term “production environment” because the L2 paths (used for our

experimental traffic) were provisioned on links that also carried real-user traffic. For example, the

real WAN traffic generated by UVA users shared the access links on which the VLANs required for

16
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our experimental L2 paths were provisioned.

To gain more control of our experimental environment, we switched to using the Global Envi-

ronment for Network Innovations (GENI) [32] testbed, which is an NSF-funded federation of many

racks that are owned-and-operated by various universities. The GENI rack providers developed and

deployed scheduling and authentication software to allow thousands of networking researchers to

login into any rack (there are over 100 racks between multiple GENI rack projects: ProtoGENI,

InstaGENI, ExoGENI, OpenGENI, and CiscoGENI), and run experiments. The scheduling soft-

ware has a GUI which allows a user to select multiple VMs or bare-metal (non-virtualized) hosts at

one or more racks, and if the racks are located in different universities, then the scheduling software

signals the Internet2 OESS and OSCARS to dynamically provision rate-guaranteed L2 paths and/or

multipoint topologies to interconnect the user’s selected VMs/hosts.

The second part of this chapter offers a more systematic study of the interactions between path

characteristics, transport-layer and link-layer protocols/mechanisms. The experiments were carried

out within single racks to avoid interference from other traffic, which would occur if the experiments

involved multiple racks, because GENI uses multiple campus networks, regional networks and

Internet2, as was the case with our multi-domain SDN. Linux tools such as netem were used to

inject artificial delays or packet losses at receivers to emulate WAN paths. The result of this work

is a novel cross-layer design for support high-speed large data transfers across rate-guaranteed

circuits/VCs. The work presented in this chapter was published in an IEEE conference [9] and

ACM conference [8].

Section 3.2 provides background information on transport-layer and link-layer protocols. Sec-

tion 3.3 presents the results of our experiments on inter-domain L2 paths provisioned across our

multi-domain SDN. Section 3.4 describes our proposed cross-layer design. Section 3.5 describes

our methodologgy for selecting parameters in different implementations of our cross-layer design.

The chapter is concluded in Section 4.6.
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3.2 Background

3.2.1 Transport-layer protocols

In prior work [33], our research group developed a transport-layer protocol designed specifically

for use on circuits/VCs. The transport-layer protocol is named Circuit-TCP (CTCP) because it

is simply TCP without congestion control. The purpose of TCP’s congestion control mechanism

is to determine the available capacity on the path and to dynamically adjust the sending rate to

that capacity. Since the circuit/VC is configured with a specific rate, TCP’s congestion control

functionality is no longer needed. In CTCP, the congestion window is held fixed at a value specified

by a parameter fcwnd.

While packet losses will not occur due to switch buffer overflows in circuits/rate-guaranteed

VCs, TCP’s flow control is still needed as the receive buffer can overflow in multi-tasking receivers.

The window-based flow control mechanism of TCP is hence retained in CTCP.

Finally, as bit errors can still occur, TCP’s error-control mechanism is necessary. The CTCP

sender maintains retransmission timers, and performs retransmissions as in standard TCP.

For semi-rate-guaranteed VCs, in addition to CTCP, other high-speed TCP implementations

were considered. Recall our brief description of HTCP in Section 2.2. HTCP has been identified as

a winner of sorts by ESnet for high-speed transfers on large bandwidth-product paths, and therefore

in our experiments, besides CTCP, we also consider HTCP.

3.2.2 Link-layer mechanisms for sending rate control

Ethernet Network Interface Cards (NICs) are now available at 10 Gbps (10 GigE), and 40 GigE.

Therefore the rate at which packets will be transmitted by a sending-host NIC could be as high

as the access-link and backbone-link rates of service providers. With RAID disk-arrays, parallel

file-systems, and high-speed transfer applications such as GridFTP, it is feasible for a host to send

data at high rates.

However, in path-based networking, a user/application should request a circuit/VC of a certain

rate, and then send data at that specified rate after the circuit/VC is set up. Since the circuit/VC rate
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could be lower than the sending-host NIC rate, some mechanism is required for rate control at the

sending host.

There is an existing utility in Linux to perform exactly this function of rate control. It is is called

traffic control (tc). This utility supports multiple queueing disciplines. Of these, our experiments

involved three disciplines: Token-Bucket Filter (TBF) queuing discipline, Hierarchal-Token Bucket

(HTB), and Byte limited First In, First Out queueing discipline (bfifo).

TBF is a simple queuing discipline that is used to shape traffic to a specific rate. TBF has three

basic parameters: rate, limit, and burst. The rate parameter represents the rate at which tokens

are generated and held in a token bucket. The limit parameter represents the size of a buffer that

holds packets while waiting to be transmitted by the NIC. The burst parameter represents the token

bucket size, which determines the maximum number of packets that can be sent out back-to-back

at the NIC rate.

HTB is a classful queuing discipline in which multiple queues can be defined. For each class,

two basic parameters, rate and ceil, can be specified, where rate represents the maximum rate

that is guaranteed to the class and its children (the “hierarchical” part of the queueing discipline

implies that each class can have sub-classes that are referred to as children), and ceil represents

the maximum rate at which flows directed to the class can send data based on its own allocation

and the allocation of its parent class, if present. There are other parameters related to the token

bucket aspect of HTB. Filters can be set in the tc command to specify the class to which packets of

specific flows should be directed. A default class for all unspecified flows can also be configured.

Bandwidth borrowing across siblings of a parent class is allowed. To prevent bandwidth borrowing,

all classes should be specified at the same level as root classes where the HTB qdisc is the parent.

We attached leaf classes to top-level HTB classes as there was no parameter equivalent to the

TBF limit parameter in HTB. We used bfifo for these leaf classes. It is a simple first-in first-out

queuing discipline, which has one main parameter, limit, which represents the size of a buffer

where packets are held while awaiting transmission by the NIC.

We used the HTB discipline when the sending host supports multiple simultaneous α flows,

each assigned to a different circuit/VC. Since the rate and RTT of different circuits could vary, the
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Figure 3.1: End-to-end L2 path between University of Virginia (UVA) and Indiana University (IU)

rate parameter of each class, and the buffer size associated with the lower-level bfifo disciple,

were set accordingly.

3.3 High-speed transfers across L2 paths provisioned across multiple

domains

3.3.1 Experiment setup and execution

The multi-domain SDN described in Section 2.1.4 was used for this set of experiments. Specifically,

an L2 path was provisioned from the FDT host at the University of Virginia (UVA) to the FDT host

at Indiana University (IU). Recall from Section 2.1.4 that both UVA and IU had existing DYNES

networks. Each DYNES FDT host has two Intel Xeon E5620 four-core processors (for a total of

eight cores) and 24 GiB RAM.

Fig. 3.1 shows that the L2 path passes through five domains: UVA, MARIA (which is UVA’s

regional REN), Internet2 AL2S, Indiana GigaPop (which is IU’s regional REN), and IU. VLAN ID



Chapter 3. A cross-layer design for large transfers across L2 paths 21

333 was configured in the UVA FDT, across the UVA DYNES switch, other UVA campus switches,

through the regional REN MARIA switches to the link connected to a port on the Internet2 AL2S

switch at Ashburn, VA. The path continues through Internet2 AL2S network, and exits this network

through a port to IU’s regional REN, Indiana GigaPoP. VLAN ID 2399 was used for the segment of

the L2 path between the Internet2 AL2S switch in Chicago and the IU FDT. Some switches on the

end-to-end L2 path were configured dynamically through controllers, e.g., through UVA DYNES

switch, Internet2 AL2S switches, and IU DYNES switch. The segments in between these switches

were provisioned statically using other means.

The application iperf3 was used to execute memory-to-memory transfers on the end-to-end

L2 path. This application reports throughput, number of retransmissions, and total amount of data

sent. Shell scripts were used to execute multiple iperf3 runs, each of duration 20 sec, with gaps

between runs (to ensure some change in the background network traffic), and to collect tc statistics.

The collected iperf3 logs were parsed to extract throughput and packet retransmission rates, and

the tc logs were parsed to ensure that no packets were dropped at the sending host because of rate

limiting.

We experimented with two versions of TCP: CTCP and HTCP. Many TCP parameters need to

be set for high-speed transfers [17]. For both HTCP and CTCP, the numbers used were as follows:

the minimum, default and maximum values for the parameter net.ipv4.tcp rmem were all set to

32 MiB (using 1 Mebibyte or MiB = 220 bytes), the minimum, default and maximum values of

parameter net.ipv4.tcp wmem were set to 4 KiB, 10 MiB, 32 MiB, respectively, and auto-tuning

and window scaling were enabled. The net.ipv4.tcp rmem parameter determines the receive-side

buffer size. It is set to at least twice Bandwidth-Delay Product (BDP) because TCP code halves the

default value of net.ipv4.tcp rmem for the initial receive-side window.

Besides the above-listed parameters that are common to both HTCP and CTCP, CTCP has an

additional parameters, fcwnd, which is the fixed congestion window. Since the Round-Trip Time

(RTT) on the UVA-to-IU end-to-end path was 26 ms and the path rate was 4 Gbps, using a scaling

factor of 1.2 (to make the congestion window slightly larger than BDP), we set fcwnd to 14.8 MiB.

For L2 driver parameters, the following values were
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Figure 3.2: Impact of burst size on throughput

used: parameter net.core.netdev max backlog was set to 1500000, and txqueuelen was set

to 10000. For the Linux traffic-control (tc) utility, the Token Bucket Filter (TBF) queueing disci-

pline was selected because the Linux tc manual [34] states that TBF is “‘suited for slowing traffic

down to a precisely configured rate,” and it “scales well to high bandwidth.” The TBF rate was set

to 4 Gbps, while the limit and the burst size were varied to determine ideal values as explained

below.

3.3.2 Experiment results

First, we describe experiments conducted to understand the sensitivity of throughput and packet loss

rates to the values chosen for the TBF burst size, TBF limit, and CTCP fcwnd. Next, we present

results from experiments conducted to compare CTCP and HCTP for use on rate-guaranteed paths.

Parameter selection: The first set of experiments studied the impact of the TBF burst size. Fig. 3.2

presents boxplots for different TBF burst settings. It shows that for burst-size values of 50 KB or

larger, end-to-end iperf3 throughput is close to the 4 Gbps path rate. If the burst size is small,

the token generator will not have free space in the token bucket to deposit additional tokens while

waiting for the CTCP layer to pass down packets. Since the iperf3 application/CTCP does not

pass packets down to tc in a strictly clocked manner, it is beneficial to have a larger token bucket

to hold tokens so that on average packets can be sent out at the L2 path rate.
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Table 3.1: Impact of burst size on retransmission rate

Burst
size
(KB)

Median retx rate in
first sec %

Median retx rate in
later sec %

Mean retx rate in
first sec %

Mean retx rate in
later sec %

10 0 0 7.9e-4 4.1e-5
20 7.2e-4 0 166e-4 31.7e-5
50 0 0 11.9e-4 8.1e-5
100 9.3e-4 0 13.8e-4 17.9e-5
200 6.3e-4 0 158e-4 55.6e-5
400 0 0 238e-4 46.9e-5

Table 3.1 shows the negative effects of large burst size, i.e., there are more packet losses. We

observed packet losses on the end-to-end L2 paths because current campus, regional and core RENs

do not support the data-plane functionality needed for rate-guaranteed transfers (i.e., policing and

scheduling are not enabled). Table 3.1 separates out packet retransmission rate in the first second

from the retransmission rate in later seconds. This is because the token bucket starts in a full state,

which causes a full burst of packets to be sent at the NIC rate (10 Gbs). Since the end-to-end L2

path traverses many types of switches, some of them could have small buffers [35] causing packet

losses in the first second. This explains why the median packet retransmission rate is higher in the

first second than in later seconds as seen in Table 3.1. The mean packet retransmission rates are 1-2

orders of magnitude higher in the first second than in later seconds. The mean values are higher

than the median values indicating a right-skewed graph with outliers, which means that in some

runs, there was sufficient background traffic to cause switch buffers to overflow more often than in

other runs. Finally, we observe that in runs with larger burst sizes (200 KB and 400 KB), the mean

packet retransmission rate was higher than in runs with smaller burst sizes. With the 20 KB burst

size setting, there was 1 run (out of 100 runs) in which there was a 1.5% packet retransmission rate

in the first second, which caused the mean rate to be considerably higher than for the 50 or 100 KB

settings. Since our iperf3 packets were sharing links with real traffic, there can be such anomalies.

What is clear is that at larger burst sizes, there is a higher risk of packet loss, which impacts

not only the data-transfer flow itself, but also other flows. Therefore, while burst size values of 200
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Figure 3.3: Boxplots for different values of the limit parameter; the total number of the packets
sent was approximately 2.5e6 packets

or 400 KB still allow for the flows to enjoy close to 4 Gbps throughput (as seen in Fig. 3.2), the

retransmission rates at these settings are also higher than at the 50 or 100 KB settings. Therefore,

we recommend using smaller burst sizes such as 100 KB.

Next, to study the impact of TBF limit parameter, all other parameter values were held un-

changed at the numbers specified in Section 3.3.1, and TBF burst size was set to 100 KB (based

on the results presented above). Fig. 3.3 shows that at smaller values of limit, median throughput

is lower and the number of packets dropped by tc is higher when compared to runs with larger

settings for the limit parameter. Recall that the limit parameter minus the burst size is the size of

the buffer used to hold packets in case the application sends packets to tc faster than the configured

rate. Therefore, at smaller settings of limit, there is insufficient space to absorb bursts from the

application. Also, there are time gaps during which there are no packets in the tc buffer waiting for

service, which leads to the lower throughput. Further, Fig. 3.3 shows that there is more variability

in the number of packets dropped by tc at smaller values of limit. Using a size more than 800 KB

for limit appears to lower the number of packets dropped by tc to close to 0 in most runs, but even

at the 10 MB setting, there was one run in which tc dropped 1556 packets (out of 2.5e6 packets).

