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Abstract

Secure communication is largely dependent on effective application of cryptogra-

phy.  While cryptographic methods have been investigated to ensure confidence in the

security of the encryption algorithm, many cryptographic schemes are vulnerable to attack

because the protocols used to implement communication in a cryptographic environment

do not meet their intended goals.  Cryptographic protocols, like software, are very difficult

to verify. Recent research is aimed at finding methods of verifying cryptographic proto-

cols.  Though no method has achieved widespread acceptance and use, the most prevalent

class of cryptographic protocol evaluation techniques is based on application of epistemic

logical systems to reason about the protocols.  In this dissertation we present a methodol-

ogy for verifying cryptographic protocols based on the classical program verification tech-

nique of Weakest Precondition reasoning [DIJK76] and a set of tools to automate

application of the method.  The methodology solves many problems of existing methods

by formalizing the meaning of the messages in a protocol session and by including mes-

sage sequencing in the protocol definition.  The proposed method can also be combined

with logical methods to construct a more thorough cryptographic protocol evaluation tech-

nique.
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 CHAPTER 1
Introduction

In this dissertation we give a formal methodology for verifying cryptographic pro-

tocols.  To this end, we borrow a technique from the field of classical program verification

called Weakest Precondition reasoning [DIJK76].  We first give a specification language

to provide a formal syntax for protocols, and then utilize weakest preconditions to estab-

lish a formal semantics to the language, for the first time giving a definitive meaning to the

actions of all principals in a protocol run, including intruders.  The foundation on proposi-

tional calculus with uninterpreted function symbols allows this methodology to comple-

ment, rather than compete with, logical systems used to evaluate cryptographic protocols.

The methodology is fully implemented in the DOS and UNIX environment in the C pro-

gramming language.  The result of this work is a methodology for evaluating the seman-

tics of cryptographic protocols, complete with an implementation.  The dissertation

contains numerous examples of protocols evaluated using the methodology to illustrate

the system's concepts and uses.

1.1  Network Security

From the ancient days, the need for effective communication across long distances

was evident.  Some of the most famous examples involve political leaders communicating

with their subordinates, often regarding battle information in time of war.  The Marathon

gains its name and distance from the messenger that ran twenty six and two tenths miles to

deliver the news of the arrival of a foreign force on friendly shores  some three thousand

years ago.

Julius Caesar recognized the importance and difficulty of controlling access to

information passed across significant distances and went to great lengths to protect the pri-

vacy of the information he was communicating.  He developed a method of encoding data



Chapter 1:  A Formal Semantics for Evaluating Cryptographic Protocols       2

so that if the message were intercepted by an enemy, the enemy could not determine what

the message said, but if delivered correctly, the intended recipient could easily read the

message.

Nearly two thousand years after Caesar's venture with message encoding, security

remains a concern of communicators of sensitive information.  Though messengers are

still an important form of communication, digital communication across sophisticated net-

works now dominates the volume of communication that occurs.  Communications secu-

rity and network security have begun to blend together and it is difficult to tell where one

ends and the other begins.  For this dissertation, we will consider communications security

and network security to be synonymous.  Our focus is on systems where messages are

transmitted across some communications medium making transmissions vulnerable to

interception and manipulation in route.

Privacy in communications has evolved to mean that only the intended recipient of

messages can gain the message contents and their meaning, and that intruders can gain no

meaningful information from the transmissions.  Intruders are persons or computer pro-

cesses whose intention is to interfere with the goal of communication.  Routinely, intrud-

ers are outsiders to the communication system that break in to listen or otherwise

compromise messages.  Occasionally, intruders may be legitimate communication partici-

pants that exploit their legal status to compromise data.

Intruders take two forms: active and passive.  Passive intruders are listening sta-

tions on the communications medium.  For generality, passive intruders are assumed to be

able to “hear” every message that is sent or received and are able to determine who origi-

nated each message and who each message is intended for.  They do not manipulate data

on the network and do not introduce their own transmissions.

Passive intruders compromise the security of  the communication by analyzing
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information gathered from the intercepted transmissions.  If the data is readable by the

intruder, the privacy of the data is directly compromised by the interception.  Because it is

very difficult to detect passive intrusion, techniques for protecting against it focus on pre-

vention of listening.  Traditionally, there are two approaches that are taken for this.  The

first approach is to physically protect data from interception.  Whispering, armored car

messengers, tempest computer and communications equipment, and sound-proof rooms

are a few of the physical means used to guard against divulging  sensitive data.

Encoding was devised to protect against compromise of data even though the data

could not be physically protected from interception during transmission.  Transmissions

that are properly encoded cannot be read by an intruder even if the entire transmission is

intercepted.

Passive intruders may also use sophisticated methods to analyze message traffic

for volume, peak load, routing patterns, etc.  using this information to infer facts and

details that they are not supposed to know.  For example, particularly heavy traffic volume

on a military network may indicate to an intruder that some maneuver or attack is immi-

nent.  A routing shift from one location to another may signal a corresponding shift in

emphasis of actions.

Passive intruders may also utilize covert channels, i. e. actions that are not rou-

tinely intended to communicate information, to send receive information in a way that was

not intended by the designer of the communications system.  The classical example of a

covert channel is that of a clever, active intruder causing the disk accesses of a computer

to create a meaningful pattern (such as a Morris Code message) that can be received by a

passive intruder.

While passive intruders receive transmissions from the system but do not enter any

messages onto the network, active intruders may receive and also transmit on the network
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to accomplish a compromise.  For generality, active intruders are assumed to be able to see

and read all messages, intercept messages, modify messages and reenter them without

inherent detection, and generate messages for entry into the network.

Active intruders offer a much more complex and challenging threat  than passive

intruders.  Active intruders may make subtle changes to messages that may have a dra-

matic impact on the meaning of the message.  An example we can all identify with deals

with a bank's debit transaction.  If an intruder can make a small change to the transaction

by adding a zero just to the left of the decimal point of the debit amount, the meaning of

the transaction can be changed significantly.  If this account happens to be a corporate

account and the original amount is in the millions, adding one zero just to the left of the

decimal point can change the amount of the transaction by tens or hundreds of millions of

dollars.

As this example illustrates, while privacy is the classic interest of communications

and network security, concern for message integrity is equally important.  For communi-

cation to be effective it is often critical to ensure that no message has been inappropriately

modified and that each message is authentic.

In contrast to the defenses used against passive intruders, methods to combat

active intruders center around detecting the attack, rather than preventing it.  Our  commu-

nications systems were designed to include as broad an audience as possible, often

depending on broadcasting messages that are intended to be available to anyone that

desires to receive the transmissions.   Even when wire or cable technology is used, it is vir-

tually impossible to prevent an intelligent intruder from gaining access to the media in a

way that would allow them to receive transmitted data and messages.  Thus, preventing

intruders from intercepting messages, reintroducing old or modified messages, or intro-

ducing new messages is not possible.
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For these reasons, battling active intruders focuses on detecting attacks.  In the

example above, if the bank receiving the debit can detect that an unauthorized change was

made to the transaction, the transaction can be canceled and a request can be sent back to

the originator asking for retransmission.  Additionally, once an active intruder is detected,

additional security measures may be taken to protect data and action can be taken to catch

and stop the intruder from further mischief.

Authentication, the ability to guarantee the identity of principals in a communica-

tion,  is critical to ensuring message integrity.  In addition to making unauthorized changes

to signed messages, an intruder may attack the authenticity of a message by forging signa-

tures or by interrupting the sequence of a protocol.  We say a message is authentic if we

can verify that it originates from the person or process that the message claims or that the

receiver expects.  Signing messages and using passwords or pass-phrases are examples of

techniques used to identify forged messages.  The process of verifying the identification of

the parties in a communication session is called authentication.  We address authentication

methods in a later chapter.

The final category of network security concerns is denial of service, i.e., prevent-

ing or substantially delaying incoming or outgoing message traffic from a principal.  As an

active attack, denial of service is very difficult to prevent.  Among other things, service

can be denied by sabotage of physical components, flooding, or manipulation of the con-

trolling elements of the network.  The focus of counter measures is to detect denial of ser-

vice.  Once denial of service is detected, action can be taken to restore service and protect

against future similar attacks.

The general goal of network security is to provide principals in a communication

system with a secure channel.  A secure channel is a channel or conduit over which

authenticated, private communications may occur.  Cryptography allows the conduit to be

logically secure in the sense that the physical medium may be vulnerable to intrusion, but
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physical intrusion cannot compromise the security of the communication.

1.2  Cryptography

Cryptography is the science of making and using codes and ciphers.  A goal of

cryptography is to provide secrecy of data transmitted between sender and receiver for

some period of time.  If perfectly implemented, only the intended recipient can read an

encrypted message.  Encryption algorithms are designed so that decoding encrypted mes-

sages to divulge their meaning is expected to take sufficiently long so that any data com-

promised will be useless to the intruder.  As cryptography grew into a broad field aimed at

finding strong encoding algorithms, a corresponding field of study emerged aimed at

attacking those algorithms by attempting to decode encrypted messages.  This field is

called cryptanalysis.

1.2.1  Data encryption.

Julius Caesar became the first documented user of encryption when he devised a

method to protect the privacy of his communications.  The coding scheme, or cipher, he

devised is now known as a substitution cipher and involved “rotating” the letters of the

message three letters “forward”.  For example, FDW is the “cipher text” for the word CAT

when CAT is encoded using Caesar's method.  This simple procedure was effective in pre-

venting unauthorized persons from reading written messages that were captured in com-

bat.

Today, the applications and techniques for encoding (now called encrypting) data

are far more complex than the famous Caesar Cipher.  Ciphers were perpetually updated

and improved to combat cryptanalysis.  An improvement of the Caesar Cipher involves

utilization of a piece of information called a key, known only to the two communications

principals, to make the cipher harder to break.  The fundamental characteristic the key

must have is that it should be possible to decrypt an encrypted value using the same key
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that was used for encryption to return the original encrypted information.  Symbolically, if

we assume e[X]k to mean, “the encryption of value X under key k”, and d[X]k has the

corresponding meaning for decryption, then the fundamental characteristic of a key is:

d[e[X]k]k == X

The introduction of an encryption key eliminated reliance on the secrecy of the

encryption algorithm for the strength of the cipher.  By using a key, the encryption algo-

rithm may be made public, yet encrypted data will remain private between owners of the

shared key.

The obvious key first selected for the Caesar Cipher is the “rotation number”,

which for the original cipher was three.  By agreeing to a number known only to them, the

communicators made the cryptanalyst job more difficult.  A further advance is to use a

twenty six character key  so no “rotation” is needed and the population of valid keys is

much larger.

While the addition of a key and other enhancements clearly make breaking the

cipher harder, cryptanalysis research found techniques that allow easy decrypting of

encrypted data (cipher text) using any of the key methods we described for a substitution

cipher.  Hence, a second method of encryption evolved which involved partitioning the

data into fixed size blocks and shifting the letters in some predetermined pattern.  This is

called a transposition cipher.  The encryption key in this scheme is the order of the letters

in each block, which the recipient can use to easily decrypt any message encrypted using

this scheme.  For example, if we use a five byte block transposition cipher with a key of

“52413”, the phrase

“attack_at_dawn”

would be encoded:
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ctaat__tka_andw

Unfortunately (at least for cryptologists), transposition ciphers are also vulnerable

to attack by a knowledgeable, systematic intruder.

Another paradigm for encrypting data is using a technique called codes.  Codes

rely on assigning a number or random pattern of characters to represent every word and

phrase used in communication.  Using a code book, the transmitter encodes the message

into a stream of characters that is meaningless to anyone without the code book.  The

receiver utilizes the code book to translate the message back into its original form.

Substitution ciphers, transposition ciphers and codes each have varying advantages

and disadvantages.  Most importantly, each is vulnerable to cryptanalysis.  However,

research aimed at combining pairs of these techniques resulted in encryption systems that

are very difficult to break.  These techniques involve re-encrypting already encrypted data.

One of the most famous instances of combining ciphers utilized the substitution cipher

and codes.  It was this scheme, called Super Encrypting, that the Japanese used in World

War II.  Their belief that Super Encryption was unbreakable resulted in great damage to

their war effort when the Allies effectively cryptanalyzed the Japanese Super Encryption

and were able to gain very valuable information about Japanese plans which the Japanese

believed were private.  While Super Encryption provided strong protection, it was not per-

fect.

With the major advances in automatic computing in the past fifty years, cryptogra-

phy also evolved dramatically.  By coding encryption routines into a computer, combina-

tions of encoding techniques are easily implemented and many “rounds” of encryption can

occur, that is, data can be encrypted and re-encrypted many times over very quickly in

order to strengthen the code against cryptanalysis.  Of course, cryptanalysis also benefited

greatly from the computer explosion, leaving the battle between the cryptographer and the
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cryptanalyst as intense as ever.

Research guided by the National Security Agency (NSA) resulted in establishment

of the Data Encryption Standard (DES) [DES77].  DES is a published an encryption algo-

rithm that communicating parties can use to encrypt and decrypt data.  DES uses repeated

rounds of substitution and transposition ciphers which lend themselves easily to comput-

erization and can be used to encrypt large amounts of data quickly on general purpose

computers.  While there were early concerns about the strength of the DES algorithm,

experts now agree that the DES design results in a cipher that is very difficult to break.

Other variants of DES are still emerging which address DES's one weakness, the small

size of the key-space (56 bits), making data encrypted using DES vulnerable to computer-

ized “brute force” attacks which effectively conducting an exhaustive search of the key

space to find the key.

An obvious characteristic of private key encryption systems is that each participant

must know the same key that the other participant knows and that the shared key must be

private to the two of them.  Because of the “symmetrical” nature of these keys, private key

systems are also known as symmetric key systems.  In their seminal work [DH76], Diffie

and Hellman offered an alternative to symmetric key systems.  Their “asymmetric” key

paradigm allows a principal to derive a pair of keys which are inverses of one another.

The keys are inverses in the sense that data encrypted under one key of the pair can only

be decrypted using the other key (its inverse).

The primary implementation of asymmetric key systems is in what is known as

Public Key systems.  In such a system, each principal publishes one member of  its asym-

metric key pair.  This becomes the member's public key.  The public key inverse is main-

tained and kept private by the principal.  When one principal desires to communicate

privately with another, the originator looks up the public key of the intended recipient,

applies the encryption algorithm to the data to be passed, and sends the cipher text to the
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recipient.  The recipient utilizes the public key inverse, (sometimes called the “private

key”) to transform the cipher text into its original form.  Because only the owner of the

public key knows the public key inverse and if the encryption algorithm is strong, no one

else can decrypt the message.

There has been significant research regarding development of encryption algo-

rithms since cryptography was born.  However, to date only one perfect encryption system

has been found.  To be perfect, the cipher text must not give an intruder any information

they can use to divulge the contents of the message or the message key.  The one perfect

encryption system, a symmetric key system called One-Time Key, has the drawback that

the length of the key is identical to the length of the data to be transmitted.  As we noted

above, the DES encryption algorithm is believed by to be a strong encryption system.  We

say that an encryption algorithm is strong if the difficulty of decrypting the cipher text via

cryptanalysis can be accurately computed in terms of the amount of computer resources

that would be required to divulge the original plain text or key and that those resources are

very high.

Many attempts have been made to devise strong asymmetric key systems.  Some

were based on mathematical problems that are known to be computationally intractable,

such as the Knapsack Problem.  Others have focused on hard problems in number theory

such as discrete logarithms [ELGAM88].  For most of these mechanisms, weaknesses

known as buckaroos, exist that allow intruders to compromise the data or the key with

much less effort than base problem demands.

In [RSA78], Rivest, Shamir, and Adleman proposed an asymmetric key algorithm

called RSA, based on the difficulty of factoring large numbers.  No back-door has been

found in their RSA public key encryption algorithm and while it cannot be proven secure,

most experts agree that the RSA algorithm does provide strong encryption.  The RSA

algorithm now dominates the cryptography world as the public key algorithm of choice.
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Research continues to seek strong, efficient encryption algorithms and to find flaws

and back-doors in existing algorithms that are believed to be strong.  However, even if a

“perfect” encryption algorithm is found, encryption alone is not sufficient to protect com-

munication.  Encrypted messages must be combined with a handshaking interaction

between the communicating parties called a Cryptographic Protocol.  We examine crypto-

graphic protocols in the following sections.

1.2.2  Cryptographic Protocols

Protocols are rules that govern interactions between communicating parties and

are fundamental to the implementation of communications systems.  Protocols are used to

allow parties in a communication session to remotely reach agreement in some area.

Cryptographic protocols are security related interactions that support the same objective:

gaining agreement regarding some important topic.  In security related protocols, two

common agreements to be reached are for authentication and key distribution.

Authentication, the act of determining the identity of a principal,  is fundamental to

any security system.  Because of this, and because of its complexity and potential for

error, authentication methods have been the topic of intense research.  Most authentication

schemes rely on some interaction, or challenge and response, between the authenticator

and the one to be identified.  These exchanges are called authentication protocols.

Authentication protocols may be as simple as the authenticator offering a chal-

lenge to someone seeking physical access, such as the verbal command “Halt”, to which

the one to be identified would respond with some predefined password.  If this password is

sufficiently hard to guess and is well managed so that only the two principals in the

exchange know it, success of this protocol offers reasonably sound evidence that the

respondent is actually who the authenticator believes they are.  If, however, an intruder is

able to overhear the interaction and if the password is reused or is used to identify more
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than one individual, the intruder may use the overheard password to defeat the protocol.

Research in authentication protocols is aimed at identifying the potential threats to

authentication and devising interactions that cannot be broken, i.e., successful execution

of the authentication protocol does indeed provide strong evidence as to the identity of the

subject(s).  Cryptography is very useful for this purpose, which we will see in greater

detail later.

There is no doubt that the introduction of keys into cryptographic systems was a

revolutionary change that gave cryptographers a decided advantage over intruders, at least

for a while.  It also introduced the problem of  key distribution into cryptographic systems.

A characteristic of key-dependent systems is that the longer a key is used, the less secure

are the communications using that key.  Keys must be changed regularly and often.  Pri-

vately distributing keys between remote principals is a very difficult, now classical, prob-

lem termed the Key Distribution problem [MEAD92].  Like authentication, key

distribution is routinely accomplished by a cryptographic protocol.

 As noted earlier, in order to address the network security problems of privacy,

integrity, authentication, key distribution, etc., a strong cryptographic algorithm must be

combined with a valid cryptographic protocol that establishes the rules governing interac-

tions between participants (principals) in the communication.  Only when combined with

a valid protocol can cryptography provide the principals with a secure channel.

Cryptographic protocols are routinely represented as action lists describing the

alternate transmission and receipt of messages between principals.  The steps of the action

list specify the contents of each message and the encryption and decryption operations uti-

lized to protect and divulge the message meaning.  The content and sequence of messages

in the protocol agree to some pre-defined format and sequence.  A successful run of the

protocol may be seen as a serial trace of the steps of the protocol in the specified sequence.
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It is the requirement for serial sequencing that is of interest here.  The de facto seri-

alization method that provides the sequencing in protocol runs is the blocking nature of

the send and receive statements.  This means that in a protocol run, a principal may not

receive a message of a certain format until after a message of that format has been gener-

ated and transmitted.  While it is clear that a receive cannot be legally accomplished

unless a message of the specified format has been sent, it is not clear that the appearance

of a message of the correct format means the protocol has executed in the correct

sequence.

Figure 1.1 is an example of a cryptographic protocol; in fact, one of the earliest

published ones.  The Needham and Schroeder Private Key Protocol played a large part in

the field of cryptographic protocol verification.  The meaning of the notation is intuitive;

the arrows indicate transmission and receipt of messages.  The items after the colon for

each step reflect the data to be transmitted and the braces signify encryption of the data

within the braces.  The identifier immediately after each right brace is the key used for

encryption.  The protocol is expressed in an hoc standard cryptographic protocol

pseudocode language with the messages presented in the order they are expected to be

executed.

Needham and Schroeder Private Key Protocol

A->S:           A,B,na
S->A:           {na,B,kab,{kab,A}kbs} kas

A->B:           {kab,A}kbs

B->A:           {nb}kab

A->B:           {nb-1}kab

Figure 1.1

In order to illustrate the meaning of the pseudocode notation, consider the given

protocol.  In the first step, principal A indicates to the central authentication server that A

desires to initiate a secure communication with principal B.  A includes with this message
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a random number called a nonce [NS78] to be used to guarantee the freshness of a later

message.  Nonces are, as Webster defines in the new world dictionary, “... created only

once for a special occasion".  They are selected randomly so that they are unpredictable so

any message received containing a specific nonce is assumed to be a response to the origi-

nal message containing the nonce.

In the second step, S provides A a key to be used in a communication session

between A and B, appropriately named kab.  Also included in the second message is an

encrypted component that A cannot read containing the key kab and the identity of A

encrypted under the key shared between B and S (kbs).  This encrypted catenation will be

forwarded by A to B in the next step.  The entire second message is encrypted under the

private key kas that A shares with S.  A uses kas to decrypt the message and obtain the

session key kab, nonce na, and the encrypted message to be relayed to B.   Before execut-

ing the third step, A verifies the currency of nonce na by comparing the representation of

na that was received from the second step with the value na that A transmitted in the first

message.

In the third step of this protocol, A forwards the message generated by S to B.  B

uses the key kbs that B shares with S to decrypt the message and obtain the key kab and

the identity of the originator, A.  In step four, B forwards a new nonce to A encrypted

under the session key kab.  When A receives the message sent in step 4 and uses kab to

decrypt the nonce from B, A then believes B has the key and is ready to communicate

because A believes that only B could know key kab.

