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Abstract 
Time-critical data uploads from mobile hosts are challenging when there is high 

variability in connectivity to the base stations. In these situations, it can be difficult to 

know in advance if a transmission will meet a delay-bound guarantee. One example of 

this type of transmission is photographs of 12 lead ECGs. The images are captured by 

EMTs using the printouts from machines in ambulances, and they are sent to physicians 

for pre-hospital diagnosis of heart attacks. Current systems do not adapt their operation to 

the quality of service of the local network, and as a result, they do not provide guarantees 

or feedback to users about the success or failure of the transmission. A data-centric, 

application-specific approach and validation method are presented to predict the 

likelihood of failure in real-time for one of these transmissions. The prediction informs 

both ends of a voice conversation - between EMT and physician - allowing them to adapt 

to the knowledge of whether or not the image will be available. Our approach is 

implemented as an algorithm in an iPhone application that manages the capture and 

transmission of these diagnostic photographs. Field experiments validate the efficacy of 

the predictor; it is able to distinguish successful transmissions from failed ones 96% of 

the time. The framework and end-to-end transmission system are designed to allow for 

generalizability and ease of extensibility to other networks, cities, and future network 

improvements.   
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CHAPTER 1 

 

1 Introduction 

1.1 Motivation 

The end-to-end transmission system discussed in this thesis was designed to aid pre-

hospital care specifically in the area of diagnosis for potential patients of ST-elevation 

myocardial infarctions (STEMI). The system is composed of an iPhone application 

(“app”)  that  captures  and  wirelessly  transmits images of 12-lead electrocardiograms 

(ECGs) and a webserver that receives the images and displays them to doctors in the 

Emergency Department of the hospital. Using two-way radios on emergency bands, 

emergency medical technicians (EMTs) in the field have the ability to communicate with 

hospital physicians with near 100% coverage in the Charlottesville area. Existing systems 

to transmit a diagnostic ECG from the field are substantially less reliable in areas like this 
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without complete cellular coverage because transmissions are instant, and they can only 

work at best if there is connectivity at that moment.  

Using  a  validated  prediction  algorithm,  the  “app”  is  able  to  predict  the  probability  of  

successfully transmitting an ECG image within two minutes from a moving vehicle en 

route back to the hospital. Success in this context means that within the two minute time 

limit, the entire image has been uploaded from the smartphone and received at the server. 

Additionally, acknowledgements have been received at the phone indicating the success. 

If none or part of the image has been received in the time limit, this is considered a 

failure. In the context of predictions, a successful prediction is a true positive or true 

negative; a failed prediction is a false positive or false negative. Transmission success, 

however, is different from model success.  

The calculated probability in the model is updated in real-time and easily visible to the 

EMT on the ambulance with a patient. Its primary function is to serve as an input to the 

conversation between the EMT and the hospital physician. If the ECG is likely to arrive, 

the physician can know to expect and use this information for diagnosis. If the image is 

unlikely to arrive, the physician need not stand at the computer screen waiting idly by 

when a diagnosis immediately will be just as accurate as one made several minutes later.  

The 12-lead ECG is a several seconds snapshot of the electrical potential across 12 points 

around the heart. Each of these 12 waves is displayed in a standard configuration in a 

three by four rectangle. Since the configuration is standardized, a photograph of the 

output from any 12-lead ECG machine is recognizable to and readable by any trained 

physician.  Within  the  “app,”  the EMT is led through the process of capturing a 
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photograph  of  the  printout  from  the  ECG  machine  on  the  ambulance.  The  “app”  then  

compresses and crops the image to reduce the size of the transmission down from over a 

Megabyte to about a 30 Kilobyte jpeg file. This reduction in the file size drastically 

increases the probability of successful transmission in areas of mediocre cellular data 

coverage.  

A first round of data collection was undertaken to gage the bandwidth and variability of 

the AT&T cellular data network around the city of Charlottesville, Virginia. The key 

insight from this data was that the successful upload of a 30 Kilobyte file from a moving 

vehicle may be determined more by the amount of connectivity rather than the 

throughput. This is because any location with any data network connectivity at all had 

sufficient throughput for this application.  

Another, more realistic, round of data collection was performed. For this effort, 83 

compressed photographs were attempted to be uploaded within 50 miles of the University 

of Virginia Medical Center. Each transmission was performed from a moving vehicle 

bound for the hospital. In addition to these transmissions, the data collection also 

included the recording of simple, binary connectivity measures, hereafter referred to as 

pings, every 4 seconds. A successful ping occurs when 56 bytes can be uploaded and 16 

bytes downloaded within about 2 seconds. For the scope of this document, successful and 

unsuccessful  pings  will  be  referred  to  as  “ONs”  and  “OFFs”  respectively.  The  83  

transmission attempts and 6833 pings include timestamp and GPS information. A logistic 

regression model is presented to model the probability of success of a transmission 

attempt using the pings and other data as predictor variables. The best model includes 
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only one predictor variable: the percentage of pings within one kilometer of the current 

location that have been recorded as ONs. For the most accurate prediction, success is 

determined by greater than 65% of the nearby pings being ON.  

This model stands up to a number of evaluation techniques including ordinary 

bootstrapping, random cross-validation, and two newly presented forms of geographic 

cross-validation to promote generalizability. The model utility test passes with a p-value 

less than 10-14, and the optimism-adjusted area under the ROC curve using the method 

outlined in [53] is 0.96.  

A parallel effort is currently being undertaken by a group of undergraduate Systems 

Engineering students to design the application and integrate the algorithm discussed 

herein for robust testing by real users.  

 

1.2 Contribution 

The primary contribution of this work is in the field of application-specific predictions of 

mobile telemetry characteristics. Bandwidth estimation techniques cannot fully and 

quickly describe the network conditions of a fast moving vehicle through a cellular data 

network. It is, however, feasible to narrow the focus and only estimate those bandwidth 

characteristics that are actually necessary for the context of the specific application. This 

research presents a real opportunity for fast, limited bandwidth estimation in a real 

system with the potential to improve patient care. The method presented is a predictive 
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model for a transmission built around simple measures of nearby network connectivity. 

Use of this type of data in this way for this kind of prediction is novel.  

Secondary contributions can also be found in the fields of pre-hospital STEMI care and 

geospatial modeling evaluation. There is novelty in the minimization of file size of 12-

lead ECG photographs while still maintaining readability. Also, the methods of 

geographic cross-validation leverage the unique way the system will ultimately be used 

and thus how the data was collected to promote geographic generalizability of the method 

and the system beyond AT&T in Charlottesville. 

There is also a contribution to the field of wireless health. Increasingly, smartphone 

platforms are being used as aggregators of bio-sensor data for wireless health applications 

[58] [60], and are even beginning to be used for closed-loop wireless health applications 

[59] [57]. With 1GHz processors, modern smartphones are capable of intelligently 

managing the transmissions between sensors and distant care providers. In this context, it 

is not hard to imagine situations in which it would be beneficial for an aggregator to 

know in real-time whether or not an upload transmission would succeed within a given 

amount of time, e.g. in remote monitoring applications where an immediate response may 

result from near real-time health data. 

 

1.3 Outline 

Chapter 2 of this thesis will provide background of all the relevant and intersecting fields 

of research. It will begin by describing the field of wireless quality of service and 
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bandwidth estimation: all of the technical fields in which this research can provide value. 

Then the background will present the health care usecase for which the research was 

performed and evaluated. Finally, chapter 2 will present the current modeling techniques 

that will be used and a synthesis to help direct the rest of this thesis. Chapter 3 will 

present the general research problem and the application-specific challenge. Chapter 4 is 

dedicated to discussing the SPRITE algorithm: what it is, how it was developed, and how 

it will be implemented. Chapter 5 is the evaluation of the predictive model by standard 

and custom techniques. Chapter 6 will conclude the thesis with reflections and thoughts 

for future work.  
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CHAPTER 2 

 

2 Background 

2.1 Bandwidth estimation and mobile data quality of service 

Predicting the likelihood of successfully transmitting a file of known size (~28 Kilobytes) 

within a known time limit (2 minutes) from a known location (captured by the GPS on 

the smartphone) while driving to another known location (the hospital) is a kind of 

geographic real-time bandwidth estimation problem. There are two possible ways to go 

about solving this problem: (1) estimating the bandwidth (connectivity, reliability, 

throughput,  …)  and  then  calculating  the  likelihood  of  successfully  transmitting  given  

those expected conditions or (2) skipping the estimation of bandwidth and modeling 

success or failure directly from realistic data points that include factors known to impact 

bandwidth. Approach (1) requires examining the field of bandwidth estimation, which 
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approaches this problem from three different directions: signal strength maps, Probe Gap 

Models (PGM), and Probe Rate Models (PRM). Each of these three methods, while 

powerful, is fundamentally inappropriate for our application. Approach (2) requires 

leveraging the application-specific features into the field of predictive modeling.  

 

2.1.1 Geospatial mapping 

Wireless broadband providers like AT&T typically publish maps of their claimed 

network coverage [1] [2] [3]. These maps are based on geospatially interpolating signal-

to-noise-ratio (SNR) measurements taken in the field and applied to topological maps that 

include obstructions like buildings and bridges [4]. These methods require a large amount 

of context information like the size of newly constructed buildings as well as the 

locations and precise tuning parameters of the network towers. This information is either 

difficult to obtain and update (e.g. buildings and new construction) or would require 

significant corporate agreements to begin to collect (e.g. tower locations and tuning 

parameters) and might still be rendered outdated by routine network improvements. 

