
Interaction of iLID Optogenetic Proteins 

Characterized using 3D Single-Molecule Tracking 

in Live E. coli 

 

 

 

Alecia Marie Achimovich 
Harrisburg, PA 

 

 

Biochemistry and Molecular Biology B.S.,  

Gettysburg College, 2016 

 

 

 

 

 

 
A Dissertation presented to the Graduate Faculty of the University of Virginia in 

Candidacy for the Degree of Doctor of Philosophy 

  

Interdisciplinary Graduate Program of Biophysics 

University of Virginia 

August, 2022 

 

 

 

 

 

 

 

Andreas Gahlmann 

Robert Nakamoto 

Alison Criss 

Rebecca Pompano 

Lukas Tamm 

 



| ii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2022 

Alecia Marie Achimovich 



| iii  

 

ACKNOWLEDGEMENTS  

 What a journey it has been. The culmination of my academic career is 28 years in 

the making, and it could not have come to pass without the support of many people in my 

life. The least of which I owe them is my thanks.  

 In Andreas, I have found a PhD mentor who matches my pace. I have come to 

admire his willingness to explore new scientific territories, and try new protocols or 

techniques, though this does not reflect on his attitude towards spicy foods.  So, I would 

like to thank Andreas for taking in a, perhaps over-enthusiastic, student, and allowing her 

to explore the unseen world with microscopy and join the resolution revolution. He has 

provided patient support over the years, for which I am very grateful. I wish him all the 

best as he pursues tenure this coming year. 

My committee has provided much needed advice and support throughout my 

graduate career. I would like to thank them for all of their help, and for their dedication to 

the pursuit of knowledge and mentorship. 

 Next, I would like to thank the past lab members on whose shoulders the Gahlmann 

lab was built. The first postdoctoral scholar to join the lab was Dr. Charles Richardson. 

Charles is an excellent scientist, mentor, and friend. He was both a driving and grounding 

force in the lab. I always appreciated the extra time and effort he put into providing support 

for the graduate students in the lab, including myself. I am very fortunate that our time 

overlapped within the Gahlmann lab. Thank you, Charles. The first graduate students to 

join the Gahlmann lab were Drs. Mingxing Zhang, and Julian Rocha. Starting a lab 

practically from scratch is no easy feat, especially as newly minted graduate students. I 



| iv 

 

 

admire your determination and tenacity that guided you during your time in graduate 

school. I thank both of them for all of their help learning and understanding single-molecule 

microscopy. Thank you to Mingxing, who provided help many times in managing the 

microscope, and adapting code to help with my experiments. A big thanks to Julian, whose 

work laid the foundation for imaging and data analysis that we all use today. The next 

graduate student that I must thank is Dr. Ting Yan. Ting has grown from a lab mate to a 

great friend in whom I can confide. Thank you for countless walks and advice, post cards, 

and art. I greatly enjoy your sarcasm and sassiness, and look forward to it for years to come. 

Dr. Ji Zhang and I both joined the lab in the 2016 academic year. During our time working 

together, Ji has shown me a great deal of patience and kindness, especially when training 

me to operate the lattice light sheet microscope. I have greatly appreciated his willingness 

to answer my questions and entertain my chattiness from time-to-time.  

As I make my way towards my defense, the Gahlmann lab is entering a new era 

with a second generation of graduate students who I am confident will push the lab to new 

and exciting ventures. First, I must thank Josh who has been unerringly supportive since 

he has joined the lab. Not only has he helped me talk through my project, but he has also 

advocated for me when I had trouble pushing forward. He has also provided some good 

music recommendations along the way. Yibo joined our lab partway through his first year 

at UVa, and I could not be more grateful. Since he has joined, Yibo has always been willing 

to provide a helping hand with statistical or coding questions. I would be hard-pressed to 

find a more kind and helpful lab mate. Thank you to Eric, who has been supportive of all 

of my endeavors both inside and outside of the lab. Olivia is a great labmate and conference 

roommate. She is a master cloner, coder, and confidant with sharp wit and intuition. I am 



| v 

 

 

excited to see her progress, and hope someday it might feel like Thursday, or even Friday. 

I have also had the opportunity to work with a few undergraduate students. Thank you to 

Arshiya, Patrick, Alma, and Jacob who kept me grounded. All of these lab members are 

superstars, and I wish them all the best as they continue on their journeys. 

 I have found incredible strength in my family of friends outside of the lab. First, an 

enthusiastic thank you to the community at City Clay, especially Meagan, and Carol. 

Thanks for being an oasis outside of lab, and a place where failure is routine and expected. 

Thank you to the LD gang, Katie and Caroline, for always having my back and being 

excellent hype-women. To my friends from Gettysburg, Katherine and Miranda, I love you 

both to the moon and back. Thank you for your love and encouragement. Thank you to 

Dakota and Emily who provide the best support in the form of laughter and great book 

recommendations. To my grandfather, who has always kindled and fed my curiosity. A 

huge thank you to my cats Darwin, and Vi who are an incredible source of comfort and 

joy. ñThank youò cannot fully encompass the gratitude I have for my partner, Mat. He has 

been with me through the darkest and lightest times over the past 10 years. You make me 

feel seen and heard, and have helped me to tap into my inner-strength. Plus, you always 

make sure to point out when the cats are being especially cute, which is beyond helpful. 

   

 

 

 



| vi 

 

 

ABSTRACT 

 Single-molecule fluorescence microscopy is a powerful tool that can be used to 

resolve cellular structures with nanometers of resolution. By localizing molecules with 

high precision over time, protein motion can be measured and used to resolve different 

diffusive states. Diffusive states are assigned to protein complexes using computational 

models with significant statistical power, and require biological validation which is often 

deliberatively perturbative to cellular function. In the work presented in this dissertation, I 

explore incorporating a non-invasive, transient method for disrupting protein localization 

and prospective diffusive states. I utilize light-induced dimerization domains to transiently 

sequester proteins to non-native cellular compartments upon light stimulation. To test the 

feasibility of this method, I have characterized the optical response of the improved Light 

Induced Dimerization (iLID ) optogenetic system using conventional imaging methods in 

addition to single-molecule tracking experiments. To carefully examine the iLID  system 

dynamics, I have extended our single-molecule analysis workflow to incorporate trajectory 

simulations of membrane-associated molecules. Further, I have added a full-trajectory 

analysis module that identifies changes in diffusion rate to quantify residence times of 

single-molecules at binding sites, and the kinetics of the interaction. Through these 

analyses, I have shown that the iLID system can be activated by longer wavelengths that 

are minimally absorbed in in vitro conditions. Further, I have identified transient 

interactions of the iLID optogenetic proteins that are not detectable in diffraction-limited 

imaging. This analysis highlights areas for characterization and improvement of the iLID 

optical response.  
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Overview 

To begin, I will state a broad and obvious fact: life is complex. Both multicellular 

and unicellular organisms live due to complex macroscopic processes such as metabolism, 

and immunity, that are governed by complex biochemical principles such as cellular 

signaling, and more fundamentally, protein-protein interactions (PPIs). Each process, each 

interaction is regulated on the cellular level to respond dynamically to the environment: 

e.g. nutrient availability, and pathogen recognition. Therefore, it is important from a 

fundamental, basic science perspective to probe mechanisms underlying systems and the 

key PPIs which guide them. My work presented here brings an important perspective of 

non-perturbative experimental validation of high-resolution imaging required for probing 

dynamic complex formation in vivo.  

