
The Computational Complexity of Program
Obfuscation

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

Doctor of Philosophy

by

Ameer Mohammed

May 2018

APPROVAL SHEET

This Dissertation
is submitted in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

Author Signature:

This Dissertation has been read and approved by the examining committee:

Advisor: Mohammad Mahmoody

Committee Member: David Evans

Committee Member: Jack Davidson

Committee Member: Sanjam Garg

Committee Member: Denis Nekipelov

Committee Member:

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, School of Engineering and Applied Science

May 2018

Copyright c© 2018 Ameer Mohammed

Abstract

Recent developments in cryptography have given rise to a variety of tools that allow for
secure communication and computation of data. In this work we focus on studying one such
task called program obfuscation which, roughly speaking, hides any information within a
program’s code without affecting its functionality. In particular, we will study the complexity
of the main variant of obfuscation called indistinguishability obfuscation (IO), which is itself
versatile enough to enable a wide variety of new applications in cryptography, and our main
objective is determine a lower bound on the assumptions required for realizing an IO scheme.

The reason behind pursuing this objective of proving such lower bounds for IO (and
in general for any other cryptographic primitive) is to understand the complexity of said
primitive and to investigate whether it is possible to use well-studied assumptions to base
this primitive on. In order to prove these kinds of lower bounds for IO, we need to show that
certain assumptions and/or objects are insufficient to achieve it. Such classes of impossibility
results are proven under the “black-box framework” introduced by Impagliazzo and Rudich
in 1989 and later formalized by Reingold, Trevisan, and Vadhan in 2004. However, due to the
nature of current IO constructions, the existing techniques for proving impossibility results
are not conducive to ruling out the type of “complex” assumptions on which IO stands.

The goal of this thesis is to first develop new techniques and propose extensions to the
aforementioned classical black-box framework, allowing us to rule out some natural prim-
itives from being able to construct IO. This then allows us to explore and prove lower
bounds on the complexity of obfuscation by showing that certain assumptions and/or prim-
itives, under this newly developed paradigm, are insufficient for the construction of secure
IO schemes. In particular, we rule out constructions of IO from both various traditional
long-established primitives and some of the more recent advanced objects. Furthermore,
while this new extended framework facilitates a more comprehensive study of lower bounds
for recent sophisticated primitives that are currently realized from more specialized crypto-
graphic objects, it is of independent interest and opens up the opportunity to revisit and
improve upon even the existing well-known impossibility results.

i

Acknowledgements

I would like to start by thanking my advisor Mohammad Mahmoody whom I’ve had the
utmost pleasure and privilege of working with. His guidance and advice were invaluable in
building and shaping my problem-solving skills. I am grateful for his willingness, respon-
siveness, and tolerance towards answering my (hopefully not too persistent) questions and
satisfying my curiosities in this exciting field of research.

I would like to thank my colleagues at the University of Virginia and at the University of
California at Berkeley for indulging me with interesting and thought-provoking discussions
on open problems and new insights including abhi shelat, Mohammad Hajiabadi, Saeed
Mahloujifar, Soheil Nematihaji, Daniel Masny, Nico Döetling, and Peihan Miao. I would
also like to give special thanks to Sanjam Garg who was kind enough to allow me to visit UC
Berkeley. During my stay, I have benefited greatly from Sanjam’s meetings and discussions,
and gained much from the captivating theory talks that were presented by other researchers
and experts from within (and without) the department.

I would like to thank the committee members - David Evans, Jack Davidson, Denis
Nekipelov, and Sanjam Garg - who contributed their time to be part of this work through
their useful feedback and discussions.

I would also like to extend my thanks towards Kuwait University who were gracious
enough to support and sponsor my graduate studies in the United States.

Last but not least, I would like to thank my family and friends back at home; your
words of encouragement and overwhelming show of support have kept my spirits high and
taught me to stay positive throughout this incredible and enlightening journey. This work
is dedicated to you all.

ii

Contents

List of Figures vi

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4

1.2.1 Impossibility of VBB Obfuscation in Idealized Models 4
1.2.2 Extending the Black-box Framework 5
1.2.3 Separating IO from other Assumptions 5

1.3 Related Work . 6
1.4 Organization . 8

2 Preliminaries 10
2.1 Notation . 10
2.2 Measure-Theoretic Lemmas . 11
2.3 Generic/Idealized Models . 11
2.4 Basic Primitives . 13
2.5 Obfuscation . 13
2.6 Encryption Primitives . 15

2.6.1 Witness Encryption . 16
2.6.2 Predicate Encryption . 17
2.6.3 Homomorphic Encryption . 19
2.6.4 Functional Encryption . 21
2.6.5 Universal Variants of Primitives . 23

I Black-box Separations for Indistinguishability Obfuscation 25

3 The Black-box Framework 26
3.1 Black-box Constructions . 26

3.1.1 Variants on Black-box Constructions 27
3.1.2 Black-box Constructions in Idealized Models 28

4 Impossibility of VBB Obfuscation in Idealized Models 31
4.1 Introduction . 31
4.2 Our Results . 32
4.3 Technical Overview . 33

4.3.1 Generic Group Model: Proving Theorem 4.2.1 34

iii

4.3.2 Low-Degree Graded Encoding Model: Proving Theorem 4.2.2 36
4.3.3 Random Trapdoor Permutation Model: Proving Theorem 4.2.3. . . . 37

4.4 Impossibility of VBB Obfuscation in Generic Algebraic Models 39
4.4.1 Preliminaries . 39
4.4.2 Solving Linear Equations over Abelian Groups 40
4.4.3 Generic Group Model . 42
4.4.4 Degree-O(1) Graded Encoding Model 49

4.5 Impossibility of VBB Obfuscation in the random TDP Model 52
4.5.1 The Construction . 53
4.5.2 Completeness and Soundness . 54
4.5.3 Extension to hierarchical random TDP 57

5 Separating IO from Standard Assumptions 60
5.1 Introduction . 60

5.1.1 Technical Overview: Separating IO from the Random-Oracle 60
5.1.2 Technical Overview: Hardness of Semi-Black-Box Constructions of IO 61
5.1.3 Technical Overview: Separating IO from TDP and Constant-Degree

GEM . 63
5.2 Separating IO from Random Oracle Based Primitives 65
5.3 Hardness of Semi-Black-Box Constructions of IO 69
5.4 Separating IO from TDP and Constant-Degree GEM 72

II Monolithic Separations for Indistinguishability Obfuscation 76

6 Extending the Black-box Framework 77
6.1 Introduction . 77
6.2 Our Results . 80
6.3 A Concrete Definition for Case of WE . 80

6.3.1 A Transitivity Lemma for Deriving More Separations 82
6.4 An Abstract Extension of the Black-Box Model 83
6.5 An Abstract Model for Extended Primitives and Constructions 84
6.6 Monolithic Constructions . 87

7 Monolithic Separation of IO from All-or-Nothing Encryption Primitives 89
7.1 Introduction . 89

7.1.1 Known Recipe for Proving Lower-bounds for IO 91
7.1.2 Warm-Up: The Basic Case of Witness Encryption 91
7.1.3 Separating IO from Instance-Hiding WE 93
7.1.4 Separating IO from Homomorphic WE 95
7.1.5 Primitives Implied by Our Variants of WE 95

7.2 Approach for Proving Lower Bounds on IO 96
7.2.1 General Approach . 97

7.3 Separating IO from Instance Revealing Witness Encryption 100
7.3.1 Overview of Proof Techniques . 101
7.3.2 The Ideal Model . 102
7.3.3 Witness Encryption exists relative to Θ 102

iv

7.3.4 Compiling out Θ from IO . 106

7.3.5 The new obfuscator ÎO
R

in the random oracle model 107
7.4 Separating IO from Instance Hiding Witness Encryption 111

7.4.1 Overview of Proof Techniques . 113
7.4.2 The Ideal Model . 114
7.4.3 (Instance-hiding) Witness Encryption exists relative to Θ 114
7.4.4 Compiling out Θ from IO . 118

7.5 Separating IO from Homomorphic Witness Encryption 126
7.5.1 Overview of Proof Techniques . 128
7.5.2 The Ideal Model . 129
7.5.3 Homomorphic Witness Encryption exists relative to Ψ 130
7.5.4 Compiling out Ψ from IO . 135

7.6 Primitives Implied by Our Variants of Witness Encryption 145
7.6.1 Extended Predicate Encryption . 145
7.6.2 Extended Spooky Encryption . 148
7.6.3 Extended Attribute Based FHE . 149

8 Monolithic Separation of IO from Functional Encryption 152
8.1 Introduction . 152
8.2 Our Results . 153
8.3 Technical Overview . 154

8.3.1 The Details of the Proof of Separation 155
8.4 Monolithic Separation of IO from Short-Output FE 158

8.4.1 The Ideal Model . 158
8.4.2 Extended Functional Encryption Exists Relative to Γ 161
8.4.3 Customized FWE in the Γ Ideal Model 163
8.4.4 From CFWE to Functional Encryption 167
8.4.5 Compiling out Γ from IO . 168

8.5 Extended Long-Output FE Implies Obfuscation 178
8.6 Fully Black-Box Separation of IO from Functional Encryption 180

8.6.1 Single-Key (Non-Extended) Functional Encryption exists relative to Γ 181
8.6.2 Compiling out Γ from IO . 181

9 Conclusion 183

Bibliography 184

v

List of Figures

1.1 Summary of results . 7

2.1 The INDPE
A experiment used in defining the security for predicate encryption

schemes . 18
2.2 The INDABE

A experiment used in defining the security for attribute-based en-
cryption schemes . 19

2.3 The IND1FE
A experiment used in defining the security for functional encryption

schemes . 22

7.1 Summary of our witness encryption separation results. 89
7.2 The 2-instance ExpPA Experiment . 118

8.1 The single-instance ExpPA Experiment . 166
8.2 The output-constrained circuit gi defined for the underlying compact FE scheme.179

vi

Chapter 1

Introduction

Program obfuscation is the task of hiding any information embedded within any given pro-
gram without affecting the functionality of the program. Obfuscation was first introduced
by Hada in [Had00] and later formalized and studied in detail by Barak, Goldreich, Im-
pagliazzo, Rudich, Sahai, Vadhan, and Yang in [BGI+01]. The strongest notion of obfus-
cation, called virtual black-box (VBB) obfuscation, has the property that an attacker with
access to the obfuscated program learns no more information about the program than if
it had just “black-box” access to this program - that is knowing only the input-output
behaviour of the program. While this seems to be the ideal notion of security required
by an obfuscation mechanism, it was shown in [BGI+01, GK05] that it is impossible to
achieve in general. However, this does not preclude that certain restricted classes of func-
tions can be obfuscated under this notion. Indeed, a series of works have demonstrated
the possibility of VBB obfuscation for specific families of functions, including point func-
tions [CMR98,LPS04,Wee05,CD08,BC10], re-encryption functions [HRsV07], membership-
checking in constant-dimension hyperplanes [CRV10], and conjunctions [BR13].

In order to circumvent this impossibility result on VBB obfuscation, [BGI+01] defined
an alternative weaker notion of obfuscation called indistinguishability obfuscation (IO). In-
formally, the security of IO states that an attacker cannot distinguish between obfuscations
of two functionally-equivalent circuits of the same size. At first glance, the security guaran-
tee might seem too weak to enable its use in practice as there is no explicit assurance that
information will remain hidden after obfuscation. Nevertheless, such a security notion was
deemed to be equivalent to what [GR07] referred to as “best-possible” obfuscation where
the obfuscated circuit leaks as much information as any other circuit of the same size and
input-output behaviour.

It was not until the seminal work of Garg, Gentry, Halevi, Raykova, Sahai, and Wa-
ters [GGH+13b] that interest in IO was reinvigorated as the authors in that work pro-
vided the first candidate construction of an IO scheme from multi-linear map assump-
tions [GGH13a, CLT13, GGH15], which were believed to be, at the time, hard to break.
This started a series of works exploring the different possible applications of IO, some of
which were not even known to be feasibly realizable from previous tools. Such applications
include functional encryption [GGH+13b, Wat15], witness encryption [GGSW13], public-

1

key and deniable encryption [SW14], multi-party computation [GGHR14, GP15, CGP15],
oblivious transfer [SW14], verifiable searchable encryption [CYG+15], identity-based fully
homomorphic encryption [CM14], and many more.

Following the initial candidate construction of IO [GGH+13b], a long line of work [AGIS14,
MSW14, PST14, AB15, Zim15, BMSZ15, GMM+16, Lin16, LV16, Lin17] focused on building
new and improved IO constructions that either use more robust assumptions or possess se-
curity properties that are proven to exists in some idealized model. Furthermore, all these
constructions use multi-linear maps as their building block in some way or another. How-
ever, several attacks [CHL+15, HJ16, CGH+15, CLLT16, MSZ16] against multi-linear maps
proved that these assumptions were not as sturdy as initially believed to be, and this created
an uncertainty towards the security of the IO constructions that are based on these broken
assumptions.

As a result of the above problem, it has become increasingly desirable to find more stan-
dard, time-tested assumptions (e.g. Discrete Log, Decisional Diffie-Hellman, etc.) on which
the security of IO constructions can be based on, instead of the more exotic assumptions that
are not well-understood. So far, the only known alternative constructions of IO go through
what is known as “functional” encryption [AJ15,BV15], which can roughly be described as
an encryption scheme with expressive access control mechanisms. However, all known func-
tional encryption schemes that are strong enough to give IO are also based on multilinear
maps. This leads us to the motivation of this work as we strive to investigate the reasoning
behind why IO constructions gravitate towards using such strong assumptions.

1.1 Motivation

An important line of work in theoretical cryptography is the study of the hardness of the
underlying assumptions on which computationally secure cryptographic tasks are built upon.
By analyzing the “complexity” of computational assumptions, one can determine their rel-
ative strength and the resulting implications between them. More importantly, this allows
us to argue whether certain “simpler” primitives and/or assumptions can be used to con-
struct more sophisticated tools that have more useful, impactful applications. For example,
it is well known that trapdoor permutations, a standard well-studied cryptographic tool,
are sufficient to be used as low-level building blocks for constructing public-key encryption
schemes [Sah99, DDN00]. On the other hand, it was proven that the existence of just one-
way functions, which while is a more desirable assumption, is simply not enough to build
public-key encryption schemes (in a black-box way) [IR89]. The latter result is said to be a
lower bound on the complexity of public-key encryption since we require an assumption that
is at least stronger than just the existence of one-way functions in order to construct such
a scheme, and the ultimate goal is to find the best (i.e. weakest assumption) to realize any
scheme.

The main goal of this thesis is to extend the above line of work on lower bounds but for
the case of indistinguishability obfuscation. More specifically, we would like to make progress
towards answering the following question:

2

What assumptions could be used for realizing indistinguishability obfuscation?

As is the case for any other primitive, an important motivation behind determining the
lower bounds of IO, which is our main focus in this work, is that it helps in finding weaker
well-studied assumptions on which to base IO. This is more so the case for IO as it is
a relative newcomer to the scene and researchers that study it are yet to be completely
familiar with the complexity of such an object. Another motivation is that it guides research
for building standard IO schemes and allows one to avoid using assumptions and/or tools that
were proven to be insufficient on their own for achieving IO, instead focusing on alternative
stronger, yet still robust, assumptions.

In order to even start looking at what assumptions or primitives are sufficient (or not)
for building secure IO constructions, one needs to first define the framework under which
such constructions exist. More generally, we need to ask what it means to have a secure
construction of some primitive Q from another primitive P . In particular, one cannot hope
to rule out all constructions of Q from P especially considering that one can (perhaps injudi-
ciously) assumes that Q exists unconditionally. Therefore, in order to capture a meaningful
construction of one primitive from another, [IR89, RTV04] proposed a taxonomy that clas-
sifies any given such construction as one of several types. Of particular interest are fully
black-box constructions, which (1) allow the construction of primitive Q to only use primi-
tive P in a “black-box” way (i.e. knowing only the input-output behaviour of P and without
knowledge of the actual implementation of P) and (2) allow the security of Q to be based
on the security of P . Most constructions in cryptography are black-box constructions and
they are often desirable as they lead to more practical implementations. As such, ruling
out such constructions of a primitive Q from another primitive P (which we call a black-box
separation of Q from P) would prove that a large class of natural constructions of Q from
P are indeed impossible.

On the other hand, one major drawback of ruling out just fully black-box constructions
Q from P is that it does not necessarily mean that there are other non-black-box techniques
that allow Q to be constructed from P . Consider for example a possible construction of
some primitive Q from another primitive P where Q may need to feed the code of P back
to P itself. Such a construction would not violate any black-box impossibility result that
says Q cannot be based on P in a black-box way. In fact, it might very well be that such a
candidate construction would circumvent this impossibility result.

The case with currently known IO constructions from functional encryption is that they
all make non-black-box use of the underlying primitive. Consequently, in order to rule out any
constructions of IO from any primitive P that has a similar flavor to functional encryption,
it would not be very useful to consider ruling out only black-box constructions of IO from P
since any such potential construction would most likely use P in a non-black-box way. These
potential constructions do not fall under the classical framework of [RTV04] so we cannot
rule them out using standard black-box separation techniques. As a result, this motivates us
to extend the framework of [RTV04] to capture IO constructions of this form (and perhaps
even other primitives of similar nature) in order to begin proving our impossibility results.

3

1.2 Contributions

In light of the motivation behind this thesis, we will highlight the three main contributions
of this work.

1.2.1 Impossibility of VBB Obfuscation in Idealized Models

Given that the central focus of this work is to provide lower bounds on indistinguishability
obfuscation, it is natural to ask whether we can also provide similar lower bounds for virtual
black-box (VBB) obfuscation in idealized models where algorithms have access to oracles
that are provably secure. While the impossibility of VBB for general circuits in the plain
model (where no oracle exists) has already been established, we extend this negative result by
proving that VBB is impossible to achieve even in certain more powerful/expressive idealized
models. We also note that despite the impossibility of general plain-model, a construction
for VBB obfuscation in some idealized model could still be used as a practical heuristic
obfuscation mechanism once instantiated with a strong hash function (such as SHA-3). This
would be in analogy with the way random oracle-based constructions of other primitives are
widely used in practice despite the impossibility results of [CGH04].

We will use the work of Canetti, Kalai, and Paneth [CKP15] as our starting point for this
part. It was shown there that a VBB obfuscator that has access to a random oracle I (an
ideal random function) can be transformed in to an approximately correct VBB obfuscator
in the plain model where no oracle I exists. However, assuming trapdoor permutations
(which is a reasonable and well-believed assumption), the work of [BP13] have shown that
even approximately correct VBB obfuscation does not exist in the plain model. Together
with [CKP15], this rules out VBB obfuscation in the random oracle model.

Using the same reasoning for different idealized oracles which we list below, we show how
to remove or “compile out” these oracles from the VBB obfuscator and get an approximately
correct obfuscator in the plain model thus allowing us to argue the impossibility of such an
obfuscation in these ideal models. The ideal models that we consider are the following (see
Section 2.3 for formal definitions):

• Random Trapdoor Permutation Model

• Generic Group Model (over any abelian group)

• Generic O(1)-degree Graded Encoding Model (over any finite ring)

This complements the results of [BR14, BGK+14] where they show that general VBB
obfuscation is indeed possible in the idealized graded encoding model of some polynomial
degree. This contribution is discussed in Chapter 4 and appears in [MMN16a]. We also
mention the concurrent work of [PS16], which prove that VBB obfuscation is impossible in
the idealized constant-degree GEM over finite fields. Part of our work extends that result
by also proving VBB obfuscation under idealized constant-degree GEM over finite rings.

4

1.2.2 Extending the Black-box Framework

The existing well-established framework of [IR89,RTV04] used for separating primitives from
each other does not capture more sophisticated primitives whose constructions are naturally
defined in a way that permit some measure of “non-black-box” use of their underlying com-
ponents (e.g. using the code or implementation of the underlying object). In order to even
start working on separating IO from more powerful primitives, this framework needs to be
extended in a way that reflects such constructions.

In more detail, let us first consider what it means to have a construction of a primitive
in the traditional black-box framework. Informally, we say that we have a fully black-box
construction of a primitive Q from another primitive P if we can construct an algorithm Q
that correctly implements Q using only the input-output behavior of any implementation P
of P , and if P is secure then we can show that Q is secure as well.

In this work, we would like to consider constructions of primitives that do not fall under
the aforementioned types of constructions. For example, a known construction of IO is based
on a strong form of an encryption mechanism called functional encryption (FE) and uses
the subroutines of FE in a non-black-box way. In particular, one of the subroutines of FE
is a key generation algorithm and the construction of IO needs to supply the code of FE to
the key generation algorithm. This is currently not captured by the black-box framework
of [IR89,RTV04] since the correctness condition requires that Q must use P in a black-box
way.

However, we observed that for these types of non-black-box use of P , Q needs only to
“plant” oracle gates (i.e. subroutine calls) to P when calling P subroutines. Thus, our first
line of thought is to extend this definition so that the construction allows Q to use P P in a
black-box way, where P P allows Q to call P with circuits/Turing machines that have oracle
gates to P . This almost gives us what we want, but we still need to consider various subtle
issues regarding what constitutes as a valid extension of some primitive P . More specifically,
we require a definition for extended primitives (i.e. P P) that (1) covers all the known positive
constructions of this form and (2) allows us to apply our separation techniques to rule out
such extended primitives from constructing IO (or other similar primitives). We note here
that this definition generalizes previous models that were developed in [BKSY11,AS15] where
P accepts only circuits with one-way function gates.

In Chapter 6 we present and define an extended black-box framework, called the mono-
lithic framework, which allows us to model constructions that make use of a large and
natural class of commonly-used non-black-box techniques in order to later prove that such
techniques are not helpful for building IO from other strong primitives. This contribution
appears in [GMM17a].

1.2.3 Separating IO from other Assumptions

As the main goal this work, we prove black-box separation results for IO from standard
assumptions and, by leveraging the newly developed monolithic framework, from even more
powerful primitives as well. The standard primitives that we rule out include one-way func-

5

tions, trapdoor permutations, and hash functions. Furthermore, we show that assumptions
based on generic groups and generic encoding models (e.g. discrete log and “low-degree”
multi-linear assumptions) are not sufficient for building IO under the black-box framework.
We also examine more sophisticated primitives such as predicate encryption [BSW11], fully
homomorphic encryption [RAD78,Gen09], and witness encryption [GGSW13] and prove that
such versatile tools are unable to build secure IO schemes using techniques captured by the
monolithic framework.

In order to prove these separation results, we will leverage the result of [BBF16], where
they show that statistically-secure approximate IO (that is correct on only some inputs) does
not exist under reasonable complexity assumptions. Thus, by adopting the same approach
that was used for compiling out idealized oracles in VBB obfuscators, we apply the technique
here for any primitive P that we would like to separate IO from. In particular, we start
with an idealized oracle I that securely instantiates P then we compile out I to get an
approximately correct IO scheme for which we know there is an attack against by [BBF16].

This contribution is discussed in Chapters 5, 7, and 8, and it appears in [MMN+16b,
GMM17a,GMM17b]. Figure 1.1 shows the known relationships surrounding IO and indicates
our separation results. Note that the non-black-box constructions that we rule out (e.g. IO
from fully homomorphic encryption) will be cast as monolithic constructions under our new
framework.

1.3 Related Work

In this section we discuss the relevant related work regarding negative results on virtual
black box obfuscation and indistinguishability obfuscation. We also provide an overview of
previous results that prove non-black-box separations in various other areas in cryptography.

Negative Results for Obfuscation While the previous work of [BGI+01, GK05] have
shown that general VBB obfuscation is impossible, this still left open the question of whether
such a strong form of obfuscation can perhaps exist in an idealized world where powerful
black-box algorithms (oracles) aid the obfuscation in ensuring the security of the scheme.
The work of [BR14,BGK+14] prove that VBB obfuscation for general functions does indeed
exist in what is known as the idealized poly-degree graded encoding model (GEM) where
the obfuscation algorithm has access to an oracle that represents a multilinear map while
capturing all the necessary properties required for security. This raises the question of
whether other (perhaps weaker) idealized models are capable of allowing VBB obfuscation to
exist. In [CKP15], it was shown that for the case that the idealized model is the random oracle
model, VBB obfuscation for general circuits is impossible. Furthermore, in the concurrent
work of [PS16], they prove that VBB obfuscation is impossible in the idealized poly-degree
GEM over finite fields.

Turning to the known negative results for IO, the first such result was shown by [GR07]
where they proved that statistically-secure1 IO is impossible under reasonable complexity

1While standard computational security of IO holds only against computationally bounded adversaries,

6

Indistinguishability
Obfuscation

Virtual Black-Box
Obfuscation

Functional
Encryption

Witness
Encryption

Predicate
Encryption

Multilinear
Maps

Fully Homomorphic
Encryption

(Compact) Functional
Encryption

One-Way Functions

Trapdoor
Permutations

Collision-resistant
Hash Functions

Generic Group
Model

O(1)-degree
Generic Graded
Encoding Model

×

×

×

×

×

×
×

×

Figure 1.1: Relations between the assumptions surrounding indistinguishability
obfuscation. Solid lines indicate black-box constructions while dashed lines indicates

non-black-box constructions. The bold lines with × on top indicate our contributions that
prove the impossibility of basing IO on any of these underlying objects.

7

assumptions. More recently, [BBF16] extended the previous result by showing that even
approximately correct statistically-secure IO is impossible (where approximate correctness
implies that the obfuscated circuit may return an incorrect answer on some inputs). On a
different but related note, the work of [AS15] provided the first limitation of IO by proving
that there exists no black-box construction of collision-resistant hash functions from an IO
scheme that obfuscates circuits calling one-way functions2.

Non-Black-Box Separations We mention here some of the previous work that prove the
non-existence of non-black-box constructions from other primitives. These kinds of proofs
are often extremely tied to the primitive whose construction is refuted and are thus somewhat
difficult to generalize, but the consequences of the impossibility result are quite profound as
they show that even non-black-box constructions of the primitive is impossible. For example,
the work of [PTV11] showed that one can rule out a variety of non-black-box constructions
of standard primitives (e.g. one-way permutations, collision-resistant hash functions) from
one-way functions (under reasonable assumptions) as long as the security proof is black-box3.
Furthermore, [GW11] show that succinct non-interactive argument systems cannot be based
on many standard assumptions in a non-black-box way.

There also exists a few works in the literature that attempt to capture some non-black-
box techniques within the black-box framework in order to rule out these constructions using
standard techniques. We already mentioned that Asharov and Segev [AS15] have done ex-
actly that by interpreting non-black-box constructions of hash functions from IO and one-way
functions as black-box constructions of hash functions from IO that obfuscate circuits calling
one-way functions. Similarly, the work of [BKSY11] interpreted non-black-box constructions
of key-agreement protocols from zero-knowledge proofs and one-way functions as black-box
constructions of key-agreement protocols from zero-knowledge proofs for statements that call
one-way functions and then ruled out such constructions. We note that, while these works
partially extended the notion of black-box constructions for the sake of ruling out a specific
primitive from a special class of primitives (those that, for example, take oracle circuits as
input), we aim to generalize the black-box framework and establish theorems related to it
so that it applies to any separations of the above form.

1.4 Organization

We start in Chapter 2 by presenting our notation that we will use in this work and list the
definitions of the cryptographic primitives relevant to our results. We present our results in
two parts: the first part discusses our black-box separations of IO while the second part is
dedicated to our monolithic separations of IO from various advanced primitives. The first
part of our results starts with Chapter 3 where we review the classical black-box framework

statistically secure IO extends to computationally unbounded adversaries as well.
2This impossibility result is actually a proof for the non-existence of partially non-black-box constructions

of hash functions from IO and one-way functions. Our work will generalize this notion in multiple directions.
3We discuss what it means to have a black-box security proof in Chapter 3.

8

due to [IR89, RTV04], and in Chapters 4 and 5 we present impossibility results for VBB
obfuscation and IO from standard assumptions under the black-box framework. The second
part of our results starts with Chapter 6 where we present our new monolithic framework. In
Chapters 7 and 8 we will make use of this framework to prove even more separation results
for IO constructions that are based on strong encryption primitives.

9

Chapter 2

Preliminaries

2.1 Notation

We let κ be the security parameter which, roughly speaking, determines the level of security
of an instantiated cryptographic construction. We denote {0, 1}n the set of n-bit strings
and, for any string x, we let |x| be the bit-length of the string. We denote {0, 1}∗ to be the
set of all strings of arbitrary length. We use “||” to concatenate strings and we use “,” for
attaching strings in a way that they could be retrieved. Namely, one can uniquely identify
x and y from (x, y). For example (00||11) = (0011), but (0, 011) 6= (001, 1). We denote a
vectors of dimension n as bold-faced variables v = (v1, ..., vn).

Given any parameter n, we say that a function p(n) : N → N is poly(n) if it is some
polynomial in n. We say that a function ε(.) is a negligible function if for any polynomial
p(.), ε(n) ≤ 1/p(n) for sufficiently large n.

Models of Computation. For any Turing machine (or algorithm) A, we say that A is
uniform probabilistic polynomial time (PPT) or simply efficient if there exists a polynomial
function p(.) : N → N such that the running time of A on any input x is at most p(|x|)
(otherwise, we say it is inefficient). One can also consider the case that A is a non-uniform
PPT Turing machine where, in addition to its input x, A would also accept an advice string
z|x| ∈ {0, 1}poly(|x|) that depends on the length of the input. We call an algorithm A(.) an
efficient oracle (or oracle-aided) algorithm if it is efficient and is able to issue queries to some
oracle O.

Definition 2.1.1 (Universal Circuit Evaluator). For any family of circuits C with input size
n, let U(., .) be a PPT oracle Turing machine that accepts as input a circuit C ∈ C and an
input x ∈ {0, 1}n. We call U a universal circuit evaluator if, for any (C, x), U(C, x) = C(x).

Probability Distributions. For random variables X, Y , by X ≡ Y we denote the fact
that X and Y are distributed identically. When writing the probabilities, by putting an
algorithm A in the subscript of the probability (e.g., PrA[·]) we mean the probability is over
A’s randomness. For any given probability distribution D, we denote x ← D as sampling

10

from this distribution and obtaining a sample x from the support of D. We denote ∆(X, Y)
to be the statistical distance between the two random variables. We say that X and Y are
statistically indistinguishable ∆(X, Y) ≤ negl(κ).

2.2 Measure-Theoretic Lemmas

By a probability space we mean a measure space with total measure equal to one, and by
Pr[E] we denote the measure of the measurable set E. For a sequence of measurable sets
E = (E1, E2, . . .) defined over some measure space, the limit supremum of E is defined as
limSup(E) =

⋂∞
n=1

⋃∞
m=nEm. It can be shown that limSup(E) is measurable if Ei is so for

all i.

Lemma 2.2.1 (Borel–Cantelli [Bor09,Can17]). Let E = (E1, E2, . . .) be a sequence of mea-
surable sets over some probability space, and

∑∞
n=1 Pr[Ei] <∞. Then limSup(E) has measure

zero.

The following lemma follows from Exercise 2 of Section 7.3 of [GS01]. For completeness
we give a proof using continuity of probability.

Lemma 2.2.2. If E = (E1, E2, . . .) is a sequence of measurable sets over some probability
space, and Pr[Ei] ≥ δ for all i ∈ N, then Pr[limSup(E)] ≥ δ.

Proof. We use the following well-known lemma whose proof could be found in [Ale03] Propo-
sition 37, Part (iii).

Lemma 2.2.3 (Continuity of Probability). Let B1 ⊇ B2 ⊇ . . . be a sequence of measurable
sets over some measure space, and Pr[B1] <∞. Then Pr [

⋂∞
n=1Bn] = limn→∞ Pr [Bn].

Now let Bn =
⋃∞
m=nEm, and so limSup(E) =

⋂∞
n=1Bn. Since the measure space is a

probability space, thus we have Pr[B1] ≤ 1, and we can apply the above lemma to conclude
that

lim
n→∞

Pr[Bn] = Pr

[
∞⋂
n=1

Bn

]
= Pr[limSup(E)].

Finally, because Pr[Bn] ≥ Pr[Ei] ≥ δ for every n, we get δ ≤ limn→∞ Pr[Bn] = Pr[limSup(E)].

2.3 Generic/Idealized Models

An idealized model I is a randomized oracle; examples relevant to our work include the
random oracle, random trapdoor permutation oracle, generic group model, and the graded
encoding model, all of which we define more formally below. A sample I ← I of the
oracle’s distribution can (usually) be represented as a sequence (I1, I2, . . .) where Iκ is the
part of I that is defined for security parameter κ. The distribution over the infinite object

11

I ← I could naturally be defined through finite distributions Di over the finite space of
Ii. Caratheodory’s extension theorem shows that such finite probability distributions could
always be extended consistently to a measure space over the full infinite space of I ← I (see
Theorem 4.6 of [Hol15] for a proof).

Definition 2.3.1 (Random Oracle Model). In the random oracle model, all parties have
access to a randomized oracle f such that for each input x, the answer f(x) is uniformly
(and independently of the rest of the oracle) distributed over {0, 1}|x|.

Definition 2.3.2 (Random Trapdoor Permutation). For any security parameter κ, a random
trapdoor permutation (TDP) oracle Tκ consists of three subroutines (G,F, F−1) as follows:

• G(·) is a random permutation over {0, 1}κ mapping trapdoors sk to a public indexes
pk.

• F [pk](x): For any fixed public index pk, F [pk](·) is a random permutation over {0, 1}κ.

• F−1[sk](y): For any fixed trapdoor sk such that G(sk) = pk, F−1[sk](·) is the inverse
permutation of F [pk](·), namely F−1[sk](F [pk](x)) = x.

Definition 2.3.3 (Generic Group Model (GGM) [Sho97]). Let (G,�) be any group of size
N and let S be any set of size at least N . The generic group oracle I[G 7→ S] (or simply
I) is as follows. At first an injective random function σ : G 7→ S is chosen, and two type of
queries are answered as follows.

• Labeling Queries. Given g ∈ G oracle returns σ(g).

• Addition Queries. Given y1, y2, if there exists x1, x2 such that σ(x1) = y1 and
σ(x2) = y2, it returns σ(x1 � x2). Otherwise it returns ⊥.

Definition 2.3.4 (Degree-d Ideal Graded Encoding Model (GEM)). The oracle Md
R =

(enc, zero) is stateful and is parameterized by a ring R and a degree d and works in two
phases. For each l the oracle enc(·, l) is a random injective function from the ring R to the
set of labels S.

1. Initialization phase: In this phase the oracle answers enc(v, l) queries and for each
query it stores (v, l, h) in a list LO.

2. Zero testing phase: Suppose p(·) is a polynomial whose coefficients are explicitly repre-
sented in R and its monomials are represented with labels h1, . . . , hm obtained through
enc(·, ·) oracle in phase 1. Given any such query p(·) the oracle answers as follows:

(a) If any hi is not in LO (i.e., it is not obtained in phase 1) return false.

(b) If the degree of p(·) is more than d then return false.

(c) Let (vi, li, hi) ∈ LO. If p(v1, . . . , vm) = 0 return true, otherwise false.

12

Definition 2.3.5 (Generic Algorithms). Let AI be an algorithm (or a set of interactive
algorithms A = {A1, A2, . . .}) where I is the generic group oracle or the graded encoding
oracle. We call AI a generic algorithm in the generic group model (resp. graded encoding
model) model if it never asks any addition (resp. zero-testing) query that is answered as ⊥.
Namely, only queries are asked for which the labels are previously obtained.

In this work we only use sparse encodings in which |S|/|G| = κω(1) (for the generic group
model) or |S|/|R| = κω(1) (for the graded encoding model) where κ is the security parameter.
Therefore, the execution of poly-time algorithms in this model will be statistically close to
being generic.

2.4 Basic Primitives

In this section we list the definitions of various common and basic cryptographic primitives
and assumptions which we will use or refer to throughout this work.

Definition 2.4.1 (One-way Function (OWF)). Let f : {0, 1}∗ → {0, 1}∗ be a function. We
call f a one-way function if the following conditions are satisfied:

• Completeness: For any input x, the running time of f(x) is at most poly(|x|).

• One-way: For any PPT adversary A, there exists a negligible function negl such that
for any security parameter κ:

Pr
x

$←−{0,1}κ
[A(f(x)) ∈ f−1(f(x))] ≤ negl(κ)

Definition 2.4.2 (Collision-resistant Hash Functions (CRHF)). Let h = {hi : {0, 1}n →
{0, 1}m}i∈I be a family of functions where m < n and I is efficiently sampleable. We call h
a collision-resistant hash function (family) if the following conditions are satisfied:

• Completeness: The running time of hi(x) for any i and x is at most poly(|x|).

• Collision-resistant: For any (even non-uniform) PPT adversary A, there exists a
negligible function negl such that for any security parameter κ:

Pr
i←I

[(x, x′)← A(1κ, i) : x′ 6= x ∧ hi(x) = hi(x
′)] ≤ negl(κ)

2.5 Obfuscation

Below we give a direct formal definition for approximately correct virtual black-box (VBB)
obfuscation in idealized models. The (standard) definition of VBB is equivalent to 0-
approximate VBB in the plain model where no oracle is accessed.

13

Definition 2.5.1 (Virtual Black-box Obfuscation in Idealized Models). For security parame-
ter κ ∈ N and function ε : N→ [0, 1], an ε-approximate virtual black-box (VBB) obfuscation
scheme in an idealized model I consists of two oracle PPT algorithms Obf = (vO,Ev)
defined as follows:

• Obfuscator vO is a PPT that takes as inputs a circuit C and a security parameter 1κ

and outputs a “circuit” B.

• Evaluator Ev takes as input (B, x) and outputs y.

The completeness and security conditions assert that:

• Correctness: For any circuit C of size n and input size m:

Pr
x←{0,1}m

[EvI(B, x) 6= C(x)] ≤ ε(κ)

where B ← vOI(1κ, C), and the probability is over the choice of input x, the oracle I,
and the internal randomness of vO. If ε = 0, then it is a perfectly correct obfuscator.

• Virtual Black-box Security: For every PPT adversary A, there exists a PPT sim-
ulator Sim and a negligible function µ such that for all n ∈ N and circuits C ∈ {0, 1}n:∣∣Pr[AI(vOI(1κ, C)) = 1]− Pr[SimC(1κ, 1|C|) = 1]

∣∣ ≤ µ(κ)

where the probability is over I and the randomness of A, Sim, and vO.

Definition 2.5.2 (Indistinguishability Obfuscation (IO) [BGI+01]). An indistinguishability
obfuscation (IO) scheme consists of two subroutines:

• Obfuscator iO is a PPT that takes as inputs a circuit C and a security parameter 1κ

and outputs a “circuit” B.

• Evaluator Ev takes as input (B, x) and outputs y.

The completeness and security conditions assert that:

• Completeness: For every C, with probability 1 over the randomness of iO, we get
B ← iO(1κ, C) such that: For all x it holds that Ev(B, x) = C(x).

• Security: For every poly-sized distinguisher D there exists a negligible function µ(·)
such that for every two circuits C0, C1 that are of the same size and compute the same
function, we have:

|Pr
iO

[D(iO(1κ, C0)) = 1]− Pr
iO

[D(iO(1κ, C1)) = 1]| ≤ µ(κ)

Definition 2.5.3 (Approximate IO). For function 0 < ε(n) ≤ 1, an ε-approximate IO
scheme is defined similarly to an IO scheme with a relaxed completeness condition:

14

• ε-approximate completeness. For every C and n we have:

Pr
x,iO

[Ev(B, x) = C(x) | B = iO(1κ, C)] ≥ 1− ε(κ)

Definition 2.5.4 (Approximate Statistical Correlation IO [BBF16]). A PPT IO scheme
(iO,Ev) is an (ε, δ)-approximate statistical correlation IO (CIO for short) if:

• Approximate correctness: Pr[Ev(B, x) 6= C(x)] ≤ ε(|C|) where B = iO(1κ, C) and
the probability is over the randomness of the obfuscator and the input x.

• Statistical correlation: For every pair of circuits C1 ≡ C2 of the same size n, the sta-
tistical distance between iO(1κ, C1) and iO(1κ, C2) (both defined over the randomness
of iO) is at most δ(n).

A computational variant of Definition 2.5.4 can be defined analogously:

Definition 2.5.5 (Approximate Computational Correlation IO). A PPT IO scheme (iO,Ev)
is an (ε, δ)-approximate computational CIO if it satisfies the same correctness condition as
approximate statistical CIO and:

• Computational correlation: For every poly-time adversary A and for every pair of
circuits C1 ≡ C2 of equal size n, it holds that Pr[A(iO(1κ, C1)) = 1]−Pr[A(iO(1κ, C2))] ≤
δ(n).

The Evaluation Algorithm. All of the definitions of the obfuscation scheme above have
a subroutine for evaluating the obfuscated code. The reason for defining the evaluation as
a subroutine of its own is that when we want to construct IO in oracle/idealized models,
we allow the obfuscated circuit to call the oracle as well. Having an evaluator subroutine
to run the obfuscated code allows to have such oracle calls in the framework of black-box
constructions of [RTV04] where each primitive Q is simply a class of acceptable functions
that we (hope to) efficiently implement given oracle access to functions that implement
another primitive P .

However, for simplicity and whenever it is unambiguous, we can consider the Ev algorithm
as running the obfuscated code B on input x and we can then simply write iO(C)(x) as being
an equivalent notation to Ev(iO(C), x).

2.6 Encryption Primitives

In this section we present the definitions for the different encryption primitives that we will
deal in this work. We will frequently refer to them during our main results whenever it is
necessary and relevant to the current section.

15

2.6.1 Witness Encryption

Definition 2.6.1 (Witness Encryption (WE) indexed by verifier V [GGSW13]). Let L be
an NP language with a corresponding efficient relation verifier V (that takes instance a and
witness w and either accepts or rejects). A witness encryption scheme for relation defined
by V consists of two PPT algorithms (Enc,DecV) defined as follows:

• Enc(1κ, a,m) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and security
parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it either outputs a message
m ∈ {0, 1}∗ or ⊥.

We also need the following completeness and security properties:

• Completeness: For any security parameter κ, any (a, w) such that V(a, w) = 1, and
any m it holds that

Pr
Enc,DecV

[DecV(w,Enc(1κ, a,m)) = m] = 1

• Security: For any PPT adversary A, there exists a negligible function µ(.) such that
for all a /∈ LV (i.e., that there is no w for which V(a, w) = 1) and any m0 6= m1 of the
same length |m0| = |m1| the following holds:

|Pr[A(Enc(1κ, a,m0)) = 1]− Pr[A(Enc(1κ, a,m1)) = 1]| ≤ µ(κ)

When we talk about the witness encryption as a primitive (not an indexed family) we refer
to the special case of the ‘complete’ verifier V which is a universal circuit algorithm and
V(w, a) = 1 if a(w) = 1 where a is a circuit evaluated on witness w.

We also define variants of witness encryption, which are both a strengthening of the
Definition 2.6.1, one of them strengthens WE’s functionality and the other one strengthens
its security. Therefore these variants of WE are incompatible in their capabilities and, hence,
a witness encryption scheme may possess either one or the other extra feature (but not both).

Definition 2.6.2 (Instance-revealing Witness Encryption (IRWE)). A witness encryption
scheme is said to be instance-revealing if it satisfies the properties of Definition 2.6.1 and, in
addition, includes the following subroutine.

• Instance-Revealing Functionality: Rev(c) given ciphertext c outputs a ∈ {0, 1}s∪
{⊥}, and for every a,m, κ:

Pr
Enc,Rev

[Rev(Enc(1κ, a,m)) = a] = 1.

Definition 2.6.3 (Instance-hiding Witness Encryption (IHWE)). A witness encryption
scheme is said to be instance-hiding if it satisfies the properties of Definition 2.6.1 except
that the security property is replaced with the following (stronger) security guarantee:

16

• Instance-Hiding Security: For any PPT adversary A, there exists a negligible func-
tion µ(.) such that for all a0, a1 /∈ V for which |a0| = |a1| and m0,m1 for which
|m0| = |m1|, the following holds:

|Pr[A(Enc(1κ, a0,m0)) = 1]− Pr[A(Enc(1κ, a1,m1)) = 1]| ≤ µ(κ)

2.6.2 Predicate Encryption

Definition 2.6.4 (Predicate Encryption (PE) [BSW11]). Let PK,A : K × A → {0, 1} be
an efficiently computable predicate defined over some key space K (that contains a special
empty key ε) and attribute space A and P is an efficient Turing machine computing the
relation PK,A. A predicate encryption scheme for a class of predicates PK,A consists of four
PPT algorithms (Setup,KGen,Enc,DecP) defined as follows:

• Setup(1κ): given the security parameter, it outputs a master public key MPK and a
master secret key MSK.

• KGen(MSK, k): given k ∈ K and the master secret key MSK ∈ {0, 1}n, outputs the
decryption key skk. If k = ε, it outputs ε.

• Enc(MPK, (m, a)): given the master public key MPK, attribute a ∈ A, and message
m, outputs ciphertext c.

• DecP(skk, c): given a secret key for k ∈ K and a ciphertext c, outputs a string m (or
⊥).

The following completeness and security properties must be satisfied:

• Completeness: For any security parameter κ, key k ∈ K, attribute a ∈ A, the
following holds:

DecP(skk,Enc(MPK, (m, a))) =


(|a|, |m|) if k = ε

m if k 6= ε and P(k, a) = 1

⊥ Otherwise

where skk ← KGen(MSK, k) and (MSK,MPK)← Setup(1κ).

• Security: For any PPT adversary A, there exists a negligible function negl(.) such
that the following holds:

Pr[INDPE
A (1κ) = 1] ≤ 1

2
+ negl(κ)

where INDPE
A is shown in Figure 2.1, and for each key query k that A sends to the

KGen oracle, it must hold that P(k, a0) = P(k, a1) = 0.

17

Experiment INDPE
A (1κ):

1. (MSK,MPK)← Setup(1κ))
2. (x0, x1) ← AKGen(MSK,.)(MPK) where xb = (ab,mb) for b ∈ {0, 1}, |a0| = |a1| and
|m0| = |m1| and for each prior query k we require that P(k, a0) = P(k, a1) = 0

3. b
$←− {0, 1}

4. c← Enc(MPK, xb)
5. b′ ← AKGen(MSK,.)(MPK, c) where for each query k we require that P(k, a0) = P(k, a1) =
0
6. Output 1 if b = b′ and 0 otherwise.

Figure 2.1: The INDPE
A experiment used in defining the security for predicate encryption

schemes
When P is clear from the context, we might simply write Dec instead of DecP.

We also present the definition of attribute-based encryption, which is a special case
of predicate encryption where the attribute of the encrypted message could be potentially
extracted efficiently from the ciphertext1.

Definition 2.6.5 (Attribute-based Encryption (ABE)). An attribute-based encryption scheme
is a predicate encryption scheme for a class of predicates PK,A (defined through efficient test
P(k, a) ∈ {0, 1}) satisfying the properties of Definition 2.6.4 except that the completeness
and security conditions are replaced with the following:

• Completeness: For any security parameter κ, key k ∈ K, attribute a ∈ A, and
message m ∈M , the following holds:

DecP(skk,Enc(MPK, (m, a))) =


(a, |m|) if k = ε

m if k 6= ε and P(k, a) = 1

⊥ Otherwise

where skk ← KGen(MSK, k) and (MSK,MPK)← Setup(1κ).

• Security: For any PPT adversary A, there exists a negligible function negl(.) such
that the following holds:

Pr[INDABE
A (1κ) = 1] ≤ 1

2
+ negl(κ)

where INDABE
A is shown in Figure 2.2, and for each key query k that A sends to the

KGen oracle, it must hold that P (k, a) = 0.

1The work of [BSW11] refers to this sub-class as predicate encryption with public index

18

Experiment INDABE
A (1κ):

1. (MSK,MPK)← Setup(1κ))
2. (x0, x1) ← AKGen(MSK,.)(MPK) where xb = (a,mb) for b ∈ {0, 1}, |m0| = |m1| and for
each prior query k we require that P (k, a) = 0

3. b
$←− {0, 1}

4. c← Enc(MPK, xb)
5. b′ ← AKGen(MSK,.)(MPK, c) where for each query k we require that P (k, a) = 0
6. Output 1 if b = b′ and 0 otherwise.

Figure 2.2: The INDABE
A experiment used in defining the security for attribute-based

encryption schemes

2.6.3 Homomorphic Encryption

Definition 2.6.6 (Fully Homomorphic Encryption (FHE)). Let F be a PPT algorithm
that accepts as input string f and messages m1, ...,mt and outputs a string m′. For any
security parameter κ, a homomorphic scheme HE for F is composed of four PPT algorithms
(Setup,Enc,Dec,EvalF) defined as follows:

• Setup(1κ): given the security parameter κ, outputs the master public key MPK and
the master secret key MSK.

• Enc(MPK,m): given MPK and a message m ∈ {0, 1}, outputs an encryption c.

• EvalF(MPK, f, c1, ..., ct): given master public key MPK, string f , and a sequence of
ciphertexts c1 = Enc(MPK,m1), ..., ct = Enc(MPK,mt), outputs another ciphertext cf .

• Dec(MSK, c): given MSK and ciphertext c, outputs a bit m ∈ {0, 1}.

A HE scheme is said to be fully homomorphic if the class of circuits supported for evalu-
ation consists of all polynomially-sized circuits (i.e. P/poly). Furthermore, an FHE scheme
must satisfy the following properties:

• Completeness: For any security parameter κ, string f and messages m1, . . . ,mt ∈
{0, 1}, it holds that:

Pr[Dec(MSK,EvalF(MPK, f, c1, ..., ct)) = F(f,m1, ...,mt)] = 1

where (MSK,MPK)← Setup(1κ) and ci = Enc(MPK,mi) for i ∈ [t].

• Compactness: There exists a fixed polynomial p(.) such that, for every string f , the
size of the evaluated ciphertexts |EvalF(MPK, f, c1, . . . , ct)| is at most p(κ) where, for
all i ∈ [t], ci ← Enc(MPK,mi) for some mi ∈ {0, 1}.

19

• Security: For any PPT adversary A, there exists a negligible function µ(.) such that
the following holds:

|Pr[A(Enc(MPK, 0)) = 1]− Pr[A(Enc(MPK, 1)) = 1]| ≤ µ(κ)

where (MSK,MPK)← Setup(1κ) and the probability is over the randomness of A and
Enc.

We also provide two stronger variants of FHE where one may evaluate on multiple en-
cryptions that were generated from different public keys but can only decrypt the newly
evaluated ciphertext if one has access to some subset of the corresponding secret keys.

Definition 2.6.7 (Multi-key FHE (MFHE) [LTV12, MW16]). A multi-key FHE scheme is
an FHE scheme where the evaluation sub-routine is replaced with the following:

• Eval(
−−−→
MPK, f, c1, ..., ct): given a sequence of L distinct and independently generated

keys
−−−→
MPK = (MPK1, ...,MPKL), a circuit f ∈ {0, 1}∗, and a sequence of ciphertexts

(c1, ..., ct) where for all i ∈ [t] there exists some j ∈ [L] such that ci = Enc(MPKj,mi),
outputs another ciphertext cf .

Furthermore, the following properties must be satisfied:

• Completeness: For any security parameter κ, messages mi ∈ {0, 1} and function f ,
it holds that:

Pr[Dec(
−−→
MSK,Eval(

−−−→
MPK, f, c1, ..., ct)) = f(m1, ...,mt)] = 1

where
−−→
MSK = (MSK1, ...,MSKL),

−−−→
MPK = (MPK1, ...,MPKL), and for all j ∈ [L] we

have (MSKj,MPKj) ← Setup(1κ) and for all i ∈ [t] there exists j ∈ [L] such that
ci ← Enc(MPKj,mi).

• Compactness: There exists a fixed polynomial p(., .) such that the size of the evalu-

ated ciphertexts Eval(
−−−→
MPK, f, c1, ..., ct)| is at most p(κ, L) for any f ∈ {0, 1}∗.

• Security: For any PPT adversary A, there exists a negligible function µ(.) such that
the following holds:

|Pr[A(Enc(MPK, 0)) = 1]− Pr[A(Enc(MPK, 1)) = 1]| ≤ µ(κ)

where (MSK,MPK)← Setup(1κ) and the probability is over the randomness of A and
Enc.

Definition 2.6.8 (Spooky Encryption [DHRW16]). Let F be a PPT algorithm that accepts
as input a string f and messages m1, ...,mt and outputs a sequence of messages m′1, ...,m

′
t. A

F-spooky encryption scheme is an HE scheme for (possibly randomized) F where evaluation
is replaced with the following:

20

• EvalF(f, (MPK1, c1), ..., (MPKt, ct)): given a sequence of pairs of public key-ciphertext
pairs (MPKi, ci), would output a sequence of ciphertexts (c′1, ..., c

′
t).

Furthermore, the following properties must be satisfied:

• Completeness: For any security parameter κ, string f and messages (m1, ...,mt)
where mi ∈ {0, 1}poly(κ) for all i ∈ [t], it holds that:

{(Dec(MSK1, c
′
1), ...,Dec(MSKt, c

′
t))}κ ≈c {F(f,m1, ...,mt)}κ

where for all i ∈ [t], (MSKi,MPKi) ← Setup(1κ), ci ← Enc(MPK,mi), and the evalu-
ated ciphertexts are given as c′i ← EvalF(f, (MPK1, c1), ..., (MPKt, ct)).

• Security: For any PPT adversary A, there exists a negligible function µ(.) such that
the following holds:

|Pr[A(Enc(MPK, 0)) = 1]− Pr[A(Enc(MPK, 1)) = 1]| ≤ µ(κ)

where (MSK,MPK)← Setup(1κ) and the probability is over the randomness of A and
Enc.

In [DHRW16], a special case of spooky encryption called additive function sharing (AFS)
spooky encryption was defined, which is essentially F-spooky encryption where F accepts and
executes a circuit fh that outputs a random n-out-of-n additive secret share of h(m1, ...,mt).
Note that F-spooky encryption supporting the class of all polynomially-sized circuits is a
generalization of multi-key FHE [LTV12, MW16]. In particular, if we allowed repetition
of public keys in the evaluation algorithm of the MFHE scheme, then we can define the
evaluation algorithm of MFHE to simply use the evaluation of the spooky encryption scheme
and output cf = (c′1, ..., c

′
t).

2.6.4 Functional Encryption

We will mainly be concerned with single-key functional encryption schemes which we define
below so in the rest of this work whenever we refer to functional encryption, it is of the
single-key type. We define a single-key functional encryption for function family F = {Fn}n∈N
(represented as a circuit family) as follows:

Definition 2.6.9 (Single-Key Functional Encryption [BV15]). A single-key functional en-
cryption (FE) for function family F consists of three PPT algorithms (Setup,Enc,Dec) de-
fined as follows:
• Setup(1κ): Given as input the security parameter 1κ, it outputs a master public key

and master secret key pair (MPK,MSK).
• KGen(MSK, f): Given master secret key MSK and function f ∈ F, outputs a decryption

key SKf .
• Enc(MPK, x): Given the master public key MPK and message x, outputs ciphertext
c ∈ {0, 1}p.

21

• Dec(SKf , c): Given a secret key SKf and a ciphertext c ∈ {0, 1}m, outputs a string
y ∈ {0, 1}s.

The following completeness and security properties must be satisfied:
• Completeness: For any security parameter κ, any f ∈ F with domain {0, 1}n and

message x ∈ {0, 1}n, the following holds:

Dec(SKf ,Enc(MPK, x)) = f(x)

where (MPK,MSK)← Setup(1κ) and SKf ← KGen(MSK, f)
• Security: For any PPT adversary A, there exists a negligible function negl(·) such

that:

Pr[IND1FE
A (1κ) = 1] ≤ 1

2
+ negl(κ),

where IND1FE
A is the following experiment.

Experiment IND1FE
A (1κ):

1. (MSK,MPK)← Setup(1κ)
2. (f, x0, x1)← A(MPK) where |x0| = |x1| and f(x0) = f(x1)

3. b
$←− {0, 1}, c← Enc(MPK, xb), SKf ← KGen(MSK, f)

4. b′ ← A(MPK, SKf , c)
5. Output 1 if b = b′ and 0 otherwise.

Figure 2.3: The IND1FE
A experiment used in defining the security for functional

encryption schemes
• Efficiency: We define two notions of efficiency for single-key FE supporting the func-

tion family F:
– Compactness: An FE scheme is said to be compact if the size of the encryption

circuit is bounded by some fixed polynomial poly(n, κ) where n is the size of the
message, independent of the function f chosen by the adversary.2

– Function Output Length: An FE scheme is said to be t-bit-output if outlen(f) ≤
t(n, κ) for any f ∈ F, where outlen(f) denotes the output length of f . Given
ciphertext length p(n, κ), we say an FE scheme is long-output if it is (p + i)-bit-
output for some i ≥ 1 and short-output if it is only (p − ω(n + κ))-bit-output
where n is the size of the message.

Definition 2.6.10 (Functional Witness Encryption (FWE) [BCP14]). Let V be a PPT
algorithm that takes as input an instance-message pair x = (a,m) and witness w then
outputs a bit. Furthermore, let F be a PPT Turing machine that accepts as input a witness
w and a message m then outputs a string y ∈ {0, 1}s. For any given security parameter κ, a
functional witness encryption scheme indexed with V and F consists of two PPT algorithms
P = (Enc,DecV,F) defined as follows:

2A couple of other weaker notions of compactness for FE have also been considered in the literature.
However, all these notions are known to be “monolithically” equivalent to compact single-key FE. Therefore,
we restrict our discussion just to compact single-key FE.

22

• Enc(1κ, a,m) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security pa-
rameter κ, outputs c ∈ {0, 1}∗.
• DecV,F(w, c) : given ciphertext c and “witness” string w ∈ {0, 1}∗, outputs a message
m′ ∈ {0, 1}∗.

A functional witness encryption scheme satisfies the following completeness and security
properties:
• Correctness: For any security parameter κ, any m ∈ {0, 1}∗, and any (w, (a,m))

such that VP (w, a) = 1, it holds that

Pr
Enc,Dec

[DecV,F(w,Enc(1κ, a,m)) = FP (w,m)] = 1

• Extractability: For any PPT adversary A and polynomial p1(.), there exists a PPT
extractor E and a polynomial p2(.) such that for any security parameter κ, any a for
which VP (w, a) = 1 for some w, and any m0,m1 where |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(1κ, a,mb)

]
≥ 1

2
+ p1(κ)

Then:

Pr
[
EA(1κ, a,m0,m1) = w : VP (w, a) = 1 ∧ FP (w,m0) 6= FP (w,m1)

]
≥ p2(κ)

2.6.5 Universal Variants of Primitives

In all the primitives that we have defined in this section, there exists an efficiently com-
putable function R that is part of the definition of this (family of) primitives. However, in
this work, whenever we reference such a primitive, we will use a standard universal circuit
evaluator function RU (see Definition 2.1.1) that captures the most ‘complete’ version of
such a primitive and allows us to obtain the primitive in terms of any other relation. More
specifically, the universal function is defined as follows for each relevant primitive:

• Witness Encryption: The function (which is a relation here) RU with corresponding
verifier V is defined so that for any input pair (w, a), V(w, a) = a(w). Thus, this
relation gives rise to the language LV = {a | ∃w : a(w) = 1}, which is essentially the
language of circuit satisfiability.

• Predicate and Attribute-based Encryption: The universal predicate class PK,A with
corresponding P is defined so that for any k ∈ K and a ∈ A, P(k, a) = k(a). Thus,
this relation gives rise to the language LP = {k | ∃a : k(a) = 1}.

• (Multi-key) FHE and Spooky Encryption: The algorithm F representing the scheme is
defined so that for any input sequence (f,m1, ...,mt), F(f,m1, ...,mt) = f(m1, ...,mt).

Given a primitive defined with universal relation RU with associated verifier V, we can
construct the same primitive for any other arbitrary efficiently computable relation R′ with

23

associated verifier V′. This is achieved by defining an instance a to be verified by V as a
circuit a := V′(., a′) where a′ is an instance to be verified by V′. In that case, we have that,
for any (w, a′), V′(w, a′) = 1 if and only if V(w, a) = 1 since V(w, a) = a(w) = V′(w, a′).