These techniques and models are generally built with full knowledge of the network to 

solve problems like tower location and network management optimizations [5] [6]. 

Additionally, in the newest versions of iOS, it is not possible to determine the SNR of the 

phone programmatically. A bandwidth estimation technique built upon corporate 

agreements for information-sharing could not be maintained passively and may 

discourage expansion and generalizability of the work to other cities and networks.  
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2.1.2 Probe gap models 

Bandwidth estimation can be performed accurately without full knowledge of the 

network by using a method called a Probe Gap Model (PGM). This method is based on 

the idea that transmitting a large number of small files of known size and at known time-

intervals from a client to a server can then be examined on the server. The differences in 

the time intervals are a strong indicator of available bandwidth in the end-to-end channel. 

While new methods like Traceband have been able to speed up the measurements of the 

most seminal methods like Spruce, these techniques may still be too slow for this 

research [7] [8]. For a single estimate, Traceband uploads as few as 87 Kilobytes and as 

much as 146 Kilobytes from the end device. This amount of data dwarfs the actual size of 

the compressed ECG transmission! More importantly though, the available bandwidth 

calculation is made on the server and would then have to be communicated to the end 

device. Our application needs to be capable of predicting success and acting on it from 

regions of no connectivity. A PGM approach would not be able to communicate from the 

server to the smartphone if the smartphone were in a region of zero bandwidth.  

 

2.1.3 Probe rate models 

The alternative approach is performed by inducing traffic on the network from the end-

user device by transmitting packets of known file size at deliberate times and receiving 

the  acknowledgements  (or  lack  thereof)  from  the  server.  The  network’s  performance  

(packet drop rate and round trip times) on these transmissions is then used to calculate 

network characteristics like throughput, reliability, and lag at the end-user device. This 
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method is based on the Probe Rate Model (PRM). These techniques like Pathload, 

pathChirp, and imTCP take on the order of several minutes to converge, so they tend to 

be applied to very high speed, wired networks [9] [10] [11] [12] [13] [14]. The amount of 

time necessary to obtain a measurement is simply unfeasible for a moving vehicle: 40 

mph * 1 minute = 1 kilometer. If a measurement were to converge within 1 minute, that 

value would represent some kind of combination of readings gathered over the span of a 

kilometer of distance. It is unclear whether this value would have any real meaning at all 

if the network conditions changed through the distance covered and how to associate that 

measurement with a location on a map. In general, PRM methods are considered 

unfeasible for wireless cellular networks [15].  

 

2.1.4 Factors shown to affect wireless bandwidth 

There are a number of factors that have been shown to affect wireless transmissions: 

speed [16], weather [17], time of day and day of the week [18], SNR, and tower 

locations. Periodic measures of simple connectivity have also been shown to inform 

future predictions of available bandwidth [19]. As mentioned above, SNR and tower 

location are not feasible to obtain for use in this system. There is, however, a proxy. 

AT&T publishes a map (Figure 1) of their claimed service: white represents no claimed 

coverage at all, light blue is EDGE, and dark blue is 3G service.  
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Figure 1: Map of AT&T reported signal strength around Charlottesville 

This map is based on a geospatial interpolation of signal strength using tower locations 

and topography. We do not intend to evaluate its accuracy, but since it is based on non-

real-time variables to which we do not have access, it represents a potential source of 

information for a data-centric approach to a bandwidth estimation problem.  

 

2.1.5 Cellular access networks 

Wireless measurements of quality of service (QoS) include all of the typical wired 

measurements along with additional factors for the variability of the channel [20]. Many 

of these service measures are obfuscated for this system by the choice to use HTTP over 

TCP instead of dealing with the actual signal strength and managing the transmission bit-

by-bit in real time. In systems with this kind of obfuscation, the QoS measures at the 

application level are more relevant. More simply, these are: access to a connection, delay, 

throughput, and packet loss rate.  



18 
Application-level use of QoS metrics are often used for real-time adaptation of 

downloads like variable bit rate multimedia streaming or clients requesting different 

versions of the same services (e.g. webpages) based on exceptionally low or high QoS 

metrics. These metrics can also be used at lower levels in the smartphone operating 

system to perform optimizations for tasks like network selection [21]. Measuring 

throughput, as mentioned above, is difficult, slow, and inaccurate. Measuring 

connectivity, however, is much faster and can be performed at any level of the network 

stack. Connectivity measurements at the application level are often used to enable or 

disable features. There is also a large body of research using connectivity to perform real-

time or predictive user localization and related features like future network access [18] 

[19] [22] [23].  

 

2.1.6 Motion through a wireless network 

If an end-user device in an access network (client) is moving at high speeds, the QoS 

metrics can be highly variable. Motion through a wireless network has been researched 

from many different perspectives: low level wireless sensors, high speed vehicular 

motion,  node  localization,  ….  Some  of  these  will  not  be  discussed  because  they  are  far  

out of scope. Also, because of the platform-level constraints (iPhone 4 on AT&T) and 

transmission methodology (HTTP over TCP), many of the SNR-based results in the 

wireless sensor metrics are not useful here because the iOS platform does not allow 

programmatic readings of SNR.  
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High speed motion has been shown experimentally to affect a whole range of cellular 

access network QoS metrics like throughput and packet loss rate because of Doppler 

effects and tower hand offs [16]. In Jang’s  research,  the  motion  was  completely  within  

the bounds of network coverage. Faster speed yielded worse metrics. It is conceivable, 

however, that some motion could actually improve certain metrics, especially if the 

application-specific needs are somewhat delay tolerant. For example, a client device 

behind a tree might have no connectivity because of the obstruction. Any and all tests 

performed from that location would imply terrible QoS. Motion through that point, 

however, might not be noticeable in a real measurement of throughput. If the application 

specific demands are for a relatively small amount of data over a relatively long period of 

time (when compared to average throughput and delay of the network), QoS may wind 

up depending more on some notion of the amount of connectivity over the path traveled 

rather than precise measurements of signal strength at a single location.  

 

2.1.7 Vehicular communication 

Available bandwidth estimation from a moving vehicle is a difficult problem primarily 

because of the motion of the client [24]. Ott and Kutscher, running experiments with 

uploads from a moving vehicle passing through a wifi access point, made a number of 

relevant realizations. First, throughput is highly variable and non-linear, even under the 

controlled conditions of a wifi access point. Second, geography and speed play 

significant roles. All of the tests saw a sharp drop in throughput because of a dip in the 

road. When driving 60 mph as opposed to 25 mph, the throughput rate was cut in half 
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from about 340 KBps to about 170 KBps, and this rate cut is independent of the reduced 

time spent in the bounds of the network making the transmission. Last, for an application 

with  substantial  delay  tolerance  and  minimal  data  needs,  “short  periods  of  connectivity  

can achieve substantial information exchange that are likely to suffice for many 

transaction  style  applications”  [24].  

Because  of  the  difficulty  involved  in  “highly  dynamic  network  topologies”  like  high  

mobility in a wireless network, Lai recommends leveraging unique application specific 

features for more useful information [25]. In his case, it was the highly repetitive and 

regularly periodic patterns of public transportation systems. In another example of 

application specific features being used to solve the problem of high speed motion 

through a wireless network, Zhao et al. proposes a vehicle-to-vehicle relay system to 

ensure that each vehicle receives a single transmission from a fixed node. They found 

that the quickly changing signal strength caused highly variable throughput that resulted 

in some vehicles receiving the transmission while other vehicles did not. With multiple 

vehicles moving together, relays from vehicle to vehicle dramatically increases the 

information diffusion [26]. Similar vehicle-to-vehicle techniques for data dissemination 

are in the literature [27]. A related example uses vehicle trajectory to optimize a 

download [28]. This work analytically solves an optimization for packet and vehicle 

rendezvous at wifi intersections along a suspected path. In our research, the application 

specific features to leverage are the fixed, small sizes of the files relative to the network 

throughput and the typically improving bandwidth that is seen while the vehicle is en 

route and the transmission is being attempted. 
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There is also a large amount of less relevant but related research in the field of wireless 

vehicular communication systems, mostly over 802.11 wifi. IEEE has defined a set of 

standards for different paradigms of vehicular communication (V2V: vehicle to vehicle, 

V2I: vehicle to infrastructure,  VANET:  vehicular  ad  hoc  networks,  …)  under  802.11p  

[29]. Much of this work is focused on two primary goals: individual vehicle localization 

and multi-vehicle traffic patterns. Pathirana uses mobile base stations to perform vehicle 

localization and trajectory prediction [30]. Relatively unique to this work, however, is 

that the end-users as well as the base-stations are all mobile. This makes for a highly 

complex and variable system. With active monitoring data from many vehicles and clever 

passive monitoring techniques, real-time traffic conditions can be estimated [31].  

Additionally, research has been aimed at contributing to smarter vehicles that can drive 

with significantly less human interaction, though this research is more about sensors and 

situation awareness than transmissions and connectivity [32]. In a similar forward-

looking approach, research has also been directed at network management of the vehicle 

communication systems that are expected in the near future [33]. This research 

approaches the interesting challenges of multiple end-users with different mobility 

characteristics and throughput needs, and how best a management system can balance 

fairness.  