1.1 Mapping protein-protein interaction networks 

 

As discussed above, PPIs are fundamental for cellular function. As such, there are 

many techniques that can be used to identify and characterize potential PPIs. The ideal 

method is highly specific, probe-free, quantitative, minimally invasive, and has live 

specimen compatibility with both high spatial and temporal resolution. However, no single 

method can meet all of these demands. Well-established in vitro biochemical and 

biophysical methods for probing protein interactions, such as co-immunoprecipitation and 

Western blot detection, are well suited for analyzing high affinity interactions. Transient, 

low-affinity interactions are often missed when using these methods due to dissociation 

before detection1,2. Alternative methods such as protein NMR, X-ray crystallography, and 

small angle X-ray scattering (SAXS) utilize purified proteins for characterizing the 

structure of proteins, and their binding interfaces3,4. While offering atomic-level 
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information, these techniques each come with a set of caveats. Current state-of-the-art 

protein NMR allows for solution state structural prediction with an upper limit for 

molecular weight of 100 kDa, while typical experiments are performed on complexes that 

are less than 35 kDa in molecular weight5-7. Alternatively, X-ray crystallography requires 

extensive optimization of buffer conditions for achieving crystallization. These conditions 

may preclude or induce non-native interactions8. For example, non-neutral pH may create 

charged patches on protein surfaces. Thus, interactions which are dependent on 

electrostatics will likely be altered. SAXS allows for structural prediction of protein 

complex quarternary structure in solution, but interactions mediated by an adaptor 

protein(s) may not be captured in solutions that do not accurately recapitulate the cellular 

environment. Isothermal titration calorimetry (ITC) can provide information about the 

thermodynamics and stoichiometry of a given interaction9, but similarly requires purified 

proteins and a buffer system that fall short of environmental replication. In response, 

developments in cryo-electron tomography (cryo-ET) have allowed for structural imaging 

in situ, with the stipulation that all samples must be fixed using plunge freezing. For 

example, Park et al. (2018)10 utilized a mini-cell producing Salmonella strain and achieved 

high resolution imaging of the type III secretion system, which had not been achieved 

before despite previous attempts. It is important to note that high resolution structural 

determination requires thousands of subtomograms for averaging, after which it is still 

possible to miss transient interactions or dynamic structures with fast protein turnover and 

exchange. Further, the full volume of thick samples cannot be effectively imaged due to 

extensive scattering. This can be overcome through the use of focused ion beam milling 



I n t r o d u c t i o n| 4 

 

 

(FIB) combined with cryo-ET imaging. In FIB-SEM material is milled away, and a 

ñwindowò is opened for imaging, though ultimately destroys the sample11-13.  

Fluorescence microscopy overcomes many of the aforementioned obstacles, 

allowing for in vivo visualization of fluorescently tagged molecules. Many fluorescence 

microscopy-based techniques have been developed over the past decades to detect and 

quantify interactions between biomolecules in vitro and in vivo. Improvements of 

fluorescent probes and biomolecular labeling technologies, in conjunction with 

instrumental improvements have enabled measurements that provide critical insights into 

cellular organization and the biochemical interactions occurring within them14. Spatial co-

localization of emitters through multi-color imaging is now widely utilized to gauge 

whether biomolecules are close enough to interact.  The power of such measurements 

depends critically on the achievable spatial resolution of the instrument used. Diffraction-

limited imaging provides a resolution on the order of 200-300 nm, which is much larger 

than the size of a typical protein (~2 nm) or the size of small protein complexes (~20 nm). 

Diffraction-limited resolution is thus too low to determine whether two proteins interact 

directly in a given complex or whether their interaction is mediated by a third protein15. 

Super-resolution microscopy approaches enabling precise single-molecule localization, 

such as PALM/STORM and MINFLUX, have been successful in addressing this challenge. 

For example, Symborska et al. determined radial positions of protein subunits of the 

nuclear pore complex (NPC) with subnanometer precison,16 and more recently, Ries and 

co-workers used MINFLUX microscopy to pinpoint the position of subunits within the 

NPC with single nanometer precision without the need for radial averaging17. Single-

molecule microscopy techniques overcome the resolution barrier, providing tens of 
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nanometers of resolution and thus, accurate co-localization analysis of static structures18-

20.  

Detecting protein interactions within freely-diffusing complexes cannot be 

accomplished by fluorescence co-localization, and thus requires different approaches. Live 

cell analysis of protein oligomerization state is possible using fluorescence microscopy 

techniques such as Fluorescence recovery after photobleaching (FRAP), and Fluorescence 

correlation spectroscopy (FCS). These measurements rely on cellular or compartmental 

measurements of fluorescence intensity, either recovery of fluorescence as with FRAP, or 

fluctuations over a small imaging volume as with FCS. Thus, these techniques offer 

ensemble averaged data from which it is difficult to identify transient binding events21. 

Estimation of binding parameters is performed using kinetic model fitting22. Alternatively, 

Forster resonance energy transfer (FRET), measures the efficiency of non-radiative energy 

transfer from an excited donor fluorophore to an acceptor fluorophore in the ground state, 

which becomes excited and emits photons. For energy transfer to occur, the donor and 

acceptor fluorophores must be within a few nanometers of each other and be oriented 

correctly. Thus, FRET efficiency serves as a measurement of spatial proximity and can be 

detected between tagged proteins of interest to infer the existence of protein-protein 

interactions23,24. FRET measurements have been extended to Fluorescence Lifetime 

Imaging Microscopy (FLIM) techniques. Non-radiative energy transfer shortens the 

lifetime of the donor fluorophore, and, therefore, spatial proximity of fluorophores can be 

determined. Due to the nature of the measurement, the lifetime signal is fluorophore 

concentration independent, and there is limited spectral bleed-through from acceptor 

fluorescence. These features make FLIM particularly advantageous compared to FRET25. 
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Despite the nanometer-level distance sensitivity of FRET and FLIM-FRET, the data 

derived from these measurements are also ensemble-averaged, and cannot efficiently detect 

transient interactions. The extension of single-molecule microscopy to FRET (smFRET) 

allows FRET measurements to be made on single proteins, and can be used to detect 

heterogeneity within a sample. However, this technique requires the studied proteins to be 

immobile or very slowly diffusing, and thus cannot detect interactions between freely 

diffusing proteins within the cytosol25. For an exhaustive review of protein oligomerization 

determination using fluorescence techniques in live cells, please refer to the following 

review26.   

1.2 Single-molecule tracking analysis for protein complex determination 

 

Single-molecule localization microscopy has led to a resolution revolution in 

optical, fluorescence imaging. Photo-Activation Light Microscopy (PALM) and 

STochastic Optical Reconstruction Microscopy (STORM) routinely achieve ~10 nm lateral 

resolution and ~50 nm axial resolution. The ability to precisely localize single proteins has 

led to more accurate co-localization analysis of static structures, as described in a previous 

section, in addition to tracking and diffusive analyses. In such analyses, single proteins are 

imaged over time to measure how quickly they diffuse in a given environment, whether it 

be in solution or within live cells. Diffusion rate (D) in a given medium can be described 

by the Stokes-Einstein relationship:  

Ὀ
ὯὝ

φ“ʂ2
 

Where kb refers to the Boltzmann constant, T to temperature, ʂ ÔÏ viscosity of the medium, 

and R to the hydrodynamic radius of the protein or biomolecule being measured27,28. Using 
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this equation, it is clear that the diffusion rate of the protein is inversely correlated with its 

size.  Thus, it is possible to infer the oligomerization state of a protein by how quickly it 

diffuses through a given medium. It is important to note that while the Stokes-Einstein 

equation holds well for globular proteins or protein complexes, further modifications of the 

equation are necessary for non-globular protein complexes like microtubule or actin 

filamentous fibers29.  