In the last step, A modifies the nonce from B slightly, re-encrypts the new value

and sends it to B.  Because A modifies the nonce from B in a predetermined way and since

B believes that only A could have the key kab, when B decrypts the modified nonce and

compares it to the expected response, B believes that A has the key and is ready to com-

municate.



Chapter 1:  A Formal Semantics for Evaluating Cryptographic Protocols       15

1.3  Cryptographic Protocol Verification

The Needham and Schroeder [NS78] protocol given above appears to be quite

simple.  As shown, it contains only five messages, involves a total of  seven data items,

and requires only five encryption and five decryption operations.  Routinely, crypto-

graphic protocols are short, contain few data items, and require less than twenty encrypt

and decrypt operations.  While this may lead one to believe these protocols are easily and

effectively verified manually, research proved that this is not the case.  In fact, the

Needham and Schroeder Private Key protocol itself has a flaw that we will investigate in

some detail later.

There are many cryptographic protocols in the literature, [NEED78], [OTWY87],

[DS81], and [DOL83] for example, which were designed to provide the coordination nec-

essary for effective, secure communication.  These protocols, like the encoding schemes

they support, may contain subtle flaws that could compromise the privacy of messages

even if the cryptographic technique itself is sound.  Because of the complexity and poten-

tial subtlety of the flaws, manual verification of these protocols is not sufficiently rigorous;

formalized mechanisms are required.

1.3.1  The Need for Cryptographic Protocol Verification

In order to illustrate the need for cryptographic protocol verification, consider a

simple, one-step protocol example of a stock brokerage firm using cryptography to com-

municate from its main office.  In this example, each broker shares their own private key

with the main office.  On a given day, the main office (say M) may desire that a broker (B)

buy or sell a particular stock (S).  The first thing in the morning, the main office sends a

message encrypted under B's private key (kmb) instructing B to buy:

M: =>B(e[“Buy $10,000 of S”]kmb);

The notation is taken from our Cryptographic Protocol Analysis Language (CPAL)
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which we describe in detail in Chapter 3.  `M' is the party taking the action, '=>' represents

the send operation, `B' is the destination of the message, and the literal message `Buy

$10,000 of S' is encrypted under key `kmb' before transmission.

The execution of this protocol is also simple.  When B receives the message, the

common key `kmb' is used to decrypt the message and the action described in the message

is taken.  But what if an astute adversary is listening on the net and recording the

encrypted messages as they occur? By watching the subsequent actions of the broker on

the floor, the adversary could reasonably predict what the message said, though after the

fact.  If this adversary could subsequently intercept messages from the main office and

substitute recorded messages either at random or with some selectivity based on his own

insight, he could potentially do damage to the brokerage firm without ever compromising

an encryption key or penetrating the encryption algorithm.

A second problem with the example protocol is that once the intruder knows what

the message means, the cipher text can be matched to the plain text message that gener-

ated it.  This is called “known plaintext” which is shown to give an intruder a decided

advantage in being able to cryptanalyze the encryption algorithm.

This example clearly illustrates that authenticating users across a network is not as

straight forward as one might think.  Current research describes the difficulty with the

example protocol as that of freshness.  There is no mechanism in the protocol to prevent

an intruder from reusing old messages.  For even simple protocols, there are many factors

that effect the ability of the protocol to meet its goals.  The challenge to the intruder is to

envision actions that the protocol developer did not see in order to compromise a key,

divulge private data, interfere with message integrity, or deny service to a valid principal.

The difficulty with message freshness illustrates another problem with protocol

verification.  There may be many different ways to accomplish the same objective within a
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protocol.  Take the issue of message freshness for example.  Over the years, three different

mechanisms evolved to signify freshness of messages in a protocol: time stamps,

sequence numbers, and nonces (random numbers).  Each has different characteristics, dif-

ferent strengths and weaknesses.  For example, combining the message with a nonce elim-

inates the known plaintext problem while the other two do not.  Each technique is also

implemented in different ways, yet they can each be used to accomplish the same fresh-

ness goals.

The problem quickly becomes even more complicated as the varied goals and

environments of cryptographic protocols are considered.  For example, cryptographic pro-

tocols are frequently used for authentication such as in the broker example just presented.

This example illustrated one-way authentication.  Only the broker needed to be sure that

the main office sent the message.  In another environment, it may be important for two-

way authentication to occur, that is, for each party in the communication to know who is

on the other end.  It may also be important to be able to prove at a later date that a particu-

lar communication came from its signed originator.  This can be accomplished by utilizing

a third variety of authentication protocol called digital signatures.

We discussed three types of authentication that can be accomplished using crypto-

graphic protocols.  What is more, cryptographic protocols are not only used for authenti-

cation.  They are also utilized for key distribution, to ensure integrity of messages, to

detect denial of service and for variations on and combinations of all the above objectives.

Goals of cryptographic protocols are further complicated by the varied security

environments existing in distributed systems.  The simple illustration we used above is an

example of a two party protocol, where the only valid participants are the principals

requiring the data transfer.  Much of the work described in the literature focused on a three

party security environment that includes an authentication server [DS81], [NEED78],

[OTWY87].  An authentication server is a principal that assists other principals in estab-
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lishing secure communication channels.  The traditional function of an authentication

server is to assist principals in authentication by providing such simple tasks as directory

services for public keys and in creation and distribution of valid cryptographic keys.

Use of an authentication server creates several security problems itself.  In order to

accomplish its functions, the authentication server must have a valid shared key with each

distributed principal.  Distribution and protection of these keys is a security problem  of

essentially the same kind they are intended to solve.  Additionally, having a central author-

ity through which principals must communicate is contrary to the philosophy of distrib-

uted systems.  In this scenario, the authentication server is a single point of failure of the

system and is also a potential system bottleneck, which are two critical flaws that distrib-

uted systems are supposed to avoid.

There are cryptographic environments that use an “x-party” authentication server

model.  These systems are supported by protocols that distribute the security functions of

authentication and key creation to several distributed authentication servers [GONG93].

Cryptographic protocols in an x-party authentication server environment differ signifi-

cantly from those in two and three party environments.

A further complicating factor in evaluating whether or not cryptographic protocols

meet their goals is the cryptographic technique utilized.  Protocols for symmetric and

asymmetric key systems differ in both the assumptions that can be made, and in the steps

required to accomplish goals.  Private, or shared key systems, require that any two princi-

pals desiring to have secure communication must share a single private key agreed to

before the protocol begins.  The key is used by the sender for encryption and by the

receiver for decryption.  Public key systems, on the other hand, have separate keys for

encryption and decryption.  Each station's public key is generally distributed universally

to all principals and is retrieved via some trusted library-type function.  Stations wishing

to communicate secretly with another principal encrypt the intended message using that
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principal's public key and send it across the network.  Anyone listening to the network can

receive the message, but since only the holder of the inverse key can decrypt the message,

the communication is private.  The original message may contain a shared key to be used

for the session, or the recipient may respond using the public key of the originator.

Authentication and other cryptographic protocols in public and private key environments

may differ significantly.

1.3.2  The Origin of Cryptographic Protocol Verification

While the simple broker example we gave in the last section illustrates the need for

cryptographic protocol verification, the foundation for the research presented here lies in

the 1978 paper by Needham and Schroeder [NEED78].  In that paper, the authors present

a group of protocols for systems with authentication servers for shared and public key

authentication and signatures.  These protocols effectively highlight many of the impor-

tant cryptographic protocol issues and are frequently used in current literature for pur-

poses of illustration.  Needham and Schroeder propose three protocols: one for

authentication using private key systems, another for authentication using public key sys-

tems, and a signature protocol.  Each of these protocols are written for systems which uti-

lize authentication servers.  Their private key protocol was given in Figure 1.1.

In 1981, Denning and Sacco [DS81] utilized the Needham and Schroeder private

key protocol to illustrate the problem of replay attacks.  They showed that if an intruder is

recording messages and can compromise a session key over a period of time, then the

intruder can begin an erroneous communication session by replaying the third message

from the previous secure protocol run which used the compromised key.  The difficulty

with the protocol is centered around the third message. Not coincidentally, the third mes-

sage does not contain a nonce (i.e.  a random number used to guarantee freshness of a

response).  Needham and Schroeder acknowledge this weakness in the protocol and intro-

duce a minor modification inserting a timing mechanism into the protocol to prevent
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replay attacks in [NEED87].

In [OTWR87] Otway and Rees address the timing problem by slightly changing

the sequence of messages and by including a session identifier in each message.  Their

protocol is given in Figure 1.2.  Otway and Rees protect against replay attack by including

a session identification value (C) in each message.  The message sequence is similar to the

Needham and Schroeder, except the only principal that communicates with the authentica-

tion server is the target principal of the communication, B.  In step 2, B forwards a mes-

sage from the protocol originator to the authentication server,  and in step 4, from the

authentication server back to the protocol originator.

Otway and Rees Private Key Protocol

A->B:           (C,A,B,{Na,C,A,B}kas);
B->S:           (C,src,dst,{Na,C,A,B}kas,{Nb,C,A,B} kbs)
S ->:B          (C, {Na,kab}kas,{[Nb,kab}kbs)
B->:A           (C,{Na,kab}kas)

Figure 1.2

In [NEED78], Needham and Schroeder conclude, “...  [cryptographic] protocols

such as those developed here are prone to extremely subtle errors that are unlikely to be

detected in normal operation.  The need for techniques to verify the correctness of such

protocols is great...”.  It is ironic that this point is illustrated by the flaw detected in their

own protocol.  For years, computer programmers relied on layers of testing to address the

similar problem of finding errors in programs.  Unfortunately, testing of protocols cannot

provide a complete answer because of the cleverness of intruders.  Testing looks for

errors, yet failure to find errors does not mean that errors do not exist [DIJK76].  Accord-

ingly, extensive effort has been focused upon finding methods to verify cryptographic pro-

tocols formally.
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1.4  Problems with Protocol Specification

Fundamental to determining if a protocol meets its goals is having a clear accurate

description of the steps of the protocol.  Without a suitable specification language and

evaluation methodology in place, establishing such a clear specification of the protocol is

unlikely.  There is a preponderance of research regarding specification languages from the

traditional programming languages field.  In [GUMB82] Gumb identified ten characteris-

tics which are required for any specification language for a formal verification mechanism.

This section addresses some of the shortcomings of the specification step of cryptographic

protocol verification.

1.4.1  Languages for Cryptographic Protocol Specification

A difficulty in evaluating cryptographic protocols results from the pseudocode lan-

guages routinely used for specification.  These pseudocode languages are frequently seen

in the literature, but have no agreed formal definition.  Hence, the intent of a principal's

actions in the protocol can only be truly known by the protocol specifier.  An illustration

of this idea is that these languages couple important actions, emphasizing expressiveness

and ease of coding at the expense of rigor.  For example, the following statement may

appear in a pseudocode protocol expression:

A -> B: {X, Y} kab     (1.0)

This indicates that principal A is sending to principal B the messages X and Y

encrypted under some common encryption algorithm and under the common private key

kab.  Because these pseudocodes evolved for the purpose of specification, they represent

the protocols in a high level of abstraction.  As illustrated above, a single send operation

represents numerous actions that the principals must take.  One example is that the receive

action is implicit in the send operation.  While it is intuitively clear that when a principal

A sends a message M to principal B, that B is expected to receive M, omitting the receive

operation prevents us from expressing actions that may occur between the originator's
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send and the destination's receive actions.

Similarly, the encryption and decryption actions are part of the send operator.

Consequently, it is difficult to determine if the sending principal encrypted the message or

if the principal is forwarding a message that was previously encrypted by another princi-

pal.  In current practice, context is required to make this determination.  Assigning respon-

sibility for all actions to principals is greatly complicated by the broad spectrum of actions

represented by the pseudocode send operation.

While the coupling of operations in the pseudocode languages can be cleared up

largely with additional syntax, the omissions of the pseudocode languages cannot.  The

data items in the messages must have meaning to the principals.  The pseudocode lan-

guages provide no mechanisms for specifying what the data items themselves mean, or

even who originated the message.  Moreover, many of the protocols rely on comparing

data items sent in one step and received in a later step, yet the languages do not provide

mechanisms for depicting relationships between data items.  Conditions for continuation

from step to step and conditions for the success (or failure) of the protocol are either left to

intuition or specified in a narrative accompanying the protocol.  Worse yet, many protocol

specifiers introduce local conventions or utilize special naming practices to add informa-

tion to the protocol specification that not all readers may understand and thereby may miss

information that is important to the protocol operation.

Another shortcoming of the pseudocode languages used to specify cryptographic

protocols is that they do not provide mechanisms to assist in the determination of valid

assumptions, such as preexisting private keys between participants.  There is also a need

for mechanisms for specifying protocol goals, like “A believes k is a good key”.  In order

to mechanically evaluate the success of the protocols, both the assumptions and goals

must be expressed in a form suitable for this evaluation.  We propose a language in which

assumptions may be formalized in terms of actions of participants.  We believe this
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explicit declaration of actions formalizes and simplifies the designation of assumptions.

In our language goals are expressed as predicates that a participant desires to be true at the

specified point in the protocol.

1.4.2  Protocols, Logical Systems, and Step Sequencing

Protocols are routinely specified as a serial list of send and receive statements, or

steps.  Recently, it became clear that while the specification of the protocol may be serial,

any method of protocol verification must consider parallel transmission of messages.  We

will investigate this situation more fully later in the dissertation.

Many efforts recently have focused on formalizing cryptographic protocol verifi-

cation by developing logical systems that capture the essence of protocol meanings and

vulnerabilities.  The central theme of these logical systems is to examine the beliefs of the

participants given a set of assumptions, a set of rules of inference, and a protocol

expressed in terms of the impact of a protocol step on a participant's beliefs.

While logical systems add a great deal to the field of cryptographic protocol verifi-

cation, they continue to lack the formality they are intended to provide.  To use the logical

systems, the protocols must be stated in the language of the logic, while protocols are

specified and accomplished by actions of participants.  This leads to the problem of ideali-

zation we discuss in the next section.  Other fundamental difficulties have also been iden-

tified.

Snekkenes [SNEK91] identifies the sequencing of the protocol statements in the

specification as one aspect of protocol verification that is particularly difficult for logical

systems to represent.  Since non-temporal logical systems cannot enforce strict sequencing

on the protocol steps, the logical evaluation considers actions as timeless.  In truth, the

sequence in which the actions occur are essential to the security of the protocol.  If there

exists an ordering of the protocol steps that does produce a secure protocol, then the proto-
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col will pass the logical evaluation regardless of whether the steps are correctly ordered in

the evaluated protocol [SNEK91].

In his critique of the logic by Burrows, Abadi, and Needham [BAN90], Nessett

[NESS90] argues that the inability to detect all faults is a critical flaw, since the positive

evaluation may give a user a false confidence in the flawed protocol.  While the soundness

(accuracy when flaws are detected) of BAN is important, completeness (ability to detect

all flaws) is also necessary for an effective verification tool.  We discuss logical protocol

verification in greater detail in the next chapter.

1.5  A Solution From Formal Semantics of Programming Lan-
guages

While Dijkstra discredited testing as a means to ensure proper program execution

[DIJK76], others continued investigation into methods of proving “program correctness”

[HOAR69], [HOAR78], [WULF81].  These methods were formal in that the semantics of

the programs took their meaning directly from the syntax (or form) of specification.  Spe-

cifically, formal languages were developed that were expressive enough to describe the

needed functionality, then a formal semantics was given to the language.  By formally

defining the syntax of the language to be used for specifying programs and then attaching

a formal semantics to the language, a formal definition of the meaning of any program in

the language can be derived.  One can then use the formal definition to determine whether

or not the program means what we want it to mean.

In order to give meaning to programs, Hoare [HOAR69] gave each program struc-

ture a precondition/postcondition definition.  Using these definitions, Hoare could gener-

ate the definition of the segment S in terms of precondition P and postcondition Q.  The

program proof began with the claim: “If condition P is true before segment S runs, and if S

runs to completion, then condition Q will hold afterwards.” Condition P would then be a

verification condition, a condition whose truth guarantees the truth of the original claim
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(Q).  Once the verification condition was generated, all that would be left was to show that

the assumptions imply the verification condition.

This is precisely the approach we take with cryptographic protocol verification.

Cryptographic protocols are programs; a special case of programs that are short and do not

require constructs even as sophisticated as a procedure call.  We began by defining a for-

mal language that closely mirrors several of the pseudocodes routinely used in the litera-

ture.  The language we call the Cryptographic Protocol Analysis Language (CPAL) is very

simple.  Besides having no procedure or function call constructs, it provides no looping

structure, and none of the powerful definitive features of modern programming languages.

CPAL's simplicity and similarity to pseudocodes already in use combine to make the lan-

guage easy to use for writing and carefully defining cryptographic protocols.  Value is

added to CPAL by including operators to allow protocol authors to explicitly list local and

global goals (ASSERT/GASSERT), assumptions (ASSUME), and random number gener-

ation (NEW).  A simple if-then-else construct is also provided.  More detail of CPAL is

given in [YW93] and in the next chapter.

The tool we chose for developing the formal semantics for CPAL is the weakest

precondition reasoning of Dijkstra [DIJK76].  Two characteristics of this tool are attrac-

tive as the basis of our formal semantic mechanism.  First, we are able to automate the

process of generating the verification condition and second, using weakest precondition

definitions we are able to enforce strict sequencing on the steps in a protocol.  We estab-

lished CPAL's formal semantics by developing the weakest precondition for each CPAL

statement.  To verify a protocol, we begin by encoding the protocol in CPAL.  Then, using

the weakest precondition definition for each statement, we mechanically derive a “verifi-

cation condition” for the protocol.  A verification condition is a condition whose success-

ful proof will guarantee the success of the goals expressed in the protocol.  The final step

in our verification process is to prove the verification condition.
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Fortunately, proof of the verification condition is rarely complex, mostly involving

substitution of simple identities such as “A and A reduces to A”.  Assumptions are also

applied to the verification condition in this step.  Greater detail of the formal semantics for

CPAL is given in Chapter 5 and examples of the application of this process are provided in

Chapter 6.



CHAPTER 2
Previous Research Regarding Cryptographic Protocol Verification

Extensive research regarding the Cryptographic Protocol Verification (CPV) prob-

lem followed the Needham and Schroeder paper.  In this chapter we will show the breadth

and depth of this research, and illustrate why we believe no suitable solution has been

found.

In [BAN88] and an updated version of the paper [BAN90] Burrows, Abadi, and

Needham made a giant step forward in resolving the CPV problem.  The Logic of Authen-

tication (hereafter called BAN Logic) they proposed achieved widespread acceptance as

the de facto standard system for CPV, and is the target of enhancements and supplements

by various authors [GNY90], [AT91], [SYV93a], [SYVOOR94].   BAN Logic and two

other logical systems based on BAN Logic are described later in this chapter.

While BAN Logic is widely accepted, Nessett's paper [NESS90] demonstrated a

weakness in the use of BAN Logic for protocol verification.  This triggered broad and

often spirited discussions regarding cryptographic protocol goals, environments, and other

categorizations [BAN90b], [SYV91], [SNEK91].  Moreover, in much the same way as

Denning and Sacco [DS81] began the surge for examining cryptographic protocols,

[NESS90] challenged the very mechanisms used to evaluate protocols and triggered

intense research in suitable CPV mechanisms [BAN90b], [SYV91], [SNEK91].  As a

result, CPV mechanisms are now subjected to the same level of scrutiny as the protocols

they evaluate.  Several fundamentally different mechanisms evolved in the research.

In [MEA92], Meadows identifies the four major categories of protocol verification

methodologies as:

1 - Use of specification and verification tools developed for software evaluation.

2 - Testing tools based on expert systems which evaluate different scenarios.
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3 - Model the protocol requirements formally in a logic of knowledge or belief.

4 - Model the protocol formally based on the algebraic term-rewriting properties of

cryptographic systems.

Examples of the first, second and fourth of these are compared in [KMM93] and

described in detail elsewhere in the literature.  BAN Logic is an example of the third of

these categories.  Kemmerer proposes a method which spans the first and second catego-

ries in [KEM89].  The method we propose later in this paper spans the first, second, and

third categories.

2.1  Logical Systems for Evaluating Cryptographic Protocols

As we described earlier, a logic is a set of constructs, or logical language, com-

bined with a set of axioms and a set of rules of inference that utilize those constructs.  We

discuss the specifics of several logical systems later in this chapter.  We now briefly dis-

cuss the methodology for using these logical systems.  Generally, logical systems

designed to verify cryptographic protocols operate in the same three steps:

1 -  The protocol is translated from its procedural notation into a formula notation, i.e.,

the language of the logic to be used.  This process is calledidealization.

2 - Assumptions are made about the state and environment of the system.

3 - Facts about the protocol session are derived from the assumptions using the axioms

and rules of inference

The benefit of evaluation by systems of logic lies in the last step.  Logical analysis

based on an axiomatized language allows a logician to mechanically prove theses speci-

fied within the language.  Unfortunately, the final step is critically dependent upon the first

two steps, which are much less effective in accomplishing their purpose.

Idealization involves translating the meaning of the protocol specification from its
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description of the principal's actions expressed in a procedural notation, to a correspond-

ing description of the principal's beliefs and intentions given in a formula, or logical lan-

guage.  Accomplishing this translation is more complex than one might expect.  We do not

know of any mechanism yet developed that allows translation from the specified actions

of the principals to the beliefs that those actions reflect in a formal, mechanical way.  This

is largely because global knowledge of the intent of the protocol is required to make this

transformation.  According to Burrows, et al.  "...  the idealized form of each message can-

not be determined by looking at a single protocol step by itself.  Only knowledge of the

entire protocol can determine the essential logical contents of the message" [BAN89].