Cottingham et al. were able to build coverage maps specifically for vehicular wireless 

communication, but only with very large amounts of SNR data. This research represents 

a significant step in understanding vehicular wireless transmissions, but their focus was 

on very high speed networks in an urban location [18].  
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While relevant to describe the space of the research in this thesis, most of the related 

work in wireless communication from vehicular systems is too low-level to apply to this 

work, too localized to use a broadband cellular access network, too forward looking to 

consider real world constraints in a region with only modest cellular data coverage, or 

requiring too much data to be adaptable as per the requirements of the system in this 

thesis.  

 

2.1.8 Connectivity autocorrelation 

Connectivity of wireless links demonstrates temporal autocorrelation which is dependent 

on the quality of the link and the amount of time between measurements. The point is 

relevant to this research because pings are captured and reused later for prediction. The 

available research is inconclusive to determine how long these pings remain useful in a 

model.  
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Figure 2: Conditional probability of connectivity as a function of time shift [34] 

In Figure 2, good, medium and bad describe the overall signal strength between the pair 

of wireless nodes, 1->1 is an ON ping following another ON ping [34]. Horizontal lines 

would indicate no change in the autocorrelation of connectivity with respect to time 

elapsed. What is visible, however, is that very strong and very weak networks show 

stable autocorrelation for ON and OFF pings respectively. Otherwise, the autocorrelation 

tends to fall off. This indicates that as time progresses, the effects of randomness in this 

study’s  network  overwhelmed  the  predictive  power  of  previous pings. Also, ON and OFF 

pings exhibit different temporal autocorrelation properties from each other and may need 

to be treated differently by SPRITE in future work.  

In research for an application called BreadCrumbs, ping data was successfully used for 

evaluating  a  predictive  model  “several  weeks”  after  it  was  first  collected  [19].  
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2.2 Pre-hospital STEMI care 

Each year in America, about 250,000 people have a STEMI (ST-elevation myocardial 

infarction), the deadliest kind of heart attack, and nearly one-third of them do not receive 

treatment [35]. STEMIs are particularly dangerous because every 30 minutes following 

the onset of symptoms results in a 7.5% increased chance of morbidity within a year [36]. 

 

Figure 33: Mortality reduction from a STEMI as a function of time to treatment [55] 

See Figure 33 for the plotted mortality reduction as a function of time till treatment.  

 

2.2.1 STEMI diagnosis and treatment 

Diagnosis of a STEMI is typically made using a 12-lead electrocardiogram (ECG). The 

ECG is a several seconds snapshot of the electrical potential of the heart muscle 

measured on the skin at 12 points around the heart. Each of these 12 leads is displayed in 

a standard configuration: a three by four rectangle. Each beat of each wave is composed 

of several components: the P wave, the QRS complex, the T wave, the ST segment, the 

PR interval, and the QT interval. STEMIs are often recognized by slight changes in the 

ST segment of certain combinations of leads. Some STEMIs present with extremely 
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noticeable patterns in the ECG. Others can be so difficult to recognize that they require 

the trained eye of a cardiologist. 

Treatment at the UVA Medical Center requires a small, specialized lab called the 

catheterization  lab  (“cath  lab”  for  short)  to  be  opened  and staffed. The hospital does not 

have sufficient resources to keep it running all the time. When a patient with a STEMI is 

en  route  or  present  at  the  hospital’s  Emergency  Department,  a  physician  can  activate  an  

alert. This decision initiates a chain of events that impact over a dozen care providers. If 

this happens when the lab is not open, a cardiologist and two nurses who are off-duty but 

on-call are summoned to the hospital, usually from their homes. This process can take up 

to 45 minutes [37]. If a STEMI patient is en route within 45 minutes of the hospital and 

the  “cath  lab”  is  not  open,  then  faster  E.D.  decision  making  directly  yields  earlier  

treatment which, as mentioned above, directly improves patient outcomes [36]. 

Additionally, about a third of hospitals in America are rural [56]. Opportunities for time 

savings are even greater in these locations because of the distances involved.  

 

2.2.2 Existing transmission systems 

Aside from speed of recognition, Emergency Department physicians also have an interest 

in making this initial decision as accurate as possible. False negatives can result in patient 

death, treatment delay, or both. False positives, on the other hand, can result in provider 

fatigue and financial costs to the hospital. For these reasons, diagnosis has begun to move 

forward to pre-hospital care. Ambulances can now be equipped with 12-lead ECG 

capturing machines and devices to transmit the diagnostic ECG wirelessly to the hospital. 
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In this way, a physician can read the ECG and decide to activate the alert before ever 

laying eyes on the patient. Giovas et al. has independently validated that the transmission 

of ECGs from moving vehicles is feasible and improves patient care [38].  

Because of other activity in the Emergency Department and the risks associated with 

systemic indecision, physicians are willing to wait for a transmission for two minutes. 

This means that the best possible scenario is a successful transmission within two 

minutes. If success is not possible within this timeframe, patient outcomes are better 

served by the physician making a decision without the ECG in hand [37].  

There are two types of systems that transmit 12-lead ECGs wirelessly from ambulances 

to hospitals: direct and indirect. Direct systems include the machine which actually 

captures the data. These are sold by large-scale medical device suppliers like Medtronic, 

Philips, and Zoll. Because they have access to the actual waveform points, a relatively 

small amount of data, they can transmit it over the commercially-available, wireless voice 

networks. These systems tend to have initial setup costs in the tens of thousands of 

dollars as well as monthly licensing and maintenance fees to be borne by hospitals as 

well as the Emergency Medical Service (EMS) rescue squads that run the ambulances. 

Because hospitals buy many other pieces of equipment from these companies, the 

relationships and the sales force are already in place at an institutional level. EMS squads 

typically have much smaller budgets making the costs potentially more of an issue for 

them. This type of solution dominates the market [37], however many rescue squads and 

hospitals around the United States do not have a system in place because the costs are 

prohibitive. Additionally, many of the drawbacks with the direct systems stem from their 
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nature as “black-box,” inflexible tools with minimal user-interactivity. These systems 

provide no feedback to the user regarding the likelihood of the transmission being 

successful or even whether or not it actually was received. If it failed, the EMT must be 

told by the Emergency Department, at which point another attempt can be made. 

Indirect systems use an existing 12-lead capture device and handle the transmission as a 

separate function. One example of an indirect system is called FastECG [39]. It is a 

smartphone application designed to take a picture of the printout from any 12-lead 

capture device and then wirelessly transmit it as an image to a centralized server. Then a 

physician with an internet connection is able to look-up the image through the FastECG 

website. Indirect systems are much less expensive and can capture ECGs from any brand 

of 12-lead machine. This capture, however, dramatically increases the amount of data 

because a series of waves must be converted to a photograph. The additional data and 

smartphone-platform-limitations necessitate that the transmissions go over commercial 

data networks instead of voice networks. Data networks have higher throughput but often 

much less coverage. This can mean potentially lower availability than systems like the 

direct ones which use voice networks.  

A number of similar research-based systems have also been developed. As part of the 

Code Blue research effort at the University of Harvard, a wireless sensor infrastructure 

was prototyped for Emergency Medicine workflows. The system, called miTag, is 

designed to capture and transmit a range of patient vitals over reliable wireless mesh 

networks. The technology is focused on rapid triage for large-scale disasters capable of 

overwhelming all local hospitals. A test was performed with emergency responders 
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reacting to a simulated car wreck at a busy intersection in Washington, DC [40]. A 

similar, operational and more expansive effort in Tucson, Arizona was recently shut 

down because of a funding deficit [41].  

For a project called TeleTrauma at the University of Massachusetts, a system was 

prototyped to transmit ECG and images from an ambulance to the hospital. The 

researchers conducted a test where they transmitted data from a laptop while driving 

around Amherst in a car. The transmission updated compression levels on the image for 

recognized changing bandwidth but did not consider delay tolerance [42].  

Some of the cities around the world with the best commercially available wireless 

coverage are in East Asia, so it is reasonable to expect there to be advanced research 

efforts attempting to leverage wireless networks in those cities. A system for ambulances 

was prototyped and field tested in Taiwan over a 3.5G mobile broadband network using 

sensors connected via Zigbee to a smartphone. Sensors measured ECG, blood pressure, 

pulse, body temperature, and created a real-time video feed. All of this data was collected 

for a small number of real patients in the city and transmitted over the network to the 

hospital through a smartphone. The researchers claimed that network connectivity and 

available bandwidth were never an issue. In fact, their planned future work is more 

sensors and more data over 4G networks. This study presents an interesting counterpoint 

to Charlottesville because of the sharp contrast in wireless bandwidth availability [43]. 

Similar systems also exist in Europe on high speed wireless links without the need to 

consider constraints like HIPAA [44].  
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The  Cincinnati  Children’s  Hospital Medical Center in concert with the GlobalMedia 

Corporation developed an operational system called TransportAV. This system consists 

of a camera attached to a gurney which facilitates doctor-to-patient interaction while 

patients are in transit. The system attempts to be real-time, so frame rates fall when 

network bandwidth drops [45]. This means that any video captured of patients in transit 

through low network coverage is going to be of extremely low quality. TransportAV 

values data immediacy over data resolution, whereas the system discussed in this 

research is operating in a near real-time regime. 