We can also define a symmetric variant of the universal relation. For example, for PE
or ABE, we can let P(k, a) = a(k) instead3. In either case, we will explicitly mention which
input is to act as the circuit when we make use of these relations.

3In fact, these symmetric notions have been previously defined in the literature in the context of predicate
encryption as key policy [GPSW06] and ciphertext policy [BSW07].

24

Part I

Black-box Separations for
Indistinguishability Obfuscation

25

Chapter 3

The Black-box Framework

In this section, we present a background on the standard techniques used to prove black-box
separation results. We first start by defining the various notions of black-box constructions
then present how these constructions work in idealized models where access to randomized
oracles is provided to all algorithms.

3.1 Black-box Constructions

Cryptographic primitives or objects, such as one-way functions and private-key encryption
schemes, are traditionally defined as satisfying a correctness condition and a security con-
dition. As such, any given construction of a primitive Q from another primitive P should
satisfy both conditions in order to be a valid instantiation of Q. We refer to any construc-
tion of Q from P as being black-box if such a construction makes use of the input-output
behaviour of P and not the actual implementation.

Impagliazzo and Rudich [IR89] were the first to formally study the power of black-box
constructions that relativize to any oracle. Their notion was further explored in detail by
Reingold, Trevisan, and Vadhan [RTV04]. The work of Baecher, Brzuska, and Fischlin
[BBF13] further studied the black-box framework and presented variants of the definition of
black-box constructions. We first start by recalling the definition of cryptographic primitives,
and then will go over the standard notion of (fully) black-box constructions.

Definition 3.1.1 (Cryptographic Primitives [RTV04]). A primitive P = (F ,R) is defined
as set of functions F and a relation R between functions. A (possibly inefficient) function
F : {0, 1}∗ → {0, 1}∗ is a correct implementation of P if F ∈ F , and a (possibly inefficient)
adversary A breaks an implementation F ∈ F if (A,F) ∈ R.

Definition 3.1.2 (Black-box Constructions [RTV04]). A black-box construction of a prim-
itive Q from a primitive P consists of two PPT algorithms (Q,S) defined as follows:

1. Implementation: For any oracle P that implements P , QP implements Q.

26

2. Security reduction: for any oracle P implementing P and for any (computationally
unbounded) oracle adversary A breaking the security of QP , it holds that SP,A breaks
the security of P .

By considering the role of the security parameter we can distinguish between attacks that
succeed over an “infinite” vs. “all but finitely many” security parameters. Therefore, we will
work with a more refined definition of cryptographic primitives (and constructions) where
the parties also receive a security parameter κ as input. Thus, any function P implementing
a primitive P will take as input a “security parameter” κ and, according to the standard
definition of security in cryptography, any adversary A who successfully breaks P would
have to “win” over an infinite number of security parameters for a “noticeable” advantage
(e.g. only winning over security parameters that are, say, powers of two will suffice to call it
a successful attack).

Primitives with stronger hardness. The above definition is for polynomially secure
primitives. When the used primitive P is s-secure for a more quantitative bound s(n) �
poly(n), the security reduction S could potentially run in longer running time as well so
long as it holds that: when P,A are polynomial time, the total running time of the com-
posed algorithm SP,A is also small enough to be considered a legitimate attack against the
implementation P of P .

Black-box Separations. In order to rule out black-box constructions we can use one of
many various techniques that were developed in [IR89, GMR01, HR04], each of which have
their advantages and difficulties when ruling out certain classes of constructions. In most
cases, one can easily see that in order to rule out a black-box construction of a primitive Q
from another primitive P , it suffices to show that, for any candidate construction Q of Q,
there exists an oracle O such that QO can be broken by some poly-query adversary AO but
any construction P of P is secure against any adversary that tries to break it.

3.1.1 Variants on Black-box Constructions

In the following more relaxed form of constructions, the security reduction can depend
arbitrarily on the adversary but it still treats the implementation of the used primitive
in a black-box way.

Definition 3.1.3 (Semi-black-box constructions [RTV04]). A semi-black-box construction
of a primitive Q from a primitive P is defined similarly to the fully black-box Definition of
3.1.2 with the following difference in the security reduction:

• For any oracle P implementing P and any efficient oracle-aided adversary AP who
breaks the security of QP it holds that SP (A) breaks the security of P . Note that since
A’s description is efficient it could indeed be given to S in a non-black-box way.

27

Efficiency of adversary. We used the term efficient in an unspecified way so that it
could be applied to complexity classes beyond polynomial time. For example, using a quasi-
polynomially secure primitive P to construct a polynomially secure primitiveQ would require
a security primitive that is more relaxed and could lead to a quasi-polynomial (as opposed
to polynomial) time attack against P using any polynomial-time attacker against QP .

3.1.2 Black-box Constructions in Idealized Models

Definition 3.1.4 (Oracle-fixed constructions in idealized models). We say a primitive P
exists relative to the randomized oracle (or idealized model) I if there is an oracle-aided
algorithm P such that:

1. Completeness: For every instantiation I ← I, it holds that P I implements P cor-
rectly.

2. Security: Let A be an oracle-aided adversary AI where the complexity of A is bounded
by the specified complexity of the attacks for primitive P . For example if P is poly-
nomially secure (resp., quasi-polynomially secure), then A runs in in polynomial time
(resp., quasi-polynomial time). For every such oracle-aided A, with measure one over

the sampling of the idealized oracle I
$←I, it holds that A does not break the security

of P I .

We call P a black-box construction of P relative to I if the security property holds also in a
“black-box” way defined as follows:

• Black-box security: Let A be an oracle-aided adversary AI where the query com-
plexity of A is bounded by the specified complexity of the attacks for primitive P . For
example if P is polynomially secure (resp., quasi-polynomially secure), then A only
asks a polynomial (resp., quasi-polynomial) number of queries. For every such oracle-

aided A, with measure one over the sampling of the idealized oracle I
$← I, it holds

that A does not break the security of P I .

In the definition above, we only require the scheme to be secure after the adversary is
fixed. This is along the line of the way the random oracle model is used in cryptography
[BR93], and lets us easily derive certain primitives in idealized models. For example it is easy
to see that a random trapdoor permutation, with measure one, is a secure TDP against any
fixed adversary of polynomial query complexity. Therefore, TDPs exist in the idealized model
of random TDP in a black-box way. In fact stronger results are proved in the literature for
other primitives. Impagliazzo and Rudich [IR89] and Gennaro and Trevisan [GT00] showed
that one-way functions exist relative to the idealized model of random oracle, even if we
sample the oracle first and then go over enumerating possible attacks. Chung et al. [CLMP13]
proved a similar result for collision resistant hash functions.

Remark 3.1.5. Definition 3.1.4 is different from saying that P exists in a relativized world
I ← I with measure one (where we have to fix the oracle first then enumerate over all

28

attackers instead of fixing the attacker first). If the security condition was defined with
respect to efficient attackers, then we could use the Borel–Cantelli lemma (see Lemma 2.2.1)
then do a union bound over all such attackers, but the number of bounded-query attacking
algorithms is not countable. Working with Definition 3.1.4 allows us to still use idealized
model I for the purpose of proving black-box separations (where we want to say P is not
enough to obtain another primitive Q).

Definition 3.1.4 is called “oracle-fixed” in contrast to another “oracle-mixed” definition
(stated below) in which the same security condition holds (with measure one) over the
randomness of the I and A at the same time.

Definition 3.1.6 (Oracle-mixed constructions in idealized models). We say a primitive P
has an oracle-mixed black-box construction in idealized model I if there is an oracle-aided
algorithm P such that:

• Oracle-mixed Completeness: P I implements P correctly where the probabilities
are also over I ← I.1 For the important case of perfect completeness, this definition
is the same as oracle-fixed completeness.

• Oracle-mixed Black-box Security: Let A be an oracle-aided algorithm in idealized
model I whose query complexity is bounded by the specified complexity of the attacks
defined for primitive P . We say that the oracle-mixed black-box security holds for
P I if for any such A there is a negligible µ(n) such that the advantage of A breaking
P I over the security parameter n is at most µ(n) where this bound is also over the
randomness of I.

Remark 3.1.7 (Oracle-fixed vs. Oracle-mixed Constructions). We called the constructions
of Definition 3.1.4 “oracle-fixed” because many constructions in idealized models use an
“oracle-mixed” security definition. In an oracle-mixed construction P of a primitive P in
an idealized model I, the completeness is defined similarly to Definition 3.1.4, but when
it comes to security, the advantage of A in breaking the scheme is calculated also over the
randomness of I. Even though oracle-fixed constructions seem to enjoy a stronger security
guarantee than oracle-mixed ones, it can be shown that the oracle-fixed security does not
imply oracle-mixed security when the advantage of the attack is only 1/ poly(n). For example
consider a trivial primitive in the Boolean random oracle model B in which a trivial attacker
A succeeds in its attack over security parameter n if B is equal to 0 over the first log(n)
queries. Then the only oracle for which A succeeds in its attack for an infinite sequence of
security parameters is the constant zero oracle, which has a measure zero of being sampled.
However, looking ahead, we will prove in Section 7.2 the fact that when the attacker achieves
constant Ω(1) advantage over the trivial bound, an oracle-fixed black-box construction is also
an oracle-mixed black-box construction.

1For example, an oracle-mixed construction of an ε-approximate IO only requires approximate correctness
while the probability of approximate correctness is computed also over the probability of the input as well
as the oracle.

29

We now present two lemmas stating that the existence of some primitive P in an idealized
model I and the existence of a fully- or semi-black-box construction ofQ from P would imply
that Q also exists in the idealized model I.

Lemma 3.1.8 (Composition lemma). Suppose Q is a fully-black-box construction of prim-
itive Q from primitive P, and suppose P is an oracle-fixed construction for primitive P
relative to I (according to Definition 3.1.4). Then QP is an oracle-fixed implementation of
Q relative to the same idealized model I.

Proof. It is easy to see that QP is an implementation of Q relative to I (by completeness of
the constructions P and Q), and so the completeness holds. The proof of security follows.
For sake of contradiction, let AI be any efficient query successful attacker against the im-
plementation QP (of Q) in the idealized model I which rules out its oracle-fixed black-box

property. Namely, there is a non-zero measure fraction of I
$← I for which it holds that

AI breaks the security of QP I . For any such fixed I, the security reduction SA
I ,I (of the

fully-black-box construction Q of P) would break the security of P I . By combining the algo-
rithms S and A we get that the efficient query attacker (SA)I = BI breaks the security of P I

with non-zero measure over the sampled oracle I
$←I. But this contradicts the assumption

that P is securely realized in I in an oracle-fixed black-box way. Therefore QP is also an
oracle-fixed black-box construction of Q relative to I.

Lemma 3.1.9 (Composition Lemma (semi-black-box constructions)). Suppose Q is a semi-
black-box construction of primitive Q from primitive P, and suppose P is an oracle-fixed
construction for primitive P relative to I (according to Definition 3.1.4). Then QP is an
oracle-fixed implementation of Q relative to the same idealized model I.

Proof. Let Q be the semi-black-box construction of Q from P . Let P be the implementation
of P relative to I. Now, for sake of contradiction, let AI be any efficient successful attacker
against the implementation of QP in the idealized model I. That means by non-zero measure

over the choice of I
$←I it holds that AI breaks the security of QP I . For any such fixed I, the

(semi-black-box) security reduction SI(A) would break the security of P I . This means that
the attacker S(A) = B breaks the security of P I with non-zero measure over the sampled

oracle I
$←I, which contradicts the assumption that P is securely realized in I.

30

Chapter 4

Impossibility of VBB Obfuscation in
Idealized Models

4.1 Introduction

Virtual Black-Box (VBB) obfuscation (see Definition 2.5.1) is a strong form of obfuscation
in which the obfuscated code does not reveal any secret bit about the obfuscated program
unless that information could already be obtained through a black-box access to the program.
It was shown in [BGI+01,GK05] that VBB obfuscation is not possible in general as there is a
family of functions F that could not be VBB obfuscated. Roughly speaking, F would consist
of circuits C such that given any obfuscation B = vO(C) of C, by running B over B itself as
input one can obtain a secret s about C that could not be obtained through mere black-box
interaction with C. This strong impossibility result, however, did not stop researchers from
exploring the possibility of VBB obfuscation for special classes of functions, and positive
results for special cases were presented (e.g., [Can97,CMR98,DS05,Wee05,AW07,HRsV07,
CD08,BC10,CRV10]) based on believable computational assumptions.

The work of Lynn, Prabhakaran and Sahai [LPS04] showed the possibility of VBB obfus-
cation for certain class of functions in the random oracle model (ROM) (see Definition 2.3.1).
The work of [LPS04] left open whether general purpose obfuscator for all circuits could be
obtained in the ROM or not. Note that when we allow the random oracle to be used during
the obfuscation phase (and also let the obfuscated code to call the random oracle) the im-
possibility result of [BGI+01] no longer applies, because the proof of [BGI+01] requires the
obfuscated algorithm to be a circuit in the plain model where no oracle is accessed. In fact,
despite the impossibility of general VBB obfuscation in the plain model, a construction for
VBB obfuscation in the ROM could be used as a practical heuristic obfuscation mechanism
once instantiated with a strong hash function such as SHA3. This would be in analogy with
the way ROM based constructions of other primitives are widely used in practice despite the
impossibility results of [CGH04].

Canetti, Kalai, and Paneth [CKP15] proved the first impossibility result for VBB ob-
fuscation in a natural idealized model by ruling out the existence of general purpose VBB

31

obfuscators in the random oracle model, assuming the existence of trapdoor permutations.
Their work resolved the open question of [LPS04] negatively. At a technical level, [CKP15]
showed how to compile any VBB obfuscator in the ROM into an approximate VBB obfus-
cator in the plain model which preserves the circuit’s functionality only for “most” of the
inputs. This would rule out VBB obfuscation in plain model (assuming TDPs) since Bitan-
sky and Paneth [BP13] had shown that no approximate VBB obfuscator for general circuits
exist if trapdoor permutations exist.

Pass and shelat [PS16] further studied the possibility of VBB obfuscation in idealized al-
gebraic models in which the positive results of [BGK+14,BR14] were proved. [PS16] showed
that the existence of VBB obfuscation schemes in the graded encoding model (see Defini-
tion 2.3.4) highly depends on the degree of polynomials (allowed to be zero tested) in this
model. In particular they showed that VBB obfuscation of general circuits is impossible in
the graded encoding model of constant-degree polynomials. Their work nicely complemented
the positive results of [BGK+14,BR14] that were proved in a similar (graded encoding) model
but using super-constant (in fact polynomial in security parameter) polynomials.

We shall emphasize that proving limitations of VBB obfuscation or any other primitive
in generic models of computation such as the generic group model of Shoup [Sho97] are
strong lower-bounds (a la black-box separations [RTV04,IR89]) since such results show that
for certain cryptographic tasks, as long as one uses certain algebraic structures (e.g., an
abelian group) in a black-box way as the source of computational hardness, there will always
be a generic attack that also treats the underlying algebraic structure in a black-box way
and breaks the constructed scheme. The fact that the proposed attack is generic makes the
lower-bound only stronger.

4.2 Our Results

In this chapter we extend the previous works [CKP15, PS16] on the impossibility of VBB
obfuscation in idealized models of computation and generalize their results to more powerful
idealized primitives. We first focus on the generic group model of Shoup [Sho97] (see Defi-
nitions 2.3.3 and 2.3.5) and rule out the existence of general VBB obfuscation in this model
for any finite abelian group.

Theorem 4.2.1 (Informal). Assuming trapdoor permutations exist, there is no virtual black-
box obfuscation for general circuits in the generic group model for any finite abelian group.

The work of [PS16] implies a similar lower bound for the case of abelian groups of prime
order. We build upon the techniques of [CKP15, PS16] and extend the result of [PS16]
to arbitrary (even non-cyclic) finite abelian groups. See the next section for a detailed
description of our techniques for proving this theorem and the next theorems described
below.

We then apply our techniques designed to prove Theorem 4.2.1 to the setting of graded-
encoding model studied in [PS16] and extend their results to arbitrary finite rings (rather

32

than fields) which remained open after their work. Our proof even handles non-commutative
rings.

Theorem 4.2.2 (Informal). Assuming trapdoor permutations exist, there is no virtual black-
box obfuscation for general circuits in ideal degree-O(1) graded encoding model for any finite
ring.

Finally, we generalize the work of [CKP15] beyond random oracles by ruling out general
VBB obfuscation in random trapdoor permutations (TDP) oracle model. Our result extends
to an arbitrary number of levels of hierarchy of trapdoors, capturing idealized version of
primitives such as hierarchical identity based encryption [HL02].

Theorem 4.2.3 (Informal). Assuming trapdoor permutations exist, there is no virtual black-
box obfuscation for general circuits in the random trapdoor permutation model, even if the
oracle provides an unbounded hierarchy of trapdoors.

Note that the difference between the power of random oracles and random TDPs in
cryptography is usually huge, as random oracle is an idealized primitive giving rise to (very
efficient) symmetric key cryptography primitives, while TDPs could be used to construct
many public-key objects. Our result indicates that when it comes to VBB obfuscation
random TDPs are no more powerful than just random oracles.

Connection to black-box complexity of IO. Looking ahead, we note that the results
of this work and those of [PS16] will be used to derive lower-bounds on the assumptions that
can be used in a black-box way to construct IO. In particular, let P be a primitive implied by
(i.e. exist relative to) random trapdoor permutations, generic abelian group model, or the
degree-O(1) graded encoding model; this includes powerful primitives such as exponentially
secure TDPs or exponentially secure Diffie-Hellman-type assumptions. In Chapter 5 we show
that basing IO on P in a black-box way is either impossible, or it is at least as hard as basing
public-key cryptography on one-way functions (in a non-black-box way). Whether or not
public-key encryption can be based on one-way functions has remained as one of the most
fundamental open questions in cryptography.

4.3 Technical Overview

The high level structure of the proofs of our results follows the high level structure of [CKP15],
so we start by recalling this approach. The idea is to convert the VBB obfuscator vOI in the
idealized model to an approximate VBB obfuscation v̂O in the plain model which gives the
correct answer C(x) with high (say, 9/10) probability over the choice of random input x and
randomness of obfuscator. The final impossibility follows by applying the result of [BP13]
which rules out approximate VBB in the plain model. Following [CKP15] our approximate

VBB obfuscator v̂O in the plain model has the following high level structure.

33

1. Obfuscation emulation. Given a circuit C emulate the execution of the obfuscator
vOI in the idealized model over input C to get circuit B (running in the idealized
model).1

2. Learning phase. Emulate the execution of B over m random inputs for sufficiently
large m. Output B and the view z of the m executions above as the obfuscated code
B̂ = (B, z).

3. Final execution. Execute the obfuscated code B̂ = (B, z) on new random points
using some form of “lazy evaluation” of the oracle while only using the transcript z of
the learning phase (and not the transcript of obfuscator vO which is kept private) as
the partially fixed part of the oracle. The exact solution here depends on the idealized
model I, but they all have the following form: if the answer to a new query could
be “derived” from z then use this answer, otherwise generate the answer from some
simple distribution.

VBB property. As argued in [CKP15], the VBB property of v̂O follows from the VBB
property of vO and that the sequence of views z could indeed be sampled by any PPT holding
B in the idealized model (by running B on m random inputs), and so it is simulatable (see
Lemma 4.4.5).

Approximate correctness. The main challenge is to show the approximate correctness
of the new obfuscation procedure in the plain model. The goal here is to show that if the
learning phase is run for sufficiently large number of rounds, then its transcript z has enough
information for emulating the next (actual) execution consistently with but without knowing
the view of vO. In the case that I is a random oracle [CKP15] showed that it is sufficient

to bound the probability of the “bad” event E that the final execution of B̂ = (B, z) on a
random input x asks any of the “private” queries of the obfuscator vO which is not discovered
during the learning phase. The work of [PS16] studies graded encoding oracle model where
the obfuscated code can perform arbitrary zero-test queries for low degree polynomials p(·)
defined over the generated labels s1, . . . , sk. The oracle will return true if p(s1, . . . , sk) = 0 (in
which case p(·) is called a zero polynomial) and returns false otherwise. Due to the algebraic
structure of the field here, it is no longer enough to learn the heavy queries of the obfuscated
code who might now ask its oracle query p(·) from some “flat” distribution while its answer
is correlated with previous answers.

4.3.1 Generic Group Model: Proving Theorem 4.2.1

To describe the high level ideas of the proof of our Theorem 4.2.1 it is instructive to start
with the proof of [PS16] restricted to zero testing degree-1 polynomials and adapt it to the

1The emulation here and in next steps would require the idealized model I to have an efficient “lazy
evaluation” procedure. For example lazy evaluation for random oracles chooses a random answer (different
from previous ones) given any new query.

34

very close model of GGM for Zp when p is a prime, since as noted in [PS16] when it comes
to zero-testing linear functions these two models are indeed very close.2

Case of Zp for prime p [PS16]. When we go to the generic group model we can ask
addition and labeling queries as well. It can be shown that we do not need to generate
any labels when evaluating the obfuscated code since they can be emulated using addition
queries. Then, by induction, all the returned labels t1, . . . , t` for addition queries are linear
combinations of the labels s1, . . . , sk generated during obfuscation with integer coefficients3

and that is how we represent queries. Suppose we get an addition query a + b and want to
know the label of the group element determined by (the coefficients) a + b = x. Suppose
for a moment that we know s is the label for a vector of integers c, and suppose we also
know that the difference x− c evaluates to zero. In this case, similarly to [CKP15], we can
confidently return the label s as the answer to a + b. To use this idea, at any moment, let
W be the space of all (zero) vectors α − β such that we have previously discovered same
labels for α and β. Now to answer a + b = x we can go over all previously discovered
labels (c 7→ s) and return s if x− c ∈ span(W), and return a random label otherwise. The
approximate correctness follows from the following two points.

• The rank argument. First note that if x−c ∈ span(W) then the label for the vector
a + b = x is indeed s. So we only need worry about cases where x− c 6∈ span(W) but
x− c is still zero. The rank argument of [PS16] shows that this does not happen too
often if we repeat the learning phase enough times. The main idea is that if this “bad”
event happens, it increases the rank of W , but this rank can increase only k times.

• Gaussian elimination. Finally note that the test x − c 6∈ span(W) can be imple-
mented efficiently using Gaussian elimination when we work in Zp.

Case of general cyclic groups. We first describe how to extend the above to any cyclic
(abelian) group Zm (for possibly non-prime m) as follows.

• Alternative notion for rank of W . Unfortunately, when we move to the ring of Zm
for non-prime m it is no longer a field and we cannot simply talk about the rank of
W (or equivalently the dimension of span(W)) anymore.4 More specifically, similarly
to [PS16], we need such (polynomial) bound to argue that during most of the learning
phases the set span(W) does not grow. To resolve this issue we introduce an alternative

notion which here we call r̃ank(W) that has the following three properties even when

vectors w ∈ W are in Zkm (1) If a ∈ span(W) then r̃ank(W) = r̃ank(W ∪ {a}), and

2More formally, using the rank argument of [PS16] it can be shown that for the purpose of obfuscation,
the two models are equivalent up to arbitrary small 1/poly(n) completeness error.

3Even though the summation is technically defined over the group elements, for simplicity we use the
addition operation over the labels as well.

4Note that this is even the case for Zq when q is a prime power, although finite fields have prime power
sizes.

35

(2) if a 6∈ span(W) then r̃ank(W) + 1 ≤ r̃ank(W ∪ {a}), and (3) 1 ≤ r̃ank(W) ≤
k · log |Zm| = k · logm. In particular in Lemma 4.4.27 we show that the quantity

r̃ank(W) := log |span(W)| has these three properties. These properties together show
that span(W) can only “jump up” k · logm (or fewer) times during the learning phase,
and that property is enough to be able to apply the argument of [PS16] to show
that sufficiently large number of learning phases will bound the error probability by
arbitrary 1/ poly(n).

• Solving system of linear equations over Zm. Even though m is not necessarily
prime, this can still be done using a generalized method for cyclic abelian groups
[McC90].

Beyond cyclic groups. Here we show how to extend the above argument beyond cyclic
groups to arbitrary abelian groups. First note that to solve the Gaussian elimination algo-
rithm for Zm, we first interpret the integer vectors of W as vectors in Zkm. This “mapping”

was also crucially used for bounding r̃ank(W).

• Mapping integers to general abelian G. When we move to a general abelian group
G we again need to have a similar mapping to map W into a “finite” module. Note
that we do not know how to solve these questions using integer vectors in W efficiently.
In Lemma 4.4.4 we show that a generalized mapping ρG(·) : Z 7→ G (generalizing the
mapping ρZm(x) = (x mod m) for Zm) exists for general abelian groups that has the
same effect; namely, without loss of generality we can first convert integer vectors in
W to vectors in Gk and then work with the new W .

• The alternative rank argument. After applying the transformation above over
W (to map it into a subset of Gk) we can again define and use the three rank-like

properties of r̃ank(·) (instead of rank(W)) described above, but here for any finite

abelian group G. In particular we use r̃ank(W) := log |spanZ(W)| where spanZ(·) is
the module spanned by W using integer coefficients. Note that even though G is not
a ring, multiplying integers with x ∈ G is naturally defined (see Definition 4.4.3).

• System of linear equations over finite abelian groups. After the conversion step
above, now we need to solve a system of linear equation xW = a where elements of
W, a are from G but we are still looking for integer vector solutions x. After all, there
is no multiplication defined over elements from G. See Section 4.4.2 where we give a
reduction from this problem (for general finite abelian groups) to the case of G = Zm
which is solvable in polynomial time [McC90].

4.3.2 Low-Degree Graded Encoding Model: Proving Theorem 4.2.2

To prove Theorem 4.2.3 for general finite rings, we show how to use the ideas developed for
the case of general abelian generic groups discussed above and apply them to the framework

36

of [PS16] for low-degree graded encoding model as specified in Theorem 4.2.2. Recall that
here the goal is to detect the zero polynomials by checking their membership in the module
span(W). Since here we deal with polynomials over a ring (or field) R the multiplication
is indeed defined. Therefore, if we already know a set of zero polynomials W and want to
judge whether a is also (the vector corresponding to) a zero polynomial, the more natural
approach is to solve a system of linear equations xW = a over ring R.

Searching for integer solutions again. Unfortunately we are not aware of a polynomial
time algorithm to solve x ·W = a in general finite rings and as we mentioned above even
special cases like R = Zm are nontrivial [McC90]. Our idea is to try to reduce the problem
back to the abelian groups by somehow eliminating the ring multiplication. Along this line,
when we try to solve x ·W = a, we again restrict ourselves only to integer solutions. In
other words, we do not multiply inside R anymore, yet we take advantage of the fact that
the existence of integer solution to x ·W = a is still sufficient to conclude a is a zero vector.
As we mentioned above, we indeed know how to find integer solutions to such system of
linear equations in polynomial time (see Section 4.4.2).

Finally note that, we can again use our alternative rank notion of r̃ank(W) to show
that if we run the learning phase of the obfuscation (in plain model) m times the number of
executions in which spanZ(W) grows is at most poly(n) (in case of degree-O(1) polynomials).
This means that we can still apply the high level structure of the arguments of [PS16] for
the case of finite rings without doing Gaussian elimination over rings.

4.3.3 Random Trapdoor Permutation Model: Proving Theorem 4.2.3.

Here we give the high-level intuition behind our result for the random TDP oracle model.

Recalling the case of Random Oracles [CKP15]. Recall the high level structure of the
proof of [CKP15] for the case of random oracles described above. As we mentioned, [CKP15]
showed that to prove approximate correctness it is sufficient to bound the probability of
the event E that the final execution of B̂ = (B, z) on a random input x asks any of the
queries that is asked by emulated obfuscation vO of B (let QO denote this set) which is
not discovered during the learning phase. So if we let QE, QB, QO denote the set of queries
asked, respectively, in the final execution, learning, and obfuscation phases, the bad event
would be QE ∩ (QO \QB) 6= ∅. This probability could be bound by arbitrary small 1/ poly
by running the learning phase sufficiently many times. The intuition is that all the “heavy”
queries which have a 1/ poly-chance of being asked by B̂ = (B, z) (i.e., being in QE) on a
random input x would be learned, and thus the remaining unlearned private queries (i.e.,

QO \QB) would have a sufficiently small chance of being hit by the execution of B̂ = (B, z)
on a random input x.

Warm-up: Random Permutation Oracle. We start by first describing the proof for the
simpler case of random permutation oracle. The transformation technique for the random

37

oracle model can be easily adapted to work in the random permutation model as follows.
For starters, assume that the random permutation is only provided on one input length k;
namely R : {0, 1}k 7→ {0, 1}k. If k = O(log κ) where κ is the security parameter, then it
means that the whole oracle can be learned during the obfuscation and hardcoded in the
obfuscated code, and so R cannot provide any advantage over the plain model. On the
other hand if k = ω(log κ) it means that the range of R is of super-polynomial size. As a
result, the same exact procedure proposed in [CKP15] (that assumes R is a random oracle
and shows how to securely compile out R from the construction) would also work if R is
a random permutation oracle. The reason is that the whole transformation process asks
poly(κ) number of queries to R and, if the result of the transformation does not work when
R is a random permutation, then the whole transformation gives a poly(κ) = q query attack
to distinguish between whether R is a random permutation or a random function. Such an
attack cannot “succeed” with more than negligible probability when the domain of R has
super-polynomial size qω(1) in the number of queries q5.

Random TDP Model. Suppose T = (G,F, F−1) is a random trapdoor permutation
oracle in which G is a random permutation for generating the public index, F is the family
of permutations evaluated using public index, and F−1 is the inverse permutation computed
using the secret key (see Definition 2.3.2 for formal definition and notation used). When the
idealized oracle is T = (G,F, F−1), we show that it is sufficient to apply the same learning
procedure used in the random oracle case over the normalized version of the obfuscated
algorithm B to get a plain-model execution B̂(x) that is statistically close to an execution
BT (x) that uses oracle T . This, however, requires careful analysis to prove that inconsistent
queries specific to the TDP case occur with small probability.

Indeed, since the three algorithms (emulation, learning, and final execution) are corre-
lated, there is a possibility that the execution of B on the new random input might ask a
new query that is not in QO, and yet still be inconsistent with some query in QO\QB. For
example, assume we have a query q of the form G(sk) = pk that was asked during the obfus-
cation emulation phase (and thus is in QO) but was missed in the learning phase (and thus is
not in QB) and assume that a query of the form F [pk](x) = y was asked during the learning
phase (so it is in QB). Then, it is possible that during the evaluation of the circuit B, it
may ask a query q′ of the form F−1[sk](y) and since this is a new query undetermined by

previously learned queries, the plain-model circuit B̂ will answer with some random answer
y′. Note that in this case, y′ would be different from y with very high probability, and thus
even though q 6= q′, they are together inconsistent with respect to oracle T .

As we show in our case-by-case analysis of the learning heavy queries procedure for
the case of trapdoor permutation (in Section 4.5.2), the only bad events that we need to
consider (besides hitting unlearned QO queries, which was already shown to be unlikely) will

5In general, when the random permutation R is available in all input lengths, we can use a mixture of
the above arguments by generating all the oracle queries of length c log(κ) (for a sufficiently large constant
c) during the obfuscation (in the plain model) and representing this randomness in the obfuscated circuit.
This issue also exists in the trapdoor permutation and the generic group models and can be handled exactly
the same way.

38

be those whose probability of occurring are negligible (we use the lemmas from [GKLM12]
as leverage). Due to our normalization procedure, the rest of the cases will be reduced to
the case of not learning heavy queries, and this event is already bounded.

4.4 Impossibility of VBB Obfuscation in Generic Al-

gebraic Models

In this section we will formally state and prove our Theorems 4.2.1 and 4.2.2 for the generic
group and graded encoding models, respectively. After going over the preliminaries related
to this section and describing a useful algorithm for solving linear equations over abelian
groups (which we will later use in our compilation procedure), we proceed with proving the
VBB impossibility in the idealized generic group model and the graded encoding model.

4.4.1 Preliminaries

We start by stating some basic group theoretic notation, facts, and definitions. By Z we
refer to the set of integers. By Zn we refer to the additive ring of integers modulo n. When
G is an abelian group, we use + to denote the operation in G. A semigroup (G,�) consists
of any set G and an associative binary operation � over G.

Definition 4.4.1. For semi-groups (G1,�1), . . . , (Gk,�k), by the direct product semi-group
(G,�) = (G1× · · ·×Gk,�1× · · ·×�k) we refer to the group in which for g = (g1, . . . , gk) ∈
G, h = (h1, . . . , hk) ∈ G we define g � h = (g1 �1 h1, . . . , gk �k hk). If Gi’s are groups, their
direct product is also a group.

The following is the fundamental theorem of finitely generated abelian groups restricted
to the case of finite abelian groups.

Theorem 4.4.2 (Characterization of Finite Abelian Groups). Any finite abelian group G
is isomorphic to the direct product group Zpα11

× · · · ×Zpαdd in which pi’s are (not necessarily

distinct) primes and Zpαii is the cyclic group mod pαii .

Definition 4.4.3 (Integer vs in-group multiplication for abelian groups). For integer a ∈ Z
and g ∈ G where G is any finite abelian group by a · g we mean adding g by itself |a|
times and negating it if a < 0. Now let g, h ∈ G both be from abelian group G and let
G = Zpα11

× · · · × Zpαdd where pi’s are primes. If not specified otherwise, by g · h we mean
the multiplication of g, h in G interpreted as the multiplicative semigroup that is the direct
product of the multiplicative semigroups of Zpαii ’s for i ∈ [d] (where the multiplications in

Zpαii are mod pαii).

Lemma 4.4.4 (Mapping integers to abelian groups). Let G = Zpα11
× · · · × Zpαdd . Define

ρG : Z 7→ G as ρG(a) = (a1, . . . , ad) ∈ G where ai = a mod pαii ∈ Zpαii . Also for a =

(a1, . . . , ak) ∈ Zk define ρG(a) = (ρG(a1), . . . , ρG(ak)). Then for any a ∈ Z and g ∈ G =

39

Zpα11
× · · · × Zpαdd it still holds that a · g = ρG(a) · g where the first multiplication is done

according to Definition 4.4.3, and the second multiplication is done in G. More generally, if
a = (a1, . . . , ak) ∈ Zk, and g = (g1, . . . , gk) ∈ G, then

∑
i∈[k] aigi = 〈a,g〉 = 〈ρG(a),g〉.

The following lemma is used in [CKP15], and here we state it in an abstract form con-
sidering only the VBB security and ignoring the completeness.

Lemma 4.4.5 (Preservation of VBB Security). Let vO be a PPT virtual black-box obfuscator
in the I-ideal model that satisfies VBB security, and let U be a PPT algorithm also in the
I-ideal model that given input B = vOI(C) for some circuit C ∈ {0, 1} of size n, outputs

circuit B′, and suppose v̂O is some plain-model PPT algorithm that given circuit C, outputs
B̂. If it holds that conditioned on any given C, the statistical distance between B′ and B̂ are
negligible, then v̂O satisfies the VBB security.

4.4.2 Solving Linear Equations over Abelian Groups

In this section we define an algebraic problem relevant to our compilation procedure and we
describe a polynomial time algorithm for solving it.

Definition 4.4.6. [Integer Solutions to Linear Equations over Abelian Groups (iLEAG)] Let
G be a finite abelian group. Suppose we are given G (e.g., by describing its decomposition
factors according to Theorem 4.4.2) an n×k matrix A with components from G and a vector
b ∈ Gk. We want to find an integer vector x ∈ Zn such that xA = b.

Remark 4.4.7 (Integer vs. Ring Solutions). Suppose instead of searching for an integer
vector solution x ∈ Zn we would ask to find x ∈ Gn and define multiplication in G according
to Definition 4.4.3 and call this problem G-LEAG. Then any solution to iLEAG can be
directly turned into a solution for G-LEAG by mapping any integer coordinate xi of x into
G by mapping ρG(xi) of Lemma 4.4.4. The converse is true also for G = Zn, since any g ∈ Zn
is also in Z and it holds that ρG(g) = g ∈ G. However, the converse is not true in general
for general abelian groups, since there could be members of G that are not in the range of
ρG(Z). For example let G = Zp2 × Zp for prime p > 2 and let g = (2, 1). Note that there is
no integer a such that a mod p2 = 2 but a mod p = 1.

Theorem 4.4.8. There exists a polynomial time algorithm that can solve iLEAG.

Cyclic vs General Abelian. Note that if G = Zp for a prime p then iLEAG can be
solved efficiently using Gaussian elimination. If the abelian group G is cyclic Zq, it does not
matter if we define the variables x in Zn or in Znq . In this case, if q is prime, we can use
the Gaussian elimination method to find x. Interestingly, even if q is not a prime, there is
still a way to solve systems of linear equations over Zq using a generalization of Gaussian
elimination [McC90] which is the main tool we use to prove Theorem 4.4.8.

Theorem 4.4.9 ([McC90] Section 5.1). Systems of linear equations over Zq for integer
q can be solved in polynomial time. i.e., iLEAG is solvable in polynomial time for cyclic
(abelian) G.

40

In the rest of this section we prove Theorem 4.4.8. We will do so by reducing iLEAG to
G = Zq (where q happens to be a prime power) and applying Theorem 4.4.9.

Proof of Theorem 4.4.8 using Theorem 4.4.9. We will change iLEAG in two steps by defin-
ing simplified versions of it and reducing it to these simplified forms.

Definition 4.4.10 (Linear Equations over Arbitrary Prime Powers (LEAP)). Let {aj | j ∈
[m], aj ∈ Zn} be a set of m vertical vectors in Zn and suppose we are given pαii in which pi is
a prime (but it could be that pi = pj). We want to find an integer vector x ∈ Zn such that
for all j ∈ [m] the inner product 〈x, aj〉 is zero mod p

αj
j .

Claim 4.4.11. Solving iLEAG can be reduced to solving LEAP in polynomial time.

Proof. Let A = [a1, . . . , ak],b = (b1 . . . , bk) be a given instance of iLEAG over G. Let G be
isomorphic to Zpα11

× · · · × Zpαdd . Then we can think of every column ai in A as an n × d
matrix Ci = [c1

i , . . . , c
d
i] for which 〈x, ai〉 = bi is equivalent to having 〈x, cji 〉 = 0 mod p

αj
j

for every j ∈ [d]. And so cA = b will be equivalent to 〈x, cji 〉 = 0 mod p
αj
j for all i ∈ [k] and

j ∈ [d]. The latter is indeed a LEAP instance (with k · d linear constraints over a total of d
different moduli).

Definition 4.4.12 (Linear Equations over Identical Prime Powers (LEIP)). This problem
is a special case of LEAP in which all the moduli are over the same prime, but perhaps with
different powers. Namely, if pαii and p

αj
j is the modulus for the i inner product, we have

pαii = p
αj
j for all i, j ∈ [m].

Claim 4.4.13. Solving LEAP could be reduced to solving LEIP in polynomial time.

Proof. Let m be the number of linear constraints and pαii be the modulus for that restriction.
Partition [m] into sets S1, . . . , S` such that i, j are in the same partition Sk if and only if
pi = pj. This partitioning defines ` subproblems from the original LEAP instance that we
simply denote by S1, . . . , S`. It is easy to see that any solution x to the original LEAP
instance also works for all of its sub problems. We prove the converse using the Chinese
reminder theorem.

Let qj = maxi∈Sj p
αi
i be the largest modulus whose index is in Sj. For every i ∈ Sj let

r = qj/p
αi
i and then multiply ai, bi, as well as the modulus restriction for them (i.e., pαii)

by r. Note that this will not change the space of solutions, but will make all the modulus
restrictions in Sj equal to qj.

Now let xj be the integer solution to LEIP instance Sj for j ∈ [`]. Using the (algorithmic
proof of the) Chinese reminder theorem we can use xj’s to find a single integer vector x such
that x = xj mod qj for all j ∈ [`] which means x is an integer solution to the original LEAP
instance.

Finally note that LEIP is a special case of solving linear equations over Zq for general
integer q which can be solved in polynomial time according to Theorem 4.4.9.

41

Finally, we note that there is also a polynomial time algorithm for the arguably “more
natural” problem G-LEAG (see Remark 4.4.7) in which we seek solutions for xA = b inside
ring G where the multiplication in G is defined according to Definition 4.4.3. Note that since
the multiplication of Definition 4.4.3 generalizes the notion of ring Zn, the following theorem
is a also a generalization of solving system of linear equations over Zn, as was the case for
iLEAG, but here the generalization is in a different direction.

Theorem 4.4.14. G-LEAG can be solved in polynomial time for finite abelian groups.

Proof. As opposed to the case of iLEAG we show how to reduce G-LEAG directly to LEIP.
Suppose we are given an n×k matrix A and a 1×k vector b with all elements in G, and we
want to find x such that xA = b. Let G = Zpα11

× · · · ×Zpαdd . Therefore all elements of A,b
and even x could be thought as 1×d vectors were the addition and multiplication in the i’th
coordinate is done modulo pαii . Now let (Ai,bi) be the LEIP instance that could be derived
from xA = b and for each element we substitute the corresponding i’th coordinate in its
vector representation of G. It is easy to see that solving the G-LEAG instance is equivalent
to solving all of the d LEIP subproblems (Ai,bi) for i ∈ [d] and simply using the solutions
xi (whose components are modulo pαii) to scale them up into a solution x in G.

4.4.3 Generic Group Model

We start by presenting some definitions and properties regarding the generic group model,
which was formally defined in Definition 2.3.3.

Remark 4.4.15 (Family of Groups). A more general definition allows generic oracle access
to a family of groups {G1, G2, . . .} in which the oracle access to each group is provided
separately when the index i of Gi is also specified as part of the query and the size of the
group Gi is known to the parties. Our negative result of Section 4.4.3 directly extends to
this model as well. We use the above “single-group” definition for sake of simplicity.

Remark 4.4.16 (Stateful vs Stateless Oracles and the Multi-Party Setting). Note that in
Definition 2.3.3 we used a stateless oracle to define the generic group oracle, and we separated
the generic nature of the oracle itself from how it is used by an algorithm AI . In previous
work (e.g., Shoup’s original definition [Sho97]) a stateful oracle is used such that it will
answer addition queries only if the two labels have already been obtained before through a
labeling query to the oracle.6

Note that for “one party” settings in which AI is a single algorithm, AI “knows” the
labels that it has already obtained from the oracle I, and so w.l.o.g. AI would never ask any
addition queries unless it has previously obtained the labels itself. However, in the multi-
party setting, a party might not know the set of labels obtained by other parties. A stateful
oracle in this case might reveal some information about other parties’ oracle queries if the
oracle does not answer a query (y1, y2) (by returning ⊥) just because the labels y1, y2 were
not previously obtained.

6So the oracle might return ⊥ even if the two labels are in the range of σ(G).

42

Remark 4.4.17 (Equivalence of Two Models for Sparse Encodings). If the encoding of
G is sparse in the sense that |S|/|G| = κω(1) where κ is the security parameter, then the
probability that any party could query a correct label before it being returned by oracle
through a labeling (type 1) query is indeed negligible. So in this case any algorithm (or set
of interactive algorithms) AI would have a behavior that is statistically close to a generic
algorithm that would never ask a label in an addition query unless that label is previously
obtained from the oracle. Therefore, if |S|/|G| = κω(1), we can consider AI to be an arbitrary
algorithm (or set of interactive algorithms) in the generic group model I. The execution
of A would be statistically close to a “generic execution” in which AI never asks any label
before obtaining it.

In light of Remarks 4.4.16 and 4.4.17, for simplicity of the exposition we will always
assume that the encoding is sparse |S|/|G| = κω(1) and so all the generic group model
algorithms are automatically (statistically close to being) generic.

Theorem 4.4.18 (Theorem 4.2.1 Formalized). Let G be any abelian group of size at most
2poly(κ). Let vO be an obfuscator in the generic group model I[G 7→ S] where the obfuscation
of any circuit followed by execution of the obfuscated code (jointly) form a generic algorithm.
If vO is an ε-approximate VBB obfuscator in the generic group model I[G 7→ S] for poly-size

circuits, then for any δ = 1/ poly(κ) there exists an (ε+ δ)-approximate VBB obfuscator v̂O
for poly-size circuits in the plain model.

Remark 4.4.19 (Size of G). Note that if a poly(κ)-time algorithm accesses (the labels of
the elements of) some group G, it implicitly means that G is at most of exp(κ) size so that its
elements could be names with poly(κ) bit strings. We chose, however, to explicitly mention
this size requirement |G| ≤ 2poly(κ) since this upper bound plays a crucial role in our proof
for general abelian groups compared to the special case of finite fields.

Remark 4.4.20 (Sparse Encodings). If we assume a sparse encoding i.e., |S|/|G| = κω(1)

(as e.g., is the case in [PS16] and almost all prior work in generic group model) in Theo-
rem 4.4.18 we no longer need to explicitly assume that the obfuscation followed by execution
of obfuscated code are in generic form; see Remark 4.4.17.

Since [BP13] showed that (assuming TDPs) there is no (1/2 − 1/ poly)-approximate
VBB obfuscator in the plain-model for general circuits, the following corollary is obtained
by taking δ = ε/2.

Corollary 4.4.21. If TDPs exist, then there exists no (1/2−ε)-approximate VBB obfuscator
vO for general circuits in the generic group model for any ε = 1/ poly(κ), any finite abelian
group G and any label set S of sufficiently large size |S|/|G| = κω(1). The result would hold
for labeling sets S of arbitrary size if the execution of the obfuscator vO followed by the
execution of the obfuscated circuit vO(C) form a generic algorithm.

Now we formally prove Theorem 4.4.18. We will first describe the algorithm of the
obfuscator in the plain model, and then will analyze its properties.

43

Notation and w.l.o.g. assumptions. Using Theorem 4.4.2 w.l.o.g. we assume that our
abelian group G is isomorphic to the additive direct product group Zpα11

× · · · × Zpαdd where
pi’s are prime. Let ei ∈ G be the vector that is 1 in the i’th coordinate and zero elsewhere.
Note that {e1, . . . , ed} generates G. We can always assume that the first d labels obtained by
vO are the labels of e1, . . . , ed and these labels are explicitly passed to the obfuscated circuit
B = vO(C). Let k = poly(κ) be an upper bound on the running time of the obfuscator vO
for input C which in turn upper bounds the number of labels obtained during the obfuscation
(including the d labels for e1, . . . , ed). We also assume w.l.o.g. that the obfuscated code never
asks any type one (i.e., labeling) oracle queries since it can use the label for e1, . . . , ed to
obtain labels of any arbitrary g = a1e1 + · · · + aded using a polynomial number of addition
(i.e., type two) oracle queries. For σ(g) = s, a ∈ Z, and t = σ(a · g) we abuse the notation
and denote a · s = t.

The Construction

Even though the output of the obfuscator is always an actual circuit, we find it easier to first
describe how the obfuscator v̂O generates some string B̂, and then we will describe how to
use B̂ to execute the new obfuscated circuit in the plain model. For simplicity we use B̂ to
denote the obfuscated circuit.

How to Obfuscate

The new obfuscator v̂O. The new obfuscator v̂O uses lazy evaluation to simulate the
labeling σ(·) oracle. For this goal, it holds a set Qσ of the generated labels. For any new
labeling query g ∈ G if σ(g) = s is already generated it returns s. Otherwise it chooses an
unused label s from S uniformly at random and adds the mapping (g → s) to Qσ and returns
s. For an addition query (s1, s2) it first finds g1, g2 such that σ(g1) = s1 and σ(g2) = s2

(which exist since the algorithm that calls the oracle is in generic form) and gets g = g1 +g2.

Now v̂O proceeds as if g is asked as a labeling query and returns the answer. The exact
steps of v̂O are as follows.

1. Emulating obfuscation. v̂O emulates vOI(C) to get circuit B. Note that the type-two
queries to I[G 7→ S] could be avoided all together and be answered using labeling
queries since the all the generated labels are known during the obfuscation phase.

2. Learning phase 1 (heavy queries): Set QB = ∅. For i ∈ [d] let ti = σ(ei) be the
label of ei ∈ G which is explicitly passed to B by the obfuscator vO(C) and T =
(t1, . . . , td) at the beginning where T will (eventually) represent the discovered labels
of the obfuscation. The length of the sequence T would increase during the steps
below but will never exceed k. Choose m at random from ` = [d3 · k · log(|G|)/δe]. For
i = 1, . . . ,m do the following:

• Choose xi as a random input for B. Emulate the execution of B on xi using the
(growing) set Qσ of partial labeling for the lazy evaluation of labels. Note that

44

as we said above, w.l.o.g. B only asks addition (i.e., type two) oracle queries.
Suppose B (executed on xi) needs to answer an addition query (s1, s2). If either
of the labels u = s1 or u = s2 is not already obtained during the learning phase
1 (which means it was obtained during the initial obfuscation phase) append u
to the sequence T of discovered labels by T := (T, u). Using induction, it can
be shown that for any addition query asked during learning phase 1, at the time
of being asked, we would know that the answer to this query will be of the form∑

i∈[k] ai·ti for integers ai. Before seeing why this is the case, let ai = (ai,1, . . . , ai,k)

be the vector of integer coefficients (of the labels t1, t2, . . .) for the answer s that
is returned to the i’th query of learning phase 1. We add (ai → s) to QB for the
returned label. To see why such vectors exist, let (s1, s2) be an addition query
asked during this phase, and let s ∈ {s1, s2}. If the label s is obtained previously
during learning phase 1, then the linear form s =

∑
i∈[k] ai · ti is already stored

in QB. On the other hand, if s is a new label discovered during an addition (i.e.,
type two) oracle query which just made T = (t1, . . . , tj−1, tj = s) have length j,
then s = aj · tj for aj = 1. Finally, if the linear forms for both of (s1, s2) in an
addition oracle query are known, the linear form for the answer s to this query
would be the summation of these vectors.7

3. Learning phase 2 (zero vectors): This step does not involve executing B anymore and
only generates a set W = W (QB) ⊆ Gk of polynomial size. At the beginning of this
learning phase let W = ∅. Then for all (a1 → s1) ∈ QB and (a2 → s2) ∈ QB, if
s1 = s2, let a = a1 − a2, and add ρG(a) to W where ρG(a) is defined in Lemma 4.4.4.

4. The output of the obfuscation algorithm will be B̂ = (B,QB,W, T, r) where T is the
current sequence of discovered labels (t1, t2, . . .) as described in Lemma 4.4.4, and r is
a sufficiently large sequence of random bits that will be used as needed when we run
the obfuscated code B̂ = (B,QB,W, T, r) in the plain model.8

How to Execute

In this section we describe how to execute B̂ on an input x using (B,QB,W, T, r).
9

Executing B̂. The execution of B̂ = (B,QB,W, T, r) on x will be done identically to to
the “next” execution during the learning phase 1 of the obfuscation (as if x is the (m+ 1)’st

7Note that although the sequence T grows as we proceed in learning phase 1, we already now that this
sequence will not have length more than d since all of these labels that are discovered while executing the
obfuscated code has to be generated by the obfuscator, due to the assumption that the sequential execution
of the obfuscator followed by the obfuscated code is in generic form. Therefore we can always consider ai to
be of dimension k.

8Note that even though W (QB) could always be derived from QB , and even T could be derived from an
ordered variant of QB (in which the order in which QB has grown is preserved) we still choose to explicitly

represent these elements in the obfuscated B̂ to ease the description of the execution of B̂.
9Note that we do not have access to the set Qσ that was used for consistent lazy evaluation of σ(·).

45

execution of this learning phase) and even the sets QB,W = W (QB) will grow as the
execution proceeds, with the only difference described as follows.10 Suppose we want to
answer an addition (i.e., type two) oracle query (s1, s2) where for b = {1, 2} we inductively
know that sb =

∑
i∈[k] ab,i · ti. For b = {1, 2} let ab = (ab,1, . . . , ab,k) and let a = a1 + a2.

• Do the following for all (b → s) ∈ QB. Let c = a − b and let c = ρG(c) ∈ Gk as
defined in Lemma 4.4.4. Let A be a matrix whose rows consists of all vectors in W .
Run the polynomial time algorithm presented in Section 4.4.2 (for G = Zn) to see if
there is any integer solution v for vA = c as an instance of the iLEAG problem defined
in Definition 4.4.6. If an integer solution v exists, then return s as the result (recall

(b→ s) ∈ QB), break the loop, and continue the execution of B̂. If the loop ended and
no such (b → s) ∈ QB was found, choose a random label s not in QB as the answer,
add (a→ s) to QB and continue.

Completeness and Soundness

In this section we prove the completeness and soundness of the construction of Section 4.4.3.

Size of S. In the analysis below, we will assume w.l.o.g. that the set of labels S has
superpolynomial size |S| = κω(1). This would immediately hold if the labeling of G is sparse,
since it would mean even |S|/|G| ≥ κω(1). Even if the labeling is not sparse, we will show that
w.l.o.g. we can assume that G itself has super-polynomial size (which means that S will be
so too). That is because otherwise all the labels in G can be obtained by the obfuscator, the
obfuscated code, and the adversary and we will be back to the plain model. More formally,
for this case Theorem 4.4.18 could be proved through a trivial construction in which the
new obfuscator simply generates all the labels of G and plants all of them in the obfuscated
code and they will be used by the obfuscated algorithm. More precisely, when the size
of G (as a function of security parameter κ) is neither of polynomial size |G| = κO(1) nor
super-polynomial size |G| = κω(1) we can still choose a sufficiently large polynomial γ(κ) and
generate all labels of G when |G| < γ(κ), and otherwise use the obfuscation of Section 4.4.3.

Completeness: approximate functionality. Here we prove the the following claim.

Claim 4.4.22. Let B̂ = (B,QB,W, T, r) be the output of the obfuscator v̂O given input

circuit C with input length α. If we run B̂ over a random input according to the algorithm
described in Section 4.4.3, then it holds that

Pr
x←{0,1}α,B̂←v̂O(C)

[
B̂(x) 6= C(x)

]
≤ Pr

x←{0,1}α,B←vOI[G7→S](C)

[
BI[G 7→S](x) 6= C(x)

]
+ δ

over the randomness of I[G 7→ S], random choice of x and the randomness of the obfuscators.

10We even allow new labels ti to be discovered during this execution to be appended to T , even though
that would indirectly lead to an abort!

46

Proof. As a mental experiment, suppose we let the learning phase 1 always runs for exactly
`+1 = 1+[d3 ·k · log(|G|)/δe] rounds but only derive the components (QB,W (QB), T) based
on the first m executions. Now, let xi be the random input used in the i’th execution and yi
be the output of the i’th emulation execution the learning phase 1. Since all the executions
of the learning phase 1 are perfect simulations, for every i ∈ [`], and in particular i = m, it
holds that

Pr[BI[G7→S](x) 6= C(x)] = Pr[yi 6= C(x)]

where probability is over the choice of inputs x, xi as well as all other randomness in the
system. Thus, to prove claim 4.4.22 it will suffice to prove that

|Pr[yi 6= C(x)]− Pr[B̂(xi) 6= C(x)]| < δ.

We will indeed do so by bounding the statistical distance between the execution of B̂ vs the
m+ 1’st execution of the learning phase 1 over the same input xi. Here we will rely on the
fact that m is chosen at random from [`].

Claim 4.4.23. For random [`] the statistical distance between the m + 1’st execution of

the learning phase 1 (which we call B′) and the execution of B̂ over the same input xi is
≤ 2δ/3 + negl(κ).

To prove the above claim we will define three type of bad events over a joint execution of
B′ = Bm+1 and B̂ when they are done concurrently and using the same random tapes (and
even the input xi). We will then show that (1) as long as these bad events do not happen
the two executions proceed identically, and (2) the total probability of these bad events is

at most 2δ/3 + negl(κ). In the following we suppose that the executions of B′ and B̂ (over
the same random input) has proceeded identically so far. Suppose we want to answer an
addition (i.e., type two) oracle query (s1, s2) where for b = {1, 2} we inductively know that
sb =

∑
i∈[k] ab,i · ti. Several things could happen:

• If the execution of B̂ finds (b → s) ∈ QB such that when we take c = a − b and
let c = ρG(c) ∈ Gk and let A be a matrix whose rows are vectors in (the current)
W , there is an integer solution v to the iLEAG instance vA = c. If this happens
the execution of B̂ will use s as the answer. We claim that this is the “correct”
answer as B′ would also use the same answer. This is because by the definition of W
and Lemma 4.4.4 for all w ∈ W it holds that w = (w1, . . . , wk) is a “zero vector in
Gk” in the sense that summing the (currently discovered labels in) T with coefficients
w1, . . . , wk (and multiplication defined according to Definition 4.4.3) will be zero. As a
result, vA = c which is a linear combination of vectors in W with integer coefficients
will also be a zero vector. Finally, by another application of Lemma 4.4.4 it holds
that (c1, . . . , ck) = c = a − b is a “zero vector in Zk” in the sense that summing the
(currently discovered labels in) T with integer coefficients c1, . . . , ck (and multiplication
defined according to Definition 4.4.3) will also be zero. Therefore the answer to the
query defined by vector a is equal to the answer defined by vector b which is s.

47

• If the above does not happen (and no such (b→ s) ∈ QB is found) then either of the
following happens. Suppose the answer returned for (s1, s2) in execution of B′ is s′:

– Bad event E1: s
′ is equal to one of the labels in QB. Note that in this case the

executions will diverge because B̂ will choose a random label.

– Bad event E2: s′ is equal to one of the labels discovered in the emulation of
vOI(C) (but not present in the current QB).

– Bad event E3: s
′ is a new label, but the label chosen by B̂ is one of the labels

used in the emulation of vOI(C). Note that in this case the execution of B̂ will
not use any previously used labels in QB.

It is easy to see that as long as none of the events E1, E2, E3 happen, the execution of B′

and B̂ proceeds statistically the same. Therefore, to prove Claim 4.4.23 and so Claim 4.4.22
it is sufficient to bound the probability of the events E1, E2, E3 as we do below.

Claim 4.4.24. Pr[E3] < negl(κ).

Proof. This is because (as we described at the beginning of this subsection above) the size of
S is κω(1) but the number of labels discovered in the obfuscation phase is at most k = poly(κ).
Therefore the probability that a random label from S after excluding labels in QB (which is
also of polynomial size) hits one of at most k possible labels is ≤ k/(|S| − |QB|) = negl(κ).
Therefore, the probability that E3 happens for any of the oracle queries in the execution of
B̂ is also negl(κ).

Claim 4.4.25. Pr[E2] < δ/(3 log |G|) < δ/3.

Proof. We will prove this claim using the randomness of m ∈ [`]. Note that every time
that a label u is discovered in learning phase 1, this label u cannot be discovered “again”,
since it will be in QB from now on. Therefore, the number of possible indexes of i ∈ [`]
such that during the i’th execution of the learning phase 1 we discover a label out of QB

is at most k. Therefore, over the randomness of m ← [`] the probability that the m + 1’st
execution discovers any new labels (generated in the obfuscation phase) is at most k/` ≤
δ/(3 log |G|).

Claim 4.4.26. Pr[E1] < δ/3.

Proof. Call i ∈ [`] a bad index if event E1 happens conditioned on m = i during the execution
of B′ (which is the (m + 1)’s execution of learning phase 1). Whenever E1 happens at any
moment, it means that the vector c is not currently in W (QB), but it will be added W just
after this query is made. We will show (Lemma 4.4.27 below) that the size of spanZ(W) will
at least double after this oracle query for some set spanZ(W) that depends on W and that
spanZ(W) ⊆ Gk, and so |spanZ(W)| ≤ |G|k. As a result the number of bad indexes i will be
at most log |G|k = k log |G|. Therefore, over the randomness of m ∈ [`] the probability that
m+ 1 is a bad index is at most k log |G|/` ≤ δ/3

48

Lemma 4.4.27. Let W ⊆ Gk for some abelian group G. Let spanZ(W) = {
∑

w∈W aww |
aw ∈ Z} be the module spanned by W using integer coefficients. If c 6∈ spanZ(W), then it
holds that

|spanZ(W ∪ {c})| ≥ 2 · |spanZ(W)|.