The authors then provide three non-mechanical guidelines for making the idealization

transformation:

1 -  "...  a real message m can be interpreted as a formula X if whenever the recipi-
ent gets m he may deduct that the sender must have believed X when he sent
m."

2 -  " Real nonces are transformed into arbitrary new formulas; throughout, we
assume that the sender believes these formulas."

3 -  "...  for the sake of soundness, we always want to guarantee that each principal
believes the formulas that he generates as messages."

Idealization is further complicated by the informality of pseudocode languages

used for cryptographic specification.  If  the interpreter of the protocol accurately judges

the meaning of the protocol action, this still does not guarantee that the idealization will

accurately reflect what the specifier intended.  In fact, it is likely that two different ideali-

zations of the same protocol may exist even though there is no ambiguity in the actions of

the principals.  We discuss the difficulties of protocol specification in greater detail in the

next chapter.

BAN Logic was among the first of many logical systems designed for protocol

verification.  With its small number of constructs and simple, concise rules of inference,
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BAN Logic became the foundation for expansion by authors attempting to extend and

improve the BAN Logic results.  Among others that followed were [AT91], [BEIB90],

[GLAS88], [GS91], [GNY90], [KG91], [MB93], [MOS89], [RANG88], [SNEK91],

[SYV90], [SYV93a], and [vO93].  Several of these are described later in this section.

The logical systems that evolved differ in important ways.  For instance, some of

these logical systems are founded upon knowledge (epistemic modality: A knows P) while

others are founded on belief (doxastic modality: A believes P).  The primary difference

between logical systems of knowledge and logical systems of belief is that knowledge

based logical systems have an axiom of the following form: "If you know P, then P is true"

(Syverson calls this Axiom T in [SYV91]).  Belief systems do not have Axiom T.  In

belief based systems, belief in P says nothing about the truth or falsity of P.

In [SYV91], Syverson differentiated between evaluation mechanisms based on

trust and those based on security.  He suggests that systems concerned with trust consider

the meaning of a protocol in an environment of exclusively trusted participants.  Hence,

the evaluatortrusts that each participant will follow the rules of the protocol.  On the other

hand, mechanisms concerned with security consider the effects that dishonest principals

(or malicious intruders) may have on the outcome of the protocol by not following the

protocol rules.  Syverson further argues that logical systems of belief are not suited for

reasoning about security, but can be used to evaluate trust in a protocol, while security as

well as trust of cryptographic protocols can be evaluated with logical systems of knowl-

edge.  Later research [SYV92] suggests that knowledge and belief based logical systems

have equivalent reasoning power.  We discuss logical systems of belief and logical sys-

tems of knowledge in more detail later.

Many of the enhancements to BAN Logic [AT91], [GS91], [GNY90], [KG91],

[MB93],  [SNEK91], [SYV90], [SYV93a], [vO93] were designed to deal with the step

sequencing problem identified by Snekkenes [SNEK91].  Temporal modalities are given
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significant attention, largely for the purpose of evaluating the freshness of messages.

Abadi and Tuttle [AT91] introduce a "forwarded X" construct for distinguishing newly

generated messages from forwarded messages.   The second message in the Otway and

Rees protocol given in Figure 1.2 is an example of a component of a message that is not

generated by the originating party to the destination, but is forwarded from some third

party.  Abadi and Tuttle also introduce a "P says X" construct to amplify the BAN Logic

construct P said X.  P says X indicates that principal P said message X in some protocol

run.

Gong, Needham, and Yahalom [GNY90] also provide similar constructs for for-

warding messages and provide a "P once said X" to indicate the freshness of X is not yet

known.  They further provide a construct which allow them to distinguish between mes-

sages that one recognizes and those that one believes.

Kailor and Gligor [KG91] present a methodology based on ordered knowledge

sets, allowing principals to accumulate knowledge as the protocol progresses.  A key

mechanism in their syntax is the requirement to include the message round of each mes-

sage in the protocol specification.  Syverson [SYV93A] adds pure [past] temporal logic

operators to the Abadi and Tuttle logic.  He demonstrates that by using the Abadi and Tut-

tle logic with these operators, causal consistency attack flaws in cryptographic protocols

may be demonstrated.

While the efforts we described and others not described (or even noted) have con-

tributed significantly to the understanding of cryptographic protocol complexity, no

method has yet achieved widespread acceptance and use in verifying cryptographic proto-

cols.

In the now classic paper [SYV91] Syverson brilliantly lays out many of the impor-

tant arguments surrounding logical systems used for evaluation of cryptographic protocols
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and gives a compelling argument for associating an independently motivated formal

semantics with the logical syntax.  He points out that while BAN Logic adds formality to

the cryptographic protocol verification process, it is not fully formal.  He reminds us that

the difference between rigor and formality is structure and that no amount of rigor can

make a method formal.  Formality comes only if the method is based exclusively on form,

in our case, the syntax of the specification.

In order to attach semantics to the logical systems, different modalities (e.g.  tem-

porality, possibility, necessity) of propositions are considered.  The possible worlds sce-

nario [RANG88], used extensively for logical systems geared to evaluating cryptographic

protocols, allows the logician to reason more effectively about the real world by empha-

sizing possibility, impossibility, and necessity [BAN90], [SYV91].  Briefly, a possible

world is a set of propositions that represent the way the world may be.  For example, there

may be a possible world in which there is gravity and another in which there is no gravity.

We can determine which possible world(s) a principal may be in by comparing their

knowledge set with the facts about the possible world, i.e.  a principal that knows that

there is gravity cannot be in a possible world in which there is no gravity.  Each belief that

is added to the principal's knowledge set reduces the number of possible worlds that the

principal could be in.

Syverson [SYV91] illustrates the application of possible worlds using the obvi-

ously insecure protocol that Nessett [NESS90] gives to demonstrate the flaw in BAN

Logic.  Nessett’s protocol is given in Figure 2.1.   Nessett’s protocol is able to pass BAN

Logic evaluation because the first message is encrypted under a key (pka-1) that is known

only by principal A.  The problem is that the decryption key (pka) is well known.  These

conventions are unique to public key cryptgraphy which we will discuss in greater detail

later.

Syverson defines decryption semantically to mean that a principal A can decrypt a
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message if and only if both the encrypted message and its decryption key reside in every

world possible for A.  He explains that because in Nessett’s protocol, both the message

containing the potential session key (Kab) and its decryption key (pka) are common

knowledge in all worlds, the message containing Kab may be decrypted by any principal.

As a result, key Kab is not a secure key and, thus, not a good key.

2.1.1  The Logic of Authentication

As we mentioned earlier, Burrows, Abadi, and Needham introduced BAN Logic in

[BAN88], [BAN90].  BAN Logic is a straightforward mechanism that allows reasoning

about beliefs that principals may have during a protocol run.  BAN Logic achieved wide-

spread acceptance as the standard logic for protocol verification, though it has not

achieved widespread implementation.

Burrows et.al.  form BAN Logic around constructors for believing, seeing, con-

trolling, and saying messages.  The authors choose not to utilize functional notation, e.g.

believes(P,X)) but opted for a more natural structure: P believes X.  They do offer a predi-

cate for freshness and other notation to represent the concepts of having a good public and

private key and for characterizing secrets and formulas.

2.1.1.1.  BAN Logic Constructs

While BAN Logic substitutes natural structure for predicate format, they introduce

non-standard notation to represent key concepts, e.g.  <-k-> represents the fact that k is a

good key.  We present the BAN Logic constructs using predicate calculus notation in lieu

of the actual BAN notation.  Our representation of the BAN Logic constructs is given

Nessett's Insecure Protocol

A->B: {Na,Kab}pka-1

B->A: {Nb} Kab

Figure 2.1
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below.  The first three constructs represent actions on messages taken by principals during

the protocol run.  The remaining constructs reflect possible beliefs that the principal may

have based on the contents of messages seen in a protocol run.

{X} k:  Message X is encrypted under key k.  The only way someone that possesses
this value can expose X is by decrypting the value using key k.

[X] y:  Message X is combined with password y.  The presence of y proves the identity
of the principal that generated the message [X]y

A->B:(X):  Principal A sends message X to principal B.

believes (A,X):  When this construct appears in a proof, principal A has sufficient evi-
dence to believe that statement X is true and will be true throughout this run of
the protocol.

sees(A,X):  This construct indicates that some principal (maybe A) sent message X
and A received X.

said(A,X):  Principal A sent message X.

controls(A,X):  A has jurisdiction over X or A is an authority with respect to X.  Effec-
tively, if A has jurisdiction X and B believes that A believes X, then B can
believe X.

fresh(X):  X was generated in this run of the protocol.

goodkey(A,kab,B):  kab has all the characteristics of a symmetric cryptographic key,
suitable for securing communications between parties that share kab.

pubkey(A,ka):  ka has all the characteristics of an asymmetric cryptographic key, suit-
able for securing communications between parties that share ka.

secret(P,X,Q):  X is a secret between P and Q

<X>y: X combined with formula Y.  Y is a secret that proves the identity of the originator of
<X>y.

2.1.1.2.  BAN Logic Rules of Inference.

The constructs above give us a logical language to use to describe principal's

beliefs during a protocol run.  The BAN Logic rules of inference provide the reasoning

power to deduce new beliefs from existing beliefs.
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The Message Meaning Rules.  These three rules provide the authenticity-detecting
power of BAN.  The first two rules define how symmetric and asymmetric key
cryptography prove the identity of a message originator.  Simply, if I see a mes-
sage that was encrypted under a certain key, then only the principal that pos-
sesses that key (or it's inverse for asymmetric key cryptography) could have
sent the message.  The third rule provides the same definition for shared secrets
that are not keys, but that can be securely combined with some message.

     For private keys:
believes(P,goodkey(P,k,Q)) and sees(P,{X}k) => believes(P,said(Q,X))

     For public keys:
believes(P,pubkey(Q,k)) and sees(P,{X}k-1) => believes(P,said(Q,X))

     For shared secrets
believes(secret(Q,y,P)) and sees(P,<X>y) => believes(P,said(Q,X))

Nonce-verification rule.  While the message meaning rules allow principals to reason
about what other principals said, the nonce verification rule allows principals to
reason about what other principals believe.  Loosely, if another principal said it,
and if it is fresh, then the principal that said it, believes it.

believes(P,fresh(X)) and believes(P,said(Q,X)) => believes(P,believes(Q,X))

Jurisdiction rule.  The jurisdiction rule extends the principal's reasoning ability even
further.  This rule allows a principal to gain a belief based on what another prin-
cipal believes.

believes(P ,controls(Q,X))and believes(P,believes(Q,X)) => believes(P,X)

Sees rules.  The Sees rules define how principals gather information during a protocol
run.  The first rule indicates that catenated messages are easily decoupled and
the second reflects the ability of any principal to extract a message from its sig-
nature.  The last three sees rules define the encryption and, by default, the
decryption operations.  Asymmetric key encryption requires two rules to define
the reciprocal nature of the two keys.

sees(P,<X,Y>) => sees(P,X)
sees(P,[X]y) => sees(P,X)
believes(P,pubkey(P,kp)) and sees(P,{X}kp) => sees(P,X)
believes(P,goodkey(P,k,Q)) and sees(P,{X}k) => sees(P,X)
believes(P,pubkey(Q,k)) and sees(P,{X}k-1) => sees(P,X)

Freshness rule.

believes(P,fresh(X)) => believes(P,fresh(<X,Y>);
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The BAN Logic rules of inference establish many, sometimes subtle, assumptions.

The Message Meaning Rule, for example, assumes that the cryptosystem utilizes perfect

encryption and the nonce verification rule assumes that a principal believed a message

when they "said" it.  Yet, it is in these eleven rules separated into five categories that BAN

Logic gains its verification power.  These rules describe the relationships between seeing,

saying, controlling, and believing messages, formally define the impact of a message

being fresh, and define the meanings of the encryption and decryption operations.

2.1.1.3  BAN Logic Analysis of the Needham and Schroeder Private Key Protocol

In order to illustrate BAN Logic analysis, we now analyze the Needham and

Schroeder Private Key Protocol [NS78] in Figure 2.2.  The analysis is largely taken from

[BAN90].

The first nine statements of the proof are assumptions given in BAN Logic nota-

tion.  All are intuitive and non-contentious, with the exception of statement 9, which we

will address more directly in a moment.  Statements (10), (17), (22), and (27) are annota-

tions.  These are derived by the protocol evaluator based on the protocol statements.  The

protocol steps themselves are idealized using the guidance: "Roughly, a real message m

can be interpreted as a formula X if whenever the recipient gets m he may deduce that the

sender must have believed X when he sent m" [BAN88,p330].  This idealization is not as

straightforward as deriving the assumptions and annotations were.

Because the guidance for idealization is so vague, and because different evaluators

may have different perceptions regarding protocols and their environment, it is easy to

envision different evaluators constructing different idealizations of the same protocol.  In

the Needham and Schroeder example, the second statement is idealized with the

"fresh(kab)" predicate.  The protocol evaluator was able to recognize that the authentica-

tion server was trying to convey this notion because of the convention the protocol speci-

fier utilized in naming the nonce.  Passing fundamental information such as this through
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naming conventions can easily result in misunderstanding or contradiction.  For example,

some protocols utilize timestamps, named "tx" or certificates named "cx"  as conventions

to establish the freshness of messages.  Evaluators unfamiliar with all such conventions

would not be able to generate accurate idealizations for such protocols.

BAN Logic Analysis of the Needham and Schroeder Protocol
1 - A and S believe goodkey(A,kas,S)
2 - B and S believe goodkey(A,kbs,S)
3 - S believes goodkey(A,kab,B)
4 - A and B believe S controls kab
5 - A believes S controls fresh(kab)
6 - A believes fresh(na)
7 - B believes fresh(nb)
8 - S believes fresh(kab)
9 - B believes fresh(kab)

A->S:  A,B,na
S->A:  {na,B,goodkey(A,kab,B),fresh(kab),{goodkey(A,kab,B)kbs}kas

10 - A sees {na,B,goodkey(A,kab,B),fresh(kab),{goodkey(A,kab,B)}kbs}kas                (A)
11 - A believes S said

(na,B,goodkey(A,kab,B),fresh(kab),{goodkey(A,kab,B)}kbs)                      (MM,1,10)
12 - A believes fresh  (B,goodkey(A,kab,B),fresh(kab),{goodkey(A,kab,B)}kbs)   (F,6,11)
13 - A believes S believes fresh(kab)                                                                         (NV,11,12)
14 - A believes S believes goodkey(A,kab,B)                                                          (NV,11,12)
15 - A believes fresh(kab)                                                                                                   (J,5,13)
16 - A believes goodkey(A,kab,B)                                                                                     (J,4,14)

A->B:           {goodkey(A,kab,B),A}kbs
17 - B sees {goodkey(A,kab,B),A}kbs                                                                                     (A)
18 - B believes S said (goodkey(A,kab,B),A)                                                            (MM,2,17)
19 - B believes fresh(goodkey(A,kab,B))                                                                        (F,9,18)
20 - B believes S believes (goodkey(A,kab,B))                                                         (NV,18,19)
21 - B believes goodkey(A,kab,B)                                                                                    (J,4,20)

B->A:           {nb,goodkey(A,kab,B)}kab
22 - A sees {nb,goodkey(A,kab,B)}kab                                                                                   (A)
23 - A sees (nb,goodkey(A,kab,B))                                                                                (S,16,22)
24 - A believes B said (nb,goodkey(A,kab,B))                                                        (MM,16,22)
25 - A believes fresh(nb,boodkey(A,kab,B))                                                                 (F,15,24)
26 - A believes B believes goodkey(A,kab,B)                                                           (NV,24,25)

A->B:           {nb,goodkey(A,kab,B)}kab
27 - B sees {nb,goodkey(A,kab,B)}kab                                                                                   (A)
28 - B sees (nb,goodkey(A,kab,B))                                                                                 (S,18,27)
29 - B believes A said (nb,goodkey(A,kab,B))                                                        (MM,18,27)
30 - B believes fresh(goodkey(A,kab,B))                                                                         (F,7,28)
31 - B believes A believes goodkey(A,kab,B)                                                           (NV,29,30)

A - Annotation                                              MM - Message Meaning rule
NV - Nonce Verification rule                     J - Jurisdiction rule
F - Freshness rule                                         S - Sees rules

Figure 2.2



Chapter 2:  Previous Research Regarding Cryptographic Protocol Verification 38

Said another way, idealization requires the protocol evaluator to have global

understanding of the messages and message components in the proof in order to accu-

rately idealize the protocol.  For example, the evaluator must understand exactly the

meaning a nonce will have for the recipient and how it will be used in order to correctly

idealize that nonce.  We believe this global intent must be included in the protocol specifi-

cation by the protocol originator to reduce ambiguity and to free the evaluator to focus

more on determining if the protocol meets its goals, and less on determining how the pro-

tocol is supposed to meet them.

In our example, we do not list the actual protocol steps as statements in the proof,

but rather show where they occur sequentially to give form to the proof.   While this may

give the impression that the order has some effect on the proof, it in fact does not.  The

only sequencing involved in this proof is deductive sequencing.  For example, justification

of statement 20 relies on statement 19.  While statement twenty must have been derived

after statement 19, this has nothing to do with the order of execution of the steps.  None-

theless, we show the steps sequentially in order to facilitate understanding of the proof.

The remainder of the statements are derivations generated using the BAN Logic

rules of inference given above.  The derivations are justified in parenthesis following the

statements.  The desired results of the proof are found in statements 26 and 31.  As Bur-

rows, et.al.  point out, these results are obtained by making the "unusual" assumption

found in statement 9 that B assumes the new key passed from the authentication server is

fresh.  As was pointed out in [DS81], this unusual assumption is flawed, but necessary

because there is no evidence of freshness sufficient to derive this as a theorem after the

third protocol step, between statements 17 and 21.

2.1.1.4  Summary of BAN Logic Analysis.

BAN's strengths lie in the simplicity of its logical language and the small number
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of constructs and rules of inference that it requires.  The primary weakness of BAN Logic

is the fact that it is not complete; that is, while evaluation with BAN Logic can detect

some errors, protocols with flaws can avoid detection by BAN Logic [NESS90].

BAN Logic, like many of the other proposed logical systems, has no mechanism

for enforcing strict ordering on the steps in the protocol.  The BAN Logic meaning of each

statement depends only upon the annotation rule which allows a principal to "see" a mes-

sage when it is sent to them, so the BAN Logic meaning of any statement in a protocol is

the same regardless of the statements before (or after) it.  We see this as a weakness in the

BAN Logic idealization process, which fails to retain the semantics added to the protocol

by the sequence of the steps in the procedural definition.  Snekkenes [SNEK91] shows

that the loss of this meaning creates a dilemma for BAN Logic, in that "step permutable"

protocols with obvious flaws may pass  BAN Logic evaluation.

This weakness in BAN Logic is a result of the nature of the BAN Logic method.

BAN Logic is used to prove properties about a specific set of protocol steps executed in a

specific sequence.  The proof reflects the beliefs of valid principals in the protocol run.

The weakness surfaces because BAN Logic cannot predict how a powerful, active intruder

may reorder the sequence of the steps in a protocol run.  We discuss static and dynamic

evaluation of protocols in more detail in section 2.5.

In [BAN90b], Burrows et.  al.  acknowledge the fact that BAN Logic is not an all

encompassing method for ensuring protocol security and state that the problem of provid-

ing a mechanism that can detect all errors in a protocol is "quite difficult".  This suggests

that in protocol verification, like program testing, we should not seek a perfect solution,

but should attempt to find ways to gain confidence in the security of protocols.

2.1.2  Non-monotonic Logical Systems

Another shared characteristic of many existing protocol verification logical sys-
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tems is that they are monotonic; that is, knowledge and beliefs cannot be changed or

refuted during analysis.  In [MOS89] Moser suggests that analysis of cryptographic proto-

cols requires us to be able to continue reasoning in the presence of new evidence that

effectively refutes previously held beliefs/knowledge.  She contends that complete knowl-

edge is rarely available and always expensive and that it is important to be able to distin-

guish between information that is known with certainty and information that is based on

trust in the behavior of participants.  In practice, we depend on belief and trust rather than

knowledge and enforcement.  Since beliefs may be refuted, it is  necessary to be able to

continue reasoning if an assumption is refuted.

In support of her argument, Moser proposes a non-monotonic logic, i.e.  a logic

that allows reasoning to continue in the face of refutation of existing beliefs.  Moser's

nonmonotonicity is accomplished by combining a logic of belief with a non-monitonic

"unless" operator.  The unless operator establishes a relationship between two beliefs for a

given principal.  Annotated  "Bi(p) unless Bi(q)", the operator means that principal i

believes proposition p unless i believes proposition q.  Clearly, this notion adds complex-

ity to the logic.  For example, it may be possible to have more than one solution to a given

formula.  Moser gives the example that "Bi(p) unless Bi(q) and Bi(q) unless Bi(p)" has

two possible solutions, "Bi(p) and ~Bi(q)" or  "~Bi(p) and Bi(q)".  As Moser states, "...

rational agents may interpret the same evidence but reach different conclusions that are

equally valid."

