Evolutionary-based Coordination of Multi-Robot Systems with Dynamic Constraints

A Technical Report submitted to the Department of Systems and Information Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia * Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Vihar Shah
Spring 2024
Technical Project Team Members
Matthew Heeter
Jose Vallarino
Patrick Sherman

Lauren Bramblett

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Nicola Bezzo, Department of Systems and Information Engineering

Evolutionary-based Coordination of Multi-Robot
Systems with Dynamic Constraints

Vihar Shah*, Matthew Heeter*, Jose Vallarino*, Patrick Sherman?, Lauren Bramblett* and Nicola Bezzo*
*Department of Systems & Information Engineering
TDepaﬂment of Electrical & Computer Engineering
University of Virginia, Charlottesville, Virginia 22903
Email: {gbg5nv,mnh8eq,jvv3urx,ukw4tc,qbr5kx,nb6be} @virginia.edu

Abstract—Large-scale manufacturing facilities and power
plants comprise numerous subsystems that require consistent
monitoring and inspection to ensure reliable and secure oper-
ations. The use of multiple robotic systems is an expanding,
robust, and cost-effective solution for such operations. To
enable automated infrastructure monitoring, there are many
challenges, such as path planning and task allocation for
multiple robots and dynamic constraints. We formulate such
challenges as a multiple Traveling Salesman Problem (mTSP)
and propose an efficient task assignment solution that uses
an evolutionary algorithm considering priority, energy, and
time constraints. Our solution incorporates: a digital twin
of a monitored environment, A* and artificial potential field
methods for path planning and navigation, and human-in-the-
loop prioritization. We validate the proposed method with state-
of-the-art simulations in Gazebo/ROS for unmanned ground
vehicles (UGVs) in cluttered environments.

Index Terms—multiple traveling salesman problem, human-
in-the-loop, digital twin, unmanned vehicles

I. INTRODUCTION

For the longevity of an industrial system or facility, it
is essential to regularly inspect and monitor various sub-
systems to ensure their reliability and safety in operation.
Traditionally, inspection and monitoring duties have been
carried out by humans, who are often required to navigate
hazardous conditions, exposing themselves to the possibility
of personal harm. Human inspectors may also encounter
problems with the efficiency of task allocation and execution
without sophisticated allocation algorithms and methodical
execution. The advent of digital twin technology presents an
opportunity in this sector to recreate complex environments
and account for complex constraints, respectively. These
developments allow for a significant transition towards au-
tomation and robotic aid, reducing the risk of humans being
exposed to hazardous scenarios and enhancing the efficiency
of operational procedures.

Integration of unmanned ground vehicles (UGVs) in in-
spection tasks as depicted in Fig.1, managed through auto-
mated assignment processes, marks a significant step towards
this goal. However, orchestrating such a system involves
navigating a complex array of challenges, including efficient

The code repository for this approach and additional expla-
nations are available at https://github.com/UVA-BezzoRobotics-
AMRLab/multi_jackal_amcl.

Fig. 1. Pictorial depiction of the problem presented in the paper. A team of
ground robots is required to distribute and execute tasks, all while managing
constraints related to the environment and the tasks themselves.

path planning between multiple robots and tasks, prioritizing
emergency response, and optimizing energy consumption.
This paper delves into these challenges, formulating them
within the framework of the multiple Traveling Salesman
Problem (mTSP). We propose a novel task assignment
solution, utilizing an evolutionary algorithm that balances
considerations of priority, energy, and time constraints.

Our approach leverages the capabilities of a digital twin to
accurately represent any environment of interest and employs
A* and artificial potential field methods for optimal path
planning and subsequent navigation. Inclusion of human-in-
the-loop prioritization further enhances the system’s flexibil-
ity and responsiveness to dynamically changing operational
priorities. By validating our method through simulations in
Gazebo-ROS, we demonstrate its effectiveness in managing
UGVs within realistic and cluttered environments. Fig.1
shows pictorially the intent of this work in which tasks are
optimally distributed among two robots that are deployed in
mechanical rooms to monitor valves and gauges.