Proof. Let A = spanZ(W) and let B = {c + w | w ∈ spanZ(W)} be A shifted by c. It
holds that |A| = |B| and A ∪ B ⊂ spanZ(W ∪ {c}). It also holds that A ∩ B = ∅, because
otherwise then we would have w + c = w′ for some w,w′ ∈ spanZ(W) which would mean
c = w−w′ ∈ spanZ(W) which is a contradiction. Therefore |spanZ(W ∪{c})| ≥ |A|+ |B| =
2 · |spanZ(W)|

Soundness: VBB Simulatability. To derive the soundness we apply Lemma 4.4.5 as
follows. vO will be the obfuscator in the ideal model and v̂O will be our obfuscator in the
plain model where z′ = QB,W, T, r is the extra information output by v̂O. The algorithm
U will be a similar algorithm to v̂O but only during its learning phase 1 and 2 starting from
an already obfuscated B. However, U will continue generating z′ using the actual oracle
I[G 7→ S] instead of inventing the answers through lazy evaluation. Since the emulation
of the oracle during the learning phases, and that all of QB,W, T,R could be obtained by
only having B (and no secret information about the obfuscation phase are not needed) the
algorithm U also has the properties needed for Lemma 4.4.5.

Remark 4.4.28 (General abelian vs Zn.). Note that when G = Zn is cyclic, the mapping
ρG : Z 7→ G of Lemma 4.4.4 will be equivalent to simply mapping every a ∈ Z to (a mod n) ∈
G. Therefore, Definition 4.4.3 generalizes the notion of Zn as a ring to general abelian
groups, since the multiplication x ·y mod n in Zn is the same as a multiplication in which x
is interpreted from Z (as in Definition 4.4.3) which is equivalent to doing the multiplication
inside G according to Lemma 4.4.4.

4.4.4 Degree-O(1) Graded Encoding Model

In this section we will refer to Definition 2.3.4, which is an adaptation of the definition of
the Graded Encoding Model (GEM) from [PS16] restricted to the degree-d polynomials. For
simplicity, as in [PS16] we also restrict ourselves to the setting in which only the obfuscator
generates labels and the obfuscated code only does zero tests, but the proof directly extends
to the more general setting of [BGK+14, BR14]. We also use only one finite ring R in the
oracle (whose size could in fact depend on the security parameter) but our impossibility
result extends to any sequence of finite rings as well.

Remark 4.4.29. Remarks 4.4.16 and 4.4.17 regarding the stateful vs stateless oracles and
the sparsity of the encoding in the context of generic group model apply to the graded
encoding model as well. Therefore, as long as the encoding is sparse (which is the case in
Definition 2.3.4) whenever |R| is of size κω(1)) the probability of obtaining any valid label

49

h = enc(v, l) through any polynomial time algorithm without it being obtained from the
oracle previously (by the same party or another party) becomes negligible, and so the model
remains essentially equivalent (up to negligible error) even if the oracle does not keep track
of which labels are obtained previously through LO.

We prove the following theorem generalizing a similar result by Pass and shelat [PS16]
who proved this for any finite field; here we prove the theorem for any finite ring.

Theorem 4.4.30. Let R be any ring of size at most 2poly(κ). Let vO be any ε-approximate
VBB obfuscator for general circuits in the ideal degree-d graded encoding model Md

R for
d = O(1) where the initialization phase of Md

R happens during the obfuscation phase. Then

for any δ = 1/ poly(κ) there is an (ε+ δ)-approximate obfuscator v̂O for poly-size circuits in
the plain model.

As in previous sections, the following corollary is obtained from Theorem 4.4.30 by taking
δ = ε/2.

Corollary 4.4.31. If TDPs exist, then there exists no (1/2 − ε)-approximate VBB obfus-
cator vO for general circuits in the ideal degree-d graded encoding model Md

R for any finite
ring R of at most exponential size |R| ≤ 2poly(κ) and any constant degree d, assuming the
initialization phase of Md

R happens during the obfuscation phase.

[PS16] state their theorem in a more general model where a sequence of fields of growing
size are accessed. For simplicity, we state a simplified variant for simplicity of presentation
where only one ring is accessed but we let the size of ring R to depend on the security
parameter κ. Our proof follows the footsteps of [PS16] but will deviate from their approach
when R 6= Zp by using some of the ideas employed in Section 4.4.3.

Now we sketch the proof of Theorem 4.4.30 assuming the reader is familiar with the proof
of Theorem 4.4.18 from the previous section. The high level structure of the proof remains
the same.

Construction. The new obfuscator v̂O will have these phases:

• Emulating obfuscation. v̂O emulates vOM
d
R(C) to get circuit B.

• Learning heavy subspace of space of zero vectors : The learning phase here will be
rather simpler than those of Section 4.4.3 and will be just one phase. Here we repeat
the learning phase m times where m is chosen at random from ` = [dk · log(|G|)/δe].
The variables W and T will be the same as in Section 4.4.3 with the difference that
W will consist of the vector of coefficients for all polynomials whose zero test answer
is true.

• The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the randomness
needed to run the obfuscated code.

50

• Executing B̂. To execute B̂ on input x, we answer zero test queries as follows. For any
query vector (of coefficients) a we test whether a ∈ spanZ(W).11 If a ∈ spanZ(W) then
return true, otherwise return false.

Completeness and Soundness.

• The completeness follows from the same argument given for the soundness of Con-
struction 4.4.3. Namely, the execution of B̂ is identical to the execution of the m+ 1’s
learning phase (as if it exists) up to a point where we return a wrong false answer to
an answer that is indeed a zero polynomial. (Note that the converse never happens).
However, when such event is about to happen, the size of spanZ(W) will double. Since
the size of spanZ(W) is at most |R|k, if we choose m at random from [`] the proba-
bility of the bad event (of returning a wrong false in m + 1’st execution) is at most
k log |R|/` = δ.

• The soundness follows from Lemma 4.4.5 similarly to the way we proved the soundness
of the construction of Section 4.4.3.

Extension to avoid initialization. In Theorem 4.4.30 we have a restriction which says
that the initialization phase must happen during the obfuscation phase only. We can extend
the proof of Theorem 4.4.30 to the case that we don’t have this restriction. This entails
allowing the obfuscator vO and the obfuscated circuit B to ask any type of query (be it
initialization phase queries or zero-testing queries) during their execution. The reason that
we can avoid this restriction is that, whenever the obfuscated circuit B asks an initialization
phase query enc(v, l), we can treat it as a polynomial containing v. enc(1, l) and using that
we can find out whether we should answer this query randomly or using one of the previous
labels. This is very similar to the method that we employed in the learning and execution
phases of generic group model case.

Claim 4.4.32. Let R be any ring of size at most 2poly(κ). Let vO be any ε-approximate VBB
obfuscator for general circuits in the ideal degree-d graded encoding modelMd

R for d = O(1),

Then for any δ = 1/ poly(κ) there is an (ε + δ)-approximate obfuscator v̂O for poly-size
circuits in the plain model.

Proof. Suppose that obfuscated circuit is B, and let {hi = enc(vi, li)}k1 be the obfuscator’s
queries. We already know that k is less than the running time of obfuscator. We might learn
some pair of (hi, vi) during the learning phase.

Construction. The new ε-approximate obfuscator v̂O will have these phases:

• Emulating obfuscation. same as previous case.

11Note that we do not solve a system of equations in R and rather search only integer solutions to xW = a
as we did in Section 4.4.3.

51

• Learning obfuscator’s queries and heavy subspace of space of zero vectors : We do ex-
actly what we did in previous learning phase. Also if obfuscated circuit asked initial-
ization phase queries, we memorize it.

• The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the randomness
needed to run the obfuscated code.

• Executing B̂. To execute B̂ on input x, we do as follows. If we saw query enc(v, l):
First we check, if we memorized query enc(v, l) before, we answer it using memorized
queries list otherwise we answer it randomly. Also we treat enc(v, l) as a polynomial
v. enc(1, l). We answer zero test queries as follows. For any query vector (of coefficients)
a we test whether a ∈ spanZ(W).12 If a ∈ spanZ(W), return true, otherwise return false.

Completeness and Soundness.

• The proof of completeness is same as previous case. The only difference is that here we
need to be sure that we answer initialization phase query correctly (call it event E).
Let ji be the index such that we saw the query enc(vi, li) for the first time. E happens
if we hit one of the index ji. Since we chose m at random, we can always bound pr(E)
by choosing the right l.

• The soundness is same as previous case.

Remark 4.4.33. Note that our proof of Theorem 4.4.30 does not assume any property
for the multiplication (even the associativity!) other than assuming that it is distributive.
Distributivity is needed by the proof since we need to be able to conclude that the summation
of the vectors of the coefficients of two zero polynomials is also the vector of the coefficients
of a zero polynomial; the latter is implied by distributivity.

4.5 Impossibility of VBB Obfuscation in the random

TDP Model

In this section we formally prove Theorem 4.2.3 showing that any obfuscator vO with access
to a random trapdoor permutation oracle T (see Definition 2.3.2 for the definition of the

oracle) can be transformed into a new obfuscator v̂O in the plain model (no access to an
ideal oracle) with some loss in correctness. We start by defining query tuples with respect
to a random trapdoor permutation model followed by the formalization of Theorem 4.2.3.

12Note that we do not solve a system of equations in R and rather search only integer solutions to xW = a
as we did in Section 4.4.3.

52

Definition 4.5.1 (TDP query tuple). Given a random TDP oracle Tκ = (G,F, F−1) for
security parameter κ, a TDP query tuple consists of three query-answer pairs (VG, VF , VF−1)
where:

• VG = (sk, pk) represents a query to G on input sk and its corresponding answer pk

• VF = ((pk, x), y) represents a query to F [pk] on input x and its corresponding answer
y

• VF−1 = ((sk, y), x′) represents a query to F−1[sk] on y and its corresponding answer x′

We say that a TDP query tuple (VG, VF , VF−1) is consistent if x = x′.

Definition 4.5.2 (Partial TDP query tuple). A partial TDP query tuple is one where one
or more of the elements of the tuple are unknown and we denote the missing elements with a
period. For example, we say a query set Q contains a TDP query tuple (·, VF , ·) if it contains
the query-answer pair VF = ((pk, x), y) but is missing the query-answer pairs VG = (sk, pk)
and VF−1 = ((sk, y), x′).

Theorem 4.5.3 (Theorem 4.2.3 formalized). Let vO be an ε-approximate obfuscator for
poly-size circuits in the random TDP oracle model. Then, for any δ = 1/ poly(κ), there

exists an (ε+ δ)-approximate obfuscator v̂O in the plain model for poly-size circuits.

Before proving Theorem 4.5.3, we state a corollary of this theorem to rule out approximate
VBB obfuscation in the ideal TDP model. Since [BP13] showed that assuming TDPs exist,
(1/2 − 1/ poly)-approximate VBB obfuscator does not exist for general circuits, we obtain
the following corollary by taking δ = ε/2.

Corollary 4.5.4. If TDPs exist, then there exists no (1/2− ε)-approximate VBB obfuscator
vO for general circuits in the ideal random TDP model for any ε = 1/ poly(κ).

The proof of Theorem 4.5.3 now follows in the next two sections. We will first describe
the algorithm of the obfuscator in the plain model, and then will analyze its completeness
and soundness.

4.5.1 The Construction

We first describe how the new obfuscator v̂O generates some data B̂, and then we will
show how to use B̂ to run the new obfuscated circuit in the plain model. We also let
lO, lB = poly(κ), respectively, be the number of queries asked by the obfuscator vO and the
obfuscated code B to the random trapdoor permutation oracle T . Note that, for simplicity
of exposition, we assume the adversary only asks the oracle for queries of size κ (i.e. the
domain of the permutations in T are of fixed size κ). However, as mentioned in Section 4.3.3,
we can easily extend the argument to handle O(log(κ))-size or ω(log(κ))-size queries to T .

53

How to Obfuscate

The new obfuscator v̂O in plain model. Given an ε-approximate obfuscator vO in the
random TDP model, we construct a plain-model obfuscator v̂O such that, given a circuit
C ∈ {0, 1}κ, works as follows:

1. Emulation phase: Emulate vOT (C). Let QO represent the set of queries asked by vOT

and their corresponding answers. We initialize QO = ∅. For every query q asked by
vOT (C), we would answer the query uniformly at random conditioned on the answers
to previous queries.

2. Canonicalize B: Let the obfuscated circuit B be the output of vO(C). Modify B so
that, before asking any query of the form F−1[sk](y), it would first ask G(sk) to get
some answer pk followed by F−1[sk](y) to get some answer x then finally asks F [pk](x)
to get the expected answer y.

3. Learning phase: Set QB = ∅. Let the number of iterations to run the learning phase
be m = 2lBlO/δ where lB ≤ |B| represents the number of queries asked by B and
lO ≤ |O| represents the number of queries asked by vO. For i = {1, ...,m}:

• Choose xi
$←− D|C|

• Run B(xi). For every query q asked by B(xi):

– If (q, a) ∈ QO ∪QB for some answer a, answer consistently with a

– Otherwise, answer q uniformly at random and conditioned on the answers of
previous related queries in QO ∪QB

– Let a be the answer to q. If (q, a) /∈ QB, add the pair (q, a) to QB

4. The output of the obfuscation algorithm will be B̂ = (B,QB, R) whereR = {r1, ..., r|B|}
is a set of (unused) oracle answers that are generated uniformly at random.

How to Execute

To execute B̂ on an input x using (B,QB, R) we simply emulate B(x). For every query q
asked by B(x), if (q, a) ∈ QB for some a then return a. Otherwise, answer randomly with
one of the answers a in R and add (q, a) to QB.

4.5.2 Completeness and Soundness

Completeness: Approximate functionality. Consider two separate experiments (real
and ideal) that construct the plain-model obfuscator exactly as described in section 4.5.1 but

differ when executing B̂. Specifically, in the real experiment, B̂ emulates B(x) on a random

input x using QB and R, whereas in the ideal experiment, we execute B̂ and answer B(x)’s
queries using the actual oracle T instead. In essence, in the real experiment, we can think
of the execution as BT̂ (x) where T̂ is the TDP oracle simulated by B̂ using QB and R as

54

the oracle’s answers (without knowing QO, which is part of oracle T). We will contrast the
real experiment with the ideal experiment and show that the statistical distance between
these two executions is at most δ. In order to achieve this, we will identify the events that
differentiate between the executions BT (x) and BT̂ (x), and to that end we will make use of
the following two lemmas:

Lemma 4.5.5 ([GKLM12]). Let B be a canonical oracle-aided algorithm that asks t queries
to a TDP oracle T . Let EG be the event that B asks a query of the form VG = (sk, pk) after
asking query VF = ((pk, x), y), then Pr[EG] ≤ O(t2/2κ).

Lemma 4.5.6 ([GKLM12]). Let B be an oracle-aided algorithm that asks t queries to a
TDP oracle T and let Q be the set of queries that B have issued. Then for any new query
x, the answer is either (1) determined completely by Q or (2) is drawn from a distribution
with a statistical distance of O(t/2κ) away from the uniform distribution.

Now let q be a new query that is being asked by BT̂ (x). We present a case-by-case
analysis of all possible queries to identify the cases that can cause discrepancies between the
real and ideal experiments:

• Case 1: If q is determined by the queries in QB in the real experiment then it is also
determined by QB in the ideal experiment.

• Case 2: If q is not determined by QB ∪ QO in the ideal experiment then it is also
not determined by QB in the real experiment. In the ideal experiment the query will
be answered randomly and consistently with respect to QB ∪ QO whereas in the real
experiment the query will be answered randomly and consistently with respect to QB.
By Lemma 4.5.6, the answers will be from a distribution that is statistically close to
uniform.

• Case 3: If q is not determined by QB in the real experiment then, depending on the
queries in QO, it may or may not be so the ideal experiment:

– Case 3a: The query q is in QO. In that case, in the real experiment, the answer
would be random whereas in the ideal experiment it would use the correct answer
from QO.

– Case 3b: The query q is of type VG = (sk, pk) and the corresponding partial
TDP query tuple (., VF , VF−1) is in QO

– Case 3c: The query q is of type VF = ((pk, x), y) and the corresponding partial
TDP query tuple (VG, ., VF−1) is in QO

– Case 3d: The query q is of type VF−1 = ((sk, y), x) and the corresponding partial
TDP query tuple (VG, VF , .) is in QO

– Case 3e: The query q is of type VF = ((pk, x), y) and VG = (sk, pk) is in QB,
but VF−1 = ((sk, y), x) is in QO

55

– Case 3f : The query q is of type VF−1 = ((sk, y), x) and VG = (sk, pk) is in QB,
but VF = ((pk, x), y) is in QO

– Case 3g: The query q is of type VF = ((pk, x), y) and VF−1 = ((sk, y), x) is in
QB, but VG = (sk, pk) is in QO

– Case 3h: The query q is of type VF−1 = ((sk, y), x) and VF = ((pk, x), y) is in
QB, but VG = (sk, pk) is in QO

We note that the bad events that can cause any differences between the real and ideal
experiments are case 2 and parts of case 3. For case 2, Lemma 4.5.6 ensures that this event
happens with negligible probability. For case 3a, learning heavy queries would diminish the
effect of this event. For cases 3b, 3e, and 3f , Lemma 4.5.5 ensures that this event happens
with negligible probability since VG was issued after VF and/or VF−1 was asked. For cases
3c and 3d, the remaining query from the tuple would have been defined in QO and is thus
captured during the learning of heavy queries. For case 3g, if VG and VF−1 were asked during
the emulation or learning phases, then VF would also be defined and thus can be learned.
However, if VF−1 was asked during the execution phase then, due the canonicalization of B,
it would have to ask VG ∈ QO which reduces to case 3a. Similarly, for case 3h, due the
canonicalization of B, we would have to ask VG ∈ QO and this reduces to case 3a once again.

For any x, define Ek(x) to be the event that case k happens and let event E(x) =
(E2(x) ∨ E3a(x) ∨ E3b(x) ∨ E3e(x) ∨ E3f (x)). Assuming that event E does not happen, the

output distributions of BT (x) and BT̂ (x) are identical. More formally, the probability of

correctness for v̂O is:

Pr
x

[BT̂ (x) 6= C(x)] = Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] + Pr
x

[BT̂ (x) 6= C(x) ∧ E1(x)]

≤ Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] + Pr
x

[E(x)]

By the approximate functionality of vO, we have that:

Pr
x

[vOT (C)(x) 6= C(x)] = Pr
x

[BT (x) 6= C(x)] ≤ ε(κ)

Therefore,

Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] = Pr
x

[BT (x) 6= C(x) ∧ ¬E(x)] ≤ ε

We are thus left to show that Pr[E(x)] ≤ δ. By Lemma 4.5.6, Pr[E2(x)] ≤ negl(κ) and
by Lemma 4.5.5, Pr[E3b ∨ E3e(x) ∨ E3f (x)] ≤ negl(κ) via a union bound. The probability
of event E3a was already given in [CKP15], but for the sake of completeness we show our
version of the analysis here. As a result, we get that Pr[E(x)] ≤ δ/2 + negl(κ) ≤ δ.

Claim 4.5.7. It holds that Prx[E3a(x)] ≤ δ/2.

Proof. Let (q1, ..., qlB) be the sequence of queries asked by BT̂ (x) where lB ≤ |B|, and let qi,j
be the jth query that is asked by BT (xi) during the ith iteration of the learning phase. We
define Ej

3a(x) to be the event that the jth query of B(x) is in QO but not in QB. We also

56

define pq,j to be the probability that qj = q for any query q and j ∈ [lB]. We can then write
the probability of E3a as follows:

Pr
x

[E3a(x)] ≤ Pr
x

[E1
3a(x) ∨ ... ∨ ElB

3a(x)]

=

lB∑
j=1

Pr
x

[¬E1
3a(x) ∧ ... ∧ ¬Ej−1

3a (x) ∧ Ej
3a(x)]

≤
lB∑
j=1

∑
q∈QO

Pr
x

[qj = q ∧ (q1,j 6= q ∧ ... ∧ qm,j 6= q)]

=

lB∑
j=1

∑
q∈QO

pq,j(1− pq,j)m ≤
lB∑
j=1

∑
q∈QO

1

m
≤

lB∑
j=1

lO
m

=
lBlO
m

.

Thus, given that m = 2lBlO/δ, we get Pr[E3a(x)] ≤ δ/2.

Soundness: VBB Simulatability. To show that the security property is satisfied, it
suffices to provide a PPT algorithm UT in the ideal TDP model that takes as input vOT (C)
for some circuit C and outputs a distribution that is statistically close to the output distri-
bution of v̂O. If that is the case, we can invoke Lemma 4.4.5 and conclude that v̂O is also
VBB-secure.

The description of U is precisely the same as Steps 2-4 of the procedure detailed in
Section 4.5.1 except that queries made by B = vOT (C) are answered using oracle T instead
of being randomly simulated. If we let (B,QB, R) be the output of UT (vOT (C)) then we

can easily see that it is identically distributed to the output distribution of v̂O since, in
both cases, QB has query-answers with consistent and random TDP query tuples. They
differ only by how these query answers are generated (UT answers them using T , while v̂O

simulates them using lazy evaluation with respect to some oracle T̂ distributed the same as
T).

4.5.3 Extension to hierarchical random TDP

In this section, we reason that the proof for the ideal TDP case can be extended to hierar-
chical TDP oracles as well. We start by defining how the oracle for the random hierarchical
trapdoor permutation primitive changes from Definition 2.3.2.

Definition 4.5.8 (Random Hierarchical Injective Trapdoor Functions). For any security
parameter n and l = poly(κ), an l-level random hierarchical injective trapdoor function
(HTDF) oracle T lκ consists of 2l + 3 subroutines ({Ji}l+1

i=1, {Ki}l+1
i=0) defined as follows:

• Ki[fi−2, idi−1](tdi): An injective function, indexed by identity vector fi−2 = (id0, ..., idi−2)
and idi−1, that accepts as input an i-level trapdoor tdi ∈ {0, 1}m and outputs a ran-
domly chosen identity idi ∈ {0, 1}n where m = 10κl if i ∈ [1, l] and m = κ (i.e. it is a
permutation) if i = {0, l + 1}.

57

• Ji[fi−2, tdi−1](idi): An injective function, indexed by identity vector fi−2 = (id0, ..., idi−2)
and tdi−1 that, given the identity idi ∈ {0, 1}κ, outputs the corresponding trapdoor
tdi ∈ {0, 1}m where m = 10κl if i ∈ [1, l] and m = κ (i.e. it is a permutation) if
i = {0, l + 1}.

Note that, for any fixed fi−2, if tdi = Ji[fi−2, tdi−1](idi) and idi−1 =
Ki−1[fi−3, idi−2](tdi−1) then idi = Ki[fi−2, idi−1](tdi). In other words, we can think of Ki as
the inverse of Ji only if the indices of the two functions match (that is, the trapdoor tdi−1

indexing Ji corresponds to the identity idi−1 indexing Ki).

Remark 4.5.9. It is also crucial to note that we used (sparse) injective functions for gen-
erating the intermediate levels of trapdoor. Such a change was made in order to obtain
interesting primitives from this oracle, such as fully-secure hierarchical identity-based en-
cryption (HIBE). If permutations were used instead, we would only achieve HIBE with
security against adversaries that do not choose an identity for the permutation F to attack.
Furthermore, removing Ki for i ∈ [1, l] as a way to prevent this attack’s capability hinders
our ability to perform the canonicalization procedure for the obfuscated circuit.

Remark 4.5.10. For the special case of 1-level HTDF (i.e. TDP), we only have three per-
mutations: K0, K1[id0] and J1[td0], which correspond to permutations G,F [pk], and F−1[sk],
respectively in the language of TDP that we used in Definition 2.3.2. Note that here, we
would refer to 0-level identities as master public keys and 0-level trapdoors as master secret
keys.

We also present a variant of TDP query tuples that generalizes Definition 4.5.1 to work with
hierarchical injective trapdoor functions.

Definition 4.5.11 (HTDF query tuple). Given a random l-level HTDF oracle given as
T lκ = ({Ji}l+1

i=1, {Ki}l+1
i=0), an i-level HTDF query tuple consists of three (possibly) related

query-answer pairs (VKi−1
, VKi , VJi) where, for any fixed fi−2 = (id0, ..., idi−2):

• VKi−1
= (tdi−1, idi−1) represents a query to Ki−1[fi−3, idi−2] on input tdi−1 and its

corresponding answer idi−1

• VKi = ((idi−1, tdi), idi) represents a query to Ki[fi−2, idi−1] on input tdi and its corre-
sponding answer idi

• VJi = ((tdi−1, idi), td
′
i) represents a query to Ji[fi−2, tdi−1] on input idi and its corre-

sponding answer td′i

We say that an i-level HTDF query tuple is consistent if tdi = td′i.

Remark 4.5.12. For the purposes of comparison, we note that, for the special case of
1-level HTDF (i.e. TDP), we only have TDP query tuples of the form (VK0 , VK1 , VJ1) =
(VG, VF , V

−1
F). Thus, VG = (sk, pk) represents a query to G on sk = td0 and the answer

pk = id0, VF = ((pk, x), y) represents a query to Fpk on x = td1 and the answer y = id1, and
VF−1 = ((sk, y), x′) represents a query to F−1

sk on y and the answer x′, which should be x if
the tuple is consistent.

58

Extension of the proof. The extension of the impossibility result to random HTDF is
straightforward, so we will outline the main differences between the TDP case and describe
how to resolve the issues that are related to this oracle. First, we still perform the normali-
sation procedure on v̂O and B where the query behaviour of these algorithms are modified
such that for any query q of the form Ji[fi−2, tdi−1](idi), we first ask Ki−1[fi−3, idi−2](tdi−1)
to get idi−1. This allows us to discover whether we have a query Ki[fi−2, idi−1](tdi) whose
answer is idi, in which case we can answer q with tdi. This procedure ensures that all query
tuples that contain Ji queries are consistent.

We now turn to verifying whether the proof of approximate functionality for TDP holds
in this case as well and, in particular, focus on the event E(x) that was defined Section 4.5.2.
The main issue that we have to consider, which is unique to the HTDF case, is the possibility
that different consistent TDP query tuples can be related to each other, and an overlap
between these queries may cause an inconsistency in one of the tuples. Specifically, an
i-level TDP query tuple of the form (VKi−1

, ·, ·) might overlap with an (i − 1)-level TDP
query tuple (·, ·, VJi−1

) from QO, where the answer of VKi−1
is inconsistent with that of VJi−1

.
However, our normalisation procedure prevents precisely this issue as any TDP query tuple
that contains VJi−1

must also have VKi−1
, which means that the queries should not overlap

otherwise event E1 occurs leading to a contradiction to our initial assumption.

59

Chapter 5

Separating IO from Standard
Assumptions

5.1 Introduction

In this chapter we begin by describing our first set of impossibility results for IO. We start by
showing a lower-bound for IO that holds for any primitive implied by a random oracle (e.g.,
exponentially secure one-way functions or collision-resistant hash functions) and applies to
fully black-box constructions that treat the primitive and the adversary in a black-box way
(see Definition 3.1.2). We then show a hardness result for semi-black-box constructions of
IO from any primitive implied by the random trapdoor permutation oracle or the constant-
degree graded encoding model. Finally, we prove fully black-box separations of IO from any
primitive implied by the random trapdoor permutation oracle or the constant-degree graded
encoding model (thus improving upon the second result).

In this section, we discuss at a high level the ideas behind each result then dedicate a
separate section for each result to discuss the details and full proofs.

5.1.1 Technical Overview: Separating IO from the Random-Oracle

Our first lower bound proves that any primitive implied by a random oracle does not imply
an IO scheme with perfect completeness in a black-box way.

Theorem 5.1.1 (Fully black-box separation from primitives implied by random oracle). If
NP 6= co-NP, there is no fully black-box construction of perfectly complete IO from collision-
resistant hash functions or more generally any primitive implied by a random oracle in a
black-box way.

Intuition behind the proof. To prove Theorem 5.1.1 we first prove a useful lemma
(Lemma 5.2.2) which, roughly speaking, asserts that for any pair of circuits C1, C2, either (1)
a (computationally unbounded) polynomial-query attacker can guess which one is obfuscated
in the random oracle model with a probability close to one, or that (2) there is a way to

60

obfuscate them into the same output circuit B. The latter can be used as a witness that C1

and C2 compute the same function, assuming that the obfuscation is an IO. Now consider
the set of equivalent and same-size circuit C = {(C0, C1) | C0 ≡ C1∧|C0| = |C1|}. If Case (1)
happens for an infinite subset of C, we get a poly-query attacker against iO in the random
oracle model which is sufficient for deriving the black-box separations of Theorem 5.1.1. On
the other hand, if Case (1) happens only for a finite subset of C, we get an efficient procedure
to certify the equivalence of two given circuits, implying NP 6= P. We prove Lemma 5.2.2 by
reducing it to a result by Mahmoody and Pass [MP12] who ruled out the existence of non-
interactive commitments from one-way functions. To do so, we construct a non-interactive
commitment scheme based on common input (C1, C2) in the random oracle model, and we
show that: the cheating receiver strategy of [MP12] implies our Case (1), and the cheating
sender strategy of [MP12] implies our Case (2). The result of [MP12] shows that either of
these strategies always exist. See Section 5.2 for the formal proof.

5.1.2 Technical Overview: Hardness of Semi-Black-Box Construc-
tions of IO

Our second lower bound does not rule out black-box construction of IO, but rather shows
that achieving such constructions from a large variety of primitives is as hard as the long
standing open question of basing public-key encryption on one-way functions. It also captures
a larger class of security reductions known as semi-black-box reductions [RTV04] that allow
the security reduction to access the adversary in a non-black-box way (see Definition 3.1.3).

Theorem 5.1.2 (Hardness of semi-black-box construction). Let P be a primitive that prov-
ably exists relative to the random trapdoor permutation oracle, the generic group model (for
any finite abelian group) or the degree-O(1) graded encoding model (for any finite ring). Any
semi-black-box construction of IO from P (constructively) implies a construction of seman-
tically secure public-key encryption from one-way functions.

Primitives captured by Theorem 5.1.2. Theorem 5.1.2 captures a large set of powerful
cryptographic primitives that could be constructed in idealized models. For example trap-
door permutations (and any primitive implied by TDPs in a black-box way) trivially exist
relative to the idealized model of random TDPs. Other primitives that exist in this model in-
clude such powerful objects as non-interactive zero-knowledge proofs for NP [BY93,Gol11].
Even primitives that we do not know how to construct from TDPs in a black-box way (e.g.,
CCA secure public key encryption) are known to exist in the random TDP model [BR93].
The generic group model defined by Shoup [Sho97] (see Definition 2.3.3) is an idealized
model in which (a black-box form of) the DDH assumption holds unconditionally. There-
fore, our separation of Theorem 5.1.2 covers any primitive that could be constructed from
DDH assumption in a black-box way. The same holds for bilinear assumptions in the graded
encoding model (see Definition 2.3.4) of degree 2. Namely, primitives that could be con-
structed from bilinear assumptions (in a black-box way) exist in the degree-O(1) graded

61

encoding model unconditionally. This includes one-round 3-party key-agreement [Jou00],
(hierarchical) identity based encryption [BF01,GS02,HL02], etc.

Intuition behind the proof. Our main tool in proving Theorem 5.1.2 is the following the-
orem which is an implicit consequence of the techniques used in Chapter 4. Even though the
focus of that chapter was on virtual black-box obfuscation, the same construction presented
there for the case of VBB implies the following theorem for IO.

Theorem 5.1.3 (Informal). The existence of IO in any of the idealized models of: random
trapdoor permutation oracle, generic group model for finite abelian groups, or the degree-O(1)
graded encoding model for finite rings, implies 1/p(κ)-approximate IO in the plain model for
any polynomial p(κ).

We then show that the existence of (1/6)-approximate IO and any one-way functions im-
ply the existence of “approximately correct” and “approximately secure” public-key encryp-
tion schemes. In order to prove this we employ a construction of Sahai and Waters [SW14] in
which they show that IO and OWF imply PKE. Here we show that the same construction,
when instantiated using approximate IO, leads to “approximately correct” and “approxi-
mately secure” public-key encryption. Finally we use Holenstein [Hol06] result to amplify
any approximately-correct and approximately-secure PKE into a standard semantically se-
cure PKE for sufficiently good approximation. See Section 5.3 for the details.

Remark 5.1.4. Our proof of Theorem 5.1.1 relies on perfect completeness of IO. Theo-
rem 5.1.2 above holds even if with negligible probability over the obfuscator’s randomness
the obfuscated circuit does not compute the same function. We will later develop more
techniques extending Theorem 5.1.1 to allow negligible error over the randomness of the
obfuscator.

Previous work on hardness of black-box constructions. Theorem 5.1.2 has the same
spirit as the result by Impagliazzo and Rudich [IR89] who show that any semi-black-box
construction of key agreement from one-way functions would imply P 6= NP. Therefore, the
fact that we are far from proving P 6= NP implies that we as far from basing key agreements
on one-way functions in a black-box way.1 Similarly, our Theorem 5.1.2 shows that as long
as we are not able to base public-key encryption on one-way functions, we cannot base IO
on a variety of strong primitives in a semi-black-box way. Other results of the same flavor
exist in connection with program checkers [BK95] for NP. Mahmoody and Xiao [MX10]
showed that any construction of one-way functions based on worst-case hardness of NP
implies program checkers for NP whose existence is one of the long standing open questions
in complexity theory.

1Formalizing semi-black-box constructions interpreting the result of [IR89] in this context is due
to [RTV04].

62

Falsifiability of IO. An intriguing open question regarding assumption complexity of IO
is whether IO can be based on a “falsifiable” assumption [Nao03]. A falsifiable assumption
is one with an efficient challenger security game. The question arises because an adversary
attacking an IO scheme starts by proposing two equivalent circuits but an efficient challenger
has no direct way to verify the equivalence. Since our primitives used in the theorems above
are falsifiable, a separation of IO from falsifiable assumptions would imply our results for
the case of polynomially secure primitives. However, constructions of IO based on expo-
nentially secure falsifiable assumptions are indeed known [PST14]. Therefore, our results
are interesting even if one can prove that IO cannot be based on falsifiable assumptions.
Moreover, the known lower bounds against falsifiable assumptions [Pas11,GW11] are proved
only for black-box proofs of security in which the adversary is used in a black-box way. Our
Theorem 5.1.2 holds even for semi-black-box constructions in which the security reduction
could use the adversary in a non-black-box manner.

5.1.3 Technical Overview: Separating IO from TDP and Constant-
Degree GEM

By relying on the recent elegant work of Brakerski, Brzuska, and Fleischhacker [BBF16] in
which they rule out statistically secure approximately correct IO (based on standard assump-
tions) we can improve upon Theorem 5.1.2 and rule out fully black-box constructions of IO
from all the primitives of Theorem 5.1.2 (based on the same assumptions used in [BBF16]).
Namely, the following holds:

Theorem 5.1.5. Let P be a primitive that provably exists relative to random trapdoor per-
mutation oracle, the generic group model (for any finite abelian group) or the degree-O(1)
graded encoding model (for any finite ring) in a way that it is secure against any “bounded-
query” (computationally unbounded) attacker with probability (measure) one. Assuming the
existence of one-way functions and that NP 6⊆ coAM (which is true if the polynomial-time
hierarchy does not collapse) there is no fully black-box construction of IO from any such
primitives P.

Even though Theorem 5.1.2 is potentially applicable to more primitives, all the primitives
that we listed after Theorem 5.1.2 which fit into the requirements of Theorem 5.1.2 have
black-box proofs in their corresponding idealized models, and thus Theorem 5.1.5 applies to
them as well.

Intuition behind the proof. Recall that a fully black-box construction of a primitive
Q from another primitive P consists of two oracle PPT algorithms (Q,S) such that QP

implements Q given access to any oracle P that implements P , and SP,A turns any oracle
attacker A against QP into an attack against P itself (see Definition 3.1.2 for more details).

Similar to the first result (and in general for any black-box separation), our proof that a
primitive P does not imply IO in a black-box way presents a polynomial-query attacker A
that breaks the security of any IO construction iO in an idealized model I that provides an

63

“unquestionably secure” instantiation P (against computationally unbounded polynomial-
query attackers).Intuitively, the existence of such an A rules out the possibility of a fully
black-box construction construction (iO, S) of IO from P by simple composition. First, the

construction iOPI = (iOP)I yields an implementation of IO in the same idealized model
I. But attacker A breaks every such construction of IO and therefore the security reduc-
tion SP

I ,AI implies the existence of a new attacker (SA)I that calls the idealized oracle I a
polynomial number of times and breaks the implementation P I of P . But this leads to a
contradiction in this model which is a contradiction. That is because P I is an “unquestion-
ably secure” construction of P in I. Based on this rather informal argument, it seems what
we need is just a poly-query attack against any implementation of IO in idealized models.

The recent work of Brakerski et al. [BBF16], when combined with the techniques of
Chapter 4 show an attacker that can break any IO scheme in either of the idealized model
I of random trapdoor permutations and degree-O(1) graded encoding models by asking a
polynomial number of oracle queries. In particular, the techniques of Chapter 4 show how
to “compile out” the idealized oracle I from the IO scheme and achieve an approximately-
correct IO scheme in the plain model that is correct on, say, 99/100 of the input points.
Brakerksi et al. then show that any such approximately-correct IO scheme can be broken
by a computationally unbounded attacker.2 As pointed out in [BBF16], this means that any
IO scheme will be broken in the idealized model I, and in particular the computationally
unbounded attacker B can be modified into a computationally unbounded, yet polynomial-
query attacker A against the original IO in the idealized model I.

At a first glance, it seems that the attacker A of [BBF16] against IO in an idealized model
I would immediately imply the desired black-box separation between IO and primitives that
exist in model I. However, the challenge, roughly speaking, is that this attacker of does
not succeed in breaking IO with probability close to 1, and doing so is left as an open
question. In order to see the challenge more clearly, we need to further discuss the big
picture argument above and see how an attack in the idealized model I exactly implies the
black-box separation.

A crucial point is that to apply the security reduction SP
I ,AI and get the desired attack

against P I , we must fix the oracles P I and AI into deterministic functions (which requires
us to sample and fix I) because only then is S guaranteed to generate an attack. However,
while fixing I, we want to keep the promise that AI is still a “successful” attack. Handling
both tasks simultaneously may raise an issue because all attacks in idealized models and in
particular the attack against IO in idealized models that is implied by [BBF16] are successful
with probability taken over the randomness of the idealized oracle I.

Here is where the Borel-Cantelli lemma (Lemma 2.2.1) usually comes to help, but only
if the attack succeeds with high probability. In particular, if the demonstrated attacker A
wins the security game for security parameter κ with probability e.g., 1 − 1/κ4, then by
an averaging argument, with probability at least 1 − 1/κ2 over the sampled oracle I, A
successfully attacks the game on security parameter κ. Therefore, since the probability of

2The attack of [BBF16] assumes the existence of OWFs and that NP 6⊆ coAM, and that is where we
get these assumptions for our separation as well.

64

the “fail” event is
∑∞

κ=1 1/κ2 = O(1), Borel-Cantelli lemma implies that with measure one
over3 the sampled oracle I it holds that A is a successful attack for all but finitely many
security parameters.

By the above discussion on how to use Borel-Cantelli, we would be done if the attacker
of [BBF16] succeeds with probability 1 − 1/ poly(κ). However, their attack works against
(ε, δ) statistical approximate4 IO when 2ε + 3δ < 1; thus, by making optimal parameter
choices, their attacker only succeeds (in guessing the obfuscated circuit) with probability
≈ 1/2 + 1/6 which is not arbitrarily close to 1. As a result, when combined with the
compilation techniques of Chapter 4, we would only get an attack against IO in idealized
models that succeeds with some constant advantage over 1/2 (and thus fails with some
constant probability). Thus, we can no longer apply the Borel-Cantelli lemma as we did
before because the summation of the probability of failure becomes unbounded. Thus, we
can no longer conclude that this attack would remain successful for an infinite sequence
of security parameters κ 5 when we sample and fix the idealized oracle I. In fact, there
are examples of protocols in idealized models with attacks against them with 1/ poly(κ)
advantage over the trivial bound, but once the randomized oracle is sampled and fixed, they
do not remain successful over an infinite sequence of security parameters (see Remark 3.1.7).

To overcome this issue, we provide a variant of the Borel-Cantelli lemma (see Lemma
2.2.2) which allows us to make sufficiently strong conclusions about the attacker as long
as the attacker A succeeds with a constant advantage over the trivial bound. Note that
Borel-Cantelli (when applicable) would imply a stronger result, because it shows that the
attack will remain successful for all but finitely many security parameters, while our lemma
shows that it only succeeds for an infinite sequence of security parameters. However, even
this weaker conclusion is still enough for the security reduction SP

I ,AI to be able to use A
and give a polynomial-query attack against P I .

The scope of this argument does not seem to be at all limited to proving separations for
IO, and we believe that it could potentially be applied to other primitives as well. Namely,
it shows that to derive a black-box separation of Q from P , it is enough to break Q in
an idealized model that gives P by asking a polynomial number of queries and a constant
advantage over the trivial bound.

5.2 Separating IO from Random Oracle Based Primi-

tives

In this section we prove the following formalization of Theorem 5.1.1.

Theorem 5.2.1 (Theorem 5.1.1 formalized). If NP 6= co-NP then there is no fully black-
box construction of IO from any primitive P that exists relative to a random oracle in a

3Since the probability distribution here is over infinite-size oracles, we cannot assign probabilities to
arbitrary events, but we can alternatively work with measurable sets.

4Here ε refers to the correctness error, and δ refers to the statistical closeness (see Definition 2.5.5).
5Here κ, the security parameter, is equal to the circuit size.

65

black-box way. This includes exponentially secure one-way functions and collision-resistant
hash functions.

To prove Theorem 5.2.1 we will first prove a useful lemma (see Lemma 5.2.2) which,
roughly speaking, asserts that for any pair of circuits C1, C2, either an attacker can guess
which one is obfuscated in the random oracle model with a probability close to one, or that
there is a way to obfuscate them into the same output circuit B. The latter could be used
as a witness that C1 and C2 compute the same function, assuming that the obfuscation is
an IO.

Lemma 5.2.2 (Distinguish or Witness). Let iO be an oracle aided randomized polynomial-
time algorithm taking circuits as input such that for every length-preserving oracle f and
every randomness r it holds that iOf

r (C) ≡ C (ı.e., iO always outputs circuits with the same
input/output functionality as the input circuit C). Then, at least one of the following holds:

1. There is an infinite sequence of circuits (C1
0 , C

1
1), . . . , (Ci

0, C
i
1), . . . such that |Ci

0| = |Ci
1|

for all i, and there exists a (computationally unbounded) poly(κ)-query A such that the
following holds for all i:

Pr
r,s,f,b

[Afs (B) = b : b
$←{0, 1}, B = iOf

r (C
i
b)] ≥ 1− 1/κ2

where κ is the bit size of the circuits: |Ci
0| = |Ci

1| = κ.

2. NP = co-NP.

We will first prove Theorem 5.2.1 using Lemma 5.2.2, and then we will prove Lemma
5.2.2.

Proof of Theorem 5.2.1. In what follows we will always assume NP 6= co-NP. We will
describe the proof for one-way functions, but it can be verified that the same proof holds for
any primitive that holds relative to random oracles in a black-box way (see Definition 3.1.4).

Suppose (iO, S) is a fully black-box construction of IO from one-way functions. We use a
random oracle f to implement the one-way function required by iO. By Lemma 5.2.2 and the
assumption that NP 6= co-NP we know that there is a computationally unbounded attacker
A and an infinite sequence of equivalent and same-size circuits (C1

0 , C
1
1), . . . , (Ci

0, C
i
1), . . . such

that A breaks the security of IO over the challenge circuits (Ci
0, C

i
1) of length |Ci

0| = κ = |Ci
1|

by guessing which one of them is being obfuscated with probability ≥ 1−1/κ2. Let ε = 1/4.
By an averaging argument, with probability at least 1−O(1/κ2) over the choice of oracle f , it
holds that the probability that A correctly guesses which one of (Ci

0, C
i
1) is being obfuscated

is at least 1/2+ ε. Since the summation
∑

i 1/i
2 = O(1) converges, by Borel-Cantelli lemma,

for measure one of the random oracles f it holds that A ε-breaks the implemented obfuscator
iOf .

Now that A is a “legal” adversary, by definition of fully black-box IO, the security reduc-
tion Sf,A shall break the one-way property of f . Algorithms A and S are both poly(κ)-query

66

attackers, and so the combination B = SA also asks only a polynomial number of queries to
f and succeeds in breaking the one-wayness of f for nonzero measure of samples for f .

The existence of such B, however, is impossible since a random oracle f , with measure
one, is secure against attackers who ask only a polynomial number of queries [IR89,GT00].6

Now to prove Lemma 5.2.2, we use the following lemma from [MP12].

Lemma 5.2.3 ([MP12]). Suppose S is an oracle-aided PPT algorithm that calls oracle f
and takes private input b ∈ {0, 1}, randomness r, and common input z ∈ {0, 1}κ (where κ
is the security parameter) and outputs c = Sfr (z, b). For any δ = δ(κ) ≤ 1/100, there is a
(computationally unbounded) oracle-aided algorithm R such that for all z ∈ {0, 1}κ at least
one of the following holds.

1. If f is the random oracle, Rf (z, c) asks poly(κ/δ) queries and correctly guesses the
random bit b that Sfr (z, b) used to generate c with probability ≥ 1− δ(κ). Namely:

Pr
f,r,b

[Rf (z, c) = b : b
$←{0, 1}, c = Sfr (z, b)] ≥ 1− δ(κ).

2. There is a partial oracle f ′ of size poly(κ) and two random seeds r0, r1 and a message
c such that Sf

′
r0

(z, 0) = c = Sf
′

r1
(z, 1). In other words, there is a message c that could be

opened into both b = 0 and b = 1 using random seeds r0, r1, and the queries asked by
S during these two possible executions are all described by the partial function f ′.

Proof Sketch of Lemma 5.2.3. Let ε be a parameter to be chosen later. Let R be an attacker

who maintains a list of “learned” oracle queries L and, given c sent by the sender for b
$←{0, 1}

and common input z, it adaptively asks the lexicographically first oracle query x 6∈ L that
has at least ε chance of being asked by sender S conditioned on the knowledge of (L, z).
After asking such x from f , A adds (x, f(x)) to L. As long as such query x exists, R asks
them. It was shown in [BMG07] that this learning algorithm asks, on average, at most m/ε
number of queries where m = poly(|z|) is the number of queries asked by the sender. So as
long as ε = poly(κ/δ) this learning algorithm is efficient.

Now, let L be the final learned set by R. If conditioned on L it holds that both of
b = 0 and b = 1 have at least ρ probability of being used by S, then by conditioning on the
distribution of the sender’s view on b = 0 or b = 1 all the unlearned queries remain at most
ε/ρ = σ-heavy. Now it is easy to see that if we sample a random view for S conditioned on
L, b = 0 and L, b = 1 and call them V0 and V1, the probability that queries of V0 and V1

collide out of L is at most m · σ ≤ m · ε/ρ. For ρ > m · ε this probability is less than one,
which means that if ρ > m · ε, then there exists a consistent pair of views for S that he can
use to output c for both cases of b = 0 and b = 1. This means that Case 2 happens.

6The works of [IR89, GT00] work with polynomial time Turing machines or circuits, however their goal
is to fix the random oracle f before enumerating the attackers. However, if the attacker is fixed before the
sampling of f , the proofs of [IR89, GT00] imply the one-wayness of f with measure one even if the fixed
attacker is computationally unbounded.

67

Now let us assume that Case 2 does not happen. It means that for all executions of the
algorithm A, when A is done with learning the ε heavy queries, the probability of either
b = 1 or b = 0 conditioned on L is at most ε. This means that A can guess b correctly with
probability 1− ε.

If we can choose ρ = O(m/ε) and ε = δ in the argument above (assuming that Case
2 does not happen) we get an attacker A that asks O(m · ε/ε) = O(m) queries. We can
alternatively choose smaller ρ and cut A’s execution after it asks O(m/δ) number of queries
and use ε = δ/10. By an application of the Markov inequality A will ask more than 100(m/δ)
number of queries with probability at most ε, and so A will ask at most O(m/δ) number of
queries and will guess b correctly with probability at least 2ε < δ.

Remark 5.2.4. Mahmoody and Pass [MP12] proved a more general lemma ruling out (even
“somewhere binding”) non-interactive commitment schemes in the random oracle model.
Lemma 5.2.3 is a special case of their result which suffices for our use. In the setting
of [MP12] the security parameter is given to the parties in the form of 1κ, but their proof
handles parties who in addition receive an auxiliary z ∈ {0, 1} and the parties’ behavior
could also depend on the given z.

Proof of Lemma 5.2.2. Consider the set of circuit pairs that are equivalent and of the same
size: C = {(C0, C1) | C0 ≡ C1 ∧ |C0| = |C1|}. We apply Lemma 5.2.3 for δ = 1/κ2 as follows.
Use (C0, C1) = z ∈ C as the common input given to both parties. Let S be a sender strategy
that, given input bit b, obfuscates Cb and sends out the obfuscated circuit B.

By Lemma 5.2.3 for each (C0, C1) = z ∈ C either of the following holds:

1. Af ((C0, C1), B) can guess the random b in the random oracle model correctly with
probability at least 1− 1/κ2.

2. There is a partial oracle f ′ of polynomial size and two random strings r0, r1 such that
iOf ′

rb
(Cb) = B for both b ∈ {0, 1}.

Note that if C0 6≡ C1 then Case (2) cannot happen as no such (f ′, r0, r1) can exist by
perfect completeness of iO. Therefore, if Case (2) happens, the existence of (f ′, r0, r1) serves
as an efficiently verifiable proof that C0 ≡ C1.

Now let Ca be the subset of C for which Case (1) holds. There are two cases:

1. Ca is not finite, in which case we have shown that Case 1 of the lemma holds.

2. If Ca is finite, then for all (except a finite number) of (C0, C1) ∈ C we can efficiently
prove that C0, C1 are equivalent circuits. This would give a proof system for proving
the equivalency of two given circuits, but this problem is co-NP-complete. Thus,
co-NP = NP.

68

5.3 Hardness of Semi-Black-Box Constructions of IO

In this section, we prove Theorem 5.1.2. We will first show that approximate IO is still
powerful enough to base public-key cryptography on private-key cryptography.

Theorem 5.3.1. The existence of (1/6)-approximate IO and any one-way functions imply
the existence of semantically secure public-key encryption schemes.

In order to prove the above we will need the following theorem which is a more formal
version of Theorem 5.1.3 and a direct consequence of the techniques used in Chapter 4 and
in particular Theorems 4.4.18, 4.4.30, and 4.5.3.

Theorem 5.3.2. Suppose iO′ is an approximately correct obfuscation algorithm with error
at most ε′ in idealized model I where I is random trapdoor permutation oracle or the degree-
O(1) graded encoding model for finite rings. Suppose ε′′ ≥ 1/ poly(κ). Then there is another
obfuscation algorithm iO in the plain model such that:

• The running time of iO is poly(κ/ε′′(κ)) where κ is the size of the input circuit and it
is approximately correct with error at most ε = ε′ + ε′′.

• There is a simulator Sim in the idealized model that runs in time poly(κ/ε′′(κ)), and

for any circuit C, the distributions SimI(iO′
I
(C)) and iO(C) have statistical distance

negl(|C|).

We first prove Theorem 5.1.2 using Theorems 5.3.2 and 5.3.1 then later prove Theorem
5.3.1.

Proof of Theorem 5.1.2 using Theorems 5.3.2 and 5.3.1 . Let P be any such primitive with
implementation P relative to the idealized model I, and suppose iO is any such semi-black-
box construction of IO from P . By Lemma 3.1.8 (the Composition Lemma), we conclude
that iO′ = iOP is a construction of IO in the idealized model I. This, together with Theorem
5.3.2 imply that there is a (1/6)-approximate IO in the plain model. Finally, by Theorem
5.3.1 and the existence of (1/6)-approximate IO implies that we can construct semantically
secure public-key encryption from one-way functions.

Proving Theorem 5.3.1 We now prove that (1/6)-approximate IO and one-way functions
imply semantically secure public-key encryption. Therefore, any provably secure construc-
tion of (1/6)-approximate IO would enable us to take any one-way functions and construct
a secure public-key encryption scheme from it. In the terminology of [IR89] it means that
Cryptomania collapses to Minicrypt if (1/6)-approximate IO exists.

Intuition. Sahai and Waters [SW14] showed that IO and OWF imply PKE. Here we
show that the very same construction, when instantiated using approximate IO, leads to
“approximately correct” and “approximately secure” public-key encryption. Then, using a
result of [Hol06] we amplify the soundness and correctness to get a full fledged semantically
secure public key encryption scheme.

69

Definition 5.3.3 (Approximate correctness and security for PKE). We call a public-key
bit-encryption scheme (Gen,Enc,Dec) for message space {0, 1} ε(κ)-correct if

Pr[Decdk(Encek(b)) = b : (ek, dk)← Gen(1κ), b
$←{0, 1}] ≥ 1− ε(κ)

where the probability is over the randomness of the key generation, encryption, decryption,
and the bit b. We call (Gen,Enc,Dec) δ(κ)-secure if for any PPT adversary A, it holds that

Pr[A(pk,Encpk(b)) = b] ≤ 1/2 + δ(κ)

where the probability is over the randomness of generation, encryption, the adversary, and
bit b.

Holenstein [Hol06] shows how to amplify any ε-correct and ε-secure PKE into a full
fledged (semantically secure) PKE for sufficiently small ε.

Theorem 5.3.4 (Implied by Corollary 7.8 in [Hol06]). Suppose (Gen,Enc,Dec) is ε-correct
and δ-secure for constants ε, δ such that (1 − 2ε)2 > 2δ. Then there exists a semantically
secure PKE.

Theorem 5.3.5 below asserts that approximate IO and one-way functions imply approxi-
mately correct and approximately secure PKE.

Theorem 5.3.5 (Approximate IO + OWF⇒ Approximate PKE). If ε-approximate IO and
one-way functions exist, then there is an ε-correct and (ε + negl(κ))-secure public-key bit
encryption scheme.

We first prove Theorem 5.3.1 using Theorem 5.3.5 and then will prove 5.3.5.

Proof of Theorem 5.3.1. Because (1− 2 · 1/6)2 > 2 · 1/6, Theorem 5.3.1 follows immediately
from Theorem 5.3.4 and the following Theorem 5.3.5 using ε = 1/6.

In the rest of this section we prove Theorem 5.3.5.

Proof of Theorem 5.3.5. We show that the very same construction of PKE from IO and
OWF presented by Sahai and Waters [SW14], when instantiated with an ε-approximate IO,
has the demanded properties of Theorem 5.3.5.

Properties of the construction of [SW14]. We first describe the abstract properties
of the construction of [SW14] (for PKE using IO and OWFs) and its security proof that we
need to know.

• Construction/correctness:

1. The key generation process generates a circuit C and publishes iO(C) = B as
public key where iO is an IO scheme.

70

2. The encryption simply runs B on (r, b) where r is the encryption randomness and
b is the bit to be encrypted.

3. The scheme has completeness 1.

• Security: [SW14] proves the security of the construction above by showing that no PPT
algorithm can distinguish between the following two random variables X0, X1 defined
as:

– Xb ≈ (iOs(C), C(r, b)) ≈ (B,C(r, b)) where s is the randomness for iO. When
clear from the context we drop the randomness s and simply write iO(C) denoting
it as a random variable over the randomness of iO.

It can be verified by inspection that the proof of [SW14] for indistinguishability of
X0 and X1 does not rely on completeness of the obfuscation iO and only relies on its
indistinguishability (when applied to circuits with the same functions). We will rely
on this feature of the proof of [SW14] in our analysis.

Below we analyze the correctness and security of the construction of [SW14] when iO is
an ε-approximate IO.

Correctness. By the definition of ε-approximate IO and ε-correct bit encryption, and the
fact that the [SW14] construction has perfect completeness when iO is an IO, it follows that
the completeness of the new scheme (when b is also chosen at random) is at least 1− ε. Thus
the scheme is ε-correct.

Security. First recall that for the basic construction of [SW14] using (perfect) IO, no PPT
attacker A can guess b with probability better than 1/2+negl(κ) when b is chosen at random
and A is given a sample from the random variable Xb (for random b). As we mentioned above,
the proof of this statement does not rely on the correctness of the used IO and only relies
on its indistinguishability.

Now we want to bound the distinguishing advantage of PPT adversaries between the
following random variables Y0, Y1:

• Yb ≈ (B,B(r, b)) ≈ (iOs(C), iOs(C)(r, b)) where s is the randomness of the obfuscator
iO.

The difference between Yb’s and Xb’s stems from the fact that the public-key B = iO(C)
no longer computes the same exact function as the circuit C as the obfuscation only guar-
antees approximate correctness. We reduce the analysis of the new scheme to the original
analysis of [SW14].

By the analysis of [SW14] we already know that if any PPT A is given a sample from Xb

for a random b it has at most 1/2+negl(κ) chance of correctly guessing b. Also note that the
distributions Xb and Yb for a random b are ε-close due to the ε-correctness of the obfuscation.
More formally, the distributions Xb and Yb could be defined over the same sampling space

71

using: random seeds of key generation, obfuscation, encryption, and bit b. This way with
probability ≥ 1 − ε (and by the ε-approximate correctness of the obfuscation) the actual
sampled values of Xb and Yb will be equal, and this implies that they are ε-close. As a result,
when we switch the distribution of the challenge given to the adversary and give a sample of
Yb (for random b) instead of a sample from Xb, the adversary’s chance of guessing b correctly
can increase at most by ε and reach at most 1/2 + negl +ε. Therefore, the new scheme is
(ε+ negl)-secure according to Definition 5.3.3.

5.4 Separating IO from TDP and Constant-Degree GEM

In this section we improve upon the previous section’s result by showing that building IO
in the examined idealized models is not just as hard as basing public-key encryption on
private-key encryption but in fact impossible to achieve in a fully black-box way.

A fully-black-box construction of approximate computational CIO from primitive P could
be defined through a combination of Definitions 3.1.2 and 2.5.5. Here we emphasize that
the input circuits do not have any oracle gates while the obfuscation algorithm and the final
circuits could use the oracle implementing P . This seemingly restricted model is in fact
sufficient for all known applications.

We are now ready to formally prove this section’s result. First we formalize the statement
by specifying the way P is constructed in the idealized models.

Theorem 5.4.1 (Main Result). Assuming the existence of one-way functions and NP 6⊆
coAM, there is no fully-black-box construction of IO from any primitive P that has a oracle-
fixed black-box construction (see Definition 3.1.4) in the random trapdoor permutation oracle
or the degree-O(1) graded encoding model for any finite ring.

In fact, we prove a stronger separation that holds for approximate computational CIO
as well.

Theorem 5.4.2. Assuming there is no (ε, δ)-approximate statistical CIO, there is no fully-
black-box construction of (ε′, δ′)-approximate computational CIO for any ε′ ≤ ε−κ−Ω(1), δ′ ≤
δ − Ω(1) from any of the primitives that can be constructed in the idealized models listed in
Theorem 5.4.1.

In order to prove this we will rely on the result of a previous work due to Brakerski et
al. [BBF16], which states that (approximate) statistically-secure IO is impossible to achieve.

Theorem 5.4.3 (Impossibility of Approximate Statistically-secure IO [BBF16]). Suppose
one-way functions exist, NP 6⊆ coAM, and δ, ε : N 7→ [0, 1] are such that 2ε(κ)+3δ(κ) < 1−
1/ poly(κ). Then there is no (ε, δ)-approximate statistically-secure CIO (see Definition 2.5.4)
for all poly-size circuits.

72

Proving Theorem 5.4.1 using Theorems 5.4.3 and 5.4.2. Theorem 5.4.3 rules out
(ε, δ)-approximate statistical CIO (assuming OWFs and NP 6⊆ coAM) for some ε =
1/ poly(κ) and δ = 0.3. Thus, if we choose ε′ = ε/2 and δ′ = δ/2, then Theorem 5.4.1
follows from Theorems 5.4.2 and 5.4.3.

In the following we will focus on proving Theorem 5.4.2.

