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ABSTRACT 

 Single-molecule fluorescence microscopy is a powerful tool that can be used to 

resolve cellular structures with nanometers of resolution. By localizing molecules with 

high precision over time, protein motion can be measured and used to resolve different 

diffusive states. Diffusive states are assigned to protein complexes using computational 

models with significant statistical power, and require biological validation which is often 

deliberatively perturbative to cellular function. In the work presented in this dissertation, I 

explore incorporating a non-invasive, transient method for disrupting protein localization 

and prospective diffusive states. I utilize light-induced dimerization domains to transiently 

sequester proteins to non-native cellular compartments upon light stimulation. To test the 

feasibility of this method, I have characterized the optical response of the improved Light 

Induced Dimerization (iLID) optogenetic system using conventional imaging methods in 

addition to single-molecule tracking experiments. To carefully examine the iLID system 

dynamics, I have extended our single-molecule analysis workflow to incorporate trajectory 

simulations of membrane-associated molecules. Further, I have added a full-trajectory 

analysis module that identifies changes in diffusion rate to quantify residence times of 

single-molecules at binding sites, and the kinetics of the interaction. Through these 

analyses, I have shown that the iLID system can be activated by longer wavelengths that 

are minimally absorbed in in vitro conditions. Further, I have identified transient 

interactions of the iLID optogenetic proteins that are not detectable in diffraction-limited 

imaging. This analysis highlights areas for characterization and improvement of the iLID 

optical response.  
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Overview 

To begin, I will state a broad and obvious fact: life is complex. Both multicellular 

and unicellular organisms live due to complex macroscopic processes such as metabolism, 

and immunity, that are governed by complex biochemical principles such as cellular 

signaling, and more fundamentally, protein-protein interactions (PPIs). Each process, each 

interaction is regulated on the cellular level to respond dynamically to the environment: 

e.g. nutrient availability, and pathogen recognition. Therefore, it is important from a 

fundamental, basic science perspective to probe mechanisms underlying systems and the 

key PPIs which guide them. My work presented here brings an important perspective of 

non-perturbative experimental validation of high-resolution imaging required for probing 

dynamic complex formation in vivo.  

1.1 Mapping protein-protein interaction networks 

 

As discussed above, PPIs are fundamental for cellular function. As such, there are 

many techniques that can be used to identify and characterize potential PPIs. The ideal 

method is highly specific, probe-free, quantitative, minimally invasive, and has live 

specimen compatibility with both high spatial and temporal resolution. However, no single 

method can meet all of these demands. Well-established in vitro biochemical and 

biophysical methods for probing protein interactions, such as co-immunoprecipitation and 

Western blot detection, are well suited for analyzing high affinity interactions. Transient, 

low-affinity interactions are often missed when using these methods due to dissociation 

before detection1,2. Alternative methods such as protein NMR, X-ray crystallography, and 

small angle X-ray scattering (SAXS) utilize purified proteins for characterizing the 

structure of proteins, and their binding interfaces3,4. While offering atomic-level 
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information, these techniques each come with a set of caveats. Current state-of-the-art 

protein NMR allows for solution state structural prediction with an upper limit for 

molecular weight of 100 kDa, while typical experiments are performed on complexes that 

are less than 35 kDa in molecular weight5-7. Alternatively, X-ray crystallography requires 

extensive optimization of buffer conditions for achieving crystallization. These conditions 

may preclude or induce non-native interactions8. For example, non-neutral pH may create 

charged patches on protein surfaces. Thus, interactions which are dependent on 

electrostatics will likely be altered. SAXS allows for structural prediction of protein 

complex quarternary structure in solution, but interactions mediated by an adaptor 

protein(s) may not be captured in solutions that do not accurately recapitulate the cellular 

environment. Isothermal titration calorimetry (ITC) can provide information about the 

thermodynamics and stoichiometry of a given interaction9, but similarly requires purified 

proteins and a buffer system that fall short of environmental replication. In response, 

developments in cryo-electron tomography (cryo-ET) have allowed for structural imaging 

in situ, with the stipulation that all samples must be fixed using plunge freezing. For 

example, Park et al. (2018)10 utilized a mini-cell producing Salmonella strain and achieved 

high resolution imaging of the type III secretion system, which had not been achieved 

before despite previous attempts. It is important to note that high resolution structural 

determination requires thousands of subtomograms for averaging, after which it is still 

possible to miss transient interactions or dynamic structures with fast protein turnover and 

exchange. Further, the full volume of thick samples cannot be effectively imaged due to 

extensive scattering. This can be overcome through the use of focused ion beam milling 
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(FIB) combined with cryo-ET imaging. In FIB-SEM material is milled away, and a 

“window” is opened for imaging, though ultimately destroys the sample11-13.  

Fluorescence microscopy overcomes many of the aforementioned obstacles, 

allowing for in vivo visualization of fluorescently tagged molecules. Many fluorescence 

microscopy-based techniques have been developed over the past decades to detect and 

quantify interactions between biomolecules in vitro and in vivo. Improvements of 

fluorescent probes and biomolecular labeling technologies, in conjunction with 

instrumental improvements have enabled measurements that provide critical insights into 

cellular organization and the biochemical interactions occurring within them14. Spatial co-

localization of emitters through multi-color imaging is now widely utilized to gauge 

whether biomolecules are close enough to interact.  The power of such measurements 

depends critically on the achievable spatial resolution of the instrument used. Diffraction-

limited imaging provides a resolution on the order of 200-300 nm, which is much larger 

than the size of a typical protein (~2 nm) or the size of small protein complexes (~20 nm). 

Diffraction-limited resolution is thus too low to determine whether two proteins interact 

directly in a given complex or whether their interaction is mediated by a third protein15. 

Super-resolution microscopy approaches enabling precise single-molecule localization, 

such as PALM/STORM and MINFLUX, have been successful in addressing this challenge. 

For example, Symborska et al. determined radial positions of protein subunits of the 

nuclear pore complex (NPC) with subnanometer precison,16 and more recently, Ries and 

co-workers used MINFLUX microscopy to pinpoint the position of subunits within the 

NPC with single nanometer precision without the need for radial averaging17. Single-

molecule microscopy techniques overcome the resolution barrier, providing tens of 
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nanometers of resolution and thus, accurate co-localization analysis of static structures18-

20.  

Detecting protein interactions within freely-diffusing complexes cannot be 

accomplished by fluorescence co-localization, and thus requires different approaches. Live 

cell analysis of protein oligomerization state is possible using fluorescence microscopy 

techniques such as Fluorescence recovery after photobleaching (FRAP), and Fluorescence 

correlation spectroscopy (FCS). These measurements rely on cellular or compartmental 

measurements of fluorescence intensity, either recovery of fluorescence as with FRAP, or 

fluctuations over a small imaging volume as with FCS. Thus, these techniques offer 

ensemble averaged data from which it is difficult to identify transient binding events21. 

Estimation of binding parameters is performed using kinetic model fitting22. Alternatively, 

Forster resonance energy transfer (FRET), measures the efficiency of non-radiative energy 

transfer from an excited donor fluorophore to an acceptor fluorophore in the ground state, 

which becomes excited and emits photons. For energy transfer to occur, the donor and 

acceptor fluorophores must be within a few nanometers of each other and be oriented 

correctly. Thus, FRET efficiency serves as a measurement of spatial proximity and can be 

detected between tagged proteins of interest to infer the existence of protein-protein 

interactions23,24. FRET measurements have been extended to Fluorescence Lifetime 

Imaging Microscopy (FLIM) techniques. Non-radiative energy transfer shortens the 

lifetime of the donor fluorophore, and, therefore, spatial proximity of fluorophores can be 

determined. Due to the nature of the measurement, the lifetime signal is fluorophore 

concentration independent, and there is limited spectral bleed-through from acceptor 

fluorescence. These features make FLIM particularly advantageous compared to FRET25. 
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Despite the nanometer-level distance sensitivity of FRET and FLIM-FRET, the data 

derived from these measurements are also ensemble-averaged, and cannot efficiently detect 

transient interactions. The extension of single-molecule microscopy to FRET (smFRET) 

allows FRET measurements to be made on single proteins, and can be used to detect 

heterogeneity within a sample. However, this technique requires the studied proteins to be 

immobile or very slowly diffusing, and thus cannot detect interactions between freely 

diffusing proteins within the cytosol25. For an exhaustive review of protein oligomerization 

determination using fluorescence techniques in live cells, please refer to the following 

review26.   

1.2 Single-molecule tracking analysis for protein complex determination 

 

Single-molecule localization microscopy has led to a resolution revolution in 

optical, fluorescence imaging. Photo-Activation Light Microscopy (PALM) and 

STochastic Optical Reconstruction Microscopy (STORM) routinely achieve ~10 nm lateral 

resolution and ~50 nm axial resolution. The ability to precisely localize single proteins has 

led to more accurate co-localization analysis of static structures, as described in a previous 

section, in addition to tracking and diffusive analyses. In such analyses, single proteins are 

imaged over time to measure how quickly they diffuse in a given environment, whether it 

be in solution or within live cells. Diffusion rate (D) in a given medium can be described 

by the Stokes-Einstein relationship:  

𝐷 =
𝑘𝑏𝑇

6𝜋ηR
 

Where kb refers to the Boltzmann constant, T to temperature, η to viscosity of the medium, 

and R to the hydrodynamic radius of the protein or biomolecule being measured27,28. Using 
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this equation, it is clear that the diffusion rate of the protein is inversely correlated with its 

size.  Thus, it is possible to infer the oligomerization state of a protein by how quickly it 

diffuses through a given medium. It is important to note that while the Stokes-Einstein 

equation holds well for globular proteins or protein complexes, further modifications of the 

equation are necessary for non-globular protein complexes like microtubule or actin 

filamentous fibers29.  

 Diffusion measurements are made in vivo by localizing single fluorescently labeled 

proteins and following their movement over time. The amount of distance that a molecule 

moves between each time point, called the displacement (r) of the molecule, is used in 

subsequent analyses. Just by calculating the mean squared displacement (MSD or <r2>) 

over increasing time intervals (τ), one can get significant information about their system30. 

A molecule with true random diffusion, also called Brownian diffusion, exhibits a linear 

MSD over time ( <r2> ∝ Dτ) for the full length of the molecule’s trajectory. On the other 

hand, a molecule that is not a true Brownian diffuser will exhibit a different relationship 

where (<r2> ∝ τα). When α is greater than one, it suggests that the molecule is moving more 

quickly than expected for a Brownian diffuser, and exhibits super-diffusive behavior. This 

is a common feature of proteins that are associated with vesicular transport, for example31. 

When α is less than one, it suggests that the molecule is moving more slowly or not as far 

as expected for a Brownian diffuser, and is likely confined in space. This is most common 

for in vivo measurements where there are many levels of confinement. Membranes serve 

as physical boundaries which confine molecules to subcellular compartments, resulting in 

sub-diffusive behavior. Indeed, recent diffusion measurements in bacteria support that 

confinement contributes to subdiffusive behavior of proteins,  estimating the alpha 



I n t r o d u c t i o n | 8 

 

 

exponent is between 0.6 and 0.8.32-34 Further, the cytosol of the cell is very crowded, 

containing a myriad of biomolecules which may serve as a barrier to random diffusion, 

especially for large molecules. In this way the cytosol can act as a sieve. This is particularly 

true for bacterial cells where the nucleoid displaces large proteins to the cell pole as they 

cannot diffuse freely through the dense DNA-protein meshwork35-37. 

 Anomalous diffusion within the cytosol precludes facile analysis of diffusion 

measurements. This is particularly true within the extremely confined space of a bacterial 

cell. The volume of an average E. coli cell is approximately 8 µm3. This leads to interesting 

questions about how bacterial cells are able to differentially regulate reactions without the 

high degree of compartmentalization that is apparent in eukaryotic cells35. Many labs 

within the microbiological imaging realm are working on understanding protein-protein 

interactions within bacteria, and how these interactions contribute to macromolecular 

assembly within the cytosol. With each lab comes a slightly different single-molecule 

imaging set-up, and another data analysis pipeline to accompany it38. Here, I will outline a 

few of the predominate features that are pervasive in the field.  

1.2.1 Diffusive state assignments to protein complex populations 

After image analysis and identification of single molecules and their trajectories, 

the data output is a distribution of apparent diffusion coefficients. Using these distributions, 

further analyses are performed to distinguish protein complexes and modes of binding that 

molecules existed in during the time of measurement. These so-called “state-fitting 

models” are used to assign diffusive states (quantitatively, Diffusion Coefficient = x µm2/s) 

to protein complexes (DNA-bound, e.g.). A common method for estimating the diffusion 



I n t r o d u c t i o n | 9 

 

 

coefficient, which describes a given state, is by fitting the experimental distribution to an 

analytical equation that describes the probability or likelihood of observing the 

experimental distribution if the molecule exists within said diffusive state. Curves 

generated from the analytical equation are then fit to the experimental distribution, and 

evaluated using statistical analyses such as linear least squares and maximum likelihood 

estimation (MLE). To describe more complex, multi-state systems, the probability function 

can be expanded to include more diffusive states, at varying fractions of the population as 

a linear combination of terms. This method has been modified and used extensively both 

in bacteria and eukaryotic cells39-44.  

Other methods utilize Hidden Markov Models (HMM) which describe not only the 

diffusive states that protein exists in, but also the kinetics of switching between multiple 

diffusive states45,46.  It is important to note that the methods which utilize HMM fitting, as 

well as analytical equation fitting as described above, invoke a fixed number of states. The 

analyses can be performed multiple times to find the best number of states to include in the 

model. However, this leads to an issue which is inherent to parameter fitting. Using more 

parameters in a model equation will lead to better fits, especially for complex curves. This 

can lead to over-fitting of your experimental data, where each added state marginally  

decreases the error of the fit, though there may be no biological significance of the added 

states47. To incorporate model flexibility and remove bias, Persson et al.48 applied 

variational Bayesian statistics to their HMM modeling of diffusive state and kinetic 

parameter selection, which objectively weighs the goodness of fit of the model against the 

complexity of the fit.   
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 Another feature of the abovementioned fitting methods is that they do not address 

levels of complexity that exist from the cells themselves. As mentioned previously, both 

the cell membrane and cytosol are extremely crowded and impose barriers for diffusing 

molecules, resulting in anomalous diffusive behavior. This effect is exacerbated within the 

small volume of the bacterial cell. Therefore, some groups have focused on directly 

incorporating considerations for cell geometry and confinement imposed by membranes in 

the diffusion state fitting models. This has been achieved by direct simulation of single-

molecule trajectories within confined volumes that reflect the cell geometry of bacterial 

cells. In this way, the experimentally derived “apparent” diffusion coefficient (D*) 

distributions, are fit with simulated diffusion coefficient distributions to derive the 

theoretical, unconfined diffusion coefficient (D) state49-53.   

 To ensure the accuracy of state-fitting models, extensive statistical validation is 

required. The gold standard for validation and reproducibility is using simulated data as a 

benchmark for model accuracy and applicability. However, experimental validation of 

assigned states is a non-trivial task. Mutation or deletion of putative interacting partners is 

the most often utilized control. This is not possible for proteins which are required for 

maintaining cell viability including cell wall synthesis and DNA replicating factors. 

Therefore, there is a need for assays that transiently disrupt protein interactions, do not 

reduce cell viability, and can be easily incorporated into single-molecule tracking 

experiments. An attractive solution is optogenetics, which can transiently perturb spatial 

localization of proteins using a light signal. The technology will be discussed hence.  
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1.3 Optogenetics 

Optogenetics is a broad term that is applied widely to describe light-induced 

cellular reactions. Since the first implementation of optogenetics just under 20 years ago, 

synthetic biologists have developed a large array of tools to control or engineer cellular 

functions by utilizing proteins which contain light-sensing domains. By heterologously 

expressing light sensing domains in non-native contexts, new or manipulated 

functionalities can be introduced to previously “blind” systems. Moreover, light-driven 

responses are transient and allow for temporary manipulation of the cellular environment. 

The following sections will describe different form factors that optogenetic systems often 

take and a brief overview of how they have been applied. Overview of photoreceptors 

Photoreceptors are classified as any protein that integrates a light input to a 

signaling response. There are six type types of photosensory proteins which have been 

well-characterized including: rhodopsins54, phytochromes55, cryptochromes56, blue-light 

using flavin (BLUF) proteins57, photoactive yellow proteins (PYPs), and light oxygen 

voltage (LOV) proteins58,59. It is important to note that this is not an all-inclusive list, as 

there are photoreceptors that have been discovered recently, such as CarH in myxobacteria 

which regulates carotenoid biosynthesis60, that have not been extensively characterized. 