 

2.2.3 Opportunities  

ECG transmission systems have the potential to use context to perform much more 

intelligently. For example, the EMT could be notified whether or not the transmission 

was successful, and a failed transmission could be re-initiated automatically until the two 

minutes time limit. Furthering this point, the lower availability of data networks with 

respect to voice networks could be mitigated by transmitting from a moving vehicle 

supported by real-time knowledge of nearby bandwidth conditions.  For example, when 

the  patient’s  ECG  is  captured,  there  may  not  be  any  wireless  coverage.  If  the  ambulance  

is driving towards the hospital, however, coverage may return in a matter of seconds. If 

this is the case, an intelligent system could predict this and still attempt the transmission 

if it is likely to succeed within two minutes. This example and the previously described 

constraints associated with pre-hospital STEMI care imply an interesting point; on an 

ambulance driving towards the hospital with uncertain cellular coverage, an EMT and the 
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Emergency Department could benefit from knowing how likely a transmission is to 

succeed within two minutes. This research provides a novel, accurate algorithm to deliver 

this feature. FastECG, the nearest existing system, provides the desired post-transmission 

feedback, but it does not re-initiate after failure or provide any pre-transmission 

indications of the likelihood of success. Also, the transmitted photographs in FastECG 

are around 180 Kilobytes. For reasons discussed below, these images can be further 

compressed to make the transmissions more likely to succeed.  

 

2.2.4 ECG as image 

Without complex corporate agreements to obtain the proprietary waveform data directly 

from the ECG machines, the obvious way to digitize the ECG onto a smartphone is by 

simply taking a photograph of the printout from the machine. This solution, however, 

dramatically increases the amount of data necessary to represent the raw information, 

because waveform points require substantially fewer bits to represent than a JPEG image 

of those points. Images, however, can be compressed very efficiently. This raises an 

additional question: how fine does the resolution of the image have to be for the ECG to 

remain readable by a physician? A more compressed image would have a smaller file size 

and be easier and faster to transmit in a variable network.  

 

2.2.5 File size minimization 

Since the best possible outcome for this transmission system is successfully sending the 

ECG image, the file size of the photograph should be as small as possible to increase this 
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likelihood. Several methods were considered, but the final decisions were significantly 

impacted by platform and application limitations.  

The first step was cropping. ECG strips are longer and thinner than the standard 

resolution of a landscape photograph. Through experimentation, if the ECG is lined up 

with the top of the photograph, the bottom two-fifths of the image can be cropped away 

reliably without removing any parts of the ECG.  

Physicians in the Emergency Department at UVA requested that the color remain in the 

image because they are accustomed to using the red gridded background. Also, for a 

transmission that is slow to arrive, they would rather get parts of the image in a readable 

resolution rather than the whole image progressively. For these two reasons, the 

compression methodology chosen was to compress the ECG down to the lowest readable 

value, then break it into a grid of smaller images sent separately and recombined on the 

web server as they arrive. 

Several compression methods for the whole ECG photo were attempted. The iOS 

platform has convenient image compression in PNG and JPEG formats. PNG 

compression unpredictably changed the colors of the image and did not reduce the file 

size any better than JPEG. JPEG, which is generally recommended for photographs, was 

visibly much clearer. Also, no simple vector tracing APIs could be found to vectorize the 

ECG image or extract the waveform data points.  

After attempting numerous JPEG compression methods and informally examining dozens 

of compressed ECG photographs with two medical professionals (a highly trained 

emergency medicine cardiologist and a relatively novice medical student), a compression 
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methodology was chosen to minimize file size and maximize readability. This method is 

a two-step process within the iOS platform: (1) compression using the native iPhone 

function UIJPEGRepresentation() with the parameter 0.5, and (2) resolution reduction by 

a factor of five. The original captured photo is at a resolution of 2592 by 1936 pixels and 

is about 1.5 Megabytes in file size. After the cropping and compression discussed above, 

the resulting image is 519 by 233 pixels and averages 27.7 Kilobytes in file size. In 

Figure 3, the left is the original, uncompressed picture. The right image is compressed 

using the method described above.  

 

Figure 3: Example of photo compression on 12-lead ECG 

The preliminary data collection effort verified that JPEGs of about 1.8 Kilobytes could be 

transmitted reliably around the Charlottesville area. For this reason, the 28 Kilobytes 

compressed ECG was divided into a grid of 16 smaller images of about 1.8 Kilobytes 

each. These files were the actual transmissions.  

 

2.2.6 Survey validation 

A formal, randomized survey was built to validate that this specific method of file size 

reduction does not affect the readability of an ECG. Twenty different ECGs were chosen 

and photographed. These were built into an online survey using SurveyGizmo where they 

appeared in a random order along with a short story like what might accompany a 
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transmitted ECG from an ambulance [46]. In any single survey, whether or not each 

image was compressed or uncompressed was also a random event with probability 0.5. 

As of April 2012, this survey is still awaiting deployment by the physicians in the 

Emergency Department at the UVA Medical Center.  

 

2.2.7 Near real-time mobile health telemetry 

Near real-time (NRT) in the context of mobile health telemetry indicates a reference to 

the amount of delay expected and tolerable in the system. Real-time telemedicine tends to 

focus on capabilities like doctor-patient video streaming. Totally asynchronous 

telemedicine is something more akin to a patient e-mailing  a  doctor  the  day’s  diagnostic  

data. Both of these extremes in the time domain present an opportunity to be ignorant of 

highly variable network connectivity like the edge of a cellular network. In this kind of 

environment, video streaming is impossible and a time-insensitive e-mail can wait several 

hours or more. NRT transmissions operate in-between these two other paradigms. These 

transmissions are time-sensitive but tolerant of some delay depending on the application. 

For this research, the delay tolerance is less than two minutes, because a transmission that 

cannot complete within this amount of time is better off not attempted. 
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2.2.8 Preliminary data collection  

Plan 

A preliminary round of data collection was undertaken to get a basic understanding of the 

network conditions: throughput and reliability. In each of fifty-two locations within 

twenty five kilometers of the Emergency Department (Figure 4) a car was parked and a 

set of transmissions was attempted. Five groups of twenty JPEG images were uploaded 

from a custom-made iPhone application to our server. The groups of images were 

similarly compressed jpegs within group but of progressively larger sizes. 

The average file size from each of the five groups is below: 

 

 

Group 
Number 

Average 
Size of 
Files 

1 1.86 KB 
2 2.51 KB 
3 3.71 KB 
4 9.06 KB 
5 39.50 KB 

 

 

Figure 4: Preliminary data collection locations 

 

Results and interpretation 

A simple throughput calculation was performed and attributed to each location based on 

the size of the files received and the time elapsed. Many of the locations tested had no 
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connectivity at all and therefore zero throughput. The others ranged from 30 

Kilobytes/minute up to well over 1 Megabyte/minute. The data is plotted in Figure 5.  

 

Figure 5: Throughput measurements from preliminary data collection 

In the preliminary data collection effort, each data point in the above figure is the 

reduction of a stream of data uploaded from a single, precise location and time around 

Charlottesville down to a single measurement of throughput in Kilobytes per minute. 

While many of these values are 0, implying no connectivity, all of the rest were at 30 

Kilobytes per minute or greater. The aim of this project is to upload a file that is typically 

less than 30 Kilobytes within only two minutes. The logical conclusion from these two 

statements is that, when not moving, connectivity is a perfect predictor of success and 

while driving in a moving vehicle, nearby measures of connectivity might be a predictor 

of success. This strongly indicates that real-time measures of bandwidth need not be 

exhaustive; a small amount of information about the network at a point (connectivity vs. 

no connectivity) may be enough for an application like this one.  
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2.3 Predictive modeling 

The predictive application feature described in this research requires a data-supported 

model. There are three decisions to be made: the type of model, the number of data points 

required for significance, and how to evaluate it.  

 

2.3.1 Modeling methods 

There are countless modeling techniques in the field of machine learning. For this 

application, we are using predictor variables to model a binary categorical response: 

success or failure of a transmission as defined above. Since basic linear models cannot 

model a categorical response, logistic regression is the standard adaptation. This 

technique, instead of fitting to 0 or 1, models the probability of the outcome being a 1. 

Since the response variable is transformed to a continuous number between 0 and 1, a 

linear model can be fitted to a logistic function, which also takes the values from 0 to 1. 

Linear models tend to be among the simplest and most interpretable, so logistic 

regression is a natural choice. Logistic regression works well on relatively small data sets 

[47] and is computationally tractable for repeated, real-time calculations on a smartphone 

platform.  

Decision trees and neural networks are also simple, fast, and interpretable. Additionally, 

because of the ways they split the data, it is possible for these methods to discover 

multiple regions of the data behaving differently. For example, since the speed of the 

vehicle can be expected to increase bandwidth in some ways and decrease it in others, a 

decision tree or a neural network might be able to split the data set in ways that identify 
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the points for which speed helps and the ones for which it does not. Like logisitic 

regression, decision trees and neural networks are computationally tractable for a STEMI 

transmission system.  

There are numerous other techniques (e.g. support vector machines, random forests, and 

generalized additive models), some of which have been implemented successfully on 

smartphone platforms [48] [49]. These methods all require a lot more computation for 

each measurement which can typically be augmented by cloud computing. If the 

calculations must all be performed on the client device like, for example, predicting 

network service from regions with no connectivity, then using a server for help with 

computations is not possible. Also, the more computational methods are typically much 

less interpretable than logistic regression models and decision trees.  