Remark 5.4.4 (The need for constant δ.). Our proof of Theorem 5.4.2 crucially relies on
the fact that δ − δ′ ≥ Ω(1) which in turn requires δ ≥ Ω(1). Thus, the separation holds
because the attacker of [BBF16] could achieve δ ≈ 1/3 (as opposed to just 1/ poly(κ)). More
technically, our proof will make use of Lemma 2.2.2 rather than the Borel-Cantelli lemma,
and that is the source of our need for δ ≥ Ω(1). However, in case one can improve the
result of [BBF16] to cover the setting of ε = 1/ poly(κ) and δ = 1 − α for arbitrary small
α = 1/ poly(κ), then our Theorem 5.4.2 could be improved to any δ′ = δ − 1/ poly(κ). In
fact the proof will be simple and will not use our Lemma 2.2.2 and could be based on the
Borel-Cantelli lemma (see the end of this section for a sketch).

Remark 5.4.5 (Ruling out relativizing constructions). In Theorem 5.4.1 we focus on ruling
out fully-black-box constructions. However, the proof can be extended to rule out relativizing
constructions (of IO from the set of listed primitives) using standard techniques and the fact
that an optimal statistical distinguisher can be implemented in PSPACE. In particular, the
separating oracle would be a random sample from the idealized oracle I ← I and an oracle
for a PSPACE-complete oracle. However, interestingly, in our case the sampled I ← I
would only work with constant measure (which is enough since it is still a positive measure)
due to using Lemma 2.2.2 as opposed to measure one, which is typically the case in black-box
separations.

Proof of Theorem 5.4.2. In the following, let Q denote the primitive of (ε′, δ′)-approximate
computational CIO. Also let P be any primitive that can be constructed in the idealized
models listed in Theorem 5.4.1 (according to Definition 3.1.4), and let P be the implemen-
tation of P relative to I.

For sake of contradiction, in the following we let Q be the fully-black-box construction
of Q from P . We will first make use of Lemma 3.1.8 (the Composition Lemma) to show
that Q could also be implemented relative to I as well. Then we rule out the existence of
black-box constructions of Q from I to conclude that Q could not exist.

In the following we will use Theorems 5.3.2 and 5.4.3 to rule out the possibility of any
oracle-fixed black-box construction of Q relative to I which (with Lemma 3.1.8) shows that
Q could not exist.

Let ε′′ = ε − ε′ ≥ 1/ poly(κ) and δ′′ = δ − δ′ ≥ Ω(1). Since P is a construction of

P relative to I, we have that iO′
I

= (QP)
I

is an ε′-approximate obfuscation mechanism
relative to I. Let iO be the ε-approximate obfuscator in the plain model that exists due to
Theorem 5.3.2. The assumption in Theorem 5.4.2 is that iO cannot be an (ε, δ)-approximate
statistical CIO. Therefore, there exists a computationally unbounded adversary A and an
infinite sequence of circuit pairs (C1

0 , C
1
1), . . . , (Ci

0, C
i
1), . . . such that for all i: |Ci

0| = |Ci
1|,

Ci
0 ≡ Ci

1, and Prb←{0,1}[A(iO(Ci
b)) = b] ≥ 1/2 + δ(κ)/2.

73

Now consider another attacker A′ in the idealized model I which, given a circuit B′ as
input, runs the simulator of Theorem 5.3.2 to get the circuit B = SimI(B′) and then runs A
over B to output whatever A does. By the property of the simulator Sim we conclude that
A′ is an efficient query (computationally unbounded) attacker in the idealized model I that
achieves

Pr
b←{0,1},I←I

[A′
I
(iO′

I
(Ci

b)) = b] ≥ 1/2 + δ(κ)/2− negl(κ)

where |Ci
0| = |Ci

1| = κ.
A crucial point is that the above probability is also over the randomness of the oracle

I ← I for every i, while we are interested in fixing I ← I and getting a successful attack for
infinitely many pairs of circuits at the same time. By a simple averaging argument we can
get:

Pr
I←I

[
Pr

b←{0,1}
[A′

I
(iO′

I
(Ci

b)) = b] ≥ 1/2 + δ′(κ)/2

]
≥ δ′′(κ)/2− negl(κ).

Thus, if we define the event Ei over the sampled oracle I ← I as:

Ei holds if: Pr
b←{0,1}

[A′
I
(iO′

I
(Ci

b)) = b] ≥ 1/2 + δ′/2

then we get Pr[Ei] ≥ δ′′(κ)/2 − negl(κ) ≥ δ′′/3 for every i ∈ N. Now we can apply
Lemma 2.2.2 to conclude that, with probability at least δ′′/3 over the choice of I ← I,
an infinite number of the events Ei’s would happen at the same time for I. We call I ← I
a good oracle if it is indeed the case that infinitely many of the events Ei’s happen over
I. By definition, for any good oracle I, the attacker A′ successfully breaks (QP)I (as an
implementation of Q in model I) over infinitely many pairs of circuits while asking only
an efficient number of oracle queries to I. The existence of such A′ who breaks (QP)I for
non-zero (in fact ≥ δ′′/3) measure of the choice of the oracles I ← I prevents QP from being
a oracle-fixed black-box construction of Q relative to I.

Case of δ′ ≈ 1− 1/ poly(κ). Theorem 5.4.2 was sufficient for us to derive Theorem 5.4.1,
however that is not the strongest separation one can imagine for approximate computational
CIO as it does not cover the case of 1−1/ poly(κ). The work of [BBF16] shows that whenever
2ε + δ > 1 then there is in fact a way to achieve (ε, δ)-approximate statistical CIO. Thus
one can imagine the possibility that the result of [BBF16] could ultimately be improved to
rule out (ε, δ)-approximate statistical CIO for O(ε) + δ < 1 − 1/ poly(κ). Below, we show
that such a result, if proved, could be used to derive lower bounds on the complexity of
(ε′, δ′)-approximate computational CIO for δ′ ≈ 1− 1/ poly(κ).

Theorem 5.4.6. If there is no (ε, δ)-approximate statistical CIO for δ = 1−ρ for sufficiently
small ρ = 1/ poly(κ) (e.g., ρ = 1/κ4 suffices), then there is no fully-black-box construction of
(ε′, δ′ = 1−√ρ)-approximate computational CIO for any ε′ ≤ ε− κ−Ω(1) from the primitives
of Theorem 5.4.1.

74

Thus, the main difference between Theorem 5.4.2 and Theorem 5.4.6 is that in Theo-
rem 5.4.6 we cover the case of δ′ = 1− 1/ poly(κ), but we also rely on stronger assumption
that δ = 1− 1/ poly(κ).

Proof of Theorem 5.4.6. The proof is identical to that of Theorem 5.4.2 except for the follow-
ing. Since the attackers A and A′ will succeed in guessing the correct circuit with probability
1− 1/ poly(κ) ≈ 1 we can do a better averaging argument to get a better attack after fixing
the oracle. Namely, define the event Ei as:

Ei holds if: Pr
b←{0,1}

[A′
I
(iO′

I
(Ci

b)) = b] ≥ 1−
√
ρ(κ)/2

where κ is the size of the circuits Ci
0, C

i
1. Then we can conclude that Pr[Ei] ≥ 1− 10

√
ρ(κ).

Now, since the events Ei happen with large probability and that
∑

κ 10
√
ρ(κ) <∞ we can

apply the Borel-Cantelli lemma (Lemma 2.2.1) to conclude that with measure one over the
choice of the oracle I ← I all but finitely many of Ei’s would happen. The rest of the proof
remains unchanged.

75

Part II

Monolithic Separations for
Indistinguishability Obfuscation

76

Chapter 6

Extending the Black-box Framework

6.1 Introduction

Before we delve into separating IO from more sophisticated primitives we will have to address
the current black-box framework since it is incapable of capturing constructions of IO from
more advanced primitives. We will start be motivating the need for this new framework.

Recall that the black-box framework (discussed in Chapter 3) restricts to constructions
that use the primitive and the adversary (in the security reduction) as a black-box. The
reason that this framework does not work out-of-the-box for our separation results is that the
constructions of IO from powerful encryption primitive allow for a very natural non-black-box
use. In fact, the construction of IO from compact functional encryption (FE) [AJ15,BV15,
AJS17] is non-black-box in its use of functional encryption. This is not a coincidence (or,
just one example) and many applications of functional encryption (as well as other powerful
encryption schemes) and IO are non-black-box [Gen09,SW14,BZ14,GPS16,GPSZ17]. Note
that the difference between these powerful primitives and the likes of one-way functions,
hash functions, etc., is that these powerful primitives include subroutines that take arbitrary
circuits as inputs. Therefore, it is very easy to self-feed the primitive. In other words, it
is easy to plant gates (or function calls) of its own subroutines (or, subroutines of other
cryptographic primitives) inside such a circuit that is then fed to it as input. For example,
the construction of IO from FE plants FE’s encryption subroutine as a gate inside the circuit
for which it issues decryption keys. This makes FE a “special” primitive in that at least
one of its subroutines takes an arbitrary circuit as input and we could plant code of its
subroutines in this circuit. Consequently, the obtained construction would be non-black-box
in the underlying primitive. This special aspect is present in all of the primitives that we
aim to separate IO from in the subsequent chapters. For example, one of the subroutines of
predicate encryption (see Definition 2.6.4) takes a circuit as input and this input circuit is
used to test whether the plaintext is revealed during the decryption or not. Along similar
lines, evaluation subroutine of a fully-homomorphic scheme (see Definition 2.6.6) is allowed
to take as input a circuit that is executed on an encrypted message.

The above “special” aspects of the encryption functionalities (i.e. that they take as

77

input general circuits or Turing machines and execute them) is the main reason that many
of the applications of these primitives are non-black-box constructions. Therefore, any effort
to prove a meaningful impossibility result should aim for proving the result with respect
to a more general framework than that of [IR89, RTV04]. In particular, this more general
framework should incorporate the aforementioned non-black-box techniques as part of the
framework itself.

The previous works of Brakerski, Katz, Segev, and Yerukhimovich [BKSY11] and the
more recent works of Asharov and Segev [AS15,AS16] are very relevant to our studies here.
All of these works also deal with proving limitations for primitives that in this work we call
special (i.e. those that take general circuits as input), and prove impossibility results against
constructions that use these special primitives while allowing some form of oracle gates to
be present in the input circuits. A crucial point, however, is that these works still put
some limitation on what oracle gates are allowed, and some of the subroutines are excluded.
The work of [BKSY11] proved that the primitive of Witness Indistinguishable (WI) proofs
for NPO statements where O is a random oracle does not imply key-agreement protocols
in a black-box way. However, the WI subroutines themselves are not allowed inside input
circuits. The more recent works of [AS15,AS16] showed that by using IO over circuits that are
allowed to have one-way functions gates one cannot obtain collision resistant hash functions
or (certain classes of) one-way permutations families (in a black-box way). However, not all
of the subroutines of the primitive itself are allowed to be planted as gates inside the input
circuits (e.g., the evaluation procedure of the IO).

As a result, we are going to revisit the models used in [BKSY11,AS15,AS16] who allowed
the use of one-way function gates inside the given circuits and study a model where there is
no limitation on what type of oracle gates could be used in the circuits given as input to the
special subroutines, and in particular, the primitive’s own subroutines could be planted as
gates in the input circuits. We believe a model that captures the “gate plantation” technique
without putting any limitation on the types of gates used is worth to be studied directly and
at an abstract level, due to actual positive results that exactly benefit from this “self-feeding”
non-black-box technique. For this goal, here we initiate a formal study of a model that we
call the monolithic model, which captures the above-described non-black-box technique that
is commonplace in constructions that use primitives with subroutines that take arbitrary
circuits as input.

More formally, suppose P is a primitive that is special as described above, namely, at
least one of its subroutines might receive a circuit or a Turing machine C as input and
executes C internally in order to obtain the answer to one of its subroutines. Examples of
P are predicate encryption, fully homomorphic encryption, etc. A monolithic construction
of another primitive Q (e.g., IO) from P will be allowed to plant the subroutines of P inside
the circuit C as gates with no further limitations. To be precise, C will be allowed to have
oracle gates that call P itself. Some of major examples of non-black-box constructions that
fall into this monolithic model are as follows.

• Gentry’s bootstrapping construction [Gen09] plants FHE’s own decryption gates inside
a circuit that is given as input to the evaluation subroutine. This trick falls into the

78

monolithic framework since planting gates inside evaluation circuits is allowed.

• The bootstrapping of IO for NC1 (along with FHE) to obtain IO for P/poly [GGH+13b].
This construction uses P that includes both IO for NC1 and FHE, and it plants the
FHE decryption gates inside the NC1 circuit that is obfuscated using IO for NC1.
Analogously, bootstrapping methods using one-way functions [App14, CLTV15] also
fall in our framework.

• The construction of IO from functional encryption [AJ15, BV15, AJS17] plants the
functional encryption scheme’s encryption subroutine inside the circuits for which de-
cryption keys are issued. Again, such a non-black-box technique does fall into our
monolithic framework. We note that the constructions of obfuscation based on con-
stant degree graded encodings [Lin16] also fit in our framework.

The above examples show the power of the monolithic model in capturing one of the most
commonly used non-black-box techniques in cryptography and especially in the context of
powerful encryption primitives.

What is not captured by the monolithic model? It is instructive to understand the
kinds of non-black-box techniques not captured by our extension to the black-box model.
This model does not capture non-black-box techniques that break the computation of a
primitives sub-routines into smaller parts — namely, we do not include techniques that
involve partial computation of a sub-routine, save the intermediate state and complete the
computation later. In other words, the planted sub-routines gates must be executed in one-
shot. Therefore, in our model given just an oracle that implements a one-way function it
is not possible to obtain garbled circuits that evaluate circuits with one-way function gates
planted in them. For example, Beaver’s OT extension construction cannot be realized given
just oracle access to a random function.

However, a slight workaround (though a bit cumbersome) can still be used to give mean-
ingful impossibility results that use garbled circuits (or, randomized encodings more gener-
ally) in our model. Specifically, garbled circuits must now be modeled as a special primitive
that allows for inputs that can be arbitrary circuits with OWF gates planted in them. With
this change the one-way function gate planted inside circuit fed to the garbled circuit con-
struction is treated as a individual unit. With this change we can realize Beaver’s OT
extension construction in our model.

In summary, intuitively, our model provides a way to capture “black-box” uses of the
known non-black-box techniques. While the full power of non-black-box techniques in cryp-
tography is yet to be understood, virtually every known use of non-black-box techniques
follows essentially the same principles, i.e. by planting subroutines of one primitive as gates
in a circuit that is fed as input to the same (or, another) primitive. Our model captures any
such non-black box use of the considered primitives.

79

6.2 Our Results

In this chapter we will describe ideas that lead to an extension to the black-box framework
of [IR89, RTV04], which we call the monolithic framework where a common non-black-box
technique is allowed in the constructions.

The goal of this chapter is to explain and justify the way we define “monolithic” con-
structions that use specific primitives such as witness encryption (see Definition 2.6.1). As
it will become clear later, our definition of monolithic constructions is meaningful with re-
spect to a “special” primitive with a “special” subroutine. But, to be fully formal, we will
give formal definitions of what this monolithic model means when we use the exact set of
primitives mentioned in our main theorem. This way, we can give full formal definitions as
to what we mean by an monolithic construction for our specific primitives that are needed
for the separations in Theorem 7.1.1, and we also give full proofs of separations for them
under this more relaxed black-box notion. However, we emphasize that, for a new primitive
P , one still has to give a formal definition of what it means to use P in an monolithic way.
What we discuss in this section lays down the main intuitive features that, if P possesses
them, a monolithic use of P is possible.

Intuitively, this monolithic model allows the construction of a primitive Q based on
another primitive P to plant oracle gates (or oracle calls) to P itself in the circuits (or
Turing machines) in generic computations done by P whenever Q has the choice of doing so
by choosing certain inputs given to P . For example, to get identification protocols from one-
way functions and zero-knowledge proofs [FS87,FFS88] one has to use the code of one-way
functions and feed it to the zero-knowledge protocol used. This makes the final construction
non-black-box according to the [RTV04] definition, however we would like to define a general
abstract extended model of black-box constructions (i.e. monolithic constructions) that
allows such techniques.

In Section 6.4 we get into the details of how to define black-box reductions for a class of
“special” primitives with a special subroutine as described above that fall under the mono-
lithic framework. In this technical overview, however, for sake of simplicity and concreteness
at the same time, we focus on developing a formal definition of what it means to use witness
encryption in a monolithic way.

6.3 A Concrete Definition for Case of WE

Consider the primitive of witness encryption (Enc,Dec) where one can run Enc(a,m) = c to
encrypt a message m under a circuit a, and then later on, one can also try to decrypt c by
using a “witness” w for which a(w) = 1.1 A black-box construction (see Definition 3.1.2) of a
primitive based on witness encryption is limited to only encrypting messages under circuits
a that are in the plain model. That is because the input-output function definition of
primitive witness encryption (as stated above) only accepts plain circuits as input. However,
in many applications of witness encryption, when we use witness encryption, we end up

1This way of defining witness encryption is based on the NP complete problem of circuit satisfiability.

80

using oracle circuits aO. The reason that doing so is fine (even though the definition of
witness encryption requires plain circuits) that those procedures of O would be eventually
implemented efficiently and could be turned into circuits (using the Cook-Levin reduction).

A monolithic construction from witness encryption is exactly allowed to do the above trick
(of planting oracle gates in the input circuits) but it does so regardless of having an efficient
implementation for the subroutines of WE. In other words, even if we use an inefficient oracle
to implement WE, we still get an inefficient implementation for the constructed primitive.
Now, we can let a to be an oracle circuit calling either of (Enc,Dec) freely, when (Enc,Dec)
themselves are available as oracle subroutines (and might be inefficiently implemented). We
emphasize that, by allowing this extension, we might eventually get multiple levels of nested
oracle calls (since the circuit given to the decryption, can potentially have decryption gates
itself), and allowing this to happen makes this model more powerful. However we should
also be careful that this nested sequence of calls does not lead to exponential time.

Monolithic Construction = Fully Black-box Use of an Extended Primitive The
above-mentioned example of how a monolithic construction using WE works shows that
monolithic constructions using witness encryption could be interpreted in an equivalent way
in which the construction is in fact fully black-box (see Definition 3.1.2), but it uses a
stronger “extended” variant of the WE primitive where we allow oracle gates (calling the
same primitive, namely witness encryption) to be planted in the circuits given as input to
the encryption subroutine. Note that the extended WE is technically a different primitive
than WE (because for inefficient implementations of WE, we would accept inefficient circuits
as inputs as well), even though the two primitives are equivalent in a non-black-box way.

The following is the way we define extended WE in a “symmetric” way such that either
the given input instance is a circuit (by interpreting it so and running it over the witness),
or the instance is actually an input to a circuit and it is the witness that is the circuit. See
Definition 6.5.9 for a more detailed version.

Definition 6.3.1 (Extended Witness Encryption). Let V be an oracle algorithm that takes
“instance” a and “witness” w as inputs, interprets a as an oracle-aided circuit, then outputs
a(.)(w). An extended witness encryption scheme for a relation given by V consists of two
PPT algorithms (Enc,DecV) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗ outputs
c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it either outputs a message
m ∈ {0, 1}∗ or ⊥.

An extended witness encryption scheme satisfies the the same completeness and security
properties as the standard Definition of WE (see Definition 2.6.1).

We can also define a symmetric variant of extended WE where the relation V interprets
w as the circuit instead and runs w(a). In either case, we note that, since V is a relation that

81

acts as a universal circuit, the running time of V(w, a) is guaranteed to be poly(n) where
n = |a|+ |w|. That is due to the fact that each recursive call is invoked on inputs of a smaller
size (in fact of length n− 1) which results in a halting execution of time at most O(n2).

Using the same idea, one can define extended variants of many other primitives (see
Definition 6.5.10). Finally, after defining what an extended WE primitive is, we can formally
define what it means to have an monolithic construction that uses WE:

Definition 6.3.2 (Monolithic Construction of WE). Suppose Q is a primitive and W̃E is
an extended version of WE defined as in Definition 6.3.1. Any fully black-box construction
(see Definition 3.1.2) for Q from W̃E (i.e. an extended version of WE) is also a monolithic
construction of Q from WE.

Again, the idea extends beyond WE and we apply it to all the other primitives that we
deal with in our main Theorem 7.1.1.

Monolithic Separations through Fully Black-Box Separations. The crucial point
here is that because monolithic constructions are in fact fully black-box constructions based
on the extended variants of the same primitive, at least we will have a path to prove impos-
sibility results in this monolithic model via proving fully black-box constructions; however,
the catch is that we have to do so with respect to a much stronger variant of the original
primitive, namely its more powerful extensions.

6.3.1 A Transitivity Lemma for Deriving More Separations

The way we defined monolithic constructions (based on black-box constructions using the
extended primitive) allows us to prove a transitivity lemmas that will then pave our way
towards proving more separations in the monolithic framework. Namely, it can be shown
that if P ,Q,R are cryptographic primitives and (1) there is an monolithic construction of
the extended variant of Q from P and (2) there is an monolithic construction of R from
Q, then there is a monolithic construction of R from P (see Lemma 6.6.3 and its proof).
Therefore, to prove that a primitive P (e.g., predicate encryption) does not imply IO, we
could employ the following argument outline:

1. Separate IO from WE in the monolithic model. In other words, prove that there is no
fully black-box construction of IO from the extended variant of WE.

2. Prove that the extended variant of the primitive P could be obtained from witness
encryption in a monolithic way.

We will apply the above idea to various forms of witness encryption and different all-or-
nothing encryption primitives P .

82

6.4 An Abstract Extension of the Black-Box Model

In what follows, we will gradually develop an extended framework of constructions that in-
cludes the fully black-box framework of [RTV04] and allows certain non-black-box techniques
by default. This model uses steps already taken in works of Brakerski, Katz, Segev, and
Yerukhimovich [BKSY11] and the more recent works of Asharov and Segev [AS15, AS16]
and takes them to the next level by allowing even non-black-box techniques involving ‘self-
calls’ [AJ15,BV15,AJS15]. In a nutshell, this framework applies to ‘special’ primitives that
accept generic circuits as input and run them on other inputs; therefore one can plant or-
acle gates to the same primitives inside those circuits. We will define such constructions
using the fully black-box framework by first extending these primitives and then allowing
the extensions to be used in a black-box way.

Special Primitives Receiving Circuits as Input At a very high level, we call a prim-
itive ‘special’, if it takes circuits as input and run those circuits as part of the execution of
its subroutines, but at the same time, the exact definition depends on the execution of the
input circuit only as a ‘black-box’ while the exact representation of the input circuits do not
matter. In that case one can imagine an input circuit with oracle gates as well. We will
simply call such primitives special till we give formal definitions that define those primitives
as ‘families’ of primitives indexed by an external universal algorithm.

Here is a list of examples of special primitives.

• Zero-knowledge proofs of circuit satisfiability (ZK-Cir-SAT). A secure pro-
tocol for ZK-Cir-SAT is an interactive protocol between two parties, a prover and a
verifier, who take as input a circuit C. Whether or not the prover can convince the
verifier to accept the interaction depends on the existence of x such that C(x) = 1.
This definition of the functionality of ZK-Cir-SAT does not depend on the specific
implementation of C and only depends on executing C on x ‘as a black-box’.

• Fully homomorphic encryption (FHE). FHE is a semantically secure public-key
encryption where in addition we have an evaluation sub-routine Eval that takes as input
a circuit f and ciphertexts c1, . . . , ck containing plaintexts m1, . . . ,mk, and it outputs
a new ciphertext c = Eval(f, c1, . . . , ck) such that decrypting c leads to f(m1, . . . ,mk).
The correctness definition of the primitive FHE only uses the input-output behavior
of the circuit f , so FHE is a special primitive.

• Encrypted functionalities. Primitives such as attribute, predicate, and functional
encryption all involve running some generic computation at the decryption phase before
deciding what to output. There are two ways that this generic computation could be
fed as input to the system:

– Key policy [SW05, GPSW06]: Here the circuit C is given as input to the key
generation algorithm and then C(m) is computed over plaintext m during the
decryption.

83

– Ciphertext policy [BSW07]: Here the circuit C is the actual plaintext and the
input m to C is used when issuing the decryption keys.

Both of these approaches lead to special primitives. For example, for the case of
predicate encryption, suppose we use a predicate verification algorithm P that takes
(k, a), interprets k as circuit and runs k(a) to accept or reject. Such P would give us
the key policy predicate encryption. Another P algorithm would interpret a as a circuit
and runs it on k, and this gives us the ciphertext policy predicate encryption. In other
words, one can think of the circuit C equivalent to P(k, ·) (with k hard coded in it,
and a left out as the input) being the “input” circuit given to the KGen subroutine, or
alternatively one can think of P(·, a) (with a hardcoded in it, and k left out as the input)
to be the “input” circuit given to the Enc subroutine. In all cases, the correctness and
security definitions of these primitives only depend on the input-output behavior of
the given circuits.

• Witness Encryption. The reason that witness encryption is a special primitive is
very similar to the reason described above for the case of encrypted functionalities.
Again we can think of V(·, a) as the circuit given to the Enc algorithm. In this case,
the definition of witness encryption (and it security) only depend on the input-output
behavior of these ‘input circuits’ rather their specific implementations.

• Indistinguishability Obfuscation. An indistinguishability obfuscator takes as input
a circuit C and outputs B that can be used later on the compute the same function
as C does. The security of IO ensures that for any two different equally-sized and
functionally equivalent circuits C0, C1, it is hard to distinguish between obfuscation of
C0 and those of C1. Therefore, the correctness and security definitions of IO depend
solely on the input-output behavior (and the sizes) of the input circuits.

When a primitive is special, one can talk about “extensions” of the same primitive in
which the circuits that are given as input could have oracle gates (because the primitive is
special and so the definition of the primitive still extends to such inputs).

6.5 An Abstract Model for Extended Primitives and

Constructions

We define special primitives as ‘restrictions’ of (a family of) primitives indexed by a sub-
routine W to the case that W is a universal circuit evaluator. We then define the extended
version to be the case that W accepts oracle-aided circuits. More formally we start by
defining primitives indexed by a class of functions.

Definition 6.5.1 (Indexed primitives). Let W be a set of (possibly inefficient) functions.
A W-indexed primitive P [W] is a set of primitives {P [W]}W∈W indexed by W ∈ W where,
for each W ∈ W , P [W] = (F [W],R[W]) is a primitive according to Definition 3.1.1.

84

For the special case of W = {W} we get back the standard primitive of Definition 3.1.1.
We will now define variations of of indexed primitives that restrict the family to a smaller
class W ′ and, for every W ∈ W ′, it might further restrict the set of correct implementations
to be a subset of F [W]. We first define restricted forms of indexed primitives then provide
various restrictions that will be of interest to us.

Definition 6.5.2 (Restrictions of indexed primitives). For P [W] = {(F [W],R[W])}W∈W
and P ′[W ′] = {(F ′[W],R′[W])}W∈W ′ , we say P ′[W ′] is a restriction of P [W] if the following
conditions hold: (1) W ′ ⊆ W , and (2) for all W ∈ W ′, F ′[W] ⊆ F [W], and (3) for all
W ∈ W ′, R′[W] = R[W].

Definition 6.5.3 (Efficient restrictions). We call a restriction P ′[W ′] of P [W] an efficient
restriction if W ′ = {w} where w is is a polynomial time algorithm (with no oracle calls). In
this case, we call P ′[w] simply a w-restriction of P [W].

We are particularly interested in indexed primitives when they are indexed by the uni-
versal algorithm for circuit evaluation. This is the case for all the primitives of witness
encryption, predicate encryption,2 fully homomorphic encryption, and IO. All of the exam-
ples of the special primitives discussed in previous section fall into this category. Finally, the
formal notion of what we previously simply called a ‘special’ primitives is defined as follows.

Definition 6.5.4 (The universal variant of indexed primitives). We call P ′[{w}] the univer-
sal variant of P [W] if P ′[{w}] is an efficient restriction of P [W] for the specific algorithm
w(·) that interprets its input as a pair (x,C) where C is a circuit, and then it simply outputs
C(x).

For example, in the case of witness encryption, the relation between witness w and
attribute a is verified by running a as a circuit over w and outputting the first bit of this
computation. In order to generalize the notion of universal variants of indexed primitives
(i.e., special primitives for short) we need the following definition.

Definition 6.5.5 (w(.)-restrictions). For an oracle algorithm w(.) we call the indexed primi-
tive P ′[W ′] = {(F ′[W],R[W])}W∈W ′ the w(.)-restriction of P [W] = {(F [W],R[W])}W∈W , if
P ′[W ′] is constructed as follows. For all W ∈ W and F , we include W ∈ W ′ and F ∈ F ′[W],
if it holds that W = wF and F ∈ F [W].

Definition 6.5.6 (The monolithically-extended variant of indexed primitives). We call
P ′[W ′] the monolithically-extended variant of P [W] if P ′[W ′] is a w(.)-restriction of P [W] for
the specific w(.) that interprets its input (x,C) as a pair where C(.) is an oracle-aided circuit
such that w(x,C) executes and outputs C(.)(x) by forwarding all of C’s oracle queries to its
own oracle.

2Even in this case, we can imagine that we are running a circuit on another input and take the first bit
of it as the predicate.

85

Remark 6.5.7. While one may define various other forms of extensions for a primitive where
w(.) is not necessarily a universal circuit, we will mostly be concerned with the monolithically-
extended variants of primitives as defined above. As such, for the sake of brevity, whenever
we refer to the extended variant of primitives we mean the monolithically-extended primitive
(unless explicitly noted otherwise).

Remark 6.5.8 (Non-black-box relation between the universal and extended variants of P).
We emphasize that even though the universal variant P ′[w] and the extended variant P ′[W ′]
of P are tightly related, they are indeed different cryptographic primitives according to
the [RTV04] framework, simply because their input formats are different. However, one can
get one from the other one in a non-black-box way. Moreover, when we are in a relativized
world where an inefficient oracle O is available for free, P ′[W ′] could also have planted O
gates in its input circuit, while this is not allowed in the universal variant P ′[w] since w is
not an oracle algorithm.

Case of witness encryption. Here we show how to derive the definition of extended
witness encryption as a special case. First note that witness encryption’s decryption is
indexed by an algorithm V (w, a) that could be any predicate function. In fact, it could be
any function where we pick its first bit and interpret it as a predicate. So WE is indeed
indexed by V ∈ V which is the set of all predicates. Then, the standard definition of witness
encryption for circuit satisfiability (which is the most powerful WE among them all) is simply
the universal variant of this indexed primitive WE[V], and the following will be exactly the
definition of the (monolithically) extended variant of WE[V], which we simply call extended
WE.

Definition 6.5.9 (Extended Witness Encryption). Let V(Enc,Dec)(w, a) be the ‘universal
circuit-evaluator’ Turing machine, which is simply an algorithm with oracle access to sub-
routines (Enc,Dec) that interprets a as a circuit with possible (Enc,Dec) gates and runs a on
w and forwards any oracle calls made by a to its own oracle and forwards the answer back to
the corresponding gate inside a to continue the execution. The extended witness encryption
scheme (defined by V) consists of two PPT algorithms (Enc,DecV) defined as follows:

• Enc(a,m, 1κ) : is a randomized algorithm that given an instance a ∈ {0, 1}∗ and a
message m ∈ {0, 1}∗, and security parameter κ (and randomness as needed) outputs
c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it either outputs a message
m ∈ {0, 1}∗ or ⊥.

• Correctness and security are defined similarly to Definition 2.6.1. But the key point is
that here the relation V(Enc,Dec) is somehow recursively depending on the (Enc,Dec =
DecV) on smaller input lengths (and so it is well defined).

Definition 6.5.10 (Extended variants of other specific primitives). Extended variants for
the following primitives are defined similarly to Definition 6.5.9 by allowing their special
subroutine to be based on an oracle algorithm that is the universal circuit evaluator:

86

• For attribute-based or predicate encryption, we allow the predicate algorithm P(k, a)
to be an oracle algorithm that interprets k as an oracle-aided circuit and runs a on k.

• For FHE and Spooky encryption we allow the evaluation function F(f,m1, ...,mt) to
be an oracle algorithm that that interprets f as an oracle-aided circuit and runs f on
(m1, ...,mt).

6.6 Monolithic Constructions

We are finally ready to define our monolithic framework. Here we assume that for a primitive
P we have already defined what its extended variant P̃ means.

Definition 6.6.1 (Monolithic Constructions – General Case). Suppose Q is a primitive and

P̃ is the extended variant of the primitive P . Any fully black-box construction for Q from
P̃ (i.e. the extended variant of P) is called a monolithic construction of Q from P .

Examples. Below are some examples of non-black-box constructions in cryptography that
fall into the monolithic framework of Definition 6.6.1.

• Gentry’s bootstrapping construction [Gen09] plants FHE’s own decryption in a circuit
for the evaluation subroutine. This trick falls into the monolithic framework since
planting gates inside evaluation circuits is allowed.

• The construction of IO from functional encryption by [AJ15,BV15] uses the encryption
oracle of the functional encryption scheme inside the functions for which decryption
keys are issued. Again, such non-black-box technique does fall into our monolithic
framework.

Definition 6.6.2 (Formal Definition of Monolithic Constructions for Specific Primitives).
Let P be any of the following primitives: attribute, predicate, functional, or witness encryp-
tion, FHE, multi-key FHE, or spooky encryption. Then a monolithic construction using P
is defined by first defining the extended variant P̃ for primitive P according to Definitions
6.5.9 and 6.5.10, then applying Definition 6.6.1 (which is based on previously defined notion
of fully black-box constructions).

The following transitivity lemma (which is a direct corollary to the transitivity of fully
black-box constructions) allows us to derive more impossibility results.

Lemma 6.6.3 (Composing monolithic constructions). Suppose P , Q,R are cryptographic

primitives and Q,P are special primitive and Q̃ is the extended version of Q. If there is a
monolithic construction of Q̃ from P and if there is a monolithic construction of R from Q,
then there is a monolithic construction of R from P.

87

Proof. Since there is a monolithic construction of R from Q, by Definition 6.6.1 it means
that there exists a extended variant Q̃ of Q such that there is a fully black-box construction
of R from Q̃. On the other hand, again by Definition 6.6.1, for any extended variant of
Q, and in particular Q̃, there is a fully black-box construction of Q̃ from some extended
variant P̃ of P . Therefore, since fully-black-box constructions are transitive under nested
compositions, there is a fully construction of R from P̃ which (by Definition 6.6.1) means
that we have a monolithic construction of R from P .

Getting more separations. A corollary of Lemma 6.6.3 is that if one proves: (a) There
is no monolithic construction of R from P and (b) there is a monolithic construction of any

extended variant R̃ (ofR) fromQ, then these two together imply that: there is no monolithic
construction of Q from P . We will use this trick to derive our impossibility results from a
core of two separations regarding variants of witness encryption.

88

Chapter 7

Monolithic Separation of IO from
All-or-Nothing Encryption Primitives

7.1 Introduction

After clearly defining our new monolithic framework, we can finally begin to use it to prove
our separations of IO from more expressive primitives. Specifically, the main result of this
chapter proves that several powerful (so-called “all-or-nothing”) encryption primitives such
as predicate encryption and fully-homomorphic encryption are incapable of producing IO via
a monolithic construction as described in Chapter 6. A summary of our results is presented
in Figure 7.1. More specifically, we prove the following theorem.

Theorem 7.1.1 (Main Result). Let P be one of the following primitives: fully-homomorphic
encryption, attribute-based encryption, predicate encryption, multi-key fully homomorphic
encryption, or spooky encryption. Then, assuming one-way functions exist and NP 6⊆
coAM, there is no construction of IO from P in the monolithic model where one is al-
lowed to plant P gates arbitrarily inside the circuits that are given to P as input.

WE

HWE

IHWE 6=⇒
6=⇒

IO

=
⇒

PE

=⇒ =⇒

Spooky Encryption Attribute-Based FHE=⇒ =⇒

Multi-Key FHE=⇒FHE

Figure 7.1: Summary of our witness
encryption separation results.

All-or-nothing aspect. One common as-
pect of all of the primitives listed in Theo-
rem 7.1.1 is that they have an all-or-nothing
nature. Namely, either someone has the
right key to decrypt a message, in which
case they can retrieve all of the message, or
if they do not have the right key then they
are supposed to learn nothing. In contrast,
in a functional encryption scheme (a prim-
itive that does imply IO) one can obtain a
key kf for a function f that allows them to
compute f(x) from a ciphertext c containing
the plaintext x. So, they could legitimately

89

learn only a “partial” information about x. Even though we do not yet have a general result
that handles such primitives uniformly in one shot, we still expect that other exotic encryp-
tion primitives (that may be developed in the future) that are of the all-or-nothing flavor
will also not be enough for realizing IO. Additionally, we expect that our techniques will be
useful in deriving impossibility results in such case.

What does our results say about learning with errors (LWE)? Even though our
separations of Theorem 7.1.1 covers most of the powerful LWE-based primitives known to
date, it does not imply whether or not we can actually base IO on LWE, which is considered
a standard, and hence a desirable, assumption [Reg05]. In fact, our result only rules out
specific paths from LWE toward IO that would go through either of the primitives listed
in Theorem 7.1.1. Whether or not a direct construction from LWE to IO is possible still
remains as a major open problem in this area.

Key Role of Witness Encryption. Witness encryption and its variations play a key
role in the proof or our impossibility results. Specifically, we consider two (incompatible)
variants of WE — namely, instance hiding witness encryption and homomorphic witness
encryption. The first notion boosts the security of WE and hides the statement while the
second enhances the functionality of WE with some homomorphic properties. We obtain our
separation results in two steps. First, we show that neither of these two primitives imply IO
in a monolithic way. Next, we show that these two primitives imply extended versions of all
the all-or-nothing primitives listed above in a monolithic way. The final separations follow
from a specific transitivity lemma that holds in the monolithic model.

As described above, to derive more separation lower bounds for IO, e.g., from a primitive
Q, we could define a “middle primitive” P and the following: (1) show that P does not
imply IO in the monolithic model, and (2) show that there is a monolithic construction of
the extended version of Q from P . In this work we will use variants of WE to play the role of
this middle primitive P . Namely we will use the following two variants: (1) “instance-hiding”
WE, and (2) “instance-revealing homomorphic” WE.1 Below we will discuss these notions in
more details, but before doing that we shall point out that these two notions are incomparable
strengthenings of the basic notion of witness encryption. The first one strengthens witness
encryption in terms of security (which is essential for achieving predicate encryption) while
the latter strengthening is in terms of functionality (which is essential for achieving full-
homomorphic encryption and its variants). These two notions are incomparable and in fact
strengthen the standard notion of witness encryption in somewhat incomparable ways. As
a side remark, we note that strengthening witness encryption to incorporate instance hiding
property precludes us from also having compact homomorphism along with. Therefore, we
need to consider these two primitives separately. Furthermore, showing that obfuscation is

1In fact, to be able to use these primitives to derive other primitives we will need these WE variants
to have some “extractability” properties as well. However, in this technical overview we will not focus on
that aspect and will describe only the main ideas through the simpler (non-extractable) versions of these
primitives.

90

not possible from either of them poses different technical challenges.
In the following we will first focus on the simpler and basic case of separating IO from

WE. This will allow us to communicate some basic tools that we use from previous work
and also discuss some of our new ideas, and then we will turn into the specific variants of
WE that we mentioned and explain the new ideas that each case requires. However, we first
quickly recap the recent developments in previous work that provides us with a recipe of
how to prove fully black-box lower bounds for IO. As we discussed above, that framework
could still be used by us to prove lower bounds for IO in the monolithic model, but we have
to do so with respect to the stronger variants of our primitives of interest (e.g., WE).

7.1.1 Known Recipe for Proving Lower-bounds for IO

Using the techniques and results of Section 5.4 we can arrive at the following (informally
stated) lemma which provides us with an abstract method for proving fully black-box (and
monolithic) lower bounds for IO.

Lemma 7.1.2 (Proving Lower Bounds for IO (Informal)). Suppose I is an idealized oracle
and suppose we can “compile out” I from any IO construction in a world where I is accessible
to get an IO scheme in the plain model where the new scheme is only approximately correct:
it computes the correct answer only over 99/100 fraction of the input. Also suppose primitive
P can be securely implemented in the randomized model I. Then there is no fully black-box
construction of IO from P.

See Section 7.2.1 (particularly Lemma 7.2.7 there) for details on how to derive this lemma
in conjunction with previous works. Below we discuss how we apply this approach to the
case of variants of witness encryption.

7.1.2 Warm-Up: The Basic Case of Witness Encryption

To separate IO from the extended variant of WE (i.e., separating IO from WE in the mono-
lithic model) we can try to apply Lemma 7.1.2 and prove a fully black-box separation for IO
from the extended variant of WE. Suppose V is the oracle universal circuit algorithm that
defines the witness verification of the extended WE primitive we would like to separate from
IO. As a first try, let see what happens if we try to use the following simple idealized oracle
to implement this extended WE primitive.

The Idealized WE Oracle I. We use a random injective oracle Enc(a,m) 7→ c to encrypt
any message m under the attribute/instance a. The other oracle subroutine DecV(w, c) does
the decryption with respect to V as follows:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise:

2. Find x such that Enc(x) = c and parse it as x = (a,m).

91

3. If VΘ(w, a) = 0 output ⊥. (Note that this step might need launching some recursive
oracle calls.) Otherwise, output m.

Now our goal is two-fold: showing that this oracle indeed gives us a secure implementation
of the extended WE primitive (defined by relation V) and that the oracle I can be securely
compiled out of any IO construction (while keeping the approximate correctness). Proving
that this oracle gives us a secure extended WE, while requiring an analysis that is quite
involved, is often safe to believe is true due to the ideal nature of I. Thus, the challenge lies
in the second goal of proving that we can compile out I from an IO scheme while preserving
correctness, and so we will discuss this in more detail.

Trying to Compile out I from any IO scheme IOI. Let IOI be an obfuscation in
some idealized model I that implements the extended WE primitive. As mentioned above,
one of our main tasks is to “compile-out” the oracle from an ideal model secure obfuscator
to get an approximate plain-model obfuscator IO′ that is also secure. To do so we use the
ideas introduced in [CKP15] and those developed in Chapter 4 which is based on learning
the “heavy queries” asked by the obfuscated code to the oracle and hard-coding them into
the obfuscated code in the plain model.2 Specifically, the new plain-model obfuscator IO′,
given a circuit C to obfuscate would work in two steps. The first step of IO′ is to emulate
IOI(C) to get an ideal-model obfuscation B, making sure to lazily evaluate (i.e., emulate)
any queries issued to I. The second step of IO′ is to learn the queries that are “likely” to be
asked by BI(x) for a random input x. We do this by executing BI(xi) (while we emulate
the queries to I consistently) enough number of times for different xi in an effort to learn all
the highly probable queries, which we denote by QB. The output of IO′ is the plain-model
obfuscation B′ = (B,QB), where B is the ideal-model obfuscation and QB is the set of
learned queries. To evaluate the obfuscation over a new random input x, we simply execute
B′(x) = BI(x) while emulating any queries to I consistently relative to QB.

Security of compiler: only include simulatable information in B′. The security of
the new plain-model obfuscator crucially depends on whether the queries QB that we publish
are simulatable. In other words, we want to prove that if the adversary A against this new
plain-model does not gain any additional advantage because these queries can be simulated
by having A itself run BI(xi) several times. As a result, we will only put queries in QB

(forwarded to be part of the plain-model obfuscator) where these queries could be obtained
by the adversary as well. Doing so allows us to immediately reduce the security to that
of the ideal-model obfuscation. It is therefore important to release only those queries that
can be simulated to ensure security is preserved (for example, we cannot publish the queries
asked during the emulation in step 1 as they are not simulatable).

The other task we will have is to prove the approximate correctness of the new model,
which informally states that an execution B′(x) should be correct with high probability

2Note that this compiling out process is not independent of the oracle being removed since different
oracles may require different approaches to be emulated. However, the general high-level idea is the same.

92

over x. Note that unless we ask an unlearned query to I that was previously asked by some
hidden part of the emulation process (e.g. during step 1), the execution should be statistically
distributed to an ideal execution of BI(x) where the queries are not emulated but answered
using a real oracle. In fact if the oracle I did not involve any “internal/hidden” query asked
by V, we could use the arguments given in Chapter 4 to show that the probability that we
ask an unlearned hidden query occurs with sufficiently small probability.

Main challenge for proving the correctness A subtle, but extremely important point
here that prevents us from proving the approximate correct is that when we run a decryption
query of the form DecV(w, c) in the actual ideal model, we will not see what queries the
verifier V asks from the oracle itself. That is the reason that we call any such query a “hidden”
or “indirect” query (in eyes of the person asking the query DecV(w, c) in the ideal model).
Therefore, for sake of security we are not allowed to provide this information to the final
plain-model obfuscated code, even though we have emulated all of these oracle query/answers
from the beginning on our own! This is exactly the reason that the approximate correctness
of the final plain-model obfuscated code B′ could be risked, because we might no longer be
able to continue emulating the oracle consistently while executing B′(x) on a random point
x.

Resolving the challenge. The way we handle the above issue of finding the heavy
queries, even if they are of the hidden/indirect type is as follows. We will make them
to be clear! We will do so through a new subroutine in the oracle that will always reveal the
instance/attribute a inside a plaintext c. Namely, we add the following subroutine to I:

• Rev(c) : given ciphertext c outputs a for which Enc(a,m) = c.

Now, we can pretend that any algorithm who wants to call a decryption query of the form
DecV(w, c) to our oracle, it will first obtain the relevant instance/attribute a = Rev(c),
run the verifier V(a,m) on its own, and if the test passes V(a,m) = 1 the algorithm will
indeed ask the query DecV(w, c). This is a simple “canonicalization” of the algorithms in
the idealized model I, however this will be enough to guarantee that no internal/indirect
query asked by V during the computation of DecV(w, c) remains hidden! In other words, by
running the obfuscated code on enough number of random points, we will be able to discover
all the heavy queries that are needed for a successful execution of the new obfuscated code
in the plain model.

We shall finally emphasize that the above trick of adding a new subroutine Rev(c) does
not violate the security of (extended) WE relative to our oracle I.

7.1.3 Separating IO from Instance-Hiding WE

To derive our separations for primitives such as predicate encryption, we will first separate
IO from a variant of WE which we call “instance hiding” WE, and we also show that this

93

primitive is strong enough to imply (even extended) PE in a monolithic way.3 An instance
hiding WE is a variant of WE where two ciphertexts Enc(a0,m0) = c0,Enc(a1,m1) = c1

that hide different instance/attributes a0 6= a1 are indistinguishable so long as there is no
witness that satisfies either of these instances; namely V(ab, w) = 0 for all w and b ∈ {0, 1}
(see Definition 2.6.3). The reason that we will need such variant of WE for constructing PE
is that PE itself has the same nature and different ciphertexts under unsatisfiable attributes
should remain indistinguishable.

Challenge: we cannot have Rev(·) as part of oracle. It becomes immediately clear
that we cannot use the same oracle of the previous section (for the case of basic WE) to
prove our separation for IHWE anymore. The reason is that the subroutine Rev(c) = a
clearly destroys the instance hiding property that we want to keep!

Idea: revealing attribute a conditionally, at decryption time. The new idea that
we will introduce in for the case of IHWE is that we will still “weaken” the security (towards
helping the discovery of the hidden queries asked by V(w, a) for a decryption oracle query).
However, we will do so in a conditional way so that it will not contradict the instance hiding
property. Namely, we will only reveal a if the decryption succeeds. More formally, we will
use the following decryption subroutine. DecV(w, c) does the decryption with respect to V
as follows:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise:

2. Find x such that Enc(x) = c and parse it as x = (a,m).

3. If VΘ(w, a) = 0 output ⊥. (Note that this step might launch some recursive oracle
calls.) Otherwise, output both of (a,m).

Note that the above modified way of decryption ciphertexts will not interfere with the
instance hiding property of the scheme. However, it will be hugely important for us to still
be able to discover the heavy queries of the obfuscated code in the idealized model (and so we
can still compile out the idealized oracle from any IO construction). Unfortunately, we are
not able to discover all the hidden/internal queries of a decryption query immediately, but we
can do so only conditionally. Specifically, whenever the obfuscated circuit calls a decryption
query Dec(w, c) and the underlying message x is successfully decrypted, the obfuscated
circuit can now run VΘ(w, a) = 1 to reveal the queries asked. This can be thought of as a
weaker form of canonicalization of the code of the verifier that still sometimes reveals the
hidden parts of the oracle computation. That is because, it is possible that the decryption
fails, in which case we may have some hidden queries QV asked by an underlying VΘ(w, a) = 0
that cannot be revealed or learned. Nonetheless, we show using a careful argument that by
doing enough rounds of learning (over random inputs) and “opening up” the internal hidden

3To be more formal, we need this primitive to be “extractable” instance hiding WE, but for sake of
simplicity we defer the extractability issue to the later sections where we define everything formally.

94

parts of the verification queries as much as possible, we will still get enough information to
run the final (plain model) obfuscated code B′ with approximate correctness close to 1. We
refer the reader to the next sections for formal proofs.

7.1.4 Separating IO from Homomorphic WE

For obtaining our separations for IO from the set of “homomorphic” primitives listed in
Theorem 7.1.1 we will employ a “middle” primitive called “homomorphic (instance revealing)
witness encryption”. Roughly speaking, this primitive allows homomorphic operations over
the ciphertexts that are encrypted under the same attribute/instance. However, it is possible
to always extract this attribute efficiently (this is exactly how we modified the witness
encryption in our basic case to be able to prove the separation from IO). In other words,
we will need an extra functionality over the instance revealing WE as described in previous
section.

New challenge: homomorphic queries. Due to the fact that we are still working with
an instance revealing form of WE, this simplifies our job and we will not fall into the
challenges that we faced for the case of Instance-hiding WE. However, we will have a new
challenge: we need to find the heavy queries that are asked during the evaluation procedure!
This is something that did not exist in the basic and instance hiding versions of WE. In
Section 7.5 we will show that, essentially, the same learning procedure will allow us to learn
enough information to simulate the last final (real) execution of the obfuscated code on a
given input. In particular, for an evaluation query EvalF(c1, . . . , ck) that computes some
homomorphic evaluation F(m1, . . . ,mk) over the plaintexts inside (c1, . . . , ck), there are two
cases: either we already have learned the messages m1, . . . ,mk in which case we can also
run the algorithm F(m1, . . . ,mk), but we do not know any of these messages, we will simply
generate a random answer and use it to emulate the answer to the homomorphic operation.
A careful analysis is needed to prove that this in fact leads to an approximately correct
execution of the code in the plain model.

7.1.5 Primitives Implied by Our Variants of WE

We now describe our ideas on how the previously described variants of WE can be used to
imply extended PE and extended FHE. Building on similar principles we can also obtain
extended spooky encryption and extended attribute-based FHE. In realizing these primitives
we use the extended and extractable versions of these variants of WE. The constructions are
based on ideas developed to demonstrate how WE [GGSW13] and extractable WE [BCP14,
ABG+13] can be used to construct various exotic cryptographic primitives.

95

Getting Extended PE from Instance Hiding WE

We start by showing how instance-hiding WE implies extended selectively-secure PE for the
predicate P(k, a) where k ∈ K and a ∈ A.4 The idea is straightforward. A secret key for
a string k is just a signature on it and a ciphertext encrypting a message x = (a,m) is
an (instance hiding) witness encryption with respect to the attribute C that represents a
Boolean circuit for verifying the signature and checking that P (k, a) = 1.

To decrypt the ciphertext, we use the decryption of the (instance hiding) witness encryp-
tion that takes as input the signature skk (acting as a key for the string k) and outputs m
if C(k, skk, a) = 1. Security of this construction follows directly from the security of the
extractable instance-hiding witness encryption scheme and the existential unforgeability of
the underlying signature scheme. More specifically, by security of witness encryption we have
that any adversary distinguishing witness encryption ciphertexts can be used to recover a
witness which our case serves as an existential forger. Note that P is allowed to have gates of
the PE subroutines planted in them. In the main body, we argue that the above described
construction supports this.

Getting Extended FHE from Homomorphic WE

Realizing extended FHE from instance-revealing homomorphic witness encryption is essential
the same as the Garg et al. [GGSW13] construction of public-key encryption from WE and
PRG. The public-key for the FHE is just the output PK = G(s) of a PRG G on input
a seed s and ciphertext is just a witness encryption ciphertext encrypting m for V where
V(w,CPK) = 1 if and only if CPK(w) = 1 where CPK(w) checks if PK = G(w), outputs 1 if
it is the case and 0 otherwise. Now by the homomorphic property of the witness encryption
this new encryption scheme is also homomorphic. On the other hand, security follows directly
from the security of the PRG and the WE scheme. Note that the evaluation procedure of
the homomorphic encryption scheme is allowed to have gates of its subroutines planted in
it. In the main body, we argue that the above described construction supports this.

7.2 Approach for Proving Lower Bounds on IO

In this section we provide a general approach for proving lower bounds on IO schemes under
a given idealized model. We develop this approach based on the techniques used in Chapter 4
where we proved the impossibility of VBB obfuscation under different idealized models and
Section 5.4 where we showed how to prove fully black-box separations of IO using [BBF16].
The abstract blueprint outlined here will later be applied and instantiated in different ways
during the subsequent chapters when we prove IO separation results from various primitives.
Each application of this approach offers unique challenges that depends on the underlying
primitive that we would want to separate IO from, and we will address these challenges in
their respective upcoming chapters.

4Details on strengthening the result to full-security have been postponed to the main body.

96

7.2.1 General Approach

Our techniques that we will develop for proving separations for IO rely on the process of
“compiling out” an idealized oracle I from an IO construction. Suppose that we can indeed
remove the oracle from the obfuscator in a manner similar to how we did in Chapter 4. Since
we know that statistically secure IO does not exist in the plain model [GR07] this indicates
that perhaps we can compose the two steps and get a query-efficient attacker against IO
in the idealized model I. The more accurate line of argument is more subtle and needs
to work with approximately correct IO and uses a recent result of Brakerski, Brzuska, and
Fleischhacker [BBF16] who ruled out the existence of statistically secure approximate IO.

To formalize the notion of “compiling out” an oracle in more than one step we need to
formalize the intuitive notion of sub oracles in the idealized/randomized context.

Definition 7.2.1 (Sub-models). We call the idealized model/oracle O a sub-model of the
idealized oracle I with subroutines (I1, . . . , Ik), denoted by O v I, if there is a (possibly
empty) S ⊆ {1, . . . , k} such that the idealized oracle O is sampled as follows:

• First sample I ← I where the subroutines are I = (I1, . . . , Ik).

• Then provide access to subroutine Ii if and only if i ∈ S (and hide the rest of the
subroutines from being called).

If S = ∅ then the oracle O will be empty and we will be back to the plain model.

Definition 7.2.2 (Simulatable Compiling Out Procedures for IO). Suppose O @ I. We say
that there is a simulatable compiler from IO in idealized model I into idealized model O
with correctness error ε if the following holds. For every implementation PI = (iOP ,EvP)
of δ-approximate IO in idealized model I there is a implementation PO = (iOO,EvO) of
(δ + ε)-approximate IO in idealized model O such that the only security requirement for
these two implementations is that they are related as follows:

• Simulation: There is an efficient PPT simulator S and a negligible function µ(·) such
that for any C:

∆(S(iOI(1κ, C)), iOO(1κ, C)) ≤ µ(κ)

where ∆(., .) denotes the statistical distance between random variables.

The above definition generalizes the VBB simulatability requirement that a compiler
possessed in Theorem 4.4.5 to the setting of IO. It is easy to see that the existence of the
simulator according to Definition 7.2.2 implies that PO in idealized model O is “as secure
as” PI in the idealized model I since a compiler that guarantees such a simulation property
would also imply indistinguishability security for the case of IO. Namely, any oracle-mixed
attacker against the implementation PO in model O with advantage δ (over an infinite
sequence of security parameters) could be turned in to an attacker against PI in model
I that breaks against PI with advantage δ − negl(κ) over an infinite sequence of security

97

parameters. Therefore one can compose the compiling out procedures for a constant number
of steps (but not more, because there is a polynomial blow up in the parameters in each
step).

By composing a constant number of compilers and relying on the recent result of Brak-
erski, Brzuska, and Fleischhacker [BBF16] one can get a general method of breaking IO in
idealized models. We first state the result of [BBF16].

Theorem 7.2.3 (Impossibility of Approximate Statistically-secure IO [BBF16]). Suppose
one-way functions exist, NP 6⊆ coAM, and δ, ε : N 7→ [0, 1] are such that 2ε(κ)+3δ(κ) < 1−
1/ poly(κ). Then there is no (ε, δ)-approximate statistically-secure CIO (see Definition 2.5.4)
for all poly-size circuits.

The above theorem implies that if we get any implementation for IO in the plain model
that is 1/100-approximately correct, then there is a computationally unbounded adversary
that breaks the statistical security of IO with advantage at least 1/100 over an infinite
sequence of security parameters. Using this result, the following lemma shows a way to
obtain attacks against IO in idealized models.

Lemma 7.2.4 (Attacking IO Using Nested Oracle Compilers). Suppose ∅ = I0 v I1 · · · v
Ik = I for constant k = O(1) are a sequence of idealized models. Suppose for every i ∈ [k]
there is a simulatable compiler for IO in model Ii into model Ii−1 with correctness error
εi < 1/(100k). Then, assuming one-way functions exist, NP 6⊆ coAM, any implementation
P of IO in the idealized model I could be oracle-mixed broken by a polynomial-query adversary
A with a constant advantage δ > 1/100 for an infinite sequence of security parameters.

Proof. Starting with our initial ideal-model construction PI = PIk , we iteratively apply the
simulatable compiler to get PIi−1

from PIi for i = {k, ..., 1}. Note that the final correctness
error that we get is εI0 < k/(100k) < 1/100, and thus by Theorem 5.4.3 there exists a
computationally unbounded attacker AI0 against PI0 with constant advantage δ. Now, let
Si be the PPT simulator whose existence is guaranteed by Definition 7.2.2 for the compiler
that transforms PIi into PIi−1

. We inductively construct an adversary AIi against PIi from
an adversary AIi−1

for PIi−1
starting with AI0 . The construction of AIi simply takes its

input obfuscation in the Ii ideal-model iOIi , runs Si(iO
Ii) and feeds the result to AIi−1

to
get its output. Note that, after constant number k, we still get δ′ < δ− k negl(κ) a constant
advantage over infinite sequence of security parameters against PIk .

Using a variant of the Borel–Cantelli lemma, we can in fact prove that oracle-mixed
attacks with constant advantage lead to breaking oracle-fixed constructions.

Lemma 7.2.5. If there is an algorithm A that oracle-mixed breaks a construction P I of P in
idealized model I with advantage ε(κ) ≥ Ω(1) for an infinite sequence of security parameters,
then the same attacker A oracle-fixed breaks the same construction P I over a (perhaps more
sparse but still) infinite sequence of security parameters.

98

Proof. Let A be an oracle mixed attacker against P in the idealized model I with advantage
ε(κ) and define EPA,κ to be the event that A succeeds in breaking security of P over security
parameter κ. Then we have that for infinitely many security parameters κ:

Pr
A,I

[EPA,κ] ≥ ε(κ)

Note that since this is an oracle-mixed attacker, the probability is over the randomness of
the adversary, the experiment and the oracle I. Now define functions ε′ and ε′′ such that
ε′′ = ε− ε′ ≥ Ω(1). Then, by an averaging argument we get the following:

Pr
I

[Pr
A

[EPA,κ] ≥ ε′(κ)] ≥ ε′′(κ)

Let Di be the event that PrA[EPA,i] ≥ ε′. From the above we can see that PrI [Di] ≥ ε′′(κ) for
every i ∈ N. Now, since ε′′(κ) ≥ Ω(1), by Lemma 2.2.2 we can conclude that with probability
ε′′(κ) over the choice of I, Di happens for infinitely many i. Thus, since there exists non-
zero (in fact, constant) measure of oracles that A can break successfully over infinitely many
security parameters, we can fix any oracle out of those that A can break thus yielding an
oracle-fixed attack on P .

The reader may notice that the above lemma has already been implicitly used (and inde-
pendently proven) in Section 5.4 for the case that P is the IO primitive. Indeed Lemma 7.2.5
generalizes this to any primitive and states that such a reduction is independent of the prim-
itive and relies only on the advantage of the attacker.