This work makes several key contributions to the field
of robotic systems for infrastructure inspection. First, we
introduce an advanced task assignment methodology that
integrates priority, energy, and temporal considerations, tai-
lored for the coordinated operation of multiple robotic agents.
Second, our use of digital twin technology in conjunction
with path planning algorithms allows adaptive operational
planning in real time. Lastly, we validate a comprehensive

system that not only proposes a theoretical framework, but
also demonstrates practical applicability through physics-
based simulations.

The rest of the paper is organized as follows: in Section
IT we provide an overview of the state of the art in multi-
robot inspection and digital twin technologies. In Section
IIT we provide an overview of our methods. In Section IV
we describe the proposed solution, the inclusion of human
operator constraints, and robot control. Section V addresses
the realistic environments through a simulation study of our
solution. Lastly, Section VI summarizes our research and
discusses future work.

II. RELATED WORK

The development of unmanned systems for navigating
complex industrial environments leverages diverse techno-
logical innovations. [1] introduces a human decision-making
behavior model that significantly enhances the operational
decision-making within multi-robot systems by integrat-
ing human cognitive processes with robotic control. This
approach improves human-robot collaboration, optimizing
intervention timing based on human insights. While this
model seeks to augment human control within robotic op-
erations, our project extends this concept by enhancing the
autonomous decision-making capabilities of robots. We aim
to reduce the necessity for human intervention by the use of
digital twin and advanced algorithms, which allow UGVs
to independently adapt and respond to dynamic environ-
ments, increasing operational efficiency and reducing human
intervention. Meanwhile, [2] discuss the optimization of
navigation paths through an energy-aware control framework
that manages the energy efficiency of heterogeneous robotic
teams. Our project enhances these methods by incorporat-
ing a sophisticated task allocation strategy that balances
efficiency, safety, and operational demands, tailored to the
specific challenges of the situation at hand. Additionally,
trajectory optimization in cluttered environments has been
addressed by [3] and [4], who apply multi-objective opti-
mization techniques to effectively navigate obstacles. Our
approach integrates these methodologies and reintroduces the
insights from [5], enhancing navigation capabilities through
evolutionary algorithms that optimize paths not only for
immediate task execution but also for long-term operational
sustainability. Moreover, [6] focuses on multi-robot task
scheduling to improve the coordination of robot teams.
Unlike previous methods, our work employs real-time data to
dynamically adjust task assignments and robot paths based on
immediate environmental feedback, significantly enhancing
the responsiveness and flexibility of robotic operations in
industrial settings.

ITI. PROBLEM STATEMENT

In this paper, we investigate methods of robotic tech-
nologies for precise and efficient inspection of real-world
industrial and complex systems. For such systems, a common
goal is to find optimal task assignments that minimize the

time robots travel while avoiding obstacles and accounting
for human inputs. Formally stated:

Problem: Optimal Path Planning with Obstacles and
Human-Inputs: Consider a set of robots R assigned to travel
to a set of tasks 7 with known positions. Find a policy to
assign tasks and plan the motion for each robot so that the
longest tour of any robot represented by () is minimized.
This is considered a mTSP [7] with an objective function of:

min @
s.t. Z Z Wik - Pijk < Q, Vk € R (D
ieT> jeTA

where w; i, is the cost of traveling from task ¢ to task j for
robot k € R and p;;y, is a binary variable that defines if robot
k travels from task 7 to task j. The robots must start and end
at their initial depots, represented by the sets 7> and 72,
This is known as a “minMax” optimization problem, where
we minimize all robots’ maximum tour cost ().

Moreover, the policy should take into account the fol-
lowing constraints: 1) priority constraints, which places
hierarchical importance on tasks; 2) time constraints, which
factor in task completion time; and 3) precedence constraints,
which specify the order certain tasks must be executed. The
policy is executed within a given map of the environment,
but local obstacle avoidance is enabled to account for small
environmental changes. Our final algorithm considers all of
these factors and produces optimal paths for each robot.

IV. APPROACH

Our proposed architecture to solve this problem consists
of formulating an algorithm to assign a set of tasks to each
robot so that the total operation time is shared and minimized.
Fig. 2 illustrates a high-level overview of our approach.