Introduction of the concept of refutation of beliefs requires some method of decid-

ing which value of a refuted belief is to be utilized.  If principal i believes proposition p to

be false, but then discovers evidence that p is true, how would i decide whether to believe

that p is true or false.  Intuition suggests that we should accept the most recently acquired

belief, under the assumption that some action subsequent to acquiring our original belief

changed the state of the environment.  Without temporal operators, we cannot resolve the
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conflict in this way.  Rather, Moser elects to resolve all potential paradoxes and contradic-

tions in the direction of the absence of belief.  Using this methodology, the formula

"~Bi(p) and Bi(p)" simplifies to ~Bi(p).

In order to fully understand her handling of contradictory beliefs, consider the

underlying logic.  While some logical systems assume non-belief in the absence of evi-

dence for belief, Moser's logic assumes belief in the absence of refutation.  Effectively, if a

principal i sees proposition p, then Bi(p).  Thus,  belief in any proposition p may be more

accurately represented as "Bi(p) unless Bi(~p)".  Additional information confirming the

truth of p has no impact upon the formula.  However, once evidence is provided indicting

the falsity of p, p becomes false in the formula and cannot be "reconfirmed" as true.  Prop-

ositions are considered to be universally true or false.  If p is false, it will never become

true and vice versa.

In [SYV91] Syverson argues that the non-monotonic features of reasoning about

cryptographic protocols should be accomplished outside the logical system because of the

"tremendous increase in difficulty of reasoning..." that are required to incorporate these

features into the logic.  He suggests that providing the unless operator greatly complicates

reasoning, while it provides little or no additional flexibility.  The utility of changing

assumptions may be accomplished as easily by returning to the original argument list and

restarting the reasoning process.

2.1.3  Temporally enhanced logical systems.

The discussion of non-monitonic logical systems touched on the issue of temporal

considerations of protocols.  These issues arose because of the recognition of two types of

attacks active intruders may use against protocols.  The first attack, known as a replay

attack [DENN81], involves having an intruder record messages from a protocol session

and use the copied messages to trick a participant in a current session.  The discussion of
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whether or not a message originated in the current protocol session is considered to be a

matter of freshness.  A message is considered to be fresh if it is not older than some time

threshold, usually corresponding to the start of the protocol session.

The second temporal issue is of the order of messages (or possibly components of

messages) in the current session.  It was shown that unless protocol messages are selected

very carefully, active intruders may be able to extract parts of previous messages in the

current run that will trick a participant into an invalid belief [BIRD92].

Neither of these issues is directly concerned with time, but rather they are a matter

of sequencing.  One method of dealing with sequencing is to use time to distinguish which

message did, or should have, occurred first.  These issues lead to development of tempo-

rally enhanced logical systems containing operators to deal with freshness and with the

sequencing problems of BAN Logic identified by Snekkenes [SNEK91].  The methods

described below are examples of these logical systems.

2.1.3.1  A Logic of Knowledge and Time

In [BIEB90], Bieber describes his Logic of Knowledge, Time and Communica-

tion, CKT5.  The foundation for CKT5 is a simple language based on the AND, OR, and

NOT connectors and a set of propositional variables.  While there are no specific temporal

operators, the knowledge operators are indexed by the responsible agent and the time of

the action, e.g.  principal A knows predicate F at time t.

Bieber adds to the logic of knowledge and time the communications modal opera-

tors SEND and RECEIVE.  He defines the SEND operator to mean that once a principal A

sends a message, then A knows that some other principal receives it.  Conversely, the

RECEIVE operator means that if B receives message m, then m is a usable message and B

knows that some principal sent m.  To be usable, a message must be either a valid cleartext

message, or a valid cleartext message encrypted under some valid key one or more times.
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With the connections in place between knowledge, time, and communication, Bie-

ber introduces the encrypt and decrypt functions to allow interpretation of messages.  Cat-

egories of messages include clear, clean, computable, catenated, elementary, partially

clear, and univoque.  By combining the constructs and the long set of accompanying defi-

nitions, the logic allows one to deduce security related information about the protocol.

Bieber's contribution is in defining the send, receive, encrypt and decrypt operators

in such a way that successful reasoning about cryptographic protocols executed in a hos-

tile environment may be accomplished.  The send and receive operators provide the link

between communication and knowledge.  The encrypt and decrypt operators (termed

functions by Bieber) quantify the logic and provide the means to protect the interpretation

of messages against anyone that does not possess the appropriate key, for if two agents

share a private key, the inability to decrypt messages guarantees secrecy and the ability to

encrypt messages guarantees authentication.

Bieber's reasoning builds from the definition of send and receive, which mean that

if principal A sends or receives a message  m, then A and one other principal knows m.

The interpretation of m is derived from the concepts of a cleartext message, message

encryption [or decryption], and message catenation.  If a message received by A is con-

structed using only cleartext messages, catenation, and encryption/decryption with a key

known by A, the message is "computable" and thus can be known by A.

In his conclusion the author notes, "The major difference between their approach

[Burrows, Abadi, and Needham] and ours lays on the difference between belief and

knowledge." Bieber calls his a "realistic" view of communication because the "usable"

definition of knowledge does not infer any trust into other agent's behavior.

2.1.3.2.  GNY.

In their logic (called GNY) [GNY90], Gong, Needham and Yahalom extended and
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enhanced BAN Logic.  The temporal extension of GNY, termed "P is told a formula that

he did not convey previously in the current run" reflects the author's attempt to provide a

measure of sequencing of protocol steps.  If a "not originated here" message is received by

a principal A, and if A can determine that the message is fresh, then A did not convey the

message in this run of the protocol.  While this operator narrows in on the problem, it does

not provide a mechanism to detect if an intruder is replaying a message that was sent by a

different principal (perhaps one that knows the shared key) in this or a previous run.

Two other BAN Logic extensions of GNY deal with distinguishing between a

principal recognizing or possessing and believing a message.  Rather than utilizing a gen-

eral belief operator, GNY requires context for the belief operator.  A principal can believe

that statements are true, public keys are valid, messages are fresh, another principal con-

veyed a message, or that secrets are well-kept.  In a sense, these operators provide type

checking for the belief operator.

It is also instructive to recognize the difference between the belief about public

keys and private keys with GNY.  The private key constructor indicates only that a pro-

posed key k is a suitable secret between two principals.  This is a more narrow representa-

tion of the characteristics of k than required in BAN Logic where the key is understood to

have all the necessary characteristics of a good key.  While these characteristics are not

listed in the BAN papers (or elsewhere that we know of) secrecy is certainly one of the

important characteristics.  Others include unpredictability, no duplication, and, of course,

the necessary encryption and decryption results.  The public key belief of GNY reflects

the same understanding of the public key as with BAN Logic.

2.1.3.3.  Kailar and Gligor

Another example of a logic that attempts to deal with the step sequencing problem

of logical evaluation of cryptographic protocols is given by Kailar and Gligor [KG91].
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The system they call Ordered Knowledge Sets is an extension to BAN Logic.  They  pro-

vide a syntactic addition to BAN Logic that forces specification of the originator, recipi-

ent, and message round indicator with the message contents to formally order the protocol

steps.  In the evaluation, this information is used to construct ordered lists depicting when

each principal believes principals gained knowledge of each data item they see.

Interestingly, it is the syntactic addition of Kailar and Gligor's verification mecha-

nism that forces the specification of additional information used to do the verification.  In

[AN94] Abadi and Needham give principles for improving security of cryptographic pro-

tocols.  In that paper, they recommend including information within each message that

identifies the intended message round and protocol session.

2.2 - Use of specification and verification tools developed for soft-
ware evaluation.

In [KEM89] Kemmerer describes a mechanism for cryptographic verification

based on specification and verification tools developed for software evaluation.  The idea

of Kemmerer's approach is to formally specify the components of the cryptographic net-

work and the associated cryptographic protocol actions.  The Formal Development Meth-

odology (FDM) state machine approach to formal specification is used.  States are

differentiated from one another by the values of state variables, which are changed only by

well defined state transitions.  Thus, the components are represented as state constants and

variables, the protocol rules are represented as state transitions, and assumptions about the

cryptographic algorithms are specified as axioms.  Because of the latter, one can verify the

system assuming the use of a different encryption scheme by replacing the current axioms

with axioms that express the properties of the different encryption scheme.  The desirable

properties that the protocol is to preserve are expressed as state invariants.  The theorems

that must be proved to guarantee that the system satisfies the invariants are automatically

generated by the verification system.
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The formal specification language that is used, Ina Jo, is a non-procedural asser-

tion language that is an extension of first-order predicate calculus.  Assertions are used to

specify the critical requirements for a secure state.  The system being specified can change

state only as described by one of the state transforms.  After the formal specification is

completed, one can verify the theorems that are generated to check if the critical require-

ments are satisfied.  If the theorems are verified and the encryption algorithms satisfy the

assumed axioms, then the system will satisfy its critical requirements.

To begin the test, the user submits the formal specification to the Ina Jo testing tool

Inatest, which allows the user to interactively monitor and control the test.  A sample of

the Inatest commands taken from [KMM93] is given in Figure 2.3.

FDM employs an inductive approach to generate the necessary proof obligations

to assure that the critical requirements are preserved.  One must show that the criteria hold

in the initial state and for every transform, show that if the transform fires in a state where

the criteria hold, then the resultant state also satisfies the criteria and that the previous and

new states satisfy the relationships expressed by the constraints.  That is, the initial state is

the basis case and the induction is on the transforms.

Kemmerer utilizes his system to analyze a protocol given by Tatebayeshi, Mat-

suzaki, and Newman [TMN91] in [KMM93].  The critical requirement that the system is

to satisfy in all states (called the criterion) for the TMN protocol is:

"... the only key that is known to the intruder... and that is also a key that was used by

the system is the Server’s public key."

Figure 2.4, taken from [KMM93], gives the Ina Jo transforms for the Tatebayashi,

Matsuzaki, and Newman (TMN) Protocol.  The statements in the second column of Figure

2.4 are  Ina Jo representations of the SN notation of the protocol steps in the first column.
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An advantage of expressing the system using formal notation and attempting to

prove properties about the specification is that if the generated theorems cannot be proved,

the failed proofs often point to weaknesses in the system or to an incompleteness in the

specification.  These may take the form of additional assumptions required about the

encryption algorithm, weaknesses in the protocols, or missing constraints in the specifica-

tion.

One important characteristic of Kemmerer's system is that by including the

intruder as part of the formal specification, it can be used to detect attacks by active intrud-

ers as well as evaluating static protocols against passive attacks.  Kemmerer suggests that

there are three approaches to analyzing encryption protocols:

1)  Formal verification of the protocol specification

Sample Inatest Commands

Add - add a predicate
Exec [trans] - execute transform ’trans’
FIle [fileid] - read commands from the named file
Help - display available commands
LS - list specification
LT - list transforms
Path - display current path
Quit - return to UNIX
Restore [N] - restore state number ’N’
Save [comment] - save a state
SEQ [fileid] - execute a sequence of transforms
STATES - display saved states
Vars [id] - display [one] variable value(s)
Check [current or Result]
Display [current or Start or Result]
Init [start or Result]

Figure 2.3
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2)  Exhaustively test the protocol
3)  Intelligently select particular scenario's for testing

Kemmerer's system uses both 1 and 3.  The system does not search through scenar-

ios to find vulnerabilities, but rather leaves selection of a scenario up to the protocol spec-

ifier.  Kemmerer's system then tests the formal specification of the scenario against attack.

If the analyst does not test the appropriate scenario, no flaws will be revealed. In

[KEM89],  Kemmerer showed how his method was used to reveal a previously known

flaw in a protocol, though the method has not successfully detected a previously unknown

flaw in a protocol.

2.3  Testing tools based on expert systems which evaluate different
scenarios.

The dominant technique for determining whether or not computer programs meet

their goals is testing.  Program testing has received broad and deep research in its ability to

accurately determine if programs meet their goals.  While testing is recognized as an

incomplete verification mechanism, many testing methodologies exist that improve the

testing process for computer programs.  Millen et.  al.  use this approach for application to

the CPV problem.

Tatebayashi, Matsuzaki, and Newman Protocol in SN and Ina Jo

SN Ina Jo Transform Declaration

     A->S: (A,B,e{ka}pks) Request_Key(A,B:User, ka:Key)

     S->B:  (A) Process_Request(A,S:User, A:Text)

     B->S:  (e{kab}pks) Respond_To_Server(A,B:User,kab:Key)

     S->A:  (e{kab}ka) Return_Key(A,S:User, C:Text)

     A->B: (e{important_data}kab); Get_Key(A,B:User,important_data:Text)

Figure 2.4
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In [MCF87] Millen, Clark and Freedman offer a testing tool designed to be used

for verification of the subset of cryptographic protocols called Key Distribution Protocols.

Their tool is called Interrogator.  Interrogator is a series of Prolog programs which take a

black box view of the Key Distribution System.

The input to Interrogator is a protocol specification and a data item.  The Interroga-

tor utilizes the specification to build a state transition machine based on the transmit and

receive operations.  Once the machine with its transitions are built, Interrogator systemati-

cally exercises the paths of the state machine using its model of protocols and network

communication.  The goal is to determine if the intruder can learn private information.  If

a path is found that divulges private information to an intruder, the message history that

allows the compromise is displayed.

The Interrogator utilizes exhaustive search for cryptographic protocol verification.

On the positive side, if an attack exists, Interrogator will find it.  However, for complex

protocols, the size of the problem can become quickly intractable and the success of the

process becomes dependent on the wiles of the analyzer for providing helpful hints for

reducing the size of the search.  The system is also limited by its selection of only key dis-

tribution protocols for evaluation.

2.4  Term rewriting systems

The NRL Protocol Analyzer [MEAD91] is an interactive Prolog program which

was successfully used to identify flaws in existing protocols [MEAD92].  The tool is

based on the algebraic term-rewriting method proposed by Dolev and Yao [DY83].  The

NRL Protocol Analyzer makes use of protocol specifications as communicating state

machines.  Analysis is performed by showing that undesirable states are unreachable.  The

state of the machine is represented by the beliefs of the participants.  Transitions are

events in which words are generated and beliefs are modified.  Transition rules have three
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parts: pre-conditions, post-conditions, and event statements.  Event statements are used to

record the firing of a rule and indicate what the rule does.  Specifically, it identifies the

principal, the protocol round, the event, and the value of  the principal's counter.

The NRL Protocol Analyzer utilizes a narrowing algorithm to find the substitu-

tions necessary to determine if a state can be reached.  To prevent an explosion of states

from application of the algorithm, the search space must be limited.  This can be done by

the user with the help of several tools provided with the Analyzer.

2.5  Static Versus Dynamic Protocol Evaluation

There are two perspectives that must be considered when evaluating the effective-

ness of a protocol.  The characteristics of the evaluation methods differ significantly and

have been the subject of much debate in the literature.  The first view we should consider

is what the protocol accomplishes with regards to the trusted principals.  This perspective

corresponds to static evaluation of a protocol, i.e.  evaluation of the meaning of the proto-

col given that its steps are executed in the exact sequence and with the exact content that

was intended by the designer.

In considering the results of proper actions of trusted principals, it is reasonable for

us to view and evaluate the actions and accumulated beliefs (belief sets) of both principals

during the protocol run, since we are assuming that each principal is doing what they are

supposed to be doing.  Accordingly, we may desire to check the belief set of principals

against each other to determine if they correspond.  In order to be able to evaluate proto-

cols from this view, any useful evaluation mechanism should provide a mechanism to

explicitly bind each action in the protocol to the principal that is responsible for that

action.  The question of which party created a nonce, for example, can have a major

impact on whether or not the nonce accomplishes its objective of ensuring message fresh-

ness.  Without this feature, it could also be difficult to determine who has jurisdiction over
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data items or who accomplished the encryption of a data item in a protocol.

The second perspective we must consider is how an active intruder might be able

to compromise the protocol.  We may categorize this as dynamic evaluation of a protocol,

or more generally, the security of the protocol.  In this category we consider how a power-

ful intruder may cause protocol steps to be executed out of sequence, or may convolute the

content of messages from what the protocol designer intended.  The intruder may accom-

plish this, for example, by recording messages from a previous session and replaying them

into a current session (replay attack) or by initiating more than one session simultaneously

and ingeniously tricking the trusted participants into erroneously mixing messages from

different sessions (parallel session attack).

To illustrate the problem of active attacks, consider the following benign protocol.

We assume that principals A and B share a common key k before the start of the protocol

run.

A->B:  (A);
B->A:  ({N} k);
A->B:  ({N+1} k);

If the protocol is executed as written, A can believe that the session is begun with

B because N can be successfully decrypted with key k.  Since only B knows k, B must

have sent N.  B can believe that a session is started with A because N+1 is successfully

decrypted with key k.  If an active intruder X records the above session, then waits for A

to originate another session, X may be able to defeat the protocol by intercepting A's mes-

sage intended for B and replying as follows:

A->B:  (A); -- Intercepted by X
X->A:  ({N} k); -- Message replayed from the previous session
A->B:  ({N+1} k); -- Intercepted by X

Based on the above interaction, A would erroneously believe that a secure session

is established with B.
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Dynamic evaluation of protocols is more complicated than static evaluation.  From

this view, it is only reasonable to consider the beliefs of one principal at a time, since the

principal cannot assume that they are communicating with a trusted principal.  This evalu-

ation must be made based exclusively upon what the principal sends and receives on the

net.  To accomplish this, each user must be able to remember things that have happened by

storing and later retrieving messages, nonces, and keys as if they were operating in a pri-

vate address space.  Otherwise, it will be impossible to effectively reason about what a

user knows or believes based on the information gathered via a protocol.  In this scenario,

it is not reasonable to assume what the contents of another principal’s address space are,

which further weakens our reasoning ability.

The significance of the problem of dynamic evaluation of cryptographic protocols

is emphasized in research into the nature of attacks on cryptographic protocols such as in

[AN94], [BIRD92], [BIRD93],  [MOORE88], [SYV93a], [SYV93b].  By detailing the

simple attack given above and other various attacks, these works highlight the variety and

subtle nature of active attacks.  Bird, Gopal, et al.  and Abadi and Needham extend this

research to offer guidelines for creating protocols which are not vulnerable to several of

the known attacks.  While there is no guarantee that the guidelines they offer are effective

against as yet unknown attacks, this line of research appears to be helpful in finding a

mechanism suitable for effecting CPV.



Chapter 3
The Cryptographic Protocol Analysis Language (CPAL)

As we described previously, the first step in our protocol evaluation process is the devel-

opment of a language suitable for describing the actions of principals in a cryptographic protocol.

CPAL contains the constructs necessary to express the protocols in a form similar to several of the

ad hoc pseudocodes that are seen in the literature.  Earlier, we discussed some features of these

pseudocodes and utilized them to give the Needham and Schroeder and the Otway and Reese pro-

tocols in Figures 1.1 and 1.2.  Carlson considered these pseudocode notations in [CARL94] nam-

ing one version Standard Notation (SN), and suggested that the syntax for SN is well defined, but

that no semantics is associated with it.  Figures 1.1 and 1.2 utilize the pseudocode form of SN.

Throughout this dissertation we consider SN as the representative version of all pseudocodes

invented for describing cryptographic protocols.  We now look at these pseudocodes in some

greater detail.

3.1  Pseudocodes for Cryptographic Protocol Specification

Because the pseudocodes prevalent in the literature evolved to describe the actions a prin-

cipal may take in a protocol run, we are concerned with exactly what operations the protocol

describes.  Clearly the predominant actions principals take are to send and receive messages.  As

we pointed out earlier, the symbol -> in SN represents the send operation.  There is no corre-

sponding symbol for receiving a message.  Message receipt is assumed within the send operation.

Though rigor suffers for this omission, in most instances the notation is sufficient to portray the

intent of the specifier.

The lack of a receive operation also complicates the meaning of names.  Messages and

message components are named as if they reside in some global address space.  Names are

retained throughout the protocol session as the messages are passed back and forth, principal to

principal.  It is impossible to tell where a message originated or if a new message is generated
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with the same name as a previous message.

The second important action principals take in a protocol run is to encrypt and decrypt

messages.  In SN, only encryption is represented.  The assumption is made that if a principal pos-

sesses an encrypted message and the appropriate key, they will attain the message contents.

Occasionally, an encrypted message is forwarded to a principal that does not possess the key nec-

essary for decryption with the intent that the message will be forwarded to a principal with the

appropriate key in a later protocol step.  This may lead to confusion regarding exactly where a

message originated and who actually possesses the content of the encrypted message.

 S->A:           {na,B,kab,{kab,A}kbs} kas (3.1)

In statement 3.1 notice that the message contains the encrypted value {kab,A}kbs.  Without

considering the entire protocol, it may not be clear whether {kab,A}kbs is encrypted by S, or sent

to S by some other principal earlier in the protocol.  In this case, a naming convention resolves the

ambiguity.  Because the convention of using the letter k suffixed by the lower case letter for the

principals that share the private key, a message encrypted under kbs could only have been origi-

nated by principal B or principal S.  Since the message containing {kab,A}kbs that B received

originated from S, then B assumes that only S could have done the encryption.  We know now that

this entire line of reasoning ignores the fact that the encrypted message may have been forwarded

any number of times, and may have originated from B itself.

Other conventions evolved with the intent of reducing confusion of pseudocodes.  Alice

and Bob, the "first couple of cryptography" [DIFF88], [GORD84], also known as A and B respec-

tively, represent the canonical communicating principals.  Alice is routinely the session originator

and Bob the responder to the prompt.  When a centralized authentication server is utilized in a

protocol, it is routinely named AS or S, though occasionally KDC (for key distribution center).

