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ABSTRACT

Singlemolecule fluorescence microscopy is a powerful tool that can betosed
resohe cellular structures with nanometers of resolution. By localizimolecules with
high precision over time, protein motion can be measured and used to resolve different
diffusive states. Diffusive states are assigned to protein complexes using computational
models with significant statistical power, and require biolagialidation which is often
deliberativelyperturbative to cellular function. In the work presented in this dissertation,
explore incorporating a neinvasive, transient method for disrupting protein localization
and prospective diffusive statesitilize lightinduced dimerization domains to transiently
sequester proteins to notive cellularcompartmentsipon light stimulation. To test the
feasibility of this method, have characterized thapticalresponse of thenproved Light
InducedDimerization {LID) optogenetic system using conventional imaging methods in
addition to singlemolecule tracking experiments. To carefully examineilthie system
dynamics, have extended our singimolecule analysis workflow to incorporate trajectory
simulations of membranassociated moleculesurther, lThave addeda full-trajectory
analysis module that identifies changes in diffusion rate to quantify residence times of
singlemoleculesat binding sites, and thkinetics of the interaction. Through tlse
analyses, have shown that the iLID system can be activated by longer wavelengths that
are minimally absorbed inn vitro conditions. Further, lhave identified transient
interactions of the iLID optogenetic proteins that are not detectable in dofrdichited
imaging. This analysis highlights areas for characterization and improvement of the iLID

optical response.
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Overview

To begin, | will state a broad and obvious fact: life is complex. Both multicellular
and unicellular organisms live due to complex macroscopic processes such as metabolism,
and immunity,that are governed by complex biochemical principles such as cellular
signaling, and more fundamentally, prot@irotein interactions (PPIs). Each process, each
interaction is regulated on the cellular level to respond dynamically to the environment:
e.g. nutrient availability, and pathogen recognition. Therefore, it is riamofrom a
fundamental, basic science perspective to probe mechanisms underlying systems and the
key PPIs which guide them. My work presented here brings an important perspective of
nonperturbative experimental validation of higesolution imaging reqred for probing

dynamic complex formatioim vivo.
1.1  Mapping protein-protein interaction networks

As discussed above, PPIs are fundamental for cellular function. As such, there are
many techniques that can be used to identify and characterize potensial iPideal
method is highly specific, proHeee, quantitative, minimally invasiveand has live
specimen compatibility with both high spatial and temporal resolution. However, no single
method can meet albf these demandswWell-establishedin vitro biochemical and
biophysical methods for probing protein interactiongh as cémmunoprecipitation and
Western blot detectigrare well suited for analyzing high affinity interactions. Transient,
low-affinity interactions are often missed when using thes¢éhods due to dissociation
before detectiol?. Alternative methods such as protein NMRra¢ crystallography, and
small angle Xray scattering (SAXS) utilize purified proteins for characterizing the

structure of proteins, and their binding interfédesWhile offering atomieevel
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information, these techniques each come with a set of caveats. Curremtf-ttatart
protein NMR allows for solution state structural prediction with an upper limit for
molecular weight of 100 kDavhile typical experiments are performed on complexes that
are less than 35 kDa in molecular wetghtAlternatively, X%ray crystallography requires
extensive optimization of buffer conditions for achieving crystallization. These conditions
may preclude or induce nanative interactiorfs For example, neneutral pHmay create
charged patches on protein surfac@&fus, interactions which ra dependent on
electrostatics will likely be altered. SAXS allows for structural prediction of protein
complex quarternary structure in solution, but interactions mediated by an adaptor
protein(s) may not be captured in solutions that do not accuratalyit@ate the cellular
environment. Isothermal titration calorimetry (ITC) can provide information about the
thermodynamics and stoichiometry of a given interaétibat similarly requires purified
proteins and a buffer system that fall short of environmental replication. In response,
developmats in cryeelectron tomography (cryRT) have allowed for structural imaging

in situ, with the stipulation that all samples must be fixed using plunge freezing. For
example, Park et al. (2018)tilized a minicell producingSalmonellastrain and achieved

high resolution imaging of the type Il secretion systevhich had not been achieved
before despite previous attemptsid important to note that high resolution structural
determination requires thousands of subtomograms for averaging, after wiscstilit
possible to miss transient interactions or dynamic structures with fast protein turnover and
exchange. Furthethe full volume ofthick samples cannot be effectively imaged due to

extensive scattering. This can be overcome through the use of focused ion beam milling
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(FIB) combined withcryo-ET imaging. In FIBSEM material is milled awayand a
Aiwi ndowo i ismagmgteongbultimdtety destroys the sampte?.

Fluorescence microscopy overcomes many of the aforementioned obstacles,
allowing for in vivo visualization of fluorescently tagged molecules. Many fluorescence
microscopybased techniques have been developed over the past decades to detect and
guantify interactions between biomolecules vitro and in vivo. Improvements of
fluorescent probes and biomolecular labeling technolpgies conjunction with
instrumental improvements have enabled measurements that provide critical insights into
cellular organization and the biochemical interactions occurring within'th&patial ce
localization of emitters through multolor imaging is now widely utilized to gauge
whether biomolecules are close enough to interact. The power of such measurements
depends critically on the achievable spatial resolution of the instrument used. Diffraction
limited imaging provides a resolati on the order of 20800 nm, which is much larger
than the size of a typical protein (~2 nm) or the size of small protein complexes (~20 nm).
Diffraction-limited resolution is thus too low to determine whether two proteins interact
directly in a given coplex or whether their interaction is mediated by a third prbtein
Supetresolution microscopy approaches enabling precise singlecule localization,
such a®¥ ALM/STORM and MINFLUX, have been successful in addressing this challenge.
For example, Symborska et al. determined radial positions of protein subunits of the
nuclear pore complex (NPC) with subnanometer preci$and more recently, Ries and
co-workers used MINFLUX microscopy to pinpoint the gimsi of subunits within the
NPC with single nanometer precision without the need for radial avetagBiggle

molecule microscopy techniques overcome the resolution barrier, providing tens of
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nanometers of resolution and thus, accurati®calization analysis of static structutés