Therefore, if memory is not a constrained resource, we recommend using a value as large as twice

BDP. Finally, the choice of this limit parameter depends upon the CPU resources available to the

data-transfer application. For example, if the CPU is multi-tasking between the data-transfer appli-

cation and other applications, data will be passed down to the tc layer only when the data-transfer

application is scheduled. Therefore data will appear at the tc layer in bursts with silence periods in
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Table 3.2: Impact of CTCP fcwnd parameter

BDP
(MiB)

Mean Throughput
(Gb/s)

Mean Retx rate in first
sec. %

Mean Retx rate in later
sec. %

14.8 3.93 17.1e-4 16.8e-5
12 2.97 16.6e-4 2.63e-5
6 1.61 14.5e-4 2.65e-5

between. In this case, a larger limit size may be required since in our experiments, iperf3 was

the sole application being executed on the hosts.

Next, an experiment was conducted to study the impact of the CTCP fcwnd parameter. The

TBF burst size was set purposely to 400 KB so that some losses would occur, which would then

allow us to determine whether the CTCP value influenced the packet loss rate. Table 3.2 shows the

results. The BDP on the UVA-to-IU path is 12.4 MiB for the 4 Gbps rate setting. Therefore, setting

the CTCP fcwnd value to a larger value, 14.8 MiB, allowed for the throughput to almost equal the

path rate. But with smaller values of fcwnd, such as 12 MiB or 6 MiB, the number of outstanding

bytes that the CTCP sender can send is less than BDP and hence throughput decreases.

The third and fourth columns of Table 3.2 show that the mean packet retransmission rate in

the first second is not influenced by the fcwnd value, but the mean packet retransmission rate in

later seconds is slightly influenced by this parameter. In the first second, a burst of size 400 KB is

sent at NIC speed (10 Gbps) and hence packet loss rate is more influenced by this parameter as we

observed earlier rather than by the fcwnd parameter.

Comparison of CTCP and HTCP: The following values were used for TBF parameters: rate

was set to 4 Gbps, burst size was 100 KB, and limit was set to 25 MiB. The fcwnd value for

CTCP was set to 14.8 MiB, and the remaining TCP parameters were set to values specified in

Section 3.3.1.

Table 3.3 presents our test results. Since the congestion window is set to a small initial value and

grows gradually with HTCP, we separated out results for the first two seconds from the results for

later seconds. In the first two seconds, since HTCP cwnd was small due to Slow Start, throughput
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Table 3.3: iperf3 throughput and retransmission rate

Throughput (Gbps)
TCP ver no. of sec. Min. Median Max.
CTCP first 2 sec. 3.87 3.92 3.93
HTCP first 2 sec. 0.34 0.69 1.37
CTCP later sec. 3.93 3.93 3.94
HTCP later sec. 2.73 3.93 3.94
CTCP all sec. 3.93 3.93 3.93
HTCP all sec. 2.57 3.61 3.68

Packet Retransmissions Rate %
TCP ver no. of sec. Median Mean 90th %
CTCP first sec. 62e-5 118e-5 28.2e-4
HTCP first sec. 0 1349e-5 0
CTCP later sec. 0 5.79e-5 0.83e-4
HTCP later sec. 1.72e-5 22.5e-5 1.4e-4
CTCP all sec. 7.12e-5 11.5e-5 2.22e-4
HTCP all sec. 1.72e-5 24.1e-5 2.59e-4

was low (between 340 Mbps to 1.37 Gbps) as seen in the second row of Table 3.3. On the other

hand, with CTCP, since the congestion window was held fixed at the fcwnd value, which was 1.2

times BDP, the effective sending rate was 4 Gbps right from the start as seen in the first row of

Table 3.3. In later sec, both CTCP and HTCP enjoyed throughput close to the 4 Gbps path rate.

The second part of Table 3.3 shows the measured packet retransmission rates. The first two

rows show the packet retransmission rates in the first second, rather than in the first two seconds as

was done for throughput, because it is only at the start of the run that the token bucket is full with

tokens. As the burst size was set to 100 KB, in the first second a burst of 100 KB of data packets

will be sent at the full NIC rate of 10 Gbps. This can cause buffer overflows in switches. As seen

in the first row of Table 3.3, 50% of the CTCP runs had packet retransmission rates higher than

62e-5% in the first second, while less than 10% of the HTCP runs had packet retransmissions (as

seen in the second row). At the beginning of the data transfer, since HTCP cwnd is small, the HTCP

layer does not pass down sufficient data to the tc layer to allow the latter to send a whole 100-KB

burst at the NIC speed. Out of the 50 HTCP runs, retransmissions occurred in the first second in

only 4 runs. Nevertheless, the mean retransmission rate for HTCP runs shown in Table 3.3 was

high at 1349e-5 % because of the small number of packets sent in the first second. For example,



Chapter 3. A cross-layer design for large transfers across L2 paths 27

Figure 3.4: System model

the number of packets sent by HTCP in the first second in one run was 7182, while the number of

retransmitted packets in the same second was 15 packets, which resulted in a high retransmission

rate of 0.0021%. Rows 3 and 4 in the Packet Retransmission Rate section of Table 3.3 show that

the reverse happens in later seconds. Given HTCP’s dynamic modification of congestion window,

bursts become more likely with HCTP than with CTCP, and therefore packet retransmission rates

are slightly higher with HTCP.

In summary, CTCP is more suitable for use over rate-guaranteed paths because it does not

incur a first-second hit in throughput, as does HTCP. Given that the penalty of path setup has been

incurred, the dynamic search in the data plane for an appropriate TCP sending rate (as is required

in a connectionless network) should be disabled. However, further experiments are required to

understand the causes for the increased retransmission rate in the first second seen in Table 3.3 for

CTCP. These experiments were conducted, and the results explained in the next chapter.

3.4 Cross-Layer Design

This section describes our cross-layer design for supporting high-speed large dataset transfers on

circuits/VCs. Fig. 3.4 shows a system model with a source and a destination of an α-flow, and a

representative switch whose egress interface happens to be the bottleneck on the α-flow path. The

switch egress port has a capacity C and buffer size Bs as noted in Table 3.4. The α-flow is assigned

to a circuit of rate Rtc and has round-trip time RT Tα. Background flows arriving at other interfaces

of the switch that are destined to the same egress interface as the α flow are illustrated in Fig. 3.4.
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Table 3.4: Parameters and Metrics

Parameter Symbol
System-model parameters

Switch bottleneck link capacity C
Switch port buffer size Bs

Circuit/VC rate (= source host tc rate) Rtc

Round-trip time on α-flow path RT Tα

Background traffic rate Rβ(t)

Protocol-layer parameters
CTCP fixed congestion window size fcwnd
Source host tc buffer size Btc

Output metrics
Throughput of α-flow Tα

Source host tc packet drop rate dtc

Packet loss rate of α-flow pα

Packet loss rate of background traffic pbg

Their cumulative rate is denoted Rβ(t) in Table 3.4.

A control-plane client (which could be executed on the source host or any external server, such

as GlobusOnline [36]) sends a request for circuit/VC between the source and destination hosts to

the SDN controller. If capacity is available on the path (depicted in this model with an abstraction

of a single switch), the SDN controller configures the forwarding tables if the switches are packet

switches, or configures the circuit if the switches are circuit switches. In case of virtual circuits,

ideally, flow-classification, policing, and scheduling mechanisms should also be configured in the

packet switches so that the α-flow packets are isolated into their own queue, and thus guaranteed

the specified rate.

However, dynamic L2 path services being introduced by university campuses, regional and

wide-area REN providers often support just the configuration of the forwarding tables, but not the

configuration of QoS mechanisms such as policing and scheduling. In this case, the VCs can be

viewed as semi-rate-guaranteed rather than fully rate-guaranteed. The SDN controller checks av-

erage utilization of links (e.g., by reading SNMP transmitted/received-byte counters in switches)

before admitting a new circuit/VC request, but it does not configure the QoS mechanisms neces-

sary for a full rate guarantee. If links are under utilized, this strategy will work most of the time.
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However, if there are spikes in the background traffic that cause the cumulative arrival rate of flows

destined to a specific output port of a switch to exceed the output-port capacity, then the switch

buffer (as shown in Fig. 3.4) will fill up to the point where packets are dropped. Spikes can be just a

few µs or ms in duration, while SNMP counter reads are spaced 10s or more apart to limit overhead.

Therefore, even when average utilization, as estimated from SNMP counter values is deemed low,

there can be short durations in which aggregate rates are high.

The data-plane path passes through the transport layer, IP layer (the IP header is processed only

at the source and destination hosts if the end-to-end path is realized as an L2 VLAN or VLAN-

MPLS-VLAN hybrid path), and Ethernet layer with the Linux traffic-control (tc) utility, as shown

in Fig. 3.4. At the transport layer, we consider two protocol options: CTCP and HTCP. At the

link-layer, we consider two tc queueing disciplines: TBF and HTB.

At the transport-layer, we used CTCP for rate-guaranteed circuits/VCs. But semi-rate-

guaranteed VCs, we question whether CTCP is suitable, or whether HTCP is needed, and therefore

compared CTCP and HTCP.

At the link layer, we propose the use of TBF for single circuits (single α flows), and HTB for

multiple circuits (multiple α flows). For rare large dataset transfers between campuses, e.g., when

a scientific researcher moves data between two university campus clusters, it is likely that there is

only one α flow at a time, and TBF offers a good solution for controlling the sending rate of a single

flow. On the other hand, dedicated Data Transfer Nodes (DTNs) deployed in large supercomputing

centers often serve multiple elephant flows simultaneously. For outflows from such a DTN, HTB is

required to control rates of individual flows based on their corresponding circuit/VC rates.

The next section describes the dependencies of the CTCP/HTCP and TBF/HTB parameters on

path variables.

3.5 Parameter Selection

Besides the system model parameters, Table 3.4 lists the protocol-layer parameters and output met-

rics. At the transport layer, the parameter of interest is CTCP fcwnd, and at the tc layer, the
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parameter of interest is the buffer size, which is set by the limit parameter and bfifo in the TBF

and HTB queueing disciplines, respectively. The output metrics are α-flow throughput, packet drop

rate at the source by the tc layer, and overall packet loss rates of the α-flow and background traffic.

Cross-layer solutions are designed for three configurations: (i) single circuit/rate-guaranteed

VC, (ii) multiple dynamic circuits/rate-guranteed VCs, and (iii) a semi-rate-guaranteed VC. These

solutions are described below.

3.5.1 Single circuit/rate-guaranteed VC

To support a single data-transfer flow on a single circuit/rate-guaranteed VC from a sending host,

we recommend using CTCP and TBF. HTCP is not required as no switch buffer overflows can

occur, and TBF is sufficient as there is only one circuit and hence the multiple-class feature of the

more-complex HTB is not required. The question addressed here is how should the application

select suitable values for the CTCP parameter fcwnd and the TBF parameter limit. These values

depend on circuit rate, Rtc, and round-trip time, RT Tα.

To keep the circuit full, fcwnd should be at least 1 BDP. If the delay (RT Tα) is measured using

ping, the round-trip propagation delay will be accurately reflected in the obtained measurement.

For an accurate measurement of transmission delay, ping should be executed with a packet of

length equal to the maximum packet size (1500B for Ethernet) since maximum-sized packets will

be used in large transfers. However, since ping sends only single packets, the packet transmission

delay will be measured at the full NIC rate, rather than at the configured TBF tc rate (which is

the circuit rate). Therefore, the transmission delay may be under-estimated even if maximum-sized

packets are used by ping. Finally, if the circuit rate is high and round-trip propagation delay is

small (i.e., in µs), then the processing delays in the TCP/IP layers, which will not be incurred by the

ICMP packets used in ping, could become a factor. These factors will determine the multiplicative

scaling parameter, m, used to set fcwnd:

f cwnd = m×BDP (3.1)
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If the TBF limit parameter is set equal to fcwnd, there should be no packet drops at the tc

layer. Since the congestion control code of TCP is disabled in CTCP, even the functionality that

causes a TCP sender to enter the Congestion Window Reduced (CWR) state if it fails in its attempt

to enqueue a packet in the link-layer buffer is disabled. Therefore, unlike in TCP, where packets

are not dropped if the tc buffer is full, if a CTCP sender attempts to enqueue a packet in a full

tc buffer, the packet will be dropped. The question is whether the limit parameter can be sized

smaller than fcwnd.

Experimental setup: Experiments were run on two setups: (i) Setup1: two bare-metal (non-

virtualized) Linux hosts of the U. Utah DDC InstaGENI rack, (ii) Setup2: two bare-metal Linux

hosts connected by a single switch located on our campus. The nuttcp-7.3.3 application was used

to perform 15 memory-to-memory data transfers, each of which lasted 20 seconds. The parame-

ter tcp wmem was set to twice the BDP because Linux halves this value when sizing the send-side

buffer. Similarly, the parameter tcp rmem was set to twice the BDP at the receiver. To emulate

circuits of different RTTs, netem was used to inject a fixed delay for all packets. The tc rate Rtc

was also varied. The Linux command taskset was used to set the CPU affinity of the application

to one specific CPU to ensure that the application can send data as fast as possible.