Lidar Point Cloud

Robot 2
" Genetic Alzorithm (T Robot 1
Genetic Algorithm
iori) Controller 1
Priority W1 ontroller
i Task
Time
Al -
Precedence
R
Digital Twin Paths Obstacla
~ Avoidance
.[—-} Pose 1
«+{-»1 Mapping -
Tasks L Pose 2 L P
ocalization
- |
g .

Fig. 2. Architecture Diagram

The first step of our approach is to create a digital twin
representation by mapping the environment, using a robot
with a scanner such as lidar, and recording the necessary
tasks based on the coordinates of the map. The Genetic
Algorithm (GA) block optimizes the distance traveled using
A* path planning and task assignment algorithms. The paths
are then sent to the robots’ controller, which uses a go-to-
goal algorithm with artificial potential fields (APF) to move

the robots while avoiding obstacles along the path using
robots’ scanners. A robot’s position xj is estimated, using
a particle filter-based technique, given that the robots do not
have access to ground truth position data during mission
operations. The estimated positions are communicated to the
path-planning algorithm to ensure that the robots continue
following the generated paths. Our algorithms are explained
in more detail in the following sections.

A. Solving mTSP using Genetic Algorithm

Addressing the challenges inherent in the mTSP for an
industrial environment requires algorithmic strategies that
prioritize efficiency in computation and task allocation. The
mTSP, an extension of the traditional traveling salesman
problem, is recognized for its NP-hard classification, indi-
cating a problem where the solution space expands exponen-
tially with the addition of each task, which further increases
when introducing multiple agents. Efficiently solving the
mTSP consists of two main steps: (1) Using the A* algorithm
to pre-process the fastest path calculations between any
starting position and city or any city to a different city
(2) Using a GA to allocate tasks to agents using the path
calculations.

1) A* Path-Planning: The A* algorithm [8] is used to
find the shortest path between each task and the robots’
start and final position. Given that a twin digital map of the
environment is available, we use a cost function to determine
optimal paths. The cost function is the sum of the actual cost
associated with the distance traveled and a heuristic cost,
which in our case is the Manhattan distance from one point
to the next. Fig. 3(a) shows an example of all optimal paths
between tasks and robots.

2) Task Allocation: Our research introduces a novel ap-
proach to addressing the mTSP with additional priority, task
completion time, and precedence constraints through the
adaptation of a GA, a computational technique that emulates
the evolutionary process of natural selection. Within this
framework, tasks are analogized to “cities”, and autonomous
robots to “agents”, thereby framing the problem as one of
distributing a set of tasks (cities) among multiple robots
(agents) in an optimal sequence. The core mechanism of
our GA involves the generation of an initial population
comprising random sequences of task allocations across the
robots. These sequences are evaluated based on a fitness
criterion (wy), which, in our context, is defined by the cost of
task distribution. Specifically, the total task cost for a robot
required to complete the most time-intensive task sequence
(2). The general solution for the total cost is calculated by
taking the sum of the A* distances between the tasks in
the path divided by robot velocities. Sequences that facilitate
a balanced but efficient distribution of tasks are deemed to
possess better (lower) fitness levels and survive.

C =max(wg) Vk€ER @)

The selection process within our GA adopts a tournament-
style evaluation, where random subsets of sequences (C1, C5)

face one another to identify the most efficient allocations
(minimum fitness), which are then preserved as selected
parents (s) for the current generation (3).

s = min(Cl, Cg) (3)

Offspring sequences are generated through an “order
crossover” mechanism, which integrates random segments of
the parent sequences into the offspring, ensuring efficient task
distribution patterns are inherited. Additionally, to introduce
variability and potential for discovering more efficient solu-
tions, a mutation process is randomly applied to the offspring
sequences, swapping two tasks within a path. This iterative
process of selection, crossover, and mutation continues across
a predefined number of generations, leading to a set of paths
with the best fitness or task distribution efficiency shown in
Fig. 3(b). The result is an adaptable solution to the mTSP
that is well-suited to the dynamic and time-sensitive demands
of industrial environments.