20

Detectirg protein interactions within freelgiffusing complexes cannot be
accomplished by fluorescencelozalization and thus requires different approaches. Live
cell analysis of protein oligomerization state is possible using fluorescence microscopy
techniqus such as Fluorescence recovery after photobleaching (FRAP), and Fluorescence
correlation spectroscopy (FCS). These measurements rely on cellular or compartmental
measurements of fluorescence intensity, either recovery of fluorescence as with FRAP, or
fluctuations over a small imaging volume as with FCS. Thus, these techniques offer
ensemble averaged data from which it is difficult to identify transient binding éents
Estimation obinding parameters is performed using kinetic model fittingiternatively,
Forster resonance energy transfer (FRET), measures the efficiencyraidiative energy
trarsfer from an excited donor fluorophore to an acceptardiohore in the ground state,
which becomes excited and emits photons. For energy transfer to occur, the donor and
acceptor fluorophores must be within a few nanometers of each other and be oriented
correctly. Thus, FRET efficiency serves as a measurement of spatial proximity and can be
detected between tagged proteins of intereshfier the existence oproteinprotein
interaction$®>?4 FRET measurements have been extended to Fluorescence Lifetime
Imaging Microscopy (FLIM) techniques. Nosradiative energy transferhartens the
lifetime of the donor fluorophoreand, thereforespatial proximity of fluorophores can be
determined Due to the nature of the measurement, the lifetime signal is fluorophore
concentration independent, and there is limited spectral dheadgh from acceptor

fluorescence. These features make FLIM particularly advantageous compared . FRET
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Despite the nanometézvel distancesensitivity of FRET and FLIMFRET, the data
derived from these measurements are also ensewbtaged, and cannot efficiently detect
transient interactions. The extension of siaglelecule microscopy to FRET (smFRET)
allows FRET measurements to be made on single proteins, and can be dseelct
heterogeneity within a sample. However, this technique requires the studied proteins to be
immobile or very slowly diffusing, and thus cannot detect interactions between freely
diffusing proteins within the cytosSl For an exhaustive review of protein oligomerization
determination using fluorescence techniques in live cells, please refer to the following

review?®.
1.2  Singlemolecule tracking analysis for protein complex determination

Singlemolecule localizaon microscopy has led to a resolution revolution in
optical, fluorescence imaging. PheAativation Light Microscopy (PALM) and
STochastic Optical Reconstruction Microscopy (STORM) routinely achieve ~10 nm lateral
resolution and ~50 nm axial resolutidrne ability to precisely localize single proteins has
led to more accurate docalization analysis of static structures, as described in a previous
section, in addition to tracking and diffusive analyses. In such analyses, single proteins are
imaged ovetime to measure how quickly they diffuse in a given environment, whether it
be in solution omithin live cells. Diffusion rate D) in a given medium can be described

by the Stokegkinstein relationship:

’i‘QuY
(p“ S2
Whereks, refers to the Boltzmann constant, T to temperagure Xdstosity of the medium,

and R to the hydrodynamic radius of the protein or biomolecule being meZ<firgding
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this equation, it is clear that the diffusion rate of the protein is inversely correlated with its
size. Thus, it is possible to infére oligomerization state of a protein by how quickly it
diffuses through a given medium. It is important to note Wiate the StokesEinstein
equation holds well for globular proteins or protein complekether modifications of the
equationare necssaryfor nonglobular protein complexebke microtubule or actin

filamentous fibers.

Diffusion measurements are madevivoby localizingsinglefluorescently labeled
proteinsand following their movement over time. The amount of distance that a molecule
moves between each time point, called the displacemeaf {he molecule, is used in
subsequent analyses. Just by calculating the mean squared displacement (MS) or <r

over increasing time intervals (U0),

ohe ca
A molecule with true random diffusion, also called Brownian diffusion, exhibits a linear

MSD overtime (<> DU) f or t he nmalldc Uleendgst ht roadj etchteor
hand, a molecule that is not a true Brownian diffuser will exhibit a different relationship
where(<t>8 ) . When U is greater than one, it su
quickly than expected for a Brownidiffuser, and exhibits supetiffusive behavior. This

is a common feature of proteins that are associated with vesicular transport, for @xample
When U is |less than one, it suggests that
as expected for a Brownian diffuser, and is likely confined in space. This is most common

for in vivo measurements where there anany levels of confinement. Membranes serve

as physical boundaries which confine molecules to subcellular compartments, resulting in

subdiffusive behavior. Indeed, recent diffusion measurements in bacteria stipgtort

confinementcontributesto subdifusive behavior of proteins, estimating the alpha



Introduction|8

exponent is between 0.6 and &*8? Further, the cytosol of the cell is very crowded,
containing a myriad of biomolecules which may serve haraer to random diffusion,
especially for large molecules. In this way the cytosol can act as a sieve. This is particularly
true for bacterial cells where the nucleoid displaces large proteins to the cell pole as they

cannot diffuse freely through theree DNAprotein meshwork?”.

Anomalous diffusion within the cytosol precludes facile analysis of diffusion
measurements. This is particularly true within the extremely confined space of a bacterial
cell. The volume of an average colicell is approximately @mq. This leads to intesting
guestions about how bacterial cells are able to differentially regulate reactions without the
high degree of compartmentalization that is apparent in eukaryotié®>céllany labs
within the microbiological imaging realm are working on understanding prpteiiein
interactions within bacteria, and how these interactions contribute to macromolecular
assembly within the cytosol. With eactblaomes a slightly different singhaolecule
imaging setup, and another data analysis pipeline to accomp#hyire, | will outline a

few of the predominate features that are pervasive in the field.
1.2.1 Diffusive state assignments to protein complex populations

After image analysis and identification of single molecules and their trajectories,
the data output is a distributionabparentiffusion coefficients. Using these distributions,
further analyses are performed to distinguish protein complexes and moduadirag biat
molecules existed in during the time of measurement. Theseasb | e dfitting st at e
model so0 are used to assign diffusiv#s)states:

to protein complexes (DNAound, e.g.). A common method for estimgtthe diffusion
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coefficient, which describes a given state, is by fitting the experimental distribution to an
analytical equation that describes the probability or likelihood of observing the
experimental distribution if the molecule exists within saiffudive state. Curves
generated from the analytical equation are then fit to the experimental distribution, and
evaluated using statistical analyses such as linear least squares and maximum likelihood
estimation (MLE). To describe more complex, matae systems, the probability function

can be expanded to include more diffusive states, at varying fractions of the population as
a linear combination of terms. This method has been modified and used extensively both

in bacteria and eukaryotic ceftg”.

