

3 1

Deep Learning Phishing URL Detection

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Austin Huang

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

3 2

Deep Learning Phishing URL Detection

CS4991 Capstone Report, 2024

Austin Huang
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
alh2ggp@virginia.edu

ABSTRACT
Phishing is a dangerous form of cyberattack
that many are exposed and fall susceptible to
each day, leading to identity and financial theft
among other troubles. During my 2023
summer internship, as part of a hackathon, a
team of four other interns and I developed a
model able to distinguish between valid links
and fake links intended to phish users. To do
this, we built a model that utilized a
combination of techniques, such as Recurrent
Neural Networks and Language Processing.
To combine these models sufficiently, we
examined the effectiveness of each
individually and developed a voting
mechanism to make a final decision. When
trained and tested on a small dataset, our
model achieved a high F1-score, but was a
rudimentary solution when compared to
current industry tools. Next steps for the
continuation of this project would be
implementing more efficient techniques for
preprocessing web links and possible
exploration of scalable techniques that
industry tools use today.

1. INTRODUCTION
A Forbes article estimates that more than
300,000 people in the US were victims to
phishing in 2022, accounting for a loss of 52
million dollars alone (Main, 2023). Phishing is
the most common form of cybersecurity
attack. Usually, those with malintent distribute
a link by email or other way of communication
to attempt to trick the end user to click on it.

These links have a variety of unfortunate
consequences, such as stealing user data,
identity fraud, spreading viruses, or
downloading malware or spyware. Sometimes
a convincingly mimicked email disguises the
link and at times the link itself will have a
similar name to the intended link, maybe a
letter off. Thus, for a human eye, detecting
whether a link is malicious or not, is difficult,
just as it is designed to be. Therefore,
developing an automated way to detect
phishing links that could supplement human
detection is an essential next step to combat
phishing attacks.

During the summer of 2023, I had the
opportunity to intern as a Systems Engineer.
From this exposure, I was exposed to a variety
of projects, mainly tasked with working with
the Veterans Affairs to create a tool to help
with their statement of benefits. However, the
project I thought was most stimulating was my
experience with a team of four other interns
coding a Phishing Machine Learning model
from scratch as part of an in-house hackathon,
competing against other intern teams doing the
same. The project, an application of what I had
learned in school, introduced me to relevant
applications in modern-day industry.

For this hackathon project, our team wanted to
leverage various Machine Learning techniques
to build a model that would be capable of
differentiating valid URL links from phishing
URL links after training with a higher

 3

accuracy than the other intern teams
competing in the hackathon.

2. RELATED WORKS
Using machine learning as an anti-phishing
technique is not new and is widely explored
already. Because of this, novel developments
in areas like training, feature selection, and
advanced machine learning algorithms have
produced more complex, robust, and better-
performing models than our team’s solution.
With our scale and expertise, we were able to
use similar underlying rationales, separate
from the advanced techniques in these papers,
to build a simpler model fit for the scale of the
project. I showcase two related works that
yielded good results and reinforces our team’s
model selection and method of parsing data.

Gupta, et al. (2021) wanted to develop a
machine learning phishing detection model
with the goal of time efficiency. In their
research, they looked at a dataset of almost
20,000 URLs and extracted nine lexical
features to train varying types of models
including Support Vector Machines (SVMs),
Random Forests, Logistic Regression, and K-
nearest neighbors. When comparing these
models as individual classifiers, Gupta and his
team found that Random Forests performed
the most accurately, achieving 99.57% on their
test data (2021). Gupta’s feature extraction
methodology using normalization and one-hot
encoding to standardize potential training bias
and transform qualitative data into numbers
acceptable as model input informed our team
about various ways to parse data (2021). In
addition, with Gupta’s main finding that
Random Forests yielded the highest accuracy,
our team moved forward, using that as a basis
for the development of our Machine Learning
model, expecting more accurate results from
Random Forests than from the other models
that Gupta’s team tested.