 Diffusion measurements are made in vivo by localizing single fluorescently labeled 

proteins and following their movement over time. The amount of distance that a molecule 

moves between each time point, called the displacement (r) of the molecule, is used in 

subsequent analyses. Just by calculating the mean squared displacement (MSD or <r2>) 

over increasing time intervals (Ű), one can get significant information about their system30. 

A molecule with true random diffusion, also called Brownian diffusion, exhibits a linear 

MSD over time ( <r2>  θDŰ) for the full length of the moleculeôs trajectory. On the other 

hand, a molecule that is not a true Brownian diffuser will exhibit a different relationship 

where (<r2> θ  ŰŬ). When Ŭ is greater than one, it suggests that the molecule is moving more 

quickly than expected for a Brownian diffuser, and exhibits super-diffusive behavior. This 

is a common feature of proteins that are associated with vesicular transport, for example31. 

When Ŭ is less than one, it suggests that the molecule is moving more slowly or not as far 

as expected for a Brownian diffuser, and is likely confined in space. This is most common 

for in vivo measurements where there are many levels of confinement. Membranes serve 

as physical boundaries which confine molecules to subcellular compartments, resulting in 

sub-diffusive behavior. Indeed, recent diffusion measurements in bacteria support that 

confinement contributes to subdiffusive behavior of proteins,  estimating the alpha 
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exponent is between 0.6 and 0.8.32-34 Further, the cytosol of the cell is very crowded, 

containing a myriad of biomolecules which may serve as a barrier to random diffusion, 

especially for large molecules. In this way the cytosol can act as a sieve. This is particularly 

true for bacterial cells where the nucleoid displaces large proteins to the cell pole as they 

cannot diffuse freely through the dense DNA-protein meshwork35-37. 

 Anomalous diffusion within the cytosol precludes facile analysis of diffusion 

measurements. This is particularly true within the extremely confined space of a bacterial 

cell. The volume of an average E. coli cell is approximately 8 µm3. This leads to interesting 

questions about how bacterial cells are able to differentially regulate reactions without the 

high degree of compartmentalization that is apparent in eukaryotic cells35. Many labs 

within the microbiological imaging realm are working on understanding protein-protein 

interactions within bacteria, and how these interactions contribute to macromolecular 

assembly within the cytosol. With each lab comes a slightly different single-molecule 

imaging set-up, and another data analysis pipeline to accompany it38. Here, I will outline a 

few of the predominate features that are pervasive in the field.  

1.2.1 Diffusive state assignments to protein complex populations 

After image analysis and identification of single molecules and their trajectories, 

the data output is a distribution of apparent diffusion coefficients. Using these distributions, 

further analyses are performed to distinguish protein complexes and modes of binding that 

molecules existed in during the time of measurement. These so-called ñstate-fitting 

modelsò are used to assign diffusive states (quantitatively, Diffusion Coefficient = x Õm2/s) 

to protein complexes (DNA-bound, e.g.). A common method for estimating the diffusion 
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coefficient, which describes a given state, is by fitting the experimental distribution to an 

analytical equation that describes the probability or likelihood of observing the 

experimental distribution if the molecule exists within said diffusive state. Curves 

generated from the analytical equation are then fit to the experimental distribution, and 

evaluated using statistical analyses such as linear least squares and maximum likelihood 

estimation (MLE). To describe more complex, multi-state systems, the probability function 

can be expanded to include more diffusive states, at varying fractions of the population as 

a linear combination of terms. This method has been modified and used extensively both 

in bacteria and eukaryotic cells39-44.  

Other methods utilize Hidden Markov Models (HMM) which describe not only the 

diffusive states that protein exists in, but also the kinetics of switching between multiple 

diffusive states45,46.  It is important to note that the methods which utilize HMM fitting, as 

well as analytical equation fitting as described above, invoke a fixed number of states. The 

analyses can be performed multiple times to find the best number of states to include in the 

model. However, this leads to an issue which is inherent to parameter fitting. Using more 

parameters in a model equation will lead to better fits, especially for complex curves. This 

can lead to over-fitting of your experimental data, where each added state marginally  

decreases the error of the fit, though there may be no biological significance of the added 

states47. To incorporate model flexibility and remove bias, Persson et al.48 applied 

variational Bayesian statistics to their HMM modeling of diffusive state and kinetic 

parameter selection, which objectively weighs the goodness of fit of the model against the 

complexity of the fit.   
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 Another feature of the abovementioned fitting methods is that they do not address 

levels of complexity that exist from the cells themselves. As mentioned previously, both 

the cell membrane and cytosol are extremely crowded and impose barriers for diffusing 

molecules, resulting in anomalous diffusive behavior. This effect is exacerbated within the 

small volume of the bacterial cell. Therefore, some groups have focused on directly 

incorporating considerations for cell geometry and confinement imposed by membranes in 

the diffusion state fitting models. This has been achieved by direct simulation of single-

molecule trajectories within confined volumes that reflect the cell geometry of bacterial 

cells. In this way, the experimentally derived ñapparentò diffusion coefficient (D* ) 

distributions, are fit with simulated diffusion coefficient distributions to derive the 

theoretical, unconfined diffusion coefficient (D) state49-53.   

 To ensure the accuracy of state-fitting models, extensive statistical validation is 

required. The gold standard for validation and reproducibility is using simulated data as a 

benchmark for model accuracy and applicability. However, experimental validation of 

assigned states is a non-trivial task. Mutation or deletion of putative interacting partners is 

the most often utilized control. This is not possible for proteins which are required for 

maintaining cell viability including cell wall synthesis and DNA replicating factors. 

Therefore, there is a need for assays that transiently disrupt protein interactions, do not 

reduce cell viability, and can be easily incorporated into single-molecule tracking 

experiments. An attractive solution is optogenetics, which can transiently perturb spatial 

localization of proteins using a light signal. The technology will be discussed hence.  
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1.3 Optogenetics 

Optogenetics is a broad term that is applied widely to describe light-induced 

cellular reactions. Since the first implementation of optogenetics just under 20 years ago, 

synthetic biologists have developed a large array of tools to control or engineer cellular 

functions by utilizing proteins which contain light-sensing domains. By heterologously 

expressing light sensing domains in non-native contexts, new or manipulated 

functionalities can be introduced to previously ñblindò systems. Moreover, light-driven 

responses are transient and allow for temporary manipulation of the cellular environment. 

The following sections will describe different form factors that optogenetic systems often 

take and a brief overview of how they have been applied. Overview of photoreceptors 

Photoreceptors are classified as any protein that integrates a light input to a 

signaling response. There are six type types of photosensory proteins which have been 

well-characterized including: rhodopsins54, phytochromes55, cryptochromes56, blue-light 

using flavin (BLUF) proteins57, photoactive yellow proteins (PYPs), and light oxygen 

voltage (LOV) proteins58,59. It is important to note that this is not an all-inclusive list, as 

there are photoreceptors that have been discovered recently, such as CarH in myxobacteria 

which regulates carotenoid biosynthesis60, that have not been extensively characterized. 

Despite the breadth in sequence and structure of these photoreceptors, there are apparent 

emergent properties in their mechanisms of action. Firstly, each protein module utilizes a 

chromophore which absorbs photons and converts the light signal to some physical change 

in the protein. There are four chromophores utilized by photoreceptors including, retinal 

(rhodopsins), bilin (phytochromes), p-coumaric acid (photoactivated yellow proteins), and 
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flavin (cryptochromes, BLUF proteins, and LOV proteins)61 which all are characterized by 

extended conjugated pi-orbitals. 