 

2.3.2 Power analysis and EPV 

Considerable research has been performed regarding the number of data points necessary 

to achieve statistical significance for a logistic regression model. Peduzzi discusses the 

concept of Events Per Variable (EPV) to categorize the number of data points used to 

train a model with respect to the number of relevant predictor variables and likelihood of 

the categorical events. EPV for a binary classifier is the number of less common 

outcomes (e.g. for a medical experiment of 1000 patients of which only 900 survive, the 

less common number of outcomes is 100) divided by the number of predictor variables:  

 EPV = # of outcomes / # of predictors 
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Using Monte Carlo simulation and sampling from a large, modeled data set, he 

demonstrates that 10 EPV is sufficient to avoid the common problems of models built on 

too little data [50]. Vittenghoff using a broader range of initial data sets demonstrates that 

10 EPV is actually quite conservative, and significance can be achieved with as few as 5 

EPV [47].  

 

2.3.3 Evaluation methods  

The evaluation of logistic regression models also represents an interesting body of 

research. Receiver Operating Characteristic curves have been used since first invented 

during World War Two for analyzing radar signals. The curve shows the rate of true 

positives vs. false positives for a binary classifier as the threshold probability is varied 

from 0 to 1. This graph shows an intuitive, graphic way to choose how to use a classifier 

like a logistic regression, especially when the risks associated with false negatives and 

false positives are not the same.  

The area under an ROC curve is equivalent to the probability of correctly discriminating 

between a randomly chosen success and failure. This value, AUC, is a commonly used 

metric to compare the performance of different predictive models partially because as a 

metric, it is independent of the ratio of successes to failures in the data set [51]. AUC is 

also used by the company, Kaggle, to evaluate the submissions to its predictive model 

challenges [52].  

AUC is primarily a measure of discrimination because it evaluates how well a model 

separates between the binary states. The complimentary set of metrics is based on 
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calibration, a measure of how accurate the probabilities actually are. Depending on the 

application, occasionally calibration is more relevant. In this research, the end result of 

the  model  is  a  simple  determination  of  “probably  will  send”  vs.  “probably  will  not  send.”  

Accuracy in this regime points directly to discrimination rather than calibration which is 

why, for this research, our focus is on measures of discrimination rather than calibration. 

Similarly, we used one-third-sized test sets and standard cross-validation methods.  

Bootstrapping is also a well-researched technique for model building and evaluation [53]. 

In this case, bootstrapping to obtain distributions for the model coefficients and AUC will 

demonstrate how stable the model is. If the distributions on the coefficients have very 

low standard deviations and 95% confidence intervals not including 0, then there is 

confidence that the value is stable and significant. AUC ranges from 0 to 1, with 1 

representing perfect classification. For a bootstrapped distribution of AUC, the higher the 

values are, the better and more stable the model.  

 

2.4 Synthesis 

The pre-hospital STEMI care usecase is an opportunity to leverage unexplored 

opportunities in application-specific, limited mobile bandwidth estimation. Because of 

the specific demands associated with transmitting ECGs, exhaustive bandwidth 

characteristics are not needed. This presents an opening to use predictive modeling and 

modest data collection to create a classifier that may be of use to actual care providers.   
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CHAPTER 3 

3 Problem statement 

3.1 General problem 

The desired output of this research is a simple classifier that provides a real-time 

prediction of the likelihood of success of a transmission given the size of the file, the 

allowable delay, and bandwidth characteristics from a moving vehicle based on periodic 

probing. The size of the file is about 28 Kilobytes. The allowable delay is two minutes. 

The inputs are any real-time measures of bandwidth or factors expected to contribute to 

bandwidth as well as any non-real-time indicators of cellular coverage like the published 

service maps. The vehicle is within a 45 minute drive of and bound for the UVA Medical 

Center Emergency Department. The prediction must be performed and updated in real-

time from a lean, smartphone platform that does not necessarily have a data connection at 

all times.  
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The model will be evaluated using standard methods in the field of predictive modeling: 

test sets, bootstrap confidence intervals, ROC curves, and AIC. Because of the 

generalizability constraints, the model will also be subjected to less conventional methods 

of geographic verification.  

 

3.2 Specific instance 

Pre-hospital STEMI care is an interesting usecase for near real-time mobile health 

telemetry. Unlike many other usecases, knowledge of the likelihood of success before the 

transmission is attempted could be very useful to care providers. The fundamental effort 

of this research is how to obtain this estimate given the real world constraints of an actual 

emergency medicine system. Project-level constraints have dictated that the work be done 

on an AT&T iPhone 4 servicing the Emergency Department at the University of Virginia 

Medical Center in Charlottesville, Virginia. The algorithm designed and validated in this 

research is for the STEMI transmission system, and it must be adaptable to real-world 

network updates as well as generalizable to other networks, hospitals, and cities. This 

research is an enabling component of a pre-hospital STEMI transmission system that is 

intended to provide the capability to EMS agencies around the country, particularly in 

more rural areas that may not have already purchased another system. These real-world 

system constraints have driven many of the choices made in developing the algorithm.  

This predictive model is based on a snapshot of network conditions to maintain 

consistency, so all data were collected over the period of only a few weeks. Adaptability 

of the method going forward is dealt with separately. There were two types of data points 
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collected: attempted transmissions and pings. Each of these data points includes a 

timestamp, GPS location and corresponding accuracy, and speed. The problem of this 

research is using real-world, accessible data to provide feedback to emergency responders 

that is fast enough to be useful and accurate enough not to be ignored.  

The scope of this research and contribution are limited to an empirical framework for 

measurement based quality-of-service. The knowledge gained is substantial, and it will 

be invaluable for the greater project-level effort of deploying a prediction algorithm in an 

operational system.   
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CHAPTER 4 

 

4 SPRITE: Smartphone Predictions in Real-time for 

Informed Transmissions of ECGs 

4.1 Algorithm  

For the purpose of this thesis, we will consider the predictive model to be a part of the 

transmission algorithm which includes all of the methodology behind managing the 

transmission  and  making  decisions  independent  of  the  model’s  results  by  using  context  

information to identify unexpected deviations. For example, if the application loads and 

every ping to the custom webserver is OFF, but connectivity exists to other websites, then 

regardless  of  the  model’s  prediction,  the  application  should  warn  the  user  that  the  server  

may be disconnected.  
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The best model created for the probability of a successful transmission in this application 

given all of the possible real-time and prior predictor variables was based on only a single 

variable: the percent of all pings collected within a 1 kilometer radius that were ON, and 

it is significant well below the 0.001 level:  

𝑃[𝑠𝑢𝑐𝑐𝑒𝑠𝑠  |  𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝑂𝑁_1𝐾𝑀] =   
exp  (−4.666 + 7.614 ∗ 𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝑂𝑁_1𝐾𝑀)

1 + exp  (−4.666 + 7.614 ∗ 𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝑂𝑁_1𝐾𝑀)
 

For the best accuracy, success is predicted when PERCENT_ON_1KM, the percentage of 

all of the pings within 1 kilometer of the current location that are ON, is greater than 

0.648. This yields an interesting result: the success of a small upload from a mobile 

device in a near real-time state is largely driven by nearby measures of connectivity. An 

additional intuition is that an increase in 10% of the nearby pings being ON results in an 

approximate doubling of the probability of successful transmission.  

 

4.2 Data collection 

4.2.1 Methodology and organization 

To build the most accurate model, the data collection process was designed to be as 

similar as possible to the real users’  workflow.  Each  data  point  represents  a  location  and  

time and speed from which a transmission of a JPEG averaging 27.7 Kilobytes was 

attempted to a central server from a moving vehicle bound for the hospital. If all 16 

component images are received and acknowledged by the server within two minutes, this 

data  point  is  a  success;;  otherwise  it’s  a  failure.   
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Data points were carefully chosen to maximize the variability of the potential predictor 

variables discussed above as well as the results. We anticipated about three of the 

potentially dozens of predictor variables would be significant. If half of the data collected 

are successes, then 60 points and three variables yield an EPV of ten, which is a 

conservative goal considering the literature.  

Since real-users will transmit ECGs en route to the hospital, this data collection was 

organized into routes as in Figure 6.  

 

Figure 6: Data collection points organized into routes 

 

4.2.2 Ping method 

In addition to success and failure of the transmissions, there was a clear opportunity to 

collect some lesser measurements continuously before and between the transmission 

attempts. It was anticipated that these real-time measurements could be significant 
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predictor variables. For predominantly two reasons, we chose to simplify these real-time 

measures of bandwidth to simple connectivity rather than any of the myriad choices from 

the bandwidth estimation literature. First, the preliminary data collection effort strongly 

implies that more information than simple connectivity is simply unnecessary. Second, 

this application will be deployed in a moving ambulance, and to maintain accuracy in the 

geospatial regime, measurements need to occur so fast that there is simply not sufficient 

time for anything more than a simple measure of connectivity. 