The next lemma follows as a direct corollary to Lemmas 3.1.8 and 7.2.5, and implies that
it suffices to provide a “good” oracle-mixed attacker against Q in ideal model I in order to
show a separation of Q from any P that exists relative to I.

Lemma 7.2.6 (Separation Using Idealized Models). Suppose I is an idealized model, and
the following conditions are satisfied:

• Proving oracle-fixed security of P. There is an oracle fixed black-box construction
of P relative to I.

• Breaking oracle-mixed security of Q with Ω(1) advantage. For any construction
QP of Q relative to I there is a computationally-unbounded query-efficient attacker A
(whose query complexity is bounded by the level of security demanded by P) such that
for an infinite sequence of security parameters κ1 < κ2 < . . . the advantage of A in
oracle-mixed breaking QI is at least ε(κi) ≥ Ω(1).

Then there is no fully black-box construction for Q from P.

Finally, by putting Lemma 7.2.4 and 7.2.6 together we get a lemma for proving black-box
lower bounds for IO.

99

Lemma 7.2.7 (Lower Bounds for IO using Oracle Compilers). Suppose ∅ = I0 v I1 · · · v
Ik = I for constant k = O(1) are a sequence of idealized models. Suppose for every i ∈ [k]
there is a simulatable compiler for IO in model Ii into model Ii−1 with correctness error
εi < 1/(100k). If primitive P can be oracle-fixed constructed in the idealized model I, then
there is no fully black-box construction of IO from P.

We will indeed use Lemma 7.2.7 to derive lower bounds for IO even in the monolithic
model by relating such constructions to fully black-box constructions.

7.3 Separating IO from Instance Revealing Witness

Encryption

In this section, we formally prove our first main separation theorem which states that there
is no monolithic construction of IO from WE (under believable assumptions). It equivalently
means that there will be no fully black-box construction of indistinguishability obfuscation
from extended witness encryption scheme.

Theorem 7.3.1. Assume the existence of one-way functions and that NP 6⊆ coAM. Then
there exists no monolithic construction of indistinguishability obfuscation (IO) from witness
encryption (WE).

In fact, we prove a stronger result by showing a separation of IO from a stronger (ex-
tended) version of witness encryption, which we call extractable instance-revealing witness
encryption. Looking ahead, we require the extractability property to construct (extended)
attribute-based encryption (ABE) from this form of witness encryption. By using Lemma
6.6.3, this would also imply a separation of IO from extended ABE.

Definition 7.3.2 (Extended Extractable Instance-Revealing Witness Encryption (ex-EIRWE)).
Let V be a universal circuit-evaluator Turing machine as defined in Definition 6.5.9. For any
given security parameter κ, an extended extractable instance-revealing witness encryption
scheme consists of three PPT algorithms P = (Enc,Rev,Dec) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and security
parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• Rev(c) : given ciphertext c outputs a ∈ {0, 1}∗ ∪ {⊥}.

• Dec(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈ {0, 1}∗.

An extended extractable instance-revealing witness encryption scheme satisfies the following
completeness and security properties:

• Decryption Correctness: For any security parameter κ, any (w, a) such that VP (w, a) =
1, and any m it holds that

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1

100

• Instance-Revealing Correctness: For any security parameter κ and any (a,m) it
holds that:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1

Furthermore, for any c for which there is no a,m, κ such that Enc(a,m, 1κ) = c it holds
that Rev(c) = ⊥.

• Extractability: For any PPT adversary A and polynomial p1(.), there exists a PPT
(black-box) straight-line extractor E and a polynomial function p2(.) such that the
following holds. For any security parameter κ, for all a ∈ {0, 1}∗, and any m0 6= m1 of
the same length |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(a,mb, 1

κ)
]
≥ 1

2
+

1

p1(κ)

Then:

Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ 1

p2(κ)

Given the above definition of ex-EIRWE, we prove the following theorem, which states
that there is no fully black-box construction IO from extended EIRWE.

Theorem 7.3.3. Assume the existence of one-way functions and that NP 6⊆ coAM. Then
there exists no monolithic construction of indistinguishability obfuscation from extractable
instance-revealing witness encryption.

Since extended EIRWE implies witness encryption as defined in Definition 2.6.1, Theorem
7.3.1 trivially follows from Theorem 7.3.3, and thus for the remainder of this section we will
focus on proving Theorem 7.3.3.

7.3.1 Overview of Proof Techniques

To prove Theorem 7.3.3, we will apply Lemma 7.2.7 for the idealized extended IRWE model
Θ (formally defined in Section 7.3.2) to prove that there is no black-box construction of IO
from any primitive P that can be oracle-fixed constructed (see Definition 3.1.4) from Θ. In
particular, we will do so for P that is the extended EIRWE primitive. Our task is thus
twofold: (1) to prove that P can be oracle-fixed constructed from Θ and (2) to show a
simulatable compilation procedure that compiles out Θ from any IO construction. The first
task is proven in Section 7.3.3 and the second task is proven in Section 7.3.4. By Lemma
7.2.7, this would imply the separation result of IO from P and prove Theorem 7.3.3.

Our oracle, which is more formally defined in Section 7.3.2, resembles an idealized version
of a witness encryption scheme, which makes the construction of extended EIRWE straight-
forward. As a result, the main challenge lies in showing a simulatable compilation procedure
for IO that satisfies Definition 7.2.2 in this idealized model.

101

7.3.2 The Ideal Model

In this section, we define the distribution of our ideal randomized oracle.

Definition 7.3.4 (Random Instance-revealing Witness Encryption Oracle). Let V be a
universal circuit-evaluator Turing machine (as defined in Definition 2.1.1) that takes as input
(w, x) where x = (a,m) ∈ {0, 1}n and outputs b ∈ {0, 1}. We define the following random
instance-revealing witness encryption (rIRWE) oracle Θ = (Enc,Rev,DecV) as follows. We
specify the sub-oracle Θn whose inputs are parameterized by n, and the actual oracle will
be Θ = {Θn}n∈N.

• Enc: {0, 1}n → {0, 1}2n is a random injective function.

• Rev : {0, 1}2n → {0, 1}∗ ∪ ⊥ is a function that, given an input c ∈ {0, 1}2n, would
output the corresponding attribute a for which Enc(a,m) = c. If there is no such
attribute then it outputs ⊥ instead.

• DecV : {0, 1}s → {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}s, Dec(w, c) allows us to decrypt
the ciphertext c and get x = (a,m) as long as the predicate test is satisfied on (w, a).
More formally, do as follow:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.

2. Find x such that Enc(x) = c.

3. If VΘ(w, a) = 0 output ⊥. Otherwise, output x = (a,m).

We define a query-answer pair resulting from query q to subroutine T ∈ {Enc,Dec,Rev}
with some answer β as (q 7→ β)T . The oracle Θ provides the subroutines for all inputs lengths
but, for simplicity, and when n is clear from the context, we use Θ = (Enc,Rev,DecV) to
refer to Θn for a fixed n.

Remark 7.3.5. We note that since V is a universal circuit-evaluator, the number of queries
that it will ask (when we recursively unwrap all internal queries to Dec) is at most a poly-
nomial. This is due to the fact that the sizes of the queries that V asks will be strictly less
than the size of the inputs to V. In that respect, we say that V has the property of being
extended poly-query.

7.3.3 Witness Encryption exists relative to Θ

In this section, we show how to construct a semantically-secure extended extractable IRWE
for universal circuit-evaluator V relative to Θ = (Enc,Rev,DecV). More formally, we will
prove the following lemma.

Lemma 7.3.6. There exists a correct and subexponentially-secure oracle-fixed implementa-
tion (Definition 3.1.4) of extended extractable instance-revealing witness encryption in the
ideal Θ oracle model.

102

We will in fact show how to construct a primitive (in the Θ oracle model) that is simpler
to prove the existence of and for which we argue that it is sufficient to get the desired
primitive of EIRWE. We give the definition of that primitive followed by a construction.

Definition 7.3.7 (Extended Extractable One-way Witness Encryption (ex-EOWE)). Let
V be a universal circuit-evaluator Turing machine (as defined in Definition 6.5.9) that takes
an instance a and witness w and outputs a bit b ∈ {0, 1}. For any given security parameter
κ, an extended extractable one-way witness encryption scheme for V consists of the following
PPT algorithms P = (Enc,Rev,DecV) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security pa-
rameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• Rev(c) : given ciphertext c returns the underlying attribute a ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈
{0, 1}∗.

An extended extractable one-way witness encryption scheme satisfies the same correctness
properties as Definition 7.3.2 but the extractability property is replaced with the following:

• Extractable One-Wayness: For any PPT adversary A and polynomial p1(.), there
exists a PPT (black-box) straight-line extractor E and a polynomial function p2(.) such
that the following holds. For any security parameter κ, k = poly(κ), and for all a, if:

Pr
[
A(1κ, c) = m | m $←− {0, 1}k, c← Enc(a,m, 1κ)

]
≥ 1

p1(κ)

Then:

Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ 1

p2(κ)

Construction 7.3.8 (Extended Extractable One-way Witness Encryption). For any secu-
rity parameter κ and oracle Θ sampled according to Definition 7.3.4, we will implement an
extended EOWE scheme P for the universal circuit-evaluator V using Θ = (Enc,DecV) as
follows:

• WEnc(a,m, 1κ) : Given security parameter 1κ, a ∈ {0, 1}∗, and message m ∈ {0, 1}n/2
where n = 2 max(|a|, κ), output Enc(x) where x = (a,m).

• WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ 6= ⊥, parse
as x′ = (a′,m′) and output m′. Otherwise, output ⊥.

Remark 7.3.9 (From one-wayness to indistinguishability.). We note that the primitive
ex-EOWE, which has one-way security, can be used to build an ex-EIRWE, which has
security that is indistinguishability-based, through a simple application of the Goldreich-
Levin thoerem [GL89]. Namely, to encrypt a one-bit message b under some attribute

103

a, we would output the ciphertext c = (Enc(a, r1), r2, 〈r1, r2〉 ⊕ b) where r1, r2 are ran-
domly sampled and 〈r1, r2〉 is the hardcore bit. To decrypt a ciphertext c = (y1, r2, y3)
we would run r1 = Dec(w, y1), find the hardcore bit p = 〈r1, r2〉 then output b = p ⊕ y3.
We obtain the desired indistinguishability security since, by the hardcore-bit security of
the one-way function Enc′a(r1, r2) := (Enc(a, r1), r2), we have (Enc(a, r1), r2, 〈r1, r2〉 ⊕ 0) ≈
(Enc(a, r1), r2, 〈r1, r2〉 ⊕ 1) for any fixed a.

Lemma 7.3.10. Construction 7.3.8 is a correct and subexponentially-secure oracle-fixed
implementation (Definition 3.1.4) of extended extractable one-way witness encryption in the
ideal Θ oracle model.

Proof. To prove the security of this construction, we will show that if there exists an adver-
sary A against scheme P (in the Θ oracle model) that can invert an encryption of a random
message with non-negligible advantage then there exists a (fixed) deterministic straight-line
(non-rewinding) extractor E with access to Θ = (Enc,Rev,DecV) that can find the witness
for the underlying instance of the challenge ciphertext.

Suppose A is an adversary in the inversion game with success probability ε. Then
the extractor E would works as follows: given a as input and acting as the challenger

for adversary A, it chooses m
$←− {0, 1}k uniformly at random then runs AΘ(1κ, c∗) where

c∗ ←WEnc(a,m, 1κ) is the challenge. Queries issued by A are handled by E as follows:

• To answer any query Enc(x) asked by A, it forwards the query to the oracle Θ and
returns some answer c.

• To answer any query Rev(c) asked by A, it forwards the query to the oracle Θ and
returns some answer a.

• To answer any query DecV(w, c) asked by A, the extractor first issues a query Rev(c)
to get some answer a. If a 6= ⊥, it would execute VΘ(w, a), forwarding queries asked
by V to Θ similar to how it does for A. Finally, it forwards the query Dec(w, c) to Θ
to get some answer x. If a = ⊥, it returns ⊥ to A otherwise it returns x.

While handling the queries made by A, if a decryption query DecV(w, c∗) for the challenge
ciphertext is issued by A, the extractor will pass this query to Θ, and if the result of the
decryption is x 6= ⊥ then the extractor will halt execution and output w as the witness for
instance x. Otherwise, if after completing the execution of A, no such query was asked then
the extractor outputs ⊥. We prove the following lemma.

Lemma 7.3.11. For any PPT adversary A, instances a, if there exists a non-negligible
function ε(.) such that:

Pr
[
AΘ(1κ, c) = m | m $←− {0, 1}k, c←WEnc(a,m, 1κ)

]
≥ ε(κ) (7.1)

Then there exists a PPT straight-line extractor E such that:

Pr
[
EΘ,A(a) = w ∧ VΘ(w, a) = 1

]
≥ ε(κ)− negl(κ) (7.2)

104

Proof. Let A be an adversary satisfying Equation (7.1) above and let AdvWin be the event
that A succeeds in the inversion game. Furthermore, let ExtWin be the event that the
extractor succeeds in extracting a witness (as in Equation (7.2) above). Observe that:

Pr
Θ,m

[ExtWin] ≥ Pr
Θ,m

[ExtWin ∧ AdvWin]

= 1− Pr
Θ,m

[ExtWin ∨ AdvWin]

= 1− Pr
Θ,m

[ExtWin ∧ AdvWin]− Pr
Θ,m

[AdvWin]

Since Pr[AdvWin] ≥ ε for some non-negligible function ε, it suffices to show that Pr[ExtWin∧
AdvWin] is negligible. Note that, by our construction of extractor E, this event is equivalent
to saying that the adversary succeeds in the inversion game but never asks a query of the
form DecV(w, c∗) for which the answer is x 6= ⊥ and so the extractor fails to recover the
witness. For simplicity of notation define Win := ExtWin ∧ AdvWin.

We will show that, with overwhelming probability over the choice of oracle Θ, the prob-
ability of Win happening is negligible. That is, we will prove the following claim:

Claim 7.3.12. For any negligible function δ, PrΘ

[
Prm[Win] ≥

√
δ
]
≤ negl(κ)

Proof. Define Bad to be the event that A asks (directly or indirectly) a query of the form
DecV(w, c′) for some c′ 6= c∗ for which it has not asked Enc(x) = c previously. We have that:

Pr
Θ,m

[Win] ≤ Pr
Θ,m

[Win ∧ Bad] + Pr
Θ,m

[Bad]

The probability of Bad over the randomness of Θ is at most 1/2n as it is the event that
A hits an image of a sparse random injective function without asking the function on the
preimage beforehand. Thus, PrΘ,m[Bad] ≤ 1/2n.

It remains to show that PrΘ,m[Win ∧ Bad] is also negligible. We list all possible queries
that A could ask and argue that these queries do not help A in any way without also forcing
the extractor to win as well. Specifically, we show that for any such A that satisfies the
event (Win∧Bad), there exists another adversary Â that depends on A and also satisfies the
same event but does not ask any decryption queries (only encryption queries). This would
then reduce to the standard case of inverting a random injective function, which is known
to be hard. We define the adversary Â as follows. Upon executing A, it handles the queries
issued by A as follows:

• If A asks a query of the form Enc(x) then Â forwards the query to Θ to get the answer.

• If A asks a query of the form Rev(c) then since Bad does not happen, it must be the
case that c = Enc(a,m) is an encryption that was previously asked by A and therefore

Â returns a as the answer.

105

• If A asks a query of the form Dec(w, c∗) then w must be a string for which V(w, a∗) = 0
or otherwise the extractor wins, which contradicts that ExtWin happens. If that is the
case, since w is not a witness, Â would return ⊥ to A after running VΘ(w, a∗) and
answering its queries appropriately.

• If A asks a query of the form Dec(w, c′) for some c′ 6= c∗ then, since Bad does not
happen, it must be the case that A has asked a (direct or indirect) visible encryption

query Enc(x′) = c′. Therefore, Â would have observed this encryption query and can
therefore run VΘ(w, a′) and return the appropriate answer (x or ⊥) depending on the
answer of V.

Given that Â perfectly emulates A’s view, the only possibility that A could win the
inversion game is by asking Enc(x∗) = c∗ and hitting the challenge ciphertext, which is a
negligible probability over the randomness of the oracle. By a standard averaging argument,
we find that since PrΘ,m[Win∧Bad] ≤ δ(κ) for some negligible δ then PrΘ[Prm[Win∧Bad] ≤√
δ] ≥ 1−

√
δ, which yields the result.

To conclude the proof of Lemma 7.3.11, we can see that the probability that the extractor
wins is given by Pr[ExtWin] ≥ 1−Pr[ExtWin∧AdvWin]−Pr[AdvWin] ≥ ε(κ)−negl(κ) where
ε is the non-negligible advantage of the adversary A.

It is clear that Construction 7.3.8 is a correct implementation. Furthermore, by Lemma
7.3.11, it satisfies the extractability property. Thus, this concludes the proof of Lemma
7.3.10.

of Lemma 7.3.6. The existence of extractable instance-revealing witness encryption in the
Θ oracle model follows from Lemma 7.3.10 and Remark 7.3.9.

7.3.4 Compiling out Θ from IO

In this section, we show a simulatable compiler for compiling out Θ. We adapt the approach
outlined in Section 7.3.1 to the ideal IRWE oracle Θ = (Enc,Rev,DecV) while making use of
Lemma 7.2.4, which allows us to compile out Θ in two phases: we first compile out part of Θ
to get an approximately-correct obfuscator ÔR in the random oracle model (that produces

an obfuscation B̂R in the RO-model), and then use the previous result of [CKP15] to compile
out the random oracle R and get an obfuscator O′ in the plain-model. Since we are applying
this lemma only a constant number of times (in fact, just twice), security should still be
preserved. Specifically, we will prove the following claim:

Lemma 7.3.13. Let R v Θ be a random oracle where “v” denotes a sub-model relationship
(see Definition 7.2.1). Then the following holds:

106

• For any IO in the Θ ideal model, there exists a simulatable compiler with correctness
error ε < 1/200 for it that outputs a new obfuscator in the random oracle R model.

• [CKP15] For any IO in the random oracle R model, there exists a simulatable compiler
with correctness error ε < 1/200 for it that outputs a new obfuscator in the plain model.

Proof. The second part of Lemma 7.3.13 follows directly by [CKP15], and thus we focus on
proving the first part of the claim. Before we start describing the compilation process, we
present the following definition of canonical executions that is a property of algorithms in
this ideal model and dependent on the oracle being removed.

Definition 7.3.14 (Canonical executions). Web define an oracle algorithm AΘ relative to
rIRWE to be in canonical form if before asking any DecV(w, c) query, A would first get
a ← Rev(c) then run VΘ(w, a) on its own, making sure to answer any queries of V using
Θ. Furthermore, after asking a query DecV(w, c) for which the returned answer is some
message m 6= ⊥, it would ask Enc(x) where x = (a,m). Note that any oracle algorithm A
can be easily modified into a canonical form by increasing its query complexity by at most
a polynomial factor (since V is an extended poly-query algorithm).

Definition 7.3.15 (Query Types). For any (not necessarily canonical) oracle algorithm A
with access to a rIRWE oracle Θ, we call the queries that are asked by A to Θ as direct
queries and those queries that are asked by VΘ due to a call to Dec as indirect queries.
Furthermore, we say that a query is visible to A if this query was issued by A and thus it
knows the answer that is returned by Θ. Conversely, we say a query is hidden from A if it
is an indirect query that was not explicitly issued by A (for example, A would have asked a
DecV query which prompted VΘ to ask its own queries and the answers returned to V will not
be visible to A). Note that, once we canonicalize A, all indirect queries will be made visible
since, by Definition 7.3.14, A will run VΘ before asking DecV queries and the query-answer
pairs generated by V will be revealed to A.

We now proceed to present the construction of the random-oracle model obfuscator that,
given an obfuscator in the Θ model, would compile out and emulate queries to Dec and
Rev while forwarding any Enc queries to R. Throughout this process, we assume that the
obfuscators and the obfuscated circuits are all canonicalized according to Definition 7.3.14.

7.3.5 The new obfuscator ÎO
R

in the random oracle model

Let R = {Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given a
δ-approximate obfuscator IO = (iO,Ev) in the rIRWE oracle model, we construct an (δ+ ε)-

approximate obfuscator ÎO = (îO, Êv) in the random oracle model.

107

Algorithm 1: EmulateCall

Input: Query-answer set Q, query q
Oracle: Random Oracle R
Output: ρq a query-answer pair containing the answer of query q
Begin:
if q is a query of type Enc(x) then

Set ρq = (x 7→ R(x))Enc

end
if q is a query of the form Rev(c) then

if ∃ (x 7→ c)Enc ∈ Q where x = (a,m) then
Set ρq = (c 7→ a)Rev

else
Set ρq = (c 7→ ⊥)Rev

end

end
if q is a query of the form DecV(w, c) then

if ∃ (x 7→ c)Enc ∈ Q then
Initialize QV = ∅ and emulate b← VΘ(w, x)
for each query qV asked by V do

ρV ← EmulateCallR(Q ∪QV, qV)
QV = QV ∪ ρV

end
if b = 1 then

Set ρq = ((w, c) 7→ x)Dec

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

end
Return ρq

Subroutine îO
R

(C):

1. Emulation phase: Emulate iOΘ(C). Let TO be the transcript of this phase and initialize
QO := Q(TO) = ∅. For every query q asked by iOΘ(C), call ρq ← EmulateCallR(QO, q)
and add ρq to QO.

Note that, since iO is a canonical algorithm, there are no hidden queries resulting
from queries asked by V (via Dec queries) since we will always run VΘ before ask-
ing/emulating a Dec query.

108

2. Learning phase: Set QB = ∅ to be the set of query-answer pairs learned during this
phase. Set m = 2`O/ε where `O ≤ |iO| represents the number of queries asked by iO.

Choose t
$←− [m] uniformly at random then for i = {1, ..., t}:

• Choose zi
$←− {0, 1}|C| uniformly at random

• Run EvΘ(B, zi). For every query q asked by EvΘ(B, zi), call and retrieve the
answer ρq ← EmulateCallR(QO ∪QB, q) then add ρq to QB.

Similar to Step 1, since Ev is a canonical algorithm and Enc is a injective function,
with overwhelming probability, there will be no hidden queries as a result of asking
any Dec queries.

3. The output of the RO model obfuscation algorithm îO
R

(C) will be B̂ = (B,QB).

Subroutine Êv
R

(B̂, z): To evaluate B̂ = (B,QB) on a new random input z we simply emu-
late EvΘ(B, z). For every query q asked by EvΘ(B, z), run and set ρq = EmulateCallR(QB, q)
then add ρq to QB.

The running time of îO. We note that the running time of the new obfuscator îO
remains polynomial time since we are emulating the original obfuscation once followed by
a polynomial number m of learning iterations. Furthermore, while we are indeed working
with an oracle where the PPT V can have oracle gates to subroutines of Θ, we emphasize
that since V, which we are executing during EmulateCall, is a universal circuit evaluator,
its effective running time remains to be a strict polynomial in the size of V and so the issue
of exponential or infinite recursive calls is non-existent.

Proving Approximate Correctness. Consider two separate experiments (real and ideal)
that construct the random oracle model obfuscator exactly as described above but differ

when evaluating B̂. Specifically, in the real experiment, Êv
R

(B̂, z) emulates EvΘ(B, z) on a
random input z and answers any queries by running QB, whereas in the ideal experiment,

we execute Êv
R

(B̂, z) and answer the queries of EvΘ(B, z) using the actual oracle Θ instead.

In essence, in the real experiment, we can think of the execution as EvΘ̂(B, z) where Θ̂ is
the oracle simulated by using QB and oracle R. We will compare the real experiment with
the ideal experiment and show that the statistical distance between these two executions is
at most ε. In order to achieve this, we will identify the events that differentiate between the

executions EvΘ(B, z) and EvΘ̂(B, z).

Let q be a new query that is being asked by EvΘ̂(B, z) and handled by calling the
subroutine EmulateCallR(QB, q). The following are the cases that should be handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the same in
both experiments.

109

2. If q is a query of type Dec(w, c) or Rev(c) whose answer is determined by QB in the
real experiment then it is also determined by QO ∪QB ⊇ QB in the ideal experiment
and the answers are distributed the same.

3. If q is of type Dec(w, c) or Rev(c) that is not determined by QO ∪ QB in the ideal
experiment then this means that we are attempting to decrypt a ciphertext for which
we have not encrypted before and we will therefore answer it with ⊥ with overwhelming
probability. In that case, q will also not be determined by QB in the real experiment
and we will answer it with ⊥.

4. Bad Event 1: Suppose q is of type Dec(w, c) that is not determined by QB in the
real experiment and yet is determined by QO ∪QB in the ideal experiment to be some
answer x 6= ⊥. This implies that the query-answer pair (x 7→ c)Enc is in QO \ QB.
That is, we are for the first time decrypting a ciphertext that was encrypted in Step 1
because we failed to learn the underlying x for ciphertext c during the learning phase
of Step 2. In that case, in the real experiment, the answer would be ⊥ since we do not
know the corresponding message x whereas in the ideal experiment it would use the
correct answer from QO ∪QB and output x. However, we will show that this event is
unlikely due to the learning procedure.

5. Bad Event 2: Suppose q is of type Rev(c) that is not determined by QB in the real
experiment and yet is determined by QO ∪ QB in the ideal experiment. This implies
that the query-answer pair ((a,m) 7→ c)Enc is in QO \QB. That is, we are for the first
time attempting to reveal the attribute of a ciphertext that was encrypted in Step 1
because we failed to learn the answer of this reveal query during the learning phase of
Step 2. In that case, in the real experiment, the answer would be ⊥ since we do not
know the corresponding attribute a whereas in the ideal experiment it would use the
correct answer from QO ∪QB and output a. However, we will show that this event is
unlikely due to the learning procedure.

For input x, let E(x) be the event that Case 4 or 5 happen. Assuming that event
E(x) does not happen, both experiments will proceed identically the same and the output

distributions of EvΘ(B, x) and EvΘ̂(B, x) will be statistically close. More formally, the

probability of correctness for ÎO is:

Pr
x

[EvΘ̂(B, x) 6= C(x)] = Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)]

+ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ E(x)]

≤ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] + Pr
x

[E(x)]

By the approximate functionality of IO, we have that:

Pr
x

[iOΘ(C)(x) 6= C(x)] = Pr
x

[EvΘ(B, x) 6= C(x)] ≤ δ(n)

110

Therefore,

Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] = Pr
x

[EvΘ(B, x) 6= C(x) ∧ ¬E(x)] ≤ δ

We are thus left to show that Pr[E(x)] ≤ ε. Since both experiments proceed the same up
until E happens, the probability of E happening is the same in both worlds and we will thus
choose to bound this bad event in the ideal world.

Claim 7.3.16. Prx[E(x)] ≤ ε.

Proof. For all i ∈ [t], let Q′Bi = QBi ∩ QO be the set of query-answer pairs generated by

the i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and are also generated
during the obfuscation emulation phase (Step 1). In particular, Q′Bi would contain the
query-answer pairs ((a,m) 7→ c)Enc for encryptions that were generated by the obfuscation
and later discovered during the learning phase. Note that, since the maximum number of
learning iterations m > `O and Q′Bi ⊆ Q′Bi+1

, the number of learning iterations that would
increase the size of the set of learned obfuscation queries is at most 2`O since there are at
most `O obfuscation ciphertexts that can be fully discovered during the learning phase and
at most `O obfuscation ciphertexts that can be partially discovered (just finding out the
underlying attribute a) via Rev queries during the learning phase.

We say t
$←− [m] is bad if it is the case that Q′Bt 6= Q′Bt+1

(i.e. t is an index of a learning
iteration that increases the size of the learned obfuscation queries). This would imply that
after t learning iterations in the ideal world, the final evaluation Q′

B̂
:= Q′Bt+1

would contain
a new unlearned query-answer pair that was in QO. Thus, given that m = 2`O/ε, the
probability (over the selection of t) that t is bad is at most 2`O/m < ε.

Proving Security. To show that the resulting obfuscator is secure, it suffices to show that
the compilation process represented as the new obfuscator’s construction is simulatable. We
show a simulator S (with access to Θ) that works as follows: given an obfuscated circuit B
in the Θ ideal model, it runs the learning procedure as shown in Step 2 of the new obfuscator
îO to learn the heavy queries QB then outputs B̂ = (B,QB). Note that this distribution is

statistically close to the output of the real execution of îO and, therefore, security follows.

7.4 Separating IO from Instance Hiding Witness En-

cryption

In this section, we formally prove our second main separation theorem which states that
there is no fully black-box construction of indistinguishability obfuscation from any extended
predicate encryption scheme.

Theorem 7.4.1. Assume that NP 6⊆ coAM and that one-way functions exist. Then there
exists no monolithic construction of indistinguishability obfuscation (IO) from predicate en-
cryption (PE).

111

In fact, we prove a stronger result by showing a separation of IO from a more generalized
primitive, which we call extended extractable instance-hiding witness encryption, that implies
extended predicate encryption and is a stronger variant of witness encryption.

Definition 7.4.2 (Extended Extractable Instance-Hiding Witness Encryption (ex-EIHWE)).
Let V be a universal circuit-evaluator as defined in Definition 6.5.9. For any given security
parameter κ, an extended extractable instance-hiding witness encryption scheme consists of
two PPT algorithms P = (Enc,DecV) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security pa-
rameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈
{0, 1}∗.

An extended extractable instance-hiding witness encryption scheme satisfies the following
completeness and security properties:

• Correctness: For any security parameter κ, any m ∈ {0, 1}∗, and any (w, (a,m))
such that VP (w, (a,m)) = 1, it holds that

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1

• Instance-hiding Extractability: For any PPT adversary A and polynomial p1(.),
there exists a PPT (black-box) straight-line extractor E and a polynomial function
p2(.) such that the following holds. For security parameter κ, for all a0, a1 of the same
length |a0| = |a1| and any m0 6= m1 of the same length |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(ab,mb, 1

κ)
]
≥ 1

2
+

1

p1(κ)

Then:

Pr[EA(a0, a1) = w ∧ ∃ b ∈ {0, 1} s.t. VP (w, ab) = 1] ≥ 1

p2(κ)

Generalizing the verification algorithm. Note that while the standard witness encryp-
tion scheme defines the verification algorithm as operating on an witness-instance pair (w, a),
since we are elevating the security to be instance-hiding, we can generalize the verifier to
allow it to accept and act on not only the instance a but also the message m as input. That
is, the verifier V in our definition of instance-hiding witness encryption would accept (w, x)
instead of just (w, a) where x = (a,m). As a result, whenever it is unambiguous, we would
often refer to x as the instance.

112

Given the above definition of ex-IHWE, we prove the following theorem, which states that
there is no fully black-box construction IO from extended IHWE.

Theorem 7.4.3. Assume that NP 6⊆ coAM and that one-way functions exist. Then there
exists no monolithic construction of indistinguishability obfuscation from instance-hiding wit-
ness encryption.

In Section 7.6.1, we prove that extended EIHWE implies extended predicate encryption.
As a result, Theorem 7.4.1 would follow from Theorem 7.4.3, Lemma 7.6.1 and Lemma 6.6.3
(the transitivity lemma). Hence, for the remainder of this section we will focus on proving
Theorem 7.4.3.

7.4.1 Overview of Proof Techniques

To prove Theorem 7.4.3, we will apply Lemma 7.2.7 for the idealized IHWE model Θ (for-
mally defined in Section 7.4.2) to prove that there is no black-box construction of IO from
any primitive P that can be oracle-fixed constructed from Θ. In particular, we will do so
for P that is the extended IHWE primitive. Our task is thus twofold: (1) to prove that P
can be oracle-fixed constructed from Θ and (2) to show a simulatable compilation procedure
that compiles out Θ from any IO construction. The first task is proven in Section 7.4.3 and
the second task is proven in Section 7.4.4. By Lemma 7.2.7, this would imply the separation
result of IO from P and prove Theorem 7.4.3.

Our oracle, which is more formally defined in Section 7.4.2, resembles an idealized version
of a (instance-hiding) witness encryption scheme, which makes the construction of extended
IHWE straightforward. As a result, the main challenge lies in showing a simulatable compi-
lation procedure for IO that satisfies Definition 7.2.2 in this idealized model, and therefore,
it is instructive to look at how the compilation process works and what challenges are faced
with dealing with oracle Θ.

High-level Compiler Structure and Challenges

Recall that the solution adopted for the (extended) IRWE oracle was to canonicalize the
obfuscated circuits such that queries made by the verification algorithm through decryption
queries are made manifest so that they can be publicized without affecting security. However,
we shall see that this is not enough to argue that (approximate) correctness is maintained.

The Challenge Faced with (Instance-hiding) Witness Encryption. Here we are
again faced with a problem when we try to emulate decryption queries. Very much like the
setting of extended IRWE, since Θ represents an idealized extended primitive, the verification
algorithm V associated with the language defined by Θ might make oracle calls during
the learning process. However, precisely due to the instance-hiding property, one cannot
canonicalize the obfuscated circuits as before since we cannot efficiently extract the attribute
or the message to run VΘ(x,w) and discover the queries asked. This creates the possibility
that the execution B′(x) might call such a hidden query and emulating it incorrectly.

113

Resolving the Challenge. While a full canonicalization is not possible here, we still
perform it partially. Specifically, whenever the obfuscated circuit calls a decryption query
Dec(w, c) and the underlying message x is successfully decrypted, the obfuscated circuit
can now run VΘ(x,w) = 1 to reveal the queries asked. However, it is possible that the
decryption fails, in which case we may have some hidden queries QV asked by an underlying
VΘ(x,w) = 0 that cannot be revealed or learned. Nonetheless, we argue that the gathered
information is enough for an approximately correct emulation of the plain-model obfuscated
code.

7.4.2 The Ideal Model

In this section, we formally define the distribution of our ideal randomized oracle.

Definition 7.4.4 (Random Instance-hiding Witness Encryption Oracle). Let V be a PPT
universal circuit-evaluator as defined in Definition 2.1.1 that takes as input (w, x) where
x ∈ {0, 1}n and outputs b ∈ {0, 1}. We define the following random instance-hiding witness
encryption (rIHWE) oracle Θ = (Enc,DecV) as follows. We specify the sub-oracle Θn whose
inputs are parameterized by n, and the actual oracle will be Θ = {Θn}n∈N.

• Enc: {0, 1}n 7→ {0, 1}2n is a random injective function. We will use the Enc oracle to
encrypt a message x ∈ {0, 1}n to obtain a ciphertext c ∈ {0, 1}2n.

• DecV : {0, 1}s 7→ {0, 1}n∪{⊥}: Given w ∈ {0, 1}k, c ∈ {0, 1}2n as inputs and s = k+2n,
Dec(w, c) allows us to decrypt the ciphertext c and get x as long as the predicate test
is satisfied on (w, x). More formally, do as follow:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.

2. Find x such that Enc(x) = c.

3. If VΘ(w, x) = 0 output ⊥. Otherwise, output x.

We define a query-answer pair resulting from query q to subroutine T ∈ {Enc,Dec} with
some answer β as (q 7→ β)T . The oracle Θ provides the subroutines for all inputs lengths
but, for simplicity, and when n is clear from the context, we use Θ = (Enc,DecV) to refer to
Θn for a fixed n.

7.4.3 (Instance-hiding) Witness Encryption exists relative to Θ

In this section, we show how to construct a semantically-secure extended EIHWE with
corresponding verification algorithm V relative to Θ = (Enc,DecV).

Construction 7.4.5 (Extended Extractable Instance-Hiding Witness Encryption). Let V
be a universal circuit-evaluator as defined in Definition 2.1.1. For any security parameter
κ and oracle Θ = (Enc,DecV) sampled according to Definition 7.4.4, we will implement an
extended EIHWE scheme P as follows:

114

• WEnc(a,m, 1κ) : Given a ∈ {0, 1}∗, message m ∈ {0, 1} and security parameter 1κ,
let n = 2 max(κ, |a|). Sample r ← {0, 1}n/2−1 uniformly at random then output
c = Enc(x) where x = (a,m)||r.

• WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ 6= ⊥ then
parse as x′ = (a′,m′)||r′ and output m′. Otherwise, output ⊥.

Lemma 7.4.6. Construction 7.4.5 is a correct and subexponentially-secure oracle-fixed im-
plementation (Definition 3.1.4) of extended extractable instance-hiding witness encryption in
the ideal Θ oracle model.

To prove the security of this construction, we will show that if there exists an adversary
A against scheme P (in the Θ oracle model) that can distinguish between encryptions of
two different messages with non-negligible advantage then there exists a (fixed) deterministic
straight-line extractor E with access to Θ = (Enc,DecV) that can find the witness for the
underlying instance of the challenge ciphertext.

Suppose A is an adversary in the indistinguishability game with success probability 1/2+
ε. Then the extractor E would works as follows: given (a0, a1) as input and acting as the
challenger for adversary A, it runs AΘ(1κ, c∗) where c∗ ←WEnc(ab,mb, 1

κ) is the challenge
ciphertext. To answer any query Enc(x) asked by A, it forwards the query to the oracle
Θ and returns some answer c. To answer any query Dec(w, c) for c 6= c∗ asked by A, the
extractor will instead attempt to simulate this query for A instead of asking Θ directly. In
particular, it first verifies whether there exists a query-answer pair (x 7→ c)Enc that was
generated by A previously. If such a query-answer pair exists then the extractor will run
VΘ(w, x) = β and if β = 1 it returns to A the answer x. If such a query-answer pair does not
exist or β = 0 then it returns ⊥ to A. Note that, while running VΘ(w, x), the extractor will
also need to answer the queries asked by V similar to how it did for A. While handling the
queries made by A, if a decryption query DecV(w, c∗) for the challenge ciphertext is issued
by A, the extractor will pass this query to Θ, and if the result of the decryption is x 6= ⊥
then the extractor will halt execution and output w as the witness for instance x. Otherwise,
if after completing the execution of A, no such query was asked then the extractor outputs
⊥. We prove the following lemma.

Lemma 7.4.7. For any PPT adversary A, pair of instances a0, a1 of the same length |a0| =
|a1| and any m0 6= m1 of the same length |m0| = |m1|, if there exists a non-negligible function
ε(.) such that:

Pr
[
AΘ(1κ, c∗) = b | b $←− {0, 1}, c∗ ←WEnc(ab,mb, 1

κ)
]
≥ 1

2
+ ε(κ) (7.3)

Then there exists a PPT extractor E such that:

Pr
[
EΘ,A(a0, a1) = w ∧ VΘ(w, ab) = 1 | b $←− {0, 1}

]
≥ ε(κ)− negl(κ) (7.4)

115

Let A be an adversary satisfying Equation (7.3) above and let AdvWin be the event
that A succeeds in the distinguishing game. Furthermore, let ExtWin be the event that the
extractor succeeds in extracting a witness (as in Equation (7.4) above). Observe that:

Pr
Θ,b,r

[ExtWin] ≤ Pr
Θ,b,r

[ExtWin ∧ AdvWin] + Pr
Θ,b,r

[AdvWin]

Since Pr[AdvWin] ≥ 1/2 + ε for some non-negligible function ε, it suffices to show that
Pr[ExtWin∧AdvWin] is negligibly close to 1/2. Note that, by our construction of extractor E,
this event is equivalent to saying that the adversary succeeds in the distinguishing game but
never asks a query of the form DecV(w, c∗) for which the answer is x 6= ⊥ and so the extractor
fails to recover the witness. For simplicity of notation define Win := ExtWin ∧ AdvWin.

We will show that, with overwhelming probability over the choice of oracle Θ, the prob-
ability of Win happening is only a negligible factor over the trivial advantage. That is, we
will prove the following claim:

Claim 7.4.8. For any negligible ε, PrΘ [Prb,r[Win] ≥ 1/2 + ε] ≤ negl(κ)

Proof. We first show that we can construct an adversary Â that has the same winning
advantage as A but does not ask decryption queries (only encryption queries). Define Bad
to be the event that A asks (directly or indirectly) a query of the form DecV(w, c′) for some
c′ 6= c∗ for which it has not asked Enc(x) = c′ previously. Given the challenge c∗, the new

adversary Â executes AΘ(c∗) and answers the queries as follows: if the query is an encryption
query then it is directly forwarded to Θ to get the answer. If it is a Dec(w, c′) query for
some c′ 6= c∗ then it will check if Enc(x′) = c′ was asked by A before in which case it runs
VΘ(w, x′) = β and returns the answer x′ if and only if β = 1. If no such encryption was
asked then event Bad has happened and we abort the execution. If a query Dec(w, c∗) was
asked then we return ⊥ immediately since ExtWin does not happen and therefore the Dec
is expected to fail anyway. Thus, as long as Bad does not happen, the advantage of Â in
winning the distinguishing game is at least the advantage of A.

It is straightforward to show, by a standard application of an averaging argument, that
the expression PrΘ [Prb,r[Bad] ≥ ε/3] ≤ negl(κ). Specifically, we know that the probability
of Bad over the randomness of Θ is at most 1/2n as it is the event that A hits an image of a
sparse random injective function without asking the function on the preimage beforehand.
Thus, PrΘ,b,r[Bad] ≤ 1/2n and hence by an averaging argument PrΘ [Prb,r[Bad] ≥ ε/3] ≤
PrΘ

[
Prb,r[Bad] ≥ 2−n/2

]
≤ 2−n/2.

We now proceed to show that Â only succeeds with negligible advantage while asking
only encryption queries. Define Hit to be the event that Â happens to ask Enc(x∗) = c∗.

116

Then we have that:

Pr
Θ

[
Pr
b,r

[Win] ≥ 1

2
+ ε

]
≤ Pr

Θ

[
Pr
b,r

[Win ∧ Bad ∧ Hit] + Pr
b,r

[Bad] + Pr
b,r

[Hit] ≥ 1

2
+ ε

]
≤ Pr

Θ

[
Pr
b,r

[Win ∧ Bad ∧ Hit] ≥ 1

2
+
ε

3
∨ Pr

b,r
[Bad] ≥ ε

3
∨ Pr

b,r
[Hit] ≥ ε

3

]
≤ Pr

Θ

[
Pr
b,r

[Win ∧ Bad ∧ Hit] ≥ 1

2
+
ε

3

]
+ Pr

Θ

[
Pr
b,r

[Bad] ≥ ε

3

]
+ Pr

Θ

[
Pr
b,r

[Hit] ≥ ε

3

]
We can bound the event Hit from happening since it is the event that we invert the

image of a random injective function. This can be done over the randomness of the oracle
then, using an averaging argument, deduce that the probability that Hit happens for a non-
negligible fraction of oracles Θ is negligible.

We will thus focus on proving the first term. In doing so, we will reduce the problem
of indistinguishability to that of predicting the output of a random Boolean function on a
random point in the domain of this function. We then prove that the latter problem is hard
using a compression technique which allows to argue that an adversary that can win the
prediction game with non-negligible advantage can only do so for a negligible fraction of the
oracles. We will make use of the following lemma that shows the existence of a randomized
compression technique for random Boolean functions using adversaries against the prediction
game.

Lemma 7.4.9 (Lemma 10.4 [DTT10]). Let A be an oracle algorithm that makes q queries
to some fixed oracle predicate p : {0, 1}n → {0, 1}, never queries the oracle on its input and
satisfies the following for some ε:

Pr[Ap(x) = p(x)] ≥ 1/2 + ε

Then there exists a randomized encoder E and a randomized decoder D such that:

Pr
r

[D(E(p, r), r) = p] ≥ ε/q

and |E(p, r)| ≤ 2n − ε22n/q.

For any fixed pair (a0, a1) and given adversary Â that wins in the indistinguishability
game without asking any decryption queries, we can construct a new oracle-aided adversary
Ã that aims to win in the experiment ExpP

Ã
(1κ, a0, a1) as defined in Figure 7.2 without

querying the oracle on its input and without asking any decryption queries. The adversary
Ã will have access to oracle Θ and PΘ, which is defined as follows:

P (a0, a1, r, c0, c1) =


0 if c0 = Enc(a0||0||r) and c1 = Enc(a1||1||r)
1 if c0 = Enc(a1||1||r) and c1 = Enc(a0||0||r)
⊥ otherwise

117

Experiment ExpPA(1κ, a0, a1):

1. r
$←− {0, 1}n/2−1, b

$←− {0, 1}

2. c∗0 ← Enc(ab||b||r), c∗1 ← Enc(a1−b||1− b||r)

3. b′ ← AP,Θ(r, c∗0, c
∗
1) where A is not allowed to query P on (a0, a1, r, c

∗
0, c
∗
1) or

(a0, a1, r, c
∗
1, c
∗
0)

4. Output 1 if b = b′ and 0 otherwise.

Figure 7.2: The 2-instance ExpPA Experiment

The adversary Ã, given (r, c∗0, c
∗
1), would execute b′ ← Â(c∗0) and outputs b′ as its answer.

We can modify Ã so that whenever it issues a query to Enc(a||b||r) = cb, it would also call
Enc(a||1−b||r) = c1−b followed by a call to P (a, a, r, c0, c1). This ensures that any encryption
query to Θ is translated into a query to P .

Note that P can be interpreted as an alternative description for Θ. That is, given
P : {0, 1}m → {0, 1} where m = 11n/2 − 1, one can reconstruct Θ on any point in its
domain. Define Pa0,a1 := P (a0, a1, ., ., .) to be the function P restricted to the attributes
a0 and a1. By Lemma 7.4.9, we can encode Pa0,a1 using at most m − ε2m/9q bits where
q is the number of queries that A makes. Thus, we have compressed the entire oracle by
saving α = ε2m/9q bits. Hence, assuming that ε = negl(κ) and q = poly(κ) we find that the

fraction of oracles for which Ã can win on is at most 1/2α = negl(κ).

Proof of Lemma 7.4.6. It is clear that the Construction 7.4.5 is correct. Furthermore, by
Lemma 7.4.7, it also satisfies the extractability property.

7.4.4 Compiling out Θ from IO

In this section, we show a simulatable compiler for compiling out Θ. We formalize the
approach outlined in Section 7.4.1 while making use of Lemma 7.2.4, which allows us to
compile out Θ in two phases: we first compile out part of Θ to get an approximately-correct

obfuscator ÎO
R

in the random oracle model (that produces an obfuscation B̂R in the RO-
model), and then use the previous result of [CKP15] to compile out the random oracle R and
get an obfuscator IO′ in the plain-model. Since we are applying this lemma only a constant
number of times (in fact, just twice), security should still be preserved. Specifically, we will
prove the following claim:

Lemma 7.4.10. Let R v Θ be a random oracle where “v” denotes a sub-model relationship
(see Definition 7.2.1). Then the following holds:

118

• For any IO in the Θ ideal model, there exists a simulatable compiler for it with cor-
rectness error ε < 1/200 that outputs a new obfuscator in the random oracle R model.

• [CKP15] For any IO in the random oracle R model, there exists a simulatable compiler
for it with error correctness ε < 1/200 that outputs a new obfuscator in the plain model.

Proof. The second part of Lemma 7.4.10 follows directly from the previous result of [CKP15],
and thus we focus on proving the first part of the claim. Before we start describing the
compilation process, we present the following definition of canonical executions that is a
property of algorithms in this ideal model and dependent on the oracle being removed, then
we describe the notation and terminology used throughout the proof.

Definition 7.4.11 (Canonical executions). We define an oracle algorithm AΘ relative to
rIHWE to be in canonical form if right after asking any DecV(w, c) = x where x 6= ⊥, A
would also additionally ask the query Enc(x) followed by directly executing VΘ(w, x) on its
own. Note that any algorithm A can be easily modified into a canonical form by increasing
its query complexity at most by a polynomial factor (since V is a PPT algorithm).

Definition 7.4.12 (Query Types). For any canonical oracle algorithm A with access to a
rIHWE oracle Θ, we call the queries that are asked by A to Θ as direct queries and those
queries that are asked by VΘ due to a call to Dec as indirect queries. Furthermore, we say
that a query is visible to A if this query was issued by A and thus it knows the answer that
is returned by Θ. Conversely, we say a query is hidden from A if it is an indirect query
that was not explicitly issued by A (for example, A would have asked a DecV query which
prompted VΘ to ask its own queries and the answers returned to V will not be visible to A).

Note that, while all direct queries are visible to A, an indirect query q may or not may
visible to A; an indirect query q is visible to A if it runs VΘ and q is asked by V then
forwarded to A (where q was not previously asked by A in an explicit manner).

Transcripts. We use bold fonts (e.g., T) to denote the distribution from which we sample
an actual transcript T ← T. For any transcript T of some oracle algorithm, we define U(T)
to be the set of query-answer pairs asked of Θ during the generation of T and define Q(T)
to be the projection of U(T) onto the first element, which represents the set of queries only.

We now proceed to present the construction of the random-oracle model obfuscator that,
given an indistinguishability obfuscator IO = (iO,Ev) in the Θ model, would compile out
and emulate queries to Dec while forwarding any Enc queries to R. Throughout this process,
we assume, without loss of generality, that the ideal-model obfuscator iO and the ideal-model
evaluation of the obfuscation Ev are both in canonical form according to Definition 7.4.11.
For these canonical algorithms, let `O, `B = poly(n), respectively, be the number of queries
asked by the ideal-model obfuscator iO and the evaluation Ev to the rIHWE oracle Θ.

119

Algorithm 2: EmulateCall

Input: Query-answer set U and query q
Oracle: Random oracle R
Output: (ρq,WH) where ρq is a query-answer pair containing the answer of query q

and WH is the set of indirect query-answer pairs (those asked by V)
Begin:
Initialize WH = ∅
if q is a query of type Enc(x) for any x ∈ {0, 1}n then

Set ρq = (x 7→ R(x))Enc

end
if q is a query of the form DecV(w, c) for any w ∈ {0, 1}∗ and c ∈ {0, 1}2n then

if ∃ (x 7→ c)Enc ∈ U then
Emulate b← VΘ(w, x)
for each query qV asked by V do

(ρV,WV)← EmulateCallR(U ∪WH , qV)
WH = WH ∪ (ρV ∪WV)

end
if b = 1 then

Set ρq = ((w, c) 7→ x)Dec /* Canonical caller can now call VΘ(w, x) to
publicize WH */

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

end
Return (ρq,WH)

The new obfuscator ÎO
R

in the random oracle model

Let R = {Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given
a δ-approximate obfuscator IO = (iO,Ev) in the rIHWE oracle model, we construct an

(δ + ε)-approximate obfuscator ÎO = (îO, Êv) in the random oracle model.

Subroutine îO
R

(C) :

1. Emulation phase: Given input circuit C ∈ Cn, emulate iOΘ(C) and let B be the output
of this emulation. Let TO be the transcript of this phase and initialize QO := U(TO) =
∅. For every query q asked by iOΘ(C):

• Call (ρq,WH) ← EmulateCallR(QO, q) as shown in Algorithm 2 and return the
answer in ρq

120

• Add ρq and WH to QO

Note that we will not pass any query-answer pairs QO asked by iOΘ to the output of
this new obfuscation. All of the query-answer pairs in QO, be it visible or hidden, will
only be used for emulation purposes in the following step.

2. Learning phase: Let QB be the set of all visible queries that will be learned, Qh
B be the

set of hidden queries that we will keep track of for emulation purposes. Set m = 3`O/ε

where `O ≤ |iO| represents the number of queries asked by iO. Choose t
$←− [m]

uniformly at random then for i = {1, ..., t} do the following:

• Choose zi
$←− {0, 1}|C| uniformly at random

• Run EvΘ(B, zi). For every query q asked by EvΘ(B, zi):

– Call (ρq,WH) ← EmulateCallR(QO ∪QB ∪Qh
B, q) and return the answer in

ρq

– Add ρq to QB and add WH to Qh
B.

Since Ev is a canonical algorithm, in addition to the direct queries asked by EvΘ(B, zi)
to Θ, the resulting query set QB would also include the indirect queries that have
resulted from EvΘ(B, zi) running VΘ(w, x) = 1 on a successful decryption query.

3. The output of the random oracle model obfuscation algorithm îO
R

(C) will be B̂ =
(B,QB) where QB is the set of visible (direct and/or indirect) query-answer pairs.

Subroutine Êv
R

(B̂, z): Initialize QB̂ = ∅ to be the set of queries asked when evaluating

B̂. To evaluate B̂ = (B,QB) on a new random input z we simply emulate EvΘ(B, z). For
every query q asked by EvΘ(B, z), run and set (ρq,WH) = EmulateCallR(QB ∪QB̂, q) then
return the answer in ρq and add (ρq,WH) to QB̂.

Note that, since we are emulating query calls with respect to QB ∪ QB̂, all the indirect
query-answer pairs WH returned from queries of the form DecV(w, c) are due to knowing the
underlying (x 7→ c)Enc (i.e. (x 7→ c)Enc ∈ QB ∪ QB̂) so WH is visible and therefore used in
the emulation of any subsequent queries issued during this execution.

The running time of îO. We note that the running time of the new obfuscator îO
remains polynomial time since we are emulating the original obfuscation once followed by a
polynomial number m of learning iterations. Furthermore, while we are indeed working with
an oracle where the PPT universal circuit evaluator V can have oracle gates to subroutines
of Θ, we emphasize that in our framework of extended primitives, the effective running time
of V, which we are executing during EmulateCall, remains to be a strict polynomial in the
size of V and so the issue of exponential or infinite recursive calls is non-existent.

121

Proving Approximate Correctness. Let QS = (QO ∪ QB ∪ Qh
B ∪ QB̂) be the set of

all query-answer pairs asked during the emulation, learning, and evaluation phases. We
define the following hybrid experiments to show that the correctness of the new random-
oracle model obfuscator that simulates an execution of a Θ-model obfuscation is sufficiently
close to the correctness of an ideal execution of the Θ-model obfuscation. We denote the
distribution of Hybrid i as H i = (Qi

O, Q
i
B, Q

i,h
B , Q

i
B̂

).

• Hybrid 0: This is the real experiment, which is represented as the construction in
Section 7.4.4.

• Hybrid 1: This is the same as Hybrid 0 except for two differences:

– The queries asked during emulation (Step 1) and learning (Step 2) answered
relative to a true oracle Θ instead of emulating them using EmulateCall.

– We modify the final execution Êv(B̂, z) such that, when we execute EvΘ(B, z),
we would forward all queries to Θ instead of using EmulateCall except when the
query is of the form Dec(w, c) for some (x 7→ c)Enc /∈ QB ∪QB̂, in which case we
do not forward this query to Θ and use ⊥ as the answer instead. We will refer to
such decryption queries as being unknown.

• Hybrid 2: This is the ideal experiment, where all the queries asked during emulation,
learning and final execution are answered relative to a true oracle Θ. That is, all
queries whose answers are emulated using EmulateCall throughout the obfuscation
and final evaluation phases will instead be answered directly using Θ.

Claim 7.4.13. ∆(H0, H1) ≤ negl(κ)

Proof. We first observe that the emulation and learning processes of Hybrid 0 is a statistical
simulation of the true oracle. Furthermore, if the final execution phase asks a query Dec(w, c)
for which (x 7→ c)Enc ∈ QB ∪ QB̂ then the answer in both hybrids will be consistent with
each other otherwise the answer is ⊥ in both hybrids. Consequently, any encryption query
will be answered in Hybrid 0 using random oracle R and in Hybrid 1 using Θ, and Hybrid
0 statistically simulates decryptions queries without access to Θ.

The only event that can cause a discrepancy between these two hybrids is during the
emulation and learning phases where a decryption query DecV(w, c) is issued and (x 7→
c)Enc /∈ QS but c is a valid ciphertext (i.e. there exists x such that Enc(x) = c). In that case,
in Hybrid 0, the answer to such a query will be ⊥ whereas the answer in Hybrid 1 will be x.
However, the probability of that happening in Hybrid 1 (over the randomness of oracle Θ)
is at most (2n − p)/(22n − p) ≤ 1/2n−1 = negl(κ) given that p = tlBlO = poly(κ).

Claim 7.4.14. ∆(H1, H2) ≤ ε

Proof. Note that, since the emulation and learning processes are the same in both hybrids,
we have that (Q1

O, Q
1
B, Q

1,h
B) = (Q2

O, Q
2
B, Q

2,h
B) and so we omit the superscripts when refer-

encing these query-answer sets for simplicity of notation. In Hybrid 1, the execution of B̂

122

emulates EvΘ(B, z) on a random input z and answers all queries using Θ except for un-

known decryption queries, whereas in Hybrid 2, we execute B̂ and answer all of EvΘ(B, z)’s
queries using the actual oracle Θ. In essence, in Hybrid 1, we can think of the execution

as EvΘ̂(B, z) where Θ̂ is the oracle simulated by B̂ using QB and Θ. We will identify the

events that differentiate between the executions EvΘ(B, z) and EvΘ̂(B, z).

Assume that the query-answer pairs so far during the execution of B̂ are the same in both
hybrids. That is, we start with some Q1

B̂
= Q2

B̂
= QB̂ for the sake of proving inductively that

any subsequent query-answer pairs are closely distributed between the two hybrids. Let q be

a new (possibly indirect) query that is being asked by EvΘ̂(B, z). We present a case-by-case
analysis of all possible query types to identify the cases that can cause discrepancies between
the two hybrids:

1. If q is a query of type Enc(x), then it will be answered the same in both hybrids using
the true oracle Θ.

2. If q is of type Dec(w, c) for which there exists (x 7→ c)Enc ∈ QB ∪QB̂ then the answer
to q would be determined the same in both hybrids. In particular, both hybrids will
run VΘ(w, c) = b, adding any indirect queries to QB̂ and answering q with x if and
only if b = 1.

3. If q is of type Dec(w, c) such that (x 7→ c)Enc /∈ QS then this means that we are
attempting to decrypt a ciphertext for which we have not encrypted before (either
directly or indirectly). In Hybrid 2, since Enc is a sparse random injective function,
the answer would be ⊥ with overwhelming probability as c would be invalid, and in
Hybrid 1 the answer will also be ⊥ by the definition of Êv(B̂, z) in this hybrid. Note
that in both hybrids, there will not be any indirect queries in QB̂ as a result of this
query since the ciphertext c is deemed invalid and V will not even be executed.

4. Suppose q is of type Dec(w, c) that is not determined by QB ∪ QB̂ in Hybrid 1 and
yet is determined by QS in Hybrid 2. We list the different cases here that may cause
problems:

(a) If q is of type Dec(w, c) such that (x 7→ c)Enc ∈ QS \ (QB ∪QB̂) and VΘ(w, x) = 0
then this means that we are attempting to decrypt a ciphertext for which the
decryption will fail. The answer will be ⊥ in Hybrid 1 by the definition of Êv(B̂, z)
and is also ⊥ in Hybrid 2 since we are using the real oracle Θ. However, one
crucial point here is that, while there will possibly exist hidden queries due to the
internal execution of VΘ(w, x) in Hybrid 2, such hidden queries will not be present
in Hybrid 1 as we do not run V there. As we shall see later on, this presents a
potential source of inconsistency for subsequent queries.

(b) Bad Event 1: The query-answer pair (x 7→ c)Enc is in QO \ (QB ∪ QB̂) and
VΘ(w, x) = 1. That is, we are for the first time decrypting a ciphertext that was
encrypted in Step 1 because we failed to learn the answer of this decryption query

123

during the learning phase of Step 2. In that case, in Hybrid 1, the answer would
be ⊥ since we do not know the corresponding message x whereas in Hybrid 2 it
would use the answer consistent with QO ⊆ QS and output x.

(c) Bad Event 2: The query-answer pair (x 7→ c)Enc is in Qh
B \ (QB ∪ QB̂) and

VΘ(w, x) = 1. That is, we are for the first time decrypting a ciphertext from a
hidden encryption query in Step 2. In that case, in Hybrid 1, the answer would
be ⊥ since we do not know the corresponding message x whereas in Hybrid 2 it
would use the answer consistent with Qh

B ⊆ QS and output x.

(d) Bad Event 3: The query-answer pair (x 7→ c)Enc is in Qh
B̂
\ (QB ∪ QB̂) and

VΘ(w, x) = 1 where Qh
B̂

is the set of hidden queries generated in Hybrid 2 as a
result of queries from Case 4a. In that case, in Hybrid 1, the answer would be ⊥
since we do not know the corresponding message x whereas in Hybrid 2 it would
use the answer consistent with Qh

B̂
⊆ QS and output x.