The mechanism of signal transfer is dependent on the conjugated chromophore, but 

the outcome is typically proton transfer to the protein, which results in a conformational 

change, and subsequent signal activation62. The following sections will discuss the ways 

in which these photoreceptors have been used to manipulate cell biology using light 

signals.  

1.3.2 Ion channels and transporters 

Light-regulated ion transporters were among the first optogenetic tools developed. 

These transporters largely consist of a family of proteins called rhodopsins which utilize a 

retinal chromophore54. Retinal is covalently bound to the rhodopsin protein and undergoes 

isomerization after light absorption. For animal rhodopsins (type II), isomerization of 

retinal initiates signaling pathways via activation of signaling enzymes, serving as photo-

activated G-protein coupled receptors63. Alternatively, bacterial rhodopsins (type I) change 

conformation due to isomerization of retinal, resulting in pore opening and pumping, or 

passive diffusion of ions through the transporter pore64. Ion-transporting rhodopsins are 

classified as light-gated channels (also referred to as channel rhodopsins), including both 

cation and anion channels, or light-driven pumps, including sodium, chloride, and proton 

pumps. These varieties of ion-transporters have been extensively utilized to selectively 

hyper- and de-polarize membranes, especially in neuroscience65-67 and cardiology 

fields68,69.  
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1.3.3 Opsin-independent photoreceptors 

Non-rhodopsin photosensory proteins have been used to modulate a broad variety 

of cellular processes by acting as optogenetic switches. This has been possible due to the 

modular nature of light sensing domains which can be used to label proteins of interest 

much like an affinity or fluorescent tag. Despite the diversity in available switches, they 

operate similarly. Much like rhodopsin photoreceptors, non-opsin photoreceptors utilize a 

chromophore (e.g. flavin, bilin, or p-coumaric acid) which undergo some conformational 

change due to wavelength-dependent photon absorption as described in a previous 

subsection. These conformational changes lead to: 1) change in the oligomerization state 

of the protein through dissociation or association of homo- or hetero- oligomers, or 2) 

uncaging of a small peptide for targeting to different cell compartments or binding a known 

interaction partner (Figure 1.1)70. By tagging proteins of interest with light sensing 

domains, one can control both protein localization and oligomerization-dependent activity 

state of enzymes. Thus, by modifying signaling molecules with optogenetic switches, 

unprecedented spatio-temporal control of signaling can be achieved by integrating light- 

rather than chemical- signals70,71.  

Because of the modularity of optogenetic switches, they have been used to attenuate 

the activity of a wide variety of processes including, but not limited to, directed lamellar, 

membrane ruffling of cultured epithelial cells72, secretion of virulence factors by bacteria73, 

and tyrosine kinase signaling for high-throughput identification of small-molecule 

inhibitors74.  
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Figure 1.1. Action mechanism of optogenetic switches with examples. There are many 

other examples of switches which utilize these modes of action. For an exhaustive 

discussion of optogenetic switches and their modifications for increasing efficiency and 

usability, please refer to Khamo et al. (2017)75. Figure reproduced from Kramer et al. 

(2021)70. 

1.4 Optogenetic knocksideways assays for validating single-molecule state 

assignments 

An overview of statistical methods used to resolve different diffusive states and 

assign them to protein complexes was outlined in detail in section 1.3. A clear method for 

verifying different diffusive state assignments to protein complexes has yet to be 

developed. We propose to disrupt the spatial distribution of proteins to non-native cellular 

compartments, using transient, non-invasive and reversible light signals76. We refer to this 

method as a ñknocksidewaysò assay for the remainder of the dissertation. In this assay, 

cytosolic proteins are tagged with an optogenetic dimerization partner while the dimer 
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complement is targeted to a non-native cellular compartment (e.g. the cell membrane). 

Optical activation of dimerization results in sequestration of proteins of interest to the non-

native cellular compartment, and interacting proteins can be sequestered to the same 

compartment as a result. We hypothesize that changing the spatial distribution of 

interacting proteins will aid in the assignment of diffusive states to protein complexes with 

distinct compositions. In the simplest scenario, we expect to observe depletion of the 

cytosolic diffusive state assigned to the suspected oligomer when either interacting partner 

is sequestered to the membrane. Here, we test the possibility of combining optogenetic 

manipulation with 3D single-molecule tracking microscopy in live Escherichia coli. The 

improved Light Induced Dimerization (iLID) system77 was selected because it has been 

extensively characterized and engineered for optimized performance in different model 

systems. Thus, a considerably large toolbox of iLID variants with different affinities, and 

reversion times are available for implementation73,77,78. The iLID protein contains the light-

sensing light oxygen voltage (LOV2) domain derived from Avena sativa which 

incorporates a flavin cofactor during folding. The flavin cofactor acts as a chromophore, 

and forms a cysteine adduct with the LOV2 domain after illumination with blue light. As 

a result, the iLID protein changes conformation and exposes a binding site for the 

interacting partner, SspB79,80.  

1.5 Overview of dissertation 

In the remainder of the dissertation, I will discuss my efforts to use the improved 

light induced dimerization (iLID) optogenetics system in single-molecule tracking 

experiments. In Chapter 2, I will discuss single-molecule microscopy, the instrument used, 

and the modifications that were made to acquire measurements for optogenetic 
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experiments. Next, I will discuss the experimental and computational methods employed 

to acquire and analyze the data in Chapter 3. This chapter will highlight where I have 

extended our computational toolbox to include simulation models for membrane diffusion. 

Further, I have introduced an intuitive analysis pipeline which utilizes full trajectory 

information that would be discarded as part of our traditional diffusion analysis. Chapter 4 

will contain discussion of the results of my work. In this chapter, you will find important 

considerations about how optogenetic tools should be calibrated and applied to any 

imaging experiment. Further, I make suggestions for additional characterization of the light 

oxygen voltage (LOV2) domain and the iLID protein itself. Lastly, in chapter 5, I discuss 

the trajectory of work to be done in light of my analyses. This includes using far-red laser 

excitation to decrease pre-activation of the optogenetic system, incorporating membrane 

diffusion into our existing diffusion coefficient model, and using full-trajectory analyses 

to derive kinetic information about protein interactions.  
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As described in the previous chapter, the vision of this work is to use the iLID 

optogenetic system to transiently deplete cytosolic diffusive states through spatial 

redistribution of proteins to non-native cellular compartments. Before knocksideways 

experiments could be designed, it was necessary to first evaluate the iLID optogenetic 

response in the live E.coli model system. Optogenetic tools, including iLID, have been 

widely applied in eukaryotic cells in conjunction with diffraction-limited fluorescence 

microscopy to obtain population-averaged, phenotypic readouts70,81. Therefore, I sought to 

use both conventional diffraction-limited conditions and single-molecule localization and 

tracking microscopy to quantify the iLID optogenetic response. In this chapter, I will 

discuss the imaging techniques used with an emphasis on experimental design 

considerations required for live-cell single-molecule fluorescence microscopy.   

2.1 Single-molecule fluorescence imaging 

 Fluorescence microscopy allows for imaging of cellular structures in native 

contexts. Conventional imaging techniques, however, are limited by their ability to resolve 

structures that are close in space. Each fluorescent molecule emits photons of light that can 

be described by a wavelength within the visible range (380 nm ï 700 nm) which are 

collected using a detector. Due to light diffraction, the fluorescence distribution is 

described by a point spread function (PSF) which appears as an airy disk (Figure 2.1).  