When an intruder is present, he is often given the identity I.

While SN accurately represents a good summarization of the pseudocodes found in the lit-
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erature, many variations appear.  Some prefer a picture portrayal of the principals as remote enti-

ties, such as in statement 3.2.  Some go as far as showing each principal as a node with all

messages emanating between the circles which represent the nodes in the graph.  Some

pseudocode languages make the round number (sequence number of a message within a protocol)

a part of the protocol specification, while others add mechanisms to specify a session identifier.

Other less noticeable variations include subscripting or superscripting all or parts of the encryp-

tion and decryption key and using function notation for encryption, decryption, send and receive

operations

      {na,B,kab,{kab,A}kbs}kas
S  --------------------------------------------> A (3.2)

Pseudocodes were introduced to add formality to the process of describing cryptographic

protocols, or the rules principals were to use to establish secure communication using cryptogra-

phy.  These interactions are intuitively seen as algorithmic, i.e. a step-by-step process.

Pseudocode languages are best known for their extensive use by computer programmers.

The languages were needed because the programmers were not able to easily plan the necessary

computations and data manipulations in the machine languages of the day.  Pseudocode languages

represent a language understandable by an abstract machine that operates in an environment more

similar to the application setup than the actual implementation machine.  Assembler languages

and then compiled languages were steps in the process of allowing programmers to "think" in the

syntax of the programming language.

The process is similar with cryptographic protocols, with the focus on moving data rather

than performing computations.  Sending a message may be thought of as copying data from one

address to another.  Because cryptographic protocols routinely involve only two communicating

principals and the steps are executed sequentially, advanced control structures required in com-

puter programs are not necessary.
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In cryptographic protocols, there are three fundamental sets of actions:

1 - Send and receive messages
2 - Catenate messages and extract messages components from catenation
3 - Encrypt and decrypt messages

In SN, these actions are coupled into a single operator.

3.2  Protocols as Action Lists

It is common practice in the literature to specify protocols as execution traces of actions

by two or more principals.  The actions are normally intermixed, with the principals taking turns,

alternately sending messages to one another.  The protocols are expressed as though the actions

are executed serially when in fact they are intended for execution by separate, cooperating pro-

cesses, usually on different processors in remote locations.

A more accurate view of a protocol is as separate lists representing the actions of each

principal, interleaved together to form an execution trace.  The action lists contain all the actions

each principal takes in a run of the protocol in the same order given in the protocol specification.

The original protocol can be reconstructed from its action lists by interleaving the action lists to

form what we term an execution trace.  In reconstructing the execution trace, the original order of

the action lists is maintained, and the separate actions are re-synchronized in the execution trace

by the blocking nature of the send and receive operations.

As we describe in greater detail in the next section, send and receive may be thought of as

atomic operations on a message queue.  Principals use the send statement to place a message on

the input queue of an intended recipient.  The send is a blocking operation because if the queue of

the intended recipient is full, the send operation cannot be completed.  The receive statement, is

used by a principal to retrieve a value from its own input queue.  The receive statement is a block-

ing operation in that a principal cannot complete a receive operation until some principal (maybe

the same one) executes a send operation with a message of the expected form and addressed to
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that principal, i.e., until there is a message on the principal's input queue.  Said another way, legal

interleavings of action lists are formed by maintaining the order of action lists and synchronizing

the send and receive operations of the principals involved.

We elected to represent the input queue of each principal as only one message deep.  We

do this because of the nature of most cryptographic protocols, where principals routinely send a

message containing information and possibly a challenge and then wait [block] until a message

reply is received.  Steps are sequenced so that when a message is sent to a principal, that principal

executes the next protocol action.  We made these characteristics inherent in our system, rejecting

protocols that violate the normal send and block protocol step sequence.

SN is not suited for representing protocols as independent action lists.  Figure 3.1 shows

the Needham and Schroeder Private Key Protocol [NS78] action lists given in SN.  One difficulty

is the lack of a receive statement.  In Figure 3.1, each action list begins with a send statement, so

it is not clear which principal begins the sequence.  Because the operations are indivisible, there

can be no sequencing mechanisms in SN, such as blocking operations, available to serialize the

steps.

3.3.  The Meaning of CPAL Actions.

In discussing the meaning of actions in a protocol, we found it helpful to consider an

Needham and Schroeder Private Key Protocol Action Lists

A S B

      A->S:  A,B,na  S->A: {na,B,kab,{kab,A}kbs} kas B->A:  {nb} kab

A->B: {kab,A} kbs

A->B: {nb-1} kab

Figure 3.1
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informal model of the environment.  For this purpose, we selected the model described in [AT91],

where every message sent by a valid principal is intercepted by a powerful intruder.  Upon inter-

cepting a message, the intruder may select any of several courses of action, of which the interest-

ing ones include:

- Forward the message to its intended destination as received,

- Save the message for later transmission,

- Modify the message and forward it as addressed,

- Combine parts of the message with other previous messages,

- Readdress all or parts of the message,

- Replace the message with its own or a previously recorded message.

For our purposes, there are three critical characteristics to the model.  First, each principal

operates in an independent address space, not visible or directly accessible to any other principal

(including intruders).  In this address space, the principal records the contents of the messages

they have sent and received in this session.  By recording the traffic from the network and analyz-

ing the contents, the principal can decide what they believe.  We represent the data items stored in

the user's address space by using dot notation, with the field identifier prefixed by the owning

prinicpal’s identifier.  Hence we can represent key "kab" in A's address space as A.kab.  This

information can easily be gathered by a syntax checker and later utilized by a verification condi-

tion generator.

Second, the only way for data to flow from one address space to another is through mes-

sages sent and received during the protocol session.  While intruders can passively listen to all

network traffic, or can intercept, modify and reinsert messages, or remove messages from the net-

work without detection, the principal's address space is considered to be private and secure from

inspection or modification by anyone other than the owner.  Furthermore, the only mechanisms

available to the owner for adding data to the address space are via messages received from the

network, generation of random values, and reasoning about data already in the address space.
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Finally, each principal has an input queue through which they receive all messages.  Send-

ing of messages is modelled as the assignment of a message to the queue of the recipient.  Receipt

of a message is modelled as assignment from the principal's input queue into the same principal's

address space.

The send operator can be thought of as a reliable send, i.e. the message that is sent will

always end up on the input queue of the desired recipient.  Possible intruder actions are modelled

by sending messages to the intruder.  In order to represent an all-seeing intruder, all messages may

be sent to the intruder.  In order to represent the benign or passive intruder, the intruder will

merely forward messages as they were received to the desired recipient.  In this way, the actions

of the intruder are formalized, clearly specified, and are fully controlled by the protocol evaluator.

A more detailed description of our informal model is contained in Appendix A.

3.4.  The Syntax of CPAL.

We now turn to the design features of the language we developed to resolve the difficulties

with pseudocode notations.  CPAL is a procedural language with a complete formal syntax.  A

Backus/Naur Form description of CPAL is provided as Appendix B.  As we suggested above, we

were guided in our design of CPAL by several goals, most based on resolving the pseudocode dif-

ficulties described there.  Our first concern was that the language must be expressive enough to

represent all significant actions of a principal in a protocol.  This is why we model CPAL on exist-

ing pseudocodes used in the literature for specification of cryptographic protocols.  Our second

concern was that protocols written in a pseudocode, such as SN, could be easily translated into

CPAL.  We accomplish this by basing our CPAL statements on the principal’s possible actions in

cryptographic protocols.

A CPAL protocol specification consists of a sequence of actions by principals.  A CPAL

action contains one or more CPAL statements.  An action consists of the statements prefixed by

the identifier of the principal performing the action.  Each statement is followed by the statement
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separator, the semicolon.  If more that one statement is included in an action, the statements must

be enclosed within curly braces ({}).

CPAL statements closely resemble the operations provided in pseudocodes like SN.  As in

SN, principals may send messages, generate random values, catenate values, and encrypt and

decrypt values.  In CPAL, principals may also receive messages, compare values, make decisions

which change the flow of the protocol, and make assumptions and assertions regarding the envi-

ronment and affects of the protocol.  While several of these operations are not explicit in SN, they

are present, either coupled in other operators or required to be included in a prose description of

the protocol.  The valid statement types in CPAL are listed in Table 1 within Chapter 4 of this

paper.

For our purposes, a message is considered to be a value or binary bit pattern which can be

represented on a computer.  Values in CPAL are integers, strings, booleans, and compound values.

Catenated values are designated by their inclusion in angle brackets (<>).  Values may be changed

by applying a function to them in the normal way.

While encryption and decryption operations closely mirror function calls, because of their

essential part in cryptographic protocols, we give them special operators in the language.  The

most important characteristic of these operators is that the original encrypted message can only be

recovered by decryption under the same key.

In CPAL, an encrypted value is enclosed in square brackets, prefixed by the operator "e"

and suffixed with the key, which is also a value.  A decrypted value is of the same format with the

encryption operator replaced by the decryption operator, "d".  The catenated value containing the

encryption of the value x and the decryption of the value y under the key k is represented as:

<e[x]k,d[y]k>.

3.4.1.  The Assignment Statement
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Messages are non-destructively assigned in CPAL in the usual way, e.g., the source value

is copied into the memory location of the destination identifier.  As syntactic sugar, we allow

omission of the principal name in assignment statements in the protocol since the only address

space effected is  that of the principal taking the action.  The statement:

A: X := Y;

means the value of the address referenced by name X in A's address is replaced by the value

stored in the addressed by the name Y in A's address space, or A.X := A.Y.

As we have mentioned, it is common practice in protocols to utilize newly generated val-

ues called nonces to ensure the freshness of messages.  A principal may generate a nonce in CPAL

by assignment of the value "new" to a variable, e.g.,

A: Na := new;

In cryptographic protocol runs, values are frequently catenated to form a new value.  We

represent a catenated value in CPAL using a structure we call a compound value, represented by

X in the following assignment statement:

A:  X := <W,Y,Z>;

For catenated messages to be useful, we must be able to "break out" the multiple identifi-

ers contained in a compound value.  In order to represent the components within compound val-

ues, we designed a "DOT" value.  The numerical suffix to a dot value designation designates a

member of the catenated list of values within the compound value.  The expression

<W,Y,Z>.2

may be reduced to Y, while

X.3

represents the third value in the compound value X, in this example, Z.  We may perform the same
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operations on compound and dot values that are appropriate on any other value, such as transmis-

sion, encryption, decryption, and variable replacement.  In fact, the value X.2 gains meaning

when the identifier X is replaced with a catenated list, allowing reduction to the value indexed by

the dot value suffix (in this case the second element in the list).  For example if the identifier X

were replaced by the catenated value <W,Y,Z>, the entire value structure <W,Y,Z>.2 could be

replaced by the value Y.

As a convenience for working with catenated and compound values, the assignment

A: (D,E) := X;

means the same as

A: D := X.1;

A: E := X.2;

3.4.2.  The IF Statement.

While decision operators are conspicuously missing from the pseudocode languages,

CPAL provides operators based on the classic notion of a change in the flow of control of the pro-

tocol steps.  If the given condition is true, a different statement is executed than if the condition is

false.  This is implemented using the IF structure where the condition is a boolean condition and

the "then" and "else" subjects are alternative statements to be "executed".  In the following exam-

ple, if the condition Na==Na’ is true at the execution of the action, A will encrypt the value msg

under key kab and send the resulting value to principal B.  If Na==Na’ is false, A will encrypt the

nonce Na and send the resulting value to AS.

A: if (Na==Na’) then {=>B(e[msg]kab);}

else {=>AS (e[Na]kab);}

3.4.3.  The SEND and RECEIVE Statements.

The dominant operation in pseudocode languages for cryptographic protocols is the send
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statement.  Again, the syntax we chose for send closely mirrors that of the pseudocodes.  State-

ment 3.3 is the CPAL representation of statement 1.0 shown in Chapter 1 in pseudocode and

repeated here for convenience:

A -> B: {X, Y} kab (1.0)

A:  => B(e[<X, Y>]kab); (3.3)

The CPAL syntax for the send statement closely mirrors that of the SN syntax for send.

Since the action identifier precedes each statement in CPAL, the originator’s identifier is not

repeated in the send statement itself.  Thus, the send operator (=>) is always the first symbol in a

send statement, followed by the identifier of the intended recipient of the transmission.  The mes-

sage body is enclosed in parenthesis and may contain any valid CPAL value as described in sec-

tion 3.4.1.  In statement 3.3 above, principal A is executing three operations: the catenate

operation on messages X and Y, the encrypt operation on the catenated value, and the send opera-

tion on the encrypted catenation.  Because this send operator results in the message going directly

to the queue of the intended recipient, we also call this the secure send operator.

The receive statement in CPAL is structured similarly to the send statement.  The principal

that is to receive the message is identified as the acting identifier of the action, so the recipient’s

identifier is not repeated in the receive statement.  By design, the receive statement may only

receive one value, greatly simplifying the format of the receive statement, which has only two

components:  the receive operator (<-) and the name of the value to be received is enclosed in

parenthesis.

As described in a previous section, we model an all-powerful intruder by sending  mes-

sages from valid principals to the intruder for further transmission (or mischief).  We introduce a

second form of the send operator (->) which we call the insecure send operator, to facilitate this

feature.  Thus, if the analyst desires to reflect the reliable transmission of a message from the orig-

inator to the recipient, the secure send operation is in order.  To reflect transmission through the
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intruder, the insecure send operator is used.  This enhances the ability of the analyst to model and

formally define the meaning of the activity of an intruder, similarly to Kemmerer’s intruder trans-

formations discussed in section 2.2.

In the following statements, principal A composes the message "MSG", encrypts it under

the key "kab", and sends the encrypted value to principal B.  The intruder intercepts the message,

then forwards it to principal B unchanged, representing the passive intruder in this instance.  Prin-

cipal B receives the encrypted value, decrypts it, assigns an identifier, and provides space in mem-

ory.

A: ->B(e[MSG]kab);

I:  <-(X);

I:  =>B(X);

B:  <-(X);

B: MSG := d[X]kab;

3.4.4.  Expressing Assumptions and Goals

In order to allow expression of goals and assumptions in a protocol, we include operators

for "asserting" and "assuming" the truth of a predicate.  Expression of beliefs reflects the ability of

a principal to accumulate and state knowledge or belief of received or derived facts, including the

belief that the integrity of the protocol has been compromised.

Principals express beliefs in CPAL using the ASSERT statement to specify protocol goals

to be proven and the ASSUME statement to specify assumptions to use in establishing the truth of

the goals.  Both goals and assumptions are stated as predicates, either as primitive predicate calcu-

lus symbols e.g.  (X=Y and Q=R), or as a special predicate represented as a function of a list of

parameters which is considered to yield a boolean value when evaluated, e.g.  believes(A,X).

In the following example, principal A expresses the assumption of the equality of A's and
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B's version of the session key between A and B.  The system may use this assumption to prove or

disprove the goals of the protocol.  Later in the protocol, B expresses the goal that we desire to

prove of believing that A sent MSG.

A: assume(A.kab == B.kab);
.
.

B: assert(believes(sent(A,MSG));

3.4.5.  CPAL and SN

The simple protocol given in section 2.5 is shown Figure 3.2 in SN and in CPAL.  Because

we chose the CPAL constructs based on principal’s actions, we can translate any protocol

described in SN into a CPAL specification that encapsulates the SN meaning and allows enhanced

ability to represent the actual meaning of the protocol.  The following guidelines for translation

are given:

CPAL and SN Specification of a Trivial Protocol

global: assume (A.k==B.k);

A->B: (A) A:  -> B(A);

B: <- (A);

B->A: {N} k B: -> A(e[n]k);

A: <- (msg);

A: n := d[msg]k;

A->B: {N+1} k A: -> B(e[f(n)]k);

B: <- (msg);

B: n' := d[msg]k;

B: assert (n' == f(n));

Figure 3.2
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1.  For any SN send statement, generate a CPAL send statement with the same originator,

recipient, and message contents.  Also generate one receive statement with the action prin-

cipal being the recipient of the message as designated in the send statement.

2.  Receive statements receive only one value.  If the value that is received is a compound

value, encrypted value, etc., the value may be manipulated using assignment statements

and the encryption and decryption operators as necessary to acquire needed message com-

ponents.

3.  Principals may originate messages by creating a new value, performing a valid operation

on new or existing values, or through assignment of the "new" operator.

Goals and assumptions accompanying protocols specified in SN in prose may be entered

into the CPAL protocol specification using assert and assume statements.

The comparative lengths of CPAL and pseudo-code representations of protocols are

approximately five to one.  When it is considered that CPAL allows encoding of assumptions and

goals into the protocol while the pseudocodes usually do not, and that most protocols involve less

than ten messages, this is an acceptable ratio.
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Chapter 4
A Formal Semantics for CPAL

4.1.  A Foundation for Semantics

One of the difficulties with methodologies similar to that of BAN Logic for con-

ducting cryptographic protocol verification involves a difficulty in translating the proce-

dural description (or definition) of the protocol into a logical definition of the protocol.

The BAN Logic approach uses an informal process calledidealization in order to accom-

plish this translation.  We recognized the need to replace idealization with another, more

formal method to effect this translation, and have adopted a notion taken from program-

ming language verification to resolve this difficulty.

4.1.1  Precondition/Postcondition Reasoning

While the operational model, or informal semantics, for CPAL is helpful in assist-

ing us in understanding what the operations do, it is not well suited to the formality we

require to evaluate cryptographic protocols.  To achieve the necessary level of formality,

we selected a classic approach to program verification based on work by C.A.R.  Hoare

[HOAR69].  In this paper Hoare describes precondition/postcondition reasoning about

programs and/or program segments.  Hoare observes that we can define the meaning of a

program statement or segment by defining what [pre] conditions must hold such that if

that statement or segment is executed (and terminates), a certain [post] condition will hold

after the execution.  The notation used to describe that P is a precondition for segment S

and postcondition R is:

P {S} R

For example, in order for execution of the specific program statement “y :=

sqrt(x)” to cause the postcondition"y == 2" to be true, the precondition "x == 4" must hold

before the statement is executed.  Thus,
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x == 4 {y := sqrt(x)} y == 2

Once each operation in the language is given a precondition/postcondition defini-

tion, a segment may be evaluated for its semantics by establishing the desired postcondi-

tion and reasoning from the last statement to the first to determine the necessary segment

precondition.  In order to consider a simple example, we define the assignment statement

as:

Q(x) {x := e} Q(e) Def 4.0

where Q is a predicate initially dependent upon x and e is any valid expression in the lan-

guage.  This says that for Q to be true after the assignment statement x := e is executed, the

predicate Q with each instance of x replaced by e, must be true just before the assignment

statement is executed.

In Table 1, we define statement catenation to be:

Q {S1;S2} P  == Q {S1} R and R {S2} Q. Def 4.4

This says that in order for the segment S1;S2; to be correct with respect to precondition Q

and postcondition P, the postcondition of S1 must be the precondition for S2.  Consider the

program segment:

1.  x := y / z;

2.  z := sqrt(x);

We select the goal of this segment to be z == 2.  We now know to look for the nec-

essary precondition Q such that:

Q {x := y/z; z := sqrt(x);} P

where P is (z == 2).  By Definition 4.2, we must first find the condition R such that:

R {z := sqrt(x);} P

By definition 4.1, we know that R is equal to P with all instances of z substituted by

sqrt(x).  Thus, R is:
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sqrt(x) == 2.

We can now look for Q such that:

Q {x := y/z;} sqrt(x) == 2

Once again we use definition 4.1 to find Q.  For each instance of x, we substitute y/z to

obtain:

sqrt(y/z) == 2 {x := y/z; z := sqrt(x);} z == 2

Since the sqrt operation is not a program statement, we do not need a precondefinition of

sqrt in order to complete the proof.  Rather, we need only apply well-known mathematical

identities to Q to determine that our final definition is:

 y/z == 4 {x := y/z; z := sqrt(x);} z == 2

Notice that y/z == 4 is just one precondition that satisfies the definition.  The pred-

icate:

((y==16) and (z==4))

also satisfies the equations.  The difference is that the derived precondition (y/z==4) is

more general, and in fact satisfies the precondition ((y==16) and (z==4)).  Generality of

preconditions was the focus of Dijkstra in [DIJK76] as we will see in the next section.

4.2  Weakest Preconditions

In [DIJK76] Dijkstra describes an extension of Hoare's precondition/postcondition

mechanism called the weakest precondition for a program statement or segment.  Dijkstra

introduces the concept of a "predicate transformer’ - "a rule telling us how to derive for

any [arbitrary] post-condition R the corresponding weakest precondition for the initial

state such that activation will lead to a properly terminating activity that leaves the system

in a final state satisfying R."  The weakest precondition Q for segment S and postcondition

R is written:
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Q = wp(S, R)

The precondition is considered to be weakest if its predicate transformer describes

all states that enable the program segment to result with the desired outcome.  By describ-

ing preconditions in their weakest form, the most general case is represented, meaning that

the weakest precondition of a segment is actually a Verification Condition for the segment.

That is, there are no additional preconditions for the segment.  If the weakest precondition

for that segment can be proven from the assumptions, the segment's goals are guaranteed

to be accomplished upon execution.

To verify that a segment meets its goals using weakest preconditions, we work in

reverse as we described above.  The initial verification condition is the value TRUE and

the segment goal is routinely the last statement in the protocol specification.  When we

apply the definition of  the last statement, the verification condition becomes the weakest

PREcondition for the last statement.  That resulting verification condition is now the

POSTcondition for the next to the last statement and so on.  When the first statement is

reached and its weakest precondition is evaluated, we have completed generating the veri-

fication condition/weakest precondition for the segment.  To complete the verification, the

verifier must show that the derived verification condition is implied by the assumptions of

the start state.