asks
@ Robot 1 Start

2 e
@ Robot 2 Start
\3
1
J o

Robot 2 Path: [3 0]
Robot 1 Path: [1 2]

€

o Tasks @ Robot 2 Start

® Robot 1 Start

(a) All A* Paths (b) mTSP Solution with A* Paths
Fig. 3. GA Task Allocation

B. Human-Input Constraints

In addition to the GA which provides a solution to the
mTSP, we introduce operator-based constraints to influence
the task allocation by modifying the GA’s functions and our
evaluation of fitness. In the following subsections, we will
use a hospital example to motivate priority, task time, and
precedence constraints alongside figures of the new paths:
To is delivering paperwork to a nurse, 7 is picking up
paperwork, 7o is a vital medicine delivery, and 73 is taking
a picture of a gauge.

1) Priorities: The first of such constraints allows the
operator to prioritize a task at predefined levels. For ease, we
demonstrate with 4 priority levels (O=no priority, 1=important
task, 2=critical task, 3=emergency). The goal is to have a
higher priority task visited by any robot earlier than other-
wise. In the hospital, consider 7y and 7 to have priorities
of 3. With no priority, wj;, is calculated by the A* distance
divided by velocity from one task to another. To include this
priority, we revise the evaluation of cost, w;;x, by modifying
its calculation (5), based on priority, v, and how far the robot
travels, p, before completing that task:

[
P=wijkt Y Wrrk)
V7,7 €Tk

We inflate such cost, w;;i, for any priority, v; > 0 by:

wijk = fy(p) = vp)

Where f,(p) is a function of priority and 7;,7; € Ti
represent the robot’s tasks that take place before w;;. For
ease, if 7; = 0, w;; is not revised, otherwise our function,
f(p), is linear. The function of priority, f,(p), can be
set by the operator. Since “priority” and “emergency” are
subjective terms, the function allows custom configurations
for the growth of change in cost based on priority. As a
brief example, a more aggressive prioritization could have
f~(p) = p" or alogistic function. This formulation increases
the perceived travel duration the robot undertakes to reach a
prioritized task as its position in the path is further away
- resulting in poorer fitness. As a result of the priorities to
7o and 79, the agents’ path orders have swapped (Fig. 4(a)),
with respect to the general solution (Fig. 3(b)). Furthermore,
this methodology of handling priority constraints allows the
robot to consider performing low-priority tasks before high-
priority ones if the detour is negligible. In Fig. 4(a), Robot
1 completes 75 before 73 and Robot 2 completes task g
before 5. The fitness of both paths can be justified by the
strategy of prioritizing tasks (5). Consider 71, which is on
the way to 7o but is overlooked. Given the absence of task
completion times, the GA prefers to tackle 7 first, however,
it should ideally finish 7; during the journey if v; > 0. Fig.
4(b) explores this scenario with v; = 1. This result meets
our expectations as 7 is visited before 7. Although there is
a small increase in distance traveled on the way to 7o, the
fitness of this tour is higher since the robot takes a small
detour to the high-priority task and minimizes the weighted
objective of total path distance and priority preferences.

2 @ Tasks

@ Robot 1start

@ Tasks
@ Robot 1 Start
@ @ Robot2Start

2
Yt 2Start
3 3
Ji1 1
'o J '0

Robot 2 Path: [0 3] Robot 2 Path: [3 0]
Robot 1 Path: [2 1] Robot 1 Path: [1 2]

(@) (b)
Fig. 4. Example of priority constraints. In (a), the priorities for 79 and 72
increase so that yp = 2 = 3. In (b), in addition to the increase in priorities,
we increase the priority of 71 so that v; = 1.