Because each emitter can be described by a PSF, emitters which are close in space will 

produce an image with overlapping PSFs (Figure 2.2). Thus, there is an inherent physical 

limit to how close emitters can be in space and still be resolved. This was first described 

by Ernst Abbe according to the following equation82: 
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where the lateral diffraction limit (dx,y) is limited by the wavelength (ɚ) of light collected, 

as well as the inherent imaging conditions such as the refractive index of the imaging 

medium (n), and maximum angle of light (ɗ) collected by the objective lens. The imaging 

parameters can be combined into a single term called the numerical aperture (NA):  

ὔὃ ὲϽÓÉÎ— 

Such that the diffraction limit can be simplified to:  
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This relationship describes the achievable lateral resolution for a fluorescent emitter. 

Resolving emitters axially is even more difficult, as the achievable resolution shows an 

even greater dependence on the amount of light collected by the objective lens as described 

by83:  
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Therefore, the distance between two objects required to resolve them is approximately half 

the wavelength of visible light (~200 nm), depending on the objective lens used in the 

microscope. That means that small biomolecules, which are on the order of a few 

nanometers in size, cannot be resolved within larger complexes. For example, fluorescently 

tagged subunits making up the nucleoporin complex form a continuous ring of fluorescence 
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which cannot be resolved into individual components without further manipulation (Figure 

2.2). 

  

Figure 2.1. Airy disk point spread function. (a) Photons emitted from a point source are 

collected with the microscope objective, and propagate through the imaging system. When 

focused, photons will form an airy disk pattern due to diffraction of the light waves. An 

axial (x-z) cross-section of the airy disk pattern indicates that the central lobe of the disk 

contains approximately 84% of the observed intensity which is equally apparent in (b) a 

3D representation of the point spread function collected. Figure reproduced from ref.84 
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Figure 2.2. Overlapping point spread functions. PSFs approximated as smoothed 

Gaussian functions as detected on a camera (top) and as intensity cross-sections (bottom) 

become unresolvable as the distance between emitters is decreased (left to right). For 

example, fluorescently labeled subunits within a nucleoporin complex cannot be resolved 

from each other and will resemble a continuous ring, due to the diffraction limit. Figure 

adapted from reference14. 

 It is thus necessary to manipulate imaging conditions to resolve biomolecules that 

are close in space. This can be achieved by controlling the emission of fluorophores for 

separated collection of fluorescence. The development of imaging techniques to address 

this issue was a significant advancement in the field, and resulted in the Nobel prize awards 

for the scientists that pioneered super-resolution microscopy. The three main fields of 

super-resolution microscopy include Stimulated Emission Depletion (STED) 

microscopy85, Structured Illumination microscopy (SIM)86, and Single-Molecule 

Localization Microscopy (SMLM)87. STED utilizes patterned light to deplete fluorescence 

in a region surrounding a narrow fluorescence excitation beam to spatially separate 

fluorescence of molecules85. SIM also utilizes patterned light to achieve super-resolution. 

Light diffraction from interference of incident light waves form predictable light patterns, 

called optical lattices, are used to image samples, offering higher spatial frequency 
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information than traditional imaging methods. Thereby, super-resolution images can be 

reconstruction from image data. Alternatively, SMLM achieves super-resolution by 

controlling emitter concentration at any given time, such that spatially separated single-

molecules can be imaged. SMLM can be achieved through a variety of methods such as 

photoactivated light microscopy (PALM), stochastic optical reconstruction microscopy 

(STORM), and point accumulation in nanoscale topography (PAINT).  Each of these 

methods rely on the fluorophore transitions between fluorescent ON and OFF states. 

Spatially separated PSFs are fit with a Gaussian function that describes the fluorescence 

profile. Super-resolution images are then rendered by adding all of the fit localizations with 

tens of nanometers of precision. (Figure 2.3).  

 

Figure 2.3. Single-molecule localization microscopy image rendering. To illustrate 

image reconstruction in SMLM, a representation of a nucleoporin complex which has been 

densely labeled with fluorophores is used. Single fluorophores stochastically enter the 

fluorescence ON state at a given time, t. A Gaussian fitting model is applied to each image 

to identify single-molecule emitters, achieving tens of nanometers of resolution, laterally. 

Fit images over the collection time, tn, are integrated to produce a super-resolution image. 

Figure adapted from reference.14   

In PALM, a small subset of fluorophores is primed for excitation using low 

intensities of UV light, and then excited into the fluorescent ON state with light at longer 



F l u o r e s c e n c e  i m a g i n g| 23 

 

 

wavelengths. Unprimed, unexcited fluorophores remain in the fluorescent OFF state88. 

STORM is achieved using synthetic dyes which stochastically switch between the ON and 

OFF state in suitable buffer conditions89-92. Unlike PALM and STORM, PAINT does not 

rely on the photophysics of the fluorophore for switching between fluorescent states, but 

rather depends on fluorophore binding to static structures93. Quickly diffusing, unbound 

molecules escape detection until bound to the labeled structure. Bound molecules are 

recycled back into the cytosol or medium and remain ñinvisibleò until binding occurs again. 

The most common implementation of this technique is in the form of DNA-PAINT which 

utilizes specific DNA nucleotide tags as scaffolds for fluorophore binding94. 

2.2 Measuring the depth of an emitter  

Conventional PSFs offer information about the lateral (x- and y-) positions of 

fluorophores. To attain three dimensional images of structures, axial information is 

required. Many techniques have been developed to squeeze more information out of 

fluorescence PSFs including the use of multiplane imaging, interferometric measurements, 

and PSF engineering95. The simplest form of multiplane imaging is biplane imaging in 

which emission light is split into two channels, and is collected by two cameras that are 

slightly offset by a known distance to different image planes. Thus, an emitter will always 

be out of focus on at least one of the cameras. The ratio of PSF size between the two 

cameras monotonically increases as a function of the PSF axial position. Thus, by 

simultaneously imaging on both cameras, it is possible to determine the depth of the 

emitter96. This method can resolve up to 1 µm of axial distance, and is fundamentally 

limited in localization precision by splitting photons between to detectors. Interferometric 

methods do not suffer from this same issue. Multiple objectives are used to collect emission 
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light from the sample into different channels which are recombined to induce diffraction. 

Position-dependent phase information can be used to extract axial information with sub-

micron resolution range97.   

 Point spread function engineering also takes many forms such as self-bending PSFs 

(sbPSF)98, astigmatism99, and double-helix point spread function (DHPSF)100. In each case, 

the shape or relative position of shapes within the PSF is dependent upon the axial position 

of the molecule. Thus, the axial position of the emitter can be determined by fitting the PSF 

shape. Our lab employs the DHPSF method to achieve 3D imaging because it offers 

sufficient depth information of 1.5 µm - 2 µm to image entire bacterial cells49,50,101-103, and 

it is easy to implement physically in the microscope and computationally in to fitting 

models. The DHPSF is created by inserting a phase mask into the emission path of the 

microscope that modulates the phase of light to split the traditional PSF into two lobes. The 

lobes of the PSF are vertically stacked when in focus, and rotate around a central position 

when the emitter moves out of focus. The position of an emitter can be determined by using 

a double Gaussian fitting model which uses the relative position of the two lobes to 

determine the lateral and axial position of the emitter.  