While the above bad events will generate indirect queries in Hybrid 2 (the ciphertext
is valid there), these indirect queries will not be present in Hybrid 1, and may cause
inconsistencies between the two hybrids when evaluating subsequent queries. However,
as long as we show that the bad events happen with small probability, those indirect
queries will also be generated in Hybrid 2 only with small probability.

For input x, let E1(x) be the event that Case 4b happens, E2(x) be the event that
Case 4c happens, and E3(x) be the event that Case 4d happens. Assuming that event
E(x) = (E1(x)∨E2(x)∨E3(x)) does not happen, both experiments will proceed identically

the same and the output distributions of EvΘ(B, x) and EvΘ̂(B, x) will be statistically close.

More formally, the probability of correctness for ÎO is:

Pr
x

[EvΘ̂(B, x) 6= C(x)] = Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)]

+ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ E(x)]

≤ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] + Pr
x

[E(x)]

By the approximate functionality of IO, we have that:

Pr
x

[iOΘ(C)(x) 6= C(x)] = Pr
x

[EvΘ(B, x) 6= C(x)] ≤ δ(n)

Therefore,

Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] = Pr
x

[EvΘ(B, x) 6= C(x) ∧ ¬E(x)] ≤ δ

.
We are thus left to show that Pr[E(x)] = Pr[E1(x)] + Pr[E2(x) | E1(x)] + Pr[E3(x) | E1(x)∧
E2(x)] ≤ ε. Since both experiments proceed the same up until E happens, the probability of
E happening is the same in both worlds and we will thus choose to bound these bad events
in Hybrid 2.

124

Claim 7.4.15. Prx[E1(x)] ≤ ε/3.

Proof. Recall that E1 is the event that during the final execution of the obfuscation B̂
on a random input, a Dec(w, c) query is asked for some c that was generated during the
obfuscation phase but such a decryption query was never asked during the learning phase
(Case 4b). For all i ∈ [t], let Q′Bi = (QBi ∪ Qh

Bi
) ∩ QO be the set of query-answer pairs

generated by the i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and are also
generated during the obfuscation emulation phase (Step 1). Note that, since the maximum
number of learning iterations m > `O and Q′Bi ⊆ Q′Bi+1

, the number of learning iterations

that increase the size of the set of learned obfuscation queries is at most `O. We say t
$←− [m]

is bad if it is the case that Q′Bt 6= Q′Bt+1
(i.e. t is an index of a learning iteration that

increases the size of the learned obfuscation queries). This would imply that after t learning
iterations in Hybrid 1, the real execution Q′

B̂
:= Q′Bt+1

would contain a new unlearned query
that was in QO. Thus, given that m = 3`O/ε, the probability (over the selection of t) that t
is bad is at most `O/m < ε/3.

Claim 7.4.16. Prx[E2(x) | E1(x)] ≤ negl(κ)

Proof. Recall that E2 is the event that during the final execution of the obfuscation B̂ on a
random input, a query is asked that was issued during the learning phase but was part of
the hidden set and therefore never publicized (Case 4c).

For all i ∈ [t], let QBi = (QBi ∪Qh
Bi

) be the set of (public and hidden) query-answer pairs

generated by the i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and QB̂ be
all the query-answer pairs of the final evaluation of the obfuscation. Note that in Hybrid 2,
the real oracle Θ is used and therefore each execution of EvΘ(B, zi) is independent of the
other executions. In particular, we can think of the final evaluation as iteration t+ 1 of the
learning phase with query-answer pairs QBt+1 = QB̂. Now, we can think of an intermediate
hybrid with distribution H2′ where the executions are randomly permuted in a way such
that execution t + 1 in Hybrid 2 is now the first execution in Hybrid 2′. Note that, since
the executions are independent, the distributions H2 and H2′ are equivalent and it remains
to show that E2 is unlikely to happen in Hybrid 2′. Specifically, we need to show that the
first execution of the learning phase (with query-answer pairs QBt+1) does not decrypt a
ciphertext generated by any previous hidden queries in the learning phase. However, since
this is the first execution, there exists no hidden queries from previous executions and it
suffices to argue that it does not decrypt a ciphertext generated by any hidden queries Qh

Bt+1

from its own execution.
Since E1 does not happen and since the probability that EvΘ(B, zt+1) decrypts a cipher-

text that was never encrypted during the whole process is negligible, the only ciphertexts
that this execution will attempt to decrypt are ones that were generated during this very
same execution. Therefore, E2 only happens with negligible probability when a ciphertext
that was never encrypted before is being decrypted.

Claim 7.4.17. Pr[E3(x) | E1(x) ∧ E2(x)] ≤ negl(κ)

125

Proof. We bound this event in Hybrid 1. Given that the final execution in this hybrid
does not issue unknown decryption queries, there are no hidden queries generated in this
hybrid and so E3 only happens with negligible probability when a ciphertext that was never
encrypted before is being decrypted.

Combining the results of the above claims, we get that Prx[E(x)] ≤ Pr[E1(x)]+Pr[E2(x) |
E1(x)] + Pr[E3(x) | E1(x) ∧ E2(x)] ≤ ε/3 + negl(n) ≤ ε.

Proving Security. To show that the resulting obfuscator is secure, it suffices to show that
the compilation process represented as the new obfuscator’s construction is simulatable. We
show a simulator S (with access to Θ) that works as follows: given an obfuscated circuit B
in the Θ ideal model, it runs the learning procedure as shown in Step 2 of the new obfuscator
ÎO to learn the heavy queries QB then outputs B̂ = (B,QB). Note that this distribution is

statistically close to the output of the real execution of ÎO and, therefore, security follows.

7.5 Separating IO from Homomorphic Witness Encryp-

tion

In this section, we formally prove our third main separation theorem which states that there
is no fully black-box construction of indistinguishability obfuscation from any extended fully
homomorphic encryption scheme.

Theorem 7.5.1. Assume the existence of one-way functions and that NP 6⊆ coAM. Then
there exists no monolithic construction of indistinguishability obfuscation (IO) from fully
homomorphic encryption (FHE).

In fact, we prove a stronger result by showing a separation of IO from a more generalized
and powerful version of witness encryption, which we call extended extractable homomorphic
witness encryption. In essence, this is an instance-revealing witness encryption (Definition
2.6.2) with added homomorphic capabilities and extractable security.

Definition 7.5.2 (Extended Extractable Instance-Revealing Homomorphic Witness Encryp-
tion). Let V be a universal circuit-evaluator that takes instance a and witness w and either
accepts or rejects. Furthermore, let F be a universal circuit evaluator that takes as input a se-
quence of messages m1, ...,mk to output some value m′. For any given security parameter κ,
an extended extractable instance-revealing homomorphic witness encryption (ex-EIRHWE)
scheme defined for (V,F) consists of four PPT algorithms P = (Enc,Rev,DecV,EvalF) de-
fined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and security
parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

126

• Rev(c) : given ciphertext c outputs a ∈ {0, 1}∗ ∪ {⊥}.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈
{0, 1}∗.

• EvalF(c1, ..., ck) : given ciphertexts5 c1 = Enc(a1,m1, 1
κ), ..., ck = Enc(ak,mk, 1

κ), it
outputs {c′i}

p
i=1 where p = |U | and U ⊆ A is the set of distinct attributes from A =

{a1, ..., ak}.

An extended extractable instance-revealing homomorphic witness encryption scheme satisfies
the following completeness and security properties:

• Decryption Correctness: For any security parameter κ, we have that the following
two conditions are satisfied:

– For any (w, a) such that VP (w, a) = 1, and any m:

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1

– For any (wi, ai) such that VP (wi, ai) = 1, and any m1, ...,mk:

Pr
Enc,Dec,Eval

[Dec(wi,Eval(c1, ..., ck)) = FP (m1, ...,mk)|i] = 1

where ci = Enc(ak,mk, 1
κ) for all i ∈ [k] and FP (m1, ...,mk)|i denotes the ith

secret share of FP (m1, ...,mk).

• Instance-Revealing Correctness: For any security parameter κ and any (a,m) it
holds that:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1

Furthermore, for any c for which there is no a,m, κ such that Enc(a,m, 1κ) = c it holds
that Rev(c) = ⊥.

• Extractability: For any PPT adversary A and polynomial p1(.), there exists a PPT
(black-box) straight-line extractor E and a polynomial function p2(.) such that the
following holds. For any security parameter κ, for all a and any m0 6= m1 of the same
length |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(a,mb, 1

κ)
]
≥ 1

2
+

1

p1(κ)

Then:

Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ 1

p2(κ)
5Without loss of generality, we exclude from the input to the evaluation any explicit in-the-clear repre-

sentation of a function f ∈ F to compute on the underlying messages as we can interpret the function f as
a “message” mf = f , encrypt it to get cf and include it as input to the evaluation.

127

Given the above definition of ex-EIRHWE, we prove the following theorem, which states
that there is no fully black-box construction IO from extended EIRHWE.

Theorem 7.5.3. Assume the existence of one-way functions and that NP 6⊆ coAM. Then
there exists no monolithic construction of indistinguishability obfuscation from extractable
instance-revealing homomorphic witness encryption for any PPT verification algorithm V
and function F.

Since extended EIRHWE implies extended fully homomorphic encryption (in fact, in
Sections 7.6.2 and 7.6.3, we show that it also implies other more powerful primitives such
as extended attribute-based FHE and spooky encryption), Theorem 7.5.1 follows from The-
orem 7.5.3, the above observations, and Lemma 6.6.3 (the transitivity lemma). As a result,
for the remainder of this section we will focus on proving Theorem 7.5.3.

7.5.1 Overview of Proof Techniques

To prove Theorem 7.5.3, we will apply Lemma 7.2.7 for the rIRHWE model Ψ (formally
defined in Section 7.5.2) to prove that there is no black-box construction of IO from any
primitive P that can be oracle-fixed constructed from the Ψ. In particular, we will do so for
P that is the extended IRHWE primitive. Our task is thus twofold: (1) to prove that P
can be oracle-fixed constructed from Ψ and (2) to show a simulatable compilation procedure
that compiles out Ψ from any IO construction. The first task is proven in Section 7.5.3 and
the second task is proven in Section 7.5.4. By Lemma 7.2.7, this would imply the separation
result of IO from P and prove Theorem 7.5.3.

Our oracle, which is more formally defined in Section 7.5.2, resembles an idealized version
of a homomorphic witness encryption scheme, which makes the construction of extended
IRHWE straightforward. As a result, the main challenge lies in showing a simulatable
compilation procedure for IO that satisfies Definition 7.2.2 in this idealized model, and
therefore, it is instructive to look at how the compilation process works and what challenges
are faced with dealing with oracle Ψ.

High-level Compiler Structure and Challenges

Here we briefly discuss the general structure of the proposed compiler before going over the
issues that arise when dealing with how to compile out Ψ. In this ideal model, we will aim
to compile out both the decryption and evaluation procedures to reduce the Ψ oracle into a
basic random oracle. Note, however, that while we will be using an instance-revealing oracle
(and therefore we can run V on the revealed attribute to discover its indirect queries similar
to the IRWE case), we still have to handle those hidden queries issued by the evaluation
function F.

The Challenge Faced with Homomorphic Witness Encryption. Similarly to the
case of compiling out rIHWE, since Ψ is an extended oracle, the algorithm F is allowed to

128

issues queries to any subroutine in Ψ. As a result, during the learning process of the compila-
tion procedure, a query to EvalF might be asked for which queries issued by F would remain
hidden (see Definition 7.4.12) and therefore may affect correctness when a new execution of

B̂(x) hits one of those queries.

Resolving the Challenge. We resolve this problem by canonicalizing the emulation and
learning processes as well as the obfuscation B so that we force the obfuscation B, upon
issuing a query q of the form EvalF(c1, ..., ck), to explicitly reveal any queries asked by F by
having it call FΨ(m1, ...,mk) if it knows all of the encryptions Enc(ai,mi) = ci. However, we

still need to consider the case that, when executing B̂Θ(x), at least one of the encryptions
are unknown, in which case, we simply emulate the answer of q to be set of uniformly random
ciphertexts (which we will categorize as fake ciphertexts). We argue that unless a Dec query
is asked to decrypt one of the fake ciphertexts then the real execution’s distribution is close
to an ideal execution’s distribution. We prove that due to the learning procedure, such a
decryption query has a low probability of happening.

7.5.2 The Ideal Model

In this section, we define the distribution of our ideal randomized oracle.

Definition 7.5.4 (Random Instance-revealing Witness Homomorphic Encryption Oracle).
Let V be a universal circuit-evaluator that takes instance a and witness w and either accepts
or rejects. Furthermore, let F be a universal circuit evaluator that takes as input a sequence of
messages m1, ...,mk to output some value m′. Let H : {0, 1}∗ → {0, 1}n/2 be a public random
hash function. We define the following random instance-revealing witness homomorphic
encryption (rIRWHE) oracle ΨV,F,n = (Enc,Rev,DecV,EvalF) as follows:

• Enc: {0, 1}n 7→ {0, 1}2n is a random injective function. We will use the Enc oracle to
encrypt a message m ∈ {0, 1}n/2 with respect to attribute a ∈ {0, 1}n/2 to obtain a
ciphertext c ∈ {0, 1}2n.

For any c ∈ {0, 1}2n, we call c valid if there exists x such that Enc(x) = c and fake
otherwise.

• Rev : {0, 1}2n 7→ {0, 1}n/2 ∪ ⊥ is a function that, given an input c ∈ {0, 1}2n, would
output the corresponding a for which Enc((a,m)) = c. If there is no such preimage
then it outputs ⊥ instead.

• DecV : {0, 1}s 7→ {0, 1}n ∪ {⊥}: Given w ∈ {0, 1}k, c ∈ {0, 1}2n as inputs where k =
poly(n) and s = k + 2n, Dec(w, c) allows us to decrypt the ciphertext c and get
x = (a,m) as long as the predicate test is satisfied on (w, a). More formally, do as
follow:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.

129

2. Find x such that Enc(x) = c.

3. If VΘ(w, a) = 0 output ⊥. Otherwise, output x = (a,m).

• EvalF : {0, 1}2nk 7→ {0, 1}2np : Given a sequence of inputs c1, ..., ck, this subroutine
performs the following:

1. If for some i ∈ [k] @ xi = (ai,mi) for Enc(xi) = ci, then output ⊥. Otherwise,
continue to the next step.

2. For each i ∈ k, find xi = (ai,mi) such that Enc(xi) = ci (this is an inefficient
process). Let {a′1, ..., a′p} be the set of distinct attributes embedded in x1, ..., xk
where p ≤ k.

3. Run b = FΨ(m1, ...,mk)

4. Output {c′i}
p
i=1 where, for all i ∈ [p], c′i = Enc(x′i), x

′
i = (a′i, bi||hi), where the

value h is defined as hi = H(i, a1, ..., ak,m1, ...,mk) and bi is the i’th share of b.

We define a query-answer pair resulting from query q to subroutine T ∈ {Enc,Rev,DecV,EvalF}
with some answer β as (q 7→ β)T . For simplicity, when n is clear from the context, we use
Ψ = (Enc,Rev,DecV,EvalF) to refer to ΨV,F,n for a fixed n.

Remark 7.5.5. Note that for the sake of achieving the most general case of extended
primitives from this oracle, we will allow both F and V to have any oracle gates to Ψ =
(Enc,DecV,Rev,EvalF).

7.5.3 Homomorphic Witness Encryption exists relative to Ψ

In this section, we show how to construct a semantically-secure extended extractable IRHWE
with corresponding universal-circuit evaluators V and F relative to Ψ = (Enc,Rev,DecV,EvalF).
More specifically, we will show how to construct a primitive (in the Ψ oracle model) that is
simpler to prove the existence of and yet still implies EIRHWE.

Definition 7.5.6 (Extended Extractable One-way Homomorphic Witness Encryption (ex-EO-
HWE)). Let V be a universal circuit-evaluator that takes instance a and witness w and either
accepts or rejects. Furthermore, let F be a universal circuit evaluator that takes as input a
sequence of messages m1, ...,mk to output some value m′. For any given security parameter
κ, an extended extractable one-way homomorphic witness encryption scheme consists of the
following PPT algorithms P = (Enc,Rev,DecV,EvalF) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security pa-
rameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• Rev(c) : given ciphertext c returns the underlying attribute a ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈
{0, 1}∗.

130

• EvalF(c1, ..., ck): given ciphertexts c1, ..., ck, outputs another sequence of ciphertexts
(c′1, ..., c

′
p) where p ≤ k.

An extended extractable one-way homomorphic witness encryption scheme satisfies the same
completeness properties of Definition 7.5.2 but with the extractability property replaced with
the following:

• Extractable One-Wayness: For any PPT adversary A and polynomial p1(.), there
exists a PPT (black-box) straight-line extractor E and a polynomial function p2(.) such
that the following holds. For any security parameter κ, k = poly(κ), and for all a, if:

Pr
[
A(1κ, c) = m | m $←− {0, 1}k, c← Enc(a,m, 1κ)

]
≥ 1

p1(κ)

Then:

Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ 1

p2(κ)

Construction 7.5.7 (Extended Extractable One-way Homomorphic Witness Encryption).
Let V be a universal circuit-evaluator that takes instance a and witness w and either accepts
or rejects. Furthermore, let F be a universal circuit evaluator that takes as input a sequence
of messages m1, ...,mk to output some value m′. For any security parameter κ and oracle
Ψκ sampled according to Definition 7.5.4, we will implement an extended EOHWE scheme
P for messages m ∈ {0, 1}k where k = poly(κ) as follows:

• WEnc(a,m, 1κ) : Given a ∈ {0, 1}∗, message m ∈ {0, 1}k and security parameter 1κ,
output Enc(x) where x = (a,m).

• WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ 6= ⊥, parse
as x′ = (a′,m′) and output m′. Otherwise, output ⊥.

• WEval(c1, ..., ck) : Given ciphertexts c1, ..., ck, it outputs EvalF(c1, ..., ck).

Remark 7.5.8 (From one-wayness to indistinguishability.). We note that the primitive ex-
EOHWE, which has one-way security, can be used to build an indistinguishability-based
ex-IRHWE. For any a, since Enc(a, .) is a random injective function (and hence one-way)
we have that, by the Goldreich-Levin thoerem [GL89], there exists a hardcore predicate
b = 〈r, r′〉 for the one-way function Enc′(a, r, r′) := (Enc(a, r), r′). Now, to encrypt a one-
bit message b under some attribute a, we would output the ciphertext c = (Enc(a, r), r′)
where r, r′ ← {0, 1}k are randomly sampled conditioned on b = 〈r, r′〉. Furthermore, to
perform an evaluation Eval′F′(c1, ..., cp) over a set of ciphertexts of the form ci = (c′i, r

′
i)

where c′i = Enc(a, ri), we will first choose r′F uniformly at random then run EvalF(c′i, ..., c
′
p)

where F is defined such that it outputs random rF for which 〈rF, r′F〉 = F′(〈r1, r
′
1〉, ..., 〈rp, r′p〉).

We then output cF = (Enc(a, rF), r′F) as the new evaluated ciphertext.

Lemma 7.5.9. Construction 7.5.7 is a correct and subexponentially-secure oracle-fixed im-
plementation (Definition 3.1.4) of an extended extractable one-way homomorphic witness
encryption in the ideal Ψ oracle model.

131

To prove the security of this construction, we will show that if there exists an adversary
A against scheme P (in the Ψ oracle model) that can invert an encryption of a random
message with non-negligible advantage then there exists a (fixed) deterministic straight-line
extractor E with access to Ψ = (Enc,Rev,DecV,EvalF) that can find the witness for the
underlying instance of the challenge ciphertext.

Suppose A is an adversary in the inversion game with success probability ε. Then
the extractor E would works as follows: given a as input and acting as the challenger

for adversary A, it chooses m
$←− {0, 1} uniformly at random then runs AΨ(1κ, c∗) where

c∗ ← WEnc(a,m, 1κ) is the challenge. Let QA be the set of query-answer pairs for the
encryption queries that A will ask. Queries issued by A are handled by E as follows:

• To answer any query Enc(x) asked by A, it forwards the query to the oracle Ψ and
returns some answer c. Add (x 7→ c)Enc to QA.

• To answer any query Rev(c) asked by A, it forwards the query to the oracle Ψ and
returns some answer a.

• To answer any query DecV(w, c) asked by A, the extractor first issues a query Rev(c)
to get some answer a. If a 6= ⊥, it would execute VΨ(w, a), forwarding queries asked
by V to Ψ similar to how it does for A and adds any resulting query-answer pairs to
QA. Finally, it forwards the query DecV(w, c) to Ψ to get some answer x. If a = ⊥, it
returns ⊥ to A otherwise it returns x and adds (x 7→ c)Enc to QA if x 6= ⊥.

• To answer any query EvalF(c1, ..., ck) asked by A, the extractor first issues queries
Rev(c1), ..., Rev(ck) to get a sequence of answers (a1, ..., ak). Let (a′1, ..., a

′
p) be the

set of unique attributes from (a1, ..., ak). If a′i 6= ⊥ for all i ∈ [p], it would check
if there exists ((ai,mi) 7→ ci)Enc for all i ∈ [k] in QA. If so, it proceeds to run
m′ ← FΨ(m1, ...,mk), forwarding queries asked by F to Ψ, then finally returns {c′i}

p
i=1

where c′i = Enc(a′i, bi|hi), bi is the i’th random additive share of m′ and the value of hi
is equal to H(i, a1, ..., ak,m1, ...,mk). Finally, it adds all of (x′i 7→ c′i)Enc to QA where
x′i = (a′i, bi|hi).
However, if (xi 7→ ci)Enc /∈ QA for some i ∈ [k], and in particular if ci = c∗ for
some i, then the extractor would instead emulate the ciphertext evaluations c′i by
encrypting a random message for each different attribute a′i (since it does not know
the underlying plaintext and cannot run F) and we call c′i fake ciphertexts. Note that
by the collision resistance property of H, A would not be able to distinguish between
such fake ciphertexts and real evaluated ones.

While handling the queries made by A, if a decryption query DecV(w, c) is issued by A
(perhaps even indirectly as a result of running V or F) for some c such that Rev(c) = Rev(c∗)
(this includes either decrypting c∗ directly or another c′ having the same attribute as c∗ that
was perhaps generated as a result of an evaluation query with c∗ as one of the inputs), the
extractor will pass this query to Ψ, and if the result of the decryption is x 6= ⊥ then the
extractor will halt execution and output w as the witness for instance x∗ = (a,m). Otherwise,

132

if after completing the execution of A, no such query was asked then the extractor outputs
⊥. We prove the following lemma.

Lemma 7.5.10. For any PPT adversary A and instance a, if there exists a non-negligible
function ε(.) such that:

Pr
[
AΘ(1κ, c) = m | m $←− {0, 1}k, c←WEnc(a,m, 1κ)

]
≥ ε(κ) (7.5)

Then there exists a PPT extractor E such that:

Pr
[
EΘ,A(a) = w ∧ VΘ(w, a) = 1

]
≥ ε(κ)− negl(κ) (7.6)

Proof. Let A be an adversary satisfying Equation (7.5) above and let AdvWin be the event
that A succeeds in the inversion game. Furthermore, let ExtWin be the event that the
extractor succeeds in extracting a witness (as in Equation (7.6) above). Note that, by our
construction of extractor E, when E executes A, it perfectly simulates the oracle Ψ for A
assuming that several bad events do not happen. Let B1 be the bad event that A asks
Dec(w, c1) or Eval(c1, ..., ck) where (xi 7→ ci)Enc /∈ QA for some i ∈ [k]. Let B2 be the bad
event that A asks Dec(w, c1) or Eval(c1, ..., ck) where (xi 7→ ci)Enc /∈ QA for some i is a hidden
query that was asked due to a previous query EvalF(y1, ..., yk) and yj = c∗ or is otherwise
fake for some j (so F could not be executed by the extractor). As long as B = (B1 ∨ B2)
does not happens then the extractor will perfectly simulate A’s view.

Note that for the special case of FHE, as long as B does not happen then all fake
ciphertexts have the same attribute as c∗ since the only case that Eval(c1, ..., ck) would
generate a fake ciphertext is when Rev(ci) = Rev(c∗) for all i. If A issues DecV(w, c′i) for
some fake ciphertext c′i then the extractor would return the answer returned by Ψ even
though that answer might be a random incorrect answer. However, this is safe to do since
once A successfully decrypts a fake ciphertext (which must have an attribute equal to the
attribute of c∗), the extractor wins immediately.

For the more general case where a fake ciphertext c′i generated by (c′1, ..., c
′
k)← Eval(c1, ..., ck)

queries may have different attributes (depending on the attribute value of the input cipher-
texts), we argue that decrypting c′i where Rev(c′i) 6= Rev(c∗) will not affect the distribution
of the view of A. Recall that, by the design of the extractor, c′i would be an encryption of a
random message when in the ideal world it would have been an encryption of the i’th random
additive share of F(m1, ...,mk). However, by the security of the random secret sharing, we
can argue that, without knowing all the other secret shares, the distributions Dec(w, c′i) and
Un/2 are statistically close.

As a result of the above, the event B reduces to finding an image of a sparse random
injective function, which is negligibly hard to accomplish. Now we show that whenever A
wins then E must win as well. Observe that:

Pr
Θ,m

[ExtWin] ≤ Pr
Θ,m

[ExtWin ∧ AdvWin ∧B] + Pr
Θ,m

[AdvWin] + Pr
Θ,m

[B]

Since Pr[AdvWin] ≥ ε for some non-negligible function ε and Pr[B] ≤ negl(κ), it suffices
to show that Pr[ExtWin ∧ AdvWin ∧ B] is negligible. Note that this event is equivalent to

133

saying that the adversary succeeds in the inversion game but never asks a query of the form
DecV(w, c′) such that Rev(c′) = Rev(c∗) and for which the answer is x 6= ⊥ so the extractor
fails to recover the witness. For simplicity of notation define Win := ExtWin ∧ AdvWin ∧B.

We will show that, with overwhelming probability over the choice of oracle Ψ, the prob-
ability of Win happening is negligible. That is, we will prove the following claim:

Claim 7.5.11. For any negligible δ, PrΘ

[
Prm[Win] ≥

√
δ
]
≤
√
δ

Proof. We list all possible queries that A could ask and argue that these queries do not help
A in any way without also forcing the extractor to win as well. Specifically, we show that for
any such A that satisfies the event Win, there exists another adversary Â that depends on A
and also satisfies the same event but does not ask any decryption or evaluation queries (only
encryption queries). This would then reduce to the standard case of inverting a random
injective function, which is known to be hard over the randomness of the oracle. We define
the adversary Â as follows. Upon executing A, it handles the queries issued by A as follows:

• If A asks a query of the form Enc(x) then Â forwards the query to Ψ to get the answer.

• If A asks a query of the form Rev(c) then, since B does not happen, it must be the

case that ((a,m) 7→ c)Enc ∈ QA and therefore Â returns a.

• If A asks a query of the form Dec(w, c∗) or Dec(w, c′) where c′ has the same attribute
as c∗ then w must be a string for which VΨ(w, a∗) = 0 or otherwise the extractor wins,

which contradicts that ExtWin happens. If that is the case, since w is not a witness, Â
would return ⊥ to A after running VΨ(w, a∗) and answering its queries appropriately.

• If A asks a query of the form Dec(w, c′) for some c′ 6= c∗ then, since B does not
happen, it must be the case that A has asked a (direct or indirect) visible encryption

query Enc(x′) = c′. Therefore, Â would have observed this encryption query and can
therefore run VΨ(w, a′) and return the appropriate answer (x or ⊥) depending on the
answer of V.

• If A asks a query of the form EvalF(c1, ..., ck) and ((ai,mi) 7→ ci)Enc ∈ QA for all i

then Â can compute β = FΨ(m1, ...,mk), handling its queries, returning the correct
encryptions of each share of β, and adding the resulting new encryptions to QA.

• If A asks a query of the form EvalF(c1, ..., ck) and ci = c∗ or is otherwise a fake ciphertext

then Â returns encryptions of random messages under the same attributes as the input
ciphertexts (without running F). Note that, while an ideal execution would generate
hidden encryption queries from running F, since B does not happen, these hidden
encryption queries will not be decrypted with high probability.

Given that Â perfectly emulates A’s view, the only possibility that A could win the
inversion game is by asking Enc(x∗) = c∗ and hitting the challenge ciphertext. By a stan-
dard averaging argument, we find that since PrΘ,m[Win] ≤ δ(κ) for some negligible δ then

PrΘ[Prm[Win] ≤
√
δ] ≥ 1−

√
δ, which yields the result.

134

To conclude the proof of Lemma 7.5.10, we can see that the probability that the extractor
wins is given by Pr[ExtWin] ≥ 1− Pr[ExtWin ∧ AdvWin ∧B]− Pr[AdvWin]− Pr[B] ≥ ε(κ)−
negl(κ) where ε is the advantage to A.

Proof of Lemma 7.5.9. It is clear that the Construction 7.5.7 is correct. Furthermore, by
Lemma 7.5.10, it also satisfies the extractability property.

7.5.4 Compiling out Ψ from IO

In this section, we show a simulatable compiler for compiling out Ψ. We formalize the
approach outlined in Section 7.5.1 while making use of Lemma 7.2.4, which allows us to
compile out Ψ in two phases: we first compile out part of Ψ to get an approximately-correct

obfuscator ÎO
R

in the random oracle model, and then use the result of [CKP15] to compile

out R and get an obfuscator ĨO in the plain-model. Since we are applying this lemma only a
constant number of times (in fact, just twice), security should still be preserved. Specifically,
we will prove the following claim:

Lemma 7.5.12. Let R @ Ψ be a random oracle where “v” denotes a sub-model relationship
(see Definition 7.2.1). Then the following holds:

• For any IO in the Ψ ideal model, there exists a simulatable compiler with correctness
error ε < 1/200 for it that outputs a new obfuscator in the random oracle R model.

• For any IO in the random oracle model, there exists a simulatable compiler with cor-
rectness error ε < 1/200 for it that outputs a new obfuscator in the plain model.

Proof. The second part of Lemma 7.5.12 follows directly from [CKP15], and thus we focus
on proving the first part of the claim. Before we start describing the compilation process,
we present the following definition of canonical executions that is a property of algorithms
in this ideal model and dependent on the oracle being removed.

Definition 7.5.13 (Canonical executions). We define an oracle algorithm AΨ relative to
rIRHWE to be in canonical form if it satisfies all of the following requirements:

• Before asking any DecV(w, c) query for a valid c query, A would first get a ← Rev(c)
then run VΨ(w, a) on its own, making sure to answer any queries of V using Ψ.

• After asking a query DecV(w, c) for which the returned answer is some message m 6= ⊥,
issue a query a← Rev(c) followed by Enc(x) where x = (a,m).

• Before A asks a query EvalF(c1, ..., ck) for which it knows the corresponding encryptions
c1 = Enc(a1,m1), ..., ck = Enc(ak,mk), it would first call b ← FΨ(m1, ...,mk), making
sure to answer any queries of F using Ψ. Let (a′1, ..., a

′
p) be the distinct attributes from

(a1, ..., ak) where p ≤ k and bi be the i’th share of b where i ∈ [p]. A would then issue
calls to Enc(x′i) where for all i ∈ [p], x′i = (ai, bi|H(i, a1, ..., ak,m1, ...,mk)).

135

• After A asks a query EvalF(c1, ..., ck) for which the returned answer is a sequence of
ciphertexts c′1, ..., c

′
p where p ≤ k, issue queries Rev(c′i) for all i ∈ [p].

Note that any oracle algorithm A can be easily modified into a canonical form by increasing
its query complexity by at most a polynomial factor (since V and F are PPT algorithms).

We now proceed to present the construction of the random oracle model obfuscator IO =
(iO,Ev) that, given an obfuscator in the Ψ model, would compile out and emulate queries
to Rev, Dec and Eval while forwarding any Enc queries to R. Throughout this process, we
assume that the obfuscator iO and evaluation procedure Ev are all canonicalized according
to Definition 7.5.13. For these canonical algorithms, let lO, lB = poly(κ), respectively, be
the number of queries asked by the ideal-model obfuscator iO and the evaluation Ev to the
rIRHWE oracle Ψ.

The new obfuscator ÎO
R

in the random oracle model

Let R = {Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given
a δ-approximate obfuscator IO = (iO,Ev) in the rIRWHE oracle model, we construct an

(δ + ε)-approximate obfuscator ÎO = (îO, Êv) in the random oracle model.

Subroutine îO
R

(C):

1. Emulation phase: Given input C ∈ Cn, emulate iOΨ(C) and let B be the output of
this emulation. Let TO be the transcript of this phase and initialize QO := Q(TO) = ∅.
For every query q asked by iOΨ(C):

• Call (ρq,WH) ← EmulateCallΨ(QO, q) as shown in Algorithm 3 and return the
answer in ρq

• Add ρq and WH to QO

Note that we will not pass any query-answer pairs QO asked by iOΨ to the output
of this new obfuscation. All of the query-answer pairs in QO will only be used for
emulation purposes in the following step.

2. Learning phase: Let QB be the set of all visible queries that will be learned (which will
be passed on to the obfuscated circuit) and let Qh

B be the set of hidden queries that
we will keep track of for emulation purposes (which will not be made public to the
obfuscated circuit). Set m = 4`O/ε where `O ≤ |iO| represents the number of queries

asked by iO. Choose t
$←− [m] uniformly at random then for i = 1, ..., t do the following:

• Choose zi
$←− {0, 1}|C| uniformly at random

• Run EvΨ(B, zi). For every query q asked by EvΨ(B, zi):

– Call (ρq,WH) ← EmulateCallR(QO ∪QB ∪Qh
B, q) and return the answer in

ρq. Add ρq to QB and add WH to Qh
B.

136

Algorithm 3: EmulateCall

Input: Query-answer set Q, query q
Oracle: Random Oracle R, Hash function H
Output: (ρq,WH) where ρq is a query-answer pair containing the answer of query q

and WH is the set of indirect query-answer pairs (those added by F)
Begin:
Initialize WH = ∅
if q is a query of type Enc(x) then

Set ρq = (x 7→ R(x))Enc

end
if q is a query of the form Rev(c) then

if ∃ (x 7→ c)Enc ∈ Q where x = (a,m) then
Set ρq = (c, a)

else
Set ρq = (c,⊥)

end

end
if q is a query of the form DecV(w, c) then

if ∃ (x 7→ c)Enc ∈ Q for some x = (a,m) then
Emulate b← VΨ(w, a) while handling its queries using EmulateCall

if b = 1 then
Set ρq = ((w, c) 7→ x)Dec

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

end
[Continued next page...]

137

Algorithm 3: EmulateCall (Continued)

if q is a query of the form EvalF(c1, ..., ck) then
For all i ∈ [k], get (ρai ,Wa)← EmulateCall(Q,Rev(ci)) then add ρai to Q
Let {a′1, ..., a′p} be the distinct attributes of {a1, ..., ak}
If ai = ⊥ for some i then return ((q 7→ ⊥)Eval,WH)
if ∀ i ∃ ((ai,mi) 7→ ci)Enc ∈ Q and ci are valid then

Emulate b← FΨ(m1, ...,mk)
for each query qF asked by F do

(ρF,WF)← EmulateCallR(Q ∪WH , qF)
WH = WH ∪ (ρF ∪WF)

end
For all a′i ∈ {a′1, ..., a′p}, set c′i ← Enc(a′i, bi|H(i, a1, ..., ak,m1, ...,mk)) and add
to WH

else

For all a′i ∈ {a′1, ..., a′p}, set c′i ← Enc(a′i, ri) where ri
$←− {0, 1}n/2 and add to

WH

end
Set ρq = ((c1, ..., ck) 7→ (c′1, ..., c

′
p))Eval

end
Return (ρq,WH)

Since Ev is a canonical algorithm, in addition to the direct queries asked by EvΨ(B, zi)
to Ψ, the resulting query set QB would also include the indirect queries that have
resulted from EvΨ(B, zi) running VΨ(w, a). Furthermore, if a query EvalF(c1, ..., ck) is
issued where Enc((ai,mi)) = ci then the indirect queries asked by FΨ(m1, ...,mk) will be
made visible to the final execution so long as the query-answer pairs ((ai,mi) 7→ ci)Enc

for all i were directly asked beforehand (i.e. were in QB).

3. The output of the random oracle model obfuscation algorithm îO
R

(C) will be B̂ =
(B,QB) where QB is the set of visible (direct/indirect) query-answer pairs.

Subroutine Êv
R

(B̂, z): Initialize QB̂ = ∅ to be the set of queries asked when evaluating

B̂. To evaluate B̂ = (B,QB) on a new random input z, we emulate EvΨ(B, z). For every
query q asked by EvΨ(B, z):

• Run and set (ρq,WH) = EmulateCallR(QB ∪QB̂, q) then return the answer in ρq.

• Add ρq and WH to QB̂

Remark 7.5.14 (Fake ciphertexts). Throughout the circuit evaluation Êv(B̂, z) subroutine,
note that if a query of the form EvalF(c1, ..., ck) is asked where at least one of the input
ciphertexts ci is not known to the evaluator, the answer to the query will be simulated as a

138

sequence of encryptions of random messages (since at least one the underlying messages is
unknown and therefore F cannot be computed). From here on, we refer to such simulated
ciphertexts as fake ciphertexts.

The running time of îO. We note that the running time of the new obfuscator îO
remains polynomial time since we are emulating the original obfuscation once followed by a
polynomial number m of learning iterations. Furthermore, while we are indeed working with
an oracle where the universal circuit evaluators V and F can have oracle gates to subroutines
of Ψ, we emphasize that in our framework of extended primitives, the effective running
times of V and F, which we are executing during EmulateCall, remain a strict polynomial
in the size of the original circuits and so the issue of exponential or infinite recursive calls is
non-existent.

Proving Approximate Correctness. Let QS = (QO ∪QB ∪Qh
B ∪QB̂) be the set of all

query-answer pairs asked during the emulation, learning, and final execution phases. We
define the following hybrid experiments to show that the correctness of the new random-
oracle model obfuscator that simulates an execution of a Ψ-model obfuscation is sufficiently
close to the correctness of an ideal execution of the Ψ-model obfuscation. We denote the
distribution of Hybrid i as H i = (Qi

O, Q
i
B, Q

i,h
B , Q

i
B̂

).

• Hybrid 0: This is the real experiment, which is represented as the construction in
Section 7.5.4.

• Hybrid 1: This is the same as Hybrid 0 except for two differences:

– The queries asked during emulation (Step 1) and learning (Step 2) answered
relative to a true oracle Ψ instead of emulating them using EmulateCall.

– We modify the final execution Êv(B̂, z) such that, when we execute EvΨ(B, z),
we would forward all queries to Ψ instead of using EmulateCall except when the
query q is of the form Eval(c1, ..., ck) where (xi 7→ ci)Enc /∈ QB ∪ QB̂ for some ci,
in which case we do not forward this query to Ψ and use the simulated answer
returned by EmulateCall(QB ∪QB̂, q) as the answer instead (which does not run
F and returns fake ciphertexts instead).

• Hybrid 2: This is the ideal experiment, where all the queries asked during emulation,
learning and final execution are answered relative to a true oracle Ψ. That is, all
queries whose answers are emulated using EmulateCall throughout the obfuscation
and final evaluation phases will instead be answered directly using Ψ.

Claim 7.5.15. ∆(H0, H1) ≤ ε

2
+ negl(κ)

Proof. We first observe that the emulation and learning processes of Hybrid 0 is a statistical
simulation of the true oracle. The only event that can cause a discrepancy between these
two hybrids during the emulation and learning phases is when a query of the form Rev(c),

139

DecV(w, c), or Eval(c1, ..., ck) is issued but the emulator has never issued an encryption
query that maps to an input of those queries (hitting a valid ciphertext without knowing
the underlying plaintext). In that case, in Hybrid 0, the answer to such a query will be ⊥
as defined by EmulateCall whereas the answer in Hybrid 1 will be consistent with the true
oracle and return the correct answer. However, the probability of that happening in Hybrid
1 (over the randomness of oracle Ψ) is at most (2n − p)/(22n − p) ≤ 1/2n−1 = negl(κ) given
that p = tlBlO = poly(κ).

Next, we need to show that the distribution of query-answer pairs in the final execution
phase is close. In Hybrid 0, the execution of B̂ emulates EvΨ(B, z) on a random input z
and emulates the answers of all queries using EmulateCall, whereas in Hybrid 1 we answer
all queries of EvΨ(B, z) using the true Ψ except for Eval(c1, ..., ck) queries for which (xi 7→
ci)Enc /∈ QB ∪ QB̂ for some ci. In essence, in Hybrid 0, we can think of the execution as

EvΨ̂(B, z) where Ψ̂ is the oracle simulated using just QB∪QB̂, and in Hybrid 1, we can think

of the execution as EvΨ̃(B, z) where Ψ̃ is the oracle simulated using justQB∪QB̂ and Ψ except
for evaluation queries of the aforementioned type (which generate fake ciphertexts). We will

identify the events that differentiate between the executions EvΨ̂(B, z) and EvΨ̃(B, z).

Assume that the query-answer pairs so far during the execution of B̂ are the same in both
hybrids. That is, we start with some Q0

B̂
= Q1

B̂
= QB̂ for the sake of proving inductively that

any subsequent query-answer pairs are closely distributed between the two hybrids. Let q be
a new (possibly indirect) query that is being asked by Ev(B, z). We present a case-by-case
analysis of all possible query types to identify the cases that can cause discrepancies between
the two hybrids:

1. If q is a query of type Enc(x), then it will be answered the same in both hybrids using
the random oracle R in Hybrid 0 and using the true oracle Ψ in Hybrid 1.

2. If q is of type Rev(c) for which there exists ((a,m) 7→ c)Enc ∈ QB ∪QB̂ or (c 7→ a)Rev ∈
QB ∪QB̂ then the answer to q would be a in both hybrids.

3. If q is of type Dec(w, c) for which there exists (x 7→ c)Enc ∈ QB ∪QB̂ then the answer
to q would be determined the same (x is returned) in both hybrids.

4. If q is of type Eval(c1, ..., ck) for which there exists ((ai,mi) 7→ ci)Enc ∈ QB ∪QB̂ then
the answer to q would be determined the same in both hybrids. In particular, both
hybrids will run FΨ(m1, ...,mk), adding any indirect queries to QB̂ and answering q
with the a set of correctly generated ciphertexts.

5. If q is of type Rev(c1), Dec(w, c1), or Eval(c1, ..., ck) such that there exists (xi 7→
ci)Enc /∈ QS for some i ∈ [k] then this means that we are attempting to decrypt a
ciphertext for which we have not encrypted before (either directly or indirectly). In
Hybrid 1, since Enc is a sparse random injective function, the answer would be ⊥ with
overwhelming probability as c would be invalid, and in Hybrid 0 the answer will also
be ⊥ by the definition of Êv(B̂, z) in this hybrid. Note that in both hybrids, there will

140

not be any indirect queries in QB̂ as a result of this query since the ciphertexts that
are being queried on are deemed invalid and neither V or F will be executed.

6. If q is of type Eval(c1, ..., ck) such that there exists (xi 7→ ci)Enc ∈ QS \ (QB ∪QB̂) for
some i ∈ [k] then this means that we are attempting to decrypt a ciphertext that was
not learned. However in both hybrids we will simulate the answer as encryptions of
random messages and in both hybrids there will not be any hidden indirect queries in
QB̂ as a result of this query.

7. Suppose q is of type Rev(c) that is not determined by QB ∪ QB̂ in Hybrid 0 and yet
is determined by QS in Hybrid 1. We list the different cases here that may cause
problems:

(a) Bad Event 1: The query-answer pair ((a,m) 7→ c)Enc is in QO \ (QB ∪ QB̂).
That is, we are for the first time revealing a valid ciphertext that was encrypted
in Step 1 because we failed to learn the answer of this query during the learning
phase of Step 2. In that case, in Hybrid 0, the answer would be ⊥ since we do
not know the corresponding attribute a whereas in Hybrid 1 it would use Ψ to
produce the answer consistent with QO ⊆ QS and output a.

(b) Bad Event 2: The query-answer pair ((a,m) 7→ c)Enc is in Qh
B \ (QB ∪ QB̂).

That is, we are for the first time revealing a ciphertext from a hidden encryption
query in Step 2. In that case, in Hybrid 0, the answer would be ⊥ since we do not
know the corresponding attribute a whereas in Hybrid 1 it would use the answer
consistent with Qh

B ⊆ QS and output a.

8. Suppose q is of type Dec(w, c) that is not determined by QB ∪ QB̂ in Hybrid 0 and
yet is determined by QS in Hybrid 1. We list the different cases here that may cause
problems:

(a) If q is of type Dec(w, c) such that ((a,m) 7→ c)Enc ∈ QS \ (QB ∪ QB̂) and
VΨ(w, a) = 0 then this means that we are attempting to decrypt a ciphertext
for which the decryption will fail. The answer will be ⊥ in Hybrid 0 by the defini-
tion of EmulateCall and is also ⊥ in Hybrid 1 since we are using the real oracle
Ψ. Note that in both hybrids, while there will be indirect queries (as a result of
running VΨ(w, a)), such queries will be visible in both worlds.

(b) Bad Event 3: The query-answer pair ((a,m) 7→ c)Enc is in QO \ (QB ∪QB̂) and
VΨ(w, a) = 1. That is, we are for the first time decrypting a valid ciphertext that
was encrypted in Step 1 because we failed to learn the answer of this query during
the learning phase of Step 2. In that case, in Hybrid 0, the answer would be ⊥
since we do not know the corresponding message x = (a,m) whereas in Hybrid 1
it would use Ψ to produce the answer consistent with QO ⊆ QS and output x.

(c) Bad Event 4: The query-answer pair ((a,m) 7→ c)Enc is in Qh
B \ (QB ∪QB̂) and

VΨ(w, a) = 1. That is, we are decrypting a ciphertext from a hidden encryption

141

query in Step 2. In that case, in Hybrid 0, the answer would be ⊥ since we do
not know the corresponding message x = (a,m) whereas in Hybrid 1 it would use
the answer consistent with Qh

B ⊆ QS and output x.

(d) Bad Event 5: The query-answer pair ρe = ((c1, ..., ck) 7→ (c′1, ..., c
′
p))Eval is in

QS \ QB̂, c = c′i for some i ∈ [p], ∃(xj 7→ cj)Enc /∈ QB ∪ QB̂ and VΨ(w, a′i) = 1
where a′i = Rev(c′i). That is, we are decrypting one of the (non-fake) ciphertexts
created from an evaluation query for which the underlying plaintexts of at least
one of the ciphertext inputs to the evaluation are unknown to the evaluator.
In that case, in Hybrid 0, the answer would be ⊥ since we do not know the
corresponding message underlying c whereas in Hybrid 1 it would use the answer
supplied by Ψ and output the correct answer. We argue that that this bad event
can be reduced to the previous bad events.

• If ρe ∈ QO then this implies that (x 7→ c′i)Enc ∈ QO due to our canonicalization
procedure. As a result, this means that we are for the first time successfully
decrypting a ciphertext from Step 1, which reduces to Case 8b.

• If ρe ∈ QB∪Qh
B then this implies that (x 7→ c′i)Enc ∈ Qh

B due to our emulation
procedure. As a result, this means that we are for the first time successfully
decrypting a ciphertext from a hidden encryption query in Step 2, which
reduces to Case 8c.

(e) The query-answer pair ((c1, ..., ck) 7→ (c′1, ..., c
′
p))Eval is in QB̂, c = c′i for some

i ∈ [p], ∃(xj 7→ cj)Enc /∈ QB ∪QB̂ and VΨ(w, a′i) = 1 where a′i = Rev(c′i). That is,
we are decrypting a fake ciphertext created from an evaluation query for which
the underlying plaintexts of at least one of the ciphertext inputs to the evaluation
are unknown to the evaluator. However, since the query was generated during the
evaluation phase, the fake ciphertext c was also generated during the evaluation
and therefore (x 7→ c)Enc is known where x = (a||r) for some random r. Thus, in
both Hybrids, the answer would be x.

For input x, let E1(x) be the event that Case 8b or Case 7a happens, and E2(x) be the
event that Case 8c or Case 7b happens. Assuming that event E(x) = (E1(x) ∨ E2(x)) does
not happen, both experiments will proceed identically the same and the output distributions

of EvΨ̂(B, z) and EvΨ̃(B, z) will be statistically close.

Claim 7.5.16. Prx[E1(x)] ≤ ε/4.

Proof. We bound this event in Hybrid 1. Recall that E1 is the event that during the final
execution of the obfuscation B̂ on a random input, a successful decryption or reveal query
is asked for the first time for a ciphertext that was generated during the obfuscation phase
but was not learned during the learning phase. For all i ∈ [t], let Q′Bi = (QBi ∪Qh

Bi
)∩QO be

the set of query-answer pairs generated by the i’th evaluation EvΨ(B, zi) during the learning
phase (Step 2) and are also generated during the obfuscation emulation phase (Step 1). Note
that, since t > `O and Q′Bi ⊆ Q′Bi+1

, the number of learning iterations that increase the size

142

of the set of learned obfuscation encryption queries is at most `O. We say t
$←− [m] is bad if

it is the case that Q′Bt 6= Q′Bt+1
(i.e. t is an index of a learning iteration that increases the

size of the learned obfuscation encryption queries). This would imply that after t learning
iterations in Hybrid 1, the real execution Q′

B̂
:= Q′Bt+1

would contain a new unlearned query
that was in QO. Thus, given that m = 4`O/ε, the probability (over the selection of t) that t
is bad is at most `O/m < ε/4.

Claim 7.5.17. Prx[E2(x) | E1(x)] ≤ ε/4 + negl(κ)

Proof. Recall that E2 is the event that during the final execution of the obfuscation B̂ on
a random input, a decryption or reveal query is asked for a ciphertext that was generated
during the learning phase but was part of the hidden set and therefore never publicized. We
will in fact first bound this event (assuming E1 does not happen) in Hybrid 2.

For all i ∈ [t], let QBi = (QBi ∪ Qh
Bi

) be the set of (public and hidden) query-answer

pairs generated by the i’th evaluation EvΨ(B, zi) during the learning phase (Step 2) and QB̂

be the query-answer pairs of the final evaluation of the obfuscation. Note that in Hybrid 2,
the real oracle Ψ is used and therefore each execution of EvΨ(B, zi) is independent of the
other executions. In particular, we can think of the final evaluation as iteration t+ 1 of the
learning phase with query-answer pairs QBt+1 = QB̂. Now, we can think of an intermediate
hybrid with distribution H2′ where the executions are randomly permuted in a way such
that execution t + 1 in Hybrid 2 is now the first execution in Hybrid 2′. Note that, since
the executions are independent, the distributions H2 and H2′ are equivalent and it remains
to show that E2 is unlikely to happen in Hybrid 2′. Specifically, we need to show that the
first execution of the learning phase (with query-answer pairs QBt+1) does not decrypt a
ciphertext generated by any previous hidden queries in the learning phase. However, since
this is the first execution, there exists no hidden queries from previous executions and it
suffices to argue that it does not decrypt a ciphertext generated by any hidden queries Qh

Bt+1

from its own execution.
Since E1 does not happen and since the probability that EvΨ(B, zt+1) decrypts a cipher-

text that was never encrypted during the whole process is negligible, the only ciphertexts
that this execution will attempt to decrypt are ones that were generated during this very
same execution. Therefore in Hybrid 2, E2 only happens with negligible probability when a
ciphertext that was never encrypted before is being decrypted. Now using Claim 7.5.18 we
can conclude that this event in Hybrid 1 happens with probability at most ε/4 + negl(κ).

Thus, using Claims 7.5.16 and 7.5.17, we find that ∆(H0, H1) ≤ ε/2 + negl(κ).

Claim 7.5.18. ∆(H1, H2) ≤ ε

4
+ negl(κ)

Proof. The only difference between the two hybrids is that in Hybrid 1, we do not forward
to Ψ any queries of the form Eval(c1, ..., ck) for which we do not know all of ci, and instead
we will use some simulated (fake) ciphertexts. Whereas in Hybrid 2, we do indeed execute

143

them using the real oracle. Thus, while there may be hidden queries as a result of running F
in Hybrid 2, the counterparts in Hybrid 1 do not have such hidden queries and are instead
replaced with fake ciphertexts. As a result, we have to consider the cases where Rev,Dec or
Eval might use any hidden ciphertexts in Hybrid 2 and/or fake ciphertexts in Hybrid 1.

Assume that the query-answer pairs so far during the execution of B̂ are the same in both
hybrids. That is, we start with some Q1

B̂
= Q2

B̂
= QB̂ for the sake of proving inductively

that any subsequent query-answer pairs are closely distributed between the two hybrids. Let
q be a new (possibly indirect) query that is being asked by Ev(B, z).

1. Determined queries: If q is a query of type Enc(x) then it will answered the same
in both hybrid using R. If q is of type Rev(c) for any c then the answer will be the
same in both hybrids. If q is of type Dec(w, c) for any non-fake ciphertext c where
(x 7→ c)Enc ∈ QS \ Qh

B̂
, then the answer will be the same in both hybrids. If q is of

type Eval(c1, ..., ck) whose answer can be determined by QB ∪QB̂ then the answer will
be the same in both hybrids.

2. Bad Event 1: If q is of type Eval(c1, ..., ck) such that there exists (xi 7→ ci)Enc ∈
QS \ (QB ∪ QB̂) for some i ∈ [k] then this means that we are evaluating on some
ciphertext that was not learned. In this case in Hybrid 1 the answer would be a set
of fake ciphertexts generated by encrypting random messages under their respective
attributes. However, in Hybrid 2 the answer would be a set of ciphertexts generated by
encrypting shares of the true evaluation. Note that by the collision resistance property
of H and the injectivity of Enc, the two sets of ciphertexts (the fake and non-fake) will
be statistically close.

3. Suppose that q is of type Dec(w, c). We list the different cases that can cause problems:

(a) Bad Event 2: There exists a query-answer pair (x 7→ c)Enc ∈ Qh
B̂
\ (QB ∪ QB̂)

that was generated as one of the hidden queries issued by some evaluation query
during execution Êv(B̂, z). In that case, in Hybrid 1, the answer would be ⊥ with
overwhelming probability since the encryption was never created there, whereas
in Hybrid 2, the answer would be x. However we note that the probability of that
happening in Hybrid 1 is negligible since it is equal to the event that a ciphertext
was hit that has not been generated before.

(b) Bad Event 3: The query-answer pair ((c1, ..., ck) 7→ (c′1, ..., c
′
p))Eval is in QB̂,

c = c′i for some i ∈ [p], ∃((aj,mj) 7→ cj)Enc /∈ QB ∪ QB̂ and VΨ(w, a′i) = 1 where
a′i = Rev(c′i). That is, we are decrypting one of the (fake) ciphertexts from the
output of an evaluation query for which the underlying plaintexts of at least one
of the ciphertext inputs to the evaluation query is unknown. Note that each fake
ciphertext c′i corresponds to an encryption query (x′i 7→ c′i)Enc ∈ QB̂ for some
x′i = (a′i, ri) and independently chosen random string ri. In that case, in Hybrid
1, the answer would be x′i whereas in Hybrid 2 it would use the answer supplied by
Ψ and output the answer of the evaluation xi = (a′i,m

′
i) where m′i is an evaluated

answer based on the messages encrypted by (c1, ..., ck).

144

For the case of FHE (or multi-key FHE), decrypting any fake ciphertext implies
decrypting for the first time all of the input ciphertexts, which must have origi-
nated from QO or Qh

B since we need to know witnesses for all the input ciphertexts
(c1, ..., ck) in order to decrypt c. Thus, this event is similar to Case 8d of Claim
7.5.15 and so we refer to the proof there for this case.

For the more general case of spooky encryption, we may decrypt a fake ciphertext
without needing to know witnesses for all the input ciphertexts and so we cannot
argue that we are decrypting for the first time some input ciphertext. Neverthe-
less, all we obtain by decrypting a single (or even p−1) ciphertexts are individual
shares of the evaluation result, which are identically distributed to random values
ri as long as we do not have witnesses for all the input ciphertexts (if we do then
we are back to the multi-key FHE case).

Thus, using the same reasoning as Claims 7.5.16 and 7.5.17, we find that ∆(H1, H2) ≤
ε/4 + negl(κ).

Using Claims 7.5.15 and 7.5.18 we can finally conclude the proof of approximate correct-
ness since we can now show that ∆(H0, H1) + ∆(H1, H2) ≤ 3ε/4 + negl(κ) ≤ ε.

Proving Security. To show that the resulting obfuscator is secure, it suffices to show that
the compilation process represented as the new obfuscator’s construction is simulatable. We
show a simulator S (with access to Ψ) that works as follows: given an obfuscated circuit B
in the Ψ ideal model, it runs the learning procedure as shown in Step 2 of the new obfuscator
îO to learn the heavy queries QB then outputs B̂ = (B,QB). Note that this distribution is

statistically close to the output of the real execution of îO and, therefore, security follows.

7.6 Primitives Implied by Our Variants of Witness En-

cryption

In this section, we will show that extended witness encryption (or one of its variants) im-
plies extended versions of several encryption primitives of the all-or-nothing flavor. Recall
that we previously argued that witness encryption and its considered variants do not imply
indistinguishability obfuscation in a monolithic way. This allows us to conclude a monolithic
separation between the studied all-or-nothing encryption primitives and indistinguishability
obfuscation.

7.6.1 Extended Predicate Encryption

In this section, we will show a monolithic construction of extended PE from EIHWE and
one-way function. Since, one-way functions imply digital signatures in a black-box manner,

145

we will assume that there exists a signature scheme (Gen, Sign,Verify) where these procedures
only make black-box calls to the OWF. Let (WEnc,WDecV) be an EIHWE scheme where
V is the universal circuit evaluator (see Definition 2.1.1) that is allowed to have OWF gates,
and WEnc and WDecV gates. The relation V is defined such that V((k, skk), CMPK,a,m) =
CMPK,a,m(k, skk) where circuit CMPK,a,m is defined as follows:

CMPK,a,m(k, skk) := (P(k, a) = 1 ∧ Verify(MPK, k, skk) = 1)

Then, our extended PE scheme for the universal class of predicates PK,A (computed by Turing
Machine P as in Definition 2.6.4) and message space M corresponds to the PPT algorithms
(Setup,KGen,Enc,DecP) defined below. Note that we are constructing an extended PE
scheme and therefore P is allowed to have OWF, Setup,KGen,Enc, and DecP gates.

• Setup(1κ): outputs (MPK,MSK) where (MPK,MSK)← Gen(1κ).

• KGen(MSK, k): given k ∈ K and the master secret key MSK ∈ {0, 1}n, outputs the
decryption key skk = Sign(MSK, k). If k = ε, it outputs ε.

• Enc(MPK, (m, a)): outputs ciphertext c = WEnc(CMPK,a,m, (a,m)) where CMPK,a,m is
defined above.

• DecP(skk, c): given a secret key skk for k ∈ K and a ciphertext c, obtain (CMPK,a,m, a,m) =
WDecV((k, skk), c), and output m.

Specifying V given P. Since we are constructing extended predicate encryption, our P
is allowed to have gates of OWFs, Setup,KGen,Enc, and DecP planted in it. Next, observe
from the scheme that V contains one P gate and one Verify gate. Also note that P does not
make any calls to V.

Next we argue that both the P gate and the one Verify gate can be simplified to OWF,
WEnc, and WDecV gates that V is allowed to have. We modify V as follows.

1. We embed P in V. Note that V now has all the gates P had and a Verify gate.
Specifically, V has OWF, Verify, Setup,KGen,Enc, and DecP gates.

2. Next, we syntactically replace Setup gates with Gen gates, KGen gates with Sign gates,
Enc gates with WEnc gates and DecP gates with WDecV gates. Note that this replace-
ment will require some additional code changes in V which all depend on the above
described construction.

3. Next, since we use a known construction of the signature scheme (Gen, Sign,Verify) and
it is black-box in the use of OWFs, we can replace these gates by just OWF gates along
with some additional code that depends on the used signature scheme. Observe that
we have reduced all gates in V to just OWF, WDec, and WDecV gates.

Lemma 7.6.1. Extended fully-secure PE scheme (Definition 2.6.4) is implied by extended
EIHWE and OWFs.