Table 3.5: Throughput Tα in Mbps, Rtc=1 Gbps, Btc=fcwnd

Setup
RTT (ms)

fcwnd
0.3 BDP BDP 1.2 BDP 1.3 BDP

Setup1 0.5 306 804 904 939
50 286 939 939 939

Setup2 0.5 443 940 940 941
50 288 726 818 941

Results: Table 3.5 shows the impact of the CTCP fcwnd parameter on α-flow throughput Tα. In

Setup1, when RTT is low, it appears that the m parameter should be larger to achieve maximum

throughput. The final column of Table 3.5 is the maximum achievable throughput. Table 3.5 also

shows the impact of the hosts on the m parameter as the results for the two setups differ.

Fig. 3.5 shows the TBF limit parameter value required to guarantee zero packet drops by the
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Figure 3.5: Required ratio of TBF limit to fcwnd to guarantee no tc-layer packet drops

tc layer. These graphs were generated from a series of experiments on Setup1 in which Rtc was

varied as follows: 100 Mbps, 200 Mbps, 250 Mbps, 500 Mbps, 700 Mbps, and 1 Gbps, and the

ratio of limit to fcwnd was varied from 0.01 to 1. There were no tc-layer packet drops when the

ratio was 1.

Fig. 3.5 shows that a limit value as small as 0.2× fcwnd was sufficient on high-RTT paths

to ensure no packet drops by tc even at the relatively low Rtc rate of 100 Mbps. At higher values

of Rtc, the required value for Btc decreases even reaching 0.015×fcwnd when the rate is 1 Gbps.

On small-RTT paths (e.g., 0.5 ms), the required ratio was 1 (i.e., limit should be set to fcwnd to

ensure no tc-layer packet drops), for all values of Rtc, even 1 Gbps. This is because Btc is only 50

packets when RTT is 0.5 ms and Rtc is 1 Gbps. Therefore, a burst of packets from the CTCP layer

to the tc layer can cause tc buffer overflows.

In summary, CTCP fcwnd should be set equal to at least 1.3×BDP, and it is best to make TBF

limit equal to fcwnd to ensure no tc-layer packet drops.
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3.5.2 Multiple dynamic circuits/rate-guaranteed VC

The HTB queueing discipline is used as multiple classes are required at the link layer, one for each

circuit, and CTCP is used for the transport layer. The application selects values for CTCP and HTB

parameters for each circuit using the same principles described in Section 3.5.1. This section will

address the challenge of handling dynamic arrivals and departures of α flows in DTNs.

The question addressed is what happens to ongoing α flows when: (i) HTB classes are added

at the tc layer to support new circuits for newly arriving α flows, and (ii) circuits are released

when α flows end. If multiple HTB child classes are defined under the same root class, bandwidth

borrowing between the child classes is allowed. Such an approach would not work for circuits and

rate-guaranteed VCs. Therefore, for multiple circuits, all HTB classes are defined as root classes,

in which case bandwidth borrowing between classes is disallowed. Since bandwidth borrowing is

disallowed, the HTB ceil parameter is set equal to rate for all classes. When an α flow ends, the

bandwidth allocated to its circuit remains unused until another flow is assigned this bandwidth. To

study the impact of new HTB class additions, an experimental study was executed.

A second question is whether different values of the CTCP fcwnd parameter should be set for

different α flows as the circuit rate and RTT of α flows can vary. Ideally, such a customization of

fcwnd should be done, but this requires modification of file-transfer applications to add the Linux

setsockopt system call to modify fcwnd to the value appropriate for each α flow. For circuits,

with complete path isolation and rate guarantees, there is no adverse impact of using a larger fcwnd

value than necessary, and therefore in this experiment, fcwnd is set to a large value in a common

Linux CTCP-module configuration file, which then applies to all CTCP flows.

Experimental setup: Two circuits were created from a source host: (i) Circuit-1: 500-Mbps circuit

with RTT of 50 ms, and (ii) Circuit-2: 100-Mbps circuit with RTT of 10 ms. Different destinations

were used for the two circuits. The CTCP fcwnd was set to (1.2×BDP1), where BDP1 corresponds

to the BDP of Circuit-1 (the larger of the two BDP values). A single HTB class was created with

a rate Rtc corresponding to that of Circuit-1, with an attached bfifo leaf class whose size Btc was

set to the fcwnd value. The nuttcp-7.3.3 application was used to create a CTCP flow (flow1) of
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Figure 3.6: Throughput of two flows directed to two circuits from a single sender: flow1 was
started at time 0 and run for 30s, while flow2 was started at time 10s and run for 10s

duration 30 seconds that was directed to Circuit-1. After 10 seconds, a second HTB root class was

added with a rate Rtc corresponding to that of Circuit-2, with an attached bfifo leaf class whose

size Btc was set to the fcwnd value. A second CTCP flow (flow2), which was directed to Circuit-2,

was then initiated and run for 10 seconds.

Results: Fig. 3.6 shows that flow1 held its constant sending rate and achieved a throughput of 473.7

Mbps even as flow2 was started and stopped. The sender NIC bandwidth usage was measured using

the Linux utility sar, which was executed every sec. The total NIC bandwidth usage is the sum of

the throughput values of flow1 and flow2.

This experiment demonstrated that it is possible to dynamically add a new HTB class without

affecting ongoing flows. No packet drops were observed in flow1 during this dynamic addition

of a new HTB class. Further when flow2 ended, there was no bandwidth borrowing because both

HTB classes were assigned as root classes, and hence flow1 did not increase its sending rate to the

1 Gbps NIC rate. Similarly, there were no packet losses in flow2, and it achieved a throughput of

95.48 Mbps.
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(a) CTCP (b) HTCP, tcp wmem = 2×BDP

(c) HTCP, tcp wmem = 4×BDP

Figure 3.7: Rα = 950 Mbps, Rβ(t) = 20 Mbps, except for two 1-sec intervals when Rβ(t) = 100
Mbps

3.5.3 Semi-rate-guaranteed VC

As described in Section 3.4, university campus and REN providers often use coarse-granularity

SNMP measurements of link utilization obtained to determine if there is sufficient headroom on a

link to allow an α-flow to start sending data at a specified rate. The assumption is that if there is

sufficient headroom, e.g., a link is utilized only at 30-40%, data-plane QoS mechanisms such as

policing and scheduling are not required. However, on micro- and milli-sec, or even sec, scales,

there can be spikes in the background traffic, which cause buffer overflows and hence losses in both

the α-flow and in background flows. The purpose of this study is to determine whether CTCP or

HTCP should be used on such semi-rate guaranteed VCs. Two experiments were conducted by

using as background traffic: (i) TCP flows, and (ii) UDP flows.
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Experiment 1: On a GENI slice consisting of three hosts in one rack, a CTCP α flow was generated

from sender 1 to a receiver on a circuit of rate 950 Mbps, and a TCP flow was generated from sender

2 with a rate limit of 20 Mbps to the same receiver. Since the aggregate rate of both flows was less

than the 1 Gbps link rate, there were no packet losses at the switch, and the α-flow throughput Tα

was 908 Mbps.

Figs. 3.7a and 3.7b show that when a second TCP flow was generated from sender 2 with a rate

limit of 80 Mbps, to create a total Rβ(t) of 100 Mbps traffic for two 1-sec intervals, at t = 2 and

t = 22, this caused the switch buffer to fill up, and packets to be dropped on both the α flow and β

flows. Fig. 3.7a shows that since CTCP does not change its sending rate when packet losses occur,

the α-flow throughput recovered within 2 sec, while with HTCP, 8 sec were required to recover the

full α-flow throughput as seen in Fig. 3.7b.

Since Linux halves the tcp wmem value when setting the TCP sender-side buffer, we doubled

tcp wmem to 4×BDP to see its impact on HTCP throughput. To give the α flow a chance to increase

its cwnd to 2×BDP before injecting the 80-Mbps packet-loss inducing flow, we changed the time

of injection to t = 10 and t = 31. Fig. 3.7c shows that indeed when packet losses occurred, the

HTCP sender dropped its cwnd by half, but since the cwnd had reached 2×BDP before the losses,

the throughput drop was minimal. Therefore, with this tcp wmem setting HTCP performed as well

as CTCP retaining the high throughput of the α flow. From this experiment, it appears that if α-

flow throughput is the primary concern, then either CTCP or HCTP can be used with appropriate

parameter settings.

In this experiment, the background traffic Rβ(t) consisted of two TCP flows, both of which

adjusted their sending rates when packet losses occurred. However, with UDP flows carrying real-

time traffic, such a rate adjustment will not occur. Our next experiment compares CTCP and HTCP

when the background traffic is UDP.

Experiment 2: On our campus setup, we generated an α flow with no rate limit (i.e., Rtc = 1 Gbps).

A CTCP/HTCP α flow was run for 30 sec from sender 1 to a receiver with an emulated packet delay

of 50 ms. A UDP iperf3 flow from sender 2 to the same receiver was started at t = 4s and stopped

at t = 14s. The senders and receivers are connected by a single switch. The UDP-flow rate Rβ(t)
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was set to 60 Mbps in one run, and to 500 Mbps in another run.

Fig. 3.8a shows the results. The α-flow throughput Tα was initially 930 Mbps, but this through-

put dropped to 881 Mbps in the presence of the 60-Mbps UDP flow. In this run, no packets were

dropped. The switch buffer does fill up, but ACKs start arriving at the CTCP sender at a rate equal

to the rate available to this flow on the switch-to-receiver link. This causes the effective sending

rate of the CTCP α flow to drop preventing any buffer overflows. In other words, TCP self-clocking

through ACKs appears to be working in CTCP.

In the second run, when the UDP flow rate was 500 Mbps, packet losses occurred on both the

α flow and the UDP flow. The CTCP α-flow packet retransmission rate pα is shown in Fig. 3.8a,

and the UDP-flow packet loss rate pbg was 27%.

Fig. 3.8b shows the results from runs when HTCP was used instead of CTCP. It shows that

on the run in which the UDP flow rate was 500 Mbps, HTCP dropped its throughput more quickly

causing few packet losses both for itself and for the UDP flow. The packet loss rate on the UDP flow

for this run was only 0.8%. However, the α-flow throughput was higher with CTCP (784 Mbps)

than with HTCP (430 Mbps). When the UDP flow rate was 60 Mbps, HTCP had not increased

its congestion window to a large enough value when the UDP flow started. Instead the HTCP

congestion window kept growing making the α-flow throughput higher in the duration t = (4,14)s

when the UDP-flow was present. On this run, there was a loss of 201 packets on the HTCP flow at

t = 20, dropping the throughput to 734 Mbps at t = 20s, before increasing again.

More broadly, these results show that in networks where spikes are not short lived but rather

link utilization increases can last long periods such as 10s as in our above experiment, if priority

is placed on β-flow performance, then HTCP should be used, while if priority is placed on α-flow

performance, then CTCP should be used.

3.6 Conclusions

This chapter showed how to leverage transport- and link-layer protocols to enable the full use of

high-rate circuits/VCs. High-rate large-sized data transfers were executed between hosts at the ends
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(a) CTCP (b) HTCP, tcp wmem=4×BDP

Figure 3.8: Throughput and packet retransmission rate of a CTCP α flow, with a UDP background
(β ) flow. The UDP flow was started at 4s and lasted for 10s. Setting 1: beta-flow rate = 60 Mbps,
Setting 2: beta-flow rate = 500 Mbps

of an inter-domain L2 path that was previously provisioned across a multi-domain SDN. Through-

put that almost matched the 4-Gbps circuit/VC rate was achieved, but packet losses were observed.

The L2 path traverses multiple domains, and shares links and switch buffers with other real-traffic

flows. The rate of the background flows cannot be controlled in this environment (i.e., the back-

ground flows is generated by other users of the network, e.g., Internet2). Designing a model to

achieve a throughput that matches the circuit/VC rate with zero packet-loss is difficult giving the

uncontrolled environment. Therefore, a new study was conducted in a testbed where we had more

control over different parameters (e.g., background traffic rate, packet-loss rate, RTT).

A cross-layer design for support of large transfers across dynamically established circuits/VCs

in Software Defined Networks (SDNs) was presented based on the new experimental study con-

ducted in the controlled environment. For a single circuit/rate-guaranteed VC from a server, Cir-

cuit TCP (CTCP) and the Linux tc Token Bucket Filter (TBF) queueing discipline were recom-

mended with methods for selecting parameter values. For a server handling multiple simultaneous

large transfers over circuits/rate-guaranteed VCs, the combination of CTCP and Hierarchical Token

Bucket (HTB) discipline was shown to be effective. Finally, for semi-rate-guaranteed VCs, CTCP

was recommended if the primary consideration is for the large transfers, while HTCP is better if the

primary consideration is for other flows.



Chapter 4

Lessons learned: Contributions to the

experimental-networking research community

This chapter presents lessons learned while conducting the experiments presented in Chapter 3. Key

findings are presented for three layers in the networking stack: (i) Application Layer, (ii) Transport

Layer, and (iii) Data-Link Layer. Also, insights are provided on best practices for monitoring traffic

and packet-trace analysis tools.

Section 4.1 describes the experimental setups. Sections 4.2.2, 4.3.5, and 4.4.4 present lessons

learned for the application ayer, transport layer and data-link layers, respectively. Section 4.5.3

describes our insights on monitoring and packet-trace analysis.