2.3 Experimental design: choosing the right fluorophore 

 Single-molecule localization microscopy relies on stochastic transitions of 

molecules between fluorescent ON and OFF states. There is a large variety of fluorophores 

in the form of dyes and fluorescent proteins which can accomplish this task, and choosing 

one that fits your experiment can be daunting. Selectivity of labeling, label size, brightness, 

and photostability are all important factors which are often at odds with each other.  
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 The precision of any single-molecule fluorescence measurement is directly 

dependent on the number of photons collected for the measured PSF. This relationship is 

described by the equation104: 

„  
ί

Ѝὔ
 

Where ů is the lateral localization precision, s is the standard deviation of the 2D intensity 

profile fit with a Gaussian function, and N is the number of photons collected from the 

emitter. Therefore, the brightness of the fluorophore directly impacts the precision of 

measurement, and the achievable resolution. The reported quantum yield (ɋ), the number 

of photons emitted per photon absorbed, can be used as a direct measure of fluorophore 

brightness. Fluorescent dyes typically outperform fluorescent proteins in terms of 

brightness. Further, dyes remain fluorescent for longer, exhibiting superior 

photostability105. Despite the excellent photophysical qualities of fluorescent dyes, there 

are major drawbacks to consider. For live cell imaging, the dye must be membrane-

permeable to achieve cytosolic protein labeling. Further, rigorous washing of the sample is 

required to ensure all unbound dye is removed for high specificity in labeling. 

Fluorescent proteins, on the other hand, are genetically encodable, and offer 

unprecedented labeling specificity. Therefore, a considerable amount of work has been 

done to optimize fluorescent protein photophysical properties, and expand the toolbox of 

utilities available. Local concentration of fluorescent proteins through the use of Sun tags 

is a viable option for amplifying the signal of fluorescent proteins106. However, the 

molecular weight of a single fluorescent protein is ~30 kDa, comprising a bulky label that 

could interfere with the functionality of the tagged protein. The Sun tag increases the size 
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of the label with each fluorescent protein that binds to it. Therefore, it works best when 

tracking large structures, such as vesicles, to ensure that it does not alter the properties of 

the tagged molecule. Further, it is important to establish functionality of the system before 

proceeding to further imaging experiments with the tagged protein. Fluorescent dyes are 

considerably smaller in size, typically less than 1 kDa, but require site specific labeling 

tags. For example, the Halo tag107, which are routinely used for genetically tagging proteins 

of interest for site-specific labeling with ligand-based dyes, is 33 kDa and comparable in 

size to fluorescent proteins. Thus, there is more work to be done to increase the brightness 

of fluorophores while enhancing live-cell compatibility.   

Labeling using unnatural amino acids (UAA) offers a promising new alternative. 

Labeled unnatural amino acids are supplied to the growth medium, and are specifically 

incorporated into a protein at ñrecodedò stop codons108-111. This decreases the label size to 

a single dye-labeled amino acid. However, implementation of this technology requires a 

lot of manipulation of the model system, and includes many components for which 

extensive optimization is required. This includes genetic encoding of tRNAs with 

complementarity to the recoded stop codon, and aminoacyl tRNA synthetases to load the 

tRNA with the unnatural amino acid. Further, conditions must be optimized for labeling 

efficiency, uptake, and incorporation of UAAs.  

 It is also possible that the system being studied will restrict the fluorophores 

available for use. For example, I characterize the diffusive behavior of the iLID optogenetic 

system in Chapter 4. The iLID protein contains a light oxygen voltage (LOV2) domain 

which absorbs light at wavelengths less than 500 nm, resulting in conformational changes 

and activation of the optogenetic system80,112,113. To track the cytosolic binding partner of 
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iLID in non-activated conditions, it is required that the fluorescent tag is excited at 

wavelengths greater than the reported absorption value. To determine the sensitivity of the 

iLID system to different wavelengths of light, I used low intensity laser illumination at 405 

nm, 488nm, and 561 nm. In all illumination conditions, with the exception of 561 nm light, 

I found that the iLID system was activated to some degree. Therefore, I was restricted to 

using a spontaneously blinking fluorophore which could be excited at 561 nm. There are 

not any known fluorescent proteins which exhibit this behavior, all requiring priming with 

405 nm light for photoactivation, thus restricting labels to fluorescent dyes105. Similar 

considerations are required when designing multi-color labeled experiments. Excitation 

and emission spectra of each fluorophore must show minimal overlap with each other to 

ensure that fluorescence is excited and collected with high specificity114,115.  

2.4 Instrumentation  

The work presented here was performed on a custom-built inverted fluorescence 

microscope in both diffraction-limited and 3D single-molecule modes. The microscope has 

been described in detail previously49,50,116. A major advantage of customizable instruments 

is the ability to modulate the instrument based on the needs of the experiment. This is 

highlighted by the modifications made here for application to optogenetic experiments.  

2.4.1  Fluorescence imaging 

The light used to excite fluorescence within a biological sample exhibits an 

absorption spectrum which is blue-shifted to shorter wavelengths compared to the light 

emitted by the sample. The difference in absorption and emission maxima is called the 

Stokes shift. Therefore, different optical elements are required for channeling each type of 
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light, and the microscope layout (Figure 2.4) will be discussed in terms of its excitation 

and emission pathways.  

The excitation pathway is the same in structure as described previously49,50,103. An 

additional 488 nm laser (Genesis, MX488-1000 STM) line was launched from a fiber optic 

cable (PM-S405-XP, ThorLabs), in parallel to the other excitation lasers including 405 nm 

(Coherent OBIS 405), 514 nm (Coherent Genesis MX514 MTM), and 561 nm (Coherent 

Genesis MX561 MTM) emitting lasers. The configuration of the microscope has been 

constructed to support excitation and photoactivation of fluorophores utilized in single-

molecule microscopy where 405 nm laser light is used to photo-activate fluorophores such 

as PAmCherry, 514 nm and 561 laser light excites fluoresce of commonly used blinking 

fluorophores such as eYFP and Janelia Fluor 549, respectively. Lastly, the 488 nm laser 

line was implemented to extend the compatibility of the microscope to activate optogenetic 

systems. While we specifically used the iLID system, the 488 nm activation is compatible 

with any blue-light absorbing light-sensing domain with an absorption maxima near this 

value117. Each laser is first expanded to create a collimated beam with a larger size than the 

input beam by two lenses. Then the excitation beam passes through a zero order quarter 

wave plate to circularly polarize the laser. In 514 nm laser excitation pathway, there is a 

band-pass filter (Chroma ET510/10bp) to limit the wavelength range in the pathway. After 

initial collimation of the 488 nm beam, a mirror redirects the beam into the 514 nm 

pathway, and utilizes the same optic elements. All three laser lines (with 514 nm, and 488 

nm together) are combined by using a set of dichroic mirrors (Chroma T470lpxr and 

Chroma T525lpxr) and reflecting mirrors. The shared pathway is directed to another 

dichroic mirror passing into the inverted microscopy objective lens (UPLSAPO 60X 
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1.4NA). For experiments which require 514 nm excitation, the dichroic mirror (Chroma 

ZT405-440/514/561rpc-UF1) filters out wavelengths of light between 440 nm and 514 nm. 

Thus, for optogenetics experiments, the dichroic mirror was replaced with another which 

would not filter out 488 nm activation laser light (Chroma zt440/488/561rpc). It is not 

possible to perform experiments in which both 488 nm and 514 nm light are required for 

excitation purposes using this set up. The objective lens projects collimated laser beams 

onto the sample, which enables wide-field illumination. The sample is mounted on an xyz 

nano-positioning stage (Mad City Labs), which provides positioning and stability with 

nanometer precision. Immersion oil is placed on the objective lens, and the glass coverslip 

(#1.5, 22 mm x 22 mm, VWR) mounted sample is placed on the sample stage, in close 

proximity to the objective. Fluorophores within the sample are excited using the collimated 

laser beams. Emitted light is captured by the same objective lens and transmitted into the 

emission pathway.  