4.3  Weakest Preconditions for CPAL Statements

The meaning of CPAL statements and segments are represented in terms of a pred-

icate using the weakest precondition paradigm.  CPAL statement and operator definitions

are expressed as operations on the predicate, either modifying variables within the predi-

cate or adding conjunctions  and disjunctions to the predicate.  We developed the defini-

tions for CPAL statements similarly to those of programming constructs described in

[DIJK76] and [WULF81].
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In this section, we give the weakest precondition definition of CPAL statements.

There are only twelve statement types in the CPAL language.  Each statement type has a

weakest precondition definition.  Because assignment is the most common operation in

cryptographic protocols and because the “substituting” nature of weakest precondition

definitions is best illustrated by assignment, the weakest definition for the assignment

statement is an important definition for CPAL.

4.3.1  Statement Catenation

The definition of the catenation of statements is critical to our selection of this

model for formal semantics.  It is this definition that allows us to force sequencing upon

the steps in a cryptographic protocol during analysis.  The definition we use is similar to

that described in [DIJK76] and [WULF81].  For statements S1 and S2 and postcondition

P, in order for predicate P to be true after “S1;S2;” is executed, the weakest precondition

of S2 for P must be true after execution of [i.e., be a post condition for] S1 for P.  This is

formally stated in definition 4.4 and given here for convenience.

wp(S1; S2, P) = wp(S1, wp(S2, P))

We illustrate this concept with an example in Section 4.5.

4.3.2  The ASSIGNMENT Statement

In our operational model, we think of assignment in the ordinary way: a value is

copied from location referenced by the source identifier to the location referenced by the

destination identifier.  Our formal definition is more abstract, capturing the “copying”

nature of the assignment statement.  As we mentioned in the earlier example, Definition

4.1 means that for Q to be true after the assignment statement x := e is executed, the pred-

icate Q with each instance of x replaced by e, must be true just before the assignment

statement is executed

In our operational model we consider each principal to have their own address
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space.  To effectively represent this concept, fully qualified variable names consist of the

variable name prefixed with the name of the principal in whose address space the identifier

exists.  For example, the fully qualified name for value x existing in principal A’s address

space is A.x.  When it is clear by the context which address space the value exists in, the

prefix may be omitted.

X and e are values residing in the address space of principal A.  “e” represents an

expression while x is a named value.  Q is a predicate potentially dependent on A.x (i.e.

A.x is a named value in some formula in predicate Q).  If Q is in fact not dependent on

A.x, then the assignment statement has no affect on Q.  However, if P is dependent on A.x,

then in order for Q to be true after the assignment statement is made, Q would have also

had to been true before the assignment statement with every instance of A.x replaced by

A.e.

4.3.3  The SEND Statement.

Again referring to our operational model, we can think of the send operator as a

reliable assignment to the message queue of the intended recipient.  During evaluation, we

use the convention of appending 'q' to the receiving principal's identifier to indicate we are

addressing the queue of that principal.  Intuitively this definition means that we replace all

references to the recipients's queue in predicate P with the value “msg” from the origina-

tor's address space.

4.3.4  The RECEIVE Statement.

The receive statement represents assignment of the value in the receiver's message

queue into the receiver's private memory.  Thus, the send/receive cycle involves two steps:

1. Assignment of the message from the originator’s address space to the recipient’s
queue
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2. Assignment of the message from the recipient’s queue to the recipient’s address
space.

Our model reflects the power of the intruder to intercept messages at will.  In order

to facilitate the representation of intruder actions, CPAL includes an insecure send that

does not assign the message to the queue of the intended recipient, rather assigns the mes-

sage to the queue of the intruder.  For an insecure send through an intruder, there are at

least four steps necessary in order for a principal to transfer a value to another principal's

address space.  First, the originating principal executes a send operation, placing the

intended message on the intruder's input que.  The intruder receives the message, placing

the message into its address space.  At its discretion, the intruder may then execute a send

operation, copying the message onto the input queue of the recipient.  Finally, the recipient

receives the message into its address space.

Here we encounter a difficulty in passing the names of principals in a protocol.

Occasionally, it may be necessary to assign a variable name to a received value represent-

Table 1: CPAL WEAKEST PRECONDITION DEFINITIONS

Operation Weakest Precondition Definition #

Assign wp("A: x:= e;", P(A.x)) = P(A.e) 4.0

Comp Asgn wp("A:(X,Y,Z):=W;",P(A.X,A.Y,A.Z))= P(W.1,W.2,W.3) 4.1

Send wp("A: ->B(msg);", P(Iq.msg)) = P(A.msg) 4.2a

Secure Send wp("A:=>B(msg);",Q(Bq.msg)) = Q(A.msg) 4.2b

Receive wp("B: <-(msg);", Q(B.msg)) = Q(Bq.msg) 4.2c

Ifthenelse wp("if C {S1} else {S2;}", P) = C -> wp("S1;",P)) & (~C -> wp("S2;",P)) 4.3a

Ifnoelse wp("if C S1;", P) = C -> wp(S1,P))  &  (~C -> wp(skip,P)) 4.3b

Stmt Cat wp("S1; S2", P) = wp(S1, wp("S2;", P)) 4.4

Assert wp("assert(R):",P) = (P and R) 4.5a

Gassert wp("gassert(R):",P) = (P and R) 4.5b

Sym enc wp("d[e[X]k1]k2",P(d[e[X]k1]k2) = (k1==k2) -> P(X) and (k1 != k2)->P(new) 4.6a

Asym enc wp("dp[ep[X]k1]k2",P(dp[ep[X]k1]k2)= (-k1==k2)->P(X) and (-k1!=k2)->P(new) 4.6b

Assume wp("assume(R):",P) = (not P or R) 4.7



Chapter 4:  A Formal Semantics for CPAL      74

ing the name of a principal  that will be a destination of a message.  This situation results

in having multiple names for a principal in a protocol run and complicates the send/

receive weakest preconditions.  We illustrate the issue in the following code:

A: =>S(<A,B>);

S: <-(src,dst);

S: =>src(e[<dst,newkey]kas);

A: <-(msg);

In the second and third statements of the segment above, principal S uses an alias

for principal A (i.e.  src).  Receipt of the value into the variable name src is routine.  It is

when principal S attempts to send a message to principal whose name is represented by src

that the difficulty arises.  Recall that the SEND definition is implemented by replacing the

appropriate value in the weakest precondition predicate which represents the placement of

the transmitted value on a queue.  When SEND is executed in this instance, the verifica-

tion condition generator must be able to determine which queue should receive the value,

since src is a variable.

We handle this condition in the same way that Dijkstra [DIJK76] defines assign-

ment to an element of an array, i.e.  to mean that S will send the message to the principal

whose name is aliased at the time of the send.  Formally,

wp("A:=>X(msg);",P(Bq.msg)) =

   (((X==A)->P(A.msg)) and

   (X!=A)->P(msg)) and

   ((X==B)->P(B.msg))  and

   (X!=B)->P(msg)) ...  for all principals in the protocol.

The problem may be avoided by thoughtful selection of names and by exercising

care in determining who the recipient of each message really should be.  For this reason,



Chapter 4:  A Formal Semantics for CPAL      75

and because of the additional space and computation required in this definition, we do not

implement this definition in the current version of our system.

4.3.5  The IF THEN ELSE Statement

As we saw with the definition for statement catenation, since weakest precondi-

tions are themselves predicates, weakest preconditions may be recursively defined; that is,

the weakest precondition for one segment may be dependent upon, or defined in terms of

weakest preconditions of other segments.  The weakest precondition definition of the IF

statement (Table 1, definition 4.3a) is also defined in this way.  For a predicate P to be

guaranteed to be true after the IF statement

if C then {S1;}else {S2;}

is executed, truth of the condition C must imply the truth of the weakest precondition of

statement S1 with respect to P.  This is because when the if statement is executed, the truth

of C guarantees execution of S1.  The analogous situation with S2 holds if C is false.  That

is, the falsity of C must imply the truth of the weakest precondition of statement S2 with

respect to P.  The meaning of the IF statement without the else (Table 1, definition 4.3b) is

similarly defined if we accept the meaning of the statement "skip;" to be:  "take no action".

4.3.6  The ASSERT statement.

The ASSERT statement differs from the previously given statements in that it does

not represent any action by a principal in a protocol run.  Rather, the ASSERT statement

provides the protocol specifier a mechanism to insert intended goals in the appropriate

place in the protocol steps.  By issuing the ASSERT statement

A: assert("kab is a good key");

the protocol specifier is stating that principal A can logically believe that "kab is a good

key" is true at this point in the protocol.  This predicate represents a goal to be proven by



Chapter 4:  A Formal Semantics for CPAL      76

the verification technique.  Since no action is taken by this statement, in order for an arbi-

trary predicate P to be true after this assert statement is executed,  it must have also been

true before the statement was executed.  Hence, definition 4.5a applies.  Without going

into the details of the underlying logic, the result of the application of the ASSERT state-

ment definition is to add a conjunctive condition to the predicate defined thus far.

The GASSERT statement is identical to the assert statement except that the acting

ID suffix must be included with each identifier.  This allows the comparison of values

across address spaces.

4.3.7  The Assume Statement

Like the ASSERT statement, the ASSUME statement does not involve an action

on any address space.  The ASSUME statement enables us to modify the predicate that is

being defined based on logical analysis.  We know that  assumptions may be used to prove

theorems.  If Q is the theorem we are attempting to prove and P is an assumption, we can

state:

P |- Q,

or equivalently,

P IMPLIES Q,

which is logically equivalent to:

Q OR NOT P.

This is the Weakest Precondition definition for ASSUME as we see in definition 4.7.

While the ASSERT statement only adds conditions to be proved to the predicate,

the ASSUME statement also gives us “truths” that may be removed from the predicate by
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replacing them with the boolean truth value TRUE.  In implementation, because changes

to the predicate caused by one assumed value may create an opportunity for additional

“reductions” from other assumptions, the assumed values are applied repetitively until no

further changes to the predicate occur.  The assumed predicates are also output to a file to

allow easy interface with other systems that may treat assumptions differently.

4.4  Encrypt and Decrypt operators

The definitions of the CPAL statements do not capture the entire essence of the

CPAL language.  Encryption and decryption, for example, are not statements at all, but are

represented as operators on messages and message components.  These operators are

retained as part of a value  in the predicate when the weakest precondition definition of the

statement containing the encrypt or decrypt operator is applied.

The meaning of encryption and decryption are gained by surveying the predicate

to find a suitable mixture of message components.  In particular, when an encryption oper-

ation is found immediately within a decryption operation and if the keys of the operations

are the same, the semantics of the encrypt and decrypt operators may be applied.

Intuitively, when symmetric key encryption is performed on a value X, it should

mean that X cannot be retrieved unless the decrypt operator is applied to the encryption of

X using the same key that was used to encrypt X.  We  implement this semantic concept

with the rule given in definition 4.6a which says that in predicate P, if we find a decrypt/

encrypt pair in which the keys k1 and k2 are equal, we can replace the entire decrypt/

encrypt expression with the value X.  If k1 and k2 are not equal, the value X cannot be

derived from the expression, so we can reasonably replace the decrypt/encrypt expression

with a unique value, a.k.a.  a “new” value.
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4.5  The “NEW” operator

The meaning of the “new” operator is also implemented as an operation on the

predicate.  Many cryptographic protocols rely on generation of nonces to guarantee the

freshness of messages or to bind a response to another principal.  The fundamental charac-

teristic of these nonces is that every appearance of the nonce in the execution trace must

be directly traceable to the point where the nonce was created.  The semantic concept for

the “new” operator is implemented as a replacement operation.  Values of type “new” in

the predicate are replaced with unique values generated by suffixing a base name with an

integer counter.  By doing this, each “new” value is guaranteed to have a unique name,

and any duplicates must be considered to be copies of the original.

4.6  A Simple CPAL Verification Example

Figure 4.1 contains a simple protocol exchange between the principals A and S

constructed to illustrate application of several CPAL weakest precondition definitions.  In

the first column, we give the protocol steps.  In the second column, we show the step-by-

step transformations on the weakest precondition as the definition for each statement is

applied.

Because the weakest precondition definitions are applied in reverse order, the ini-

tial predicate state of TRUE is in the second column of line 8.  When the definition of the

last protocol statement is applied in line 7, the additional predicate to be proven provided

in the ASSERT statement is added to the weakest precondition to be proved by the system.

When the RECEIVE definition is applied in line 6, the notion of the value moving from

the recipient’s queue into their address space is reflected in the changing of the value

A.Na’ to Aq.Na’ in the weakest precondition predicate.  The remaining transformations

are similar predicate substitutions.

The final predicate shown in line 1 is the verification condition for the protocol.  If
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that predicate can be proven from the assumptions, then the protocol is guaranteed to meet

the goal it presented in line 7.  In this case, the only assumption we need is that of the iden-

tity principle for values, which we may use to reduce the equivalence equation on the right

side to TRUE.  Thus, our simple protocol meets its specified goal.  Often, proof of the final

verification condition is much more difficult, as we shall see in the next chapter.

4.7  The CPAL Verification Condition

What we accomplished in the previous example was to establish a logical defini-

tion for the protocol based on, and directly corresponding to, theprocedural definition of

the protocol.  The primary function of CPAL-ES is to translate the procedural protocol

description given in CPAL into a predicate whose ultimate value is either true or false, just

as in BAN Logic-type approaches.  However, the meaning of the value of this predicate is

different, and more formal than in BAN Logic.

CPAL-ES Evaluation Example

Protocol Statement in CPAL Weakest Precondition Predicate Transformations

1.  A:  Na := new; TRUE and ((A.unique.001-1)==(A.unique.001-1))

2.  A: =>S(Na); TRUE and ((A.Na-1) == A.Na-1)

3.  S: <-(Na); TRUE and ((A.Na-1) == Sq.Na-1)

4.  S: Na' := Na-1; TRUE and ((A.Na-1) == S.Na-1)

5.  S: =>A(Na'); TRUE and ((A.Na-1) == S.Na')

6.  A: <-(Na'); TRUE and ((A.Na-1) == Aq.Na')

7.  A: assert((Na-1)==Na’); TRUE and ((A.Na-1) == A.Na')

TRUE

Figure 4.1
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By allowing the declaration of the protocol goals within the CPAL description as

we saw in statement 7 of Figure 4.1, the meaning of the procedural definition of the proto-

col description is fundamentally different from the SN representations that BAN Logic-

type approaches were designed to evaluate.  Protocol specifications without goals included

are merely a series of actions by principals.  The intent of the actions must be inferred by

the content of the messages or superimposed later based on a prose description by the pro-

tocol specifier.  CPAL specifications, on the other hand, provide not only the capability for

the protocol designer (or analyst) to include the goals of the protocol in the procedural

specification, but give a formal meaning to those goals that can be automatically assessed

by CPAL.  In fact, formal specification of the protocol goals is essential to the CPAL eval-

uation process, as we will see in the next chapter.

CPAL evaluation is further distinguished from BAN Logic and other similar

approaches, because it is formal.  Once the specification is completed, derivation of its

meaning is based only on the form of the specification.  The essential elements of “form”

described in this chapter are the CPAL statements, the CPAL operators, and statement cat-

enation.  It is the latter of these three mechanisms that allows our logical definition to

reflect the information inherent in the sequencing of the protocol steps.  Because of this

sequencing power, any meaningful reordering of protocol steps will result in a different

protocol meaning (i.e. a different verification condition).

The predicate that results from CPAL-ES evaluation reflects whether or not the

protocol accomplishes the goals specified within the protocol steps.  The complete predi-

cate will always be a representation of the variables expressed in the goal of the protocol.

Thus, if the goal is simple and the protocol is not complex, the final predicate may be as

easily evaluated, as is the example in Figure 4.1.  For more complex protocols and goals,

we need automated assistance to assess the resulting predicate.
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Chapter 5
The CPAL Protocol Evaluation System

5.1  CPAL As a System

The ultimate goal of our efforts is to establish a system that allows efficient assign-

ment of a meaningful definition to a broad variety of cryptographic protocols, including

sophisticated attack sequences on protocols.  Toward that end, we developed the formal

language CPAL, described in Chapter 3, and a formal semantics to accompany CPAL,

given in Chapter 4.  In this chapter we give the method we use to integrate these compo-

nents, along with other less novel mechanisms into a practical tool to use for evaluating

cryptographic protocols.  We call this method the CPAL Evaluation System, or CPAL-ES.

5.1.1  Specifying Protocols in CPAL

The first step in the CPAL-ES process is to encode the target protocol in CPAL.  If

a Standard Notation (SN) representation of the protocol is available, the guidelines given

in Chapter 3 for translating SN specifications into CPAL may be used.  However, no SN

representation is required and the protocol may be encoded directly into CPAL using the

CPAL syntax description given in Chapter 3.

It is important to consider the nature of protocol goals and how goals for a protocol

should be selected.  BAN Logic-type evaluations seek to achieve goals based on the

beliefs of principals, such as “A believes B believes kab is a good key”.  These beliefs are

established by combining the contents of the messages the principals see along with some

understanding of the form of the protocol, and the characteristics of cryptography.  As

principals “see” more messages, they believe more things.  These new beliefs may com-

bine with other existing beliefs to form yet other new beliefs.

When the axioms of the logic are applied to the new belief set, it may lead to
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another new belief, e.g.  that a secure channel is established between A and B.  Thus, with

BAN Logic, we take the belief set of a principal as we assume it is, evaluate the protocol

steps, then acquire new beliefs based on the rules of inference.  If when no further beliefs

can be acquired and BAN Logic is unable to acquire a “goal belief” specified external to

the protocol steps such as the ones just stated, we assume the protocol is not secure and

begin looking for problems with the protocol.

The goals that are the focus of the native CPAL-ES system may be considered to

be message-based goals.  CPAL-ES gives us a formal definition of message composition,

message transmission, encryption, and decryption, and message possession.  The goals

that we evaluate are thus, based exclusively on the messages that are passed.  Consider the

goal given in the example in Figure 4.1, “Na-1 == Na’".  This goal is based only on values

passed in messages with no interpretation whatsoever.  The value Na was created by A

and the value Na’ was received in a message.  The stated equivalence can be irrefutably

determined by a principal, requiring no interpretation.  By including this relationship in an

assert statement, we add this predicate to the list of facts CPAL-ES must prove about the

protocol.  Specifically, CPAL-ES must prove that after statement 6 of the protocol exe-

cutes, the value Na in A’s address space is one greater than the value Na’ also in A’s

address space.  The focus of CPAL is the specification of the actions of principals in a pro-

tocol.  The success or failure of these actions are most often measured by the accomplish-

ment of goals such as comparing versions of nonces to ensure the freshness of messages or

checking encrypted values to ensure that keys match.

As we mentioned in Chapter 2, BAN Logic evaluation is based on what principals

see, say, control, and believe.  Beliefs are only changed by principals seeing and saying

things.  The content of what principals see and say is critical to this evaluation. Unfortu-

nately, the  goals of a protocol that BAN Logic and other logics depend upon for their

meaning, are often met in subtle ways not intended by the protocol specifier.  Once the
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message based goals of the protocol are compromised, any reasoning based on the logics

is not valid.  In this way, CPAL-ES provides a clearer view of what a protocol means than

Ban Logic-type approaches.

CPAL-ES allows the protocol verifier to try variations of the protocol to determine

what other protocol action sequences meet the message-based goals.  In a later section, we

will discuss how message-based goals of a protocol may be met in ways other than that

intended by the protocol creator.  We will also see how CPAL-ES complements BAN

Logic by allowing specification of desired beliefs as protocol goals.

As we see, selection of the proper protocol goals is essential to attaining a helpful

definition of the protocol through CPAL-ES.  Several rules of thumb apply to the selection

of goals.

1.  The last statement in a protocol should be a goal expressed in an ASSERT state-

ment.  Since CPAL-ES bases its evaluation on the values in the predicate, any

statement other than ASSERT has no affect on the initial predicate.  Thus, any

CPAL statements after the last ASSERT statement are extraneous to CPAL-ES

evaluation.

2.  Use the GASSERT statement to evaluate matters of security.  The ASSERT state-

ment can only be used to consider comparison of data elements within the

address space of one principal.  Many important characteristics of cryptographic

protocols rely on comparison of data elements within a single principal’s address

space.  For example, principal A may send a message to B accompanied by a

nonce.  When A receives a reply assumed to be from B, A will compare the orig-

inal nonce that was sent to the nonce that was received in the message from B to

ensure the message is current.  Other important goals may involve the compari-

son of values in different principal’s address spaces or comparison of a value in a
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valid principal’s address space to one in the intruder’s address space.

3.  Special predicates may be used in ASSERT statements to allow evaluation of logi-

cal constructs other than the AND and OR constructs provided in CPAL-ES.

Special predicates use function notation and allow evaluation of the special pred-

icate parameters though the definition process.   For example, we may express

the desire to prove that A believes kab is a good key for principals A and B in the

following statement:

GASSERT (A.believes(A.goodkey(A.A,A.kab,A.B)));

CPAL also allows the protocol designer to explicitly list intruder actions in the pro-

tocol specification.  The principal name “I” is reserved in CPAL-ES for the intruder, and

any message sent using the insecure send operator (->) goes to principal I.  The intruder

performs all other actions similarly to valid principals in the protocol.  The intruder has its

own address space and cannot access values in the private address spaces of other princi-

pals.  We found that an intruder with these characteristics can effectively model a wide

variety of passive and active attacks, many of which are given in Chapters 6 and 7.