4.1 Experimental Setup

Different setups were used to run the experiments described in this chapter:

Setup 1: This setup was created on the GENI infrastructure. Specifically, this experimental setup

consists of two bare-metal (non-virtualized) hosts were used, one located at the University of Cali-

fornia, Los Angeles (UCLA) and the other located at the University of Chicago (UChicago), inter-

connected via a 1-Gbps L2 path (created using VLAN IDs). Each host has a total of 32 cores, 49

GB RAM, 1 TB disk space, and two 1 Gbps Ethernet (GigE) network interface cards (NICs). One

39
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of the NICs is used for remote login access, while the other is used to carry the experimental traffic.

The path RTT is 46 ms.

Setup 2: This setup was created on the multi-domain SDN described in Section 2.1.4. Two hosts

were used, one located at the University of Virginia (UVA) and the other located at Indiana Univer-

sity (IU). The two hosts were connected by a 4-Gbps L2 path. Each host has two Intel Xeon E5620

four-core processors (for a total of eight cores), 24 GiB RAM, and two 10 GigE NICs and 1 GigE

NIC (for remote login). Both hosts run kernel version 2.6.32. The path RTT is 26 ms.

Setup 3: This setup was created on the GENI UtahDDC, which is an InstaGENI rack. It consists

of two bare-metal hosts interconnected via a single Ethernet top-of-the-rack switch. Each host has

a total of 32 cores, 49 GB RAM, 1 TB disk space, and two 1 GigE NICs. The path RTT is 0.3 ms.

Setup 4: This setup was created on the GENI infrastructure. Two bare-metal hosts were used, one

located at the University of Kentucky and the other located at the University of Illinois. The two

hosts were connected by a 1-Gbps L2path. Each node has a total of 32 cores, 49 GB RAM, 1 TB

disk space, and two 1 GigE NICs.

Setup 5: This setup was created on the GENI rack at the University of Kentucky. Three bare-

metal hosts, H1, H2, H3, were used. H2 was configured as a gateway to perform IP-layer packet

forwarding of all packets sent between H1 and H3. Each host has a total of 32 cores, 49 GB RAM,

1 TB disk space, and two 1 GigE NICs. The RTT between H1 to H2 is 0.3 ms, while the RTT

between H1 to H3 is 0.5 ms.

4.2 Application Layer

4.2.1 Accuracy of network performance measurement tools (iperf3 and nuttcp)

Objective: The nuttcp and iperf3 tools are network performance measurement tools instru-

mented to report the achieved throughput and packet retransmissions. Such tools are used by

researchers to test the performance of new protocols, new network designs, etc. In a previous

experiment, we purposely injected packet losses on a path, and used nuttcp-6.1.2 to measure
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the throughput and packet-loss rate. However, nuttcp-6.1.2 reported 0 retransmissions, which

made us question the accuracy of this tool, and motivated us to verify the number of retransmissions

because these tools are used extensively by the GENI community and other networking researchers.

Key findings: Experimental results confirmed the accuracy of iperf3 and nuttcp-7.3.3.

Therefore, these applications are suitable for use as network performance measurement tools. How-

ever, we found the number of retransmissions reported by nuttcp-6.1.2 to be inaccurate.

Methodology: The method consists of the following steps: (i) A packet sniffer was initiated at

the sender to capture the application packets. (ii) The application (iperf3 or nuttcp) was used to

perform memory-to-memory data transfers. (iii) The packet sniffer was terminated. (iv) A packet

analyzer was used to process the captured packet trace to determine the number of retransmissions

on the application flow. (v) The number of retransmissions reported by the packet analyzer was

compared against the number of retransmissions reported by the application.

Experiment setup and execution: The experiment was conducted using Setup 1. The fol-

lowing tools were used: tcpdump was used to collect the application packets, and tshark version

1.6.7 and tcptrace version 6.6.7 were used to analyze packet traces. Two versions of nuttcp:

version 6.1.2 (the default GNU package) and version 7.3.3 (the latest version), and iperf3 version

3.0.7 were tested. A shell script was used to run the following commands: (i) initiate tcpdump

to capture all packets sent by the application, (ii) initiate the application (nuttcp or iperf3) to

perform memory-to-memory data transfers for ten seconds from UCLA to UChicago, (iii) termi-

nate tcpdump. HTCP was used as the congestion control scheme at the sender, and artificial packet

losses were injected randomly at the receiver using the Linux traffic-control (tc) netem utility. For

each application (nuttcp-6.1.2, nuttcp-7.3.3, and iperf3), a total of 100 runs were performed.

Results of nuttcp-6.1.2 tests: Fig. 4.1 shows the standard output of tcpdump, which

reports that no packets were dropped by the kernel, which means tcpdump was able to capture all

packets of the application flow (a capture filter can be set to configure tcpdump to only capture

packets of a particular flow, which may be necessary to capture all packets sent on a high-speed

link). As no packets were dropped, an analysis of the packet trace should find the exact number of

retransmissions.
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Fig. 4.2 shows the standard output of nuttcp-6.1.2, which reports zero retransmissions. How-

ever, Fig. 4.3 shows that both tshark and tcptrace reported 45 retransmissions (refer to section

4.5.3 to understand why tshark reports all/some of the retransmitted packets as out-of-order). The

nuttcp-6.1.2 tool reported zero retransmissions in all the 100 runs, while the numbers reported

by tshark and tcptrace were all non-zero, which was expected since packet losses were injected

deliberately.

Figure 4.1: tcpdump standard output

Figure 4.2: nuttcp-6.1.2 standard output

(a) tshark
(b) tcptrace

Figure 4.3: Number of retransmissions reported by tshark and tcptrace

Results of nuttcp-7.3.3 tests: Fig. 4.4 shows the standard output of tcpdump, which
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confirms that all packets were captured. Fig. 4.5 shows that the standard output of nuttcp-7.3.3

reports that were 32 retransmissions, which matched the tshark and tcptrace reports as seen in

Fig. 4.6. In all the 100 runs, the number of retransmissions reported by nuttcp-7.3.3 matched

the number of retransmissions reported by tshark and tcptrace.

Figure 4.4: tcpdump standard output

Figure 4.5: nuttcp-7.3.3 standard output

(a) tshark

(b) tcptrace

Figure 4.6: Number of retransmitted packets reported by tshark and tcptrace, unnecessarily
information was omitted

Results of iperf3 tests: Fig. 4.7 shows the standard output of tcpdump, which confirms
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that all packets were captured. The standard output of iperf3, shown in Fig. 4.8, reports 189

retransmissions, which matches the tshark and tcptrace reports shown in Fig. 4.9. There were

however, 2 runs out of the 100 runs, in which the number of retransmissions reported by iperf3

did not match the number of retransmissions reported by tshark and tcptrace.

Conclusions: Of the three network performance measurement tools, nuttcp-7.3.3 was the

most trustworthy in its reports on the number of retransmissions, nuttcp-6.1.2 was inaccurate all

the time, and iperf3 was inaccurate in 2 out of 100 runs. As the default GNU package includes

nuttcp-6.1.2, we caution researchers on using this tool, and recommend downloading the source

code of version 7.3.3 and building an executable.

Figure 4.7: tcpdump standard output

Figure 4.8: iperf3 standard output
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(a) tshark
(b) tcptrace

Figure 4.9: Number of retransmitted packets reported by tshark and tcptrace

4.2.2 Computing packet retransmission rate

While the previous section discussed issues related to the number of retransmitted packets, often

researchers need to report packet retransmission rates. Accuracy in reporting packet retransmission

rate is required in some contexts. For example, when comparing two transport protocols across

wide-area shared networks, the congestion-control algorithms in these protocols may vary slightly

causing different packet retransmission rates. A protocol that increases its sending rate more ag-

gressively may cause higher packet losses at router buffers. Under such circumstances, even a

seemingly small mistake in the assumptions could result in wrong conclusions.

To compute packet retransmission rate, the number of retransmitted packets, and the total num-

ber of transmitted packets, are required. But as seen in Section 4.2.1, network performance mea-

surement tools, iperf3 and nuttcp report only the number of retransmitted packets. Instead of the

total number of transmitted packets, these tools report the number of bytes sent, as seen in Fig. 4.10.

Packet size then becomes necessary to determine the total number of packets transmitted.

A commonly used assumption is that TCP payload is 1460 bytes because the maximum payload

size of a standard Ethernet frame is 1500 B, and typically IP header is 20 bytes and TCP header is 20

bytes. However, by capturing and analyzing packet traces, with tcpdump and tshark, respectively,

we found that the length of the TCP payload generated when using iperf3 was 1448 bytes. This

is because iperf3 calls certain socket options, which causes TCP to add options in its header.

The total size of these options is 12 bytes. When comparing packet retransmission rates on lossy

paths, or for small data transfers, using the correct TCP payload length can increase accuracy of the
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Figure 4.10: iperf3 log

reported packet retransmission rate.

4.3 Transport Layer

In Linux, TCP parameters are specified in /proc/sys/net/ipv4; these parameters can be changed

to achieve different goals. Our objective is to study the impact of the following TCP parameters:

tcp rmem, tcp wmem, tcp window scaling, and tcp moderate rcvbuf because these parameters

impact the achieved throughput.

4.3.1 Experiment setup and execution

Setup 3 was used to conduct the experiments described in this section. An artificial delay of 10

ms was injected for each packet using netem at the receiver. The iperf3 application was used to

create an HTCP flow for 5 seconds. The tcpdump tool was used to collect all packets of the flow,

and tshark was used to analyze the collected packet trace.

4.3.2 TCP receive buffer (tcp rmem)

The TCP receive buffer size places an upper limit on the TCP (advertised) receive window size

(rwnd), which in turn determines the TCP sending window size. The TCP sending window size is

the smaller of two values, congestion window and receive window, i.e., min(cwnd, rwnd). Since
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the TCP sending window determines the instantaneous sending rate, the receive buffer size impacts

TCP throughput.

In Linux, the receive buffer size is controlled by tcp rmem, which is an integer vector of

size 3: [min, default, max]. The min value of tcp rmem is used when the system is under memory

pressure. The default value influences the initial receive buffer size, which is allowed to grow up

to the max value.

To study the impact of tcp rmem on the receive window size, we conducted two sets of exper-

iments. In the first set of experiments, the same value was used to set default and max. In the

second set of experiments, we used different values for default and max. In both sets of experi-

ments, at the sender, the default and max values of tcp wmem were set to 2×BDP to ensure that

the congestion window was not a limiting factor. The receive window values were determined from

the collected packet traces. The Win field, which is part of the TCP header, in ACKs (and other

segments) flowing from the receiver to the sender carries the receive window size that is relevant to

the flow from the sender to the receiver.

Experiment 1: Table 4.1 shows the impact of tcp rmem on the receiver window size and on the

achieved throughput. In all the runs, we found that the initial receive window size was 29184 bytes

(which is less than half of tcp rmem default), but the value grew to almost half of the max value of

tcp rmem. Then the receive window size stayed constant at half of the max value of tcp rmem. An

examination of Linux Network-stack code confirmed this observation. Table 4.1 shows that when

tcp rmem default and max were set equal to the path BDP the achieved throughput was less than

1 Gbps. To achieve the maximum possible throughput on a path, TCP sending window size should

grow to equal the path BDP. If the receive window size is limited to a value smaller than BDP,

which will occur if the TCP tcp rmem values are small, the maximum possible throughput will not

be achieved. Therefore, to allow the receive window size to reach BDP, tcp rmem max should be

set to 2×BDP.

Experiment 2: In this experiment, we study the impact of tcp rmem default by executing two

runs: run 1: tcp rmem default=BDP, run 2: tcp rmem default=2×BDP. Figure 4.11a and Fig-

ure 4.11b show the receive window size carried in all ACKs and in the first 115 ACKs, respectively.
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Table 4.1: Experiment 1: Impact of tcp rmem on the maximum achieved receive window size and
throughput. The tcp wmem was set to 2×BDP to ensure that the TCP congestion window was not
a limiting factor

tcp rmem default (bytes) tcp rmem max (bytes) maximum rwnd (bytes) Throughput (Mbps)
BDP (1250000) BDP (1250000) 0.5×BDP (623616) 452
2×BDP (2500000) 2×BDP (2500000) BDP (1248768) 910

The difference between the two runs is seen in Figure 4.11b. In run 1, since tcp rmem default

was set to 2×BDP, the receive window grew faster than in run 2 where tcp rmem default was

set to just BDP. However, the time taken by the receive window size to reach its maximum value of

1248768 bytes was 189 µs for run 1 and 200 µs for run 2. Therefore, the difference between these

times was relatively small.

The previous experiment showed that tcp rmem default had only a small impact on the growth

of the receive window size. When using a congestion control protocol such as HTCP, which goes

through a slow-start phase to build its congestion window, starting with a receive window size that is

smaller than the path BDP may not significantly degrad throughput. However, when CTCP is used,

in which Slow Start is not executed, and the congestion window is fixed to a value slightly larger

than BDP, if the receive window size was smaller than BDP, the CTCP sending window would be

limited by the receive window size. Therefore, when using CTCP we suggest setting tcp rmem

default and max to 2×BDP.

Other Linux rmem parameters

(rmem max and rmem default) can be found in /proc/sys/core/. These parameters are general

and used to allocate buffers for all protocols, e.g., UDP. TCP Linux manual page [37] mentions that

tcp rmem default overwrites rmem default, while tcp rmem max does not overwrite rmem max.