The motion of the vehicle provides the most unique constraint of this work. GPS 

measurements on an iPhone 4 while driving around Charlottesville are consistently 

accurate to within 50 meters or less. If a measure of real-time connectivity is accurate in 

the space domain to within 50 meters, the time elapsed between the start and finish of 

that  measurement  should  be  less  than  time  taken  to  drive  out  of  the  measurement’s  

accuracy: 50 meters / 45 mph = 2.8 seconds. Any measure of real-time bandwidth for use 

as a predictor variable must complete within 2.8 seconds to maintain the existing 

geospatial uncertainty. Experimentation showed that this amount of time is barely enough 

to send and receive an acknowledgement for a single packet of negligible size. This time 

constraint completely eliminates the possibility of using any of the bandwidth estimation 

techniques based on transmitting multiple packets of different sizes because there simply 

is not sufficient time. The method that was chosen for real-time connectivity (ping) is 

NSURLConnection() in the Apple CocoaTouch platform. This function was used to 

upload a 56 byte file and download a 16 byte acknowledgement. There were a number of 

reasons for this choice. First, as a higher level networking function, it keeps the cellular 

radio powered for faster recognition of network coverage when moving out of a region 
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without coverage. Second, as a method that actually transmits a file and receives an 

acknowledgement, this method is more informative than simpler methods like 

Reachability() in areas with weak and/or variable signal strength. A ping with 

NSURLConnection() typically takes between 0.7 and 1.3 seconds, but was observed to be 

as slow as 2.5 seconds and as fast as 0.4 seconds. The decision to use this method 

represents a calculated tradeoff between location accuracy and the amount of bandwidth 

information that can be obtained. We have chosen to sacrifice precise, real-time measures 

of throughput that cannot be associated with a location for simple pings that can be linked 

to a location and time. 

 

4.2.3 Results and interpretation 

Transmissions were attempted from 83 different locations around Charlottesville as 

shown geographically in Figure 7. These data points (green is a successfully 

acknowledged transmission, red is failure for some reason, blue is the location of the 

Emergency Department) are overlain on the AT&T service map.  
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Figure 7: Data points overlain on the AT&T coverage map 

It is worth noticing on this map (Figure 7) that the failures are all clustered into three 

general regions of the geographic space that generally corresponds to the locations AT&T 

claims to have weaker service.  

 

Figure 8: Ping data from a quadrant of the map 
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Additionally 6388 pings were captured during the data collection effort. The image in 

Figure 8, shows all of the captured pings from the north west corner of the considered 

area. The blue locations indicate ONs, the red locations indicate OFFs. Using this map, it 

is possible to get a general understanding of the variability present in this factor.  

 

4.3 Forward-looking implementation 

Data collection for this model was intentionally performed quickly enough to ensure that 

no long term trends in the network could be noticed, which is to say, data was collected 

between AT&T network updates. In practice, AT&T updates the network around 

Charlottesville every few months. It remains to be seen how long pings are informative 

for the prediction of future transmissions. In the BreadCrumbs system, ping data was 

used for future bandwidth prediction for as long as several weeks [19]. There is not 

enough literature to support any kind of long term plan to deal with the changing 

temporal autocorrelation of broadband network connectivity data. For this reason, we 

only use the newest ping data replacing an older point captured at the same location. All 

of the data, however, are stored for later examination and model improvement. 

Additional application-level safeguards are present to mitigate the biggest risks, false 

positives: predicting success when a transmission will actually fail. Since large changes 

in broadband commercial networks tend to be improvements, while small changes tend to 

be local outages, it is possible that positive and negative pings may have completely 

different autocorrelation functions. This is supported, at least in a shorter time frame, by 
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Cerpa’s  work [34]. This is a particularly important area for future work, and it could 

directly build upon and significantly improve this research.  

In an effort to provide an estimate to care providers regarding the utility of the 

implementation of this application in the emergency pre-hospital STEMI care system, a 

method was devised to estimate a prior probability of successful transmission. Applying 

the model to the location of every ping in the dataset provides a very rough assessment of 

this utility. For the Charlottesville area covered in the test effort, 81% of locations 

measured for connectivity would be predicted as having successful transmissions. This 

estimate would likely be very different for the catchment areas of other hospitals, but the 

method provides a rough sense of the potential value for the care providers.  

To implement this model in a transmission algorithm for an actual application in 

Charlottesville, we would recommend a number of considerations. First, a plan needs to 

be devised for scalability especially with regard to multiple devices. All of the ping and 

transmission data should be captured and stored centrally for routine analysis. There will 

be room for improvement of the transmission algorithm over the long run. Maintenance 

would likely be quite modest. The server-side software is light and could reside on 

existing hospital machines.  

To implement this model in another city, we would recommend verifying the principle 

assumptions of the model: (1) the network throughput anywhere there is service is very 

high relative to the 28kB size image file, and (2) that connectivity is generally improving 

en route to the hospital. If these two are met, there is very little reason to believe that 

results would be different. Similarity could be validated as quickly as a couple of days of 
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data collection and analysis. This process would also serve the dual purpose of seeding a 

ping database before any operational runs and providing data for the calculation of a 

rough prior probability estimate.  

Maintenance of the application is likely to be a hospital consideration. The server 

implementation is light and simple. We expect a well-trained hospital IT staff would have 

little trouble keeping this system functioning for the foreseeable future.  

If significantly greater accuracy is needed for a prediction, the circles used for ping 

collection could be changed to ellipses. Instead of a radius of all encompassed pings, an 

ellipse could be stretched along the direction of motion covering the roads the EMT is 

likely to drive toward the hospital. This solution represents substantially more work than 

the current implementation for a number of reasons. First, the database query on the 

phone would become substantially more complicated and memory-intensive. Second, this 

method would require a road network to be kept on the phone in memory as well as a 

learning algorithm for likely paths taken by the driver. EMTs are a bit unpredictable, so 

dictating a route or using data from non-EMT drivers might not be as accurate. It is our 

belief, however, that this kind of solution could be even more accurate than the model 

presented above.   
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CHAPTER 5 

5 Evaluation 

5.1 Standard methods 

The ROC curve for this model on the data set (Figure 9) has an area under the curve of 

0.96. This means that the conditions of a randomly chosen pair of success and failure can 

be distinguished 96% of the time.  
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Figure 9: Receiver Operator Characteristic (ROC) curve of the model 

As a metric, AUC can be overly confident. Steyerberg et al. outlines a technique to 

estimate this optimism: the difference between the bootstrapped calculations for AUC 

estimated on the same and different data. Each bootstrapped sample includes about 63% 

of the data points in the whole set. Each calculation of AUC can be performed on the 

same 63% of the data or the other 37%. The difference between these two calculations is 

an accurate estimate for the final optimism calculation on the full data set [53]. For the 

logistic model in this thesis, the optimism on AUC is about 0.0004. This is miniscule, and 

therefore very encouraging for the generalizability of the work.  

Figure 10 is another visual representation of the same data in the ROC curve, but from a 

different perspective. It shows fitted values against the actual results. The perfect model 

would show all of the points clustered in the top right and bottom left corners. Like the 
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ROC curve in Figure 9, the actual vs. fitted graph helps show the tradeoffs inherent in 

choosing a threshold probability.  

  
Figure 10: Actual results vs. Fitted values 

Bootstrapping was performed to obtain confidence intervals on the model coefficients 

and the AUC metric. For the model coefficients, it is clear that they are very stable with 

tight probability distributions. Also, neither has a confidence interval including 0, which 

indicates significance.  

Figure 11: Bootstrapping results for 1000 iterations 

on the model intercept 

Figure 12: Bootstrapping results for 1000 iterations 

on the model coefficient 
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The following is a bootstrapped graph of AUC, area under the ROC curve.  

 

Figure 13: Bootstrapping results for 1000 iterations on the area under the ROC curve 

The 95% confidence interval for this metric is 0.895 to 1.0 with a median of 0.963. For 

the application described in this research, these indicate a very reliable and accurate 

model.  

As mentioned above, evaluation of the model focused on measures of discrimination 

rather than calibration. That being said, a standard measure of calibration was calculated: 

Brier Score. This value ranges from 0 to 0.25 representing a perfect model and a 

completely useless one respectively. For the model discussed herein, the Brier Score was 

0.077. This represents decent calibration but not exceptional. The fact that the 

discrimination metrics are better than the calibration ones is acceptable for this model 

because of the way it will be used. As implemented, the result is a simple binary 

indicator. In the future, calibration may be more useful. For now, this Brier Score value is 

acceptable but not exceptional.  
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5.2 Geographic cross-validation 

Since data were collected in routes and the routes were organized spatially almost like 

spokes, a cross validation technique was designed to work specifically for this data to 

evaluate its geographic generalizability. From the 13 routes, 9 contiguous ones were 

chosen for a training set and the remaining 4 were the test set. This model was then 

compared with each of the other 12 models created by rotating this setup all the way 

around. In Figure 14, the points under the blue section are training points, while those 

under orange are testing points.  

 

Figure 14: Diagram of Geographic Cross-Validation 

The following table shows the results from the Geographic Cross Validation (GCV) 

rotating technique described above:  

Model 
Number AUC Intercept 

Ping 
Coefficient 

% ON 
Cutoff 
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1 0.962 -4.134 6.829 0.691 
2 0.908 -4.448 7.611 0.691 
3 0.917 -4.580 7.899 0.824 
4 0.938 -4.041 7.209 0.823 
5 0.922 -4.316 7.201 0.65 
6 1.000 -3.934 6.358 0.65 
7 1.000 -4.201 6.616 0.65 
8 0.949 -5.808 9.113 0.65 
9 0.956 -5.476 8.798 0.666 

10 0.956 -5.610 8.998 0.709 
11 0.936 -5.738 9.219 0.709 
12 1.000 -4.331 6.835 0.709 
13 1.000 -4.106 6.634 0.691 
ALL 

DATA* 
0.960 -4.666 7.614 0.648 

AVERAGE 0.957 -4.671 7.640 0.701 
STD DEV 0.034 0.709 1.053 0.059 

The important points to note in this table are the consistency across all of the models. 

