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ABSTRACT 
Phishing is a dangerous form of cyberattack 
that many are exposed and fall susceptible to 
each day, leading to identity and financial theft 
among other troubles. During my 2023 
summer internship, as part of a hackathon, a 
team of four other interns and I developed a 
model able to distinguish between valid links 
and fake links intended to phish users. To do 
this, we built a model that utilized a 
combination of techniques, such as Recurrent 
Neural Networks and Language Processing. 
To combine these models sufficiently, we 
examined the effectiveness of each 
individually and developed a voting 
mechanism to make a final decision. When 
trained and tested on a small dataset, our 
model achieved a high F1-score, but was a 
rudimentary solution when compared to 
current industry tools. Next steps for the 
continuation of this project would be 
implementing more efficient techniques for 
preprocessing web links and possible 
exploration of scalable techniques that 
industry tools use today.  
 
1. INTRODUCTION 
A Forbes article estimates that more than 
300,000 people in the US were victims to 
phishing in 2022, accounting for a loss of 52 
million dollars alone (Main, 2023). Phishing is 
the most common form of cybersecurity 
attack. Usually, those with malintent distribute 
a link by email or other way of communication 
to attempt to trick the end user to click on it. 

These links have a variety of unfortunate 
consequences, such as stealing user data, 
identity fraud, spreading viruses, or 
downloading malware or spyware. Sometimes 
a convincingly mimicked email disguises the 
link and at times the link itself will have a 
similar name to the intended link, maybe a 
letter off. Thus, for a human eye, detecting 
whether a link is malicious or not, is difficult, 
just as it is designed to be. Therefore, 
developing an automated way to detect 
phishing links that could supplement human 
detection is an essential next step to combat 
phishing attacks. 
 
During the summer of 2023, I had the 
opportunity to intern as a Systems Engineer. 
From this exposure, I was exposed to a variety 
of projects, mainly tasked with working with 
the Veterans Affairs to create a tool to help 
with their statement of benefits. However, the 
project I thought was most stimulating was my 
experience with a team of four other interns 
coding a Phishing Machine Learning model 
from scratch as part of an in-house hackathon, 
competing against other intern teams doing the 
same. The project, an application of what I had 
learned in school, introduced me to relevant 
applications in modern-day industry. 
 
For this hackathon project, our team wanted to 
leverage various Machine Learning techniques 
to build a model that would be capable of 
differentiating valid URL links from phishing 
URL links after training with a higher 
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accuracy than the other intern teams 
competing in the hackathon. 
 
2. RELATED WORKS 
Using machine learning as an anti-phishing 
technique is not new and is widely explored 
already. Because of this, novel developments 
in areas like training, feature selection, and 
advanced machine learning algorithms have 
produced more complex, robust, and better-
performing models than our team’s solution. 
With our scale and expertise, we were able to 
use similar underlying rationales, separate 
from the advanced techniques in these papers, 
to build a simpler model fit for the scale of the 
project. I showcase two related works that 
yielded good results and reinforces our team’s 
model selection and method of parsing data. 
 
Gupta, et al. (2021) wanted to develop a 
machine learning phishing detection model 
with the goal of time efficiency. In their 
research, they looked at a dataset of almost 
20,000 URLs and extracted nine lexical 
features to train varying types of models 
including Support Vector Machines (SVMs), 
Random Forests, Logistic Regression, and K-
nearest neighbors. When comparing these 
models as individual classifiers, Gupta and his 
team found that Random Forests performed 
the most accurately, achieving 99.57% on their 
test data (2021). Gupta’s feature extraction 
methodology using normalization and one-hot 
encoding to standardize potential training bias 
and transform qualitative data into numbers 
acceptable as model input informed our team 
about various ways to parse data (2021). In 
addition, with Gupta’s main finding that 
Random Forests yielded the highest accuracy, 
our team moved forward, using that as a basis 
for the development of our Machine Learning 
model, expecting more accurate results from 
Random Forests than from the other models 
that Gupta’s team tested. 
 