5.1.2  Attaining the Verification Condition for a Protocol

Once the specification is complete, syntax errors must be removed.  CPAL is a

parsed language with a syntax checker that may be used interactively in either the UNIX

or the DOS/WINDOWS environment to quickly scan a protocol specification for syntax

errors.  As a small language with few constructs and because of the short length of crypto-

graphic protocols, correction of the syntax is accomplished easily and in a short period of

time for most protocols.

Once the specification is free of syntax errors, the  formal semantics of the proto-
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col is automatically derived by CPAL-ES.  This derivation is accomplished in two steps:

1.  The definition of each statement is applied to an initial predicate with value TRUE,

beginning with the last protocol statement and progressing in reverse to the first

statement.

2.  The resulting predicate is scanned for conditions allowing replacement reflecting

the meaning of the encryption and decryption operators and value catenation and

extraction.  When such a condition is encountered, the definition for these opera-

tions is applied.  Any designer-provided assumptions are also applied to the pred-

icate where applicable.

5.1.3  Proving the Verification Condition

The final step in the CPAL-ES process is to attempt to prove that the verification is

true given the assumptions with respect to the environment.  The predicate resulting from

the steps described in the last section may contain a repetition of logical conditions that

may be easily reduced through routine simplification.  Thus, CPAL-ES scans the predicate

for conditions which may allow simple logical reductions.  When these conditions are

encountered, the appropriate value is reduced to its simplified form.  A detailed descrip-

tion of the logical simplifications is provided in the next section.  Because routine simpli-

fication may produce values that meet the conditions for other simplifications or for CPAL

definitions that could not be successfully applied previously, this step is repeated and com-

bined with the search for the encryption and catenation operation searches until all

matches are found and the predicate is in its most simple form.

With the routine simplifications out of the way, the job of proving the verification

returns to the protocol analyst.  Occasionally, the simple reductions just described result in

a final value of TRUE as was the case with the example in Figure 4.1.  Frequently, the ana-

lyst will be left with a more challenging predicate to prove.  Often, analysis of these com-
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plex predicates by the analyst reveals the assumptions that are necessary in order to

complete the proof.  Consider, for example, the following verification condition:

(A.Na == d[e[A.Na]A.k]B.k)

We observe in this predicate that the right side of the equivalence statement fits the

form of the decryption of the encryption of a value.  If the keys of these operations were

the same, the entire encryption/decryption value could be replaced by the value A.Na.

Thus, if we insert the statement:

A: assume(A.k==B.k);

into the protocol, the final predicate will automatically reduce to TRUE.  This assumption

reflects the idea that principals A and B share a common key without giving any reference

to how this key was distributed.  We can also describe the preexistence of the shared key

by giving a key exchange sequence, replacing the given assume statement at the beginning

of the protocol.  Because weakest precondition evaluation detects values that have the

same origin, the statements:

A: =>B(k);

B: <-(k);

will allow proper decryption of values encrypted with A.k and B.k interchangeably.  For

the two equivalent versions of a private key, decryption inverts the previous encryption.

An analogous, situation occurs when public key encryption is used.  Recall that

with public (or asymmetric) key encryption, decryption using the encryption key will not

invert the encryption.  Rather, to invert public key encryption, the decryption function

must use a key that is the inverse of the encryption key, or that “decrypts” the encryption

key.  To represent this situation, we introduce the special predicate:
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global.decrypt(k1,k2)

This predicate proposes that the relationship between keys k1 and k2 is that public

key decryption under k2 inverts encryption under k1.  The predicate is positional so the

predicate:

(dp[ep[A.X]k1]k2 == A.X)

reduces to TRUE given the assumption:

assume(global.decrypt(k1,k2))

The same is not the case if the position of the keys are exchanged as in the global.decrypt

predicate:

assume(global.decrypt(k2,k1))

Whether or not such assumptions are valid for a particular protocol is a matter for

the analyst to decide.  Nonetheless, CPAL-ES will point the analyst to the missing or

incorrectly stated assumption by giving the definition of the protocol exactly as it was

stated.

5.2  Simplification of the Verification Condition

A shortcoming of weakest precondition for general program proofs is that  verifi-

cation conditions may be very long and complex.  Fortunately, cryptographic protocols are

substantially simpler than computer programs for two reasons.  The first is that they are

typically shorter, with most protocols being less than twenty CPAL statements long.  The

need to minimize the number of messages due to communications considerations ensures

that protocols do not expand greatly in length.  The second reason is that cryptographic

protocols have no need for iteration or other complex flow control structures.  Sequence

and decision are the only flow control needed to satisfactorily express the actions of prin-

cipals in a cryptographic protocol.
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Even given the simplicity of protocols, the verification condition with several con-

ditions, assertions, and encrypt/decrypt operations in some cases are up to a page in

length.  Fortunately, we have found that this length is greatly reduced by reduction of log-

ical identities and elimination of message based assumed predicates.

5.2.1  Logical Identities

The logical identities we automatically reduce are tautologies in any logical sys-

tem based on propositional calculus.  These simple reductions allow us to reduce the veri-

fication condition for even intricate protocols to a simple predicate or even to a boolean

value.  The identities we implemented in the simplification portion of this system are

given in Figure 5.1.

LOGICAL IDENTITIES SIMPLIFIED IN CPAL

P and P = P
P or P = P

P and ~P  = FALSE
P or ~P = TRUE
P and TRUE = P

P or TRUE = TRUE
P -> Q = Q OR ~P

~(~P) = P
P == P = TRUE

      FIGURE 5.1

5.2.2  Elimination of assumed predicates

Recall that assumptions are represented as predicates that are given to be true dur-

ing the protocol run.  These predicates are detected and eliminated from the verification

condition in the simplification step.  After the standard simplification is performed on the

verification condition, the remaining predicate is searched for matches to any of the predi-

cates specified in an ASSUME statement.  Matches found to assumed predicates are



Chapter 5:  The CPAL Protocol Evaluation System         89

replaced with the value TRUE in the predicate and the simplification is repeated.  For

example, if the assume statement

A: assume (A.k == B.k);

exists in the protocol being evaluated and the verification condition simplifies to

(A.k==B.k) and (N1==N1'),

then simplification of the ASSUME statement will reduce the predicate to:

TRUE and (N1==N1').

The next iteration of the standard simplification will further reduce the predicate to:

(N1==N1').

5.2.3  Semantic reductions

As we discussed in Section 4.4, encryption and decryption semantics are applied to

the predicate when an appropriate combination of decrypted and encrypted values occur

together.  We wait until the verification condition is completely constructed and all state-

ment definitions are complete before scanning for such conditions.  When a suitable com-

bination is found, the substitution described in Section 4.4 is made to the  predicate.

In Chapter 3, we describe how catenated values may be “extracted” from their cat-

enated list.  In implementation, we scan the predicate looking for an appropriate combina-

tion of dot values and catenated values.  When the subject of a dot value in the predicated

is identified as being a catenated value, the dot value is replaced by the member of the cat-

enated list given by the dot integer.

5.2.4  Handling of More Complex Predicates
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While our experience shows that many protocols produce verifications that can be

easily simplified using the routine methods described above, it is conceivable that some

protocols may not reduce so easily.  We offer two methods to deal with these more com-

plex verification conditions.

First, all final verification conditions are transformed into canonical normal form

using the algorithm described in [CM81].  Standard proof techniques can be applied to

prove the verification condition in this form.

Secondly, because of its ability to reflect assumptions and goals as arbitrary predi-

cates, CPAL-ES may be used with automated theorem proving systems.  The Boyer-

Moore Theorem Prover [BM79], [BM88] and the Prototype Verification System

[OSR93a], [OSR93b}, [SOR93a], [SOR93b] are two operating theorem proving systems.

We address automatic theorem proving systems in detail in Chapter 7.
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Chapter 6

Verifying Protocols Using The CPAL Evaluation System

The CPAL Evaluation System (CPAL-ES) is a three step process: the protocol is

specified in CPAL, the verification condition is generated, and the attempt is made to

prove the verification condition from assumptions about the environment.  We now con-

sider some specific examples of protocols verified using CPAL-ES.  First, we will look at

a simple, one-way authentication protocol and walk through the weakest precondition def-

inition of that protocol.  We then consider other protocols that illustrate the characteristics

and features of CPAL-ES, progressively moving to more complex protocols with broader

goals and different cryptographic environments.  Finally, we illustrate how CPAL-ES

reveals active attacks on protocols.

6.1  A Simple Cryptographic Protocol Verified.

In [BIRD92] the authors illustrate several attacks on protocols.  The trivial one-

way protocol they use, given in Figure 6.1, part (a), is convenient for illustrating output

from CPAL-ES.  In this simple protocol, the two principals use the knowledge of a com-

mon key to authenticate the communication session.  The originating principal generates a

random number, or nonce, to ensure the freshness of the interaction, encrypts the nonce

under the common key, and forwards the ciphertext to the target principal, B.  B receives

the nonce, decrypts it, then sends the nonce back to the originator in the clear.

Since the originator believes that only the recipient could have decrypted the

nonce and since the number was random and no intruder could have guessed it, the origi-

nator believes that the intended recipient decrypted the nonce and that the session is

started with the desired principal.  The authentication is one way because only the origina-

tor has assurances about the identity of the other participant.  Since anyone can generate a
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random number, the recipient has no information regarding the identity of the originator

and no way to determine even whether the number is actually encrypted or not.

 Figure 6.1, part a is constructed to show how the weakest precondition definition

of a protocol is attained.  The predicate listed to the right of each protocol step represents

the weakest precondition after the weakest precondition transform for that statement has

been applied.  The process begins by applying the weakest precondition definition to the

predicate TRUE.

We begin our manual evaluation in Figure 6.1, part a by applying the  weakest pre-

condition of the ASSERT statement given in statement 11.  For simplicity, and because it

has no impact on the final verification condition, we omit the TRUE branch of the predi-

cate throughout this example.

For this protocol, the rest of the statements are substitutions of values on the predi-

cate.  Statement 10 shows principal A receiving N'1.  This results in the value stored in A's

address space (A.N'1) being replaced by the representation of that value on A's queue

(Aq.N'1).  The queue value is then replaced by the value in the intruder's address space in

the secure send operation of the intruder in step 9 and so on.  Note that we utilize the inse-

cure send operator in this example only for illustration.  In this case, the intruder acts as a

passive listener, forwarding messages on without modification.

Steps 2 and 6 offer slight variations on the replacements in the other statements.  In

these two steps, a value represented by a single identifier is replaced by an encrypted or

decrypted value.  Recall that in our model, values may be complex structures including

catenated values, “dot” values, functions and nested values.  Regardless of the structure of

the value, substitution in the predicate occurs in the same way.
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Also notice that the value A.N1 in the predicate does not change until the last defi-

nition application for protocol step 1.  A.N1 was created in A's address space in the first

protocol step, and not manipulated in A's address space at any other point in the protocol.

The manipulations of values occur as values are changed in the protocol by assignment or

by sending and receiving.  The “unique” identifier in part a of Figure 6.1 is a result of the

NEW operation performed by principal A.  Because the two identifiers being compared

are both instances of the same unique identifier, one must be a copy of the other.  The ver-

ification condition suggests that if the decryption under key A.k of the encryption under

B.k of unique.v0 returns unique.v0, then the protocol functions as desired.

A Trivial One-way Authentication Protocol
a

Protocol action Verification Condition at each step

1 A: A.N1 := new; (unique.v0==d[e[unique.v0]A.k]B.k)

2 A: -> B(e[A.N1]A.k); (A.N1 == d[e[A.N1]A.k]B.k)

3 I: <-(msg); (A.N1 == d[Iq.msg]B.k)

4 I: =>B(msg); (A.N1 == d[I.msg]B.k)

5 B: <-(B.msg); (A.N1 == d[Bq.msg]B.k)

6 B: B.N1 := d[B.msg]B.k; (A.N1 == d[B.msg]B.k)

7 B: -> A(B.N1); (A.N1 == B.N1)

8 I: <-(msg1); (A.N1 == Iq.msg1)

9 I: =>A(msg1); (A.N1 == I.msg1)

10 A: <-(A.N'1); (A.N1 == Aq.N'1)

11 A: assert(A.N1 == A.N'1); TRUE and (A.N1 == A.N'1)

b

A.k == B.k

Figure 6.1
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The simplified predicate in part b of Figure 6.1 illustrates our definition of the

encryption and decryption functions.  If keys A.k and B.k are the same, the decryption

operation reverses the encryption operation leaving the equivalence of the unique values

as an identity that simplifies to TRUE.  The outcome of TRUE indicates that execution of

the protocol steps in the specified order and content results in the success of the message

based goal given in step 11.  Nonetheless, while the protocol meets the given message

based goal, Bird et. al. show that this protocol is vulnerable to active attack by a sophisti-

cated intruder.  The attack they give on the protocol is similar to the attack we show later

in this chapter on the two-way protocol of Bird et al.

6.2  Common Cryptographic Protocols Verified.

6.2.1  The Proposed ISO Protocol

While the example in Section 6.1 illustrates several concepts important to CPAL-

ES, we will show the power of the system in this section by evaluating more realistic pro-

tocols.  We begin with the proposed ISO protocol given in [BIRD93] and shown in Figure

6.2.  In the manually generated weakest precondition shown in Figure 6.1, we showed the

predicate at each step in the evaluation.

The evaluation in Figure 6.2 was taken directly from the CPAL-ES evaluation.  As

you see, CPAL-ES provides three components to the evaluation:

1.  A listing of the protocol with the owner ID attached to each variable.

2.  The verification condition is derived from the protocol statements before any sim-

plification is performed

3.   The simplified predicate, reflecting the final verification condition for the protocol

In many ways, the ISO protocol is similar to the protocol of Figure 6.1.  No key is

passed in the proposed ISO protocol and the equivalence of a received value to a previ-
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ously transmitted original value is the message based goal of the protocol.

The unsimplified verification condition of the ISO protocol is larger and more

complex than that of Figure 6.1 and gives some insight into just how difficult these predi-

cates may be to evaluate.  Nonetheless, our routine simplification steps quickly and easily

reduce this predicate into a simple form.  As with the trivial protocol, the simplified verifi-

cation condition is the equality of the keys.  This says that the protocol does not work if

the keys are different, which is precisely the outcome we desire.  In this case, it makes

sense to assume the equivalence and the protocol meets its specified goals.

CPAL-ES Evaluation of the Proposed ISO Protocol

a
A: A.Na := new;
A: => B(A.Na);
B: <-(B.Na);
B: B.Nb := new;
B: => A(<e[B.Na]B.k,e[B.Nb]B.k>);
A: <-(A.msg);
A: (A.Nae,A.Nbe) := A.msg;
A: A.Na' := d[A.Nae]A.k;
A: A.Nb := d[A.Nbe]A.k;
A: assert(A.Na == A.Na');
A: => B(A.Nb);
B: <-(B.Nb');
B: assert(B.Nb == B.Nb');
 *** End of Protocol ***

b
((TRUE  and  (unique.v0==d[<e[unique.v1]B.k,e[unique.v0]B.k>.2]A.k)) and(unique.v1
== d[<e[unique.v1]B.k,e[unique.v0]B.k>.1]A.k))

****** End of Verification Condition ******
c

(B.k == A.k)

Figure 6.2

While the evaluation in Figure 6.2 shows that the protocol meets its stated goals,

the interpretation of the meaning of the accomplishment of these goals is debatable.  The
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creators of this protocol may have believed that satisfaction of the given goals allowed

each principal to believe they had established a secure communication session with the

other, but Bird et.  al. [BIRD93] showed how an active intruder can trick a principal using

this protocol into believing a session is established with another valid principal when the

session is actually with the intruder.  We consider active attacks on cryptographic proto-

cols in Section 6.4.

6.2.2  Woo and Lam

In [WL92],  Woo and Lam offer a two-way authentication protocol similar to the

ISO Protocol.  The Woo and Lam protocol is a three party protocol that requires five trans-

missions to complete the authentication.  No private key is assumed to be preexisting

between the principals.  The protocol is founded on two premises, one that a message

received encrypted under a private key shared with another principal must have originated

from that principal and, two, that it is impossible for even the most sophisticated intruder

to guess the value of a nonce, so any message containing the nonce must be a component

of a current protocol run.  The CPAL-ES evaluation of the Woo and Lam protocol is given

in Figure 6.3.

We see that in Figure 6.3, simplification of the original verification condition

removes all references to variables, leaving the value of the final verification as TRUE.

This would not be the result without the two assume statements that begin the protocol.

Without these assumptions, the simplified verification condition would be:

(B.kbs == S.kbs) and (A.kas == S.kas)

which is similar to the final verification conditions of the first two examples we consid-

ered.  The use of the assume statements allows us to make the final verification simpler

and to explicitly state the conditions that comprise our assumptions.



Chapter 6:  Verifying Protocols Using the CPAL Evaluation System     97

Woo and Lam

S: =>A(kas);  -- The first 4 statements reflect prior shared keys
A:<-(kas);
S: =>B(kbs);
B: <-(kbs);
A: => B(A.A);
B: <-(B.A);
B: => A(B.Nb);
A: <-(A.Nb);
A: => B(e[A.Nb]A.kas);
B: <-(B.msg);
B: => S(e[<B.A,B.msg>]B.kbs);
S: <-(S.msg4);
S: (S.A,S.msg4b) := d[S.msg4]S.kbs;
S: S.Nb := d[S.msg4b]S.kas;
S: => B(e[S.Nb]S.kbs);
B: <-(B.msg5);
B: B.Nb' := d[B.msg5]B.kbs;
B: assert((B.Nb == B.Nb'));

 *** End of Protocol ***

(TRUE and (B.Nb ==
d[e[d[d[e[<A.A,e[B.Nb]S.kas>]S.kbs]S.kbs.2]S.kas]S.kbs]S.kbs))

****** Simplified predicate follows.

TRUE
Figure 6.3

6.2.3  The Andrew Secure Remote Procedure Call Protocol

Another interesting protocol is the Andrew Secure Remote Procedure Call proto-

col given in [BAN90] and shown in Figure 6.4.  The intent of this protocol is for two prin-

cipals to utilize an existing shared, secret key in order to establish a new, shared, secret,

session key.  The fundamental differences between this protocol and the ISO protocol are

that:

1.  Nonces are not passed in the clear.
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2.  A function is applied to the nonce to give more assurance of the integrity of the pro-

tocol.

3.  The principal receiving the request generates the session key.

4.  The purpose of the protocol  is to successfully pass a new session key from one

principal to the other.

5.  This protocol has three message based goals rather than two.

The verification condition for the Andrew Secure Remote Procedure Call protocol

in Figure 6.4, part b is more complex than those from the previous examples.  In this pro-

tocol, there are three comparisons with at least one value containing five levels of nesting,

which illustrates that the length of the verification condition is a factor of the complexity,

as well as the length, of the original protocol.
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CPAL-ES Evaluation of the ANDREW Protocol

a
A: A.Na := new;
A: => B(<A.A,e[A.Na]A.kab>);
B: <-(B.msg);
B: (B.A,B.msg2) := B.msg;
B: B.Na := d[B.msg2]B.kab;
B: B.Nb := new;
B: => A(e[<B.f(B.Na),B.Nb>]B.kab);
A: <-(A.msg);
A: (A.Na',A.Nb) := d[A.msg]A.kab;
A: assert((A.f(A.Na) == A.Na'));
A: => B(e[A.f(A.Nb)]A.kab);
B: <-(B.msg3);
B: B.Nb' := d[B.msg3]B.kab;
B: assert((B.f(B.Nb) == B.Nb'));
B: => A(e[<B.k'ab,B.N'b>]B.kab);
A: <-(A.msg3);
A: (A.k'ab,A.Nb') := d[A.msg3]A.kab;
X: gassert((B.k'ab == A.k'ab));
 *** End of Protocol ***

b
 (((TRUE and (B.k'ab == d[e[<B.k'ab,B.N'b>]B.kab]A.kab.1)) and
(B.f(unique.v0)==d[e[A.f(d[e[<B.f(d[<A.A,e[unique.v1]A.kab>.2]B .kab),
unique.v0>]B.kab]A.kab.2)]A.kab]B.kab)) and (A.f(unique.v1) ==
d[e[<B.f(d[<A.A,e[unique.v1]A.kab>.2]B.kab),unique.v0>]B.kab]A.  kab.1))
**** End of verification condition ****

c
 ((not (A.kab == B.kab) or ((not (A.kab == B.kab) or ((not (A.kab == B.kab) or    ((not
(A.kab == B.kab) or (B.f(unique.v0) == A.f(unique.v0) and (A.f(unique.v1) ==
B.f(unique.v1))))  and (B.kab == A.kab))) and  ((A.kab == B.kab) or  ((not (A.kab ==
B.kab) or ((B.f(unique.v0) == unique.v3) and  (A.f(unique.v1) == B.f(unique.v1))))   and
(B.kab == A.kab))))) and  ((B.kab == A.kab) or  ((not (A.kab == B.kab) or ((not (A.kab
== B.kab) or ((B.f(unique.v0) == A.f(unique.v8))  and (A.f(unique.v1) == unique.v9)))
and (B.kab == A.kab))) and ((A.kab == B.kab) or    ((not (A.kab == B.kab) or
((B.f(unique.v0) == unique.v3) and (A.f(unique.v1) == unique.v13))) and (B.kab ==
A.kab)))))))and ((A.kab == B.kab) or ((not (A.kab == B.kab) or ((not (A.kab == B.kab) or
((not (A.kab == B.kab) or ((B.f(unique.v0) == A.f(unique.v0))   and   (A.f(unique.v1) ==
B.f(unique.v5)))) and (B.kab == A.kab))) and ((A.kab == B.kab) or ((not (A.kab ==
B.kab) or ((B.f(unique.v0) == unique.v3) and (A.f(unique.v1) == B.f(unique.v5))))   and
(B.kab == A.kab))))) and ((B.kab == A.kab) or  ((not (A.kab == B.kab) or ((not (A.kab ==
B.kab) or ((B.f(unique.v0) == A.f(unique.v18)) and (A.f(unique.v1) == unique.v19))) and
(B.kab == A.kab))) and ((A.kab == B.kab) or    ((not (A.kab == B.kab) or ((B.f(unique.v0)
== unique.v3) and (A.f(unique.v1) == unique.v23))) and (B.kab == A.kab))))))))

  **** End of simplified predicate ****
d

(B.f(unique.v0) == A.f(unique.v0)) and (A.f(unique.v1) == B.f(unique.v1))

Figure 6.4
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It is also notable that in the evaluation of the Andrew RPC protocol, the simplified

version of the verification condition, shown in part c, appears to be much more complex

than the unsimplified version in part b.  However, if we look carefully at the predicate in

part c, we see that many of the elements of the predicate are a repetition of the comparison

of the originally assumed private shared keys of the principals, (A.k==B.k).  If we

acknowledge that the original keys are equal and add the statements:

A: =>B(k);

B: <-(k);

to the protocol, the verification condition reduces to the simplified predicate shown in part

(d).  From this final version of the verification condition we see that the ability of the pro-

tocol to meet its goals is dependent on the equivalence of the function that principals A

and B apply to the nonces.  Once again, it is fair to assume this equivalence and the proto-

col meets its stated goals.