Other methods utilize Hidden Markov Models (HMM) which describe not only the
diffusive states that protein exists in, but also the kinetics of switching between multiple
diffusive state® 4% It is importanto note that the methods which utilize HMM fitting, as
well as analytical equation fitting as described abowsmke a fixed number of states. The
analyses can be performed multiple times to find the best number of states to include in the
model. Howeverthis leads to an issue which is inherent to parameter fitting. Using more
parameters in a model equation will lead to betterdgpecially for complex curves. This
can lead to ovefitting of your experimental data, wheeach added state marginally
decreasethe error of the fit, though there may be no biologgighificanceof the added
state$’. To incorporate model flexibility and remove bias, Persson &t abplied
variational Bayesian statistics to their HMM modeling of diffusive state and kinetic
parameter setgion, which objectively weighs the goodness of fit of the model against the

complexity of the fit.
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Another feature of the abovementioned fitting methods is that they do not address
levels of complexity that exist from the cells themselves. As mentipreadously, both
the cell membrane and cytosol are extremely crowded and impose barriers for diffusing
molecules, resulting in @malous diffusive behavior. This effect is exacerbated within the
small volume of the bacterial cell. Therefore, some group® focused on directly
incorporating consideratiatfior cell geometry and confinement imposed by membremes
the diffusion state fitting model§ his has been achieved by direct simulation of single
molecule trajectories within confined volumes thateetflthe cell geometry of bacterial
cells. In this wayt he experimentally derivedd¥)fiappar
distributions, are fit with simulated diffusion coefficient distributiotes derive the

theoretical, unconfined diffusion coefficier) staté®>3,

To ensure the adracy of statditting models, extensive statistical validation is
required. The gold standard for validation and reproducibility is using simulated data as a
benchmark for model accuracy and applicability. However, experimental validation of
assigned stas is a nofrivial task. Mutation or deletion of putative interacting partners is
the most often utilized control. This is not possible for proteins which are required for
maintaining cell viability including cell wall synthesis and DNA replicating fexto
Therefore there is a need for assays that transiently disrupt protein interactions, do not
reduce cell viability, and can be easily incorporated into sinmgikecule tracking
experiments. An attractive solution is optogenetics, which can transiamtlyrip spatial

localization of proteins using a light signal. The technology will be discussed hence.
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1.3  Optogenetics
Optogenetics is a broad term that is applied widely to describeihighted

cellular reactios. Since the first implementation of optog¢ics just under 20 years ago,

synthetic biologists have developed a large array of tools to control or engineer cellular
functions by utilizing proteins which contain ligeénsing domains. By heterologously
expressing light sensing domains in nwative contexts, new or manipulated
functionalities can be introduced-drivem pr evi
responses are transient and allow for temporary manipulation of the cellular environment.

The following sections will describe differentrfo factors that optogenetic systems often

take and a brief overview of how they have been appedrview of photoreceptors

Photoreceptors are classified as any protein that integrates a light input to a
signaling response. There are six type typeshwoitgsensory proteins which have been
well-characterized including: rhodopsifisphytochrome®, cryptochromes, bluelight
using flavin (BLUF) protein¥, photoactive yellow proteins (PYPs), and light oxygen
voltage (LOV) protein€® It is important to note that this not an alinclusive list, as
there are photoreceptors that have been discovered recently, such as CarH in myxobacteria
which regulates carotenoid biosynth&%ishat have not been exisively characterized.
Despite the breadth in sequence and structure of these photoreceptors, there are apparent
emergent properties in their mechanisms of action. Firstly, each protein module utilizes a
chromophore which absorbs photons and convertsgiiesignal to some physical change
in the protein. There are four chromophores utilized by photoreceptors including, retinal

(rhodopsins), bilin (phytochromes)goumaric acid (photoactivated yellow proteins), and
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flavin (cryptochromes, BLUF proteins, &b OV proteins§! which all are characterized by

extended conjugated-prbitals.

The mechanism of signal transfedependent on the conjugated chromophore, but
the outcome is typically proton transfer to the protein, which results in a conformational
change, and subsequent signal activ&fiohhe following sections will discuss the ways
in which these photoreceptors have been used to manipulate cell biology using light

signals.
1.3.2 lon channels and transporters

Light-regulated ion transporters were among the first optogenetic tools developed.
These transporters largely consist of a family of proteins called rhodopsins which utilize a
retinal chromophoré. Retinal is covalently bound to the rhodopsin protein and undergoes
isomerization after light absorption. Fanimal rhodopsins (type 1l), isomerization of
retinal initiates signaling pathways via activation of signaling enzymes, serving as photo
activated Gprotein coupled receptdrs Alternatively, acterial rhodopsins (type 1) change
conformation due to isomerization of retinal, resulting in pore opening and pumping, or
passive diffusion of ions through the transporter $folen-transporting rhodopsins are
classified as lighgated channels (also referred to as chartredopsins), including both
cation and anion channels, lgght-driven pumps, including sodium, chloride, and proton
pumps. These varieties of ibransporters have been extensively utilized to selectively

hyper and depolarize membranesespecially in neuroscien®’ and cardiology

fields®5
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1.3.3 Opsin-independent photoreceptors

Non-rhodopsin photosensory proteins have been used to modulate a broad variety
of cellular ppcesses by acting as optogenetic switches. This has been possible due to the
modular nature of light sensing domains which can be ustbébproteins of interest
much like an affinity or fluorescent tag. Despite the diversity in available switches, they
operate similarly. Much like rhodopsin photoreceptors-opsin photoreceptors utilize a
chromophore (e.g. flavin, bilin, or@oumaric acid) which undergo some conformational
change due to wavelengttependent photon absorption as described in a previou
subsection. These conformational changes leatf)tohange in the oligomerization state
of the protein through dissociation or association of hoanchetere oligomers or 2)
uncaging of a small peptide for targeting to different cell compartmenisding a known
interaction partnefFigure 1.1)’°. By tagging proteins of ietest with light sensing
domains, one can control both protein localization and oligomerizdépandent activity
state of enzymes. Thus, by modifying signaling molecules with optogenetic switches,
unprecedented spattemporal control of signaling can laehieved by integrating light
rather than chemicasignalg® ™,

Because of the modularity of optogenetic switches, llaeg been used to attenuate
the activity of a wide variety of processes including, but not limited to, directed lamellar,
membrane ruffling of cultured epithelial céfissecretion of virulence factors by bactétja
and tyrosine kinase signaling for higfiroughput identification of smaitholecule

inhibitors™.
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Figure 1.1. Action mechanism of optogenetic switchewith examples. There are many
other examples of switches which utilize these modes of action. For an exhaustive
discussion of optogenetic switches and their modifications for increasing efficiency and
usability, please refer to Khamo et al. (2027Figure reproduced from Kramer et al.