Despite the breadth in sequence and structure of these photoreceptors, there are apparent 

emergent properties in their mechanisms of action. Firstly, each protein module utilizes a 

chromophore which absorbs photons and converts the light signal to some physical change 

in the protein. There are four chromophores utilized by photoreceptors including, retinal 

(rhodopsins), bilin (phytochromes), p-coumaric acid (photoactivated yellow proteins), and 
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flavin (cryptochromes, BLUF proteins, and LOV proteins)61 which all are characterized by 

extended conjugated pi-orbitals. 

The mechanism of signal transfer is dependent on the conjugated chromophore, but 

the outcome is typically proton transfer to the protein, which results in a conformational 

change, and subsequent signal activation62. The following sections will discuss the ways 

in which these photoreceptors have been used to manipulate cell biology using light 

signals.  

1.3.2 Ion channels and transporters 

Light-regulated ion transporters were among the first optogenetic tools developed. 

These transporters largely consist of a family of proteins called rhodopsins which utilize a 

retinal chromophore54. Retinal is covalently bound to the rhodopsin protein and undergoes 

isomerization after light absorption. For animal rhodopsins (type II), isomerization of 

retinal initiates signaling pathways via activation of signaling enzymes, serving as photo-

activated G-protein coupled receptors63. Alternatively, bacterial rhodopsins (type I) change 

conformation due to isomerization of retinal, resulting in pore opening and pumping, or 

passive diffusion of ions through the transporter pore64. Ion-transporting rhodopsins are 

classified as light-gated channels (also referred to as channel rhodopsins), including both 

cation and anion channels, or light-driven pumps, including sodium, chloride, and proton 

pumps. These varieties of ion-transporters have been extensively utilized to selectively 

hyper- and de-polarize membranes, especially in neuroscience65-67 and cardiology 

fields68,69.  
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1.3.3 Opsin-independent photoreceptors 

Non-rhodopsin photosensory proteins have been used to modulate a broad variety 

of cellular processes by acting as optogenetic switches. This has been possible due to the 

modular nature of light sensing domains which can be used to label proteins of interest 

much like an affinity or fluorescent tag. Despite the diversity in available switches, they 

operate similarly. Much like rhodopsin photoreceptors, non-opsin photoreceptors utilize a 

chromophore (e.g. flavin, bilin, or p-coumaric acid) which undergo some conformational 

change due to wavelength-dependent photon absorption as described in a previous 

subsection. These conformational changes lead to: 1) change in the oligomerization state 

of the protein through dissociation or association of homo- or hetero- oligomers, or 2) 

uncaging of a small peptide for targeting to different cell compartments or binding a known 

interaction partner (Figure 1.1)70. By tagging proteins of interest with light sensing 

domains, one can control both protein localization and oligomerization-dependent activity 

state of enzymes. Thus, by modifying signaling molecules with optogenetic switches, 

unprecedented spatio-temporal control of signaling can be achieved by integrating light- 

rather than chemical- signals70,71.  

Because of the modularity of optogenetic switches, they have been used to attenuate 

the activity of a wide variety of processes including, but not limited to, directed lamellar, 

membrane ruffling of cultured epithelial cells72, secretion of virulence factors by bacteria73, 

and tyrosine kinase signaling for high-throughput identification of small-molecule 

inhibitors74.  
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Figure 1.1. Action mechanism of optogenetic switches with examples. There are many 

other examples of switches which utilize these modes of action. For an exhaustive 

discussion of optogenetic switches and their modifications for increasing efficiency and 

usability, please refer to Khamo et al. (2017)75. Figure reproduced from Kramer et al. 

(2021)70. 

1.4 Optogenetic knocksideways assays for validating single-molecule state 

assignments 

An overview of statistical methods used to resolve different diffusive states and 

assign them to protein complexes was outlined in detail in section 1.3. A clear method for 

verifying different diffusive state assignments to protein complexes has yet to be 

developed. We propose to disrupt the spatial distribution of proteins to non-native cellular 

compartments, using transient, non-invasive and reversible light signals76. We refer to this 

method as a “knocksideways” assay for the remainder of the dissertation. In this assay, 

cytosolic proteins are tagged with an optogenetic dimerization partner while the dimer 
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complement is targeted to a non-native cellular compartment (e.g. the cell membrane). 

Optical activation of dimerization results in sequestration of proteins of interest to the non-

native cellular compartment, and interacting proteins can be sequestered to the same 

compartment as a result. We hypothesize that changing the spatial distribution of 

interacting proteins will aid in the assignment of diffusive states to protein complexes with 

distinct compositions. In the simplest scenario, we expect to observe depletion of the 

cytosolic diffusive state assigned to the suspected oligomer when either interacting partner 

is sequestered to the membrane. Here, we test the possibility of combining optogenetic 

manipulation with 3D single-molecule tracking microscopy in live Escherichia coli. The 

improved Light Induced Dimerization (iLID) system77 was selected because it has been 

extensively characterized and engineered for optimized performance in different model 

systems. Thus, a considerably large toolbox of iLID variants with different affinities, and 

reversion times are available for implementation73,77,78. The iLID protein contains the light-

sensing light oxygen voltage (LOV2) domain derived from Avena sativa which 

incorporates a flavin cofactor during folding. The flavin cofactor acts as a chromophore, 

and forms a cysteine adduct with the LOV2 domain after illumination with blue light. As 

a result, the iLID protein changes conformation and exposes a binding site for the 

interacting partner, SspB79,80.  

1.5 Overview of dissertation 

In the remainder of the dissertation, I will discuss my efforts to use the improved 

light induced dimerization (iLID) optogenetics system in single-molecule tracking 

experiments. In Chapter 2, I will discuss single-molecule microscopy, the instrument used, 

and the modifications that were made to acquire measurements for optogenetic 
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experiments. Next, I will discuss the experimental and computational methods employed 

to acquire and analyze the data in Chapter 3. This chapter will highlight where I have 

extended our computational toolbox to include simulation models for membrane diffusion. 

Further, I have introduced an intuitive analysis pipeline which utilizes full trajectory 

information that would be discarded as part of our traditional diffusion analysis. Chapter 4 

will contain discussion of the results of my work. In this chapter, you will find important 

considerations about how optogenetic tools should be calibrated and applied to any 

imaging experiment. Further, I make suggestions for additional characterization of the light 

oxygen voltage (LOV2) domain and the iLID protein itself. Lastly, in chapter 5, I discuss 

the trajectory of work to be done in light of my analyses. This includes using far-red laser 

excitation to decrease pre-activation of the optogenetic system, incorporating membrane 

diffusion into our existing diffusion coefficient model, and using full-trajectory analyses 

to derive kinetic information about protein interactions.  
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As described in the previous chapter, the vision of this work is to use the iLID 

optogenetic system to transiently deplete cytosolic diffusive states through spatial 

redistribution of proteins to non-native cellular compartments. Before knocksideways 

experiments could be designed, it was necessary to first evaluate the iLID optogenetic 

response in the live E.coli model system. Optogenetic tools, including iLID, have been 

widely applied in eukaryotic cells in conjunction with diffraction-limited fluorescence 

microscopy to obtain population-averaged, phenotypic readouts70,81. Therefore, I sought to 

use both conventional diffraction-limited conditions and single-molecule localization and 

tracking microscopy to quantify the iLID optogenetic response. In this chapter, I will 

discuss the imaging techniques used with an emphasis on experimental design 

considerations required for live-cell single-molecule fluorescence microscopy.   

2.1 Single-molecule fluorescence imaging 

 Fluorescence microscopy allows for imaging of cellular structures in native 

contexts. Conventional imaging techniques, however, are limited by their ability to resolve 

structures that are close in space. Each fluorescent molecule emits photons of light that can 

be described by a wavelength within the visible range (380 nm – 700 nm) which are 

collected using a detector. Due to light diffraction, the fluorescence distribution is 

described by a point spread function (PSF) which appears as an airy disk (Figure 2.1).  

Because each emitter can be described by a PSF, emitters which are close in space will 

produce an image with overlapping PSFs (Figure 2.2). Thus, there is an inherent physical 

limit to how close emitters can be in space and still be resolved. This was first described 

by Ernst Abbe according to the following equation82: 
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𝑑𝑥,𝑦 =
𝜆

2 ∙ 𝑛 ∙ sin 𝜃
 

where the lateral diffraction limit (dx,y) is limited by the wavelength (λ) of light collected, 

as well as the inherent imaging conditions such as the refractive index of the imaging 

medium (n), and maximum angle of light (θ) collected by the objective lens. The imaging 

parameters can be combined into a single term called the numerical aperture (NA):  

𝑁𝐴 = 𝑛 ∙ sin 𝜃 

Such that the diffraction limit can be simplified to:  

𝑑𝑥,𝑦 =
𝜆

2 ∙ 𝑁𝐴
 

This relationship describes the achievable lateral resolution for a fluorescent emitter. 

Resolving emitters axially is even more difficult, as the achievable resolution shows an 

even greater dependence on the amount of light collected by the objective lens as described 

by83:  

𝑑𝑧 =
𝜆

𝑛 ∙ (sin 𝜃)2
 

 

Therefore, the distance between two objects required to resolve them is approximately half 

the wavelength of visible light (~200 nm), depending on the objective lens used in the 

microscope. That means that small biomolecules, which are on the order of a few 

nanometers in size, cannot be resolved within larger complexes. For example, fluorescently 

tagged subunits making up the nucleoporin complex form a continuous ring of fluorescence 
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which cannot be resolved into individual components without further manipulation (Figure 

2.2). 

  

Figure 2.1. Airy disk point spread function. (a) Photons emitted from a point source are 

collected with the microscope objective, and propagate through the imaging system. When 

focused, photons will form an airy disk pattern due to diffraction of the light waves. An 

axial (x-z) cross-section of the airy disk pattern indicates that the central lobe of the disk 

contains approximately 84% of the observed intensity which is equally apparent in (b) a 

3D representation of the point spread function collected. Figure reproduced from ref.84 
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Figure 2.2. Overlapping point spread functions. PSFs approximated as smoothed 

Gaussian functions as detected on a camera (top) and as intensity cross-sections (bottom) 

become unresolvable as the distance between emitters is decreased (left to right). For 

example, fluorescently labeled subunits within a nucleoporin complex cannot be resolved 

from each other and will resemble a continuous ring, due to the diffraction limit. Figure 

adapted from reference14. 

 It is thus necessary to manipulate imaging conditions to resolve biomolecules that 

are close in space. This can be achieved by controlling the emission of fluorophores for 

separated collection of fluorescence. The development of imaging techniques to address 

this issue was a significant advancement in the field, and resulted in the Nobel prize awards 

for the scientists that pioneered super-resolution microscopy. The three main fields of 

super-resolution microscopy include Stimulated Emission Depletion (STED) 

microscopy85, Structured Illumination microscopy (SIM)86, and Single-Molecule 

Localization Microscopy (SMLM)87. STED utilizes patterned light to deplete fluorescence 

in a region surrounding a narrow fluorescence excitation beam to spatially separate 

fluorescence of molecules85. SIM also utilizes patterned light to achieve super-resolution. 

Light diffraction from interference of incident light waves form predictable light patterns, 

called optical lattices, are used to image samples, offering higher spatial frequency 
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information than traditional imaging methods. Thereby, super-resolution images can be 

reconstruction from image data. Alternatively, SMLM achieves super-resolution by 

controlling emitter concentration at any given time, such that spatially separated single-

molecules can be imaged. SMLM can be achieved through a variety of methods such as 

photoactivated light microscopy (PALM), stochastic optical reconstruction microscopy 

(STORM), and point accumulation in nanoscale topography (PAINT).  Each of these 

methods rely on the fluorophore transitions between fluorescent ON and OFF states. 

Spatially separated PSFs are fit with a Gaussian function that describes the fluorescence 

profile. Super-resolution images are then rendered by adding all of the fit localizations with 

tens of nanometers of precision. (Figure 2.3).  

 

Figure 2.3. Single-molecule localization microscopy image rendering. To illustrate 

image reconstruction in SMLM, a representation of a nucleoporin complex which has been 

densely labeled with fluorophores is used. Single fluorophores stochastically enter the 

fluorescence ON state at a given time, t. A Gaussian fitting model is applied to each image 

to identify single-molecule emitters, achieving tens of nanometers of resolution, laterally. 

Fit images over the collection time, tn, are integrated to produce a super-resolution image. 

Figure adapted from reference.14   

In PALM, a small subset of fluorophores is primed for excitation using low 

intensities of UV light, and then excited into the fluorescent ON state with light at longer 



F l u o r e s c e n c e  i m a g i n g | 23 

 

 

wavelengths. Unprimed, unexcited fluorophores remain in the fluorescent OFF state88. 

STORM is achieved using synthetic dyes which stochastically switch between the ON and 

OFF state in suitable buffer conditions89-92. Unlike PALM and STORM, PAINT does not 

rely on the photophysics of the fluorophore for switching between fluorescent states, but 

rather depends on fluorophore binding to static structures93. Quickly diffusing, unbound 

molecules escape detection until bound to the labeled structure. Bound molecules are 

recycled back into the cytosol or medium and remain “invisible” until binding occurs again. 

The most common implementation of this technique is in the form of DNA-PAINT which 

utilizes specific DNA nucleotide tags as scaffolds for fluorophore binding94. 

2.2 Measuring the depth of an emitter  

Conventional PSFs offer information about the lateral (x- and y-) positions of 

fluorophores. To attain three dimensional images of structures, axial information is 

required. Many techniques have been developed to squeeze more information out of 

fluorescence PSFs including the use of multiplane imaging, interferometric measurements, 

and PSF engineering95. The simplest form of multiplane imaging is biplane imaging in 

which emission light is split into two channels, and is collected by two cameras that are 

slightly offset by a known distance to different image planes. Thus, an emitter will always 

be out of focus on at least one of the cameras. The ratio of PSF size between the two 

cameras monotonically increases as a function of the PSF axial position. Thus, by 

simultaneously imaging on both cameras, it is possible to determine the depth of the 

emitter96. This method can resolve up to 1 µm of axial distance, and is fundamentally 

limited in localization precision by splitting photons between to detectors. Interferometric 

methods do not suffer from this same issue. Multiple objectives are used to collect emission 
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light from the sample into different channels which are recombined to induce diffraction. 

Position-dependent phase information can be used to extract axial information with sub-

micron resolution range97.   

 Point spread function engineering also takes many forms such as self-bending PSFs 

(sbPSF)98, astigmatism99, and double-helix point spread function (DHPSF)100. In each case, 

the shape or relative position of shapes within the PSF is dependent upon the axial position 

of the molecule. Thus, the axial position of the emitter can be determined by fitting the PSF 

shape. Our lab employs the DHPSF method to achieve 3D imaging because it offers 

sufficient depth information of 1.5 µm - 2 µm to image entire bacterial cells49,50,101-103, and 

it is easy to implement physically in the microscope and computationally in to fitting 

models. The DHPSF is created by inserting a phase mask into the emission path of the 

microscope that modulates the phase of light to split the traditional PSF into two lobes. The 

lobes of the PSF are vertically stacked when in focus, and rotate around a central position 

when the emitter moves out of focus. The position of an emitter can be determined by using 

a double Gaussian fitting model which uses the relative position of the two lobes to 

determine the lateral and axial position of the emitter.  

2.3 Experimental design: choosing the right fluorophore 

 Single-molecule localization microscopy relies on stochastic transitions of 

molecules between fluorescent ON and OFF states. There is a large variety of fluorophores 

in the form of dyes and fluorescent proteins which can accomplish this task, and choosing 

one that fits your experiment can be daunting. Selectivity of labeling, label size, brightness, 

and photostability are all important factors which are often at odds with each other.  
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 The precision of any single-molecule fluorescence measurement is directly 

dependent on the number of photons collected for the measured PSF. This relationship is 

described by the equation104: 

𝜎 =  
𝑠

√𝑁
 

Where σ is the lateral localization precision, s is the standard deviation of the 2D intensity 

profile fit with a Gaussian function, and N is the number of photons collected from the 

emitter. Therefore, the brightness of the fluorophore directly impacts the precision of 

measurement, and the achievable resolution. The reported quantum yield (Φ), the number 

of photons emitted per photon absorbed, can be used as a direct measure of fluorophore 

brightness. Fluorescent dyes typically outperform fluorescent proteins in terms of 

brightness. Further, dyes remain fluorescent for longer, exhibiting superior 

photostability105. Despite the excellent photophysical qualities of fluorescent dyes, there 

are major drawbacks to consider. For live cell imaging, the dye must be membrane-

permeable to achieve cytosolic protein labeling. Further, rigorous washing of the sample is 

required to ensure all unbound dye is removed for high specificity in labeling. 