However, in all the previous experiments, rmem default and rmem max were set to 625000 bytes,

which is smaller than the maximum achieved receive window size (1248768 bytes). If tcp rmem

max does not overwrite rmem max, then the receive window size would have grown to 625000 bytes

and stayed at this value.
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(a) For all ACKs (b) For the first 115 ACKs

Figure 4.11: Experiment 2: receive window size obtained from ACKs in the packet trace

4.3.3 TCP send buffer (tcp wmem)

The TCP send buffer size places an upper limit on the TCP congestion window size (cwnd), which

in turn determines the TCP sending window size. The TCP sending window size is the smaller of

two values, congestion window and receive window, i.e., min(cwnd, rwnd). Since the TCP sending

window determines the instantaneous sending rate, the send buffer size impacts TCP throughput.

In Linux, the receive buffer size is controlled by tcp wmem, which is an integer vector of

size 3: [min, default, max]. The min value of tcp wmem is used when the system is under memory

pressure. The default value influences the initial send buffer size, which is allowed to grow up to

the max value.

To study the impact of tcp wmem on the congestion window size, we conducted a set of ex-

periments. The same value was used to set default and max. At the receiver, the default and

max values of tcp rmem were set to 2×BDP to ensure that the receive window was not a limiting

factor. The congestion window values were determined from iperf3 standard output, in which the

congestion window size is reported in bytes every second.

Table 4.2 shows the impact of tcp wmem on the congestion window size (cwnd) and on the

achieved throughput. In all the runs, we found that the initial congestion window size was 14600

bytes (10 packets, but cwnd grew to a value that is slightly higher than half of the max value of
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Table 4.2: Impact of tcp wmem on the maximum achieved congestion window size and throughput.
The tcp rmem was set to 2×BDP to ensure that the TCP receive window was not a limiting factor

tcp wmem default (bytes) tcp wmem max (bytes) cwnd (bytes) Throughput (Mbps)
BDP (1250000) BDP (1250000) 1060000 659
2×BDP (2500000) 2×BDP (2500000) 1270000 911

tcp wmem). An examination to Linux Network-stack code confirmed that TCP initial window size

is 10 packets. The sending host TCP implementation followed RFC 6928, which increased the TCP

initial window size to 10 packets instead of 1, 2 or 4 packets as in the previous TCP standard.

Table 4.2 shows that when tcp wmem default and max were set equal to the path BDP, the

achieved throughput was less than 1 Gbps. To achieve the maximum possible throughput on the

path, TCP cwnd should grow to equal the path BDP. If the cwnd is limited to a value smaller than

BDP (e.g., by a small tcp wmem setting), the maximum possible throughput will not be achieved.

Therefore, to allow cwnd to reach BDP, tcp rmem max should be set to 2×BDP. Table 4.2 shows

that with this setting, throughput reaches close to 1 Gbps.

An interesting finding is that current TCP implementations follow RFC 2861, which states that

the congestion window size is not increased unless the application has provided sufficient data to fill

up the current congestion window. In our experiment, as we used HTCP, the htcp cong avoid()

function is called when an ACK is received, and the TCP connection is in the congestion avoidance

state. This function check whether TCP is limited by the application or not by calling another

function named tcp is cwnd limited(). This point is important because when sending large

datasets, the application will keep providing file data to the TCP layer, and as long as tcp wmem is

large enough, the congestion window size will keep growing. If the TCP sending window is larger

than switch buffers, packet losses could occur.

Other Linux wmem pa-

rameters (wmem max and wmem default) can be found in /proc/sys/core/. These parameters

are general and are used to allocate buffers for all protocols, e.g., UDP. The TCP Linux manual

page [37] mentions that tcp wmem default overwrites wmem default, while tcp wmem max does

not overwrite wmem max. However, in all the previous experiments, wmem default and wmem max
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were set to 625000 bytes, which is smaller than the maximum achieved congestion window size

(1270000 bytes). If tcp wmem max does not overwrite wmem max, then the congestion window size

would have grown to 625000 bytes and stayed at this value.

4.3.4 TCP window scaling (tcp window scaling)

The tcp window scaling parameter is used to allow TCP to advertise a receive window size larger

than 64 KB. If the receive window size is limited to 64 KB, since the TCP sending window size

is the smaller of the congestion window and receive window sizes, the TCP sending window will

be limited to 64 KB. Hence, the maximum possible throughput will not be achieved on high-BDP

paths.

To study the impact of this window scaling feature, an experiment was conducted. The

tcp wmem and tcp rmem (default and max) values were set to 2×BDP to achieve 1 Gbps through-

put. HTCP was used as the congestion-control protocol, and iperf3 was used to create a TCP flow

for 5 seconds. The receive window values were obtained from the collected packet traces.

Table 4.3 shows that when the window scaling feature was disabled, TCP was not able to ad-

vertise a receive window size larger than 65536 bytes. The TCP sending window size was limited

by the small receive window size. Therefore, the achieved throughput was only 51.7 Mbps, far

smaller than the maximum possible path throughput of 1 Gbps. On the other hand, when the win-

dow scaling feature was enabled, the maximum achieved receive window size was 1250048 bytes,

and throughput reached close to 1 Gbps. The BDP on this path was 1250000 bytes, and hence win-

dow scaling was needed, since 2×BDP should be used for both the send and receive side buffers

as recommended in Sections 4.3.2 and 4.2.

In the TCP header, only 16 bits are used to represent the window size. The maximum value that

can be represented with 16 bits is 65535, which means that the maximum receive window size is

65536 bytes. To overcome this limitation, a TCP option was used to increase the possible maximum

window size. A one-byte option is used to represent the window scaling value, which is then used

to compute the actual receive window size by performing a left shift operation on the window value.

For example, if TCP at the receiver want to advertise a window of size of 131070 bytes, the window
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Table 4.3: tcp window scaling impact on the maximum receive window size and throughput

tcp window scaling maximum rwnd (bytes) Throughput (Mbps)
0 (disabled) 65160 51.7
1 (enabled) 1250048 910

size in TCP header would be set to 65535, and the window scaling field would be set to 1. As a

result, the window size advertised in the TCP header will be left shifted by one bit (which is the

same as multiplying it by 2), and the window size would be 65535×2 = 131070 bytes. The TCP

receiver sets the scaling value in the option field based on the available TCP receive buffer size as

long as the tcp window scaling feature is enabled. Therefore, the window scaling feature should

not be disabled on high-speed networks to effectively serve high-BDP paths.

4.3.5 TCP receive buffer auto-tuning (tcp moderate rcvbuf)

The term auto-tuning is used to denote a functionality in Linux in which the receive-side buffer is

dynamically adjusted. As described in Section 4.3.2, the tcp rmem variable has three fields: min,

default and max, and that the initial size of the receive buffer is the default value. The growth

of the receive buffer from the default value to the max value is enabled by the the auto-tuning

feature.

The Linux variable tcp moderate rcvbuf controls whether-or-not auto-tuning should be exe-

cuted. If this variable is set to 0, the TCP receive buffer size will be held unchanged at the default

value of tcp rmem, but if this variable is set to 1, the buffer size will be increased, if needed, to the

max value of tcp rmem provided memory is available.

To study the impact of the auto-tuning feature, an experiment was conducted. The tcp wmem

default and max values were set to 2×BDP to ensure that TCP send buffer size is not a limiting

factor. The tcp rmem default and max values were varied. HTCP was used as the congestion-

control protocol, and iperf3 was used to create a TCP flow for 5 seconds. The receive window

values were obtained from the collected packet traces.

Table 4.4 shows that when tcp moderate rcvbuf was disabled, and tcp rmem default was
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set to BDP (1250000 bytes), while the max was set to 2×BDP (2500000 bytes), the receive window

(rwnd) grew from 28960 bytes up to half tcp rmem default value (623552 bytes). As noted in

Section 4.3.2, the initial value of the receive window (rwnd) is smaller than half the initial receive

buffer size (assuming the initial receive buffer size was equal to the default value). We only have

visibility into the receive window size (rwnd) (from the packet traces), but not into the receive

buffer size. Table 4.4 shows that the receive window did not grow up to half tcp rmem max. Since

the auto-tuning feature was disabled, the receive buffer size did not grow to the max value, and

consequently the receive window size rwnd reported in the packet headers was never larger than

the maximum rwnd shown in Table 4.4. Since this maximum value was below BDP, the throughput

was only 444 Mbps.

The second row of Table 4.4 shows a case in which the auto-tuning feature was still disabled,

but the tcp rmem default value was set to 2×BDP (2500000 bytes). In this case, the initial

receive buffer was large enough to allow the receive window size to grow from its initial value of

28960 bytes up to half tcp rmem default value (1248576 bytes), which was equal to the path BDP.

Hence, close to 1 Gbps throughput was achieved.

The third row of Table 4.4 shows a case when the auto-tuning feature was enabled, and the

tcp rmem default value was only 1 BDP, and yet the receive window reached a maximum value

of 1250048 bytes, which is half the maximum receive buffer size as set in tcp rmem max value.

Therefore, we conclude that disabling the auto-tuning feature prevents the receive buffer size from

increasing to the tcp rmem max value. However, if the tcp rmem default value is set to 2×BDP,

then even if the auto-tuning feature is disabled, the receive buffer size is already large enough to

allow the receive window size to be sufficient for TCP to realize the maximum possible throughput.
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Table 4.4: tcp moderate rcvbuf impact on TCP receive window and throughput

tcp window scaling tcp rmem
default
(bytes)

tcp rmem
max
(bytes)

initial
rwnd
(bytes)

maximum
rwnd
(bytes)

Throughput
(Mbps)

0 (disabled) 1250000 2500000 28960 623552 444
0 (disabled) 2500000 2500000 28960 1248576 916
1 (enabled) 1250000 2500000 28960 1250048 910

4.4 Data-Link Layer

4.4.1 Background

4.4.1.1 Traffic-control (tc) utility

Linux traffic control (tc) supports multiple queueing disciplines. This chapter describes in-depth

experiments with the Token-Bucket Filter (TBF) queuing discipline. TBF is a simple queuing

discipline that is used to shape traffic to a specific rate [38]. The three basic parameters are rate,

limit, and burst. The rate parameter represents the rate at which tokens are generated and held

in the token bucket. The limit parameter represents the size of a buffer that holds packets while

waiting to be transmitted by the NIC. The burst parameter represents the token bucket size, which

determines the maximum number of packets that can be sent out back-to-back at the NIC rate.

4.4.1.2 High-resolution timers

In Linux systems, a periodic system timer (also called software clock) expires, and all system calls

that set timers will be notified via signals. The software clock is set by a Linux system variable

called HZ, which is a compile-time constant. For example, if HZ = 250, then system calls that set

timeouts will be signaled every 4 ms [39].

In Linux 2.6.21, high-resolution timers (HRTs) were introduced as a new timer subsystem. As

noted on a Web site [39], “On a system that supports HRTs, the accuracy of sleep and timer system

calls is no longer constrained by the software clock, but instead can be as accurate as the hardware

allows (microsecond accuracy is typical of modern hardware).” To enable the HRT feature, the
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kernel should be compiled with the CONFIG HIGH RES TIMERS option. With current systems, the

hardware clock allows for timers with fine granularity, e.g., 1 ns. For example, if the periodic

system timer, set by the HZ variable, is set to be 1 ms, without HRTs, a process cannot set events

for time intervals smaller than 1 ms. But with the HRT subsystem, a process can register an event

at time intervals of 1 ns.

4.4.2 Initial condition of the token bucket in the TBF queueing discipline

Objective: Documentation about the TBF queueing discipline [38] does not specify whether the

token bucket is full at the start, or whether the token bucket fills up gradually with tokens being

added at the specified TBF rate. The objective of this experiment is to make this determination.

Our motivation for addressing this question is as follows. The TBF rate value could be smaller

than the NIC rate. For example, a Layer-2 (L2) path could have been provisioned at the TBF rate,

or there could be a bottleneck link on the end-to-end path whose rate is lower than the NIC rate.

If the burst value is large, the transmitter could send out a large amount of data in back-to-back

packets at the NIC rate. Such a burst could cause packets to be dropped at the router/switch buffer

feeding the bottleneck link. Such behavior was observed in experimental results reported in our

prior work [8].

Key finding: The results of the experiment confirmed that the token bucket is full of tokens

at the start. Hence, at the beginning of a flow that is rate-shaped by tc using the TBF queueing

discipline, there will be a packet burst (of size equals to the burst parameter) that is sent at the NIC

rate. Packets will be sent out at the TBF rate only after the initial burst of packets.

Methodology: The key idea was to examine the differences in consecutive packet timestamps

to determine whether packets were sent at the NIC rate or at the TBF rate. The overall method

consists of the following steps: (i) A packet sniffer was used at the receiver to capture packets of

the tc rate-shaped flow. (ii) A ping was performed for two seconds to ensure that the Address

Resolution Protocol (ARP) table contains the necessary IP-address-to-MAC-address mapping. If

the ARP request-response sequence was executed after the tc rate-shaped flow was initiated, we

cannot determine whether-or-not the token bucket was full at the start because the token bucket
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Figure 4.12: UDP packets captured at the receiver. The first two packets are the ping packets.
The UDP packets start from packet number 3. Col. 1: packet number, col. 2: packet arrival time
(relative), col. 3: source IP address, col. 4: destination IP address, col. 5: protocol number, socat
message of size 57520 was fragmented into 39 packets starting from packet 3

would have time to fill up during the ARP request-response sequence. (iii) The tc command to

configure the TBF queuing discipline was executed at the sender. (iv) An application was used to

create a UDP flow immediately after issuing the command to run tc. UDP was used instead of TCP

because TCP uses a 3-way handshake to establish a connection, which offers the token generator an

opportunity to fill up an initially empty bucket. In other words, if the experimental tc rate-shaped

flow was a TCP flow, the results would be inconclusive because the token bucket could have been

empty at the start and then filled up during the TCP connection establishment phase, or the token

bucket could have been full at the start. Therefore, a UDP flow was used instead of a TCP flow. (v)

The packet sniffer at the receiver was terminated. (vi) A packet analyzer was used to analyze the

packet trace and output the arrival time differences between consecutive packets. (vii) These time

differences showed that a burst of packets were sent back-to-back at the NIC rate, and that the size

of the burst matched the TBF burst parameter value.