2) Time: Similarly, a time constraint allows the operator
to input the time it takes to complete each task. This impacts
the GA by varying the amount of time, ¢;, a robot spends
on each destination task, j, and could otherwise be traveling.
By representing this trade-off as an increased cost to the next
task, w;; (5) is updated and formulated as:

Wijk = Wijk T t; (6)

This results in an increase to the cost before being eval-
uated for priority and eventually for fitness. Focusing on
the observations in Fig. 4(b), it is unrealistic and potentially
unwanted to expect a robot to perform a low-priority task on

the way to an emergency task. The example held task times to
0 seconds, purely evaluating priority. Consider the example
in Fig. 4(b) with the addition of a 3-minute task completion
time to 71, 1 = 180. The result shown in Fig. 5(a) shows
the algorithm returns to favor completing the emergency at
To before the more time-consuming, lower priority 71. As a
separate example, consider no task priorities where ¢y = 300.
This modifies the standard solution in Fig. 3(b) to share task
work more efficiently as seen in Fig. 5(b) where Robot 1
handles all tasks except the time-consuming 7.

2 @ Tsis 2

Robot 1 Start
@ @ Robot2Start

@ Tesks
@ FRobot 1 Start
@ Robot 2 Start

o3 o3

1 1

| 0 : 0

Robot 2 Path: [0 3]
Robot 1 Path: [2 1]

Robot 2 Path: [0]
Robot 1 Path: [1 2 3]

(2)

(b)

Fig. 5. Example of time constraints. As shown, the mTSP solution from
Fig. 4(b) changes when the time to complete 71 is increased to 180s shown
in (a) and in (b) where the time to complete 7 is increased to 300s.

3) Precedence: Lastly, the operator can specify if a robot
needs to visit any task before a specified task in the form
of precedent constraints. This is accomplished by modifying
three fundamental functions in the GA. First, generateU-
niquePaths for the initial population is tailored to consist of
paths that follow precedence but allow randomness outside
the constraint. Next, orderCrossover is modified to pass
on successful parent path sequences only if the crossover
section selected does not overlap with a precedence task.
Lastly, the repairChild function, responsible for handling
duplicate and missing tasks, is modified to include a check
to ensure that precedence constraints are satisfied. If they
are not satisfied, the tasks are swapped within a robot’s path
or between robots. This is generated in the GA to evaluate
paths that meet these precedence constraints and swap any
two cities that are in the incorrect order as needed by the
constraint. Note that mutations are not allowed. Since the GA
relies on randomization to be effective, this methodology of
handling precedence constraints allows randomization until
it breaks our constraint by generating valid random paths for
the initial population and promoting order crossovers among
non-precedence cities. Fig. 6(a) is an extension of the general
solution in Fig. 3(b) but requires a single robot to pick up the
paperwork before delivering it to the nurse (77 before 7y) and
must deliver it to the nurse in order to deliver the medicine
(1o before 12). Fig. 6(b) shows another example in which 73
must be completed before task 7o.

The resulting paths satisfy the precedence constraints by
generating valid paths, avoiding invalid crossovers, repairing
invalid paths, and preventing mutation. The logic in the first
function’s modifications is seen in Alg. 1. The Generate
Unique Paths algorithm is modified from its original form
by initializing a population of precedence valid paths. The
set, precedence contains sets of precedence cities, «, or lack

.2 @ Tasks '2 @ Tasks
@ Robot 1 Start @ Robot 1 Start
Qtzszan @ Robot 2 Start

Robot 2 Path: [3]
Robot 1 Path: [1 0 2]
@ (b)
Fig. 6. Example of precedence constraints. The mTSP solution changes
when 71 must occur before 7¢ in (a) and when 73 must occur before 72 in
(b).
thereof, for each city. Note line 6 in the algorithm references
precedence;, or the set of precedence cities for city i. The
addAvailableSlot procedure finds an open slot in the path for
the same agent as the other precedence tasks and adds the
task at that location, the rand function chooses a random
member from the set, and the remove procedure takes a task
away from remainingCities to satisfy the while condition in
line 3 of the algorithm:

Robot 2 Path: [0 1]
Robot 1 Path: [3 2]

Algorithm 1 Generate Unique Paths
Require: numCities, numAgents
Require: precedence

1: paths =0

2: remainingCities < {0, ..., numCities — 1}

3: while remainingClities is not empty do

4 i = rand(remainingCities)

5 if precedence; # () then

6: for each a € precedence; do

7

8

9

addAvailableSlot(paths, o)
remove(remainingCities, c)
addAvailableSlot(paths, i)
10: remove(remainingCities, 1)

C. Robot Control

The next step is to have the robots follow their assigned
paths. This approach has two main components: localization
using Adaptive Monte Carlo Localization (AMCL) and con-
trol using Artificial Potential Fields (APF).