In another study by Feng and Yue (2020), they
agreed that with just traditional machine
learning techniques and URL feature
extraction, a high accuracy of phishing
detection could be achieved. However, these
researchers decided to try using Recurrent
Neural Networks (RNNs), a form of deep
learning, a new, computationally complex,
black-boxed machine learning technique. By
investigating four different types of RNNs,
Feng and Yue were able to achieve higher than
99% accurate detection from a large dataset of
about 1.5 million URLs (2020). Furthermore,
the use of RNNs allowed Feng and Yue to pass
in the entire URL as input without needing to
manually perform feature extraction as needed
with other models, such as Random Forests
(2020). This research effectively shows that
RNNs would be useful in phishing URL
detection due to their ability for pattern
matching.

3. PROJECT DESIGN
For our dataset, we used a company-provided
phishing URL dataset. The dataset was a small
280 kilobyte dataset with 4800 URLs. The
four feature columns included were
“create_age,” “expiry_age,” “update_age,”
and “URL.” The “create_age” was a
quantitative feature specifying the age of the
URL in months. The “expiry_age” was a
quantitative feature specifying the time in
months until the URL will expire. The
“update_age” was a quantitative feature
specifying the last time since the domain was
updated in days. URL was the main feature,
specifying the actual link the other meta-data
features were detailing. Finally, each URL had
a binary label specifying if the URL was
phishing or not, intended to be used to train.,
in a process called feature extraction.

Next, we analyzed the data for more
observations we could include as input into our
models. With the URL alone, we were able to
extract 12 additional features, extracted from

 4

human observation and our own curiosity;
there was no mechanism to determine or
estimate how effective the inclusion of certain
features would be. These 12 extracted features
were URL length, contains “.co,” contains
“hash,” duplicate slash, contains spaces, has IP
address, contains “https,” number of digits,
contains “www,” contains suspicious words,
fake TLD, and TLD popularity.

Many of these features were simple binary
features that checked if the URL included a
certain trait, such as a duplicate slash, or
“www.” We used regular expressions to
implement these features. Other features
required counting, such as with number of
digits and URL length. With the more complex
features such as contains suspicious words,
TLD popularity, and fake TLD, we took an
aggregate of the entire training set to identify
common patterns and determined the feature
based on set comparisons. We also vectorized
the URL into the different sections of the URL:
scheme, top level domain, secondary domain,
and any subdomains or subdirectories to use as
input for language processing for uncommon
words and as potential input for deep learning.

Anticipating the use of deep learning models,
we normalized all features to ensure the
scaling was the same across each feature. For
our tokenized features such as the scheme and
top-level domains, because the options for
those are relatively limited, we used one-hot
encoding to translate those names to numbers.
We split our training data with a 90-10 split
with cross validation.

For our preliminary investigation, we first
explored how various types of classic machine
learning models performed individually, such
as linear regression, random forests, support
vector machines, and naïve bayes classifiers.
For these classic models, we used the scikit-
learn library in Python, which made the
implementation of these models streamlined

and simple. With these models, we were able
to estimate the usefulness of our features with
correlation matrices and entropy gain.
Combined with a brief exploration of other
clustering algorithms, like K-means, we were
able to determine what features were most
deterministic of a URL being phishing. We
moved forward with using the best model, the
Random Forest Model.

We then investigated deep learning models
and their effectiveness in detecting phishing.
We first selected convolutional neural
networks (CNN) because of their general
popularity. To use the CNN, we passed in our
vectorized data from before as inputs. We built
our CNN using the TensorFlow library, and
from experimentation sequentially stacked an
embedded layer, a convolution layer, followed
by a pooling layer and encapsulating the
results with three dense layers. For the method
of calculating error for training the CNN, we
used binary cross entropy.

Continuing our exploration with deep learning
models, we stumbled upon RNNs. RNNs are a
different type of neural network capable of
pattern matching. Again, we implemented
RNN from TensorFlow and built our model
similarly to the CNN. Sequentially, we first
used an embedding layer, but then followed by
two bidirectional layers, then consolidating the
results with 3 dense layers, using binary cross
entropy to calculate error when training. To
settle on the specific layer size and parameters
for each layer for both RNN and CNNs, we
used search functions that would test a range
of parameters and select the best performing
values.

Finally, to aggregate the best three results from
our three models, we used weighted voting
classification for the model to determine if the
URL was phishing or not. The three models we
used were Random Forest, CNN, and RNN,
and the weight assigned to each was

 5

proportional to how well they performed on
the training data. With ensemble learning, we
were able to create a model that yielded the
highest training accuracy. This is the model we
decided to submit for the hackathon.