Fluorescent proteins, on the other hand, are genetically encodable, and offer 

unprecedented labeling specificity. Therefore, a considerable amount of work has been 

done to optimize fluorescent protein photophysical properties, and expand the toolbox of 

utilities available. Local concentration of fluorescent proteins through the use of Sun tags 

is a viable option for amplifying the signal of fluorescent proteins106. However, the 

molecular weight of a single fluorescent protein is ~30 kDa, comprising a bulky label that 

could interfere with the functionality of the tagged protein. The Sun tag increases the size 
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of the label with each fluorescent protein that binds to it. Therefore, it works best when 

tracking large structures, such as vesicles, to ensure that it does not alter the properties of 

the tagged molecule. Further, it is important to establish functionality of the system before 

proceeding to further imaging experiments with the tagged protein. Fluorescent dyes are 

considerably smaller in size, typically less than 1 kDa, but require site specific labeling 

tags. For example, the Halo tag107, which are routinely used for genetically tagging proteins 

of interest for site-specific labeling with ligand-based dyes, is 33 kDa and comparable in 

size to fluorescent proteins. Thus, there is more work to be done to increase the brightness 

of fluorophores while enhancing live-cell compatibility.   

Labeling using unnatural amino acids (UAA) offers a promising new alternative. 

Labeled unnatural amino acids are supplied to the growth medium, and are specifically 

incorporated into a protein at “recoded” stop codons108-111. This decreases the label size to 

a single dye-labeled amino acid. However, implementation of this technology requires a 

lot of manipulation of the model system, and includes many components for which 

extensive optimization is required. This includes genetic encoding of tRNAs with 

complementarity to the recoded stop codon, and aminoacyl tRNA synthetases to load the 

tRNA with the unnatural amino acid. Further, conditions must be optimized for labeling 

efficiency, uptake, and incorporation of UAAs.  

 It is also possible that the system being studied will restrict the fluorophores 

available for use. For example, I characterize the diffusive behavior of the iLID optogenetic 

system in Chapter 4. The iLID protein contains a light oxygen voltage (LOV2) domain 

which absorbs light at wavelengths less than 500 nm, resulting in conformational changes 

and activation of the optogenetic system80,112,113. To track the cytosolic binding partner of 
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iLID in non-activated conditions, it is required that the fluorescent tag is excited at 

wavelengths greater than the reported absorption value. To determine the sensitivity of the 

iLID system to different wavelengths of light, I used low intensity laser illumination at 405 

nm, 488nm, and 561 nm. In all illumination conditions, with the exception of 561 nm light, 

I found that the iLID system was activated to some degree. Therefore, I was restricted to 

using a spontaneously blinking fluorophore which could be excited at 561 nm. There are 

not any known fluorescent proteins which exhibit this behavior, all requiring priming with 

405 nm light for photoactivation, thus restricting labels to fluorescent dyes105. Similar 

considerations are required when designing multi-color labeled experiments. Excitation 

and emission spectra of each fluorophore must show minimal overlap with each other to 

ensure that fluorescence is excited and collected with high specificity114,115.  

2.4 Instrumentation 

The work presented here was performed on a custom-built inverted fluorescence 

microscope in both diffraction-limited and 3D single-molecule modes. The microscope has 

been described in detail previously49,50,116. A major advantage of customizable instruments 

is the ability to modulate the instrument based on the needs of the experiment. This is 

highlighted by the modifications made here for application to optogenetic experiments.  

2.4.1  Fluorescence imaging 

The light used to excite fluorescence within a biological sample exhibits an 

absorption spectrum which is blue-shifted to shorter wavelengths compared to the light 

emitted by the sample. The difference in absorption and emission maxima is called the 

Stokes shift. Therefore, different optical elements are required for channeling each type of 
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light, and the microscope layout (Figure 2.4) will be discussed in terms of its excitation 

and emission pathways.  

The excitation pathway is the same in structure as described previously49,50,103. An 

additional 488 nm laser (Genesis, MX488-1000 STM) line was launched from a fiber optic 

cable (PM-S405-XP, ThorLabs), in parallel to the other excitation lasers including 405 nm 

(Coherent OBIS 405), 514 nm (Coherent Genesis MX514 MTM), and 561 nm (Coherent 

Genesis MX561 MTM) emitting lasers. The configuration of the microscope has been 

constructed to support excitation and photoactivation of fluorophores utilized in single-

molecule microscopy where 405 nm laser light is used to photo-activate fluorophores such 

as PAmCherry, 514 nm and 561 laser light excites fluoresce of commonly used blinking 

fluorophores such as eYFP and Janelia Fluor 549, respectively. Lastly, the 488 nm laser 

line was implemented to extend the compatibility of the microscope to activate optogenetic 

systems. While we specifically used the iLID system, the 488 nm activation is compatible 

with any blue-light absorbing light-sensing domain with an absorption maxima near this 

value117. Each laser is first expanded to create a collimated beam with a larger size than the 

input beam by two lenses. Then the excitation beam passes through a zero order quarter 

wave plate to circularly polarize the laser. In 514 nm laser excitation pathway, there is a 

band-pass filter (Chroma ET510/10bp) to limit the wavelength range in the pathway. After 

initial collimation of the 488 nm beam, a mirror redirects the beam into the 514 nm 

pathway, and utilizes the same optic elements. All three laser lines (with 514 nm, and 488 

nm together) are combined by using a set of dichroic mirrors (Chroma T470lpxr and 

Chroma T525lpxr) and reflecting mirrors. The shared pathway is directed to another 

dichroic mirror passing into the inverted microscopy objective lens (UPLSAPO 60X 
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1.4NA). For experiments which require 514 nm excitation, the dichroic mirror (Chroma 

ZT405-440/514/561rpc-UF1) filters out wavelengths of light between 440 nm and 514 nm. 

Thus, for optogenetics experiments, the dichroic mirror was replaced with another which 

would not filter out 488 nm activation laser light (Chroma zt440/488/561rpc). It is not 

possible to perform experiments in which both 488 nm and 514 nm light are required for 

excitation purposes using this set up. The objective lens projects collimated laser beams 

onto the sample, which enables wide-field illumination. The sample is mounted on an xyz 

nano-positioning stage (Mad City Labs), which provides positioning and stability with 

nanometer precision. Immersion oil is placed on the objective lens, and the glass coverslip 

(#1.5, 22 mm x 22 mm, VWR) mounted sample is placed on the sample stage, in close 

proximity to the objective. Fluorophores within the sample are excited using the collimated 

laser beams. Emitted light is captured by the same objective lens and transmitted into the 

emission pathway.  

Emitted fluorescence collected by the objective lens is first reflected by the dichroic 

mirror used for transmitting excitation beams into the laser (Chroma ZT405-

440/514/561rpc-UF1 for 514 nm light excitation, and Chroma zt440/488/561rpc for 488 

nm light excitation). The emission light is then passed through a series of filters to remove 

scattered excitation light from the emission pathway (514 nm long pass filter: Semrock 

LP02-514RU-25, and 561 nm notch filter: Semrock NF03-561E-25), as well as a 700 nm 

short-pass filter (Chroma ET700SP-2P8) to limit the amount of light outside of the emission 

wavelength range passing through to the detector. The objective lens used in the microscope is 

infinity corrected, meaning that the focal plane is infinitely far from the lens. To capture the 

image plane, a tube lens is used to collect and transmit emission light. After this stage, a flip 
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mirror is in place to allow for reflection of the signal into the phase contrast pathway (described 

in the next section) if in the “up” position. If the flip mirror is in the “down” position, the 

emission light will bypass the mirror and is separated depending on the wavelength of emitted 

light using a dichroic mirror (Chroma T560lpxr-uf3) into “red” and “green” channels. In both 

channels, emitted light is then passed into two lenses in a 4f configuration. These lenses are 

doublet achromatic lenses, and thus limit the effects of spherical and chromatic aberrations. 

For single-molecule imaging experiments, a double helix phase mask (Double Helix LLC) is 

placed in the Fourier plane between the lenses in the 4f system to apply the DHPSF transfer 

function in frequency space. The second 4f lens converts the light back to a real image which 

is then collected and visualized by an sCMOS camera (Hamamatsu ORCA-Flash 4.0 V2). 

Emitters will exhibit the DHPSF in this configuration.  

In the single-molecule configuration, fluorophores must be excited with high intensity 

laser light to 1) ensure that most fluorophores are bleached, and each cell contains a low 

concentration of emitting fluorophores at the time of image acquisition and 2) produce the 

stochastic blinking events required for imaging molecules over time. To produce this effect, 

excitation lasers are focused to a small area (~0.25 cm2) to produce laser intensities of ~1-3 

kW/cm2. For imaging optogenetic systems, it was important that the same fluorescence excited 

molecules were activated by 488 nm light. Thus excitation (561 nm) and activation (488 nm) 

beams were aligned to the same region.  

Diffraction-limited imaging was performed by removing the DHPSF phase masks from 

the emission pathway, keeping all other components constant. Additionally, laser power is 

three orders of magnitude lower (~ 1 W/ cm2) to reduce photobleaching. This is necessary for 

acquiring images in which most molecules are fluorescent and contributing to image formation.  
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2.4.2 Phase contrast imaging 

Phase contrast imaging enables visualization of whole cell morphology. This step is 

important for determining the cell position for fluorescence data registration and filtering, as 

well as morphological detection of sick cells for exclusion in further analyses. Phase contrast 

imaging is possible due to the inherent scattering properties of the densely packed bacterial cell 

cytosol, and is particularly advantageous because it does not require further labeling. Optical 

elements are used to enhance the scattering of light, and produce high contrast images from 

which cells are clearly visible.  

Light from a red light-emitting-diode (LED) which is positioned above the sample 

stage and objective lens on an illumination tower, is passed through an annulus to form a ring 

of light.  A condenser lens focuses the ring of light on the sample. Light that is scattered by 

cellular contents is typically phase shifted by -90° while transmitted light will remain 

unaffected. Light is then collected by the objective lens, and passes through the same optics as 

emission fluorescence, including the dichroic mirror and tube lens. A flip mirror in the emission 

path reflects the light into a separate phase contrast channel, as described in the previous 

section. The light then passes through a 4f lens system where a phase ring is placed in the 

Fourier plane. The phase ring shifts the phase of the transmitted light by +90°. In this way, 

light which did not pass through cells will be a total of 180° phase shifted with respect to light 

that was scattered. Thus, scattered light and transmitted light will destructively interfere to 

effectively enhance the contrast between cells and the transparent mounting substrates which 

is visualized on a detection camera (Aptina MT9P031). 



F l u o r e s c e n c e  i m a g i n g | 32 

 

 

 

Figure 2.4. Schematic of microscope layout including excitation, emission, and phase 

contrast pathways. Figure was reproduced from references118,119. A detailed description 

of optical elements can be found in accompanying text. 
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Introduction 

Fluorescence image data is rich with information. One can obtain measurements of 

biomolecule position, diffusion behavior, proximity to cellular structures, and more. While 

the phrase “seeing is believing” is popular in the field, quantitation of image data is equally 

or more important for substantiating claims and hypotheses.  

 The Gahlmann lab has curated a robust framework for fitting, analyzing, and 

validating single-molecule tracking data. This chapter will discuss the general workflow 

which takes raw image data, identifies fluorescent single-molecules, and constructs single-

molecule motion trajectories from which we can infer diffusive behavior of molecules. 

Further, I will discuss in detail the extensions that I have made to these analyses that have 

been integral to characterizing the iLID optogenetic system. This includes estimation of 

single-molecule residence times to infer kinetic constants in binding systems that match 

the timescale of measurement. I also implemented diffraction-limited image similarity 

measurements which is particularly useful for describing changes in fluorescence 

distribution in the same cell due to some stimulus. Lastly, I have extended our single-

molecule trajectory Monte Carlo simulations to include a module for membrane-associated 

diffusion. This last improvement will prove useful in expanding our analyses to integral 

membrane protein diffusion and to proteins which associate dynamically to membrane 

embedded molecules.  

3.1 Single-molecule localization 

3.1.1 Point spread function fitting 

Raw image data was processed using a modified version of the easy-DHPSF Matlab 

software49,50,103,120. The goal of the image processing package is to extract the three-
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dimensional position of single-molecules. As described in Chapter 2, the precise position 

of the emitter is determined by fitting the double helix point spread function to a double 

Gaussian model. The center position between the two fluorescent lobes is used to estimate 

the lateral (x- and y-) position of the molecule, while the angle between the two lobes is 

used to estimate the axial position (z- position). A calibration curve is created by imaging 

a fluorescent bead over an axial range of ~3 µm and is used to generate template images. 

Raw data images are scanned for fluorescent profiles which match the template images to 

identify potential DHPSF signals. Then, potential DHPSFs are fit with a double Gaussian 

model where maximum likelihood estimation is used to statistically discern fluorescence 

signal from background using model parameters such as gaussian lobe width.  Fit 

localizations are filtered using quality metrics including number of photons collected, 

distance between DHPSF lobes, lobe intensity ratio, and lobe width. 

 To correct for drift in the stage, which could bias diffusion data, each sample is 

imaged with a fluorescent fiducial marker whose position is tracked and used to correct the 

position of the emitter over time. Drift-corrected localizations are then subject to 

subsequent analyses. 

3.1.2 Fluorescence data registration to bacterial cells 

 Localization data obtained from easy-DHPSF must be assigned to cells to establish 

boundaries for diffusion. First, phase contrast images of the imaged field of view are used 

to derive cell outlines using OUFTI121 software. Any cells which show morphological 

abnormality (e.g. excessively long/undivided cells) are not considered for further analyses. 

Then outline meshes are exported to a previously described Matlab script which uses a 2-

step 2D affine transformation to register localization data to cells49,50,103. The built-in 
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Matlab function ‘cp2tform’ is used to accomplish the affine transformation, both 

translating localization data laterally, and scaling the distance between localizations to fit 

within cell outlines. In the first step, five pairs of matching points on cell outlines and 

localization data are manually chosen to roughly align the data. Cell outlines containing 

less than 10 localizations are removed from analysis. The second step uses the center of 

mass of localizations to finely align localization data to the center of the cell outline, using 

a larger number of control points for alignment. Localizations outside of cell outlines are 

removed, and outline-internal localizations are used in subsequent diffusion analyses. 

3.2 Diffusion analyses 

 The diffusion rate of biomolecules provides information about both intrinsic and 

extrinsic factors. Diffusion rate (D) in a given medium can be described by the Stokes-

Einstein relationship:  

𝐷 =
𝑘𝑏𝑇

6𝜋ηR
 

which shows that diffusivity of a molecule is directly related to the thermal energy in the 

system in terms of temperature (T) and the Boltzmann constant (kb). On the other hand, 

viscosity (η) of the environment, and the hydrodynamic radius (R), are inversely related to 

the diffusion rate of a biomolecule. Given a stable environment in which temperature and 

viscosity are held constant, it is possible to use diffusion measurements to derive 

information about the hydrodynamic radius, and thus oligomerization state of the tracked 

molecule. For an in-depth discussion of protein diffusion and fitting models, refer to the 

introduction of the thesis in Chapter 1.  
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3.2.1 Mean Squared Displacement Analyses 

To perform diffusion analyses, single-molecule positions over time must be linked 

into trajectories. Localizations identified in consecutive frames were linked into the same 

trajectory, with a 2.2 µm maximum distance between localizations considered for linking. 

This threshold was chosen to reflect the diffusion rate of a free fluorescent protein, 

including an additional 25% buffer for localization error. If multiple molecules were 

identified within the time frame of the trajectory within a given cell, the trajectory was 

discarded to minimize the possibility of mis-assignment. Further, only trajectories with at 

least four displacements were used in further analyses.  

 To calculate the diffusion rate of each single-molecule, we found the mean squared 

displacement (MSD) using the relationship:  

MSD =  
1

(𝑁 − 1)
∑(𝑥𝑛 − 𝑥𝑛−1)2

𝑁

𝑛=2

 

where x is the 3D position at timepoint n, including up to 11 timepoints for calculating the 

mean over 10 displacements. Longer trajectories were truncated to contain 10 

displacements to ensure multiple diffusive states were not averaged over in the MSD 

analysis. The MSD measurement was then used to calculate the apparent diffusion 

coefficient (D*) according to:  

𝐷∗ =  
MSD

2 ∙ 𝑚 ∙ ∆𝑡
 

where m is the dimensionality of the measurement (m=3 for the 3D trajectories reported 

here), and Δt is the camera exposure time used for imaging (Δt=25 ms under our 

conditions).  
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3.2.2 Radial distribution analyses – 2D cross section projections 

 The diffusion analyses in the previous section quantifies the rate of movement of 

single-molecules. We next chose to explore how the diffusion rate of molecules correlated 

with their spatial distribution. The vector describing the central axis of each cell was 

determined using the cell outline generated from OUFTI. The outline was segmented into 

sections along the cell length (Figure 3.1), and localizations from trajectories in each 

section were projected onto a 2D plane. The position of the central cell axis was adjusted 

to match the centroid of all localizations within the section. Positions of localizations from 

each cell were scaled to match the mean cell radius and mean cell length, which was 

calculated from OUFTI outlines. The trajectories were classified as slow or fast diffusing 

using the threshold D* = 0.15 µm2/s which was determined by identifying a transition point 

from the first major change in slope in the CDF plot of apparent diffusion coefficients of 

data containing both iLID-associated and cytosolic diffusion (See Chapter 4, Figure 4.3). 