While they are not identical, the standard deviations within column are all small relative 

to the magnitude of the values. Also, the average of all of the models is very similar to 

the model made with all of the data. This model has an AUC of 0.96 and coefficients as 

in the equation above.  

An additional round of cross-validation was undertaken to ensure that no single route was 

affecting the model so much as to suspect the claims of geographic generalizability. To 

prove that no route had too much of an impact, 13 models were built and evaluated using 

random training and test sets with each of the 13 routes removed from the data set. In 

Figure 15, the points under the orange section were removed from the data set. A model 

was built and evaluated using random data points from the remaining points in the blue 

section. 
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Figure 15: Diagram of route-removed Geographic Cross Validation 

The table below shows this data: 

Deleted 
Route AUC Intercept 

Ping 
Coefficient 

% ON 
Cutoff 

1 0.957 -4.714 7.574 0.697 
2 0.964 -4.431 7.395 0.71 
3 0.965 -5.694 8.808 0.701 
4 0.961 -4.425 7.518 0.69 
5 0.972 -5.193 8.542 0.696 
6 0.963 -4.495 7.477 0.69 
7 0.961 -4.802 7.736 0.692 
8 0.962 -4.892 7.811 0.69 
9 0.961 -4.620 7.463 0.721 

10 0.957 -4.851 7.915 0.696 
11 0.986 -6.395 10.353 0.677 
12 0.959 -4.761 7.743 0.692 
13 0.960 -4.894 7.781 0.715 

AVERAGE 0.964 -4.936 8.009 0.697 
The obvious outlier in this table is for route 11. This route had more failed transmission 

attempts than any other. The intercept and coefficient for this model appear very different 

from the others. We can be reassured though that its AUC is better than the average, and 
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the  actual  significant  variable’s  cutoff  value  was  still  close  to  the  other  rows.  This  table  

makes a strong claim for the stability of the data and similarity across all 13 of the routes.  

 

5.3 Additional evaluation 

This section will provide analysis and insight into the variables that were not used in the 

model as well as data points for which the model prediction was incorrect.  

5.3.1 Insignificant variables 

Many of the variables that were expected to be predictive were actually moderately 

useful, but were not capable of performing better than the percent of ON pings in one 

kilometer, or when added to a model that also included this variable, did not add any 

extra performance. These variables dropped out of the feasible models for a number of 

possible reasons. Some of the variables were dropped out by step-wise regression using 

AIC. Others were added to models and showed no significance, a confidence interval that 

included zero, failed a partial F test, or simply did not improve the performance on test 

sets.  

We suspect many of the variables that affect real-time cellular signal strength are actually 

baked into the ping variables. This is why adding those variables into models was not 

able to improve them. 

For the sake of simplicity, below is a graph of the bootstrapped coefficient values for 

several of the variables considered. There were many others examined, and variables 

were discarded for many reasons, but these graphs are straightforward and accessible.  
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5.3.1.1 Speed 

The speed of the vehicle was calculated as an average from recorded GPS readings, and 

verified against the value recorded on the data collection sheet for that point. We 

expected this variable to be significant and potentially even non-monotonic. We tried 

many potential interaction and second order terms as well as simply separating the data 

set into faster points and slower points. Nothing seemed to make a difference. The graph 

below is the bootstrapping results from 1000 samples of the coefficient for speed in a 

logistic regression model that also includes the significant variable, percent of pings that 

were ON within one kilometer.  

 

Figure 16: Bootstrapping results for 1000 iterations on a model coefficient for speed 

It is clear that the values of the coefficient are very close to normally distributed around 

0. This is a strong indication that the variable is not significant.  
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5.3.1.2 AT&T map 

We anticipated this variable to operate like a reasonably accurate prior that could then be 

updated with real-time information like speed and ping results. While moderately 

informative by itself, all of the ways that information from this map were captured and 

added to models with real-time information wound up not improving those models. We 

tried all sorts of models based on the spot color from which the transmission was initiated 

with diverse weights for the difference between light blue (2G coverage) and dark blue 

(3G coverage). We also tried weightings based on the ratio of white to light blue to dark 

blue in the area around the point of transmission as well as the spot color of points at 

defined distances towards the hospital. In fact, the color of the point 1 kilometer closer to 

the hospital from the location of transmission actually showed significance in the wrong 

direction!  

The best results were seen with a simple split based on a binary variable for claimed 3G 

coverage (dark blue). The graph below is the bootstrapping results from 1000 samples of 

the coefficient for that binary variable in a logistic regression model that also includes the 

significant variable, percent of pings that were ON within one kilometer.  
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Figure 17: Bootstrapping results for 1000 iterations on a model coefficient for the map 

It is clear that the values of the coefficient are very close to normally distributed around 

0. This is a strong indication that the variable is not significant.  

 

5.3.1.3 Weather 

This variable is a binary categorical for rain. Humidity and wet weather have been shown 

to have an impact on signal strength, and it was thought that this might affect the 

probability of successful transmission. This variable was not significant at all. We suspect 

that if it does play a role, it is captured by the real-time pings. The graph below is the 

bootstrapping results from 1000 samples of the coefficient for that binary variable in a 

logistic regression model that also includes the significant variable, percent of pings that 

were ON within one kilometer. 



63 

 

Figure 18: Bootstrapping results for 1000 iterations on a model coefficient for the weather 

It is clear that the values of the coefficient are very close to normally distributed around 

0. This is a strong indication that the variable is not significant.  

 

5.3.1.4 Time of the day 

It is fairly common anecdotally that the time of day can have an impact on bandwidth in 

general. Peak times tend to be reported as late afternoon to early evening. We kept track 

of the time of day that all of the transmissions occurred, and attempted to determine 

whether or not this played a role. We attempted categorical variables for different chunks 

of time: morning, afternoon, evening, and what we presumed to be the peak time (5pm to 

9pm). None of these were significant at all. The graph below is the bootstrapping results 

from 1000 samples of the coefficient for the binary variable associated with peak time in 

a logistic regression model that also includes the significant variable, percent of pings 

that were ON within one kilometer. 
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Figure 19: Bootstrapping results for 1000 iterations on a model coefficient for the time of day 

It is clear that the values of the coefficient are very close to normally distributed around 

0. This is a strong indication that the variable is not significant.  

 

5.3.1.5 Day of the week 

We also considered the possibility that the day of the week would make a difference. 

After trying several combinations of categorical variables, nothing was significant. The 

graph below is the bootstrapping results from 1000 samples of the coefficient for a binary 

variable associated with whether or not the day was over the weekend. The variable was 

added to a logistic regression model that also includes the significant variable, percent of 

pings that were ON within one kilometer. 
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Figure 20: Bootstrapping results for 1000 iterations on a model coefficient for the day of the week 

It is clear that the values of the coefficient are very close to normally distributed around 

0. This is a strong indication that the variable is not significant.  

 

5.3.1.6 Spatial Autocorrelation 

In modeling anything with a spatial component, there must be a presumption that 

autocorrelation could exist. We attempted to find it in our response variable. We 

attempted  to  add  factors  like  “distance  to  closest  success”  and  “distance  to  closest 

failure.”  The  graph  below  is  the  bootstrapping  results  from  1000  samples  of  the  

coefficient for the quantitative variable associated with the ratio of the distance from a 

success to the distance from a failure. The variable was added to a logistic regression 

model that also includes the significant variable, percent of pings that were ON within 

one kilometer. 



66 

 

Figure 21: Bootstrapping results for 1000 iterations on a model coefficient for spatial autocorrelation 

It is clear that the values of the coefficient are very close to normally distributed around 

0. This is a strong indication that the variable is not significant.  

 

5.3.1.7 Elevation 

We have heard anecdotally and experienced ourselves that elevation has an impact on 

cellular service. This variable was also not significant at all. It is likely this variable 

would have more of an impact if the vehicle were not in motion. The graph below is the 

bootstrapping results from 1000 samples of the coefficient for elevation as it was added 

to a logistic regression model that also includes the significant variable, percent of pings 

that were ON within one kilometer. 
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Figure 22: Bootstrapping results for 1000 iterations on a model coefficient for elevation 

It is clear that the values of the coefficient are very close to normally distributed around 

0. This is a strong indication that the variable is not significant.  

 

5.3.2 Algorithmic failures 

While somewhat aside from formal evaluation metrics, an analysis of every point in the 

data set for which the algorithm miscalculated, there are mitigating circumstances. All of 

the false negatives (predicted failure but observed success) appear simply to have 

switched from fail to success too late. In reality, if an EMT were to attempt a 

transmission when the algorithm actually does switch over to predicting success (a matter 

of seconds down the road), the transmission would have arrived at exactly the same time 

because it will not actually begin to transmit until the same region of service is entered. 

All of the false positives (predicted success but observed failure) were only failures 

because not all of the ECG was received in time. In these points, more than 80% of the 
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image was successfully uploaded. In many cases, this amount of the area of the ECG 

transmission will be enough for a physician to make a diagnosis.  