146

Proof. Correctness of the above scheme follows from the observation that a witness encryp-
tion ciphertext along with a signature on k, namely skk, always yields the encrypted message
whenever P(k, a) = 1. Next we prove security.

Let A be a computationally bounded adversary that asks a polynomial number of secret-
key queries and breaks the security of the PE scheme. In other words, for some polynomial
p(.),

Pr[INDPE
A (1κ) = 1] ≥ 1

2
+

1

p(κ)

where INDPE
A is the following experiment (recalled from Figure 2.1):

Experiment INDPE
A (1κ):

1. (MSK,MPK)← Setup(1κ))
2. (x0, x1) ← AKGen(MSK,.)(MPK) where xb = (ab,mb) for b ∈ {0, 1}, |a0| = |a1| and
|m0| = |m1| and for each prior query k we require that P(k, a0) = P(k, a1) = 0

3. b
$←− {0, 1}

4. c← Enc(MPK, xb)
5. b′ ← AKGen(MSK,.)(MPK, c) where for each query k we require that P(k, a0) = P(k, a1) =
0
6. Output 1 if b = b′ and 0 otherwise.

At a high level, we would like to use the attacker A above to contradict the security of the
signature scheme. Towards this, our approach will be to use the extractor E of ex-EIHWE
that translates A’s ability to distinguish ciphertexts to extracting a witness, which in our
case is a forgery. However, a technical issue is that E might rewind A and A might fail
on those correlated executions. We solve this issue by a standard probability argument as
explained next.

Let T be the transcript of the inputs to A in steps 1 and 2 above — namely, T =
(MPK, {skk}, x0, x1) where {skk} is the collection of secret-keys that A obtains in step 2
above. Then, for the machine A(T) we define the following experiment:

Experiment INDPE-partial
A(T) (1κ,MPK,MSK):

1. b
$←− {0, 1}

2. c← Enc(MPK, xb)

3. b′ ← A(T)KGen(MSK,.)(MPK, c) where for each query k we require that P(k, a0) =
P(k, a1) = 0
4. Output 1 if b = b′ and 0 otherwise.

By an averaging argument we have that if Pr[INDPE
A (1κ) = 1] ≥ 1

2
+

1

p(κ)
then for a non-

negligible fraction of choices of (T ,MPK,MSK) we have that Pr[INDPE-partial
A(T) (1κ,MPK,MSK) =

147

1] ≥ 1

2
+

1

2p(κ)
.

Towards contradiction, we will now show that given A we can break the existential
unforgeability of the signature scheme under chosen message attack. On receiving the public-
key MPK from the challenger we prepare the machine A(T) (by including signatures on keys
of A’s choice in T). Next by Definition 7.4.2 we have that there exists an a black-box
extractor EA(T)(a0, a1) which with non-negligible probability outputs a signature on k∗ for
some choice of k∗ such that P(k∗, a0) = 1 or P(k∗, a1) = 1. This breaks the security of the
signature scheme.

Note that during the execution of EA(T)(a0, a1), A could ask for more signature queries
for any k such that P(k, a0) = P(k, a1) = 0. However, these queries can be answered with
the help of the challenger.

7.6.2 Extended Spooky Encryption

In this section, we will show a monolithic construction of extended spooky encryption from
IRHWE and PRG. Let (WEnc,WDecV,WEvalF) be an IRHWE scheme where F is a universal
circuit evaluator and G be a length doubling pseudorandom generator. The relation V is
defined such that V(w,CMPK) = CMPK(w) where circuit CMPK is defined as follows:

CMPK(w) := (MPK = G(w))

Then our extended spooky encryption scheme (Setup,Enc,EvalFs ,Dec) (where Fs denotes
the universal circuit evaluation function for the spooky encryption scheme) is defined as
follows:

• Setup(1κ): outputs (MPK = G(s),MSK = s) where s is a randomly sampled seed of
the pseudorandom generator.

• Enc(MPK,m): outputs ciphertext c = WEnc(CMPK,m) where CMPK is defined above.

• EvalFs(f, (MPK1, c1), . . . , (MPKt, ct)): output WEvalF(f, c1, . . . ct).

• Dec(MSK, c): given a secret key MSK and a ciphertext c, output WDecV(MSK, c).

Specifying V. Observe that V in the extended spooky encryption scheme above only has
one PRG gate that the extended IRHWE scheme supports.

Specifying Fs. Since we are constructing extended spooky encryption, Fs is allowed to
have gates of Setup,Enc,Dec, and EvalFs planted in it. We start by observing that for any
Fs we can syntactically replace each Setup gate with a PRG gate, each Enc gate with a
WEnc gate, each EvalFs gate with a WEvalF gate, and each Dec gate with a WDecV gate.
This change requires some additional code depending on the above described construction.
This leaves us with only PRG, WEnc, WDecV, and WEvalF gates that F of extended IRWHE
supports. Thus the Fs supports gates as required by extended spooky encryption scheme.

148

Lemma 7.6.2. Extended spooky encryption scheme (Definition 2.6.8) is implied by extended
IRHWE and PRG.

Proof. Correctness of the above scheme follows directly from the correctness of the IRHWE
scheme. For security, we need to show that for any PPT adversary A, there exists a negligible
function negl(.) such that the following holds:

|Pr[A(MPK,Enc(MPK, 0)) = 1]− Pr[A(MPK,Enc(MPK, 1)) = 1]| ≤ negl(κ)

where (MSK,MPK)← Setup(1κ) and the probability is over the randomness of A and Enc.
This follows by a simple argument as follows.

• H0: This hybrid corresponds to the distribution (MPK,Enc(MPK, 0)) where (MSK,MPK)←
Setup(1κ).

• H1: In this hybrid, we change how MPK is generated. Instead of generating MPK as
the output of G, we sample MPK as a uniformly random string.

Indistinguishability between H0 and H1 follows from the pseudorandomness property
of the PRG G.

• H2: In this hybrid, instead of encrypting 0 we encrypt 1. Namely, the ciphertext is
generated as Enc(MPK, 1) instead of Enc(MPK, 0).

Since MPK is a chosen uniformly at random therefore except with negligible proba-
bility we have that ∀w,MPK 6= G(w). Hence, by the security of witness encryption
we have that the distribution Enc(MPK, 1) is computationally indistinguishable from
Enc(MPK, 0).

• H3: In this hybrid, we switch back to generating MPK honestly (i.e., as the output of
the pseudorandom generator).

Indistinguishability between H2 and H3 follows from the pseudorandomness property
of the PRG G.

Observe that hybridH3 corresponds to the distribution (MPK,Enc(MPK, 1)) where (MSK,MPK)←
Setup(1κ). This concludes the proof.

7.6.3 Extended Attribute Based FHE

In this section, we will show a construction of extended Attribute Based FHE (ABFHE) from
extended extractable instance-revealing homomorphic witness encryption (EIRHWE) and
one-way functions (OWFs). Since one-way functions imply digital signatures in a black-box
manner, we will assume that there exists a signature scheme (Gen, Sign,Verify) where these
procedures only make black-box calls to the OWF. Let (WEnc,WRev,WDecV ,WEvalF) be
the ex-EIRHWE primitive and V and F are universal circuit evaluators that are allowed to

149

have OWF gates, and WEnc,WDecV , and WEvalF oracle gates. The relation V is defined
such that V((k, skk), CMPK,a) = CMPK,a(k, skk) where circuit CMPK,a is defined as follows:

CMPK,a(k, skk) := (P(k, a) = 1 ∧ Verify(MPK, k, skk) = 1)

Then, our extended ABFHE scheme for the universal predicate class PK,A (computed by ma-
chine P) and message spaceM corresponds to the PPT algorithms (Setup,KGen,Enc,DecP,EvalFs)
defined below. Note that we are constructing an extended ABFHE, therefore P and Fs are
allowed to have OWF, Setup,KGen,Enc,DecP and EvalFs gates.

• Setup(1κ): outputs (MPK,MSK) where (MPK,MSK)← Gen(1κ).

• KGen(MSK, k): given k ∈ K and the master secret key MSK ∈ {0, 1}n, outputs the
decryption key skk = Sign(MSK, k). If k = ε, it outputs ε.

• Enc(MPK, (m, a)): outputs ciphertext c = WEnc(CMPK,a,m) where CMPK,a is defined
above.

• EvalFs(f,MPK, c1, . . . , ct): If WRev(c1) = WRev(c2) = · · · = WRev(ct)
6 then output

WEvalF(f, c1, . . . , ct) and otherwise output ⊥.

• DecP(skk, c): given a secret key skk for k ∈ K and a ciphertext c, output WDecV((k, skk), c).

Specifying V given P. Since we are constructing extended ABFHE, our P is allowed
to have gates of OWF, Setup,KGen,Enc,EvalFs and DecP planted in it. Observe from the
scheme that V contains one P gate and one Verify gate. Next we argue that both these gates
can be simplified to OWF, WEnc,WDecV , and WEvalF gates that ex-EIRHWE supports.
We modify V as follows.

1. We embed P in V. Note that V now has all the gates P had and a Verify gate.
Specifically, V has OWF,Verify, Setup,KGen,Enc,EvalFs and DecP gates.

2. Next, we syntactically replace Setup gates with Gen gates, KGen gates with Sign gates,
Enc gates with WDecV gates, EvalFs gates with WEvalF gates and DecP gates with
WDecV gates. Note that this replacement will require some additional code changes
in V which all depend on the above described construction.

3. Next, since we use a known construction of the signature scheme (Gen, Sign,Verify) and
it is black-box in the use of OWFs, we can replace these gates by just OWF gates along
with some additional code that depends on the used signature scheme. Observe that
we have reduced all gates in V to just OWF, WEnc, WEvalF and WDecV gates.

6Here, WRev is the reveal function of the IRWHE that we ignored in the rest of the exposition. This
function is only needed at this point.

150

Specifying F given Fs. Since we are constructing extended ABFHE, EvalFs is allowed
to have gates of OWFs, Setup,KGen,Enc,DecP, and EvalFs planted in it. We start by
observing that for any Fs we can syntactically replace each Setup and KGen gate with a
OWF gates, each Enc,EvalFs and DecP with WEnc, WEvalF and WDecV , respectively.In
making this change we need to add some additional code to F depending on the above
described construction and the code of the signature scheme. This leaves us with only
OWF, WEnc, WDecV, and WEvalF gates that F of ex-EIRHWE supports. Thus the above
described construction supports gates as required by the extended ABFHE scheme.

Lemma 7.6.3. Extended fully-secure ABFHE scheme is implied by ex-EIRHWE and OWFs.

Proof. Note that security game of the ABFHE scheme does not involve the EvalFs function,
which only affects functionality. Therefore, the proof of security of this claim is essentially the
same as the proof of Lemma 7.6.1. The only difference is that we are now using ex-EIRHWE
instead of ex-EIHWE.

151

Chapter 8

Monolithic Separation of IO from
Functional Encryption

8.1 Introduction

After proving that several “all-or-nothing” encryption primitives are insufficient for giving us
IO, we now turn to investigate the possibility of basing IO on an even more expressive prim-
itive: functional encryption (FE). What is currently known about the power and complexity
of functional encryption is the following:

1. Compact single-key FE is known to imply IO. Recent results by Ananth and Jain [AJ15]
and Bitansky and Vaikuntanathan [BV15] show how to base IO on a compact FE
scheme — namely, a (single-key) FE scheme (see Definition 2.6.9) for which the running
time of the encryption circuit is independent of the size of the supported function class.
Furthermore, the construction works even if the ciphertext is weakly compact, i.e. the
length of the ciphertext grows sub-linearly in the circuit size but is allowed to grow
arbitrarily with the depth of the circuit.

2. Positive results on single-key FE. The construction of IO from compact single-key
FE puts us in close proximity to primitives known from standard assumptions. One
prominent work, is the (single-key) functional encryption scheme of Goldwasser, Kalai,
Popa, Vaikuntanathan and Zeldovich [GKP+13] that is based on LWE. Interestingly,
this encryption scheme is weakly compact for Boolean circuits. However, in this scheme
the ciphertext grows additionally with the output length of the circuit for which the
functional secret-key is given out. Hence, it is not known to imply IO.

In summary, the gap between the known single-key FE constructions from LWE and the
single-key FE schemes known to imply IO (for the same ciphertext length properties) is only
in the output length of circuit for which the functional secret-key is issued. In light of this,
significant research continues to be invested towards realizing IO starting with various kinds
of FE schemes (e.g. [BNPW16, BLP17]). This brings us to the question of what kind of
functional encryption schemes realize (or cannot realize) IO.

152

8.2 Our Results

The main result of this chapter is to show that single-key FE schemes that support only
functions with ‘short output’ are incapable of producing IO even when non-black-box use
of the FE scheme is allowed in certain ways. We specifically use the monolithic framework
developed in Chapter 6 which is equivalent to the fully black-box framework of [IR89,RTV04]
applied to extended primitives (that can include all of their subroutines as gates inside circuits
given to them as input). As we recall, this monolithic model captures the most commonly
used non-black-box techniques in cryptography, including the ones used by Ananth and
Jain [AJ15] and Bitansky and Vaikunthanathan [BV15] for realizing IO from FE. More
formally, we prove the following theorem.

Theorem 8.2.1 (Main Result–Informal). Assuming one-way functions exist and NP 6⊆
coAM, there is no construction of IO from “short” output single-key FE where one is
allowed to plant FE gates arbitrarily inside the circuits that are given to FE as input. An
FE scheme is said to be “short” output if

t(n, κ) ≤ p(n, κ)− ω(n+ κ),

where n is the plaintext length, κ is the security parameter, p is the ciphertext length (for
messages of length n) and t is the output length of the functions evaluated on messages of
length n.

As a special case, the above result implies that single-key FE for boolean circuits and
other single-key FE schemes known from standard assumptions are insufficient for IO in a
monolithic way.

“Long-output” FE implies IO. Complementing this negative result, we show that above
condition on ciphertext length t is almost tight. In particular, we show that a “long output”
single-key FE — namely, a single-key FE scheme with t = p+ 1 (supporting an appropriate
class of circuits) is sufficient for realizing IO. This construction is non-black-box (or, mono-
lithic to be precise) and is obtained as a simple extension of the previous results of Ananth
and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15].

Fully Black-Box Separation of IO from FE. Finally, we show that some form of
non-black-box techniques (beyond the fully black-box framework of [RTV04]) is necessary
for getting IO from FE, regardless of the output lengths. Namely, we prove a fully black-
box separation from FE to IO. Previously, Lin [Lin16] (Corollary 1 there) showed that the
existence of such fully black-box construction from FE to IO would imply a construction of
IO from LWE and constant-degree PRGs. Our result shows that no such fully black-box
construction exists (but the possibility of IO from LWE and constant-degree PRGs remains
open).

In close relation to this result, we make mention of the work of Ananth and Sahai [AS17]
which, when combined with the result of Chapter 5, can be used to derive a special case of our

153

fully black-box separation of IO from FE. In more detail, [AS17] show that, assuming LWE,
one can construct a sublinearly compact public-key FE scheme that makes black-box use of
an underlying constant-degree encoding scheme (GES). On the other hand, in Section 5.4
we proved a fully black-box separation result of IO from O(1)-degree GES. The two results
can be combined to imply a fully-black-box separation of IO from sublinearly compact FE.
However, our result in this chapter is more general in the sense that we separate IO from
even fully compact FE schemes, and we do so without the need for the additional LWE
assumption.

On the Relation to [GKP+13]. Note that in Chapter 7 rules out the existence of mono-
lithic IO constructions from attribute-based encryption (ABE) and the existence of mono-
lithic IO constructions from fully homomorphic encryption (FHE). Furthermore, this result
can be further broadened to separate IO from ABE and FHE in a monolithic way. One
can then ask why the result in this chapter does not follow as a corollary from Chapter 7
and [GKP+13], where they construct single-key (non-compact) FE for general circuits from
ABE and FHE.

We note that our result does not follow from the above observation for two reasons.
First, the single-key FE construction of [GKP+13] also uses a garbling scheme in order to
garble circuits with FHE decryption gates, whereas the impossibility in Chapter 7 does not
capture such garbling mechanisms in the monolithic model. However, if one could improve
the result of Chapter 7 in the monolithic model by adding a garbling subroutine that can
accept ABE and FHE gates, then we can compose the results in Chapter 7 and [GKP+13]
and obtain an impossibility of IO from t-bit output (non-compact) FE. Secondly, we note
that this resulting t-bit output FE scheme has the property that t ≤ p/ poly(κ) (i.e. the
ciphertext size is a (polynomial) multiplicative factor of the output length of the function),
whereas in this work we show the stronger impossibility of basing IO on single-key FE for
output-length t ≤ p− ω(κ).

8.3 Technical Overview

In order to demonstrate the ideas behind our impossibility, we start by recalling how the
constructions of IO from FE [AJ15, BV15] work at a high level. Here, we present an ‘over-
simplified’ version of their construction which aims at describing the ideas presented here at a
high level. In their construction, an obfuscation for a circuit C : {0, 1}κ → {0, 1} is a sequence
of κ+1 functional keys of κ+1 instances of a single-key FE scheme along with a ciphertext cφ.
These functional secret keys FSK1, . . . ,FSKκ+1 corresponding to public keys PK1 . . .PKκ+1

are generated independently and the ciphertext cφ is obtained by encrypting the “empty”
string under the first public-key PK1. The ciphertext does contain some cryptographic keys.
This includes the secret-key of a secret-key encryption scheme denoted by s. The expression
“empty” just refers to the fact that this ciphertext will be used to evaluate the obfuscation
on all inputs. This will become clear in the following. The first κ function keys implement
the “bit-extension” functionality. That is, the ith function key corresponds to a function

154

that takes in an (i − 1)-bit string y ∈ {0, 1}i−1 as input and outputs encryptions of (y|0)
and (y|1) under the public-key PKi+1. Finally, the functional key FSKκ+1 corresponds to the
circuit C.

To evaluate the obfuscated circuit on an input x ∈ {0, 1}κ, one does the following: decrypt
cφ under FSK1 to obtain encryptions of 0 and 1 denoted as c0 and c1 respectively. Next, it
decrypts cx1 (where x1 is the first bit of x) using FSK2 and so on. Proceeding in this manner,
in κ steps the evaluator obtains an encryption of x under PKκ+1 which can then be used
to compute C(x) using FSKκ+1. Note that since the FE scheme does not hide the circuits
embedded inside the functional secret-keys, therefore an encrypted version of the circuit C
(under the key s also placed inside cφ) is embedded inside this key. The key s is passed
along in each ciphertext. One can think of the construction as having a binary tree structure
where evaluating the circuit on an input x corresponds to traversing along the path labeled x.
Observe that, for this construction, each functional secret-key is generating an output that is
larger than the size of the ciphertext that is decrypted using it. In particular, the decryption
yields two ciphertexts — an output that is double the size of the input. On the other hand,
in case the output of a functional secret key is “sufficiently smaller” than a ciphertext, then
this explosion in number of ciphertexts does not seem possible anymore. This is also the
key to our impossibility. Roughly speaking, at the core of the proof of our impossibility
result is to show that in this “small” output setting, the total number of ciphertexts that
an evaluator can compute remains polynomially bounded. Turning this high level intuition
into an impossibility proof requires several new ideas that we now elaborate upon below.

8.3.1 The Details of the Proof of Separation

As mentioned before, monolithic constructions of IO from FE are the same as fully black-
box constructions of IO from extended FE which is a primitive that is similar to FE but it
allows FE gates to be used in the circuits for which keys are issued. Therefore, to prove
the separation, we can still use oracle separation techniques from the literature on black-box
constructions [IR89].

In fact, for any candidate construction IO(·) of indistinguishability obfuscation from ex-
tended FE, we construct an oracle O relative to which secure extended FE exists but the
construction IOO becomes insecure (against polynomial-query attackers). In order to do
this, we will employ an intermediate primitive: a variant of functional witness encryption
defined by Boyle, Chung, and Pass [BCP14]. We call this variant customized FWE (cFWE
for short) and show that (1) relative to our oracle cFWE exists, (2) cFWE implies extended
FE in a black-box way, and that (3) the construction IOO is insecure. We opted to work
with this intermediate primitive of cFWE since it is conceptually easier to work with than
an ideal FE oracle and allows us to leverage the techniques of Section 7.2.1 to prove our
separation in a modular way. Now in order to get (1) we directly define our oracle O to be
an idealized version of cFWE. To get (2) we use the power of cFWE.1 To get (3) we rely on

1In fact, as shown in [BCP14], without our customization, the original FWE implies, not just IO itself,
but even di-IO.

155

the fact that cFWE is weakened in a careful way so that it does not imply IO. Below, we
describe more details about our idealized oracle for cFWE and how to break the security of a
given candidate IO construction relative to this oracle. We first recap the general framework
for proving separations for IO.

General recipe for proving separations for IO. Let I be our idealized cFWE oracle.
We will use the general approach developed in Section 7.2.1 for breaking IOI using a poly-
nomial number of queries to the oracle (i.e. the step (3) above). Recall that the process
involves “compiling out” the oracle I from the obfuscation scheme to get a new secure ob-
fuscator IO′ = (iO′,Ev′) in the plain-model that is only approximately-correct. Namely, by
obfuscating iO′(C) = B and running B over a random input we get the correct answer with
probability 99/100. Then, by the result of [BBF16], doing so implies a polynomial query
attacker against IOI in model I.

Note that this compiling out process (of I from IOI) is not independent of the oracle being
removed since different oracles may require different approaches to be emulated. However,
the general high-level of the compiler that is used in Chapters 5 and 7, and we use here as
well, is the same: The new plain-model obfuscator iO′, given a circuit C to obfuscate would
work in two steps. The first step of iO′ is to emulate iOI(C) (by simulating the oracle I)
to get an ideal-model obfuscation B, making sure to ‘lazily’ evaluate (emulate) any queries
issued to I. The second step of the compiler is to learn the queries that are likely to be
asked by EvI(B, x) for a uniformly random input x, denote by QB, which can be found by
by emulating EvI(B, xi) enough number of times for different uniformly random xi. Finally,
the output of iO′ is the plain-model obfuscation B′ = (B,QB), where B is the ideal-model
obfuscation and QB is the set of learned queries. To evaluate the obfuscation over a new
random input x, we simply execute Ev′(B, x) = EvI(B, x) while emulating any queries to I
consistently relative to QB.

Any compiler (for removing I from IO) that uses the approach describe above is in fact
secure, because we only send emulated queries to the evaluator that could be simulated in the
ideal world I. The challenge, however, is to prove the correctness of the new obfuscator. So
we shall prove that, by having enough iterations of the learning process (in the learning step
of iO′), the probability that we ask an unlearned emulation query occurs with sufficiently
small probability.

The Challenge Faced for Compiling Out Our Customized Functional Witness
Encryption Oracle. When I is defined to be our idealized cFWE oracle, in order to
prove the approximate correctness of the plain-model obfuscator, we face two problems.

1. The Fuzzy Nature of FWE: Unlike ‘all-or-nothing’ primitives such as witness en-
cryption and predicate encryption, functional witness encryption mechanisms allow for
more relaxed decryption functionalities. In particular, decrypting a ciphertext does not
necessarily reveal the whole message m. In fact, the decryptor will learn only f(w,m),
which is a function of the encrypted message and witness. As a result, even after many
learning steps, when the actual execution of the obfuscated circuit starts, we might

156

aim for evaluating a ciphertext (generated during the obfuscation phase) on a new
function. This challenge did not exist in the previous separations of Chapter 7 where
we dealt with ‘all-or-nothing’ primitives, because the probability of not decrypting a
ciphertext during all the learning steps and then suddenly trying to decrypt it during
the final evaluation phase could be bounded to be arbitrary small. However, here we
might try to decrypt this ciphertext in all these steps, every time with a different func-
tion, which could make the information gathered during the learning step useless for
the final evaluation.

2. Unlearnable Hidden Queries: To get extended FE from our cFWE (step (2) above),
our cFWE needs to be extended as well. Namely, we allow the functions evaluated
by cFWE to accept circuits with all possible gates that compute the subroutines of
cFWE itself. However, for technical reasons, we limit how the witness verification is
done in cFWE to only accept one-way function gates. Now, since we are dealing with
an oracle that is an ideal version of our cFWE primitive, the function f cFWE(m,w)
may also issue queries of their own. The challenge is that there could be many such
indirect/hidden queries asked during the obfuscation phase (in particular during the
learning step) that we cannot send over to the final evaluator simply because these
queries are not suitable in the ideal world.

Resolving Challenges. Here we describe main ideas to resolve the challenges above.
1. To resolve the first challenge, we add a specific feature to cFWE so that no ciphertext
c = Enc(x = (a,m)) would be decrypted more than once by the same person. More
formally, we add a subroutine to FWE (as part of our cFWE) that reveals the message
x = (a,m) fully, if one can provide two correct witnesses w1 6= w2 for the attribute a.
This way, the second time that we want to decrypt c, instead we can recover the whole
message x and run the function f on our own! By this trick, we will not have to worry
about the fuzzy nature of FWE, as each message is now decryped at most once. In
fact, adding this subroutine is the exact reason that cFWE is a weaker primitive than
FWE.

2. To resolve the second challenge, we rely on an information theoretic argument. Suppose
for simplicity that the encryption algorithm does not take an input other than the
message2 x. Suppose we use a random (injective) function Enc: x 7→ c for encryption,
mapping strings of length n to strings of length p = p(n). Then, if p� n, information
theoretically, any q query algorithm who has no special advice about the oracle has
a chance of ≈ q · 2n−p to find a valid ciphertext. If p � n this probability is very
small, so intuitively we would need about p − n − log(q) bits of advice to find such
ciphertext. On the other hand, any decryption query over a ciphertext c will only
return t = t(n) bits, which in our paper is assumed to be t � p− n. Therefore, if we
interpret the decryption like a ‘trade’ of information, we need to spend ≈ Ω(p − n)
bits to get back only s ≤ o(p − n) bits. This is the main idea behind our argument
showing that during the learning phase, we will not discover more than a polynomial

2This is not true as the encryption is randomized, but allows us to explain the idea more easily.

157

number of new ciphertexts, unless we have encrypted them! By running the learning
step of the compiler enough number of times, we will learn all such queries and can
successfully finish the final evaluation.

By the using above two ideas, we can successfully compile out our oracle I from any IOI

construction. The compilation process itself consists of two steps. The first step being
compiling out just the decryption queries where we face and resolve the challenges that we
described above. Once we do that, we get an approximate obfuscator in a new oracle model
I ′ that is actually a variant of an idealized witness encryption oracle. The second step would
be to compile out the oracle I ′, which was already shown in Section 7.3, to get the desired
approximate obfuscator in the plain model.

8.4 Monolithic Separation of IO from Short-Output

FE

In this section, we prove our main impossibility result which states that we cannot construct
an IO scheme in a monolithic way from any single-key functional encryption scheme that is
restricted to handling only functions of “short” output length. More formally, we prove the
following theorem.

Theorem 8.4.1. Assume the existence of one-way functions and that NP 6⊆ co-NP. Then
there exists no monolithic construction of IO from any single-key t-bit-output functional
encryption scheme where t(n, κ) ≤ p(n, κ) − ω(n + κ), n is the message length, p is the
ciphertext length, and κ is the security parameter of the functional encryption scheme.

To prove Theorem 8.4.1, we will apply Lemma 7.2.7 for the idealized functional witness
encryption model Γ (formally defined in Section 8.4.1) to prove that there is no black-box
construction of IO from any primitive P that can be black-box constructed from the Γ. In
particular, we will do so for P that is the extended functional encryption primitive. Our task
is thus twofold: (1) to prove that P can black-box constructed from Γ and (2) to show a
simulatable compilation procedure that compiles out Γ from any IO construction. The first
task is proven in Section 8.4.2 and the second task is proven in Section 8.4.5. By Lemma
7.2.7, this would imply the separation result of IO from P and prove Theorem 8.4.1.

Our oracle, which is more formally defined in Section 8.4.1, acts an idealized version
of a single-key short-output functional encryption scheme, which makes the construction of
secure FE quite straightforward. As a result, the main challenge lies in showing a simulatable
compilation procedure for IO that satisfies Definition 7.2.2 in this idealized model, and
therefore, it is instructive to look at how the compilation process works and what challenges
are faced with dealing with oracle Γ.

8.4.1 The Ideal Model

In this section, we define the distribution of our idealized (randomized) oracle that can be
used to realize some form of (extended) functional witness encryption. We also provide

158

several definitions regarding the algorithms in this model and the types of queries that these
algorithms can make.

Definition 8.4.2 (Randomized Functional Witness Encryption Oracle). Let V be a PPT
algorithm that takes as input (w, a), outputs b ∈ {0, 1} and runs in time poly(|a|). Also,
let F be a PPT algorithm that accepts as input a witness w and a message m then outputs
a string y ∈ {0, 1}s. We denote the random (V,F, p)-functional witness encryption (rFWE)
oracle as ΓV,F,p = {ΓV,F,p,n}n∈N where ΓV,F,p,n = (Enc,DecV,F,Rev ,RevMsgV) is defined as
follows:
• Enc: {0, 1}n 7→ {0, 1}p(n) is a random injective function mapping strings x ∈ {0, 1}n

to “ciphertexts” c ∈ {0, 1}p where p(n) ≥ n.
• DecV,F : {0, 1}` 7→ {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}` as input where c ∈ {0, 1}p(n),

DecV,F(w, c) allows us to decrypt the ciphertext c = Enc(x) to get back x, parse it as
x = (a,m), then get F(w,m) as long as the predicate test is satisfied on (w, a). More
formally, the following steps are performed:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.

2. Find x such that Enc(x) = c, and parse it as x = (a,m).

3. If V(w, a) = 1, output F(w,m). Otherwise, output ⊥.

• Rev : {0, 1}p(n) 7→ {0, 1}∗ ∪ {⊥} is a function that, given an input c ∈ {0, 1}p(n), would
output the corresponding attribute a ∈ {0, 1}∗ for which
Enc((a,m)) = c. If there is no such a then output ⊥.
• RevMsgV : {0, 1}`′ 7→ {0, 1}∗∪{⊥}: Given (w1, w2, c) where w1 6= w2 and c ∈ {0, 1}p(n),

if there exist x = (a,m) such that Enc(x) = c and V(wi, a) = 1 for i ∈ {1, 2} then
reveal m. Otherwise, output ⊥.

When it is clear from context, we sometimes omit the subscripts from DecV,F, RevMsgV,
and ΓV,F and simply write them as Dec, RevMsg, and Γ, respectively. Furthermore, we
denote any query-answer pair (q, β) asked by some oracle algorithm A to a subroutine T ∈
{Enc,Dec,Rev,RevMsg} as (q 7→ β)T .

Definition 8.4.3 (Extended Randomized Functional Witness Encryption Oracle). We define
the randomized extended functional witness encryption oracle ΓV,F,p as an rFWE oracle
ΓV,F,p = (Enc,DecV,F,Rev,RevMsg) where V and F satisfy the following properties:
• V is a PPT oracle algorithm that takes as input (w, a), interprets a(.) as an oracle-aided

circuit that can only make Enc calls, then outputs aEnc(w).
• F is a PPT oracle algorithm that takes as input (w,m), parses w = (z1, z2), inter-

prets z
(.)
1 as an oracle-aided circuit that can make calls to any subroutine in Γ =

(Enc,Dec,Rev, RevMsg), then outputs zΓ
1 (m).

For the purposes of this section, we will use the extended rFWE oracle Γ in order to
prove our separation result of IO from extended functional encryption - mainly because this
oracle is sufficient for getting extended FE. Nevertheless, we will still make use of Γ later on
in Section 8.6 to prove the fully black-box separation of IO from (non-extended) functional
encryption.

159

Next, we present the following definition of canonical executions that is a property of
algorithms in this ideal model. This normal form of algorithms helps us in reducing the
query cases to analyze since there are useless queries whose answers can be computed without
needing to ask the oracle.

Definition 8.4.4 (Canonical executions). We define an oracle algorithm AΓ relative to the
extended rFWE oracle to be in canonical form if the following conditions are satisfied:
• If A has issued a query of the form Enc(x) = c, then it will not ask DecV,F(., c), Rev(c),

or RevMsgV(., ., c) as it can compute the answers of these queries on its own. In
particular, for DecV,F and RevMsgV queries, it would run V and F directly to compute
the query answers correctly.
• Before asking any DecV,F(w, c) query where Enc(x) = c for some x = (a,m), A would

go through the following steps first:
– A would get a ← Rev(c) then run VEnc(w, a) on its own, making sure to answer

any queries of V using Enc. If VEnc(w, a) = 0 then do not issue DecV,F(w, c) to Γ
and use ⊥ as the answer instead. Otherwise, continue to the next step.

– If A has beforehand ran VEnc(w′, a) = 1 for some w′ 6= w then it does not ask
DecV,F(w, c) and instead computes the answer to this query on its own. That is,
it first gets m ← RevMsg(w,w′, c), computes on its own FΓ(w,m) and outputs
FΓ(w,m) if VEnc(w, a) = 1 or otherwise ⊥.

– If A has not asked DecV,F(w′, c) for any w′ 6= w (or did but it received ⊥ as the
answer) then it directly asks DecV,F(w, c) from the oracle.

• Before asking any RevMsgV(w1, w2, c) query where Enc(x) = c for some x = (a,m), A
would go through the following steps first:

– A would get a← Rev(c) then run VEnc(wi, a) for all i ∈ {1, 2} on its own, making
sure to answer any queries of V using Enc. If VEnc(wi, a) = 0 for some i then do
not issue RevMsgV(w1, w2, c) to Γ and use ⊥ as the answer instead. Otherwise,
continue to the next step.

– After issuing RevMsgV(w1, w2, c) to Γ and getting back an answer m 6= ⊥, ask
the query Enc(x) where x = (a,m) then run FΓ(w1,m) and FΓ(w2,m).

Note that any oracle algorithm A can be easily modified into a canonical form by increasing
its query complexity by at most a polynomial factor assuming that F has extended polynomial
query complexity.

Remark 8.4.5. We observe the following useful property regarding the number of queries
of a specific type that a canonical algorithm in the Γ oracle model can make. Namely,
given a canonical A, for any ciphertext c = Enc(x) where x = (a,m) for which A has
not asked Enc(x) before, A would ask at most one query of the form Rev(c), at most one
query of the form DecV,F(w, c) for which VEnc(w, a) = 1, and at most one query of the form
RevMsgV(w1, w2, c) for which VEnc(wi, a) = 1 where i ∈ {1, 2}. Furthermore, A would never
ask a query if VEnc(w, a) = 0 since this condition can be verified independently by A and
the answer can be simulated as it would invariably be ⊥.

Looking ahead, we will use this property later on to prove an upper bound on the number
of ciphertexts that an adversary can decrypt without knowing the underlying message. Fur-

160

thermore, we stress that this property holds specifically due to the presence of the RevMsg
subroutine which leaks the entire message of a given ciphertext once two different valid wit-
nesses are provided. As a result, this shows that decrypting a ciphertext more than once
(under different witnesses) does not help as the message could be revealed instead.

We also provide the following definitions to classify the ciphertext and query types. This
would simplify our discussion and clarify some aspects of the details later in the proof.

Definition 8.4.6 (Ciphertext Types). Let A be a canonical algorithm in the Γ ideal model
and suppose that QA is the set of query-answer pairs that A asks during its execution. For
any q of the form DecV,F(w, c), Rev(c), or RevMsgV(w1, w2, c), we say that c is valid if there
exists x such that c = Enc(x), and we say that c is unknown (to A) if the query-answer pair
(x 7→ c)Enc is not in QA.

Definition 8.4.7 (Query Types). Let A be a canonical algorithm in the Γ ideal model and
let QA be the query-answer pairs that it has asked so far. For any query new query q issued
to Γ, we define several properties that such a query might have:
• Determined: We say q is determined with respect to QA if there exists (q 7→ β)T ∈ QA

for some answer β or there exists some query (q′ 7→ β′)T ∈ QA that determines that
answer of q without needing to issue q to Γ.
• Direct: We say q is a direct query if A issues this query to Γ to get back some answer
β. The answers to such queries are said to be visible to A.
• Indirect: We say q is an indirect query if q is issued by FΓ during a Dec query that

was issued by A. The answers to such queries are said to be hidden from A.

8.4.2 Extended Functional Encryption Exists Relative to Γ

In this section, we show how to construct a semantically-secure extended FE scheme. Namely,
we prove the following:

Lemma 8.4.8. There exists a correct and subexponentially-secure implementation of ex-
tended functional encryption in the Γ oracle model with measure one of oracles.

We do this in two steps: we first show how to construct an extended variant of a functional
witness encryption (for a specific class of functions and relations) from the ideal oracle Γ and
then show how to use it to construct the desired functional encryption scheme. Our variant
of FWE that we will construct is defined as follows.

Definition 8.4.9 (Customized Functional Witness Encryption (CFWE)). Given any one-
way function R, let V be a PPT oracle algorithm that takes as input an instance-message
pair x = (a,m) and witness w, interprets a as a Boolean oracle circuit that can only make
calls to R (it returns 0 otherwise) then outputs aR(w). Furthermore, let F be a PPT oracle
algorithm that accepts as input a string w = (z1, z2) and a message m, interprets z1 as a
circuit then outputs a string y = z1(m).

161

For any given security parameter κ, a customized functional witness encryption scheme
parameterized with V and F consists of three PPT algorithms P = (Enc,DecV,F,Rev) defined
as follows:

• Enc(1κ, a,m) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security pa-
rameter κ, outputs c ∈ {0, 1}∗.
• Rev(c) : given a ciphertext c, outputs the corresponding attribute a under which the

message is encrypted.
• DecV,F(w, c) : given ciphertext c and “witness” string w ∈ {0, 1}∗, outputs a message
m′ ∈ {0, 1}∗.

A customized functional witness encryption scheme satisfies the following completeness and
security properties:

• Correctness: For any security parameter κ, any m ∈ {0, 1}∗, and any (w, (a,m))
such that VR(w, a) = 1, it holds that

Pr
Enc,Dec

[DecV,F(w,Enc(1κ, a,m)) = FP (w,m)] = 1

• Instance-Revealing: For any security parameter κ, any m ∈ {0, 1}∗, and any
(w, (a,m)) such that VR(w, a) = 1, it holds that

Pr[Rev(Enc(1κ, a,m)) = a] = 1

• Weak Extractability: For any PPT adversary A and polynomial p1(.), there exists
a PPT extractor E and a polynomial p2(.) such that for any security parameter κ, any
a for which VR(w, a) = 1 for some w, and any m0,m1 where |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(1κ, a,mb)

]
≥ 1

2
+

1

p1(κ)

Then:

Pr

 EA(1κ, a,m0,m1) = w : VR(w, a) = 1 ∧ FP (w,m0) 6= FP (w,m1)
∨

EA(1κ, a,m0,m1) = (w1, w2) : w1 6= w2 ∧ VR(w1, a) = 1 ∧ VR(w2, a) = 1

 ≥ 1

p2(κ)

Note that we declared such a functional witness encryption as being customized since it
deviates slightly (in an incomparable way) to standard FWE (Definition 2.6.10). Particularly,
this customized FWE is essentially an extended FWE scheme with a weaker extractability
property and is defined for a specific V and a specific F defined above. However, in order
to minimize the number of descriptors attached to this primitive, we will simply say that
this FWE is customized with the properties listed in Definition 8.4.9. It is important to
note however that, irrespective of what this primitive is called or how it is defined, what we
eventually care about is that one can use it to get extended FE, which is our desired target
primitive.

162

8.4.3 Customized FWE in the Γ Ideal Model

Here we provide the construction of customized FWE using the ΓV,F oracle. We note that
Γ can be thought of as an ideal customized FWE and hence the construction of the CFWE
primitive is straightforward.

Construction 8.4.10 (Customized Functional Witness Encryption). Let V and F be as
defined in Definition 8.4.9. For any security parameter κ and oracle ΓV,F sampled according
to Definition 8.4.3, we will implement a customized FWE scheme P defined by V and function
class F as follows:
• CFWE.Enc(1κ, a,m) : Given a ∈ {0, 1}∗, message m ∈ {0, 1}n′ and security parameter

1κ, let n = Θ(n′ + |a| + κ). Sample r ← {0, 1}κ uniformly at random then output
c = Enc(x) where x = (a, (m, r)).
• CFWE.Dec(w, c) : Given string w and ciphertext c ∈ {0, 1}p, get y ← DecV,F(w, c),

then output y.
• CFWE.Rev(c) : Given ciphertext c ∈ {0, 1}p, outputs Rev(c).

Lemma 8.4.11. Construction 8.4.10 is a correct and subexponentially-secure implementa-
tion of customized functional witness encryption in the Γ oracle model with measure one.

The correctness of the scheme follows immediately. The security also holds intuitively,
since if there is any secure realization of this primitive, it should be the idealized version of it
defined as an oracle. To prove the security of this construction formally, we will show that if
there exists an adversary A against scheme P (in the ΓV,F oracle model) that can distinguish
between encryptions of two different messages m0,m1 (under the same instance a∗) with
non-negligible advantage then there exists a (fixed) deterministic straight-line extractor E
with access to ΓV,F that can find the valid witness w∗ for the underlying instance a∗ of the
challenge ciphertext such that F(w∗,m0) 6= F(w∗,m1) or find two distinct witnesses (w∗1, w

∗
2)

such that V(w∗1, a
∗) = V(w∗2, a

∗) = 1.
Suppose A is an adversary in the indistinguishability game with success probability 1/2+

ε. Then there exists a canonical adversary D that satisfies Definition 8.4.4 and has the same
success probability as A. Let QE be the query-answer pairs asked by the extractor during its
execution. The extractor E would work as follows: given (a,m0,m1) as input and acting as
the challenger for adversary D, it runs DΓ(1κ, c∗) where c∗ ← Enc(1κ, a,mb) is the challenge

ciphertext and b
$←− {0, 1}. To answer any query q asked by D, the extractor will emulate

the answer returned to A as follows:
• If q is a query of the form Enc(x), it forwards the query to the oracle Γ to get some

answer c, adds (x 7→ c)Enc to QE then returns c to A.
• If q is a query of the form Rev(c) for c 6= c∗ then it returns ⊥3. If c = c∗ then E returns
a as the answer.
• If q is a query of the form DecV,F(w, c) for c 6= c∗ then the extractor aborts with ⊥. If
c = c∗ then it must be the case that Dec(w, c∗) 6= ⊥ (otherwise the canonical D would

3Even if it is a valid ciphertext - however querying an unknown valid ciphertext happens with negligible
probability

163

not have asked it). Then we have two possibilities: F(w,m0) = F(w,m1) = y in which
case D can compute the answer y (correctly) on its own without issuing this query.
The other possibility would be F(w,m0) 6= F(w,m1) in which case E halts execution
and outputs w as its answer.
• If q is a query of the form RevMsgV(w1, w2, c) for c 6= c∗ then the extractor aborts

with ⊥. If c = c∗ then it must be the case that RevMsgV(w1, w2, c
∗) 6= ⊥ (otherwise

the canonical D would not have asked it). In that case, E halts execution and outputs
(w1, w2).

If D has completed execution and E has not observed a query that led it to halt and
output a witness (or a pair of witnesses), the extractor will abort with failure and output ⊥.

Lemma 8.4.12. For any PPT canonical oracle adversary D against Construction 8.4.10,
any instance a, and any m0 6= m1 of the same length |m0| = |m1|, if there exists a non-
negligible function ε(.) such that:

Pr
[
DΓ(1κ, c∗) = b | b $←− {0, 1}, c∗ ← Enc(1κ, a,mb)

]
≥ 1

2
+ ε(κ) (8.1)

Then there exists a PPT straight-line extractor E, a non-negligible function ε′(.) and a neg-
ligible function negl(.) such that:

Pr

 EΓ,D(a,m0,m1) = w∗ ∧ VEnc(w∗, a) = 1 ∧ FΓ(w∗,m0) 6= FΓ(w∗,m1)
∨

EΓ,D(a,m0,m1) = (w∗1, w
∗
2) ∧ VEnc(w∗1, a) = 1 ∧ VEnc(w∗2, a) = 1

 ≥ ε′(κ)− negl(κ)

(8.2)

Proof. Let D be an adversary satisfying Equation (8.1) above. We first define the following
events that will be of interest to us:
• Let AdvWin be the event that D succeeds in the distinguishing game of Equation (8.1).
• Let ExtWin be the event that the extractor succeeds in extracting a witness or a pair

of witnesses (as in Equation (8.2) above).
• Let Bad to be the event that D asks (directly or indirectly via F) a query of the

form DecV,F(w, c′) or RevMsgV(w1, w2, c
′) for some c′ 6= c∗ for which it has not asked

Enc(x) = c′ previously.
Note that as long as Bad does not happen, the extractor will not abort due to failing to
answer a valid D Dec or RevMsg query. Observe that by a union bound:

Pr
Γ,b,r

[ExtWin] ≤ Pr
Γ,b,r

[ExtWin ∧ AdvWin ∧ Bad] + Pr
Γ,b,r

[AdvWin] + Pr
Γ,b,r

[Bad]

where r is the randomness of the distinguisher D.
Note that, over the randomness of Γ, we find that Prb,r[Bad] ≤ negl(κ) by a standard

argument that evaluate the oracle in a ‘lazy’ way (upon request) as this is the probability of
hitting a point in the image of a random injective function without knowing the preimage.
Furthermore, since Pr[AdvWin] ≥ 1/2+ε for some non-negligible function ε, it suffices to show

164

that Pr[ExtWin ∧ AdvWin ∧ Bad] is negligible. Note that, by our construction of extractor
E, this event is equivalent to saying that the adversary D succeeds in the distinguishing
game but never asks a query of the form DecV,F(w, c∗) 6= ⊥ for which F(w,m0) 6= F(w,m1)
or a query of the form RevMsgV(w1, w2, c

∗) 6= ⊥ and so the extractor fails to recover the
witness(es). For simplicity of notation define Win := ExtWin ∧ AdvWin ∧ Bad.

We will show that, with overwhelming probability over the choice of oracle Γ, the prob-
ability of Win happening is only a negligible factor over the trivial advantage. That is, we
will prove the following lemma:

Lemma 8.4.13. For security parameter κ and ε > 2−κ/10, PrΓ [Prb,r[Win] ≥ 1/2 + ε] ≤
2−ε

22κ/5

Proof. Since Bad does not happen and D wins but E does not, we can conclude that D only
issues encryptions queries to Γ. We proceed to show that D only succeeds with negligible
advantage. Define Hit to be the event that D happens to ask Enc(x∗) = c∗. Then we have
that:

Pr
Γ

[
Pr
b,r

[Win] ≥ 1

2
+ ε

]
≤ Pr

Γ

[
Pr
b,r

[Win ∧ Hit] + Pr
b,r

[Hit] ≥ 1

2
+ ε

]
≤ Pr

Γ

[
Pr
b,r

[Win ∧ Hit] ≥ 1

2
+
ε

2
∨ Pr

b,r
[Hit] ≥ ε

2

]
≤ Pr

Γ

[
Pr
b,r

[Win ∧ Hit] ≥ 1

2
+
ε

2

]
+ Pr

Γ

[
Pr
b,r

[Hit] ≥ ε

2

]
We can bound the event Hit from happening since it is the event that we invert the

image of a random injective function. This can be done over the randomness of the oracle
then, using an averaging argument, deduce that the probability that Hit happens for a non-
negligible fraction of oracles Γ is negligible.

We will thus focus on proving the first term. In doing so, we will reduce the problem
of indistinguishability to that of predicting the output of a random Boolean function on a
random point in the domain of this function. We then prove that the latter problem is hard
using a compression technique which allows to argue that an adversary that can win the
prediction game with non-negligible advantage can only do so for a negligible fraction of the
oracles. We will make use of the following lemma that shows the existence of a randomized
compression technique for random Boolean functions using adversaries against the prediction
game.

Lemma 8.4.14 (Fact 10.1 and Lemma 10.4 [DTT10]). Let A be an oracle algorithm that
makes q queries to some fixed oracle predicate p : {0, 1}n → {0, 1}, never queries the oracle
on its input and satisfies the following for some ε:

Pr[Ap(x) = p(x)] ≥ 1/2 + ε

Then there exists a randomized encoder E and a randomized decoder D such that:

Pr
r

[D(E(p, r), r) = p] ≥ ε/q

165

and |E(p, r)| ≤ 2n − ε22n/q.

For any given adversary D that wins in the indistinguishability game of FWE with
probability 1/2 + ε/2 without asking any Dec or RevMsg queries, we can construct a new

oracle-aided adversary D̃ that aims to win in the experiment ExpP
D̃

(1κ) as defined in Figure

8.1. The adversary D̃ will have access to oracle Γ and P Γ, which is defined as follows:

P (a, r, c0, c1) =


0 if c0 = Enc(a|0|r) and c1 = Enc(a|1|r)
1 if c0 = Enc(a|1|r) and c1 = Enc(a|0|r)
⊥ otherwise

However, we note that D̃ will not query P on its input based on the definition of the
experiment and will not ask any Dec or RevMsg queries from Γ since D will not either.

Experiment ExpPA(1κ, a):

1. r
$←− {0, 1}κ, b $←− {0, 1}

2. c∗0 ← Enc(a|b|r), c∗1 ← Enc(a|(1− b)|r)

3. b′ ← AP,Γ(1κ, r, c∗0, c
∗
1) where A is not allowed to query P on its input

4. Output 1 if b = b′ and 0 otherwise.

Figure 8.1: The single-instance ExpPA Experiment

The adversary D̃, given (1κ, r, c∗0, c
∗
1), would execute b′ ← D(1κ, c∗0) and output b′ as its

answer. We can modify D̃ so that whenever it issues a query to Enc(a|b|r) = cb, it would
also call Enc(a|1 − b|r) = c1−b followed by a call to P (a, r, c0, c1). This ensures that any
encryption query issued to Γ is translated into a query to P .

Define Pa := P (a, ., ., .) to be the random predicate P restricted to attribute a where
Pa : {0, 1}` → {0, 1} and ` = κ + 2|c|. Note that P = {Pa}a∈N can be interpreted as an
alternative description for Γ. That is, given P , one can reconstruct Γ on any point in its
domain. By Lemma 8.4.14, we can encode Pa using at most 2` − ε22`/4q bits where q is

the number of queries that D̃ makes. Thus, we have compressed the entire oracle P by
saving α = ε22`/4q bits. Hence, assuming that ε ≤ negl(κ) and q ≤ poly(κ) we find that

the fraction of oracles for which D̃ can win on is at most 1/2α = negl(κ) assuming that we
encrypt attributes a of size poly(κ) which would imply that ` = poly(κ).

To conclude the proof of Lemma 8.4.12, we note that by Lemma 8.4.13 and the fact that
Pr[Bad] is negl(κ) we find that PrΓ,b,r[ExtWin] ≤ negl(κ).

166

Proof of Lemma 8.4.11. It is clear that the Construction 8.4.10 is correct. Furthermore, by
Lemma 8.4.12, it also satisfies the extractability property.

8.4.4 From CFWE to Functional Encryption

Construction 8.4.15 (Functional Encryption). Let PF = (FE. Setup,FE.Keygen,FE.Enc,
FE.Dec) be the functional encryption scheme for the function family F that we would like
to construct. Suppose Sig = (Sig.Gen, Sig.Sign, Sig.Ver) is a secure signature scheme.

Define a language L with an associated PPT verifier V such that an instance a of the
language corresponds to the signature verification circuit Sig.Ver(vk, .) that takes as input
w = (f, skf) so that V(w, a) = a(w) = 1 if and only if Sig.Ver(vk, w) = 1 for some oracle-
aided f ∈ F, skf ← Sig.Sign(sk, f), and (sk, vk) ← Sig.Gen(1κ). Furthermore, let F′ be
a PPT algorithm that takes as input w = (f, skf) and a message m then outputs y =
F′(w,m) = f(m).

Given a customized functional witness encryption scheme CFWE = (CFWE.Enc, CFWE.DecV,F′ ,
CFWE.Rev) for V and F′ defined above, signature scheme Sig, and security parameter κ, we
implement the extended FE scheme PF as follows:
• FE. Setup(1κ) : Generate (sk, vk)← Sig.Gen(1κ). Output (MPK,MSK) where MPK =
vk and MSK = sk.
• FE.Keygen(MSK, f) : Given MSK = sk and f ∈ F, output SKf = (f, skf) where
skf ← Sig.Sign(MSK, f).
• FE.Enc(MPK,m) : Given MPK ∈ {0, 1}κ and message m ∈ {0, 1}n′ , output ciphertext
c = CFWE.Enc(1κ,MPK,m).
• FE.Dec(SKf , c) : Given SKf = (f, skf) and ciphertext c ∈ {0, 1}p, call and output the

value returned by CFWE.DecV,F′(SKf , c).

Lemma 8.4.16. Construction 8.4.15 is a fully black-box construction of extended functional
encryption from customized functional witness encryption.

Proof. We first show that the construction is correct. Given (MPK,MSK)← FE. Setup(1κ),
for any encryption c ← FE.Enc(MPK,m) of a message m ∈ {0, 1}n′ and functional de-
cryption key SKf ← FE.Keygen(MSK, f) for a function f ∈ F , we get that, if V(w, a) =
aSig(w) = Sig.Ver(vk, (f, skf)) = 1 then:

FE.Dec(SKf , c) = CFWE.DecV,F′((f, skf), c) = F′((f, skf),m) = fPF(m)

Note that, since this is an monolithic construction, f can have oracle gates to any subroutine
in PF. As a result, we need to make sure that V are F′ are specified in a way so that all
monolithic computations are valid. First, V only has one Sig.Ver gate which is supported by
OWFs. Furthermore, F′ calls f which has oracle gates to any subroutine in PF. Nevertheless,
we can reduce each gate to PF to CFWE or OWF gates. In particular, FE. Setup can be
reduced to Sig.Gen gates, FE.Keygen can be reduced to Sig.Sign gates, FE.Enc can be
reduced to CFWE.Enc gates, and FE.Dec can be reduced to CFWE.Dec gates. Thus, all
gates in F′ can be reduced to those in FWE or one-way functions.

167

Next, we prove the security of the scheme by reducing it to the underlying security of
CFWE and Sig. Let A be a computationally bounded adversary that asks one functional
secret key query and breaks the security of the FE scheme. That is, for some non-negligible
ε(.):

Pr[IND1FE
A (1κ) = 1] ≥ 1

2
+ ε(κ)

where IND1FE
A is the experiment of Definition 2.6.9.

Towards contradiction, we will now show that, given A, we can build an attacker B
that can break the strong existential unforgeability of the signature scheme under cho-
sen message attack. On receiving the public-key MPK from the (signature game) chal-
lenger, B forwards MPK to A and upon receiving (f,m0,m1), requests the signature for f
and then randomly chooses a message to encrypt. Note that, since FE.Enc(MPK,mb) =
CFWE.Enc(1κ,MPK,mb), B can use A to build a distinguisher A′ against CFWE. B then
runs the black-box straight-line extractor EA′ (guaranteed to exist by the security defini-
tion of CFWE) where at least one of the following events will happen with non-negligible
probability:

• The extractor returns a single witness w∗ = (f ∗, skf∗) such that V(w∗,MPK) outputs
1 and F′(w∗,m0) 6= F′(w∗,m1) =⇒ f ∗(m0) 6= f ∗(m1). Note that this implies that
skf∗ is a valid forgery since f ∗ cannot be the function f that A requests the signature
for (because f(m0) = f(m1) in that case) and w∗ passed verification thus violating the
security of the signature scheme.
• The extractor returns a pair of witnesses (w∗1, w

∗
2) such that w∗1 6= w∗2 and V(w∗1,MPK)

= V(w∗2,MPK) = 1. This either implies that w∗i = (f ∗, skf∗) for some i ∈ {1, 2} is a
valid witness and f ∗ 6= f in which case we have a signature forgery, or it implies that
w∗i = (f, sk′f) for some i ∈ {1, 2} and hence sk′f 6= skf (since even if w∗i−1 = (f, skf) we
have that w∗i 6= w∗i−1) which is also signature forgery.

In both of the above cases, an attack against the FE scheme results in an attack against the
underlying signature scheme.

8.4.5 Compiling out Γ from IO

In this section, we show a simulatable compiler for compiling out ΓV,F when F is short-
output. We adapt the approach outlined in Section 7.2.1 to the extended rFWE oracle ΓV,F =
(Enc,DecV,F, Rev,RevMsgV) while making use of Lemma 7.2.7, which allows us to compile
out ΓV,F in two phases: we first compile out part of ΓV,F to get an approximately-correct

obfuscator ÔΘ in the random instance-revealing witness encryption model (that produces an

obfuscation B̂Θ in the Θ-model), and then use the previous result of Section 7.3 to compile
out Θ and get an obfuscator O′ in the plain-model. Since we are applying this lemma only a
constant number of times, security should still be preserved. Specifically, we will prove the
following lemma:

168

Lemma 8.4.17. Let F be a PPT oracle Turing machine that accepts as input a witness
w and a message m then outputs a string y ∈ {0, 1}s where s(n) ≤ t(n). Let Θ be a
random instance-revealing witness encryption oracle. Then for any ΓV,F,p satisfying t(n) ≤
p(n)− ω(n) and for Θ v ΓV,F,p, the following holds:

• For any IO in the ΓV,F,p ideal model, there exists a simulatable compiler with correctness
error ε < 1/200 for it that outputs a new obfuscator in the random instance-revealing
witness encryption oracle Θ model.
• For any IO in the Θ oracle model, there exists a simulatable compiler with correctness

error ε < 1/200 for it that outputs a new obfuscator in the plain model.

We observe that by compiling out only the Dec queries of Γ, we will end up with queries
only to Enc,Rev, and RevMsg. However, we note that Enc and Rev already are part of
Θ and RevMsg can in fact be interpreted as the decryption subroutine of Θ where w′ =
(w1, w2) is defined as the witness to the decryption subroutine. Therefore, the second part
of Lemma 8.4.17 follows directly from Lemma 7.3.13, which implies that we can compile out
the ideal witness encryption oracle from any IO scheme, and thus we focus on proving the
first part of the lemma. We will present the construction of the obfuscator in the random
instance-revealing witness encryption model that, given an obfuscator in the Γ model, would
compile out and emulate queries to Dec, while forwarding any Enc,Rev,RevMsg queries to
Θ. Throughout this section, for simplicity of notation, we will denote Γ = ΓV,F,p to be the
oracle satisfying t(n) ≤ p(n)− ω(n).

Remark 8.4.18. For simplicity of exposition, we assume that the compiler only asks the
oracle for queries from Γn. However, our argument directly extends to handle arbitrary calls
to the oracle Γ using the following standard technique. As we will show, the “error” in our
poly-query compiler in the ideal model will be at most poly(q)/2n (where q = poly(κ) is a
fixed polynomial over the security parameter κ of the IO construction) when we only call Γn.
It is also the case that this error adds up when we work with several input lengths n1, n2, . . . ,
but it is still bounded by union bound. Therefore, the total error of the transformation will
be at most O(poly(n1)/2n1) where n1 is the smallest integer for which Γn1 is queried at some
point. To make n1 large enough (to keep the error small enough) we can modify all the
parties to query Γ on all oracle queries up to input parameter n1 = c(log(κ)) for sufficiently
large c. (Note that this will be a polynomial number of queres in total.)

The new obfuscator ÔΘ in the instance-revealing witness encryption model

Given a δ-approximate obfuscator O = (iO,Ev) in the rFWE oracle model, we construct

an (δ + ε)-approximate obfuscator Ô = (îO, Êv) in the Θ oracle model. Throughout this
process, we can assume that iO and Ev are in their canonical form as in Definition 8.4.4.