(2021)°,

1.4  Optogenetic knocksideways assays for validating singteolecule state
assgnments

An overview of statistical methods used to resolve different diffusive states and
assign them to protein complexes was outlined in detail in section 1.3. A clear method for
verifying different diffusive state assignments to protein complexes basoy be
developed. We propose disrupt the spatial distribution of proteins to frative cellular
compartments, using transient, Aorasive and reversible light sign&lswe refer to this
met hod as a fAdAknocksi de watyedigser@torinaths assayy t he

cytosolic proteins are tagged with an optogenetic dimerization partner while the dimer
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complement is targeted to a noative cellular compartment (e.g. the cell membrane).
Optical activation of dimerization results in segtration of proteins of interesttteenon

native cellular compartment, and interacting proteins can be sequestered to the same
compartment as a result. Weypothesizethat changg the spatial distribution of
interacting proteins will aid in the assigent of diffusive states to protein comyaswith

distinct compositios. In the simplest scenario, we expect to observe depletion of the
cytosolic diffusive state assigned to the suspected oligomer when either interacting partner
is sequestered to the mbrane. Here, we test the possibility of combining optogenetic
manipulation with 3D singkenolecule tracking microscopy in liiéscherichia coli The
improved Light Induced Dimerization (iLID) systéhwas selected because it has been
extensively characterized and engineered for optimized performance in different model
systemsThus, a considerably large toolbox of iLID variants with different affinities, and
reversion times are available for implementafttdfr’® The iLID protein contains the light
sensing light oxygen voltage (LOV2) domain derived frédwena sativawhich
incorporates a flavin cofactor during folding. The flavin cofactor acts as a chromophore,
and forms a cystee adduct with the LOV2 domain after illumination with blue light. As

a result, the iLID protein changes conformation and exposes a binding site for the

interacting partner, SspB®

15 Overview of dissertation

In the remainder of the dissertation, | will discuss my efforts to use the improved
light induced dimerization (iLID) optogenetics system in siaglaecule tracking
experiments. In Chapter 2, | will discuss singielecule microscop theinstrument used,

and the modifications that were made to acquire measurements for optogenetic
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experiments. Next, | will discuss the experimental and computational metmpdsyed

to acquire and analyze the data in Chapter 3. This chapter will highlight where | have
extended our computational toolbox to include simulation models for membrane diffusion.
Further, 1 have introduced an intuitive analysis pipeline which utilfeéistrajectory
information that would be discarded as part of our traditional diffusion analysis. Chapter 4
will contain discussion of the results of my work. In this chapter, you will find important
considerations about how optogenetic tools should libraged and applied to any
imaging experiment. Further, | make suggestionadidiitionalcharacterization of the light
oxygen voltage (LOV2) domain and the iLID protein itself. Lastly, in chapter 5, | discuss
the trajectory of work to be done in lightmly analyses. This includes using-fad laser
excitation to decrease peetivation of the optogenetic system, incorporating membrane
diffusion into our existing diffusion coefficient model, and using-ftdiectory analyses

to derive kinetic informatio about protein interactions.
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FLUORESCENCE IMAGING
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As described in the previous chapter, the vision of this work is to use the iLID
optogenetic system to transiently deplete cytosolic diffusive states through spatial
redistribution of proteins to nemative cellular compartment®8efore knocksideways
expeiments could be designed, it was necessary to first evaluate the iLID optogenetic
response in the liv&.coli model system. Optogenetic tools, including iLID, have been
widely applied in eukaryotic cells in conjunction with diffractiibmited fluorescence
microscopy to obtaipopulationaveraged, phenotypic readolits. Therefore, | sought to
use both conventional diffractidmmited conditions and singlmolecule localization and
tracking microscopy to quantify the iLID optogeicetesponse. In this chapter, | will
discuss the imaging techniques used with an emphasis on experimental design

considerations required for livaell singlemolecule fluorescence microscopy.

2.1  Singlemolecule fluorescence imaging

Fluorescence microscopgllows for imaging of cellular structures in native
contexts. Conventional imaging techniques, however, are limited by their ability to resolve
structures that are close in space. Each fluorescent molecule emits photons of light that can
be described by aavelength within the visible range (380 rim700 nm) which are
collected using a detector. Due to light diffraction, the fluorescence distribution is
described by a point spread function (PSF) which appears as an airyidisie (2.1).
Because each ertet can be described by a PSF, emitters which are close in space will
produce an image with overlapping PSFg(re 2.2). Thus, there is an inherent physical
limit to how close emitters can be in space and still be resolved. This was first described

by Emst Abbe according to the following equafién
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where thdateraldiffraction limit(dxy) 1 s | i mi t ed by t ¢okectadbav el en
as well as thenherentimaging conditionssuch as the refractive index of the imaging
medium €), and maximum angle of liglit dcollected by the objective lens. The imaging
parameters can be combined into a single term called the numeridate¢A):

06 &¢DE+H

Such that the diffraction limit can be simplified to:

ol
e
o:

This relationship describes the achievable lateral resolution for a fluorescent emitter.
Resolving emitters axially is even more difficult, as the achieviadelution shows an

even greater dependence on the amount of light collected by the objective lens as described

by?3:

¢ DO B+

Therefore, the distance between two objects required to resolve them is approximately half
the wavelength of visible light (~200m), depending on the objective lens used in the
microscope. That means that small biomolecules, which are on the order of a few
nanometers size cannot be resolved within larger complexes. For example, fluorescently

tagged subunits making up the nugeon complex form a continuous ring of fluorescence
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which cannot be resolved into individual componentlout further manipulatiorHigure

2.2).
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Figure 2.1. Airy disk point spread function. (a) Photons emitted from a point source are
collected with he microscope objective, and propagate through the imaging system. When
focused, photons will form an airy disk pattern due to diffraction of the light waves. An
axial (xz) crosssection of the airy disk pattern indicates that the central lobe of the disk
containsapproximately84% ofthe observed intensity which is equally apparent in (b) a

3D representation of the point spread function collected. Figure reproduced ffdm ref.
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Figure 2.2. Overlapping point spread functions.PSFs approximated as smoothed
Gaussian functions as detected on a camera (top) and as intensiyectosss (bottom)
become unresolvable as the distance between emitters is dedfleéiseal right). For
example fluorescently labeled subunits within a nucleoporin complex cannot be resolved
from each other and will resemble a continuous ring, due to the diffraction limit. Figure

adapted from referent®e

It is thus necessary to manipulate imaging conditions to resolve biomolecules that
are close irspace. This can be achieved by controlling the emission of fluorophores for
separated collection of fluorescence. The development of imaging techniques to address
this issue was a significant advancement in the field, and resulted in the Nobel prize awards
for the scientists that pioneered supesolution microscopy. The three main fields of
superresolution microscopy include Stimulated Emission Depletion (STED)
microscop¥®, Structured lllumination microscopy (SIR) and SingleMolecule
Localization Microscopy (SMLMY. STED utilizes patterned light to deplete fluorescence
in a region surrounding aarrow fluorescence excitation beam to spatially separate
fluorescence of molecul®s SIM also utilizes patterned light to achieve susolution.