The width-normalized localizations from each trajectory was used to generate 2D 

histograms with 20nm x 20 nm bin widths, to match the experimentally measured 

localization precision.  

Figure 3.1. Cell sections generated from OUFTI outline. 

The mesh output from OUFTI is used to create equally 

spaced sections (blue lines) along the length of the cell. The 

midpoint between the two halves of the outline are used to 

generate the central cell axis vector (black circles). 
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3.2.3 Residence time analysis   

In single-molecule microscopy, the time a fluorescently labeled protein spends 

bound to a cellular structure is often referred to as the residence time. Residence time 

measurements have been used to characterize a variety of phenomena including, but not 

limited to, fibrinogen-substrate interactions122, enzyme reaction rates during DNA repair43, 

and transcription factor sequence search and binding41,123-125. The amount of time that a 

ligand stays bound to its substrate is an indicator of the activity of an enzyme and/or the 

affinity of the interaction, whereas the half-life of the bound state is inversely related to the 

dissociation constant, KD
126. Single-molecule studies using long exposure time, 2D 

fluorescence assays are often used for making such measurements. Using long exposure 

times decreases the time resolution of the measurement. Therefore, we sought to quantify 

residence times using our full-length single-molecule trajectories. Labeling with the dye 

JFX549, which has exceptional photostability127, allowed us to track molecules over 

hundreds of milliseconds up to multi-second time scales. Thus, we postulated that we 

would observe some state switching of molecules from bound to unbound or vice versa.  

To identify diffusive state transitions in single-molecule trajectories, we instituted 

a workflow to analyze displacement data over time (Figure 3.2a and c). First, we plotted 

the additive, or cumulative displacement (CD) as a function of time elapsed according to:  

CD(𝑡) =  ∑ √(𝑥𝑡 − 𝑥𝑡−1)2

𝑁

𝑡=1

 

where x is the 3D position at timepoint t. The CD was calculated for each displacement, 

for the full trajectory length (N). 
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The instantaneous rate of displacement was estimated by finding the slope within a 

small, sliding window containing 3 displacements for the full length of the trajectory 

(Figure 3.2). The size of the sliding window was chosen to be small enough such that 

switching events were not excessively averaged over, while being large enough to be 

somewhat insensitive to random displacement size fluctuations that are unconnected to 

binding and unbinding events. Each segment of the trajectory was then classified as bound 

or free by calculating its slope and comparing it to a threshold, which was chosen to match 

the upper-limit of the displacement sizes used in the membrane-bound single-molecule 

trajectory simulations at 0.2 µm2/s (see section 3.3.2). Trajectories which contained 

consecutive segments of fast-slow-fast state assignments were used for further analysis 

because of the presence of a bound state that is preceded and proceeded by an unbound 

state. To be considered for analysis, the molecule must reside in each state for at least 2 

segments (4 displacements) of the trajectory to ensure that the identified state change was 

a true diffusive state change and not due to random fluctuation. Each switching trajectory 

was ascribed a score (TS) by how well the slope of trajectory segments matched simulated 

diffusion coefficient slopes derived for freely diffusing, cytosolic and membrane-bound 

molecules:  

𝑇𝑆 =
1

𝑁𝑠𝑒𝑔 − 2
∑ 𝑒−|𝑚𝑖−𝑚𝑠|

𝑁𝑠𝑒𝑔

𝑖=1

  

where mi is the slope fit to the experimental trajectory segment, and ms is the slope derived 

from free cytosolic or membrane-bound simulated data, depending on the state assigned to 

the trajectory segment. Nseg refers to the number of segments in the trajectory. Switching 

trajectories were ranked by their TS, and the top-scoring trajectories (TS>~0.16) were 
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inspected individually to verify that switching events occurred at the membrane of the cell. 

The residence time (tbound) of bound molecules in these switching trajectories was 

calculated by determining the number of displacements the molecule was assigned to the 

bound state.  

 A similar analysis was employed by Chung et al.46 where they evaluated the 

cumulative squared displacements over time, combined with Hidden Markov Model 

(HMM) analyses to identify state transitions. This analysis allowed them to differentiate 

epidermal growth factor receptor monomer-dimer transitions. The diffusion rate, and 

thereby cumulative square displacements slopes, of monomer and dimer populations 

differed by approximately a factor of two (0.1 µm2/s versus 0.2 µm2/s). Therefore, the 

HMM model was absolutely required for differentiating these populations. Because our 

data contains two, very well separated populations (0.2 µm2/s versus 5.5 µm2/s), this added 

degree of complexity was not necessary for identification of state transitions within 

trajectories. Further, trajectories collected in cells which didn’t express the MA-iLID 

binding partner did not show any verified state switching events, lending credence to our 

workflow model.  
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Figure 3.2. Cumulative displacement analysis of single-molecule trajectories to derive 

molecule residence time. (a) Workflow of cumulative displacement analysis to 

distinguish fast, cytosolic diffusing molecules from slow, membrane-associated molecules. 

(b) Top panel: Schematic of displacement data transformed into a 1D trajectory to illustrate 

displacement size over time. The cumulative displacement is the sum of all displacements 

up to a given time point, t. Bottom panel: Cumulative displacement over time for SspBmicro 

trajectories collected in MA-iLID expressing cells (256 nM) in unactivated conditions. A 

threshold slope corresponding to D = 1.75 µm2/s was used to distinguish fast diffusing 

molecules (blue) from slow diffusing molecules (red). Simulated trajectories in the cytosol 

at 5.5 µm2/s and in the membrane at 0.2 µm2/s recapitulated experimental cumulative 

displacement slopes and were used as reference slopes in the following steps.  (c) 

Workflow used to identify trajectories with state-switching (see text for details). (d) 

Example of a SspBmicro partial trajectory which exhibits state-switching. Three consecutive 

cumulative displacements are fit to a line, and the slope is compared to the threshold slope 

to classify the trajectory segment as cytosolic or membrane-bound. The slope of the 

segment is then compared to the reference slope for cytosolic diffusion or membrane 

diffusion depending on the state assignment, and scored by how closely they match. 

Trajectories with at least 2 consecutive segments in cytosolic and then membrane-

associated states (or vice versa) are categorized as state-switching and used for later 

analysis. (e) Cumulative displacements over time of trajectories which show state 

transitions of fast-slow-fast. Trajectory localization of example fast(blue)-slow(red)-

fast(blue) state-switching cumulative displacement plotted to highlight state transition at 
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the membrane of the cell. Time spent in bound state (red portion of trajectory) is integrated 

to calculate the residence time tbound.  

3.3 Model validation 

3.3.1 Simulation of Cytosolic Single-molecule Trajectories 

Cytosolic diffusion simulations were performed as described previously49,50. 

Brownian motion was simulated at 5.5 µm2/s. The rate of diffusion was approximated from 

the slope derived from cumulative distribution analysis (see section 3.1.2) of fast diffusing 

molecules. The initial position of the single-molecule trajectory was randomly chosen 

within the volume of a cylinder with dimensions that match those of an E.coli cell  (radius 

(r) = 0.5 µm, length (l) = 2.5 µm). Molecule diffusion was simulated at a time interval 

appropriate for the application. For single-molecule trajectory analysis, 100 ns time 

intervals were used. Trajectories used for generating diffraction-limited images were 

simulated at 1 µs to match the longer exposure time used in imaging, and decrease the 

computational load of the simulation. Diffusion of molecules was confined within 

cylindrical boundaries, assuming hard-sphere reflection of the molecule. Any molecules 

which diffused outside of the boundary within a time step were allowed to collide with the 

cell boundary, and then reflected back into the cylinder at a random angle118. 

3.3.2 Simulation of Membrane-associated Single-molecule Trajectories 

Monte Carlo simulations of modified Brownian motion on the cell surface were 

performed for molecules diffusing at 0.2 µm2/s. The rate of diffusion was approximated 

from the slope derived from cumulative distribution analysis (see section 3.1.2) of slow 

diffusing molecules. Diffusion on the spherical endcaps, and cylindrical body of the surface 
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were modeled separately due to the difference in curvature. The initial position of a single-

molecule was randomly chosen on the surface of a spherocylinder with dimensions which 

match those of an E. coli cell (radius (r) = 0.5 µm, length (l) = 2.5 µm). The fraction of 

molecules with initial positions on the cylinder or hemispherical portions of the surface 

was determined by using the surface area ratio of each section where the probability of a 

molecule starting on the cylindrical surface (pc) is given by:  

𝑝𝑐 =  
2𝜋𝑟2𝑙

2𝜋𝑟2(𝑙 + 2)
 

It follows that the probability of a molecule starting on the hemispherical portions (ps) is 

then: 

𝑝𝑠 =  1 − 𝑝𝑐  

Molecule diffusion was simulated at a time interval appropriate for the application. 

For single-molecule trajectory analysis, 100 ns intervals were used. For use in diffraction-

limited image simulation, we chose a longer time interval of 1 µs to match the longer 

exposure time used in imaging, and decrease the computational load of the simulation. 

Molecule diffusion was constrained to the surface of the spherocylinder, but 

molecules were allowed to move freely between the cylindrical and hemispherical surfaces 

to create a continuous surface for diffusion. On the cylindrical surface, the direction of 

movement was determined by finding a random angle, and the displacement was split into 

lateral and curved displacements to maintain the distance of the molecule at (r) from the 

center axis of the object. Curved displacements were resolved using rotation matrices. If a 

molecule’s lateral position exceeded the length of the cylindrical surface, the remaining 

displacement occurred on the hemispherical surface.  
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  On the hemispherical surface, the position at step (t) was described using a vector 

matrix. The direction of diffusion was determined by finding a random angle, and the 

position was updated using vector addition, approximating 2D diffusion. To ensure that the 

molecule did not diffuse away from the hemispherical surface, the length of the updated 

vector was scaled to the radius of the cell. This strategy works well for very small step 

sizes, as the scaling factor is very small, and will have a negligible effect on the step size. 

Larger step sizes may require a more nuanced strategy for updating the molecule position. 

If a molecule’s lateral position exceeded the hemispherical radius, the remaining 

displacement occurred on the cylindrical surface, as described in the previous paragraph 

(Figure 3.3).   
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Figure 3.3. Simulated membrane-associated single-molecule trajectories. (a) 3D single 

molecule trajectories of molecules diffusing at 0.2 µm2/s. Macrostep positions were 

sampled every 25 ms for a total of 125 ms. Left: top view. Right: en face view. N= 1,000 

trajectories. (b) 3D single molecule trajectories of molecules diffusing at 0.2 µm2/s. 

Microstep positions were sampled every 100 ns for a total of 125 ms. Only the first 62.5 

ms of each track is visualized. Left: top view. Right: en face view. N = 100 trajectory subset 

of 1,000 trajectories simulated. (c) Cropped region indicated in left panel of (b). Visualized 

to show molecules can pass between the hemispherical and cylindrical regions of the cell 

freely.  

3.3.3 Single-molecule image generation  

It is important that simulated data matches the experimental conditions as closely 

as possible to ensure that analyses of single-molecule trajectories are benchmarked 

properly. Therefore, we subject our simulated trajectories to the same data fitting and 

analysis pipeline as our experimental data. To convert our trajectory simulations into a 

form that can be properly analyzed, we must first generate noised, motion-blurred images 

of single-molecule trajectories.  

Image simulation of DHPSF images for single-molecule trajectories was performed 

as described previously49,50,118. Images were generated for each 25 ms exposure time by 

sampling 50 sub- positions of 25,000 total micropositions within the displacement. A 

DHPSF image was generated for each subposition, and then these images were summed to 

generate the total image with a motion-blur effect. The number of photons emitted was set 

to 2,000 to mimic the fluorescence emission of typical fluorescent proteins such as eYFP. 

Laser background of approximately 13 photons per pixel was added. Poisson noise, dark 
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offset, and Gaussian read noise were added to the image. The final images were then 

converted to signal counts by multiplying by the experimentally measured and calibrated 

camera gain. Images in this form were processed as described for experimentally collected 

images, and used for localization, tracking, and cumulative displacement analyses.  

3.3.4 Simulation of Diffraction limited images 

Trajectories of cytosolic and membrane-associated diffusing molecules were 

simulated as described above in sections 3.1.3 and 3.1.4. Molecule positions were sampled 

every 200 ms from the microstep trajectories, resulting in 6 localization positions (macro-

positions) per track.  

The 3D molecule macro-positions were used to generate conventional diffraction-

limited 2D point-spread functions of isotropic emitters using a vectorial light propagation 

model adapted from Yan et al. (2019)116. We modified the algorithm to omit the double 

helix phase mask and optical aberrations. In the simulation, the nominal focal plane was 

positioned at the center of the cell. A total of 10,000 trajectories were simulated for both 

cytosolic and membrane-bound molecules, providing 60,000 total emitter positions in each 

condition. Noised images obtained for each emitter were added to attain the total image. 

To attain mixed population images, trajectories were chosen at random from the total 

simulated trajectory population to reflect the specified membrane-associated molecule 

fraction.  

 

3.4 Quantifying fluorescence redistribution using SSIM   

To quantify the optogenetic response to 488 nm illumination, a population-level 

analysis of all imaged cells was performed. Image stacks from each condition were 
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averaged and background subtracted. Post-illumination images were contrast-inverted and 

used to generate cell outlines using OUFTI.121 OUFTI outlines were used to make a binary 

mask so that single-cells images were compared to themselves before and after activation. 

The structural similarity index matrix (SSIM) was used to assess image similarity between 

before- and after- 488 nm illuminated images using the following relationship: 

𝑆𝑆𝐼𝑀 = [𝑙(𝑥, 𝑦)]𝛼 ∙ [𝑐(𝑥, 𝑦)]𝛽 ∙ [𝑠(𝑥, 𝑦)]𝛾 

where luminance (l), contrast (c), and structure (s) is compared between the two images (x 

and y) with weights α,β, and γ, respectively. The luminance term is indicative of the overall, 

average pixel intensity (µ) of image x or y: 

𝑙 =
2𝜇𝑥𝜇𝑦 + 𝐶

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶
 

where C is a constant that is a measure of the pixel value range. To decrease the 

contribution of photobleaching to the measurement when comparing frame to frame, each 

pixel of an image was normalized to the total intensity counts in the image. 

 The contrast term compares the standard deviation (σ) in pixel intensity within each 

image, providing a measure of the range in intensity values (e.g. large standard deviation 

results in a large contrast term):  

𝑐 =  
2𝜎𝑥𝜎𝑦 + 𝐶

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶
 

 Finally, the structure term is a measure of the covariance (σxy) between the two 

images and is given by (high correlation in relative pixel intensities results in a large 

covariance/structure term):  

𝑠 =  
𝜎𝑥𝑦 + 𝐶

𝜎𝑥𝜎𝑦 + 𝐶
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The built-in Matlab (The MathWorks, Inc, Natick, Massachusetts) function “ssim” was 

applied to the masked images with equal weighting of the comparison metrics to assess the 

degree of image similarity. We found that each comparison term offered different values 

in the similarity assessment. However, the trends observed between imaging treatment 

conditions were conserved, so we chose to use equal weighting. 
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CHAPTER 4:  

INTERACTION OF ILID 

OPTOGENETIC PROTEINS 

CHARACTERIZED USING 

SINGLE-MOLECULE 

TRACKING IN LIVE E. coli 

**Chapter adapted from Achimovich, A. M., Yan, T. & Gahlmann, A. Dimerization 

of iLID Optogenetic Proteins Observed Using 3D Single-Molecule Tracking in Live 

Bacterial Cells (bioRxiv, 2022).128 

AM Achimovich created bacterial strains required for imaging, designed and 

performed all experiments and data analysis, as well as single-molecule trajectory 

simulation and analysis. T Yan wrote diffraction-limited image simulation code. A 

Gahlmann conceived the study and experimental setup. AM Achimovich and A 

Gahlmann wrote the manuscript. 
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4.1 Introduction 

Many fluorescence microscopy-based techniques have been developed over the 

past decades to detect and quantify interactions between biomolecules in vitro and in vivo. 