Experiment setup and execution: The experiment was conducted using Setup 2. The ap-

plication socat (version 1.7.2.3) was used to execute file transfers using UDP. The tcpdump tool

was used at the receiver to capture UDP flow packets, and tshark version 1.6.7-1 was used to

process the collected packet traces.
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Figure 4.13: Col .1: packet
number; col. 2: Tb −Tb−1,
where Tb is arrival time of
packet b; unit: ms

TBF parameters were set as follows: limit: 25 MB (large enough to

ensure packets are not dropped at the sender by tc), burst: 151400

bytes (large enough to burst out 100 packets at the NIC rate), rate:

60 kbps. At this rate, it will take 20 seconds to fill the token bucket.

Therefore, even if there is a millisecond gap between the execution

time of the tc command to configure TBF and the time instant when

the socat flow starts sending data, this time gap is not sufficient for

the bucket to fill up. A shell script was used to run the following

commands back-to-back: (i) ping, to update the ARP table, (ii) tc, to

configure TBF, and (iii) socat, to send data.

Results and discussion: Figure 4.12 shows the first twenty re-

ceived UDP packets, each of size 1514 bytes. The first two packets

shown in the packet trace are ping packets, used to update the ARP ta-

ble. The socat application was initiated with 57520 bytes, therefore,

the IP layer fragmented the message into 1514-byte packets.

Figure 4.13 shows the inter-arrival times between packets of the

UDP flow. If the initial condition was an empty token bucket, since to-

kens were generated at 60 kbps, the inter-arrival times between packets

would have been 200 ms (1514 bytes/60 kbps = 200 ms). On the other

hand, if the initial condition was a full token bucket, a burst of 100

packets would arrive with inter-arrival times of 1.2 µs because of the

10 Gbps NIC rate (1514 bytes/10 Gbps = 1.2 µs). The results in Figure

4.13 confirm that the initial condition is a full token bucket. After the

first 100 packets were transmitted (packet 3 to packet 102), the token

bucket was empty. Starting from packet 103, packets were transmitted

with inter-arrival times of 200 ms as seen in Figure 4.13.

Conclusions: Our experiment proved that in the TBF queueing discipline, the initial condition

is a full token bucket. Therefore, users should be aware that when using UDP to transfer data, or
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when using TCP with a large initial congestion window (cwnd), as with CTCP [33], a packet burst

whose size is determined by the burst parameter of TBF will be sent back-to-back at the NIC rate.

If switches/routers on the end-to-end path have small buffers, packet loss is possible in this initial

burst phase.

4.4.3 How TBF sends out packets

Objective: The objective of this experiment was to determine whether packets are sent in bursts

based on the Linux system timer, or packets are sent at fixed intervals whose duration is determined

by the TBF rate. The motivation was to design a method to select the TBF burst size. The

TBF manual page [38] specifies that the minimum value for burst should be computed as follows:

burst= rate×HZ, where rate is the desired sending rate, and HZ defines the system timer as

noted earlier. However, the impact of the burst value is reduced if the TBF code can be called at

shorter time intervals.

Key findings: Packets are sent in bursts based on the system timer if the inter-packet transmit

time is is less than the system timer. For example, to send data at a 20 Mbps rate, one maximum-

sized Ethernet frame (1500B) should be sent every 0.6 ms. But if the system HZ value was set to

250, then the system timer is 4 ms, which means the TBF-code set timer can only be set to 4 ms.

Further, the TBF burst should be at least 10500 bytes to achieve the 20 Mbps average sending rate,

i.e., 10500 bytes are sent every 4 ms. But these bytes are sent at the full NIC rate, which means 7

packets will be sent within 8.4 µs, since each 1500B packet needs only 1.2 µs for transmission by a

10-Gbps NIC. The NIC will be idle for for (4000 - 8.4) = 3991.6 µs in ever 4 ms interval.

On the other hand, if the High-Resolution Timer (HRT) feature, described in Section 4.4.1.2,

is enabled, then since 0.6 ms, which is 600 µs, is larger than 1 ns (assuming the hardware clock

allows for this small timer value), the TBF code will send only a single packet when its 600 µs

timer expires. In this case, packets will not be sent in bursts, and corresponding the TBF burst

value does not play a significant role.

Methodology: The method consists of the following steps: (i) A packet sniffer was used at the

receiver to capture packets of the tc rate-shaped flow. (ii) The tc command was executed at the



Chapter 4. Lessons learned: Contributions to the experimental-networking research community59

sender to configure the TBF queuing discipline. (iv) An application was used to create a TCP flow.

(v) The packet sniffer at the receiver was terminated. (vi) A packet analyzer was used to analyze the

packet trace to determine packet inter-arrival times. (vii) Based on the packet inter-arrival times,

we determined how packets are metered out on to the NIC in a TBF-controlled flow.

Experiment setup and execution: The experiment was conducted using Setup 2. The appli-

cation iperf3 was used to transfer data on a TCP connection. The tcpdump tool was used at the

receiver to capture TCP flow packets, and tshark version 1.6.7 was used to process the collected

packet trace.

TBF parameters were set as follows: limit: 25 MB (large enough to ensure packets are not

dropped at the sender by tc), burst: 15140 bytes (large enough to burst out 10 packets of size

1514 bytes at the NIC rate), rate: 20 Mbps. CTCP was used as the congestion-control module,

and the fixed congestion window size was set to 45 packets. The RTT on the path was 26 ms, and

therefore BDP was 520 KB, which is 43 maximum-sized packets, and hence the CTCP congestion

window size was made slightly larger. The TBF limit was left unchanged at the large value used

for a prior 4 Gbps experiment. A shell script was used to run the tc command to configure TBF at

the sender, and then initiate iperf3 to send data.

Results and discussion: Fig. 4.14 shows how TBF metered out packets under two different

assumptions. Fig. 4.14a shows the behavior of TBF when the system timer was 4 ms and the

HRT feature was not enabled. Since the burst size was set to 15140 bytes (10 packets), and the

time needed by a 10-Gbps NIC to send these 10 packets is 12 µs, there is a silence period for the

remaining (4000-12 = 3988) µs in each 4-ms interval as seen in Fig. 4.14a. More importantly, a

burst of 10 packets was sent at the full NIC rate, which makes it more likely for switch buffers to

overflow.

Fig. 4.14b shows TBF metered out packets when a high-resolution timer was available. In this

case, the TBF code was signaled every 600 µs, and exactly one packet was transmitted each time. As

packets are 1500B, one packet needs to be sent every 600 µs to achieve the 20 Mbps rate. Fig. 4.14b

shows while packets are sent exactly one every 600 µs, in the beginning, we see 10 packets being

sent out in a burst. This behavior was explained in Section 4.4.2 as being attributed to a full token
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(a) System timer (software clock): 4 ms; HRT was
unavailable

(b) HRT feature was available

Figure 4.14: How TBF sends packets; rate=20 Mbps, burst=15140 bytes; limit = 25 MB

bucket at the start.

Fig. 4.15 shows multiple snapshots of the analyzed packet trace collected at a host with an HRT.

The first 3 packets were control packets that do not carry data (SYN, SYN ACK, and ACK/PSH

packet). Packet 4 was the first packet that carried user data. From packet 4 to packet 13, ten

packets (their total size equals the TBF burst value) were sent back-to-back at the NIC rate

(1500×8bit/10Gbps = 1.2µs). Inter-packet arrival times were slightly more at 3 µs due to other

delays on the path. Starting from packet 14, one packet was sent approximately every 0.6 ms, which

is the time required to send a packet of size 1500 bytes while not exceeding TBF rate of 20 Mbps.

If the hardware clock allows a high-resolution timer of 1 ns, then the time needed by TBF

to send one packet is greater than the HRT even if the TBF rate is 40 Gbps or 100 Gbps, since

packet intervals should be 300 ns or 120 ns, respectively. Therefore, one packet will be sent out

based on TBF rate even with high rates as long as the machine is capable of sending packets down

to the tc layer, and the CPU is not loaded with many other processes that require soft interrupts.

TBF uses a watch dog to set up a timer, which then uses a soft interrupt to wake up TBF. If many

other processes set soft interrupts, then the time taken by the CPU to handle each such interrupt

would delay when the TBF code interrupt can be handled. Such delays could cause generating

more tokens to fill the bucket, in which case multiple packets would be sent in a burst. Therefore,

in multi-tasking systems, it is difficult to achieve deterministic behavior.

Conclusions: The specifics of how TBF meters out packets depends upon the system timer,

TBF rate and TBF burst values. For the specified rate, if the inter-packet transmit time is less

than the system timer and the HRT feature is not available, then a sufficiently large burst size is
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Figure 4.15: Four snapshots of the analyzed packet trace for the case with HRT. For each snapshot,
col. 1: packet number; col. 2: Tb −Tb−1, where Tb is arrival time of packet b; unit: ms

required to achieve the specified rate, and packets will be sent in bursts at the NIC rate on every

expiration of the system timer. On the other hand, if the time-interval required between packets to

achieve the specified rate is greater than the high-resolution timer if available, (or system timer),

then a single packet will be sent on every timer expiration, and packets will not appear at the NIC

rate in bursts. The implication of this finding is that with HRT, probability of packet loss due to a

switch buffer overflow will be smaller since packets are not sent in bursts.

4.4.4 TBF limit vs txqueuelen

The txqueuelen parameter represents the size of the queue in which packets are held for transmis-

sion by the NIC. The TBF limit is also a parameter that is used to determine the size of a buffer
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that holds packets waiting for transmission by the NIC. The objective of this experiment was to

understand the relation between txqueuelen and TBF limit.

An article by Dan Simeon [40] states that “txqueuelen is only used as a default queue length for

some of the queueing disciplines.” The following queueing disciplines are listed: pfifo fast

(Linux default queueing discipline) sch fifo, sch gred, sch htb, sch plug, sch sfb, and

sch teq. The same article goes on to state “For most of these queueing disciplines, the limit

argument on the tc command line overrides the txqueuelen default. In summary, if you do not

use one of the above queueing disciplines or if you override the queue length then the txqueuelen

value is meaningless.” As we recommended TBF for circuits/VCs in Chapter 3, and this queueing

discipline is not listed in the set specified by the article, we conducted this experiment to determine

whether TBF limit overrides txqueuelen.

The following method was used: (i) determine the value of TBF limit at which packets are

dropped by tc, which can be obtained using -statistics argument when calling tc, for a partic-

ular data-transfer application, (ii) set the txqueuelen to the size determined from step 1, (iii) set

TBF limit to a larger value than the size determined from step 1, (iii) run the same application

as in step (i), (iv) obtain the number of dropped packets from tc statistics, (v) if tc did not drop

packets, it implies that TBF limit overrides txqueuelen. However, if there are packet drops, then

TBF limit does not override txqueuelen, and both txqueuelen and TBF limit should be tuned

properly to ensure that no packets are dropped by tc.

Setup 3 was used to conduct the experiment. An artificial RTT of 10 ms was injected at the

receiver using netem. TBF parameters were set as follows: limit: varied, burst: 10 KB, and

rate: 1 Gbps. CTCP was used as the congestion-control protocol with fcwnd set to 1000 packets.

The txqueuelen value at the sender was varied. The iperf3 tool was used to transfer data for 10

seconds over a CTCP connection.

Table 4.5 shows the results of the experiment. It provides txqueuelen value in bytes, by

multiplying the actual txqueuelen value, which is specified in Ethernet frames, by 1500B, to

enable easier comparison with the limit, which is specified in bytes. We found that a limit value

of 15 KB caused packet drops by tc as evidenced by the throughput drop to 352 and 349 Mbps in
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Table 4.5: Impact of txqueuelen and TBF limit on the number of dropped packets at the sender

TBF limit txqueuelen number of packets dropped by tc Throughput (Mbps)
1.5 MB 1.5 MB 0 917
1.5 MB 15 KB 0 917
15 KB 15 KB 44171 352
15 KB 1.5 MB 43412 349

the last two rows of Table 4.5. Furthermore, row 3 shows that if txqueuelen is dropped to 15 KB,

there is no impact on throughput as long as limit is 1.5 MB. These results confirm that TBF limit

overrides txqueuelen value. Therefore, only TBF limit value should be tuned properly to ensure

no packets are dropped by tc.

4.5 Monitoring

Applications such as iperf3 and nuttcp can create TCP flows and report the number of retrans-

missions of the created flow. However, If other applications such as GridFTP was used to transfer

data and we are interested in finding the number of retransmissions, or we want to capture all

flow packets for further analysis (e.g., inter-arrival time of flow packets), then packets of the flow

should be collected and analyzed. The objective of this section is to provide insights on how to use

tcpdump, tshark, and tcptrace to achieve theses goals.

4.5.1 Background

Large-Receive Offload (LRO) and TCP-Segmentation Offload (TSO) are techniques used to in-

crease TCP flows throughput. The idea of the offload techniques is to merge multiple consecutive

packets from the same flow into one large packet to reduce the processing overhead.