169

Algorithm 4: EmulateCall

Input: Query-answer set Q, query q to a subroutine of T ∈ {Enc,Dec,Rev,RevMsg}
of Γ

Oracle: Random Instance-Revealing Witness Encryption Oracle
Θ = (WEnc,WDec,WRevAtt)

Output: A query-answer pair ρq, and the set W of hidden queries
Begin:
if ∃ (q 7→ β)T ∈ Q for some answer β then

Set ρq = (q 7→ β)T
end
if q = x is a query to Enc then

Set ρq = (x 7→WEnc(x))Enc

end
if q = c is a query to Rev then

Set ρq = (c 7→WRevAtt(c))Enc

end
if q = (w1, w2, c) is a query to RevMsgV then

Set ρq = (x 7→WDecV′((w1, w2), c))Enc

end
/* We simulate Dec queries */
if q = (w, c) is a query to DecV,F then

Let aR be the attribute returned by EmulateCall(Q, qR) where qR is the query
Rev(c)

Emulate b← VEnc(w, aR) while emulating any queries using EmulateCall

if b = 1 and ∃ ((a,m) 7→ c)Enc ∈ Q then
Emulate y ← FΓ(w,m) while simulating any queries using EmulateCall

Set W to be the set of query-answer pairs asked by F
Set ρq = ((w, c) 7→ y)Dec

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

end
Return (ρq,W)

170

Subroutine îO
Θ

(C):

1. Emulation phase: Emulate iOΓ(C). Initialize QO = ∅ to be the set of query-answer
pairs asked by the obfuscation algorithm iO. For every query q asked by iOΓ(C), call
(ρq,W)← EmulateCallΘ(QO, q) and add ρq to QO.

2. Learning phase: Set QB = ∅ to be the set of direct (visible) query-answer pairs asked
during this phase (so far) and Qh

B = ∅ to be the set of indirect (hidden) query-answer
pairs (see Definition 8.4.7). Let k = (`O + κ)/ε where `O ≤ |iO| represents the number

of queries asked by iO. Choose λ
$←− [k] uniformly at random then for i = {1, ..., λ} do

the following:

• Choose zi
$←− {0, 1}|C| uniformly at random

• Run EvΓ(B, zi). For every query q asked by EvΓ(B, zi), run the following and get
(ρq,W)← EmulateCallΘ(QO ∪QB ∪Qh

B, q), then add ρq to QB and W to Qh
B.

3. The output of the Θ-model obfuscation algorithm îO
Θ

(C) will be B̂ = (B,QB).

Subroutine Êv
Θ

(B̂, z): InitializeQB̂ = ∅ to be the set of queries asked when evaluating B̂.

To evaluate B̂ = (B,QB) on a new random input z we simply emulate EvΓ(B, z) as follows.
For every query q asked by EvΓ(B, z), run and set (ρq,W) = EmulateCallΘ(QB ∪ QB̂, q)
then add (ρq ∪W) to QB̂.

The running time of îO. We note that the running time of the new obfuscator îO
remains polynomial time since we are emulating the original obfuscation once followed by
a polynomial number λ of learning iterations. Furthermore, since we are working with
the extended oracle (see Definition 8.4.3), the way that F is defined (as a universal circuit
evaluator) makes it so that the number of recursive calls that appear due to emulating FΓ is
upper-bounded by some polynomial (in fact even quadratic).

Proving Approximate Correctness. Define Qh
B̂

to be the set of hidden queries asked

during the final execution phase. Set QT = QO ∪ QB ∪ Qh
B ∪ QB̂ ∪ Qh

B̂
to be the set of all

(visible and hidden) query-answer pairs asked during all the phases. We consider two distinct
experiments that construct the Θ oracle model obfuscator exactly as described above but
differ when evaluating B̂:

• Real Experiment: Êv
Θ

(B̂, z) emulates EvΓ(B, z) on a random input z and answers
any queries using EmulateCall.

• Ideal Experiment: Êv
Γ
(B̂, z) executes EvΓ(B, z) and answers all the queries of

EvΓ(B, z) using the actual oracle Γ.
Note that the actual emulation of the new obfuscator is statistically close to an ideal emu-
lation of the obfuscation and learning phases using Γ and so it suffices to compare only the
real and ideal final execution phases. In essence, in the real experiment, we can think of the

171

execution as EvΓ̂(B, z) where Γ̂ is the oracle simulated using the learned query-answer pairs
QB and oracle Θ. We will compare the real experiment with the ideal experiment and show
that the statistical distance between these two executions is at most ε. In order to achieve
this, we will identify the events that make the executions EvΓ(B, z) and EvΓ̂(B, z) diverge
(i.e. without them happening, they proceed statistically the same).

Let q be a new query that is being asked by EvΓ̂(B, z) (i.e. in the real experiment)
and handled using EmulateCallΘ(QB ∪ QB̂, q). The following are the cases that should be
handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the same in
both experiments as they will be both answered using the subroutine WEnc(c) of Θ.

2. If q is a query of type Rev(c), then the answer to q will be distributed the same in both
experiments as they will be both answered using the subroutine WRevAtt(c) of Θ.

3. If q is a query of type RevMsgV(w1, w2, c), then the answer to q will be distributed
the same in both experiments as they will be both answered using the subroutine
WDecV′(w

′, c) where w′ = (w1, w2).

4. If q is a query of type DecV,F(w, c) whose answer is determined by QB ∪QB̂ in the real
experiment then it is also determined by QT ⊇ (QB ∪QB̂) in the ideal experiment and
the answers are therefore distributed the same.

5. Suppose q is a query of type DecV,F(w, c) that is not determined by QB ∪ QB̂ in the
real experiment. Then the answer returned by EmulateCall is ⊥ since the underlying
encryption query ((a,m) 7→ c)Enc is not known. In that case, we have to consider three
different counterparts in the ideal experiment:

(a) Bad Event 1: If q is not determined by QT in the ideal experiment then this
implies that the ideal execution EvΓ(B, z) is for the first time hitting a valid
ciphertext that was never generated by an encryption query asked during any of
the phases. In that case, since Enc is injective, the answer returned by Γ would
be ⊥ with overwhelming probability.

(b) Bad Event 2: The query q is determined by QT \ (QB ∪ QB̂) in the ideal
experiment and the ideal execution EvΓ(B, z) has hit a valid unknown ciphertext
that was generated by an encryption query in the obfuscation phase that was
never learned. In this case, the answer will be FΓ(w,m) if the verification passes
and ⊥ otherwise.

(c) Bad Event 3: The query q is determined by QT \ (QB ∪QB̂) in the ideal exper-
iment then and the ideal execution EvΓ(B, z) has hit a valid unknown ciphertext
that was generated as a hidden query (i.e. issued by inner F executions) during
the learning or evaluation phases. In this case, the answer will be FΓ(w,m) if the
verification passes and ⊥ otherwise.

172

Notice that the answer to such a query in the ideal experiment differs from that in the
real experiment (which always outputs ⊥). However, we will show below that such an
event is unlikely to occur.

For circuit input z, let E(z) be the event that either one of Cases 5a, 5b, or 5c happen.

More specifically, this is the event that EvΓ̂(B, z) asks a query q of the form DecV,F(w, c)
where c is a valid ciphertext that was either (i) never generated before during any of the
phases, (ii) generated during the obfuscation phase, or (iii) generated by a hidden query in
the learning and/or final evaluation phases. Assuming that event E(z) does not happen,
both experiments will proceed identically the same and the output distributions of EvΓ(B, z)

and EvΓ̂(B, z) will be statistically close. More formally, the probability of correctness for îO
is:

Pr
z

[EvΓ̂(B, z) 6= C(z)] = Pr
z

[EvΓ̂(B, z) 6= C(z) ∧ ¬E(z)] + Pr
z

[EvΓ̂(B, z) 6= C(z) ∧ E(z)]

≤ Pr
z

[EvΓ̂(B, z) 6= C(z) ∧ ¬E(z)] + Pr
z

[E(z)]

By the approximate functionality of iO, we have that:

Pr
z

[iOΓ(C)(z) 6= C(z)] = Pr
z

[EvΓ(B, z) 6= C(z)] ≤ δ(κ)

Therefore,

Pr
z

[EvΓ̂(B, z) 6= C(z) ∧ ¬E(z)] = Pr
z

[EvΓ(B, z) 6= C(z) ∧ ¬E(z)] ≤ δ (8.3)

We are thus left to show that Pr[E(z)] ≤ ε. Since both experiments proceed the same up
until E happens, the probability of E happening is the same in both worlds and we will thus
choose to bound this bad event in the ideal world.

Proof Intuition. At a high-level, in order to show that E is unlikely, we will show that
the learning procedure and final execution phases, when treated as a single non-uniform
query-adaptive algorithm A, will only ask a bounded number of queries for valid ciphertexts
whose corresponding underlying message is unknown to this algorithm. Then, given this
upper bound on such queries, we ensure that by running the learning procedure for sufficient
number of times, the final execution phase will not ask such queries to unknown ciphertexts
with high probability and we maintain the approximate correctness of the obfuscation.

In order to prove this upper bound on the number of ciphertexts that will be hit, we
start with the query-adaptive A which consists of the combination of the learning and final
execution phases that accepts as input an obfuscation B in the Γ oracle model and is able
to adaptively query Γ when running B on multiple randomly chosen inputs. We then show
through a sequence of reductions to other adversaries that the advantage of such an attacker
in hitting a specific number of unknown ciphertexts is upper bounded by the advantage of
a different non-adaptive attacker Â in hitting the same number of ciphertexts (up to some

factor). We then finally show that Â has a negligible advantage in succeeding.

173

We begin by defining the notion of query adaptivity for oracle algorithms and specify
what it means for an adversary to hit a ciphertext.

Definition 8.4.19 (Query Adaptivity). Let A be a poly-query randomized oracle algorithm
that asks τ queries to some idealized oracle I. Suppose Q is the set of queries that A will
ask. We define the level of query adaptivity of A as being one of two possible levels:
• Non-adaptive: Q consists of τ queries, possibly from different domains, and chosen

by A before it issues any query and/or independently of the answers of any previous
query.
• Fully adaptive: Q = (q1, ..., qτ) consists of τ queries possibly from different domains

where, for each i ∈ [τ], qi+1 is determined by the answer returned by qi.

Definition 8.4.20 (Ciphertext Hit). Let A be a τ -query oracle algorithm that has access
to Γ. We say that A has hit a ciphertext c if it queries Dec(., c), Rev(c), or RevMsg(., ., c)
and c is a valid unknown ciphertext (that is, A has never asked Enc(x) = c). We denote the
set of ciphertexts that A has hit by HA.

Our goal is to prove the following lemma which provides the desired upper bound on the
number of ciphertexts that an attacker A can hit.

Lemma 8.4.21 (Hitting Ciphertexts). Let ΓV,F be as in Definition 8.4.3, n be a fixed number,
and t(n) ≤ p(n) − ω(n), where t is the upper bound on the output length of F and p is the
ciphertext length. Let A be an adaptive τ -query oracle algorithm that takes as input z and
has access to ΓV,F. Let HA be the set of unknown valid ciphertexts that A hits. Then for
security parameter (of the obfuscation scheme) κ, n ≥ lg κ, τ ≤ poly(κ) ≤ κO(1) we have
that for any s ≤ τ :

Pr[|HA| ≥ s] ≤ O(2α−(t+ω(n))s)

where α = |z|+ (t+ 2n)s.

Proof. We will define a sequence of adversaries and show reductions between them in order
to prove the upper bound stated above. Throughout, we assume that the algorithms are in
canonical form (see Definition 8.4.4).

1. Attacker A: This is the original adaptive τ -query attacker as defined in the statement
of the lemma where it will receive some input z and can ask τ queries to Γ. The goal
of the adversary is to hit at least s unknown valid ciphertexts via queries to Dec,Rev
or RevMsg.

2. Attacker Au: This is the same attacker as A but does not accept any input and is
modified as follows. For any Dec,Rev or RevMsg queries asked to Γ with some answer
y 6= ⊥, Au will instead use an answer that is part of some fixed string u ∈ {0, 1}α
hardcoded within Au where α = |z|+ (t+ 2n)s. The Enc queries are handled normally
as before. The goal of this adversary is to hit at least s unknown valid ciphertexts via
queries to Dec,Rev or RevMsg.

174

3. Attacker A′: This is the same attacker as Au for any fixed u. However, aside from
Enc queries which are handled normally using Γ, the other query types are instead
replaced with a single subroutine Test that takes as input a ciphertext c and outputs
1 if c is valid, and 0 otherwise. The goal of this adversary is to hit at least s unknown
valid ciphertexts via queries to Test.

4. Attacker Â : This is the non-adaptive attacker where it will ask all its queries at once
at the start of the experiment. Furthermore, it will not ask any Enc queries but will
be constrained to asking only Test queries. The goal of this adversary is to hit at least
s unknown valid ciphertexts via queries to Test.

Lemma 8.4.22. For every A, there exists some u ∈ {0, 1}α such that Pr[|HA| ≥ s] ≤
2α Pr[|HAu| ≥ s]

Proof. Recall that A accepts z as input and, when it hits s ciphertexts, it would receive back
at most (t + 2n) since we can either get back t bits information as a result of getting back
an answer from DecV,F or at most n bits of information from queries of Rev and RevMsgV.
Furthermore, by the canonicalization of A, it can ask for any c at most one query of each
type DecV,F, Rev, and RevMsgV. Thus, in order to say that Au would succeed at hitting s
with the same amount of information, the length of u has to be α = |z| + (t + 2n)s. Now,
by a union bound over all u, the probability of success for A is given as follows:

Pr[|HA| ≥ s] ≤ Pr[∃ u : |HAu| ≥ s] ≤
∑
u

Pr[|HAu | ≥ s] ≤ 2α Pr[|HAu | ≥ s]

Lemma 8.4.23. For any u ∈ {0, 1}α, Pr[|HAu| ≥ s] = Pr[|HA′ | ≥ s]

Proof. Since Au does not obtain any information regarding the actual answers to the Dec,Rev
and RevMsg queries that it asks, we can think of these subroutines simply as a testing
procedure that Au can use to determine whether any given ciphertext c is valid or not, and
this is signaled by whether the oracle returns ⊥ or not to any of these queries. Therefore, we
can interpret Au as an adversary A′ that simply calls Test instead of Dec,Rev and RevMsg
queries as this yields the same result.

Lemma 8.4.24. Pr[|HA′ | ≥ s] ≤ Pr[
∣∣HÂ

∣∣ ≥ s]

Proof. Given attacker A′ we can define Â that uses A′ and only issues Test queries (non-
adaptively). Any Enc queries that A′ asks (from a specific Enc domain of size n) can be lazily

evaluated (emulated) by Â. Furthermore, any Test queries that A′ asks will be answered

using one of Â’s pre-issued Test queries while remaining consistent with the previous Enc
queries that were issued.

Lastly, we state and prove the following lemma which will be used to bound the number
of ciphertexts that any (poly-query) non-adaptive algorithm might obtain and use for its
decryption and/or reveal queries.

175

Lemma 8.4.25 (Hitting Ciphertexts for Non-Adaptive Learners). Let Γ be as in Definition
8.4.2 and t(n) ≤ p(n)−ω(n) where t is an upper bound on the output length of F and p is the

ciphertext length. Let Â be a non-adaptive τ -query canonical algorithm as defined above and
HÂ be the set of unknown valid ciphertexts that Â hits via Test queries. Then for security
parameter κ, fixed n ≥ lg κ, τ ≤ poly(κ), we have that for any s ≤ τ :

Pr[
∣∣HÂ

∣∣ ≥ s] ≤ O(2−(t+ω(n))s)

Proof. Suppose t ≤ p − dn for d = ω(1) and let τ ≤ κd
′

= 2d
′ lg κ ≤ 2d

′n where d′ = d/2 =

ω(1) for the purposes of upper-bounding the probability for all poly-query algorithms Â.
Recall that the function Enc(.) is injective and maps messages x ∈ {0, 1}n to ciphertexts
c ∈ {0, 1}p(n). For simplicity, assume that we want to compute the probability that |HÂ| = s.
For any set of s ciphertexts that are in the image of some fixed s-sized set of the domain
Enc(.), the probability that the τ queries will hit these s ciphertexts is given by

(
τ
s

)
/
(

2p

s

)
. By

a union bound over all the different s-sized sub-domains of Enc(.), we find that for sufficiently
large security parameter κ:

Pr[
∣∣HÂ

∣∣ = s] ≤
(

2n

s

) (τ
s

)(
2p

s

) ≤
(

2ne

s

)s (τe
s

)s
(

2p

s

)s ≤


2ne

s
× 2d

′ne

s
2p

s


s

≤
(

2n(1+d′)e2

2ps

)s

≤
(

2n(1+d/2)e2

2p

)s
≤ O(2−(t+ω(n))s)

The last inequality follows from the short-output property, that is t ≤ p − d · n for some
d = ω(1). Note that Pr[|HÂ| = s+1] ≤ Pr[|HÂ| = s] and therefore Pr[|HÂ| ≥ s] is dominated
by the largest term represented by Pr[|HÂ| = s].

Putting things together. By Lemmas 8.4.22, 8.4.23, and 8.4.24, and using Lemma 8.4.25,
we find that:

Pr[|HA| ≥ s] ≤ O(2α−(t+ω(n))s)

Note that, for simplicity, Lemma 8.4.21 only considers hitting unknown ciphertexts from
some fixed domain of size n. However, we observe that this argument can be extended for
learners that can ask queries for different domain sizes as well.

Lemma 8.4.26. Pr[E(x)] ≤ ε+ negl(κ)

Proof. Let A to be an adaptive non-uniform oracle algorithm in the ideal hybrid that has
access to Γ and works as follows:
• Initialize the query-answer set QA = ∅
• For i = {1, ..., k}, run EvΓ(B, zi). For any query q asked by EvΓ(B, zi), if (q 7→ a)T ∈
QA for subroutine T then answer with a. Otherwise, handle the query in the canonical
form as in Definition 8.4.4, and if a query was sent to Γ, add the new query-answer
pair (q 7→ a)T to QA.

176

• Output EvΓ(B, zk)
In essence, A would run the learning and final execution phases (in total k executions) making
sure to only forward to Γ the queries that are distinct and which cannot be computed from
QA so far. Given the above canonical A, we observe that for any unknown valid ciphertext
c = Enc(x) where x = (a,m), A would ask at most one query of the form Rev(c), at most
one query of the form Dec(w, c) for which VEnc(w, a) = 1, and at most one query of the form
RevMsg(w1, w2, c) for which VEnc(wi, a) = 1 where i ∈ {1, 2}. Furthermore, A would never
ask a query if VEnc(w, a) = 0 since this condition can be verified independently by A and
the answer can be simulated as it would invariably be ⊥.

Given A, we can bound the number of distinct unknown ciphertexts that the k executions

will hit, which we denote by |HB| =
∣∣∣⋃k

i=1HBi

∣∣∣ where HBi is the set of ciphertexts hit by the

ith evaluation EvΓ(B, zi). Note that the total number of queries that will be asked across
all executions is k`B = poly(κ) where `B is the circuit size of Ev(B, .). It is straightforward
to see that, for any s, Pr[|HA| ≥ s] = Pr[|HB| ≥ s] since whenever one of the k executions
hits an unknown ciphertext c for this first time, A will also forward it to the oracle and hit
it for the first time as well.

Since A accepts as input the obfuscated circuit of size |iO| = `O, by Lemma 8.4.21, the
probability that A hits at least s = (`O + κ) ciphertexts is at most 2`O−ω(n)s ≤ 2−ω(n)κ =
negl(κ). Therefore, the k`B-query algorithm A will hit at most s = (`O + κ) new unknown
ciphertexts with overwhelming probability. Therefore we have that,

Pr[|HB| ≥ s] = Pr[|HA| ≥ s] ≤ 2`O−ω(n)s

Since the maximum possible number of learning iterations k = (`O+κ)/ε > s and
⋃i
j=1HBj ⊆⋃i+1

j=1HBj for any i, the number of learning iterations that increase the size of the set HB of
unknown ciphertext hits (via one of the bad event queries) is at most s. A ciphertext that
was hit could have its encryption query generated during the obfuscation phase or as one of

the hidden queries issued by F during one of the k executions. We say λ
$←− [k] is bad if it is

the case that
⋃λ
j=1 HBj ⊆

⋃λ+1
j=1 HBj (i.e. λ is an index of a learning iteration that increases

the size of the hit ciphertexts). This would imply that after λ learning iterations in the ideal
experiment, the final execution with HB̂ :=

⋃λ+1
j=1 HBj would contain an unknown ciphertext

that it we will hit for this first time and for which we cannot consistently answer the queries
that reference it. Thus, given that we have set k = (`O + κ)/ε, the probability (over the
selection of λ) that λ is bad is at most s/k < ε.

Proving Security. To show that the resulting obfuscator is secure, it suffices to show that
the compilation process represented as the new obfuscator’s construction is simulatable. We
show a simulator Sim (with access to Γ) that works as follows: given an obfuscated circuit B
in the Γ ideal model, it runs the learning procedure as shown in Step 2 of the new obfuscator
îO to learn the heavy queries QB then outputs B̂ = (B,QB). Note that this distribution is

statistically close to the output of the real execution of îO and, therefore, security follows.

177

8.5 Extended Long-Output FE Implies Obfuscation

We show that for a certain choice of function family G such that outlen(g) ≤ m + 1 for
any g ∈ G (where outlen(.) denotes the output length of a given function), there exists a
monolithic construction of IO from a compact single-key FE with ciphertext length m for
the function family G.

Theorem 8.5.1. There exists a function family G with outlen(g) ≤ m + 1 for any g ∈ G
such that an m ciphertext length compact single-key FE for the function family G implies IO
in a monolithic way.

In Lemma 8.5.2, we show that extended FE of the kind specified in the theorem above
implies extended compact single-key FE. This, together with the fact that extended compact
FE implies IO [AJ15,BV15], allows us to conclude the above theorem.

Lemma 8.5.2. For any function family H with outlen(h) ≤ ` for any h ∈ H, there exists
a class of functions {gi}i∈[`] with outlen(gi) ≤ m + 1 for all i ∈ [`] such that there exists a
monolithic construction of extended compact single-key FE for the function family H from
any m-ciphertext length compact single-key FE for the class of functions {gi}i∈[`].

Given an extended FE (Setup,Enc,Dec) of the kind specified in the above lemma state-
ment, and a secret-key encryption scheme (S,E,D)4 we construct an extended compact
single-key FE scheme (SetupH,EncH,DecH). In a bit more detail, realizing extended com-
pact single-key FE for the family H (where each h ∈ H could have SetupH,EncH, and DecH
gates in it) with output length ` requires ` instances of the given FE scheme corresponding
to functions {gi}i∈[`]. We describe these functions in Figure 8.2.

Construction of Compact FE. Next, we describe the construction of our compact single-
key FE scheme (SetupH,EncH,DecH):

• SetupH(1κ, h): Sample s ← S(1κ), set PK`+1 = ⊥, and for each i = {` . . . 1} proceed
as follows:

1. (PKi, SKi)← Setup(1κ, gi[i, h, αi,PKi+1]), where αi ← E(s, 0m+1).

Output {(PKH = PK1, SKH = (SK1, . . . , SK`))}

• EncH(PKH = PK1, y): Given the public key PKH and input x, sample r ← {0, 1}κ and
output ciphertext ct = Enc(PK1, (0, y, r, 0

κ)).

• DecH(SKH = (SK1, . . . , SK`), ct): Let ct1 = ct and then for each i = {1 . . . `} proceed
as follows:

4S(1κ) on input the security parameter outputs a secret key s. E(s,m) uses the secret-key s to encrypt
m generating a ciphertext c. Finally, the generated ciphertext c can be decrypted using D(s, c) to recover
the original message m back. Note that such an encryption scheme is implied by a underlying single-key FE
scheme.

178

gi[i, h, α,PK](b, y, r, s)
Hardcoded Parameters: The index i, function h ∈ H, a ciphertext string α, and a
public-key PK of the underlying single-key FE scheme.
Input: A bit b ∈ {0, 1}, input y in the domain of h, randomness r ∈ {0, 1}κ and a secret
key s of the secret-key encryption.
Computation: It proceeds as follows:

1. If b = 0 and i < `, output ai‖Enc(PK, (0, y, r, 0κ);PRFr(i)), where a = h(y) and ai
is its ith bit.

2. If b = 0 and i = `, output a`‖0m where a = h(y) and a` is its `th bit.

3. Else, output D(s, α).

Figure 8.2: The output-constrained circuit gi defined for the underlying compact FE
scheme.

1. Parse Dec(SKi, cti) as ai‖cti+1.

Output a1 · · · a`.

Gates planted in h. Note that, since we are constructing an extended compact FE, h can
have SetupH,EncH, and DecH gates in it. Given the description of our scheme above we can
replace each of these gates by Setup,Enc, and Dec gates — namely, the gates of the under-
lying FE scheme. This allows us to conclude that each gi consists of only Setup,Enc,Dec, E,
and D gates. However, since (S,E,D) is obtained by using Setup,Enc, and Dec, we have
that the set of gates reduces to Setup,Enc, and Dec. Note that since we are assuming that
the underlying FE scheme is extended this is allowed.

Efficiency. Observe that a ciphertext of the constructed FE scheme (SetupH,EncH,DecH)
for the circuit h consists only of a single ciphertext of the underlying FE scheme (Setup,Enc,Dec)
for the circuit g1. Therefore, we can conclude that the size of the encryption circuit of the
constructed scheme is independent of the size of the circuit h.

Correctness. The correctness of our scheme follows directly from the correctness of the
underlying FE scheme. Observe that for each i decryption of ciphertext cti generates the
ith bit of the output of h on input y and the correctly formed ciphertext cti+1. This, by
induction, allows us to conclude that decryption yields the correct output.

Proof of Security. We need to prove that the distributions {PKH, SKH,EncH(PKH, y0)}
and {PKH, SKH,EncH(PKH, y1)} are computationally indistinguishable. We prove security
via a sequence of hybrids.

179

• H0: This hybrid corresponds to the distribution {PKH, SKH, ct1 = EncH(PKH, y0)},
where PKH = PK1 and SKH = (SK1, . . . , SK`). Also, recall that PKi, SKi for each i ∈ [`]
is an instance of the underlying FE scheme for the circuit gi[i, h, αi,PKi+1]. Finally,
let ai‖cti+1 for i ∈ {1 · · · `} be the output of Dec(SKi, cti).

• H1: In this hybrid, we change αi for each i ∈ [`] (the value hard-coded in the circuit
gi). Recall that in hybrid H0, αi is obtained as E(s, 0m+1). Now we instead generate
αi as E(s, ai‖cti+1), where ai‖cti+1 is the output from decryption of cti with secret-key
SKi.

Indistinguishability between hybrids H0 and H1 follows based on the semantic security
of the secret-key encryption scheme (S,E,D).

• H2,i: For i ∈ {1 · · · `} this hybrid is same as hybrid H2,i−1 except that we change
how cti is generated. Specifically, we generate cti = Enc(PKi, (1, 0

n, r, s)) instead of
Enc(PKi, (0, y0, r, 0

κ);PRFr(i− 1)) when i 6= 1 and Enc(PKi, (0, y0, r, 0
κ)) when i = 1.5

Note that this is a sequence of `+ 1 hybrids where H2,0 is same as hybrid H1.

Next we show that hybrid H2,i is indistinguishable from hybrid H2,i+1 for each i ∈
{0 · · · `} relying on the security of the PRF and the underlying single-key FE. More
specifically, observe that an attacker distinguishing H2,i and H2,i+1 can be used to dis-
tinguish the following two distributions: (PKi, SKi,Enc(PKi, (0, y0, r, 0

κ);PRFr(i − 1))
(or (PKi, SKi,Enc(PKi, (0, y0, r, 0

κ)) when i = 1) and (PKi, SKi,Enc(PKi, (1, 0
n, r, s)),

while we have that gi[i, h, αi,PKi+1](0, y0, r, 0
κ) = gi[i, h, αi,PKi+1](1, 0n, r, s).

Now consider the intermediate hybrid H ′2,i with the distribution given by the tuple
(PKi, SKi,Enc(PKi, (0, y0, r, 0

κ)). It is easy to see that an attacker distinguishing H2,i

and H ′2,i for i ∈ {1 . . . `} can be used to break the security of the PRF.

Next, since gi[i, h, αi,PKi+1](0, y0, r, 0
κ) = gi[i, h, αi,PKi+1](1, 0n, r, s), therefore we can

conclude that an attacker distinguishing between H ′2,i and H2,i+1 can be used to break
the indistinguishability security of the underlying FE scheme.

Note that hybrid H2,` is independent of y0. In other words, starting hybrid H0 with input y1

and making the same changes as above still yields hybridH2,`. This allows us to conclude that
distribution from hybrid H0, namely {PKH, SKH, ct1 = EncH(PKH, y0)}, is computationally
indistinguishable from the distribution {PKH, SKH, ct1 = EncH(PKH, y1)}.

8.6 Fully Black-Box Separation of IO from Functional

Encryption

In contrast to Section 8.4 where we show that a monolithic construction of IO from short-
output functional encryption is impossible, in this section we show that a fully black-box

5Here n is the length of the input x.

180

construction of IO from (not necessarily short output) functional encryption is impossible.
More formally, we prove the following theorem.

Theorem 8.6.1. Assume the existence of one-way functions and that NP 6⊆ coAM. Then
there exists no fully black-box construction of indistinguishability obfuscation (IO) from func-
tional encryption.

To prove Theorem 8.6.1, we will apply Lemma 7.2.7 for the idealized random (non-
extended) functional witness encryption (rFWE) model Γ (see Definition 8.4.2) to prove
that there is no black-box construction of IO from any primitive P that can be constructed
from Γ (with measure one over the oracle). In particular, we will do so for P that is the
functional encryption primitive. Our task is thus twofold: (1) to prove that (non-extended)
functional encryption can be constructed from Γ and (2) to show a simulatable compilation
procedure that compiles out Γ from any IO construction. By Lemma 7.2.7, this would imply
the separation result of IO from P and prove Theorem 8.6.1.

8.6.1 Single-Key (Non-Extended) Functional Encryption exists rel-
ative to Γ

In Section 8.4.2, we have shown that extended functional encryption is secure relative to an
extended version of Γ. This was done in two steps: we first proved that a secure construc-
tion of customized functional witness encryption relative to Γ, then we proved that there
exists a fully black-box construction of an extended functional encryption scheme from any
customized functional witness encryption scheme.

We observe that the proof applied there also applies here in a direct sense, specifically
because the (non-extended) functional encryption scheme only requires a non-extended func-
tional witness encryption scheme (and one-way functions). Hence, for the first step, when we
want to construct the (non-extended) FWE scheme using Γ, we can use exactly Construction
8.4.10 and the proofs of correctness and security would follow directly from Claim 8.4.11 as
this is a special case of the monolithic construction.

Furthermore, for the second step, we can also use Construction 8.4.15 to construct our
(non-extended) functional encryption scheme but with the added restriction that F, the
functional family supported by the single-key FE scheme, is not allowed make oracle calls to
Γ. The proofs of correctness and security would follow directly from Claim 8.4.16 as this is
a special case of the monolithic construction.

8.6.2 Compiling out Γ from IO

Similar to how we compiled out the extended oracle Γ in Section 8.4.5, we will apply the same
techniques here for compiling out Γ in two steps: we first compile out some of the subroutines
of Γ to get an approximate obfuscation in the random instance-revealing witness encryption
oracle Θ model then compile out Θ to get an approximate obfuscator in the plain model.
More formally, we prove the following claim.

181

Claim 8.6.2. Let Θ be a random instance-revealing witness encryption oracle. Then for any
non-extended ΓV,F,p = (Enc,DecV,F,Rev,RevMsgV) and Θ, the following holds:

• For any IO in the non-extended ΓV,F,p ideal model, there exists a simulatable compiler
with correctness error ε < 1/200 for it that outputs a new obfuscator in the Θ oracle
model.

• For any IO in the Θ oracle model, there exists a simulatable compiler with correctness
error ε < 1/200 for it that outputs a new obfuscator in the plain model.

Proof. As before, we will only prove the first part of the claim as the second part follows from
Lemma 7.3.13. However, since this is a significantly simplified version of Claim 8.4.17, we
will only give a high-level overview the compilation procedure and the proof of approximate
correctness. The compiler will behave exactly as described in Section 8.4.5 but now we only
consider V that has Enc gates and F that does not make any oracle calls (only accepts plain
circuits).

Recall that the emulation process that outputs B ← iOΓ(C) and the evaluations during

the learning phase EvΓ(B, z1), ...,EvΓ(B, zλ), and final execution phase are all canonicalized
as in Definition 8.4.4. Hence, since there are no queries that can be hidden during the learning
and final execution phases (due to the canonicalization and the non-extended nature of Γ)
the only error in correctness of the final execution will be due to asking Dec on an unknown

ciphertext c where c was generated during the emulation of iOΓ(C). Note that asking a valid
unknown ciphertext c that was never generated happens with negligible probability due to
the injectivity of Enc.

If we consider the combination of all the learning and final execution phases as one algo-
rithm then, by Remark 8.4.5, for any unknown valid ciphertext c, there can be at most one
query of the form Dec(., c). Since we can upper bound the number of unknown ciphertexts by
`O = |iO| to be the size of the obfuscator, we can apply the learning procedure for k = 3`O/ε
to get an ε error in the correctness of the new obfuscator.

182

Chapter 9

Conclusion

In this dissertation we have made significant progress towards understanding the compu-
tational complexity of indistinguishability obfuscation (IO), which is an enabler of many
sought-after powerful applications in cryptography. However, as useful as this object is, our
work has provided an explanation behind the lack of candidate constructions of IO that are
based on standard cryptographic assumptions (in fact, all currently known candidate con-
structions of IO are based on strong, unconventional assumptions of questionable security).
In particular we have shown that standard classical assumptions, such as one-way functions
and trapdoor permutations, cannot be used in a black-box way to get IO. Furthermore, we
go even further and show that modern standard assumptions such as homomorphic encryp-
tion and predicate encryption are insufficient to obtain IO when used in a monolithic way
that captures a large and natural class of non-black-box techniques. While our results lends
evidence that IO may in fact require unorthodox tools and assumptions to realize, there still
exists the possibility that it may be based on well-studied lattice-based assumptions such as
the learning with errors problem, and we leave this as a highly interesting open question.

Furthermore, we strongly believe that the monolithic model, which was developed in this
work as a means of proving separation results of IO from modern assumptions, will be a useful
tool in proving separation results for other primitives that use their underlying components
in some non-black-box way. In fact, one can also go as far as to extend existing classical
impossibility results (e.g. black-box impossibility of public-key encryption from one-way
functions) to possibly prove that a large class of non-black-box techniques are insufficient
for achieving the desired primitive.

183

Bibliography

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-
order graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of
Lecture Notes in Computer Science, pages 528–556, Warsaw, Poland, March 23–
25, 2015. Springer, Heidelberg, Germany. 2

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark
Zhandry. Differing-inputs obfuscation and applications. Cryptology ePrint
Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689. 95

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Op-
timizing obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, ACM CCS 14: 21st Conference on Computer
and Communications Security, pages 646–658, Scottsdale, AZ, USA, Novem-
ber 3–7, 2014. ACM Press. 2

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In Rosario Gennaro and Matthew J. B. Rob-
shaw, editors, Advances in Cryptology – CRYPTO 2015, Part I, volume 9215 of
Lecture Notes in Computer Science, pages 308–326, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany. 2, 77, 79, 83, 87, 152, 153,
154, 178

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability ob-
fuscation from functional encryption for simple functions. Cryptology ePrint
Archive, Report 2015/730, 2015. http://eprint.iacr.org/2015/730. 83

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishabil-
ity obfuscation for turing machines: Constant overhead and amortization.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 252–279, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Hei-
delberg, Germany. 77, 79

[Ale03] Michelle Alexopoulos. Notes on set theory and probability theory, 2003. http:
//www.biostat.umn.edu/~dipankar/pubh7440/ProbSets.pdf. 11

184

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2015/730
http://www.biostat.umn.edu/~dipankar/pubh7440/ProbSets.pdf
http://www.biostat.umn.edu/~dipankar/pubh7440/ProbSets.pdf

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom func-
tions. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer Science,
pages 162–172, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer,
Heidelberg, Germany. 79

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfus-
cation and functional encryption. In Venkatesan Guruswami, editor, 56th An-
nual Symposium on Foundations of Computer Science, pages 191–209, Berkeley,
CA, USA, October 17–20, 2015. IEEE Computer Society Press. 5, 8, 78, 83

[AS16] Gilad Asharov and Gil Segev. On constructing one-way permutations from
indistinguishability obfuscation. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A: 13th Theory of Cryptography Conference, Part II, volume 9563
of Lecture Notes in Computer Science, pages 512–541, Tel Aviv, Israel, Jan-
uary 10–13, 2016. Springer, Heidelberg, Germany. 78, 83

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryp-
tion and indistinguishability obfuscation from degree-5 multilinear maps. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer
Science, pages 152–181, Paris, France, May 8–12, 2017. Springer, Heidelberg,
Germany. 153, 154

[AW07] Ben Adida and Douglas Wikström. How to shuffle in public. In Salil P. Vadhan,
editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lec-
ture Notes in Computer Science, pages 555–574, Amsterdam, The Netherlands,
February 21–24, 2007. Springer, Heidelberg, Germany. 31

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box
reductions, revisited. In Kazue Sako and Palash Sarkar, editors, Advances in
Cryptology – ASIACRYPT 2013, Part I, volume 8269 of Lecture Notes in Com-
puter Science, pages 296–315, Bengalore, India, December 1–5, 2013. Springer,
Heidelberg, Germany. 26

[BBF16] Zvika Brakerski, Christina Brzuska, and Nils Fleischhacker. On statistically
secure obfuscation with approximate correctness. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II,
volume 9815 of Lecture Notes in Computer Science, pages 551–578, Santa Bar-
bara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany. 6, 8, 15,
63, 64, 65, 72, 73, 74, 96, 97, 98, 156

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point
obfuscation. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,

185

volume 6223 of Lecture Notes in Computer Science, pages 520–537, Santa Bar-
bara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. 1, 31

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation.
In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,
volume 8349 of Lecture Notes in Computer Science, pages 52–73, San Diego,
CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany. 22, 95, 155

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 213–229, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Heidelberg, Germany. 62

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139
of Lecture Notes in Computer Science, pages 1–18, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany. 1, 6, 14, 31

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sa-
hai. Protecting obfuscation against algebraic attacks. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, vol-
ume 8441 of Lecture Notes in Computer Science, pages 221–238, Copenhagen,
Denmark, May 11–15, 2014. Springer, Heidelberg, Germany. 4, 6, 32, 49

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work.
J. ACM, 42(1):269–291, January 1995. 62

[BKSY11] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits
on the power of zero-knowledge proofs in cryptographic constructions. In Yuval
Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597
of Lecture Notes in Computer Science, pages 559–578, Providence, RI, USA,
March 28–30, 2011. Springer, Heidelberg, Germany. 5, 8, 78, 83

[BLP17] Nir Bitansky, Huijia Lin, and Omer Paneth. On removing graded encodings
from functional encryption. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, Part II, volume 10211
of Lecture Notes in Computer Science, pages 3–29, Paris, France, May 8–12,
2017. Springer, Heidelberg, Germany. 152

[BMG07] Boaz Barak and Mohammad Mahmoody-Ghidary. Lower bounds on signatures
from symmetric primitives. In 48th Annual Symposium on Foundations of
Computer Science, pages 680–688, Providence, RI, USA, October 20–23, 2007.
IEEE Computer Society Press. 67

186

[BMSZ15] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-
zeroizing obfuscation: The case of evasive circuits. Cryptology ePrint Archive,
Report 2015/167, 2015. http://eprint.iacr.org/2015/167. 2

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryp-
tomania to obfustopia through secret-key functional encryption. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography
Conference, Part II, volume 9986 of Lecture Notes in Computer Science, pages
391–418, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg,
Germany. 152

[Bor09] Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques.
Rendiconti del Circolo Matematico di Palermo (1884-1940), 27(1):247–271,
1909. 11

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfusca-
tion and applications to resettable cryptography. In Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on The-
ory of Computing, pages 241–250, Palo Alto, CA, USA, June 1–4, 2013. ACM
Press. 4, 32, 33, 43, 53

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Con-
ference on Computer and Communications Security, pages 62–73, Fairfax, Vir-
ginia, USA, November 3–5, 1993. ACM Press. 28, 61

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 416–434,
Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.
1

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all
circuits via generic graded encoding. In Yehuda Lindell, editor, TCC 2014: 11th
Theory of Cryptography Conference, volume 8349 of Lecture Notes in Computer
Science, pages 1–25, San Diego, CA, USA, February 24–26, 2014. Springer,
Heidelberg, Germany. 4, 6, 32, 49

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In 2007 IEEE Symposium on Security and Privacy, pages
321–334, Oakland, CA, USA, May 20–23, 2007. IEEE Computer Society Press.
24, 84

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography

187

http://eprint.iacr.org/2015/167

Conference, volume 6597 of Lecture Notes in Computer Science, pages 253–273,
Providence, RI, USA, March 28–30, 2011. Springer, Heidelberg, Germany. 6,
17, 18

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Venkatesan Guruswami, editor, 56th Annual Sympo-
sium on Foundations of Computer Science, pages 171–190, Berkeley, CA, USA,
October 17–20, 2015. IEEE Computer Society Press. 2, 21, 77, 79, 83, 87, 152,
153, 154, 178

[BY93] Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of
trapdoor permutations. In Ernest F. Brickell, editor, Advances in Cryptology –
CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 442–460,
Santa Barbara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany.
61

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I,
volume 8616 of Lecture Notes in Computer Science, pages 480–499, Santa Bar-
bara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany. 77

[Can17] Francesco Paolo Cantelli. Sulla probabilita come limite della frequenza. Atti
Accad. Naz. Lincei, 26(1):39–45, 1917. 11

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all
partial information. In Burton S. Kaliski Jr., editor, Advances in Cryptol-
ogy – CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages
455–469, Santa Barbara, CA, USA, August 17–21, 1997. Springer, Heidelberg,
Germany. 31

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with
multibit output. In Nigel P. Smart, editor, Advances in Cryptology – EU-
ROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
489–508, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany.
1, 31

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited. J. ACM, 51(4):557–594, July 2004. 4, 31

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, He-
manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Ti-
bouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Ad-
vances in Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes

188

in Computer Science, pages 247–266, Santa Barbara, CA, USA, August 16–20,
2015. Springer, Heidelberg, Germany. 2

[CGP15] Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure
two-party computation from indistinguishability obfuscation. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptog-
raphy Conference, Part II, volume 9015 of Lecture Notes in Computer Science,
pages 557–585, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Ger-
many. 2

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien
Stehlé. Cryptanalysis of the multilinear map over the integers. In Elisabeth Os-
wald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 3–12, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany. 2

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with ran-
dom oracles. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes
in Computer Science, pages 456–467, Warsaw, Poland, March 23–25, 2015.
Springer, Heidelberg, Germany. 4, 6, 31, 32, 33, 34, 35, 37, 38, 40, 56, 92, 106,
107, 118, 119, 135

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Cryptanalysis of GGH15 multilinear maps. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815
of Lecture Notes in Computer Science, pages 607–628, Santa Barbara, CA,
USA, August 14–18, 2016. Springer, Heidelberg, Germany. 2

[CLMP13] Kai-Min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On the
power of nonuniformity in proofs of security. In Robert D. Kleinberg, editor,
ITCS 2013: 4th Innovations in Theoretical Computer Science, pages 389–400,
Berkeley, CA, USA, January 9–12, 2013. Association for Computing Machinery.
28

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical mul-
tilinear maps over the integers. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 476–493, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany. 1

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography Con-
ference, Part II, volume 9015 of Lecture Notes in Computer Science, pages

189

468–497, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.
79

[CM14] Michael Clear and Ciaran McGoldrick. Bootstrappable identity-based fully ho-
momorphic encryption. In Dimitris Gritzalis, Aggelos Kiayias, and Ioannis G.
Askoxylakis, editors, CANS 14: 13th International Conference on Cryptology
and Network Security, volume 8813 of Lecture Notes in Computer Science,
pages 1–19, Heraklion, Crete, Greece, October 22–24, 2014. Springer, Heidel-
berg, Germany. 2

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way prob-
abilistic hash functions (preliminary version). In 30th Annual ACM Symposium
on Theory of Computing, pages 131–140, Dallas, TX, USA, May 23–26, 1998.
ACM Press. 1, 31

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyper-
plane membership. In Daniele Micciancio, editor, TCC 2010: 7th Theory of
Cryptography Conference, volume 5978 of Lecture Notes in Computer Science,
pages 72–89, Zurich, Switzerland, February 9–11, 2010. Springer, Heidelberg,
Germany. 1, 31

[CYG+15] Rong Cheng, Jingbo Yan, Chaowen Guan, Fangguo Zhang, and Kui Ren. Verifi-
able searchable symmetric encryption from indistinguishability obfuscation. In
Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, ASIA CCS ’15, pages 621–626, New York, NY, USA,
2015. ACM. 2

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography.
In SIAM Journal on Computing, pages 542–552, 2000. 2

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
encryption and its applications. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, Part III, volume 9816 of
Lecture Notes in Computer Science, pages 93–122, Santa Barbara, CA, USA,
August 14–18, 2016. Springer, Heidelberg, Germany. 20, 21

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial
information. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 654–663, Baltimore, MA,
USA, May 22–24, 2005. ACM Press. 31

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for at-
tacks against one-way functions and PRGs. In Tal Rabin, editor, Advances in
Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Sci-
ence, pages 649–665, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Heidelberg, Germany. 117, 165

190

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1(2):77–94, 1988. 80

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science,
pages 186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany. 80

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press. 6,
77, 78, 87

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 1–17, Athens, Greece, May 26–30, 2013. Springer, Heidelberg,
Germany. 1

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 54th Annual Symposium on Foundations of Com-
puter Science, pages 40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE
Computer Society Press. 1, 2, 79

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilin-
ear maps from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of
Lecture Notes in Computer Science, pages 498–527, Warsaw, Poland, March 23–
25, 2015. Springer, Heidelberg, Germany. 1

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round
secure MPC from indistinguishability obfuscation. In Yehuda Lindell, editor,
TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture
Notes in Computer Science, pages 74–94, San Diego, CA, USA, February 24–26,
2014. Springer, Heidelberg, Germany. 2

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th Annual ACM Symposium on Theory of Computing, pages 467–476,
Palo Alto, CA, USA, June 1–4, 2013. ACM Press. 1, 6, 16, 95, 96

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation
with auxiliary input. In 46th Annual Symposium on Foundations of Computer

191

Science, pages 553–562, Pittsburgh, PA, USA, October 23–25, 2005. IEEE
Computer Society Press. 1, 6, 31

[GKLM12] Vipul Goyal, Virendra Kumar, Satyanarayana V. Lokam, and Mohammad
Mahmoody. On black-box reductions between predicate encryption schemes.
In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference,
volume 7194 of Lecture Notes in Computer Science, pages 440–457, Taormina,
Sicily, Italy, March 19–21, 2012. Springer, Heidelberg, Germany. 39, 55

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional en-
cryption. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 555–564, Palo
Alto, CA, USA, June 1–4, 2013. ACM Press. 152, 154

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st Annual ACM Symposium on Theory of Computing, pages
25–32, Seattle, WA, USA, May 15–17, 1989. ACM Press. 103, 131

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srini-
vasan, and Mark Zhandry. Secure obfuscation in a weak multilinear map model.
Cryptology ePrint Archive, Report 2016/817, 2016. http://eprint.iacr.

org/2016/817. 2

[GMM17a] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds
on obfuscation from all-or-nothing encryption primitives. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 661–695, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 5, 6

[GMM17b] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does
functional encryption imply obfuscation? In Yael Kalai and Leonid Reyzin,
editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume
10677 of Lecture Notes in Computer Science, pages 82–115, Baltimore, MD,
USA, November 12–15, 2017. Springer, Heidelberg, Germany. 6

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of bas-
ing trapdoor functions on trapdoor predicates. In 42nd Annual Symposium
on Foundations of Computer Science, pages 126–135, Las Vegas, NV, USA,
October 14–17, 2001. IEEE Computer Society Press. 27

[Gol11] Oded Goldreich. Basing Non-Interactive Zero-Knowledge on (Enhanced) Trap-
door Permutations: The State of the Art, pages 406–421. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2011. 61

192

http://eprint.iacr.org/2016/817
http://eprint.iacr.org/2016/817

[GP15] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC
from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015: 12th Theory of Cryptography Conference, Part II,
volume 9015 of Lecture Notes in Computer Science, pages 614–637, Warsaw,
Poland, March 23–25, 2015. Springer, Heidelberg, Germany. 2

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the
cryptographic hardness of finding a nash equilibrium. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II,
volume 9815 of Lecture Notes in Computer Science, pages 579–604, Santa Bar-
bara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany. 77

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Re-
becca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
06: 13th Conference on Computer and Communications Security, pages 89–
98, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM Press.
Available as Cryptology ePrint Archive Report 2006/309. 24, 83

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry.
Breaking the sub-exponential barrier in obfustopia. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer Science,
pages 156–181, Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany.
77

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In
Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference,
volume 4392 of Lecture Notes in Computer Science, pages 194–213, Amsterdam,
The Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany. 1, 6,
97

[GS01] Geoffrey Grimmett and David Stirzaker. Probability and random processes.
Oxford university press, 2001. 11

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In
Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume
2501 of Lecture Notes in Computer Science, pages 548–566, Queenstown, New
Zealand, December 1–5, 2002. Springer, Heidelberg, Germany. 62

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In 41st Annual Symposium on Foundations of
Computer Science, pages 305–313, Redondo Beach, CA, USA, November 12–
14, 2000. IEEE Computer Society Press. 28, 67

193

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
43rd Annual ACM Symposium on Theory of Computing, pages 99–108, San
Jose, CA, USA, June 6–8, 2011. ACM Press. 8, 63

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Tatsuaki Okamoto,
editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture
Notes in Computer Science, pages 443–457, Kyoto, Japan, December 3–7, 2000.
Springer, Heidelberg, Germany. 1

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
Part I, volume 9665 of Lecture Notes in Computer Science, pages 537–565,
Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 2

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 466–481, Amsterdam,
The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg, Germany. 33,
62

[Hol06] Thomas Holenstein. Strengthening key agreement using hard-core sets - PhD
thesis, 2006. 62, 69, 70

[Hol15] Thomas Holenstein. Complexity theory, 2015. http://www.complexity.ethz.
ch/education/Lectures/ComplexityFS15/skript_printable.pdf. 12

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road,
or do secure hash functions need secret coins? In Matthew Franklin, editor,
Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 92–105, Santa Barbara, CA, USA, August 15–19,
2004. Springer, Heidelberg, Germany. 27

[HRsV07] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikun-
tanathan. Securely obfuscating re-encryption. In Salil P. Vadhan, editor,
TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture
Notes in Computer Science, pages 233–252, Amsterdam, The Netherlands,
February 21–24, 2007. Springer, Heidelberg, Germany. 1, 31

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences
of one-way permutations. In 21st Annual ACM Symposium on Theory of Com-
puting, pages 44–61, Seattle, WA, USA, May 15–17, 1989. ACM Press. 2, 3, 5,
9, 26, 27, 28, 32, 62, 67, 69, 78, 80, 153, 155

194

http://www.complexity.ethz.ch/education/Lectures/ComplexityFS15/skript_printable.pdf
http://www.complexity.ethz.ch/education/Lectures/ComplexityFS15/skript_printable.pdf

[Jou00] Antoine Joux. A one round protocol for tripartite diffie–hellman. In Wieb
Bosma, editor, Algorithmic Number Theory, pages 385–393, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg. 62

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded en-
coding schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in
Computer Science, pages 28–57, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany. 2, 79, 153

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in
Computer Science, pages 599–629, Santa Barbara, CA, USA, August 20–24,
2017. Springer, Heidelberg, Germany. 2

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and tech-
niques for obfuscation. In Christian Cachin and Jan Camenisch, editors, Ad-
vances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 20–39, Interlaken, Switzerland, May 2–6, 2004.
Springer, Heidelberg, Germany. 1, 31, 32

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic encryption.
In Howard J. Karloff and Toniann Pitassi, editors, 44th Annual ACM Sympo-
sium on Theory of Computing, pages 1219–1234, New York, NY, USA, May 19–
22, 2012. ACM Press. 20, 21

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from
DDH-like assumptions on constant-degree graded encodings. In Irit Dinur,
editor, 57th Annual Symposium on Foundations of Computer Science, pages
11–20, New Brunswick, NJ, USA, October 9–11, 2016. IEEE Computer Society
Press. 2

[McC90] Kevin S. McCurley. The discrete logarithm problem. In Proc. of the AMS
Symposia in Applied Mathematics: Computational Number Theory and Cryp-
tography, pages 49–74. American Mathematical Society, 1990. 36, 37, 40

[MMN16a] Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the
impossibility of virtual black-box obfuscation in idealized models. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptog-
raphy Conference, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 18–48, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Ger-
many. 4

195

[MMN+16b] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass,
and Abhi Shelat. Lower bounds on assumptions behind indistinguishability ob-
fuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th The-
ory of Cryptography Conference, Part I, volume 9562 of Lecture Notes in Com-
puter Science, pages 49–66, Tel Aviv, Israel, January 10–13, 2016. Springer,
Heidelberg, Germany. 6

[MP12] Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive
commitments - on the power of black-box vs. non-black-box use of primitives.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
701–718, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,
Germany. 61, 67, 68

[MSW14] Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arith-
metic attacks. Cryptology ePrint Archive, Report 2014/878, 2014. http:

//eprint.iacr.org/2014/878. 2

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for mul-
tilinear maps: Cryptanalysis of indistinguishability obfuscation over GGH13.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 629–658, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Hei-
delberg, Germany. 2

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in
Computer Science, pages 735–763, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany. 20, 21

[MX10] M. Mahmoody and D. Xiao. On the power of randomized reductions and the
checkability of sat. In 2010 IEEE 25th Annual Conference on Computational
Complexity, pages 64–75, June 2010. 62

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In
Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 96–109, Santa Barbara, CA, USA,
August 17–21, 2003. Springer, Heidelberg, Germany. 63

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium on Theory
of Computing, pages 109–118, San Jose, CA, USA, June 6–8, 2011. ACM Press.
63

196

http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878

[PS16] Rafael Pass and Abhi Shelat. Impossibility of VBB obfuscation with ideal
constant-degree graded encodings. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A: 13th Theory of Cryptography Conference, Part I, volume 9562 of
Lecture Notes in Computer Science, pages 3–17, Tel Aviv, Israel, January 10–
13, 2016. Springer, Heidelberg, Germany. 4, 6, 32, 33, 34, 35, 36, 37, 43, 49,
50

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
from semantically-secure multilinear encodings. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume
8616 of Lecture Notes in Computer Science, pages 500–517, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany. 2, 63

[PTV11] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasub-
ramaniam. Towards non-black-box lower bounds in cryptography. In Yuval
Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597
of Lecture Notes in Computer Science, pages 579–596, Providence, RI, USA,
March 28–30, 2011. Springer, Heidelberg, Germany. 8

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and
privacy homomorphisms. In Richard A. DeMillo, David P. Dobkin, Anita K.
Jones, and Richard J. Lipton, editors, Foundations of Secure Computation,
pages 165–179. Academic Press, 1978. 6

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 84–93, Baltimore, MA, USA,
May 22–24, 2005. ACM Press. 90

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004: 1st The-
ory of Cryptography Conference, volume 2951 of Lecture Notes in Computer
Science, pages 1–20, Cambridge, MA, USA, February 19–21, 2004. Springer,
Heidelberg, Germany. 3, 5, 9, 15, 26, 27, 32, 61, 62, 78, 80, 83, 86, 153

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th Annual Symposium on Foundations of Com-
puter Science, pages 543–553, New York, NY, USA, October 17–19, 1999. IEEE
Computer Society Press. 2

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233
of Lecture Notes in Computer Science, pages 256–266, Konstanz, Germany,
May 11–15, 1997. Springer, Heidelberg, Germany. 12, 32, 42, 61

197

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 457–473, Aarhus, Denmark, May 22–
26, 2005. Springer, Heidelberg, Germany. 83

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th Annual ACM
Symposium on Theory of Computing, pages 475–484, New York, NY, USA,
May 31 – June 3, 2014. ACM Press. 2, 62, 69, 70, 71, 77

[Wat15] Brent Waters. A punctured programming approach to adaptively secure func-
tional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes
in Computer Science, pages 678–697, Santa Barbara, CA, USA, August 16–20,
2015. Springer, Heidelberg, Germany. 1

[Wee05] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald
Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages
523–532, Baltimore, MA, USA, May 22–24, 2005. ACM Press. 1, 31

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II,
volume 9057 of Lecture Notes in Computer Science, pages 439–467, Sofia, Bul-
garia, April 26–30, 2015. Springer, Heidelberg, Germany. 2

198

	List of Figures
	Introduction
	Motivation
	Contributions
	Impossibility of VBB Obfuscation in Idealized Models
	Extending the Black-box Framework
	Separating IO from other Assumptions

	Related Work
	Organization

	Preliminaries
	Notation
	Measure-Theoretic Lemmas
	Generic/Idealized Models
	Basic Primitives
	Obfuscation
	Encryption Primitives
	Witness Encryption
	Predicate Encryption
	Homomorphic Encryption
	Functional Encryption
	Universal Variants of Primitives

	I Black-box Separations for Indistinguishability Obfuscation
	The Black-box Framework
	Black-box Constructions
	Variants on Black-box Constructions
	Black-box Constructions in Idealized Models

	Impossibility of VBB Obfuscation in Idealized Models
	Introduction
	Our Results
	Technical Overview
	Generic Group Model: Proving Theorem 4.2.1
	Low-Degree Graded Encoding Model: Proving Theorem 4.2.2
	Random Trapdoor Permutation Model: Proving Theorem 4.2.3.

	Impossibility of VBB Obfuscation in Generic Algebraic Models
	Preliminaries
	Solving Linear Equations over Abelian Groups
	Generic Group Model
	Degree-O(1) Graded Encoding Model

	Impossibility of VBB Obfuscation in the random TDP Model
	The Construction
	Completeness and Soundness
	Extension to hierarchical random TDP

	Separating IO from Standard Assumptions
	Introduction
	Technical Overview: Separating IO from the Random-Oracle
	Technical Overview: Hardness of Semi-Black-Box Constructions of IO
	Technical Overview: Separating IO from TDP and Constant-Degree GEM

	Separating IO from Random Oracle Based Primitives
	Hardness of Semi-Black-Box Constructions of IO
	Separating IO from TDP and Constant-Degree GEM

	II Monolithic Separations for Indistinguishability Obfuscation
	Extending the Black-box Framework
	Introduction
	Our Results
	A Concrete Definition for Case of WE
	A Transitivity Lemma for Deriving More Separations

	An Abstract Extension of the Black-Box Model
	An Abstract Model for Extended Primitives and Constructions
	Monolithic Constructions

	Monolithic Separation of IO from All-or-Nothing Encryption Primitives
	Introduction
	Known Recipe for Proving Lower-bounds for IO
	Warm-Up: The Basic Case of Witness Encryption
	Separating IO from Instance-Hiding WE
	Separating IO from Homomorphic WE
	Primitives Implied by Our Variants of WE

	Approach for Proving Lower Bounds on IO
	General Approach

	Separating IO from Instance Revealing Witness Encryption
	Overview of Proof Techniques
	The Ideal Model
	Witness Encryption exists relative to
	Compiling out from IO
	The new obfuscator IO"0362IOR in the random oracle model

	Separating IO from Instance Hiding Witness Encryption
	Overview of Proof Techniques
	The Ideal Model
	(Instance-hiding) Witness Encryption exists relative to
	Compiling out from IO

	Separating IO from Homomorphic Witness Encryption
	Overview of Proof Techniques
	The Ideal Model
	Homomorphic Witness Encryption exists relative to
	Compiling out from IO

	Primitives Implied by Our Variants of Witness Encryption
	Extended Predicate Encryption
	Extended Spooky Encryption
	Extended Attribute Based FHE

	Monolithic Separation of IO from Functional Encryption
	Introduction
	Our Results
	Technical Overview
	The Details of the Proof of Separation

	Monolithic Separation of IO from Short-Output FE
	The Ideal Model
	Extended Functional Encryption Exists Relative to
	Customized FWE in the Ideal Model
	From CFWE to Functional Encryption
	Compiling out from IO

	Extended Long-Output FE Implies Obfuscation
	Fully Black-Box Separation of IO from Functional Encryption
	Single-Key (Non-Extended) Functional Encryption exists relative to
	Compiling out from IO

	Conclusion
	Bibliography