Improvements of fluorescent probes and biomolecular labeling technologies in conjunction 

with instrumental improvements have enabled measurements that provide critical insights 

into cellular organization and the biochemical interactions occurring within them.14 Spatial 

co-localization of emitters through multi-color imaging has been widely utilized to gauge 

whether biomolecules are close in space and are thus able to interact.  The power of such 

measurements depends critically on the achievable spatial resolution of the instrument 

used. Diffraction-limited imaging provides 200-300 nm resolution, which is orders of 

magnitude larger than the size of a typical protein (~2 nm) or the size of small protein 

complexes (~20 nm). Diffraction-limited resolution is thus too low to conclusively 

determine whether two proteins interact directly or whether their interaction is mediated 

by a third protein15. Super-resolution microscopy approaches such as PALM/STORM and 

MINFLUX, have been successful in addressing this challenge by enabling precise single-

molecule localization with tens of nanometers of precision. For example, Symborska et al. 

determined radial positions of protein subunits of the nuclear pore complex (NPC) with 

subnanometer precision using PALM/STORM in conjunction with particle averaging16. 

This approach was later extended to achieve a 3D reconstruction of the nuclear pore 

complex through iterative multi-color imaging of each NPC subunit relative to a reference 

protein also within the NPC.129 More recently, Ries and co-workers used MINFLUX 

microscopy to pinpoint the position of subunits within the NPC with single nanometer 

precision without the need for radial averaging17. Thus, for relatively large, immobile, and 
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highly symmetric structures like the nuclear pore complex, super-resolution fluorescence 

microscopy can provide accurate co-localization data that provides information on how 

individual subunits interact with each other.18-20   

Detecting protein interactions within freely-diffusing complexes cannot be 

accomplished by fluorescence co-localization and thus requires different approaches. Live 

cell measurements of protein oligomerization is possible using fluorescence microscopy 

techniques such as Fluorescence recovery after photobleaching (FRAP), and Fluorescence 

correlation spectroscopy (FCS)130-132. These methods have gained popularity due to the 

increased availability of commercial confocal laser scanning microscopes over the past 

twenty years. Because they provide complimentary measurements, FCS and FRAP can be 

used together to probe binding kinetics of protein-protein interactions133,134. However, it is 

difficult to identify transient binding events from these data because these methods provide 

ensemble-averaged data. Alternatively, Forster resonance energy transfer (FRET), 

measures the efficiency of non-radiative energy transfer from an excited donor fluorophore 

to an acceptor fluorophore in the ground state over a distance of a few nanometers24,135. 

Thus, FRET efficiency serves as a measurement of spatial proximity of fluorescently 

labeled proteins and can be used to infer protein-protein interactions.  

Detecting interactions of diffusing proteins using dual-color single-molecule 

microscopy is not practically feasible because both fluorophores used to label the putative 

interacting proteins must be in a fluorescent ON state at the same time within the same 

complex. The probability of observing such co-diffusion directly in separate color-

channels is negligibly small, because fluorophore photo-activation or blinking in 
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PALM/STORM occurs stochastically. To avoid this problem, the diffusive behaviors of 

putative interacting proteins can be measured in separate experiments. If the two proteins 

diffuse at the same rate, then it is possible that they exist within the same protein complex. 

Because single-molecule trajectories in living cells are limited in duration by fluorophore 

photobleaching, information from thousands of trajectories are often pooled and statistical 

data analysis approaches are employed to resolve different diffusive states48,49,51,136-140. 

Indeed, different diffusive states can be resolved in living cells due to homo- and 

heterooligomeric complex formation among interacting proteins49,50,103 or proteins binding 

to quasi-stationary structures, such as DNA39,43,101,141-148. However, to assign diffusive 

states to specific biomolecular complexes of different protein compositions, additional 

experimental perturbation is needed. Single-point mutations or genetic deletion mutants of 

potential interacting partners can be used as a tool to disrupt putative complexes and 

observe changes in diffusive behavior. A drawback of such genetic approaches is that the 

permanent disruption of an interaction interface or absence of a binding partner can 

interfere with cellular processes in ways that are difficult to predict or control, or yield the 

cells inviable149,150. Therefore, controllable, transient perturbations of cellular processes on 

experimentally-relevant time scales is preferable. 

Optically and chemically induced dimerization provides a favorable alternative to 

permanent genetic perturbations. Such optogenetic and chemogenetic dimerization 

systems enable manipulation of protein spatial localization to non-native cellular 

compartments. These methods will be referred to as knocksideways assays76,151. In a 

knocksideways experiment, one of the dimerizing molecules is attached to a cytosolic 
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protein of interest and the other dimerization partner is targeted to a cellular location that 

differs from the native localization of the tagged protein of interest (e.g. the cell 

membrane). Upon optical or chemical stimulation of dimerization, the protein of interest is 

sequestered away from its native localization, and interacting proteins can be sequestered 

along with it. Optogenetic knocksideways experiments can thus be used to detect molecular 

interactions in living cells.  

We reasoned that manipulating the spatial distributions of otherwise cytosolic 

proteins would aid the assignment of diffusive states (observed in single-molecule tracking 

experiments) to protein complexes of specific protein composition. In the simplest 

scenario, depletion of the cytosolic diffusive state corresponding to the suspected oligomer 

would be expected when either interacting partner is sequestered to the membrane. 

Chemogenetic systems rely on dimerization being induced by a diffusing molecule itself, 

whereas optogenetic systems can be activated by photon absorption. Optogenetic systems 

thus allows for more precise spatial and temporal control over dimerization than 

chemogenetic systems.   

  Here, we test the possibility of combining optogenetic manipulation with 3D single-

molecule tracking microscopy in live Escherichia coli. The improved Light Induced 

Dimerization (iLID) system4 was selected because it has been extensively characterized 

and engineered for optimized performance in different model systems. Thus, a 

considerably large toolbox of iLID variants with different affinities, and reversion times 

are available for implementation77,78,152. The iLID protein contains the light sensing light 

oxygen voltage (LOV2) domain derived from Avena sativa which incorporates a flavin 
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cofactor during folding. The flavin cofactor acts as a chromophore, and forms a cysteine 

adduct with the LOV2 domain after illumination with blue light. As a result, the iLID 

protein changes conformation and exposes a binding site for the interacting partner, 

SspB79,80. We demonstrate that the iLID system exhibits a robust response after 488 nm 

illumination in low-intensity excitation conditions used for diffraction-limited imaging. 

Using single-molecule tracking, we found that SspBmicro exhibited the most substantial 488 

nm-induced response among three tested SspB mutants. Surprisingly, our results also 

reveal that activation of the optogenetic response also occurs  under high intensity 

illumination conditions, even at wavelengths for which iLID shows minimal absorbance. 

Titrating the iLID expression level with respect to SspB reduced imaging laser-induced 

iLID:SspB interaction in 3D single-molecule tracking experiments Together our results 

establish the need for careful calibration of the optogenetic system prior to its application 

to imaging experiments. 

4.2 Results and Discussion  

4.2.1. Diffraction-limited imaging indicates a robust redistribution of otherwise 

cytosolic fluorescence to the membrane upon blue-light activation. 

Optogenetic tools have been widely applied in eukaryotic cells in conjunction with 

diffraction-limited fluorescence microscopy to obtain population-averaged, phenotypic 

readouts70,81. Therefore, we sought to quantify the optogenetic response of the iLID system 

in K12 E.coli using diffraction-limited imaging. We expressed the iLID protein from an 

inducible arabinose promoter and targeted it to the inner membrane using an N-terminal 

genetic fusion containing a modified single transmembrane spanning helix derived from 
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the E.coli transmembrane protein, TatA153,154. This construct, herein referred to as MA-

iLID, was previously used for stable insertion into the inner membrane of gram negative 

bacteria and has been shown to enable optogenetic disruption of type 3 protein secretion in 

Yersinia enterocolitica.73. We genetically fused the strongest reported iLID binding 

partner, SspBnano, with a C-terminal Halo tag, and expressed this construct from a second, 

constitutively expressing plasmid. SspBnano-Halo was labeled with JFX549 for 

visualization in fluorescence imaging experiments127 (Figure 4.1a). For simplicity, the 

JFX549-labeled SspBnano-Halo is referred to as SspBnano in this chapter. 

Prior to optical activation of MA-iLID with 488 nm laser light, we observed a 

uniform distribution of cytosolic SspBnano. Redistribution of SspBnano to the membrane was 

dependent on both expression of MA-iLID and 488 nm laser illumination (~1mW/cm2) 

(Figure 4.1b-d). We quantified SspBnano redistribution upon 488 nm laser illumination in 

each cell using the structural similarity index measure (SSIM), which quantifies similarity 

between two images155. Cells expressing MA-iLID were more dissimilar (1-SSIM) after 

488 nm laser illumination compared to controls (Figure 4.1e). To estimate the fraction of 

molecules that reside at the membrane in each condition, we simulated 2D diffraction-

limited images that matched our imaging parameters and contained realistic noise 

contributions (see methods) (Figure 4.1f, 4.2a). Fluorescence line profiles across the 

midsection of cells showed a Gaussian-like line shape for cytosolic fluorescence, while 

membrane-associated fluorescence produced double-peaked line shapes. The experimental 

line shape obtained with a fluorescently labeled, membrane-anchored iLID protein (MA-

mCherry-iLID) agreed well with line shape obtained based on simulated images of 100% 
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membrane localized molecules (Figure 4.2b). Based on qualitative comparison of 

simulated and measured line shapes, we estimate that the fraction of molecules at the 

membrane in living cells is close to 0% pre-activation and greater than ~80% post-

activation. These data suggest that the iLID system can be used to efficiently sequester 

otherwise cytosolic molecules to the membrane.   

 

Figure 4.1. Diffraction-limited imaging indicates a substantial redistribution of 

SspBnano to the membrane after blue-light activation. (a) Schematic depiction of a 

knocksideways experiment using the iLID system. The iLID protein undergoes a 
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conformational change after 488 nm-light illumination and uncages a binding site for SspB. 

Halo-tagged (red star) cytosolic SspB binds to membrane-anchored iLID (MA-iLID) after 

488 nm illumination. SspB-Halo is labeled with JFX549 for fluorescence imaging 

(hereafter referred to as SspB). (b) Diffraction-limited images of SspBnano. Illumination 

with 488 nm light has no effect on the spatial distribution of SspBnano in the absence of 

MA-iLID. Fluorescence intensity line profiles across the midsection of the cell (normalized 

to the integrated line intensity) also exhibit no apparent shift in SspBnano spatial distribution. 

(c) Low intensity (~1 W/cm2) 561 nm laser excitation over the entire exposure (80 seconds) 

is not sufficient to induce SspBnano sequestration to the membrane. (d) In the presence of 

MA-iLID, low intensity (~4 mW/ cm2) 488 nm laser illumination shifts the spatial 

distribution of SspBnano to the cell membrane. The fluorescence intensity line profile across 

the midsection of the cell changes from a Gaussian-like line shape to a characteristic 

double-peaked line shape. (e) Left panel: Image dissimilarity (1-SSIM) of experimentally-

acquired individual cell images before and after 488 nm illumination (n=200-350 cells in 

each condition). A population-level response in image dissimilarity is dependent on MA-

iLID expression and 488 nm illumination. Right panel: Calibration of the image 

dissimilarity metric as a function of the fraction of membrane-associated fluorophores 

(relative to a simulated cell with 0% membrane-associated fluorophores). (f) Simulated 

diffraction limited images of cells with 0% or 100% membrane-associated fluorophores, 

respectively. Normalized line profiles of simulated diffraction-limited images (Figure 4.2) 

indicate a progressive broadening, and redistribution of fluorescence as the fraction of 

membrane-associated fluorophores increases. 
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Figure 4.2. (a) Simulated diffraction-limited images of cells with increasing fractions of 

membrane-associated fluorophores show a clear shift in fluorescence intensity line profile 

across the midsection of cell. (b) Experimental fluorescence images and line profile 

observed for MA-mCherry-iLID qualitatively match that of simulated cells with 100% 

membrane-associated fluorophores.  

4.2.2 3D single-molecule tracking data show increased SspB:iLID interaction prior 

to 488 nm illumination 

Single-molecule tracking microscopy has been used to resolve different diffusive 

states of proteins that manifest in living cells due to protein complex formation38. Because 
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optical activation of the MA-iLID:SspB interaction allows for transient spatial 

redistribution of protein localization, the light-driven interaction could provide a means to 

non-invasively perturb the diffusive states that manifest in the cytosol of living cells. We 

therefore sought to measure SspB diffusive behavior in living cells and determine the 

extent of MA-iLID association using 3D single-molecule tracking. Based on the clear 

membrane localization of MA-iLID in diffraction limited images (Figure 4.3), we 

reasoned that SspBnano interacting with MA-iLID should diffuse along the membrane at a 

much slower rate than cytosolic SspBnano. In 488 nm illuminated cells, the cumulative 

distribution function of apparent diffusion coefficients indeed shows a bimodal curve with 

a transition at D* = 0.15 µm2/s (Figure 4.3a). When plotting the spatial trajectories of 

slowly diffusing molecules (D* < 0.15 µm2/s) it is clear that they localize near the bacterial 

membrane. On the other hand, the spatial trajectories of fast diffusing molecules (D* > 

0.15 um2/s) localize in the cytosol (Figure 4.3b). We conclude that it is possible to clearly 

distinguish freely-diffusing, cytosolic SspBnano from iLID-associated SspBnano molecules 

in living cells based on their diffusion rate and sub-cellular localization.  

The D* = 0.15 um2/s threshold allowed us to estimate the relative population 

fractions of iLID-associated and cytosolic SspBnano. In cells that do not express MA-iLID, 

the vast majority (95%) of SspBnano proteins diffuse fast and localize to the bacterial 

cytosol, as expected.  The remaining 5% of tracked proteins were classified as slowly 

diffusing, but the corresponding trajectories showed no discernable preference for the 

membrane. The diffusive behavior and spatial distribution of SspBnano remained unchanged 

upon 488 nm illumination in these cells (Figure 4.2a and c). Surprisingly, and in contrast 
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to the diffraction-limited images (Figure 4.1), a large fraction of SspBnano proteins 

exhibited slow diffusion (48%) in cells that express MA-iLID, even in the absence of 488 

nm light. This shift towards slow diffusion is accompanied with spatial redistribution of 

SspBnano to the membrane, whereas the fast diffusing population of proteins remained 

uniformly localized to the cytosol (Figure 4.3d). When cells expressing both SspBnano and 

MA-iLID were exposed to 488 nm light, we observed an additional shift towards slower 

diffusion and membrane-proximal localization (56%) (Figure 4.3e). The increase in iLID-

associated SspB observed is marginal compared to the shift observed in diffraction-limited 

images (Figure 4.1). However, we note that the line profile quantitation of our 

experimental images represents an example of a single cell displaying an obvious change 

in SspBnano spatial distribution. Across a population the degree of response observed in line 

profiles varies. Further, the population level analysis of image dissimilarity performed on 

the diffraction limited images indicates a varied response to 488 nm illumination. This is 

likely due to expression level heterogeneity which is evident in whole cell fluorescence 

comparisons of both arabinose-promoter driven expression of MA-iLID, and constitutive 

expression of SspB (Figure 4.1, Figure 4.2).  

We hypothesize that the discrepancy of MA-iLID associated SspB seen in 

diffraction-limited image quantitation compared to single-molecule trajectory data is due 

to the higher excitation intensity required for single-molecule localization microscopy. The 

absorption spectrum of iLID proteins shows very minimal absorption at wavelengths larger 

than 500 nm112.  However, optical activation of the iLID:SspBnano interaction is possible 

with 514 nm light at illumination intensities typical for diffraction-limited imaging (~1 
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W/cm2). (Figure 4.4). The intensity used for JFX549 fluorescence excitation by 561 nm 

laser light was three orders of magnitude higher in single-molecule imaging experiments 

(2 kW/cm2). These data suggest that an increase in 561 nm photon flux is able to activate 

the iLID optogenetic response.  