LRO technique is used specifically to merge incoming packets into a larger packet before pass-

ing it to the upper layer for processing. On the other hand, TSO is used to send a large packet

(larger than the path MTU) to the NIC, which takes care of segmenting the large packet into smaller

packets with a size that matches the path MTU.
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Two other techniques were introduced later: Generic-Receive Offload (GRO) and Generic-

Segmentation Offload (GSO). Both were introduced to overcome the LRO/TSO limitation to TCP

over IPv4 and to solve the problem of merging packets in a way that does not preserve all the

flow states. GRO/GSO are generic and can be used with other protocols such as UDP, and are less

aggressive than LRO/TSO in combining packets, which preserve flow states.

4.5.2 On capturing all packets of a flow

Objective: The objective of this experiment was to determine the settings required to capture all

packets of a flow. For example, to determine the initial state of the token bucket, which was de-

scribed in Section 4.4.2, we needed a trace consisting of all packets of a flow.

Key recommendations: Based on lessons learned from this set of experiments, we recommend

the following: (i) when tcpdump is to used to capture packets, the standard output should be directed

to a log file, which should then be parsed and analyzed automatically to check whether any packets

were dropped by the kernel and consequently not included in the capture trace, (ii) careful thought

should be given on whether to capture packets at the sender, at the receiver, or at both places, as

some types of analyses require the packet trace from the sender, some others require the packet

trace from the receiver, and finally some require both, and (iii) offload features as TSO/LRO and

GSO/GRO should be disabled if information about the packets transmitted on the wire is required

from packet traces, but disabling these features will reduce TCP throughput.

Experiment setup and execution: The experiment was conducted using Setup 3. The iperf3

tool was used to send data for 30 seconds, while tcpdump was running and configured to collect

all packets for that particular iperf3 flow. Packet traces were collected at both the sender and the

receiver. Experiment 1 demonstrates how to capture all flow packets without dropping any packets,

while Experiment 2 shows the impact of the TSO/LRO and GSO/GRO features.

Results and discussions:

Experiment 1: Fig. 4.16 shows the execution of two tcpdump commands and their corre-

sponding screen logs. Fig. 4.16a shows the case when the tcpdump was invoked without the -B and

-s flags, and Fig. 4.16b shows the case when these flags were used. Fig. 4.16a shows that 100K
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(a) Packets were dropped by the kernel before tcpdump collect them

(b) No packets were dropped by the kernel

Figure 4.16: tcpdump standard output

packets were dropped by the kernel, which means that 100K packets would be missing from the

tcpdump packet trace collected in the run without the -B and -s flags. Analysis of a packet trace

with missing packets could lead to inaccurate interpretations.

The tcpdump tool uses a buffer to hold all packets before applying filters. To avoid dropping

packets, the size of the buffer should be increased, which can be done using the -B flag of tcpdump.

Moreover, since only packet headers are required to understand the behavior of protocol layers such

as TCP, the payload data can be dropped to reduce the size of the packet capture file. The -s flag

of tcpdump can be used to specify the maximum size of saved bytes for each packet. We used 74

bytes, which is sufficient to capture all the required headers (14 bytes for the Ethernet header, 20

bytes for the IP header, and 40 bytes for the TCP header with 20 bytes for the mandatory fields

and 20 bytes for the options field). Fig. 4.16b shows that when -B and -s flags were used when

invoking tcpdump, no packets were dropped.

Experiment 2: Fig. 4.17 shows a part of sender-side packet traces for two cases: (i) when the

offload features (LRO/GRO, TSO/GSO) were enabled (which is the default setting in Linux), and

(ii) when the offload features were disabled using ethtool. Fig. 4.17a shows all packet sizes to be

2962 bytes, which is larger than the path MTU (1500 bytes). The packet trace shows large packet

sizes because LRO/TSO were enabled when the packet trace was collected.

Fig. 4.17b shows the size of each packet as 1514 bytes (also shown is a Len field of 1448 bytes,

which represents the TCP payload size as explained in Section 4.2.2). When the offload features

are disabled, the size of packets handed to the Ethernet NIC is 1514 bytes. Additional bytes are



Chapter 4. Lessons learned: Contributions to the experimental-networking research community66

added by the NIC for CRC and a physical-layer preamble before the packets are transmitted on to

the wire. If information is needed about each packet that is transmitted on to the wire, e.g., packet

timestamps for the exact transmission instants, then the offload features should be disabled.

A second, but complementary, point is that careful consideration should be given as to whether

packets should be captured at the sender or the receiver. This is because a copy of the packet

is passed to sniffers such as tcpdump before the hard start xmit function is called for packet

transmission [41]; in other words, if tcpdump is run at the sender, packets are captured before they

are transmitted on to the wire. Therefore, if an analysis requires consideration of actual (or relative)

time instants when packets were transmitted on to the wire, it is better to capture and analyze packet

traces collected at the receiver. For ordinary NICs in which a received packet is delivered to the

higher layers via at the time of arrival through interrupts, the receiver-captured time instants offer

a better of inter-packet transmission times than do transmitted-captured time instants. A word of

caution that this finding holds only if the path does not include many switches with interfering traffic

because on such paths, inter-arrival times at the receiver will be influenced by queueing delays at

switches, and hence may not reflect transmission times at the sender. Packet capture at both the

sender and receiver is required if dispersion between consecutive packets is of interest [42].

For other types of analyses, packets should be captured at the sender. For example, for deter-

mining packet retransmission rates, as described in Section 4.2.2, packets need to be captured at

the sender, because it is the sending TCP that knows when a packet is retransmitted. If a packet

was dropped by a network router, a receiver would have no record of the original packet transmis-

sion and hence could not determine from a trace whether a retransmission occurred or not (If the

analyzing tool depends only on the occurrence of a duplicate packet to classify it as a retransmitted

packet, e.g., tcptrace).

While offload features, LRO/TSO and GRO/GSO, should be disabled while debugging, dis-

abling them will have an adverse impact on the achieved throughput and the packet capture trace

size. Fig. 4.18 shows the impact of enabling and disabling the offload features. As seen in

Figs. 4.18b and 4.18c, the flow throughput dropped when TSO/GSO or LRO/GRO were disabled

because of the overhead of processing small packets. Furthermore, disabling the offload features
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(a) Offload features were on

(b) Offload features were off

Figure 4.17: Offload feature impact of the size of captured packets

(a) Offload features were on (b) TSO and GSO were off at the sender

(c) LRO and GRO were off at the receiver

Figure 4.18: The impact of offload features on the achieved throughput

increases the captured packet trace size. In this experiment, when the offload features were enabled,

the packet trace size was only 17.6 MB, but when the offload features were disabled, the size of the

packet trace increased to 206 MB.

Conclusions: We have three findings with regards to capturing all packets of flow to understand

the detailed behavior of the flow. First, the tcpdump tool should be used with -B and -s flags,

and the tcpdump log should be checked to ensure that the kernel did not drop any packets, and

correspondingly the collected trace contains information about all packets of the flow. Second, the

TSO/LRO and GSO/GRO features should be disabled when collecting packets for detailed analysis.

However, these offload features should be enabled for the actual data transfers especially for high-

throughput flows. Third, consideration should be given on where to collect packet traces. For some

types of analyses, the sender is the better choice, while for others, packets should be captured at the

receiver.
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4.5.3 Reconciling differences in tshark and tcptrace output

Objective: The objectives of the experiment are to understand the differences in some of the num-

bers reported by tshark and tcptrace, and to determine how to estimate the number of retrans-

missions from the results reported by these analyses tools. For example, in Section 4.2.1, Figs 4.6

and 4.9 show a discrepancy between the number of out-of-order packets and number of retransmit-

ted packets reported by these two analysis tools. Three types of traces were analyzed: (i) a trace

with missing packets, (ii) a trace with all packets of a flow that was captured at the sender and (iii)

a trace with all packets of a flow that was captured at the receiver. For high-speed flows, it may be

difficult to capture all packets of a flow, which explains our consideration of the first trace.

Key recommendations: (i) If all that a user has is an incomplete packet trace collected at the

sender, the sum of the number of retransmissions and the number of out-of-order packets reported

by either tcptrace or tshark can be used as an estimate of the total number of retransmissions

with the caveat that the percentage of packets missing in the trace should be relatively small. Incom-

plete packet traces collected at the receiver are not suitable for estimating the number of retrans-

missions. (ii) With a complete trace collected at the sender, the total number of retransmissions

can be determined with both tcptrace and tshark; the former is faster but offers only aggregate

information for the whole trace, while the latter can offer information on parts of the trace. (iii)

Receive-side traces should not be used to determine number of retransmissions.

Experiment setup and execution: The experiment was conducted using Setup 5. The appli-

cation iperf3 (version 3.1) was used to transfer data via a TCP connection. The tcpdump tool was

used at the sender and at the receiver to capture the TCP-flow packets, and tshark version 1.10.6

and tcptrace version 6.6.7 were used to analyze the collected packet traces. Since iperf3 re-

ported number of retransmissions were verified by experiments described in Section 4.2.1, here we

use the iperf3 number as the ground-truth to validate the tcpdump and tshark reported numbers.

Case 1: Trace with missing packets: The number of retransmitted packets reported by iperf3

was 92 packets. Fig. 4.19 shows the tcpdump standard output log, which indicates that 92 packets

were dropped by the kernel. On this run, neither the -B nor -s flags were used to deliberately
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create a packet trace with missing packets. The packet trace was analyzed using both tshark and

tcptrace, and the results are reported in Figs. 4.20b and 4.20a, respectively. Fig. 4.20a shows that

20 packets were retransmitted and 72 packets were out-of-order. These two numbers add up to 101,

matching the number reported by iperf3.

Figure 4.19: tcpdump standard output

We first provide an explanation for the packets reported as out-of-order by tcptrace and then

compare the (Column 4) numbers with tshark numbers. Consider an example flow in which a

sender transmits the following sequence of packets 1, 2, 3, 4, 5 and 6, and tcpdump does not capture

packet 3 and 5 because the buffer holding the packets to be processed by tcpdump was full. Now

assume that packet 3 was retransmitted, the sequence of the packets in the packet trace would be: 1,

2, 4, 5, 3. If tcptrace captures packet 3, it reports the packet as an out-of-order packet. But since

packets captured at the sender cannot be transmitted out-of-order (in a serial implementation of the

Linux network stack), we can assume that out-of-order packets are actually retransmitted packets,

and that the kernel dropped the first transmission. Had tcpdump captured all packets, then the packet

trace would consist of the following sequence: 1, 2, 3, 4, 5, 6, 3, in which case tcptrace would

classify the second packet 3 as a retransmitted packet. This analysis points to the conclusion that

if the packet drop rate by the capture tool is small, the probability of both the original transmission

and a retransmission being dropped is correspondingly small, and therefore, a user could use this

estimate of the sum of the numbers of out-of-order packets and retransmitted packets as reported

by tcptrace as a fairly accurate estimate of the number of retransmitted packets. Clearly, it is

preferable to run a capture tool that does not drop packets.

Next, we compare the output of tshark with that of tcptrace. Fig. 4.20b shows the number

of out-of-order packets (Column 4) is 9, while the number of retransmitted packets (Column 0)

is 83, which together also sum to 92 packets, which matches the number reported by iperf3.
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However, the numbers reported for out-of-order packets by tshark and tcptrace do not match.

An explanation for this finding is as follows. The tshark tool performs advanced analysis on a

packet trace, which allows it to identify a retransmitted packet even if the packet did not appear

twice in the packet trace. Consider the same previous example where tcpdump did not capture

packets 3 and 5, and packet 3 was retransmitted. Now assume the receiver sent triple duplicate

ACKs for packet 3. When tshark sees the triple duplicate ACKs, it concludes that packet 3 was

sent previously even if did not appear in the packet trace because tcpdump was not able to capture

it. Therefore, when packet 3 appears after packet 6, tshark considers it as a retransmitted packet

instead of an out-of-order packet. In spite of the advanced analysis, tshark still classified 9 packets

as out-of-order instead of retransmissions. One possible scenario for this misidentification is if one

of the triple duplicate ACKs for packet 3 were not captured by tcpdump, in which case tshark

would classify packet 3 as an out-of-order packet.

Consider the number of lost segments reported by tshark. Fig. 4.20b shows this number to be

7 (Column 2). This measure is a report of the number of missing blocks of packets. For example,

if the sender transmitted the following packets: 1, 2, 3, 4, 5, 6, 7, 8, and the kernel dropped packets

3, 4 and 5, the packet trace would contain the following packets: 1, 2, 6, 7, 8. When tshark sees

packet 2, it expects the following packet to be 3. However, since the next packet is 6, tshark marks

packet 6 with a flag indicating that there was a burst of dropped packets without specifying exactly

how many packets were dropped.

We do not recommend this probabilistic estimation of number of retransmissions from an in-

complete traced collected at the receiver, because there are two problems. First, a receiver trace will

not include retransmissions for packets that were dropped in router buffers on their transfer from

the sender to the receiver, which makes it challenging for an analysis tool like tcptrace or tshark

to accurately determine the number of retransmissions. Second, packets can arrive out-of-order in

datagram networks such as IP-routed networks, and therefore the number of out-of-order packets

reported by these tools could be genuine out-of-order packets and not retransmissions. Therefore,

packet traces collected at receivers should not be used to determine the number of retransmissions.