1) Localization: Localization is a critical component for
the robots to follow their assigned paths, as it allows the
robots to understand where they are in relation to the environ-
ment. This is implemented using a probabilistic localization
technique, AMCL [9]. It utilizes sensor data, such as lidar
scans, to estimate the robots’ positions within the given map.
The process involves generating a set of particles representing
possible robot poses, weighting them based on sensor data
likelihood, resampling to emphasize high-weighted particles,
and updating the robots’ pose estimate iteratively as new
data arrive. AMCL refines the robots’ position estimates by
repeatedly comparing sensor data with the map, adjusting
the particle cloud, and converging towards the most likely
robot pose within the environment. Determining the robots’
positions is essential for safe and efficient navigation and
interaction with obstacles.

2) APF Controller: As mentioned in Section IV, the
mTSP utilizes estimations of initial positions but AMCL
helps provide dynamic updates to robot position. Now that
the robots’ positions @ are known, the next component is to
control the robots to go to their assigned tasks. We coordinate
the movement of each robot using an artificial potential field
(APF) method. The idea is that any object placed at any point
in this potential field desires to move to a position of lower
potential. This can be calculated in a vector field based on
the gradient of the potential function for every point q in the
field at a particular time ¢:

[. U
g, 77 og,,

A robot’s velocities at a point q is calculated as the negative
gradient of the potential field or the sum of all forces acting
on the field and leverages three main objectives: 1) go-to-
goal represented as an attractive field, 2) collision avoidance
between robots, and 3) obstacle avoidance represented as
repulsive fields. In this method, the total force acting on the
k™ robot is generally formulated as:

F(xy) = —VU(xi) = BiFyp + BoFP + BsFy (8)

!/

VU(q) (q) @)

considering [, is a weighting coefficient for force FJ'
where each F]}' corresponds to the kth objective listed
previously. For our approach, this translates to a potential
field generated by combining repulsive obstacle and robot
avoidance fields with an attractive go-to-goal field.

V. CASE STUDIES

Our proposed architecture was validated in simulation
using Gazebo and RViz with a digital twin map of a complex
environment depicted in Fig. 7. Gazebo experiments allow
us to implement realistic and high-fidelity experiments. The
simulation uses two robots that are tasked to travel to five
tasks located throughout the map. We set up three simulation
trials to verify each constraint: 1) Priority, 2) Time, 3)
Precedence. The goals and the paths that the robots are
assigned to are visualized in RViz, seen in Fig. 7(b). This
example has no constraints.

(a) Gazebo Environment

(b) RViz Environment

Fig. 7. Simulation Set-Up

The robots will begin to move once the A* paths are
allocated. The simulation finishes once all tasks have been

met and the robots are at their starting positions. These
simulations provide us with crucial insight in how the robots
travel to the tasks and if they are following the correct paths
while avoiding obstacles.

Priority Constraint Results: The first trial consists of
changing the priority constraints while omitting all other
constraints. The priority assignment is as follows: y2, 74 = 3,
indicating an emergency, while ~p,7v1,73 = 0. The paths
the robots follow can be seen in Fig. 8(a). Cities with
higher priorities are visited first while maintaining an efficient
solution: robot 1 travels to 74 first, followed by 7y and 73,
and robot 2 travels to 75 then 7.

Time Constraint Results: The next trial explores changing
the task completion time while setting other constraints
to have no impact. The time assignment is as follows:
to,t1,t2,t3 = 20 and t4 = 60. The results of this trial can be
seen in Fig. 8(b), where robot 1 is assigned to travel to 73,
70, then 71 and robot 2 travels to 75 then 74. As seen in the
difference between Fig. 7(b) and 8(b), Robot 2 is allocated a
path that takes the long completion time of 74 into account
to maximize the overall task efficiency of all robots.