Light diffraction from interference of incident light waves form predictable light patterns,

called optical lattices, are used to image sampdfering higher spatial frequency
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information than traditional imaging methods. Thereby, supsolution images can be
reconstruction from image data. Alternatively, SMLM achieves stgsmiution by
controlling emitter concentration at any given tjraach that spatially separated single
molecules can be imaged. SMLM can be achieved through a variety of methods such as
photoactivated light microscopy (PALM), stochastic optical reconstruction microscopy
(STORM), and point accumulation in nanoscale topduyafi®’AINT). Each of these
methods rely on the fluorophore transitions between fluorescent ON and OFF states.
Spatially separated PSFs are fit with a Gaussian function that describes the fluorescence
profile. Supeiresolution images are then rendered hyiraglall of the fit localizationwith

tens of nanometers of precisidfkigure 2.3).
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Figure 2.3. Singlemolecule localization microscopy image renderig. To illustrate
image reconstruction in SMLM, a representation of a nucleoporin complex whichdmas be
densely labeled with fluorophoreés used Single fluorophores stochastically enter the
fluorescence ON state at a given timéy Gaussian fitting model is applied to each image
to identify singlemolecule emitters, achieving tens of nanometers olugen, laterally.

Fit images over the collection timi, are integrated to produce a supesolution image.

Figure adapted from referent®.

In PALM, a small subset of fluorophores primed for excitation using low

intensities of UV light, and then excited into the fluorescent Ot¢ stith light at longer
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wavelengths Unprimed, unexcited fluorophores remain in the fluorescent OFFS%tate

STORM is achieved using synthetic dyes which stochastically switch between the ON and

OFF state in suitable buffer conditié#%. Unlike PALM and STORM, PAINT does not

rely on the photophysics of the fluorophore for switching between fluorescent states, but
rather depends on fluorophore binding to static structtir€siickly diffusing unbound

molecules escape detection until bound to the labeled structure. Bound molecules are
recycled back into the cytosol or medium ar
The mosttommonimplementation of this technique is in the form of SRAINT which

utilizes specific DNA nucleotide tags as scaffolds for fluorophore bifitling

2.2  Measuring the depth of an emitter

Conventional PSFs offer information about the latexalafnd y-) positions of
fluorophores. To attain three dimensional images of structures, axial information is
required. Many techniques have been develdjpedqueeze more information out of
fluorescence PSHncluding the use of multiplane imaging, interferometric measurements,
and PSF engineerify The simplest form of multiplane imaging is biplane imaging in
which emission light is split into two channels, and is collected by tweEsrthat are
slightly offset by a known distance to different image planes. Thus, an emitter will always
be out of focus on at least one of the cameras. The ratio of PSF size between the two
cameras monotonically increases as a function of the PSF asdlop. Thus, by
simultaneously imaging on both cameras, it is possible to determine the depth of the
emitte®. This method can resolve up to 1 um of axial distameel is fundamentally
limited in localization precision by splitting photons between to detectors. Interferometric

methods do not suffer from this same issue. Multiple objectives are used to collect emission
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light from the sample into different channelkiagh are recombined to induce diffraction.
Positiondependent phase information can be used to extract axial information with sub

micronresolution rang¥.

Point spread function engineering also takes many forms such-asiséihg PSFs
(sbPSF, astignatisn?®, and doubléhelix point spread function (DHPSE]. In each case,
the shape or relative position of shapes within the PSF is dependent upon the axial position
of the molecule. Thus, the axial position of the emitter can be determined by fitting the PSF
shge. Our lab employs the DHPSF method to achieve 3D imaging because it offers
sufficient depth information of 1.5 ur2 um to image entire bacterial céfl$%1°% and
it is easy to implement physicalip the microscope and computationally in to fitting
models. The DHPSF is created by inserting a phase mask into the emission path of the
microscopehatmodulates the phase of light to split the traditional PSF into two lobes. The
lobes of the PSF are vmally stacked when in focus, and rotate around a central position
when the emitter moves out of focus. The position of an emitter can be determined by using
a double Gaussian fitting model which uses the relative position of the two lobes to

determine th lateral and axial position of the emitter.

2.3  Experimental design: choosing the right fluorophore

Singlemolecule localization microscopy relies on stochastic transitions of
molecules between fluorescent ON and OFF states. Thararge variety of flumphores
in the form of dyes and fluorescent proteins which can accomplish this task, and choosing
one that fits your experiment can be daunting. Selectivity of labeling, label size, brightness,

and photostability are all important factors which are oftiemdds with each other.
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The precision of any singlamolecule fluorescence measurement is directly
dependent on the number of photons collected for the measured PSF. This relationship is
described by the equatitift

i

i)

Where 0 is the | at eisthkelstandavdcdavlatioz of the 2D mtensitye c i s
profile fit with a Gaussian function, ard is the number of photons collected from the
emitter. Therefore, the brightness of the fluorophore directly impacts the precision of

measurement, and the achievable resolution. The reported quantungyjetdd number

of photons emitted per photon absorbeah) be used as a direct measure of fluorophore
brightness. Fluorescent dyes typically outperform fluorescent proteins in terms of
brightness. Further, dyesemain fluorescent for longer, exhibiting superior
photostability®®. Despite the excellent photophysical qualities of fluorescent dyes, there
are major drawbacks to consider. For live cell imaging, the dye must be membrane
permeable to achieve cytosofirotein labeling. Further, rigorous washing of the sample is

required to ensure all unbound dye is removed for high specificity in labeling.

Fluorescent proteins, on the other hand, are genetically encodable, and offer
unprecedented labeling specificifiherefore, a considerable amount of work has been
done to optimize fluorescent protein photophysical properties, and expand the toolbox of
utilities available. Local concentration of fluorescent proteins through the use of Sun tags
is a viable option foramplifying the signal of fluorescent proteiffs However, the
molecular weight of a single fluorescent protein is ~30,kddanprising a bulky label that

could interfere with the functionality of the tagged protein. The Sun tag increases the size
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of the label with each fluorescent protein that binds to it. Therefore, it works best when
tracking large structures, such as viesicto ensure that it does not alter the properties of
the tagged molecule. Further, it is important to establish functionality of the system before
proceeding to further imaging experiments with the tagged protein. Fluorescent dyes are
considerably smadk in size, typically less than 1 kDa, but require site specific labeling
tags. For exampléheHalo tag®’, which are routinely used for genetically tagging proteins

of interest for sitespecific labeling with ligandbased dyedss 33 kDa and comparable in

size to fluorescent proteins. Thus, there is more work to betdonerease the brightness

of fluorophores while enhancing liseell compatibility.

Labeling using unnatural amino acids (UAA) offers a promising new alternative.
Labeled unnatural amino acids are supplied to the growth medium, and are specifically
incopor ated into a pr ot ¥ nThia decréasesthedaed sizdtos t o p
a single dydabeled amino acid. However, implementatiortio$ technology requires a
lot of manipulation of the model system, and includes many components for which
extensive optimization is required. This includes genetic encoding of tRNAs with
complementarity to the recoded stop codon, and aminoacyl tRNA systiseto load the
tRNA with the unnatural amino acid. Furtheonditions must be optimized for labeling

efficiency, uptake, and incorporation of UAAs.