In another study by Feng and Yue (2020), they 
agreed that with just traditional machine 
learning techniques and URL feature 
extraction, a high accuracy of phishing 
detection could be achieved. However, these 
researchers decided to try using Recurrent 
Neural Networks (RNNs), a form of deep 
learning, a new, computationally complex, 
black-boxed machine learning technique. By 
investigating four different types of RNNs, 
Feng and Yue were able to achieve higher than 
99% accurate detection from a large dataset of 
about 1.5 million URLs (2020). Furthermore, 
the use of RNNs allowed Feng and Yue to pass 
in the entire URL as input without needing to 
manually perform feature extraction as needed 
with other models, such as Random Forests 
(2020). This research effectively shows that 
RNNs would be useful in phishing URL 
detection due to their ability for pattern 
matching. 
 
3. PROJECT DESIGN 
For our dataset, we used a company-provided 
phishing URL dataset. The dataset was a small 
280 kilobyte dataset with 4800 URLs. The 
four feature columns included were 
“create_age,” “expiry_age,” “update_age,” 
and “URL.” The “create_age” was a 
quantitative feature specifying the age of the 
URL in months. The “expiry_age” was a 
quantitative feature specifying the time in 
months until the URL will expire. The 
“update_age” was a quantitative feature 
specifying the last time since the domain was 
updated in days. URL was the main feature, 
specifying the actual link the other meta-data 
features were detailing. Finally, each URL had 
a binary label specifying if the URL was 
phishing or not, intended to be used to train., 
in a process called feature extraction. 
 
Next, we analyzed the data for more 
observations we could include as input into our 
models. With the URL alone, we were able to 
extract 12 additional features, extracted from 
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human observation and our own curiosity; 
there was no mechanism to determine or 
estimate how effective the inclusion of certain 
features would be. These 12 extracted features 
were URL length, contains “.co,” contains 
“hash,” duplicate slash, contains spaces, has IP 
address, contains “https,” number of digits, 
contains “www,” contains suspicious words, 
fake TLD, and TLD popularity.  
 
Many of these features were simple binary 
features that checked if the URL included a 
certain trait, such as a duplicate slash, or 
“www.” We used regular expressions to 
implement these features. Other features 
required counting, such as with number of 
digits and URL length. With the more complex 
features such as contains suspicious words, 
TLD popularity, and fake TLD, we took an 
aggregate of the entire training set to identify 
common patterns and determined the feature 
based on set comparisons. We also vectorized 
the URL into the different sections of the URL: 
scheme, top level domain, secondary domain, 
and any subdomains or subdirectories to use as 
input for language processing for uncommon 
words and as potential input for deep learning. 
 
Anticipating the use of deep learning models, 
we normalized all features to ensure the 
scaling was the same across each feature. For 
our tokenized features such as the scheme and 
top-level domains, because the options for 
those are relatively limited, we used one-hot 
encoding to translate those names to numbers. 
We split our training data with a 90-10 split 
with cross validation. 
 
For our preliminary investigation, we first 
explored how various types of classic machine 
learning models performed individually, such 
as linear regression, random forests, support 
vector machines, and naïve bayes classifiers. 
For these classic models, we used the scikit-
learn library in Python, which made the 
implementation of these models streamlined 

and simple. With these models, we were able 
to estimate the usefulness of our features with 
correlation matrices and entropy gain. 
Combined with a brief exploration of other 
clustering algorithms, like K-means, we were 
able to determine what features were most 
deterministic of a URL being phishing. We 
moved forward with using the best model, the 
Random Forest Model. 
 
We then investigated deep learning models 
and their effectiveness in detecting phishing. 
We first selected convolutional neural 
networks (CNN) because of their general 
popularity. To use the CNN, we passed in our 
vectorized data from before as inputs. We built 
our CNN using the TensorFlow library, and 
from experimentation sequentially stacked an 
embedded layer, a convolution layer, followed 
by a pooling layer and encapsulating the 
results with three dense layers. For the method 
of calculating error for training the CNN, we 
used binary cross entropy. 
 