Case 2: Sender-side trace with all packets of a flow: In this experiment, the iperf3 flow was



Chapter 4. Lessons learned: Contributions to the experimental-networking research community71

(a) tcptrace output

(b) tshark output

Figure 4.20: Case1: Analysis of a trace with missing packets

routed through a Linux host in the middle of the path between the source and destination as de-

scribed in Setup 5 (see Section 4.1). The netem utility was used to randomly reorder packets of the

flow to deliberately cause out-of-order packet arrivals at the receiver. For this case, in which the

packet trace was collected at the sender, there should be no impact from the deliberate re-ordering

of packets. But a packet trace was also collected at the receiver in this experiment for the Case 3

analysis, which will be presented next. The number of retransmissions reported by iperf3 was 214

packets.

tcptrace: Fig. 4.21a shows that the number of retransmissions reported by tcptrace is also

214 packets. Since this trace contained all packets of the flow, if a packet was retransmitted, it

would appear twice in the collected packet trace. This allowed tcptrace to easily count duplicate

packets and report the number of retransmissions.

tshark: Fig. 4.21b shows the number of retransmitted packets (Column 2) and number of out-
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of-order packets (Column 3) reported by tshark. These numbers add up to 214 packets. A bug

was reported that retransmitted packets were counted as out-of-order packets in the tshark tool

versions before 1.12.x. Developers of tshark fixed this bug by considering the initial RTT value.

However, we tested tshark version 1.12.10, but found there were still some packets reported as

out-of-order packets instead of being classified as retransmitted packets.

Fig. 4.22 shows another packet trace collected at the sender, where iperf3 reported 149 re-

transmissions. Two versions of tshark were used to analyze the same packet trace. In the older

version (1.10.6), all retransmitted packets were reported as out-of-order packets, while in the newer

version (1.12.10), 10 packets were reported as retransmissions, but all the other retransmissions

(139 packets) were reported as out-of-order packets. Therefore, when using tshark reports of a

sender-collected trace to find the total number of retransmissions, out-of-order packets should be

added to the number of retransmitted packets regardless of the tshark version used.

(a) tcptrace output
(b) tshark output

Figure 4.21: Case 2: Analysis of a sender-side trace that contained all packets of a flow

Case 3: Receiver-side trace with all packets of a flow: We analyzed the packet trace collected at

the receiver during the experiment described under Case 2. Since an analysis of a complete sender-

side trace can provide an accurate value for the number of retransmissions (which was 214 packets

for this experiment), this number can be used as ground-truth in the receive-side trace analysis.

Fig. 4.23 shows that both tshark and tcptrace reported an incorrect number of retransmitted

packets. As expected, the receive-side trace will not have information about packets that were

dropped from the sender to the receiver, and hence any analysis of a receive-side trace cannot
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(a) tshark version 1.10.6 (b) tshark version 1.12.10

Figure 4.22: Case 2: A comparison of reports from two tshark versions

determine the number of retransmitted packets accurately. Furthermore, some of the out-of-order

packets received are due to retransmissions and some are due to packets taking different routes

through the network. Therefore, neither number provided by an analysis tool can be interpreted

correctly.

Fig. 4.24 shows analysis results for another packet trace that was collected at the receiver

(using Setup 3). This trace corresponds to an iperf3 flow that was executed from a sender and

receiver that were connected via a single switch, which means there is only one path between the

sender and the receiver, and hence packets cannot arrive out-of-sequence. At the sender, netem

was used to inject packet losses. The number of retransmitted packets reported by iperf3 was

529 packets. The tcptrace tool considered all retransmissions as out-of-order packets in this case,

probably because the original packets did not appear in the packet trace. On the other hand, tshark

classified some packets as retransmitted packets and others as out-of-order packets (tshark can

guess that a packet was retransmitted even if the original packet did not appeared in the trace by

observing triple duplicate ACKs). Therefore, in this case where no real out-of-order packets can

arrive at the receiver, the number of out-of-order packets reported by tcptrace can be interpreted

as the number of retransmissions, and the summation of numbers of retransmitted and out-of-order

packets reported by tshark could be intrepreted in the same manner. It is possible, though unlikely,

for retransmissions to arrive in sequence, and hence the estimate of the number of retransmissions,

is a lower bound.
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In all the three cases, we used both tshark and tcptrace to analyze the packet traces. As seen

in the figures, tshark can report per-second statistics, while tcptrace can only report aggregate

numbers. On the other hand, tcptrace is faster than tshark. For example, to analyze a packet

trace of size 287 MB, tcptrace took only 1.4 sec, while tshark took 39 sec.

(a) tcptrace output
(b) tshark output

Figure 4.23: Case 3: Analysis of the receive-side trace from the same experiment as in Case 2; the
trace that contained all packets of the flow

Conclusions: The number of retransmitted packets of a TCP flow can be determined by analyz-

ing the packet trace collected at the sender. If the collected packet trace has some missing packets,

the reported numbers of retransmitted packets and out-of-order packets should be added to deter-

mine the total retransmissions when using tcptrace or tshark. If the packet trace is not missing

any packets, the reported number of retransmitted packets can be obtained directly from a tcptrace

analysis, or through a summation of the number of retransmitted and out-of-order packets from a

tshark analysis. Packet traces collected at the receiver should not be used to determine the number

of retransmissions. The tcptrace is faster but provides only aggregate analysis, while tshark

requires more time but can provide detailed analysis information, e.g., reports on retransmissions,

out-of-order packets, etc. for 1-sec clips of the trace.
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(a) tcptrace output

(b) tshark output

Figure 4.24: Case 3: Analysis of a packet trace from an experiment on a path with guaranteed
sequential delivery

4.6 Conclusions

In high-speed networks, end-to-end data-transfer throughput is affected not only by conditions on

the network links, but also by the choice and configuration of the various protocol layers within

the end hosts. This chapter describes lessons learned and offers insights into the Linux TCP/IP

stack that the data traverses before being transmitted on to the communication medium and after

being received. Lessons learned are presented for three layers: (i) Application Layer, (ii) Transport

Layer, and (iii) Data-Link Layer, in addition to recommendations on how to monitor flows. These

lessons and recommendations are not limited to the use of circuits/VCs, but are beneficial to network

researchers in general.

One of our key findings with regards to the Application Layer is that nuttcp-6.1.2 reports

an inaccurate number of retransmitted packets. This version of nuttcp is part of the default GNU
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package. But we found the reports from the latest version, nuttcp-7.3.3 to be accurate. The

reports from iperf3 showed a 2% inaccuracy rate in our measurements. Therefore, we recommend

the use of nuttcp-7.3.3.

For the Transport Layer, we found that the TCP receive-side flow window and TCP send-side

congestion window are limited to half the maximum value of the TCP receive buffer and sender

buffer, respectively. Therefore, to achieve maximum throughput, the maximum of these buffers

should be set to twice the bandwidth-delay product. The ESnet website [17], which offers users tips

for high-speed transfers, suggests setting tcp rmem max to a large value, e.g., 64 MB on a 10-Gbps,

100-ms path. But we caution that while this large value is necessary to achieve high throughput on

high bandwidth-delay-product (BDP) paths, the maximum buffer size should be sized according to

each path’s BDP. This is because when the TCP sending window is in tens of MBs, the probability

of packet loss increases as switch buffers, especially in campus and top-of-rack, switches, are often

just a few MBs or even smaller. But to set the maximum buffer size for each TCP socket based on

the path BDP, requires modification of the application code.

For the Data-Link Layer, two key findings were presented. First, in the TBF queueing disci-

pline, the initial condition is a full token bucket. Second, for a TBF specified rate, if the inter-

packet transmit time is less than the system timer and the HRT feature is not available, then a

sufficiently large burst size is required to achieve the specified rate, and packets will be sent in

bursts at the NIC rate on every expiration of the system timer. On the other hand, if the inter-packet

transmit time to achieve the specified rate is greater than the system time (or high-resolution timer

if available), then a single packet will be sent on every timer expiration, and packets will not appear

at the NIC rate in bursts.

This first finding explains the high packet-loss rate observed in the experimental results pre-

sented in Chapter 3, where Table 3.3 showed that in more than 50% of the runs, CTCP had packet

retransmissions in the first second and zero packet retransmissions in the other seconds. This be-

havior can be explained by our finding that TBF starts with a bucket that is full of tokens. For the

experiments presented in Chapter 3, TBF burst size (bucket size) was 100 KB, which means a

burst of 100 KB was sent at the NIC rate (10 Gbps) starting from the first second. We know that
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the UVA WAN-access link has approximately 4 Gbps of background traffic. Therefore, even this

small burst could have caused the router buffer, and/or campus switch buffers including the UVA

DYNES switch, to overflow, causing packet losses. The second finding implies that with HRT,

probability of packet loss due to a switch buffer overflow will be smaller since packets are not

sent in bursts. Therefore, we recommend compiling the kernel with the CONFIG HIGH RES TIMERS

option to enable HRT.

Finally, the Monitoring section provided recommendations on how to capture flow packets for

detailed analysis. The recommendations can be summarized as follows: (i) the tcpdump tool should

be used with -B and -s flags, and the tcpdump log should be checked to ensure that the kernel did

not drop any packets, and correspondingly the collected trace contains information about all pack-

ets of the flow, and (ii) the offload (TSO/LRO and GSO/GRO) features should be disabled when

collecting packets for detailed analysis. However, these offload features should be enabled for the

actual data transfers especially for high-throughput flows. In addition to the previous recommenda-

tions, we demonstrated the best methods for determining the number of retransmitted packets using

tcptrace and/or tshark.



Chapter 5

Conclusions and Future Work

Problems arise when transferring large datasets at high speeds using the best-effort IP service of-

fered on the Internet. The first problem is related to the throughput of the large-data transfers.

On high bandwidth-delay-product (BDP) paths, even a low packet-loss rate can cause significant

drops in throughput because the TCP sender lowers its sending rate in an effort to be fair to other

flows. Since packet losses could occur on some transfers, and not on others, the throughput ex-

perienced by transfers on the same path could have significant variance. Difficulties in predicting

throughput lead to unpredictable transfer completion times, which make it challenging for scien-

tific high-performance computing workflow management systems to schedule computing resources

if network transfers are involved. The second problem is that high-speed, large-sized transfers can

have adverse effects on the real-time (audio/video) flows, which typically have delay constraints.

To address these problems, this thesis presented an approach that leverages rate-guaranteed

Layer-2 (L2) services for high-speed large-dataset transfers. Transfers on a rate-guaranteed L2

path should suffer from packet losses due to router/switch buffer overflows because bandwidth

resources are reserved for the flow during L2 path setup prior to data transfer. Hence the flow can

experience high throughput (provided a high-rate path was available), and transfer completion times

will be more predictable. In addition, with L2 paths, large data-transfers flows can be isolated to

prevent adverse effects on other flows. Mechanisms such as policing flows, scheduling packets,

and directing packets of high-speed large-sized transfers to separate switch/router buffers can be

used to isolate these flows. The disadvantage is that while rate-guaranteed Layer-2 (L2) service
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is being offered by some providers, it is not yet ubiquitous. The emergence of OpenFlow/SDN

technologies has improved prospects for this service deployment to spread, but the deployment is

still work-in-progress.

An experimental study was conducted on an inter-domain L2 path provisioned across produc-

tion (operational) networks. An application was used to generate a flow at 4 Gbps on the end-to-end

path. Throughput close to the L2 path rate was achieved, but packet losses were observed. In this

environment, the L2 path was semi-rate guaranteed, i.e., policing and scheduling mechanisms at

the routers/switches on the path were not implemented, and real background traffic, on which we

had no control, shared the same links with our experimental high-rate large-sized flows. Hence, we

carried out our experiments in a more controlled environment (single rack with emulated delays and

packet losses) to design a solution for conducting high-speed large-sized transfers over L2 paths.

We developed a cross-layer design based on experimental studies that considered three cases: (i)

single circuit/rate-guaranteed VC from a server, where we recommended Circuit TCP (CTCP) and

the Linux tc Token Bucket Filter (TBF) queueing discipline with methods for selecting parameter

values. (ii) multiple dynamic circuit/rate-guaranteed VC from a server to multiple receivers, where

we recommended the combination of CTCP and Hierarchical Token Bucket (HTB) discipline. (iii)

semi-rate-guaranteed VCs, where we recommended CTCP if the primary consideration is for the

large transfers, and HTCP if the primary consideration is for other flows.

Experimental network studies require an understanding of the end-host operating systems and

networking protocol stacks. Lessons learned and insights gained about the Linux TCP/IP stack

were presented in the thesis to help other experimental networking researchers. Our key findings

relate to software in three layers: (i) application layer, (ii) transport layer, and (iii) data-link layer. In

addition, key findings related to using tcpdump, tshark, and tcptrace for flow monitoring were

also presented in this thesis.

Future work items include: (i) extending our cross-layer design to include disk-to-disk transfers,

(ii) modeling packet loss rate as a function of TCP sending window size and bottleneck-link switch

buffer size, and (iii) answering the questions raised about where to capture packets, at the sender or

at the receiver.
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The cross-layer designed presented in this thesis considered only memory-to-memory transfers.

Methods were proposed for selecting parameters of transport-layer protocols and link-layer rate-

control mechanisms. In disk-to-disk transfers, contention for disk access should be considered as

well.

We recommended the use of large TCP buffers at the sender and receiver on high BDP-paths.

We also ran experiments to determine the size of switch buffers, and found that campus and top-of-

rack switches often have fairly small buffers (on order of 1-10 MB). If the TCP sending window is

much larger than switch buffers, there can be packet losses whenever aggregate traffic exceeds link

capacity.

In Section 4.5.2, we recommended that careful thought should be given on whether to capture

packets at the sender, or at the receiver, or at both ends. We plan to execute experiments to provide

better guidance on where to capture packets based on the intended use.
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