Emitted fluorescence collected by the objective lens is first reflected by the dichroic 

mirror used for transmitting excitation beams into the laser (Chroma ZT405-

440/514/561rpc-UF1 for 514 nm light excitation, and Chroma zt440/488/561rpc for 488 

nm light excitation). The emission light is then passed through a series of filters to remove 

scattered excitation light from the emission pathway (514 nm long pass filter: Semrock 

LP02-514RU-25, and 561 nm notch filter: Semrock NF03-561E-25), as well as a 700 nm 

short-pass filter (Chroma ET700SP-2P8) to limit the amount of light outside of the emission 

wavelength range passing through to the detector. The objective lens used in the microscope is 

infinity corrected, meaning that the focal plane is infinitely far from the lens. To capture the 

image plane, a tube lens is used to collect and transmit emission light. After this stage, a flip 
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mirror is in place to allow for reflection of the signal into the phase contrast pathway (described 

in the next section) if in the ñupò position. If the flip mirror is in the ñdownò position, the 

emission light will bypass the mirror and is separated depending on the wavelength of emitted 

light using a dichroic mirror (Chroma T560lpxr-uf3) into ñredò and ñgreenò channels. In both 

channels, emitted light is then passed into two lenses in a 4f configuration. These lenses are 

doublet achromatic lenses, and thus limit the effects of spherical and chromatic aberrations. 

For single-molecule imaging experiments, a double helix phase mask (Double Helix LLC) is 

placed in the Fourier plane between the lenses in the 4f system to apply the DHPSF transfer 

function in frequency space. The second 4f lens converts the light back to a real image which 

is then collected and visualized by an sCMOS camera (Hamamatsu ORCA-Flash 4.0 V2). 

Emitters will exhibit the DHPSF in this configuration.  

In the single-molecule configuration, fluorophores must be excited with high intensity 

laser light to 1) ensure that most fluorophores are bleached, and each cell contains a low 

concentration of emitting fluorophores at the time of image acquisition and 2) produce the 

stochastic blinking events required for imaging molecules over time. To produce this effect, 

excitation lasers are focused to a small area (~0.25 cm2) to produce laser intensities of ~1-3 

kW/cm2. For imaging optogenetic systems, it was important that the same fluorescence excited 

molecules were activated by 488 nm light. Thus excitation (561 nm) and activation (488 nm) 

beams were aligned to the same region.  

Diffraction-limited imaging was performed by removing the DHPSF phase masks from 

the emission pathway, keeping all other components constant. Additionally, laser power is 

three orders of magnitude lower (~ 1 W/ cm2) to reduce photobleaching. This is necessary for 

acquiring images in which most molecules are fluorescent and contributing to image formation.  
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2.4.2 Phase contrast imaging 

Phase contrast imaging enables visualization of whole cell morphology. This step is 

important for determining the cell position for fluorescence data registration and filtering, as 

well as morphological detection of sick cells for exclusion in further analyses. Phase contrast 

imaging is possible due to the inherent scattering properties of the densely packed bacterial cell 

cytosol, and is particularly advantageous because it does not require further labeling. Optical 

elements are used to enhance the scattering of light, and produce high contrast images from 

which cells are clearly visible.  

Light from a red light-emitting-diode (LED) which is positioned above the sample 

stage and objective lens on an illumination tower, is passed through an annulus to form a ring 

of light.  A condenser lens focuses the ring of light on the sample. Light that is scattered by 

cellular contents is typically phase shifted by -90° while transmitted light will remain 

unaffected. Light is then collected by the objective lens, and passes through the same optics as 

emission fluorescence, including the dichroic mirror and tube lens. A flip mirror in the emission 

path reflects the light into a separate phase contrast channel, as described in the previous 

section. The light then passes through a 4f lens system where a phase ring is placed in the 

Fourier plane. The phase ring shifts the phase of the transmitted light by +90°. In this way, 

light which did not pass through cells will be a total of 180° phase shifted with respect to light 

that was scattered. Thus, scattered light and transmitted light will destructively interfere to 

effectively enhance the contrast between cells and the transparent mounting substrates which 

is visualized on a detection camera (Aptina MT9P031). 
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Figure 2.4. Schematic of microscope layout including excitation, emission, and phase 

contrast pathways. Figure was reproduced from references118,119. A detailed description 

of optical elements can be found in accompanying text. 
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Introduction  

Fluorescence image data is rich with information. One can obtain measurements of 

biomolecule position, diffusion behavior, proximity to cellular structures, and more. While 

the phrase ñseeing is believingò is popular in the field, quantitation of image data is equally 

or more important for substantiating claims and hypotheses.  

 The Gahlmann lab has curated a robust framework for fitting, analyzing, and 

validating single-molecule tracking data. This chapter will discuss the general workflow 

which takes raw image data, identifies fluorescent single-molecules, and constructs single-

molecule motion trajectories from which we can infer diffusive behavior of molecules. 

Further, I will discuss in detail the extensions that I have made to these analyses that have 

been integral to characterizing the iLID optogenetic system. This includes estimation of 

single-molecule residence times to infer kinetic constants in binding systems that match 

the timescale of measurement. I also implemented diffraction-limited image similarity 

measurements which is particularly useful for describing changes in fluorescence 

distribution in the same cell due to some stimulus. Lastly, I have extended our single-

molecule trajectory Monte Carlo simulations to include a module for membrane-associated 

diffusion. This last improvement will prove useful in expanding our analyses to integral 

membrane protein diffusion and to proteins which associate dynamically to membrane 

embedded molecules.  

3.1 Single-molecule localization 

3.1.1 Point spread function fitting 

Raw image data was processed using a modified version of the easy-DHPSF Matlab 

software49,50,103,120. The goal of the image processing package is to extract the three-
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dimensional position of single-molecules. As described in Chapter 2, the precise position 

of the emitter is determined by fitting the double helix point spread function to a double 

Gaussian model. The center position between the two fluorescent lobes is used to estimate 

the lateral (x- and y-) position of the molecule, while the angle between the two lobes is 

used to estimate the axial position (z- position). A calibration curve is created by imaging 

a fluorescent bead over an axial range of ~3 µm and is used to generate template images. 

Raw data images are scanned for fluorescent profiles which match the template images to 

identify potential DHPSF signals. Then, potential DHPSFs are fit with a double Gaussian 

model where maximum likelihood estimation is used to statistically discern fluorescence 

signal from background using model parameters such as gaussian lobe width.  Fit 

localizations are filtered using quality metrics including number of photons collected, 

distance between DHPSF lobes, lobe intensity ratio, and lobe width. 

 To correct for drift in the stage, which could bias diffusion data, each sample is 

imaged with a fluorescent fiducial marker whose position is tracked and used to correct the 

position of the emitter over time. Drift-corrected localizations are then subject to 

subsequent analyses. 

3.1.2 Fluorescence data registration to bacterial cells 

 Localization data obtained from easy-DHPSF must be assigned to cells to establish 

boundaries for diffusion. First, phase contrast images of the imaged field of view are used 

to derive cell outlines using OUFTI121 software. Any cells which show morphological 

abnormality (e.g. excessively long/undivided cells) are not considered for further analyses. 

Then outline meshes are exported to a previously described Matlab script which uses a 2-

step 2D affine transformation to register localization data to cells49,50,103. The built-in 
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Matlab function ócp2tformô is used to accomplish the affine transformation, both 

translating localization data laterally, and scaling the distance between localizations to fit 

within cell outlines. In the first step, five pairs of matching points on cell outlines and 

localization data are manually chosen to roughly align the data. Cell outlines containing 

less than 10 localizations are removed from analysis. The second step uses the center of 

mass of localizations to finely align localization data to the center of the cell outline, using 

a larger number of control points for alignment. Localizations outside of cell outlines are 

removed, and outline-internal localizations are used in subsequent diffusion analyses. 