It is also possible that the system being studied will restrict the fluorophores
available for use. F@example, | characterize the diffusive behavior of the iLID optogenetic
system in Chapter 4. The iLID protein contains a light oxygen voltage (LOV2) domain
which absorbs light at wavelengths less than 500 nm, resulting in conformational changes

and activéion of the optogenetic systé€fi'?112 To track the cytosolic binding partner of
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iLID in non-activated conditions, it is required that the fluoresdeut is excited at
wavelengths greater than the reported absorption value. To determine the sensitivity of the
iLID system to different wavelengths of light, | used low intensity laser illumination at 405
nm, 488nm, and 561 nm. In all illumination condiso with the exception of 561 nm light,

| found that the iLID system was activated to some degree. Therefore, | was restricted to
using a spontaneously blinking fluorophore which could be excited at 561 nm. There are
not any known fluorescent proteins wiiexhibit this behavior, all requiring priming with

405 nm light for photoactivation, thus restricting labels to fluorescent@y&imilar
consideratias are required when designingnulti-color labeledexperiments. Excitation

and emission spectra of each fluorophore must show minimal overlap with each other to

ensure that fluorescence is excited and collected with high speéificity

2.4 Instrumentation

The work presented here wpsrformed on a custottnuilt inverted fluorescence
microscope in both diffractichimited and 3D singlanolecule modes. The microscope has
been described in detail previouSi§®11¢ A major advantage of customizable instruments
is the ability to modulate the instrument based on the needs of the experiment. This is

highlighted by the modifications made here for application to optogenetic experiments.
2.4.1 Fluorescence imamg

The light used to excite fluorescence within a biological sample exhibits an
absorption spectrum which is bhksaifted to shorter wavelengths compared to the light
emitted by the sampléelhe difference in absorption and emission maximealked the

Stokes shift. Therefore, different optical elements are required for channeling each type of
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light, and the microscope layoutigure 2.4) will be discussed in terms of its excitation

and emission pathways.

The excitation pathway is the same in structurdessribed previousty>°103 An
additional 488 nm lasefGenesis, MX488.000 STM)line was launched from a fiber optic
cable(PM-S405XP, ThorLabs)jn parallel to the other excitation las@msluding 405 nm
(Coherent OBIS 405)514 nm Coherent Genesis MX514 MTMpand 561 nmGoherent
Genesis MX561 MTM)emitting lasers The configuration of the microscope has been
constructed to support excitation and photoactivation of fluorophores utilizeidgle
molecule microscopy where 405 nm laser light is used to gditeate fluorophores such
as PAmCherry, 514 nm and 561 laser light excites fluoresce of commonly used blinking
fluorophores such as eYFP and Janelia Fluor 549, respectively. Lhst§88 nm laser
line was implemented to extend the compatibility of the microscope to activate optogenetic
systems. While we specifically used the iLID system, the 488 nm activation is compatible
with any bluelight absorbing lightsensingdomain with an lasorption maxima near this
value''’. Eachlaser is first expanded to create a collimated beam with a larger size than the
input beam by two lenses. Then the excitation bpasses through a zeooder quarter
wave plate to circularly polarize the laser. In 514 nm laser excitation pathway, there is a
bandpass filter (Chroma ET510/10bp) to limit the wavelength range in the pathAitas.
initial cdlimation of the 488 nm beana mirror redirects the beam into the 514 nm
pathway, and utilizes the same optic elemehiighree laser linegwith 514 nm, and 488
nm together)are combined by using a set of dichroic mirrors (Chroma T470lpxr and
Chroma T525Ipxr) and reflecting miror The shared pathway is directed to another

dichroic mirror passinginto the inverted microscopy objective lens (UPLSAPO 60X
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1.4NA). For experiments which require 514 nm excitation, the dichroic mi@broma
ZT405440/514/561rpdJF1)filters outwavelemths of lightbetween 440 nm and 514 nm.
Thus, for optogenetics experiments, the chchmirror was replaced with another which
would not filter out 488 nm activation laser light (Chroztd40/488/561rpc It is not
possible to perform experiments in wiiboth 488 nm and 514 nm light are required for
excitation purposes using this set Ujpe objective lens projects collimated laser bgam
onto thesample, which enables wideeld illumination. The sample is mounted on an xyz
nanoepositioning stage (Mad @i Labs), which provides positioning and stability with
nanometer precisiommmersion oil is placed on the objective lens, and the glass coverslip
(#1.5, 22 mm x 22 mm, VWR) mounted sample is placed on the sample stage, in close
proximity to the objectiveFluorophores within the sample are excited using the collimated
laser beams. Emitted light is captured by the same objective lens and transmitted into the

emission pathway.

Emitted fluorescence collected by the objective lens is first reflected bictireid
mirror used for transmitting excitation beams into the laséhrgma ZT405
440/514/561rpdJF1 for 514 nm light excitation, and Chromaé440/488/561rpdor 488
nm light excitation). The emission light is then passed through a series of filtemsozere
scattered excitation light from the emission pathwad4(nm long pass filter: Semrock
LP02514RU25, and 561 nm notch filter: Semrock NFBE1E25), as well as &00 nm
shortpass filter (Chroma ET700SEP8) to limit the amount of light outside ofetlemission
wavelength range passing through to the detector. The objective lens used in the microscope is
infinity corrected, meaning that the focal plane is infinitely far from the lens. To capture the

image plane, a tube lens is used to collect andrrmgnission lightAfter this stage, a flip
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mirror is in place to allow fareflectionof the signal into the phase contrast pathway (described

in the next section) if in the Aupod positio
emission lighwill bypass the mirror and is separated depending on the wavelength of emitted

light using a dichroic mirrorGhroma T560Ipxuf3)intofir edo and dAgin@dno c ha
channels, emitted light is thegrassed into two lenses in a 4f configuration. These lenses are
doublet achromatic lenses, and thus limit the effects of spherical and chromatic aberrations.

For singlemolecule imaging experiments, a double helix phase mask (Double Helix LLC) is

placed inthe Fourier plane between the lenses in the 4f system to apply the DHPSF transfer
function in frequency space. The second 4f lens converts the light back to a real image which

is then collected and visualized by an sCMOS camera (Hamamatsu -BREA 4.0 \2).

Emitters will exhibit the DHPSF in this configuration.