 

Figure 4.3.  3D single-molecule tracking data show SspB:iLID interaction prior to 488 

nm illumination (a)  Apparent diffusion coefficient distributions of SspBnano in the 

absence (purple, solid line, N = 11,523 tracks, 120 cells) and presence (blue, solid line, N 

= 8,542 tracks, 78 cells) of MA-iLID. Illumination with 488 nm light marginally increases 

the population of slowly diffusing SspBnano in MA-iLID expressing cells (blue, dashed line, 

N = 6,360 tracks, 88 cells), but not in cells which do not express MA-iLID (purple, dashed 
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line, N = 9,922 tracks, 94 cells). Vertical dashed line indicates threshold used to distinguish 

fast diffusers (D* > 0.15 µm2/s) from slow diffusers (D* < 0.15 µm2/s) (b) Single-molecule 

trajectories in a representative cell expressing MA-iLID, after illumination with 488 nm 

light. Left: top view. Right: en face cross sectional view. Slowly diffusing molecules (blue) 

clearly localize to the periphery of the cell and diffuse laterally along the membrane, while 

fast diffusing molecules (red) localize predominately to the cytosol and diffuse in 3D. (c-

f) 2D histograms of localizations from slow and fast trajectories within the population of 

cells imaged. Histograms recapitulate trends observed in panel b. Bin size 20 nm x 20 nm. 

Each histogram is normalized to the total number of molecules observed in that experiment. 

Inset: rescaled (unnormalized) histograms, shown for clarity.  
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Figure 4.4. Optical activation of the iLID: SspBnano interaction is possible with 514 

nm light (a) Spatial redistribution SspBnano is observed in cells expressing MA-iLID after 

514 nm laser illumination. The fluorescence intensity line profile across the midsection of 

the cell changes from a Gaussian-like line shape to a characteristic double-peaked line 

shape. (b) Spatial redistribution of SspBnano is not observed after 514 illumination in cells 



C h a p t e r  4 :  I n t e r a c t i o n  o f  i L I D  o p t o g e n e t i c  p r o t e i n s  

c h a r a c t e r i z e d  u s i n g  S M  t r a c k i n g  i n  l i v e  E . c o l i | 67 

 

 

which do not express MA-iLID. Further, the fluorescence intensity line profile across the 

midsection of the cell retains its Gaussian-like line shape (c) Image dissimilarity (1-SSIM) 

analysis performed on the full cell population before and after 514 illumination. The image 

dissimilarity is comparable  to cells illuminated with 488 nm light.  

4.2.3 Single-molecule tracking of SspB mutants further indicate activation of iLID 

optogenetic response by high intensity 561 nm light.  

To decrease the amount of iLID-bound SspB prior to 488 nm illumination, we made 

a series of previously characterized mutations to SspB77,78. These mutant versions of SspB, 

termed SspBmicro and SspBmilli, have decreased binding affinity for the iLID protein. When 

we tracked single SspBmicro and SspBmilli proteins in living cells, we indeed observed a 

decrease in the fraction of slow diffusers near the cell membrane prior to 488 nm light 

illumination (Figure 4.5a-c). We found that 31% of  SspBmicro proteins were iLID-

associated, while iLID-associated SspBmilli comprised only 6% of the population. Upon 

488 nm light illumination, the membrane-proximal, slow-diffusing fractions increased to 

45% and 7%, respectively (Figure 4.5b and c). The magnitude of the optogenetic response 

thus differs between the mutants, with SspBmicro showing the largest response, under 

otherwise identical experimental conditions. Diffraction-limited images of SspBmicro and 

SspBmilli  recapitulate this trend (Figure 4.6). Previous work has also shown that the 

SspBmilli:iLID interaction is only minimally affected by blue light, as judged based on 

SspBmilli localization to iLID-labeled organelles in HeLa cells156.  

The reported dissociation constants for the three abovementioned SspB mutants 

differ by six orders of magnitude. The data reported above was collected at the same 
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expression levels for each interacting protein components. SspBnano may thus saturate the 

available binding sites at the membrane at the expression level used. Consequently, a large 

increase in binding upon 488 nm illumination is not observed. At the other extreme, 

SspBmilli may require a much higher number of binding sites to observe binding both before 

and after 488 nm illumination due to its inherently low affinity for the iLID protein. The 

comparatively larger optogenetic response observed for SspBmicro suggests that the 

concentration of each interacting partner is better-matched to the dissociation constant for 

this mutant.   

To test this model, we titrated the amount of MA-iLID, while keeping the 

expression level of  SspBmicro constant. To estimate the  concentration of MA-iLID 

expressed at each L-arabinose induction concentration, we performed a calibration 

experiment in which we expressed MA-mCherry-iLID under the same promoter. The 

number of MA-mCherry-iLID proteins was estimated by dividing the initial fluorescence 

intensity of each cell by the average intensity of a single mCherry protein. Uninduced cells 

still expressed MA-mCherry-iLID at a concentration of ~90 nM due to leaky expression 

from the arabinose promoter (Figure 4.7). At the maximum inducer concentration used 

(13.3 mM), the MA-mCherry-iLID reached a concentration of ~510 nM. For the following 

analyses, we assume that MA-mCherry-iLID and MA-iLID are expressed at the same level 

for a given L-arabinose concentration.  

Decreasing the concentration of MA-iLID, decreases the fraction of iLID-

associated SspBmicro. At the lowest MA-iLID concentration, SspBmicro does not show an 

appreciable population fraction of slowly diffusing, membrane-proximal molecules both 
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before and after 488 nm illumination (Figure 4.5d). At the highest concentration of MA-

iLID , we estimate that 48% of SspBmicro is iLID-associated. It is possible that this fraction 

could be augmented by further increasing the expression level of MA-iLID. However, we 

found that high expression of MA-mCherry-iLID leads to an increase in fluorescent foci 

formation, most often at the cell pole (Figure 4.8a). Fluorescent foci formation can be 

indicative of protein overexpression and subsequent aggregation and/or formation of 

inclusion bodies157,158. These processes do not necessarily interfere with protein folding 

and function157,158. Indeed, we observe fluorescent foci formation in the MA-mCherry-

iLID data, but not to the same extent in the SspBmicro-Halo data (Figure 4.8b). These 

observations suggest that mCherry remains correctly folded and functional within the MA-

mCherry-iLID construct, though the iLID protein within the fluorescent foci may not be 

functional or available for interactions with SspB. Due to the significant increase in 

fluorescent foci formation, we did not explore higher expression levels of MA-iLID. 

Titration of MA-iLID expression allowed us to estimate the dissociation constant 

KD of the SspBmicro:MA-iLID interaction in living cells. Because we observe 48% 

association of SspBmicro at 507 nM MA-iLID, we estimate that the KD is approximately 510 

nM before 488 nm illumination.  This value is about 100x smaller than KD reported in in 

vitro fluorescence polarization assays in unactivated conditions77. However, as we argued 

above, the high intensity 561 nm excitation light activates the iLID optogenetic response. 

Therefore, it is more appropriate to compare results under activated conditions to the 

fluorescence polarization data. Indeed, the reported in vitro KD is about 800 nM,77 which 

is within a factor of two the KD value we estimate in living cells. Further, we observe ~45% 
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association of SspBmicro at ~260 nM MA-iLID in activated conditions, which represents an 

approximately 2-fold increase in affinity upon 488 nm illumination. The reported dynamic 

range derived from in vitro fluorescence polarization assays is reported to be a 58 fold 

change in binding affinity due to activation of the system. However, we note that proteins 

reconstituted in lipid bilayers show a shortened dynamic range of binding affinity, 

observing a 2.7-fold change in affinity upon iLID-activation159,160. Together, these results 

suggest that proximity to the membrane, and the steric hindrance imposed by it may affect 

the dynamics of the SspB:iLID interaction.  
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Figure 4.5. Affinity of the SspB:iLID interaction determines the fraction of iLID-

associated SspB observed in single-molecule tracking experiments. (a) Apparent 

diffusion coefficient distributions for three SspB mutants. The lowest affinity mutant, 

SspBmilli (solid, yellow line, N = 4246 tracks, 65 cells) displays the highest population 

fraction of fast, cytosolic diffusion prior to 488 nm illumination, followed by SspBmicro 

(solid, orange line, N = 7,738 tracks, 97 cells) and SspBnano (solid, blue line, N = 8,542 

tracks, 78 cells). Activation of these systems with 488 nm illumination (dashed line 

distributions) shifts each mutant protein’s distribution towards larger fractions of slow 

diffusing molecules due to MA-iLID association. (b) 2D cross-sectional histograms of 

SspBmicro trajectories indicate MA-iLID association at the membrane increases in 

frequency upon 488 nm illumination (N = 6,491 tracks, 77 cells). Each histogram is 

normalized to the total number of molecules observed in that experiment. Inset: rescaled 

(unnormalized) histograms, shown for clarity. (c) 2D cross-sectional histograms of 

SspBmilli trajectories indicates small, but qualitatively discernable MA-iLID association 

after 488 nm illumination (N = 5243 tracks, 99 cells). (d) Apparent diffusion coefficient 

distribution of SspBmicro as a function of MA-iLID expression level. Higher MA-iLID 

expression levels lead to increased population fractions of slow, membrane-proximal 

diffusion of SspBmicro (see also Figure 4.7 and 4.9) 
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Figure 4.6. Diffraction-limited images of SspB affinity mutants.  (a) Diffraction-limited 

images of SspBmicro show robust redistribution of fluorescence from the cytosol to the 

membrane upon 488 illumination. Normalized fluorescence line-profile information show 

distinctive line shapes consistent with cytosolic and membrane-proximal fluorescence 

before and after 488 nm illumination. (b) Diffraction-limited images of SspBmilli do not 

indicate changes in fluorophore spatial distribution upon 488 nm illumination.  
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Figure 4.7. The fraction of slow-diffusing, iLID-associated SspBmicro is dependent on 

the expression level of MA-iLID. (a) The fraction of slow diffusing SspBmicro as a function 

of L-arabinose induction concentration derived from single-molecule tracking data. (b) 

The concentration of MA-mCherry-iLID as a function of L-arabinose concentration. The 

number of MA-iLID molecules was estimated by dividing initial total cell intensity of MA-

mCherry-iLID expressing cells by the measured, average intensity of a single mCherry 

emitter. The data were fit to a line to estimate the MA-iLID concentrations as a function of 

L-arabinose induction concentration. (c) The fraction of slowly diffusing SspBmicro derived 

from single-molecule tracking data as a function of iLID concentration.  
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Figure 4.8. Expression level dependent fluorescent foci formation of MA-mCherry-

iLID and SspBmicro.  (a) Diffraction-limited images of MA-mCherry-iLID expressing cells 

(5.33 mM L-arabinose). Fluorescent foci formation is evident in a subset of cells. (b) 

Diffraction-limited images of SspBmicro co-expressed with MA-iLID (5.33 mM L-

arabinose) before and after 488 nm illumination. (c) Quantification of the fraction cells 

with foci. 2 µm scale bar. (N = 618, 321, 81, 604, 445 cells for 0, 1.25, 2.5, 5.33, and 13.3 

mM L-arabinose induction levels, respectively; N = 88 cells for SspBmicro + MA-iLID – 

pre and post 488 nm illumination).  
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Figure 4.9. Expression level of MA-iLID is directly correlated with fraction of slow 

diffusers and iLID-association. 2D cross-sectional histograms of SspBmicro single-

molecule trajectories indicates increased probability of slow diffusion at the cell membrane 

as MA-iLID expression level is increased. Each histogram is normalized to the total 

number of molecules observed in that experiment. Inset: rescaled (unnormalized) 

histograms, shown for clarity. Inset histograms are rescaled versions of the full-size 

histogram, set to maximum values of 2.0x10-4 and to 3.0x10-4 for 92 nM and 132 nM 

expression levels, respectively. 

 

4.2.4 Cumulative displacement analysis identifies state-switching events in full-

length trajectories  

Having quantified the dissociation constant of the iLID:SspB interaction, we next 

sought to determine the kinetics of this interaction. Previous analyses were performed on 

trajectories which were shortened to contain at most 10 displacements, to prevent averaging 

over multiple states. Because our data sets contained many long trajectories, we reasoned 

that some of these trajectories may contain information about the length of time a single 

SspB protein remains bound to an MA-iLID protein at the membrane.  To assess the 

diffusive behavior over the course of a trajectory, we first calculated the cumulative 

displacement of each single-molecule over time (Figure 4.10a and 4.10b, see methods). 

These data show a clear separation for fast cytosolic diffusion and slow, membrane-

associated diffusion. Because of the clear distinction, we decided that analysis cumulative 

displacements could be used to differentiate states within single trajectories. To estimate 
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the diffusion coefficients that describe motion in each state, we simulated cytosolic and 

membrane-bound diffusion at different diffusion rates. We found that the cumulative 

displacement over time of single-molecule trajectories simulated at 5.5 µm2/s in the cytosol 

and 0.2 µm2/s at the membrane best matched the experimentally measured cumulative 

displacement data. These values were then used as references for subsequent analysis.   

To identify state switching events within trajectories, we employed the workflow 

outlined in Figure 4a and c. Briefly, the cumulative displacements of small segments within 

trajectories were designated as fast diffusion or slow diffusion using a threshold 

corresponding to D = 1.75 µm2/s. This threshold was chosen to match the upper-limit of 

the displacement sizes used in the membrane-bound simulation at 0.2 µm2/s. Trajectories 

which exhibited subsequent fast-slow-fast diffusive states were ranked by evaluating the 

similarity of experimental slope of cumulative displacement data to the abovementioned 

simulated slopes of cumulative displacement data corresponding to D = 5.5 µm2/s and 0.2 

µm2/s (Figure 4.10d). We further verified that the best scoring trajectories indeed exhibited 

slow-diffusing segments at the membrane, and fast-diffusing segments in the cytosol. The 

resulting subset of trajectories was then used to calculate tbound (Figure 4.10e). As a control, 

we performed the same analysis for SspB trajectories in the absence of MA-iLID, and, as 

expected, did not identify clear state switching signatures. 

In the presence of 256 nM MA-iLID, SspBmicro and SspBnano exhibit similar bound 

times independent of 488 nm illumination (median = 300 and 350 ms, respectively) while 

SspBmilli displayed comparatively shorter binding times (median = 175 ms) (Figure 4.10e). 

Thus, the measurements of tbound made in this manner do not show a trend that clearly 
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correlates with each SspB mutant’s affinity for the iLID protein or with photoactivation of 

iLID. Trajectories which were identified as acceptable for residence time measurements 

were rare (<1% or less of the total number of trajectories analyzed). This low number 

stands in stark contrast to the much larger fraction of molecules which remained iLID-

bound for the duration of the trajectory which matched the trend observed in the analyses 

of apparent diffusion coefficients (Figures 4.3, 4.5 and 4.11). The length of the trajectories 

of fully-bound molecules ranges from 0.3 seconds up to 3 seconds (longest observed 

trajectory – Figure 4.10b). The long lengths of these trajectories (which are terminated by 

fluorophore photobleaching) suggest that SspBmicro proteins can remain iLID-bound for 

much longer than the median time scales estimated for tbound. Previously published data 

estimates the dissociation half-life of SspBnano and SspBmicro with iLID to occur on the 

order of minutes159,160. Thus, single-molecule trajectories are not long enough to capture 

both binding and unbinding events of stable SspB:iLID interactions.  These results suggest 

that short time scale interactions that we capture are representative of a transient binding 

mode(s) which is(are) not reflective of stable SspB:iLID binding. 

 

 



C h a p t e r  4 :  I n t e r a c t i o n  o f  i L I D  o p t o g e n e t i c  p r o t e i n s  

c h a r a c t e r i z e d  u s i n g  S M  t r a c k i n g  i n  l i v e  E . c o l i | 78 

 

 

 



C h a p t e r  4 :  I n t e r a c t i o n  o f  i L I D  o p t o g e n e t i c  p r o t e i n s  

c h a r a c t e r i z e d  u s i n g  S M  t r a c k i n g  i n  l i v e  E . c o l i | 79 

 

 

Figure 4.10. Cumulative displacement analysis identifies state-switching events in 

single-molecule trajectories. (a) Workflow of cumulative displacement analysis to 

distinguish fast, cytosolic diffusing molecules from slow, membrane-associated molecules. 

(b) Top panel: Schematic of displacement data transformed into a 1D trajectory to illustrate 

displacement size over time. The cumulative displacement is the sum of all displacements 

up to a given time point, t. Bottom panel: Cumulative displacement over time for SspBmicro 

trajectories collected in MA-iLID expressing cells (256 nM) in unactivated conditions. A 

threshold slope corresponding to D = 1.75 µm2/s was used to distinguish fast diffusing 

molecules (blue) from slow diffusing molecules (red). Simulated trajectories in the cytosol 

at 5.5 µm2/s and in the membrane at 0.2 µm2/s recapitulated experimental cumulative 

displacement slopes and were used as reference slopes in the following steps.  (c) 

Workflow used to identify trajectories with state-switching (see text for details). (d) 

Example of a SspBmicro partial trajectory which exhibits state-switching. Three consecutive 

cumulative displacements are fit to a line, and the slope is compared to the threshold slope 

to classify the trajectory segment as cytosolic or membrane-bound. The slope of the 

segment is then compared to the reference slope for cytosolic diffusion or membrane 

diffusion depending on the state assignment, and scored by how closely they match. 