Continuing our exploration with deep learning 
models, we stumbled upon RNNs. RNNs are a 
different type of neural network capable of 
pattern matching. Again, we implemented 
RNN from TensorFlow and built our model 
similarly to the CNN. Sequentially, we first 
used an embedding layer, but then followed by 
two bidirectional layers, then consolidating the 
results with 3 dense layers, using binary cross 
entropy to calculate error when training. To 
settle on the specific layer size and parameters 
for each layer for both RNN and CNNs, we 
used search functions that would test a range 
of parameters and select the best performing 
values. 
 
Finally, to aggregate the best three results from 
our three models, we used weighted voting 
classification for the model to determine if the 
URL was phishing or not. The three models we 
used were Random Forest, CNN, and RNN, 
and the weight assigned to each was 
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proportional to how well they performed on 
the training data. With ensemble learning, we 
were able to create a model that yielded the 
highest training accuracy. This is the model we 
decided to submit for the hackathon. 
 
4. RESULTS 
Our model when run against the test data 
yielded an F1-score of 97.13%. With this 
model, we were able to win 2nd place in our 
hackathon, only having a lower accuracy to 
one team that was able to use Principal 
Component Analysis in their feature 
extraction. This likely led them to find and 
select better features to use as input for their 
models. 
 
In our individual models, we found that the 
best performing was Random Forest, CNN, 
and RNN. These models yielded 96%, 95%, 
and 93% accuracy, respectively, when trained 
and tested individually. Compared to support 
vector machines, naïve bayes, and logistic 
regression, which all yielded 90% accuracy. 
One interesting result was that our Random 
Forest model performed the best individually, 
even better than our deep learning models. We 
suspected that this was due to our not being 
able to optimize our neural networks to their 
most optimal set up because of limited time 
and the time-costliness to train and tune a deep 
learning model. Additionally, Random Forests 
inherently aggregate many models and data 
and improve accuracy with a feature known as 
bootstrap aggregation, essentially by 
combining the results of many randomly-
generated, slightly differing decision trees. 
This aggregation takes advantage of there 
being only one dataset present and reduces risk 
of overfitting and variance by averaging. 
 
Despite our efforts to create complicated 
features such as using language processing to 
detect common, uncommon, and misspelled 
words, the features that were most significant 
to detect phishing, according to the correlation 

model of our regression models and entropy 
gain of the Random Forest models, were 
seemingly the simplest ones. By far, the most 
important feature was URL length, followed 
by the number of numeric characters, and then 
create age. This may hint towards phishers 
better able to create believable URLs that 
surpass looking for faulty spellings or unusual 
appearances. 
 
5. CONCLUSION 
This summer hackathon project stemmed from 
a summer internship where I had to be 
proactive to find opportunities to code. 
Discovering this hackathon and getting to 
work on this project was therefore enriching 
and allowed me to apply to a real-life situation 
various machine learning techniques I had 
learned about in school. With a small dataset, 
we were able to utilize an aggregate of a 
Random Forest model, a CNN, and an RNN to 
produce a model that was able to detect 
phishing with high accuracy. While this 
project did not create any new breakthrough in 
machine learning research, it allowed my 
intern team and me to get an introductory 
experience as to what tools and methods future 
endeavors with larger scale data might use. It 
also raised in me a personal interest in 
pursuing a deeper knowledge for deep 
learning.  
 
6. FUTURE WORK 
Future work could immediately enlarge the 
scale of data to consider many more URLs 
which are more varied and complex to see how 
the behavior of our model scale in accuracy 
and computational time. Additionally, further 
research could investigate more recent models, 
reproduce, and extend upon the rationale of 
other’s research with model selection and 
hyper tuning. Furthermore, additional work 
could be allotted to investigate better areas of 
feature selection and extraction, which was a 
main component of the winning team in the 
hackathon. 
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Because our model aggregated two deep 
learning models, a lot of computation was 
done behind a black box, so no way currently 
for a human to explain with conventional logic 
and decision why the deep learning model 
made its choice. Eventually, one area I would 
be interested in would be creating a tool that 
could act as an interface to explain why a 
model flags a URL as phishing instead of the 
answer itself to bridge the gap between user 
and AI, which could extend beyond merely a 
phishing detection application. 
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