4. RESULTS
Our model when run against the test data
yielded an F1-score of 97.13%. With this
model, we were able to win 2nd place in our
hackathon, only having a lower accuracy to
one team that was able to use Principal
Component Analysis in their feature
extraction. This likely led them to find and
select better features to use as input for their
models.

In our individual models, we found that the
best performing was Random Forest, CNN,
and RNN. These models yielded 96%, 95%,
and 93% accuracy, respectively, when trained
and tested individually. Compared to support
vector machines, naïve bayes, and logistic
regression, which all yielded 90% accuracy.
One interesting result was that our Random
Forest model performed the best individually,
even better than our deep learning models. We
suspected that this was due to our not being
able to optimize our neural networks to their
most optimal set up because of limited time
and the time-costliness to train and tune a deep
learning model. Additionally, Random Forests
inherently aggregate many models and data
and improve accuracy with a feature known as
bootstrap aggregation, essentially by
combining the results of many randomly-
generated, slightly differing decision trees.
This aggregation takes advantage of there
being only one dataset present and reduces risk
of overfitting and variance by averaging.

Despite our efforts to create complicated
features such as using language processing to
detect common, uncommon, and misspelled
words, the features that were most significant
to detect phishing, according to the correlation

model of our regression models and entropy
gain of the Random Forest models, were
seemingly the simplest ones. By far, the most
important feature was URL length, followed
by the number of numeric characters, and then
create age. This may hint towards phishers
better able to create believable URLs that
surpass looking for faulty spellings or unusual
appearances.

5. CONCLUSION
This summer hackathon project stemmed from
a summer internship where I had to be
proactive to find opportunities to code.
Discovering this hackathon and getting to
work on this project was therefore enriching
and allowed me to apply to a real-life situation
various machine learning techniques I had
learned about in school. With a small dataset,
we were able to utilize an aggregate of a
Random Forest model, a CNN, and an RNN to
produce a model that was able to detect
phishing with high accuracy. While this
project did not create any new breakthrough in
machine learning research, it allowed my
intern team and me to get an introductory
experience as to what tools and methods future
endeavors with larger scale data might use. It
also raised in me a personal interest in
pursuing a deeper knowledge for deep
learning.

6. FUTURE WORK
Future work could immediately enlarge the
scale of data to consider many more URLs
which are more varied and complex to see how
the behavior of our model scale in accuracy
and computational time. Additionally, further
research could investigate more recent models,
reproduce, and extend upon the rationale of
other’s research with model selection and
hyper tuning. Furthermore, additional work
could be allotted to investigate better areas of
feature selection and extraction, which was a
main component of the winning team in the
hackathon.

 6

Because our model aggregated two deep
learning models, a lot of computation was
done behind a black box, so no way currently
for a human to explain with conventional logic
and decision why the deep learning model
made its choice. Eventually, one area I would
be interested in would be creating a tool that
could act as an interface to explain why a
model flags a URL as phishing instead of the
answer itself to bridge the gap between user
and AI, which could extend beyond merely a
phishing detection application.

7. ACKNOWLEDGMENTS
I would like to thank my intern team members:
Ben Wurster, Jacob Lane, Rhea Goswami, and
Esha Karlekar and the organizers of the
hackathon: Ali Zaidi and Steffani Silva. Thank
you for creating an opportunity for me to learn
and enjoy working.

REFERENCES
Feng, T., & Yue, C. (2020). Visualizing and

interpreting RNN models in URL-based
phishing detection. Proceedings of the
25th ACM Symposium on Access Control
Models and Technologies.
https://doi.org/10.1145/3381991.3395602

Gupta, B. B., Yadav, K., Razzak, I., Psannis,
K., Castiglione, A., & Chang, X. (2021). A
novel approach for phishing urls detection
using lexical based machine learning in a
real-time environment. Computer
Communications, 175, 47–57.
https://doi.org/10.1016/j.comcom.2021.04
.023

Main, K. (2023). Phishing statistics by state in
2024. Forbes.
https://www.forbes.com/advisor/business/
phishing-statistics/