Trajectories with at least 2 consecutive segments in cytosolic and then membrane-

associated states (or vice versa) are categorized as state-switching and used for later 

analysis. (e) Cumulative displacements over time of trajectories which show state 

transitions of fast-slow-fast. Trajectory localization of example fast(blue)-slow(red)-

fast(blue) state-switching cumulative displacement plotted to highlight state transition at 

the membrane of the cell. Time spent in bound state (red portion of trajectory) is integrated 
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to calculate the residence time tbound. (f) Histogram of residence times of SspB affinity 

mutants (bin size = 250 ms) indicate that transient binding modes to MA-iLID do not 

exhibit residence times that are dependent on the affinity of the SspB:iLID interaction.  

 

Figure 4.11. Fraction of slow diffusing molecules which stay bound for the duration of the 

trajectory in cumulative displacement (CD) analysis compared to fraction of slow diffusing 

molecules observed in apparent diffusion coefficient analysis (D*). See main text figure 

captions for description of trajectory and cell numbers. 

4.3 Conclusions  

Here, we provide a quantitative analysis of the iLID optogenetic system in live K12 

E. coli cells using 2D diffraction-limited imaging and 3D single-molecule tracking. We 

show that the iLID system enables efficient optogenetic manipulation of protein spatial 

distributions when used in conjunction with diffraction-limited imaging. Single-molecule 

tracking data acquired using high intensity 561 nm laser excitation leads to a substantial 

amount of SspB:iLID interaction even in the absence of optogenetic activation at 488 nm. 

This suggests that increased photon flux is somehow able to activate the iLID optogenetic 

response, even though the LOV2 domain absorption spectra suggest that wavelengths 
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greater than 500 nm should not be absorbed112. This conclusion is consistent with our 

observation that even low intensity 514 nm illumination is able to increase the SspB:iLID 

interaction. However, published LOV2 domain absorption spectra were collected using 

purified proteins112. It is possible that cellular contents, proximity to the membrane and 

imposed steric hindrance results in a shift in iLID conformational dynamics and thus a 

change in interaction with SspB. A similar effect has been seen in other model systems 

utilizing the iLID:SspB interaction159,160. This may explain the rare, transient binding 

events that we measured in single- molecule trajectory analyses. Our results highlight the 

importance of calibrating the effects of illumination conditions and cellular environment 

when the iLID system, or any optogenetic system, is used to modulate an SspB-tagged 

protein’s spatial distribution.  

A notable advantage of optogenetic systems, such as iLIDs, is that dimerization can 

be induced in real time using light. Optically-induced dimerization can be enabled much 

faster than chemically induced dimerization, which are diffusion-limited. We aim to 

combine optogenetic perturbation with single-molecule tracking to deplete cytosolic 

diffusive states that have been assigned to hetero-oligomeric protein complexes based on 

control experiments in genetically perturbed backgrounds. Although a pre-activated system 

dampens the magnitude of the optogenetic response that can be observed, highly sampled 

distributions obtained from tens of thousands of single-molecule trajectories, may allow 

for the observation of cytosolic diffusive states depletion with sufficient statistical power. 

Additionally, titration of protein expression can be used to incrementally sequester proteins 

of interest. Another alternative might be to use far-red excitable fluorophores for single-
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molecule tracking. Based on the trends observed here we speculate that high intensity red 

and far-red light illumination will not activate the iLID system. Thus, single-molecule 

localization and tracking microscopy with red and far-red fluorophores could enable 

observations of large optogenetic responses, similar to those observed in diffraction-

limited imaging.   

4.4 Materials & Methods: 

4.4.1 Bacterial strains and plasmids 

Escherichia coli K12 (MG1655) strains were generated by introducing pACYC and 

pBAD vectors containing genes encoding the cytosolic prey protein, SspB, and the 

membrane-anchored bait protein, iLID, respectively. pACYC SspBnano-Halo was derived 

from pACYC SspBnano-mCherry (pFL109) which was a gift from Andreas Diepold. The 

construct was modified by removing mCherry from the plasmid via restriction digest and 

the halo coding sequence was ligated in its place, using XhoI and SalI cut sites. The plasmid 

containing the bait protein, pBad FLAG-iLID (pFL108), also a gift from the Diepold lab, 

was transformed into bacteria without any further modification.  

4.4.2 Cell culture 

E. coli cultures were inoculated from a freezer stock and grown overnight in LB 

media at 37° C and shaking at 225 rpm. Strains expressing from the pACYC and pBAD 

plasmids were grown in 30 µg/mL chloramphenicol and 100 µg/mL ampicillin, 

respectively. Overnight cultures were diluted to an OD600 of 0.05 in M9 minimal media 

and incubated at 37° C. Strains containing the pBAD plasmid were induced with 5.33 mM 

L-arabinose after 2 hours unless indicated otherwise. After an additional 1.5 hours of 
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growth, 1.5 mL of cell culture was aliquoted and stained with 1.5 µL of 500 µM JFX-549 

dye. The cell suspension mixture was incubated at 37° C for 30 minutes and then washed 

four times with M9 minimal media. Cell pellets were resuspended in a final volume of 10 

µL for use in imaging experiments.   

E. coli cells were transformed with plasmids via heat shock of chemically 

competent cells. Transformed cells were selected for by growing on LB agar plates 

containing chloramphenicol, ampicillin (100 µg/mL), or a combination of both for co-

expressing strains. Transformants were screened by performing a Western blot for FLAG 

or Halo proteins in pBAD and pACYC-containing strains, respectively. Strains which 

showed a clear band in Western blot experiments were used to make freezer stocks 

containing 15% glycerol.  

4.4.3 Optical setup 

Imaging of cells was performed on a home-built inverted fluorescence microscope 

as described previously50. The microscope was modified for use in optogenetics 

experiments by incorporation of an additional 488nm laser line (Coherent Genesis) for 

activation of the iLID system. Fluorescence images were collected in the “red” channel of 

the imaging system. 

4.4.4 Epifluorescence imaging 

Stained cells were mounted on a #1.5 coverslips (VWR) and immobilized using 

1.5% agarose pad prepared in M9 minimal media. Halo-conjugated JFX549 was excited 

using 561 nm laser light at ~1 W/cm2. Images were acquired at 5 frames/sec for 40 seconds 
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pre- and post-activation of the iLID optogenetics system. The iLID optogenetic system was 

activated using 488 nm laser light at ~4 mW/cm2 continuously for 2 minutes prior to and 

then also during acquisition of post-activation images. Epifluorescence images shown in 

the figures represent averages of these image sequences. Brightfield images were acquired 

of the same field-of-view by illuminating cells with an LED, and taking a single 25 ms 

exposure.  

4.4.5 SSIM analysis of Diffraction-limited images 

Pre- and post- activation images were background subtracted. Outlines of cells were 

derived by using OUFTI121 on inverted color to create a binary mask such that each cell 

was compared to itself before and after activation. The built-in Matlab (The MathWorks, 

Inc, Natick, Massachusetts) function ssim() was applied to the masked images with equal 

weighting of the comparison metrics, luminance, structure, and contrast, to assess the 

degree of image similarity. Cells with abnormal morphology (based on the associated 

brightfield image) were excluded from the analysis. Multiple fields of view were acquired 

for each condition, and the experiments were replicated twice.  

4.4.6 Super-resolution fluorescence imaging 

 Fluorescent fiducial markers (Invitrogen) were added to cell suspensions and the 

cell suspension was then mounted on #1.5 glass coverslips. Cells were immobilized using 

solidified pads of 1.5% agarose in M9 minimal media. Halo-conjugated JFX-549 was 

excited into the blinking state by 561 nm laser light at ~2 kW/cm2 at the sample. Images 

were acquired at 40 frames/sec in the presence or absence optogenetic activating 488 nm 
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light. Cells were activated using 488 nm laser light at ~4 mW/cm2 continuously for 2 

minutes prior to and during acquisition of post-activation images.  

4.4.7 Data Processing 

 Raw data was processed in Matlab (The MathWorks, Inc, Natick, Massachusetts) 

using a modified version of easy-DHPSF software50,120.  Fluorescent fiducial markers were 

used for sample drift correction. Single-molecule localizations were registered to phase 

contrast images using a two-step affine transformation in MATLAB as previously 

described50. Localizations outside of cells were discarded from further analysis using axial 

bounds and OUFTI-derived cell outlines which were generated from phase contrast 

images, as described above.  

4.4.8 Single-molecule tracking analysis 

 To derive single-molecule displacements, localizations in subsequent frames were 

linked into trajectories. A maximum linking distance of 2.5 um was used for linking 

analysis, and multiple localizations which were present at the same time within a single 

cell were discarded to prevent misassignment of molecules.  

The Mean Squared Displacement (MSD) for each trajectory was calculated using  

MSD =  
1

(𝑁 − 1)
∑(𝑥𝑛 − 𝑥𝑛−1)2

𝑁

𝑛=2

 

       

where x is the 3D position at timepoint n, including up to 11 timepoints for calculating the 

mean over 10 displacements. The remainder of the trajectory was not used in the MSD 
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analysis to ensure multiple diffusive states were not averaged over. The MSD measurement 

was then used to calculate the apparent diffusion coefficient (D*) according to:  

𝐷∗ =  
MSD

2 ∙ 𝑚 ∙ ∆𝑡
 

        

where m is the dimensionality of the measurement (m=3 for the 3D trajectories reported 

here), and Δt is the camera exposure time used for imaging (Δt=25 ms under our 

conditions).  

4.4.9 2D-cross section projection analysis 

 The vector describing the central axis of each cell was determined using the cell 

outline generated from OUFTI. The outline was segmented into sections along the cell 

length, and localizations from trajectories in each section were projected onto a 2D plane. 

The position of the central cell axis was adjusted to match the centroid of all localizations 

within the section. Positions of localizations from each cell were scaled to match the mean 

cell radius and mean cell length which was calculated from OUFTI outlines. The 

trajectories were classified as slow or fast diffusing using the threshold D* = 0.15 µm2/s 

which was determined by identifying a transition point from the first major change in slope 

in the CDF plot of apparent diffusion coefficients of data containing both iLID-associated 

and cytosolic diffusion (Figure 4.2).  
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4.4.10 Determination of residence times - tbound  

To identify diffusive state transitions in single-molecule trajectories, we developed 

a workflow to analyze displacement data over time (Figure 4.10a and c). First, we plotted 

the additive, or cumulative displacement (CD) as a function of time elapsed according to:  

CD(𝑡) =  ∑ √(𝑥𝑡 − 𝑥𝑡−1)2

𝑁

𝑡=1

 

where x is the 3D position at timepoint t. The CD was calculated for each displacement, 

for the full trajectory length (N). 

The instantaneous rate of displacement was estimated by finding the slope within a 

small, sliding window containing 3 displacements for the full length of the trajectory 

(Figure 4.10d). The size of the sliding window was chosen to be small enough such that 

switching events were not excessively averaged over, while being large enough to be 

somewhat insensitive to displacement size fluctuations. Each segment of the trajectory was 

then classified as bound or free by calculating its slope and comparing it to a threshold, 

which was chosen to match the upper-limit of the displacement sizes used in the 

membrane-bound simulation at 0.2 µm2/s. Trajectories which contained consecutive 

segments of fast-slow-fast state assignments were used for further analysis because of the 

presence of an internal bound state. To be considered for analysis, the molecule must reside 

in each state for at least 2 segments (4 displacements) of the trajectory to ensure that the 

identified state change was a true diffusive state change and not due to random fluctuation. 

Each switching trajectory was ascribed a score (TS) by how well the slope of trajectory 
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segments matched simulated diffusion coefficient slopes derived for freely diffusing, 

cytosolic and membrane-bound molecules:  

𝑇𝑆 =
1

𝑁𝑠𝑒𝑔 − 2
∑ 𝑒−|𝑚𝑖−𝑚𝑠|

𝑁𝑠𝑒𝑔

𝑖=1

  

 

where mi is the slope fit to the experimental trajectory segment, and ms is the slope derived 

from free cytosolic or membrane-bound simulated data, depending on the state assigned to 

the trajectory segment. Nseg refers to the number of segments in the trajectory. Switching 

trajectories were ranked by their TS, and the top-scoring trajectories (TS>~0.16) were 

inspected individually to verify that switching events occurred at the membrane of the cell. 

The residence time (tbound) of bound molecules in these switching trajectories was 

calculated by determine the number of displacements the molecule was assigned to the 

bound state.  

4.4.11 3D single-molecule trajectory simulation  

Cytosolic trajectories were simulated as described previously.49,50 Briefly, Monte 

Carlo simulations of Brownian motion at 5.5 µm2/s were confined to the volume of a 

cylinder matching the dimensions of K12 E. coli (radius = 0.5 µm, length = 2.5 µm). Initial 

positions of molecules were randomly selected to uniformly fill the volume of the cell, and 

subsequent positions in the trajectory were selected at 100 ns intervals for a total of 125 

ms. We simulated noisy, motion-blurred images of the single-molecule trajectories, 

integrating images over subsequent 25 ms time intervals, to match experimental camera 



C h a p t e r  4 :  I n t e r a c t i o n  o f  i L I D  o p t o g e n e t i c  p r o t e i n s  

c h a r a c t e r i z e d  u s i n g  S M  t r a c k i n g  i n  l i v e  E . c o l i | 89 

 

 

exposure times for a total of 6 images per single-molecule track. We simulated 1000 such 

trajectories. To best match data derived from experimental conditions, we analyzed the 

simulated images of trajectories in the same way described for experimental localization 

and tracking. Easy-DHPSF software was used to analyze the images and detect single-

molecule localizations.  

Membrane-bound trajectories were simulated for molecules diffusing at 0.2 µm2/s. 

Initial positions were randomly chosen on the surface of a spherocylinder matching the 

dimensions of K12 E. coli (radius = 0.5 µm, length = 2.5 µm). Monte Carlo simulations of 

molecular motion were confined to the surface of the spherocylinder by translating 

displacements to changes in lateral position and elevation angle on the cylindrical surface 

or elevation and azimuthal angle on the hemispherical surface, such that the distance from 

the cell axis is always equal to the radius of the cell. Positions were updated at 100 ns 

intervals for a total of 125 ms.  Images were generated and analyzed as described in the 

previous paragraph.  

4.4.12 2D diffraction-limited image simulation  

Trajectories of cytosolic and membrane-associated diffusing molecules were 

simulated as described above with the following modifications to match diffraction-limited 

imaging conditions. Positions were sampled every 1 µs for a total of 1.2 seconds. Molecule 

positions were sampled ever 200 ms, resulting in 6 localization positions (macro-positions) 

per track.  

The three dimensional molecule macro-positions were used to generate 

conventional diffraction-limited 2D point-spread functions of isotropic emitters using a 



C h a p t e r  4 :  I n t e r a c t i o n  o f  i L I D  o p t o g e n e t i c  p r o t e i n s  

c h a r a c t e r i z e d  u s i n g  S M  t r a c k i n g  i n  l i v e  E . c o l i | 90 

 

 

vectorial light propagation model.116 We modified the algorithm to omit the double helix 

phase mask and optical aberrations. In the simulation, the nominal focal plane was 

positioned at the center of the cell. A total of 10,000 trajectories were simulated for both 

cytosolic and membrane-bound molecules, providing 60,000 total emitter positions in each 

condition. Images obtained for each emitter were added to attain the total image. To attain 

mixed population images, trajectories were chosen at random from the total simulated 

trajectory population to reflect the specified membrane-associated molecule fraction.  
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5.1 Significance 

Single-molecule microscopy has revolutionized cell imaging. It effectively bridges 

the gap between live-cell compatible, yet diffraction-limited fluorescence microscopy and 

fixed-cell or purified protein imaging with atomic-level resolution of X-ray crystallography 

and cryo-electron microscopy. SMLM has enabled resolution of static cellular structures 

16,101,102,129,161-163. The field is ever-growing since its inception in the 1990s and new 

advancements continue to push the field forward, including innovative labeling 

techniques14, development of expansion microscopy (ExM) 164-166 in 2015,  and MINFLUX 

microscopy in 2017167.  

 Perhaps a more challenging extension of SMLM is resolving dynamic structures 

and protein complexes. Distinguishing different diffusive states and assigning them to 

biologically relevant complexes requires significant statistical power and biological 

experimental controls. Fitting of analytical equations39-44 and Hidden Markov 

models45,46,48, implementation of machine learning168,169, and simulated curve 

fitting49,103,119 are some examples of the statistical methods used for resolving diffusive 

states from tracking data. Further, perturbations of possible interactions are required for 

validating these assignments. However, manipulating these interactions through mutation 

or chemical treatment of cells often results in unforeseen complications149,150. Therefore, 

the use of a non-invasive, transient perturbation is advantageous. 