3.2 Diffusion analyses 

 The diffusion rate of biomolecules provides information about both intrinsic and 

extrinsic factors. Diffusion rate (D) in a given medium can be described by the Stokes-

Einstein relationship:  

Ὀ
ὯὝ

φ“ʂ2
 

which shows that diffusivity of a molecule is directly related to the thermal energy in the 

system in terms of temperature (T) and the Boltzmann constant (kb). On the other hand, 

viscosity (ɖ) of the environment, and the hydrodynamic radius (R), are inversely related to 

the diffusion rate of a biomolecule. Given a stable environment in which temperature and 

viscosity are held constant, it is possible to use diffusion measurements to derive 

information about the hydrodynamic radius, and thus oligomerization state of the tracked 

molecule. For an in-depth discussion of protein diffusion and fitting models, refer to the 

introduction of the thesis in Chapter 1.  
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3.2.1 Mean Squared Displacement Analyses 

To perform diffusion analyses, single-molecule positions over time must be linked 

into trajectories. Localizations identified in consecutive frames were linked into the same 

trajectory, with a 2.2 µm maximum distance between localizations considered for linking. 

This threshold was chosen to reflect the diffusion rate of a free fluorescent protein, 

including an additional 25% buffer for localization error. If multiple molecules were 

identified within the time frame of the trajectory within a given cell, the trajectory was 

discarded to minimize the possibility of mis-assignment. Further, only trajectories with at 

least four displacements were used in further analyses.  

 To calculate the diffusion rate of each single-molecule, we found the mean squared 

displacement (MSD) using the relationship:  

-3$ 
ρ

ὔ ρ
ὼ ὼ  

where x is the 3D position at timepoint n, including up to 11 timepoints for calculating the 

mean over 10 displacements. Longer trajectories were truncated to contain 10 

displacements to ensure multiple diffusive states were not averaged over in the MSD 

analysis. The MSD measurement was then used to calculate the apparent diffusion 

coefficient (D* ) according to:  

Ὀᶻ  
-3$
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where m is the dimensionality of the measurement (m=3 for the 3D trajectories reported 

here), and ȹt is the camera exposure time used for imaging (ȹt=25 ms under our 

conditions).  
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3.2.2 Radial distribution analyses ï 2D cross section projections 

 The diffusion analyses in the previous section quantifies the rate of movement of 

single-molecules. We next chose to explore how the diffusion rate of molecules correlated 

with their spatial distribution. The vector describing the central axis of each cell was 

determined using the cell outline generated from OUFTI. The outline was segmented into 

sections along the cell length (Figure 3.1), and localizations from trajectories in each 

section were projected onto a 2D plane. The position of the central cell axis was adjusted 

to match the centroid of all localizations within the section. Positions of localizations from 

each cell were scaled to match the mean cell radius and mean cell length, which was 

calculated from OUFTI outlines. The trajectories were classified as slow or fast diffusing 

using the threshold D*  = 0.15 µm2/s which was determined by identifying a transition point 

from the first major change in slope in the CDF plot of apparent diffusion coefficients of 

data containing both iLID-associated and cytosolic diffusion (See Chapter 4, Figure 4.3). 

The width-normalized localizations from each trajectory was used to generate 2D 

histograms with 20nm x 20 nm bin widths, to match the experimentally measured 

localization precision.  

Figure 3.1. Cell sections generated from OUFTI outline. 

The mesh output from OUFTI is used to create equally 

spaced sections (blue lines) along the length of the cell. The 

midpoint between the two halves of the outline are used to 

generate the central cell axis vector (black circles). 
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3.2.3 Residence time analysis   

In single-molecule microscopy, the time a fluorescently labeled protein spends 

bound to a cellular structure is often referred to as the residence time. Residence time 

measurements have been used to characterize a variety of phenomena including, but not 

limited to, fibrinogen-substrate interactions122, enzyme reaction rates during DNA repair43, 

and transcription factor sequence search and binding41,123-125. The amount of time that a 

ligand stays bound to its substrate is an indicator of the activity of an enzyme and/or the 

affinity of the interaction, whereas the half-life of the bound state is inversely related to the 

dissociation constant, KD
126. Single-molecule studies using long exposure time, 2D 

fluorescence assays are often used for making such measurements. Using long exposure 

times decreases the time resolution of the measurement. Therefore, we sought to quantify 

residence times using our full-length single-molecule trajectories. Labeling with the dye 

JFX549, which has exceptional photostability127, allowed us to track molecules over 

hundreds of milliseconds up to multi-second time scales. Thus, we postulated that we 

would observe some state switching of molecules from bound to unbound or vice versa.  

To identify diffusive state transitions in single-molecule trajectories, we instituted 

a workflow to analyze displacement data over time (Figure 3.2a and c). First, we plotted 

the additive, or cumulative displacement (CD) as a function of time elapsed according to:  

#$ὸ  ὼ ὼ  

where x is the 3D position at timepoint t. The CD was calculated for each displacement, 

for the full trajectory length (N). 
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The instantaneous rate of displacement was estimated by finding the slope within a 

small, sliding window containing 3 displacements for the full length of the trajectory 

(Figure 3.2). The size of the sliding window was chosen to be small enough such that 

switching events were not excessively averaged over, while being large enough to be 

somewhat insensitive to random displacement size fluctuations that are unconnected to 

binding and unbinding events. Each segment of the trajectory was then classified as bound 

or free by calculating its slope and comparing it to a threshold, which was chosen to match 

the upper-limit of the displacement sizes used in the membrane-bound single-molecule 

trajectory simulations at 0.2 µm2/s (see section 3.3.2). Trajectories which contained 

consecutive segments of fast-slow-fast state assignments were used for further analysis 

because of the presence of a bound state that is preceded and proceeded by an unbound 

state. To be considered for analysis, the molecule must reside in each state for at least 2 

segments (4 displacements) of the trajectory to ensure that the identified state change was 

a true diffusive state change and not due to random fluctuation. Each switching trajectory 

was ascribed a score (TS) by how well the slope of trajectory segments matched simulated 

diffusion coefficient slopes derived for freely diffusing, cytosolic and membrane-bound 

molecules:  

ὝὛ 
ρ
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where mi is the slope fit to the experimental trajectory segment, and ms is the slope derived 

from free cytosolic or membrane-bound simulated data, depending on the state assigned to 

the trajectory segment. Nseg refers to the number of segments in the trajectory. Switching 

trajectories were ranked by their TS, and the top-scoring trajectories (TS>~0.16) were 



C h a p t e r  3 :  D a t a  p r o c e s s i n g  a n d  a n a l y s i s| 41 

 

 

inspected individually to verify that switching events occurred at the membrane of the cell. 

The residence time (tbound) of bound molecules in these switching trajectories was 

calculated by determining the number of displacements the molecule was assigned to the 

bound state.  

 A similar analysis was employed by Chung et al.46 where they evaluated the 

cumulative squared displacements over time, combined with Hidden Markov Model 

(HMM) analyses to identify state transitions. This analysis allowed them to differentiate 

epidermal growth factor receptor monomer-dimer transitions. The diffusion rate, and 

thereby cumulative square displacements slopes, of monomer and dimer populations 

differed by approximately a factor of two (0.1 µm2/s versus 0.2 µm2/s). Therefore, the 

HMM model was absolutely required for differentiating these populations. Because our 

data contains two, very well separated populations (0.2 µm2/s versus 5.5 µm2/s), this added 

degree of complexity was not necessary for identification of state transitions within 

trajectories. Further, trajectories collected in cells which didnôt express the MA-iLID 

binding partner did not show any verified state switching events, lending credence to our 

workflow model.  
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