 

5.3.2.1 False negatives: predicted failed transmission, observed successful 

Point 28 

 

Figure 23: Map of pings around point 28 

From the blue point, the car drove east and then south. This represents an interesting 

point in that there is very little data on one side of the point. In fact, almost all of the data 

is coming from the direction to which the vehicle will soon be heading. Another issue 

here is that there are a lot more points in the region where the car is driving slowly. In 

implementation, the model would update to success pretty shortly along in the drive. If an 

EMT waited 1 minute to hit send (around the point when it would turn green), the 

application  actually  wouldn’t  have  lost  any  time  in  delivering the file because it would 
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have been sent once the phone returned to service anyway. This kind of false negative is 

actually more like a surprise success than an observed failure.  

 

Point 69 

  

Figure 24: Map of pings around point 69 

From this map, the hospital is to the north-north east. There was a failure here going 

east directly towards the hospital (this transmission was begun from the yellow flag) and 

a success driving west towards Route 29 (this transmission was begun from the blue 

flag). OFF pings are all around but near a location of decent service visible in the map 

below. The vehicle barely made it into the region in the two minutes with enough time 

for the transmission to succeed.  

The map below shows the pings for a larger area in which the pocket of service is visible. 
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Figure 25: Map 2 of pings around point 69 

This pocket, strangely enough, is in between two small mountains. From this map, it is 

clear that this is actually a small development. 

  

Figure 26: Map 3 of pings around point 69 

We believe this is an understandable miss for the algorithm, and would be mitigated by 

EMT context awareness. On the bright side, this is a perfect opportunity for algorithm 

improvement. Whenever successes are recorded in areas like this, EMTs and the 

algorithm alike can know to take advantage of it. Also, inside the small pocket of 
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coverage, the indicator would likely change to green. EMTs who have used the system a 

few times before and know their districts might know to stop the ambulance for 30 

seconds at this point in the road to wait for the transmission to succeed. In this kind of 

situation, the algorithm is still able to provide information to an EMT even while failing 

to perform the prediction correctly. 

 

5.3.2.2 False positives: predicted successful transmission, observed failure 

Point 79 

At this point, the value of Percent_ON_1km is 0.694, which is only slightly above the 

threshold. Of the 16 file transmission, 13 were received and 12 were acknowledged back 

to the iPhone as having been received. 

 

Figure 27: Map of pings around point 79 

The blue point from which the transmission was made is hidden behind the right-most 

OFF ping, and the trajectory was west to Old Lynchburg Road and then north. This map 

is pretty close into Charlottesville, just a little south of the city. The map below is all of 

the pings within 2km.  
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Figure 28: Map 2 of pings around point 79 

This is a point without any points behind it. This could have been done better with more 

careful testing. Pings to the east of the blue point would likely have been OFFs and 

would have dropped the Percent_ON_1km down below the 69% it returned. This was 

almost a predicted failure. Also, though we predicted success and it was a failure, 13 of 

the 16 files were received. In an operational setting, depending on the ECG, this may 

have actually been enough of the image for a doctor to read it.  

 

Point 78 

At this point, the value of Percent_ON_1km is 0.818. Of the 16 file transmission, 14 were 

received and all 14 were acknowledged back to the iPhone as having been received. 
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Figure 29: Map of pings around point 78 

This transmission has an exceptionally small number of nearby pings. Here it is for 2km: 

 

Figure 30: Map 2 of pings around point 78 

The four previous pings for this point were successful. The prediction on this road is 

likely to improve with time. It looks like something on the phone got hung up here while 

driving past the Rivanna Rifle and Pistol Club, an area known to be heavily wooded. 

Maybe this was just an outlier in the amount of time it took to capture pings in this area. 

On the map, it is clear that there is a big space with no pings. Transmission was 

attempted immediately after a string of positives while heading into a dead zone. The 
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phone basically just did not recover service in time to complete the transmission. It 

probably would have worked if the vehicle had driven faster or the transmission was 

attempted 30 seconds later. Again, the vast majority of the image was received and may 

have been readable at this point.  

 

Point 13 

At this point, the value of Percent_ON_1km is 0.9375. Of the 16 file transmission, 14 

were received and 12 were acknowledged back to the iPhone as having been received. 

The point is right behind the OFF ping in the middle.  

  

Figure 31: Map of pings around point 13 

Here it is at 2km in the direction of motion: 
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Figure 32: Map 2 of pings around point 13 

This is an exceptionally difficult point to predict. The transmission was sent from the 

middle of a pocket of good service and most of the packets were received before the 

vehicle slipped into bad service. This road goes from bad to good and then to bad and 

then to good again in surprisingly sharp changes. While the algorithm missed the 

prediction, most of the image was received. It is our belief that simply driving slower (the 

point was collected at 43mph) would have made that little bit of difference. Also, this 

transmission was sent from just about the only point on the route where the algorithm 

would have missed. A minute further along and the percent of ON pings would have been 

low enough to catch the failure.   
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CHAPTER 6 

 

6 Conclusion 

This research developed and validated a data-centric algorithm for predicting the 

likelihood of success of a near real-time mobile health transmission from a moving 

ambulance. The unique nature of pre-hospital STEMI care makes this likelihood 

especially useful to EMTs in the field. The algorithm was implemented for and deployed 

in an iPhone 4 application that is part of a pre-hospital transmission system. The key 

insight developed is that simple, nearby measures of connectivity are predictive of the 

time-critical success of small, mobile transmissions. This insight and its developed 

method were validated in unique, geographic-based cross validation techniques to 

promote generalizability. This generalizability, however, is bounded by the nature of the 

city around which the work was performed. The size of the transmission file is small 
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relative to the maximum throughput of the potential networks, and bandwidth tends to 

increase from any geographic location bound for the hospital because of its central 

location. Expansion of this method to other cities should consider whether these two 

factors are similar.  

As a simple, smart transmission method, this system could be a valuable part of 

emergency medical response particularly in rural America. Additionally, as part of a 

flexible, expandable framework, these results are potentially quite valuable to the field of 

emergency pre-hospital care and wireless telemetry at large. It is our intention to offer 

this system gratis along with an implementation guide and user manual. 

As a framework, this method of data collection, model building, and robust evaluation 

can be applied more broadly to other wireless health systems. Any time immediate 

response is possible from near real-time data, there could be a value to forecasting the 

end-to-end quality of service. 

It is our hope that future work on this project will focus on several key areas around 

getting and exploiting significantly more data: fuller understanding of the temporal 

autocorrelation features of the pings, model improvement specifically geospatial 

autocorrelation with many more successful and failed transmissions, and platform 

expansion to Android and other provider networks. Vehicle trajectory predictions based 

on previous route data is a fruitful field of research. After some time in operational 

deployment, leveraging this data to improve the algorithm may prove advantageous.  

With the infrastructure in place to transmit data from ambulances to hospitals, it is also 

our hope that HIPAA requirements can be addressed to allow for patient identifying 
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transmissions like name and date of birth. In the longer term, integration with a platform 

like Hermes [54] could dramatically increase the number of places where an application 

like this could be useful. In the near term, the application and algorithm will be tested 

extensively by students and care providers associated with the University of Virginia 

before operational deployment to real hospital care providers.   
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Appendices 

Data collection sheet 

The following is a table that was used to collect data from one of the 13 routes that were 

driven. Many of these variables were captured by the iPhone automatically, but they exist 

on the data collection sheet for verification. Points that were added to the collection effort 

were scribbled into the sides or bottom of the sheet.  

Route: magenta 

Name, time, date, weather:  
# Intersection Latitude, 

longitude 
Speed Amount 

of time 
it took 

# of files 
received 
(<=16) 

Your 
interpretation 
of sending 
from this point 

37 Free Union 
Road and 
Homestead 
Farm Lane 

     
 
 

40 Free Union Rd 
and Old Free 
Union Road 

     
 
 

46 Ridge Road 
and 
Brinnington 
Road 

     
 
 

44 Garth Road and 
Foxfield Track 
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Compression survey 
The ECG interpretability survey described above has been deployed online via 

SurveyGizmo [47] but no data have yet been collected. For each of 20 ECGs, the 

responder is randomly served either a compressed or uncompressed photograph along 

with a simple story that is similar to what they would know in a real situation. There are 

two questions from the survey below. They have the same story and ECG except that one 

of them has been compressed. The responders will only have the opportunity to answer 

one of these two. Additionally, of the 20 questions the responders will answer, they will 

be presented in a random order. Since some ECGs are harder than others, we do not 

expect every responder to be correct each time. We intend simply to compare whether or 

not the compression (answering question 1 instead of question 2) had an impact on the 

decision that was actually made. The statistical testing for this effort will include 

blocking on the responder to control for individual variability in training / experience / 

skill.  

1) 

 
An 83 year old male with a history of diabetes and hypertension is complaining of 
intermittent sternal chest pain radiating to his back.  
Based on the above ECG and scenario, would you activate the cath lab to treat for 
a presumed STEMI?* 

( ) Yes 

( ) No 
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2) 

 
An 83 year old male with a history of diabetes and hypertension is complaining of 
intermittent sternal chest pain radiating to his back.  
Based on the above ECG and scenario, would you activate the cath lab to treat for 
a presumed STEMI?* 

( ) Yes 
( ) No 

 