Here, we explore the use of light-inducible dimerization as a means to transiently 

perturb protein spatial distribution76, and thereby, diffusive behavior. I have benchmarked 

the performance of the iLID optogenetic system in both conventional, diffraction-limited 

imaging methods, and in 3D single-molecule tracking microscopy. In this way, I have 
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quantified dimerization of the iLID system in different imaging conditions and shown that 

the iLID system is sensitive to high photon flux at wavelengths that show minimal 

absorption in previously published results of in vitro assays. Further, I have extended the 

Gahlmann lab single-molecule analysis toolbox to include membrane-associated diffusion 

of molecules, and analysis of long trajectories which was integral for quantifying the 

dimerization response of the iLID system. Implementation of these analyses into our 

routine workflow will expand the systems that we can study. 

5.2. Future Directions 

The quantification that I have performed of iLID system dimerization opens the 

door to new analyses and asks questions that have not been previously addressed. To start, 

future work can focus on applying the iLID system to studying and verifying protein-

protein interactions.  

5.2.1. Distinguishing protein complexes using knocksideways assays 

To date, our lab has focused on characterizing assembly of the virulence-associated 

bacterial type 3 secretion system (T3SS).  T3SS-mediated infections are an integral mode 

of virulence of many pathogens170-172 and result in over one million human deaths each 

year worldwide173,174. T3SSs consist of more than 20 different membrane-embedded and 

cytosolic proteins173-175. The most prominent feature of the T3SS injectisome is a long-

hollow needle complex that spans both the inner and outer bacterial membranes and 

protrudes up to ~70 nm into the extracellular space (Figure 5.1). Upon host cell contact, 

the tip of the needle is stably anchored into the host cell membrane by a translocation pore, 

so that effector proteins (virulence factors that alter host cell biology) can be secreted 

directly into the host cell cytoplasm. A key feature of T3SS assembly and function is that 



C h a p t e r  5 :  S i g n i f i c a n c e  &  f u t u r e  d i r e c t i o n s | 94 

 

 

secretion substrate selectivity follows a strict temporal hierarchy: Proteins forming the 

needle are early secretion substrates, translocation pore proteins are middle secretion 

substrates, and effector proteins are late secretion substrates. While effector proteins differ 

among bacterial species, the structural proteins of the T3SS injectisomes are highly 

conserved, making T3SSs broadly relevant and widely applicable protein delivery 

machines173,176. There is evidence that suggests that the cytosolic proteins, SctK, SctQ and 

SctL, that are peripherally associated with the membrane-embedded structure are important 

for both assembling the full T3SS structure, and also for distinguishing between early, 

middle, and late secretion substrates177,178. Because conventional biochemical and imaging 

techniques lack native, live-cell conditions or do not have spatial or temporal resolution 

required to resolve fast diffusing protein complexes, it remains unknown how the cytosolic 

protein complex distinguishes between secretion substrates, and further, how the cytosolic 

complex assembles. Understanding assembly of the T3SS may increase the efficacy of 

rational design of antivirulence drugs, a need which is ever-growing due to increased anti-

microbial drug resistance.  

The Gahlmann lab has directly addressed the aforementioned challenges by 

leveraging the live-cell compatible, high spatio-temporal resolution of single-molecule 

localization and tracking microscopy. By tracking fluorescently labeled cytosolic T3SS 

proteins in different genetic backgrounds, we have identified distinct cytosolic complexes 

through rigorous statistical analyses in the enteropathogen model Yersinia 

enterocolitica50,103. Specifically, subcomplexes containing SctQLN and SctLN, in the 

absence of SctQ, have been identified and assigned to specific diffusive states using single-
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molecule tracking analyses (Figure 5.1). For a complete discussion of how diffusive state 

are assigned to distinct protein complexes, refer to the introduction in Chapter 1.  

 

   

 

 

 

Figure 5.1. Structure and dynamic assembly of the Type 3 Secretion System. 

(left) Cross-section of the T3SS structure. Cytosolic proteins marked by red stars have been 

fluorescently tagged and are available for tracking analyses. Figure adapted from 

reference179. (right) The cytosolic T3SS proteins dynamically associate with the 

membrane-embedded injectisome180. Cytosolic protein complexes were assigned to 

distinct diffusive states using single-molecule tracking microscopy. Figure was reproduced 

from Prindle et al. (2022)103. 
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An intuitive way to validate diffusive state assignments to specific protein 

complexes is to disrupt the putative complexes and measure changes in diffusion behavior. 

Our lab is currently identifying potential amino acid residues required for maintaining 

protein-protein interactions within the SctQNL complex. By performing diffusion analysis 

on interaction mutants, we expect to observe depletion, or a complete absence of, the 

diffusive state which describes the oligomerized complex. The work presented in this 

dissertation provides an alternative approach that allows for transient manipulation of 

protein spatial localization to ultimately change the diffusive behavior of the protein-of-

interest non-invasively. Thus, one can deplete a diffusive state by disrupting the native 

spatial distribution of a protein-of-interest and sequestering, or “knocking sideways”, the 

protein to another cellular compartment such as the cell membrane using light signals. 

Common light integrating systems, also called optogenetic systems, utilize light induced 

dimerization of two proteins as optically controlled switches. In knocksideways assays, 

one half of the dimer pair is localized to a specific cellular compartment using a localization 

signal, and the second half is used to genetically tag a protein-of interest. Upon light-

stimulation at a wavelength appropriate for the specific optogenetic system, the dimer pair 

will oligomerize, and the tagged protein will be sequestered to the site of interaction.  

I have shown that optimization of the iLID system is possible in bacteria through 

implementation of mutants that attenuate the binding affinity of the optogenetic dimer pair, 

and titration of relative protein expression. Thus, the iLID system may be a proper tool for 

validating the putative SctQNL and SctNL cytosolic complexes of the T3SS. I designed an 

experiment which applies the iLID system to the T3SS proteins, and directly tests if 

whether SctQ and SctL are interacting in cytosolic complexes. In this assay, SctQ is tagged 
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with the cytosolic optogenetic component, SspB, while the optogenetic binding 

complement, iLID, is localized to the bacterial inner membrane. After illumination with 

488 nm light, iLID undergoes a conformational change and allows for binding of SspB, 

which will sequester the protein-of-interest cargo, SctQ, to the membrane. The Diepold 

lab, a close collaborator, has shown that blue-light dependent sequestration of SctQ to the 

membrane is possible using the iLID optogenetic system, and that SctQ sequestration to 

the iLID protein reduces the functionality of the T3SS (Figure 5.2b and c)73. This data 

supports previously published data which has shown that SctQ expression is required for 

secretion of proteins via the T3SS. In our experimental setup, SctL is labeled with a Halo 

tag and stained with a blinking dye. Single-molecule tracking of SctL will be performed in 

the presence and absence of the optogenetic activating wavelength (488 nm). We expect to 

see a change in the diffusive behavior of the binding partner, and depletion of the co-

diffusive state at 1.3 µm2/s upon sequestration of SctQ to the membrane (Figure 5.1). 
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Figure 5.2. Knocksideways assay of T3SS proteins in single-molecule tracking 

experiments. a)Light inducible dimers are used to sequester proteins of interest. In the 

schematic “A” refers to the membrane-anchored iLID protein, which senses blue light, 

while “B” refers to the cytosolic optogenetic binding partner, SspB. SspB is used to tag a 

T3SS protein of interest, SctQ, which has been shown through our single-molecule tracking 

analyses to interact with SctL. Illumination of cells with 488 nm light induces a 

conformational change in the iLID protein which will sequester SspB-SctQ to MA-iLID at 

the membrane. Single-molecule tracking of fluorescently-labeled (green star) SctL will 

show a distinct shift in diffusion to the membrane if it indeed interacts with SctQ. b) SspB-

mCherry-SctQ images before (dark) and after (light) blue-light illumination shows spatial 

redistribution of SctQ. c) SDS-PAGE of Yersinia enterocolitica supernatant after inducing 
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secretion in different genetic and light backgrounds. Decreased secretion is dependent on 

the blue-light and the expression of the membrane-anchored iLID protein (“A”)73.  

 I have made the strains required for these experiments (Table 1). In each strain, I 

chose to delete SctD which acts as a membraned-embedded scaffold for cytosolic protein 

binding to the injectisome (Figure 5.1)181. This is necessary because SctL shows >70% 

injectisome bound fraction in WT conditions at the cell membrane103. Therefore, it may be 

difficult to distinguish between iLID-associated and injectisome-associated molecules. 

While injectisome-bound SctL may show different diffusive behavior than SctL bound to 

SctQ-MA-iLID, it will make initial analyses easier to interpret. Further, I have made both 

SspBnano-SctQ and SspBmicro-SctQ strains to allow for optimization of the knocksideways 

assay by changing the affinity of the interaction. All T3SS genes were tagged at 

endogenous sites, while MA-iLID will be expressed exogenously from the pBad plasmid, 

as with the experiments described in this dissertation. 

Table 1. Genotype of strains to be used in knocksideways experiments.  

ΔSctD;Halo-SctL;SspBnano-SctQ  

ΔSctD;Halo-SctL;SspBnano-SctQ + pBad-MA-iLID 

ΔSctD;Halo-SctL;SspBmicro-SctQ 

ΔSctD;Halo-SctL;SspBmicro-SctQ + pBad-MA-iLID 

 

For initial screening of the strains, I performed a Western blot for Halo-SctL and 

pBad-MA-ILID, which contains an N-terminal FLAG tag. I observed an interesting trend 

where SspBmicro-SctQ strains showed decreased expression of Halo-SctL compared to 

SspBnano-SctQ. Each of these strains were derived from the same parent ΔSctD;Halo-SctL 
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strain and co-expressed MA-iLID, indicating a possible change in expression due to 

optogenetic sequestration, dependent on the affinity of the interaction (Figure 5.3). Further 

expression tests and controls need to be done to confirm this observation. The ΔSctD;Halo-

SctL;SspBnano-SctQ + pBad-MA-iLID strain is ready for use in single-molecule 

knocksideways assays based on expression levels observed in the Western blot, though 

extensive optimization of experimental parameters will likely need to be done. Initial 

efforts will likely include imaging of cells using different expression levels at steady state, 

and trends will be used for forming interaction models. 

 

Figure 5.3. Western blot of Yersinia optogenetic strains. Top: α-Halo blot in strains 

expressing Halo-SctL from the endogenous promoter. The free Halo expressing strain in 

lane 2 exogenously expresses Halo from the pACYC plasmid. Bottom:  α-FLAG blot for 

screening pBAD MA-FLAG-iLID plasmid uptake.  

 The method described above can be applied to any cytosolic protein which tolerates 

protein tags and can be used to distinguish possible interaction partners. Optogenetic 

systems are particularly attractive because the light signal is transient, and interaction 
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between binding partners is reversible. Therefore, optogenetic systems can truly shine 

when applied to systems that are important for maintaining cell viability which are also 

good targets for antimicrobial drugs. For example, peptidoglycan synthesis is required for 

maintaining osmotic pressure of bacteria, and ultimately guides cell morphogenesis and 

shape maintenance182-184. Though the peptidoglycan is synthesized within the periplasmic 

space, its synthesis is highly regulated within the cytosol. Therefore, it may be possible to 

use cytosolic optogenetic switches to dictate the position and timing of peptidoglycan 

synthesis within the periplasmic spaces.  

5.2.2. Characterizing far-red wavelength sensitivity of iLID protein  

Single-molecule tracking characterization of the iLID system showed that it can be 

activated at longer wavelengths than previously reported under high intensity conditions. 

To understand the bounds of this trend, we could perform diffraction-limited imaging 

experiments as performed in Chapter 4, where we image SspB-Halo using low-intensity 

561 nm laser, then introduce high intensity 647 nm illumination, and characterize the 

fluorescence distribution after this perturbation. This is a reasonable extension because we 

have the required laser in the lab, and it could be incorporated into our current single-

molecule microscope by adding optical elements required for far-red imaging. We expect 

that we would need much higher intensity 647 nm light to produce the same level of 

membrane sequestration as seen using 561 nm light. Given that this proves true, we could 

change our labeling system to use a 647 nm excitable dye, and perform single-molecule 

tracking experiments under these conditions. In this way, we could improve the dynamic 

range of the iLID optogenetic system under single-molecule fluorescence imaging 

conditions.  
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 Previously published work which characterized the kinetics of the iLID interaction 

partners in minimal synthetic cells showed a diminished dynamic range of affinity in blue-

light versus dark conditions (~4 fold)159,160 compared to the range published in original 

fluorescence polarization in vitro assays77. The diminished range in affinity agrees with the 

analyses that I present in Chapter 4. The authors of the synthetic cell study suggest that 

steric hindrance due to membrane-anchoring of the iLID component could contribute to 

this result. Therefore, an interesting extension of the work presented here would be to 

investigate this claim by reconstituting the iLID protein in different membrane conditions 

(giant unilamellar vesicles, supported lipid bilayers, nanodiscs, etc.), and determining if 

this 1) effects the absorption range of the protein, or 2) removes a degree of freedom by 

limiting the orientations sampled by the protein, and allowing for a faster rate of association 

of its binding partner, SspB. In a parallel experiment, the linker length between the N-

terminal transmembrane helix and iLID could be modulated as a way to increase the 

degrees of freedom in spatial sampling. While this work would likely require a 

collaboration to perform absorption measurements and binding assays, our lab could work 

on computationally modeling binding kinetics when a binding partner is restricted in 

movement at the membrane.  

5.2.3. Bolster single-molecule trajectory analyses using cumulative displacement 

analysis   

Lastly, the cumulative displacement analysis that I used to analyze SspB diffusion 

yielded some interesting results that could be applied to our current analysis framework. 

Traditional mean-squared-displacement (MSD) analyses compare the average squared 

displacement at increasing lag times, always comparing the position at time point (t) to the 
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original, starting position. For diffusion within the confines of a cell, the MSD will plateau 

as lag times increase because the maximum distance that a molecule can traverse is 

approximately the length of the cell. By instead considering the cumulative displacement, 

one can visualize the displacements within a trajectory as a linear relationship over time, 

without plateauing. I observed that the rate of displacement, or the slope of the cumulative 

displacement over time, showed a linear relationship that was dependent on how fast the 

molecule was moving (the diffusion coefficient), as well as the length and radius of the cell 

(Figure 5.4). As expected, decreasing the radius of the cell showed the largest decrease in 

displacement rate due to the increase in confinement. The change in slope may, perhaps, 

be marginal, but suggests that our fitting models which utilize simulated data at a specific 

cell geometry, may need to be adjusted when fitting data derived from bacteria with 

different dimensions than the average Yersinia enterocolitica cell. Further, cumulative 

displacement analysis could serve as another way to evaluate state assignment in our 

diffusion analysis.  

 

Figure 5.4. Cumulative displacement analysis of simulated trajectories shows 

dependence on cell radius and length. Left: simulated average cumulative displacement 

of N=1,000 molecules diffusing at 5.5 µm2/s (yellow, black, red lines) show a decrease 
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cumulative displacement slope when the cell radius is smaller (compare yellow versus 

black) or when the cell length is smaller (compare yellow versus red). Molecules diffusing 

at a slower rate of 4.5 µm2/s (blue) shows a characteristically smaller slope compared to a 

molecule diffusing at 5.5 µm2/s with the same cell dimensions (red). Each point is an 

average of 1,000 trajectories. Right: Experimental data which exhibits a fast, cytosolic 

diffusion population (blue), and a slow-membrane bound diffusion population (red), is 

described well by simulation molecule diffusion at 5.5 µm2/s and 0.2 µm2/s, respectively, 

with the same cell geometry as experimentally observed for E. coli cells.  

5.3. Conclusions 

Single-molecule localization microscopy is a powerful tool that enables resolution 

of static and dynamic structures. Experimental validation of diffusion state assignment 

traditionally involves permanent disruption to the interactions or processes being studied. 

We propose using optogenetics as a transient way to disrupt interactions for experimental 

validation of diffusion state assignments. Here, we evaluate the iLID optogenetic system 

for its feasibility in single-molecule tracking experiments. Surprisingly, we found that 

increased photon flux of long wavelengths of light triggered the optogenetic response. In 

this chapter, I outline suggested experiments which not only extend our diffusion state 

assignment analysis, but also probes the photophysical behavior of the iLID protein itself. 

The analyses performed here offer an optimistic view for incorporating iLID into tracking 

experiments and for understanding light sensing protein domains.  
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