In the singlemolecule configuration, fluorophores must be excited with high intensity
laser light to 1) ensure that most fluorophores are bleached, and each cell contains a low
concentration of mitting fluorophores at the time of image acquisition and 2) produce the
stochastic blinking events required for imaging molecules over time. To produce this effect,
excitation lasers are focused to a small area (~0.2% tenproduce laser intensities o1-3
kW/cm?. For imaging optogenetic systems, it was important that the same fluorescence excited
molecules were activated by 488 nm light. Thus excitation (561 nm) and activation (488 nm)

beams were aligned to the same region.

Diffraction-limited imagingwas performed by removing the DHPSF phase masks from
the emission pathway, keeping all other components constant. Additionally, laser power is
three orders of magnitude lower (~ 1 ¥#?) to reduce photobleaching. This is necessary for

acquiring images iwhich most molecules are fluorescent and contributing to image formation.
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2.4.2 Phase contrast imaging

Phase contrast imaging enables visualization of whole cell morphology. This step is
important for determining the cell position for fluorescence data rati@trand filtering, as
well as morphological detection of sick cells for exclusion in further analyses. Phase contrast
imaging is possible due to the inherent scattering properties of the densely packed bacterial cell
cytosol, and is particularly advansmus because it does not require further labeling. Optical
elements are used to enhance the scattering of light, and produce high contrast images from

which cells are clearly visible.

Light from a red lightemitting-diode (LED) which is positioned abovket sample
stageand objective lens on an illumination tower, is passed through an annulus tariogn
of light. A condenser lens focuses the ring of light on the sample. Light that is scattered by
cellular contents is typically phase shifted ¥0° whle transmitted light will remain
unaffected. Light ishencollected by the objective lens, and passes through the same optics as
emission fluoresceng¢mcluding the dichroic mirror and tube lens. A flip mirror in the emission
path reflects the light iota separate phase contrast channel, as described in the previous
section. The light then passes through a 4f lens system where a phase ring is placed in the
Fourier plane. The phase ring shifts the phase of the transmitted light by +90°. In this way,
light which did not pass through cells will be a total of 180° phase shifted with respect to light
that was scattered. Thus, scattered light and transmitted light will destructively interfere to
effectively enhance the contrast between cells and the transpayanting substrates which

is visualized on a detection camera (Aptina MT9P031).
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Figure 2.4.Schematic of microscope layout including excitation, emission, and phase
contrast pathways.Figure was reproduced from referen¢@s!® A detailed description

of optical elements can be found in accompanying text.
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Introduction

Fluorescence image data is rich with information. One can obtain measurements of
biomolecule position, diffusion behavjgrroximity to cellular structures, and more. While
the phrase fiseeing is believingo is popul al
or more important for substantiating claims and hypotheses.

The Gahlmannab has curated a robust framework for fitting, analyzing, and
validating singlemolecule tracking data his chapter willdiscussthe general workflow
which takes raw image data, identifies fluorescent singdéecules, and constructs single
molecule mabn trajectories from which we can infer diffusive behavior of molecules.
Further, 1 will discuss in detail the extensions that | have made to these analyses that have
been integral to characterizing the iLID optogenetic system. This includes estimation of
singlemolecule residence times to infer kinetic constants in binding systems that match
the timescale of measurement. | also implemented diffratitiated image similarity
measurements which is particularly useful for describing changes in fluorescence
distribution in the same cell due to some stimulus. Lastly, | have extended our single
molecule trajectory Monte Carlo simulations to include a module for membssoeiated
diffusion. This last improvement will prove useful in expanding our analysedetgral
membrane protein diffusion and to proteins which associate dynamically to membrane

embedded molecules.

3.1  Singlemolecule localization

3.1.1 Point spread function fitting

Raw image data was processed using a modified version of th® &y Matlab

software® 50103120 The goal of the image processing package is to extract the three
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dimensional position of singlmolecules. As described in Chapter 2, the precise position
of the emitter is determined by fitting the double helix point spread tmédi a double
Gaussian model. The center position between the two fluorescent lobes is used to estimate
the lateral (x and y) position of the molecule, while the angle between the two lobes is
used to estimate the axial position psition). A calibréion curve is created by imaging
a fluorescent bead over an axial range of ~3 um and is used to generate template images.
Raw data images are scanned for fluorescent profiles which match the template images to
identify potential DHPSEignals Then, potenal DHPSFs are fit with a double Gaussian
model where maximum likelihood estimation is used to statistically discern fluorescence
signal from background using model parameters such as gaussian lobe width. Fit
localizations are filtered using quality mesiincluding number of photons collected,
distance between DHPSF lobes, lobe intensity ratio, and lobe width.

To correct for drift in the stage, which could bias diffusion data, each sample is
imaged with a fluorescent fiducial marker whose positiorarsked and used to correct the
position of the emitter over time. Drfiorrected localizations are then subject to

subsequerdnalyses.
3.1.2 Fluorescence data registration to bacterial cells

Localization data obtained from eaBHPSF must be assigned to cétiestablish
boundaries for diffusion. First, phase contrast images of the imaged field of view are used
to derive cell outlines using OUFTt software. Any cells which show morphological
abnormality (e.g. excessively long/undivided cells) are not considered for further analyses.
Then outline meshes are exported to a previously described Matlab script which uses a 2

step 2D affine tnsformation to register localization data to ¢&i%!° The builtin
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Matl ab function O6écp2tformbé is used to ac
translating localization data laterally, aschling the distance between localizations to fit

within cell outlines. In the first step, five pairs of matching points on cell outlines and
localization data are manually chosen to roughly align the data. Cell outlines containing

less than 10 localizatis are removed from analysis. The second step uses the center of
mass of localizations to finely align localization data to the center of the cell outline, using

a larger number of control points for alignment. Localizations outside of cell outlines are

removed, and outlinénternal localizations are used in subsequent diffusion analyses.

3.2 Diffusion analyses

The diffusion rate of biomolecules provides information about both intrinsic and
extrinsic factorsDiffusion rate D) in a given medium can be described by the Stokes

Einstein relationship:

’?’Q "Y

¢ s2
which shows that diffusivity of a molecule is directly related to the thermal energy in the
system in terms of temperaturf) @ndthe Boltzmann constankyj. On theother hand,
viscosity (d) of the environment, and the |
the diffusion rate of a biomolecule. Given a stable environment in which temperature and
viscosity are held constant, it is possible to use diffusimasurements to derive
information about the hydrodynamic radius, and thus oligomerization state of the tracked
molecule. For an wdlepth discussion of protein diffusion and fitting models, refer to the

introduction of the thesis in Chapter 1.
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3.2.1 Mean Squareal Displacement Analyses

To perform diffusion analyses, singieolecule positions over time must be linked
into trajectories. Localizations identified in consecutive frames were linked into the same
trajectory, with a 2.2 um maximum distance between loaatins considered for linking.