Precedence Constraint Results: The precedence trial ex-
plores requiring order to task completion for any robot
considering completing that set of tasks. The precedence
constraints are as follows: 71 must be done before 75, and
7o must be done before 74. The results of this trial can be
seen in Fig. 8(c), robot 1 travels to 73, 79, then 74, and robot
2 travels to 71 then 75. This leads to a completely different
solution than the general solution in Fig. 7 by moving 74 to
Robot 1’s path.

Mixed Constraint Results: The mixed constraint trial ex-
plores a combination of the constraints to simulate realistic
conditions. The constraints are as follows: 7; before 73;
Yo = 3,72 = 1; and, t4 = 30 seconds. The results of this
trial can be seen in Fig. 8(d), robot 1 travels to 79, 7 then
T3, and robot 2 travels to 75 then 74.

The solution utilizes each robot to handle each priority task
first and divides the precedence tasks and time-consuming
task amongst the nearest robots from the priority tasks.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented a framework for efficient
task planning and allocation for multiple robots and complex
constraints. To solve this mTSP we have used a genetic algo-
rithm strategy with user-input constraints, including priority,
time, and precedence. Once a solution is obtained, the robots
follow the assigned paths using an artificial potential field
method. A digital twin representation of the environment is
used to create paths in a realistic environment for simulation.

Possible future extensions of this work include: adding
additional constraints such as time of day for completion,
heterogeneous robots with different capabilities, and the
inclusion of humans performing tasks alongside the robots.
Experiments with real robots in a real-world environment are
also recommended to ensure that our framework is robust for
real-world applications.

(b) Time Constraint

(d) Mixed Constraint
Fig. 8. Gazebo Simulation Results from RViz

(c) Precedence Constraint

ACKNOWLEDGMENT

This work is sponsored by EnterAR and we thank them and
Siemens for their technical assistance and useful discussions
throughout this project.

REFERENCES

[1] J. Huang, W. Wu, Z. Zhang, and Y. Chen, “A human decision-making
behavior model for human-robot interaction in multi-robot systems,”
IEEE Access, vol. 8, pp. 197 853-197 862, 2020.

[2] T. X. Lin, E. Yel, and N. Bezzo, “Energy-aware persistent control
of heterogeneous robotic systems,” in 2018 Annual American Control
Conference (ACC). 1EEE, 2018, pp. 2782-2787.

[3] M. E. A. Boudjellel and T. Chettibi, “Optimal trajectory planning for
a mobile robot in presence of obstacles using multi-objective optimiza-
tion techniques,” in 2016 8th International Conference on Modelling,
Identification and Control (ICMIC). IEEE, 2016, pp. 509-514.

[4] 1. Thammachantuek and M. Ketcham, “Path planning for autonomous
mobile robots using multi-objective evolutionary particle swarm opti-
mization,” Plos one, vol. 17, no. 8, p. €0271924, 2022.

[S] W. Ghadiry, J. Habibi, A. G. Aghdam, and Y. Zhang, “Time-efficient

trajectory optimization in patrolling problems with non-prespecified

depots and robots,” in 2016 24th Mediterranean Conference on Control

and Automation (MED). 1EEE, 2016, pp. 1047-1052.

Y. Zhang and L. E. Parker, “Multi-robot task scheduling,” in 2013 IEEE

international conference on robotics and automation. 1EEE, 2013, pp.

2992-2998.

[7] L. Bramblett, B. Miloradovic, P. Sherman, A. V. Papadopoulos, and
N. Bezzo, “Robust online epistemic replanning of multi-robot missions,”
arXiv preprint arXiv:2403.00641, 2024.

[8] M. Julid, A. Gil, L. Pay4, and O. Reinoso, “Local minima detection in
potential field based cooperative multi-robot exploration,” International
Journal of Factory Automation, Robotics and Soft Computing, vol. 3,
2008.

[9] L.P. Matias, T. C. Santos, D. F. Wolf, and J. R. Souza, “Path planning
and autonomous navigation using amcl and ad,” in 2015 12th Latin
American Robotics Symposium and 2015 3rd Brazilian Symposium on
Robotics (LARS-SBR). 1EEE, 2015, pp. 320-324.

[6

—_