This threshold was chosen to reflect the diffusion rate of a free fluorescent protein,
including an additional 25% buffer for localization error. If multiple molecules were
identified within the time frame of the trajectorytln a given cell, the trajectory was
discarded to minimize the possibility of massignment. Further, only trajectories with at
least four displacements were used in further analyses.

To calculate the diffusion rate of each singielecule, we foundie mean squared

displacement (MSD) using the relationship:

P
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wherex is the 3D position at timepoimt including up to 11 timepoints for calculating the
mean over 10 displacements. Longer trajectories were truncated taincdi
displacements to ensure multiple diffusive states were not averaged over in the MSD
analysis. The MSD measurement was then used to calculate the apparent diffusion

coefficient O*) according to:
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wherem is the dimensionality of the measurememt8 for the 3D trajectories reported
here),ti andhe camera exposurte25 ms onder aus e d

conditions).
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3.2.2 Radial distribution analysesi 2D cross section projections

The diffusion analysem the previous section quantifies the rate of movement of
singlemolecules. We next chose to explore how the diffusion rate of molecules correlated
with their spatial distribution. The vector describing the central axis of each cell was
determined usinthe cell outline generated from OUFTI. The outline was segmented into
sections along the cell lengtkigure 3.1), and localizations from trajectories in each
section were projected onto a 2D plane. The position of the central cell axis was adjusted
to math the centroid of all localizations within the section. Positions of localizations from
each cell were scaled to match the mean cell radius and mean cell length, which was
calculated from OUFTI outlines. The trajectories were classified as slow orffasirdj
using the threshol®* = 0.15 unt/s which was determined by identifying a transition point
from the first major change in slope in the CDF plot of apparent diffusion coefficients of
data containing both iLIEassociated and cytosolic diffusidddeChapter 4, Figure 43).

The widthnormalized localizations from each trajectory was used to generate 2D
histograms with 20nm x 20 nm bin widths, to match the experimentally measured

localization precision.

z Figure 3.1.Cell sectionsgenerated from OUFTI outline.
The mesh output from OUFTI is used to create equally
spaced sections (blue lines) along the length of the cell. The

midpoint between the two halves of the outline are used to

generate the central cell axis vector (black circles).
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3.2.3 Residence time analysis

In singlemolecule microscopy, the time fluorescently labeled protespends
boundto a cellular structurés often referred to as the residence time. Residence time
measurements have been used to characterize a variety of phenomena including, but not
limited to, fibrinogensubstrate interactiof, enzyme reaction ratesiringDNA repaif®®,
and transcription factor gaence search and bindfh¢?*'%%. The amount of time that a
ligand stays bound to its substrate is an indicator of the activity ehzayme and/or the
affinity of the interaction, whereas the hifé of the bound state is inversely related to the
dissociation constant, ¢%. Singlemolecule studies using long exposure time, 2D
fluorescence assays are often used for making such measurements. Using long exposure
times decreases the time resolution of the measurement. Therefore, we sought to quantify
residence times using our fddéingthsinglemolecule trajectoried.abeling with the dye
JFX549, which has exceptional photostabifify allowed usto track molecules \@r
hundreds of milliseconds up to mu#econd time scale§hus,we postulated that we

would observe some state switching of molecules from bound to unbouite eersa

To identify diffusive state transitions in singieolecule trajectories, we ingtted
a workflow to analyze displacement data over tifigre 3.2a and 9. First, we plotted

the additive, or cumulative displacement (CD) as a function of time elapsed according to:

# $0 W

wherex is the 3D position at timepoit The CD was calculated for each displacement,

for the full trajectory length (N).
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The instantaneous rate of displacement was estimated by finding the slope within a
small, sliding window containing 3 displacements for the full length of the trajectory
(Figure 3.2). The size of the sliding window was chosen to be small enough such that
switching events were not excessively averaged over, while being large enough to be
somewhat insensitive tamandomdisplacement size fluctuatiortsat are unconnected to
binding and unbinding event&ach segment of the trajectory was then classified as bound
or free by calculating its slope and comparing it to a threshold, which was chosen to match
the uppeilimit of the displacement sizes used in the membitamend singlemolecule
trajectory simulatiors at 0.2 pni/s (see section 3.3)2 Trajectories which contained
consecutive segments of fadbow-fast state assignments were used for further analysis
because of the presence db@und state¢hat is preceded and proceedsdam unbound
state To be considered for analysis, the molecule must reside in each state for at least 2
segments (4 displacements) of the trajectory to ensure that the identified state change was
a true diffusive state change and not due to random flimtud&ach switching trajectory
was ascribed a score (TS) by how well the slope of trajectory segments matched simulated
diffusion coefficient slopes derived for freely diffusing, cytosolic and memkoaoned

molecules:

YY —— Q¥ ¢

wherem is the slope fit to the experimental trajectory segmentnamslthe slope derived
from free cytosolic or membras®und simulated data, depending on the state assigned to
the trajectory segmentisegrefers to the number of segmentghe trajectory. Switching

trajectories were ranked by their TS, and thedogring trajectories (TS>~0.16) were
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inspected individually to verify that switching events occurred at the membrane of the cell.
The residence timdtoound Of bound molecules irthese switching trajectories was
calculated by determing the number of displacements the molecule was assigned to the

bound state.

A similar analysis was employed by Chung et®alvhere they evaluated the
cumulative squared displacements over time, combined with Hidden Markov Model
(HMM) analyses to identify state transitions. This analysis allowed them to differentiate
epidermal growth factor receptor monoraémer transitions. The diffusion rate, and
thereby cumulative square displacements slopes, of monomer and dimer populations
differed by approximately a factor of two (0.1 fifs versus 0.2 pifs). Therefore, the
HMM model was absolutely required for differentiating these populations. Because our
data contains two, very well separated populations (02sprarsus 5.5 pfs), this added
degree of complexity was not necessary for identification of state transitions within
trajectories. Further, trajectorieklD coll ec
binding partner didhot show any verified state switching events, lending creglémour

workflow model.



Plot cumulative displacement
for each single-molecule trajectory

Determine slope of cumulative
displacement vs. time for
3 consecutive localizations

If slope is smaller than threshold,
assign trajectory segment to
slowly diffusing state.

If slope is larger than threshold,
assign trajectory segment to
fast diffusing state.

Identify trajectories that contain
segments with fast-slow-fast
diffusive state assignments

Filter 1: Molecule must reside in
each diffusive state for at least two
consecutive segments

Score trajectory by how well
segments match expected
slope for assigned diffusive state

Confirm that top-scoring trajectories
exhibit slow diffusion near the cell
membrane

Calculate time spent in
slow-diffusing, membrane-proximal
state (f

baund)
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