6.3  Evaluating the Classic Protocols

6.3.1.  The Needham and Schroeder private key protocol, given above in Figure 1, is often

referenced in literature and is the foundation for the Kerberos [MNSS87] authentication

system.  The Needham and Schroeder Private Key Protocol is a three party protocol, that

attempts two-way authentication.  A significant contribution when it was introduced, it is

now famous primarily for the potential flaw that it contains.  As discussed previously, the

flaw allows an active intruder to substitute a message from a previous run of the protocol

into the current run of the protocol.  If an intruder has been able to compromise a previous

session key, the privacy and integrity of the session may be compromised without the orig-

inator detecting the compromise.  BAN Logic evaluation of the Needham and Schroeder

Private Key Protocol was given in Chapter 2.
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We give the CPAL-ES evaluation of the Needham and Schroeder Private Key Pro-

tocol in Figure 6.5.  Note the clear specification of the assumption of the shared keys

between the authentication server (S) and principals A and B.  The goals of the protocol

are also identified in the two ASSERT statements in the protocol specification.  As we dis-

cussed in the previous chapter, these goals represent the essence of the protocol.  The only

basis the principals have to establish beliefs in this protocol is the ability of the other prin-

cipal to successfully decrypt a message using the shared private key.  Comparison of the

nonce stored by the principal to the value received in a message and decrypted with the

private key provides the assurance the principals need.

The CPAL-ES evaluation indicates that if we assume the equivalence of the partic-

ipant's private keys and that the two parties share the function f with the trusted server,

then the stated goals of the protocol are met.  Notice that even though CPAL-ES shows

that the Needham and Schroeder protocol meets its message-based goals,  there is a flaw

in the protocol that makes it insecure.   The difficulty arises because CPAL-ES verifies the

protocol based on the explicit intruder actions stated in the protocol specification.  By

showing exactly what action is taking place and who is taking the action, CPAL-ES

ensures that the stated goal will, or will not, be accomplished based on execution of the

exact protocol steps specified.
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CPAL-ES Evaluation of Needham and Schroeder Private Key Protocol

a
S: =>A(S.kas);
A: <-(A.kas);
S: =>B(S.kbs);
B: <-(B.kbs);
A: => S(e[<A.A,A.B,A.N1>]A.kas);
S: <-(S.msg);
S: (S.A,S.B,S.N1) := d[S.msg]S.kas;
S: => A(e[<S.N1,S.B,S.kab,e[<S.kab,S.A>]S.kbs>]S.kas);
A: <-(A.msg3);
A: A.temp2 := d[A.msg3]A.kas;
A: (A.N1a,A.B,A.kab,A.ticket) := A.temp2;
A: assert((A.N1 == A.N1a));
A: => B(A.ticket);
B: <-(B.ticket);
B: (B.kab,B.A) := d[B.ticket]B.kbs;
B: => A(e[B.N2]B.kab);
A: <-(A.msg4);
A: A.N2 := d[A.msg4]A.kab;
A: => B(e[A.f(A.N2)]A.kab);
B: <-(B.msg5);
B: B.N3 := d[B.msg5]B.kab;
B: assert((B.f(B.N2) == B.N3));
 *** End of Protocol ***

b
((TRUE and (B.f(B.N2) ==
d[e[A.f(d[e[B.N2]d[d[e[<d[e[<A.A,A.B,A.N1>]S.kas]S.kas.3,d[e[<A.A,A.B,A.N1>]S.ka
s]S.kas.2,S.kab,e[<S.kab,d[e[<A.A,A.B,A.N1>]S.kas]S.kas.1>]S.kbs>]S.kas]S.kas.4]S.k
bs.1]d[e[<d[e[<A.A,A.B,A.N1>]S.kas]S.kas.3,d[e[<A.A,A.B,A.N1>]S.kas]S.kas.2,S.kab
,e[<S.kab,d[e[<A.A,A.B,A.N1>]S.kas]S.kas.1>]S.kbs>]S.kas]S.kas.3)]d[e[<d[e[<A.A,A.
B,A.N1>]S.kas]S.kas.3,d[e[<A.A,A.B,A.N1>]S.kas]S.kas.2,S.kab,e[<S.kab,d[e[<A.A,A.
B,A.N1>]S.kas]S.kas.1>]S.kbs>]S.kas]S.kas.3]d[d[e[<d[e[<A.A,A.B,A.N1>]S.kas]S.kas
.3,d[e[<A.A,A.B,A.N1>]S.kas]S.kas.2,S.kab,e[<S.kab,d[e[<A.A,A.B,A.N1>]S.kas]S.kas
.1>]S.kbs>]S.kas]S.kas.4]S.kbs.1)) andc(A.N1 ==
d[e[<d[e[<A.A,A.B,A.N1>]S.kas]S.kas.3,d[e[<A.A,A.B,A.N1>]S.kas]S.kas.2,S.kab,e[<S
.kab,d[e[<A.A,A.B,A.N1>]S.kas]S.kas.1>]S.kbs>]S.kas]S.kas.1))

c

****** Simplified predicate follows.

(B.f(B.N2) == A.f(B.N2))

Figure 6.5
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Denning and Sacco [DS81] devised an attack on the Needham and Schroeder pro-

tocol by creating an alternative trace that satisfies the message based goal of the protocol

in a way the authors had not considered.   Denning and Sacco’s “replay attack” is now a

well known attack and cryptographic protocols are routinely examined for vulnerability to

replay.  The replay attack is just one way that an intruder can manipulate a protocol run so

that success of the message based goals does not guarantee the implications originally

desired by the user.

As we stated earlier, like BAN Logic, CPAL-ES provides static protocol evalua-

tion.  If the steps of the protocol are executed exactly as specified in CPAL, CPAL-ES will

determine if the goals given in the ASSERT statements are met in the protocol run.  This

does not provide a guarantee that a clever intruder will not be able to construct a run of the

protocol that will compromise the protocol security.  CPAL-ES allows us to make the

assumptions and the protocol goals explicit, and gives them both a formal meaning.  It

also allows us to generate many different versions and runs of a protocol quickly, and pro-

vide a message based evaluation of what each run accomplishes.

6.3.2  Variations on the Needham and Schroeder Protocol

The Needham and Schroeder protocol was a watershed in cryptographic protocol

development and is the basis for many other protocols that were designed either for

slightly different purposes or to correct problems with it.  In this section, we evaluate

some of the variations on the Needham and Schroeder protocol using CPAL-ES.

6.3.2.1 Denning and Sacco

In [DS81] the authors go beyond pointing out the problem with the Needham and

Schroeder protocol; they also propose their own private key protocol.  As with the

Needham and Schroeder protocol, their protocol begins with the first message going to the

authentication server.  The difference is that Denning and Sacco rely on the authentication
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server and a timestamp to synchronize the run.  In its only message, the authentication

server presents a timestamp that each principal can use to ensure the freshness of the run.

The CPAL-ES evaluation of the Denning and Sacco protocol is provided in Figure 6.6 and

the final verification condition mirrors the Needham and  Schroeder result.  That is, the

protocol meets its specified goals if the function used by principals A and B is the same.

6.3.2.2  Otway and Rees

The Otway and Rees protocol [OTWR87] given in Chapter 1, Figure 1.2, offered

another alternative to the Needham and Schroeder Private Key Protocol.  In this protocol

the authors avoid the playback problem by including a nonce, C, which is used as a ses-

sion identifier and is included with each message.

Additionally, Otway and Rees designed the protocol so the run originator sends the

first message to the intended recipient rather than to the authentication server.  This allows

each participant to generate the nonce they will use to verify the freshness of each mes-

sage in the run.
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Denning and Sacco Private Key Protocol

S: =>A(S.kas);
A: <-(A.kas);
S: =>B(S.kbs);
B: <-(B.kbs);
A: => S(<A.A,A.B>);
S: <-(S.msg);
S: (S.A,S.B) := S.msg;
S: S.kab := new;
S: S.T1 := new;
S: => A(e[<S.B,S.kab,S.T1,e[<S.T1,S.kab,S.A>]S.kbs>]S.kas);
A: <-(A.Msg1);
A: A.tmp := d[A.Msg1]A.kas;
A: (A.dst,A.kab,A.T1,A.Ticket) := A.tmp;
A: assert((A.B == A.dst));
A: => B(A.Ticket);
B: <-(B.Ticket);
B: B.tmp1 := d[B.Ticket]B.kbs;
B: (B.T1,B.kab,B.A) := B.tmp1;
B: gassert((S.T1 == B.T1));
B: => A(e[B.N1]B.kab);
A: <-(A.Msg2);
A: A.N1 := d[A.Msg2]A.kab;
A: => B(e[A.f(A.N1)]A.kab);
B: <-(B.Msg3);
B: B.N1' := d[B.Msg3]B.kab;
B: assert((B.f(B.N1) == B.N1'));

 *** End of Protocol ***

(((TRUE  and (B.f(B.N1) ==
d[e[A.f(d[e[B.N1]d[d[e[<<A.A,A.B>.2,unique.v1,unique.v0,e[<unique.v0,unique.v1,<A.
A,A.B>.1>]S.kbs>]S.kas]S.kbsS.kas.4].2]d[e[<<A.A,A.B>.2,unique.v1,unique.v0,e[<uni
que.v0,unique.v1,<A.A,A.B>.1>]S.kbs>]S.kas]S.kas.2)]d[e[<<A.A,A.B>.2,unique.v1,un
ique.v0,e[<unique.v0,unique.v1,<A.A,A.B>.1>]S.kbs>]S.kas]S.kas.2]d[d[e[<<A.A,A.B>
.2,unique.v1,unique.v0,e[<unique.v0,unique.v1,S.kas<A.A,A.B>.1>]S.kbs>]S.kas].4]S.k
bs.2)) and (unique.v0 ==
d[d[e[<<A.A,A.B>.2,unique.v1,unique.v0,e[<unique.v0,unique.v1,<A.A,A.B>.1>]S.kbs
>]S.kas]S.kas.4]S.kbs.1)) and (A.B==
d[e[<<A.A,A.B>.2,unique.v1,unique.v0,e[<unique.v0,unique.v1,<A.A,A.B>.1>]S.kbs>]
S.kas]S.kas.1))
****** Simplified predicate follows.

(B.f(B.N1) == A.f(B.N1))

Figure 6.6
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We give the CPAL-ES evaluation of the Otway and Rees protocol in Figure 6.7.

Notice that since no function is used to protect the nonces, the only assumption that is

required is that the previously held keys between the two participants and the authentica-

tion server are the same, which is again reflected in the first four statements of the proto-

col.  Granted this assumption, the verification condition for the Otway and Rees protocol

run as given reduces to TRUE and the protocol meets the stated goals.

Also notice that even though the Otway and Rees protocol requires only four trans-

missions in each protocol run, the size of the original verification condition in Figure 6.8,

is substantially greater for the Otway and Rees protocol than it was for the previous exam-

ples.  This results from the characteristics of the Otway and Rees protocol.  In this proto-

col, there are several components to each message and operations on values are nested in

most messages.  The operations themselves add to the length of the protocol and, thus, to

the size of the verification condition.
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Otway and Rees Private Key Protocol

S: => A(S.kas);
A: <-(A.kas);
S: => B(S.kbs);
B: <-(B.kbs);
A: => B(<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]A.kas>);
B: <-(B.msg1);
B: (B.C,B.A',B.B',B.Ticket1) := B.msg1;
B: B.Ticket2 := e[<B.Nb,B.C,B.A',B.B'>]B.kbs;
B: => S(<B.C,B.A',B.B',B.Ticket1,B.Ticket2>);
S: <-(S.msg2);
S: (S.C,S.A,S.B,S.Ticket1,S.Ticket2) := S.msg2;
S: (S.Na,S.Ca,S.A',S.B') := d[S.Ticket1]S.kas;
S: assert((S.A' == S.A));
S: assert((S.B' == S.B));
S: assert((S.Ca == S.C));
S: (S.Nb,S.Cb,S.A'',S.B'') := d[S.Ticket2]S.kbs;
S: assert((S.Cb == S.C));
S: S.passa := e[<S.Na,S.kab>]S.kas;
S: S.passb := e[<S.Nb,S.kab>]S.kbs;
S: => B(<S.C,S.passa,S.passb>);
B: <-(B.msg3);
B: (B.C',B.passa,B.passb) := B.msg3;
B: assert((B.C == B.C'));
B: (B.Nb',B.kab) := d[B.passb]B.kbs;
B: assert((B.Nb == B.Nb'));
B: => A(<B.C,B.passa>);
A: <-(A.msg4);
A: (A.C',A.passa) := A.msg4;
A: assert((A.C == A.C'));
A: (A.Na',A.kab) := d[A.passa]A.kas;
A: assert((A.Na == A.Na'));

 *** End of Protocol ***

*** Original verification condition is in Figure 6.8

****** Simplified predicate follows.

TRUE
Figure 6.7



Chapter 6:  Verifying Protocols Using the CPAL Evaluation System     108

CPAL-ES Verification Condition for the Otway and Rees Protocol
((((((((TRUE and  (A.Na == d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<<<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.k
as>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.1,e[
<d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.
B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.N
a,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S
.kas>.3>]S.kbs>.4]S.kas.1,S.kab>]S.kas,e[<d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.
Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]
S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,
<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.5]S.kbs.1,S.kab>]S.kbs>.2>.2]S.kas.1)) and  (A.C ==
<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B
,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.k
as>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.1,e[<d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.ka
s>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.
B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.N
a,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.4]S.kas.1,S.kab>]S.kas,e[<d[<<
A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A
.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,
A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.
3>]S.kbs>.5]S.kbs.1,S.kab>]S.kbs>.2>.1)) and (B.Nb == d[<<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,
<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<
A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C
,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.1,e[<d[<<A.C,A.A,A.B,e[<A.Na,A.C,
A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.
3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A
.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.4]S.kas.1,S.kab>]
S.kas,e[<d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,
A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.3>]S.kbs>.5]S.kbs.1,S.kab>]S.kbs>.3]S.kbs.1) and (<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1 ==
<<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>. 1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,
A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.3>]S.kbs>.1,e[<d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<
B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.
B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.4]S.kas.1,S.kab>]S.kas,e[<d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.
kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,
A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A
.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.5]S.kbs.1,S.kab>]S.kbs>.1))
and (d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1, <A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,
A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.3>]S.kbs>.5]S.kbs.2 == <<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.k
as>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.1))  and (d[<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]
S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S. kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,
<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.
A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.4]S.kas.2 ==
<<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B, e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,
A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.k
as>.3>]S.kbs>.1)) and (d[<<A.C,A.A,A.B, e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,
A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.
4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A
.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.4]S.kas.4 == <<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,
<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2, <A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,
A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.3)) and(d[<<A.C,A.A,A.B,
e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B, e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,
A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.k
as>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3>]S.kbs>.4]S.
kas.3 ==<<A.C,A.A,A.B,e[<A.Na,A.C, A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,
<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.3,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.4,e[<B.Nb,<A.C,A.
A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.1,<A.C,A.A,A.B,e[<A.Na,A.C,A.A,A.B>]S.kas>.2,<A.C,A.A,A.B,e[<A.Na,A.
C,A.A,A.B>]S.kas>.3>]S.kbs>.2))

Figure 6.8
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This protocol illustrates the requirement for an automated tool to evaluate verifica-

tion conditions.  As you see, the original verification condition for the Otway and Rees is

more than a page long, and working through this type predicate manually would be almost

futile.  Moreover, we have seen other protocols that generate verification conditions that

are much larger than this one.  We believe that, like computer program verification, this

level of effort is inherent in protocol verification.  Automation of this effort is provided by

CPAL-ES.  We have not encountered any protocols whose verification condition does not

reduce to a workable size once the simplifications in CPAL-ES are applied.

Since we illustrated the size and complexity of the original verification condition

with the Otway and Rees protocol and because of the complex nature of these verification

conditions, we will omit large, original verification conditions from subsequent examples.

6.3.2.3  Abadi and Needham's Modification to Otway and Rees

In [AN94], Abadi and Needham suggest modifications to the Otway and Rees pro-

tocol that result in a protocol that requires less encryption than the original version.  They

use the convention of attaching names to messages to produce this efficiency.  We give the

CPAL-ES evaluation of the Abadi and Needham version of the protocol in Figure 6.9.

The global assertion operator GASSERT is used in Figure 6.9 to show the desired

relationship between each principal’s understanding of who the principals are.  If B’s rep-

resentation of the source (B.A) is the same as that of the source, the names introduced by

Abadi and Needham accomplish their desired result.
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Abadi and Needham Modification to the Otway and Rees Protocol
S: => A(S.kas);  A: <-(A.kas);
S: => B(S.kbs);  B: <-(B.kbs);
A: A.Na:=new;
A: => B(<A.A,A.B,A.Na>);
B: <-(B.msg1);
B: (B.A,B.B,B.Na) := B.msg1;
B: B.Nb:=new;
B: => S(<B.A,B.B,B.Na,B.Nb>);
S: <-(S.msg2);
S: (S.A,S.B,S.Na,S.Nb) := S.msg2;
S: S.kab:=new;
S: S.passa := e[<S.Na,S.A,S.B,S.kab>]S.kas;
S: S.passb := e[<S.Nb,S.A,S.B,S.kab>]S.kbs;
S: => B(<S.passa,S.passb>);
B: <-(B.msg3);
B: (B.passa,B.passb) := B.msg3;
B: (B.Nb',B.A,B.B,B.kab) := d[B.passb]B.kbs;
B: assert(B.Nb == B.Nb');
B: gassert(B.A == A.A);
B: gassert(B.B == A.B);
B: => A(B.passa);
A: <-(A.passa);
A: (A.Na',A.A,A.B,A.kab) := d[A.passa]A.kas;
A: assert(A.Na == A.Na');
A: gassert(B.A == A.A);
A: gassert(B.B == A.B);
Global: gassert(B.kab == A.kab);
*** *End of Protocol.
**** Simplified predicate follows.

TRUE
Figure 6.9

6.3.2.4   Kerberos

The Kerberos Authentication System [MNSS87] is a broadly implemented appli-

cation using a variation of the Needham and Schroeder Private Key Protocol as its primary

authentication protocol.  The CPAL-ES evaluation of the Kerberos protocol is given in fig-

ure 6.10.

The Kerberos protocol is unlike previously evaluated protocols in that Kerberos

utilizes timestamps rather than nonces to guarantee message freshness.  The Kerberos
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developers compare the value of the timestamp received against the value of a local, syn-

chronized clock within some given variance.  In the given CPAL-ES Kerberos evaluation,

we utilize the global ASSERT statement to reflect the expectation of agreement between

the times of the different principals.

Because Kerberos utilizes a function of the timestamp, the final result of the

CPAL-ES evaluation is to show that the protocol works if we assume that the two princi-

pals utilize the same function g.

The Kerberos Private Key Protocol
S: => A(S.kas);
A: <-(A.kas);
S: => B(S.kbs);
B: <-(B.kbs);
A: => S(<A.A,A.B>);
S: <-(S.msg);
S: (S.A,S.B) := S.msg;
S:=>A(e[<S.Ts,S.L,S.kab,S.B,e[<S.Ts,S.L,S.kab,S.A>]S.kbs>]S.kas);
A: <-(A.msg);
A: (A.Ts,A.L,A.kab,A.B,A.msg2) := d[A.msg]A.kas;
A: gassert(S.Ts == A.Ts);
A: => B(<A.msg2,e[<A.A,A.Ta>]A.kab>);
B: <-(B.msg);
B: (B.msg1,B.msg2) := B.msg;
B: (B.Ts,B.L,B.kab,B.A) := d[B.msg1]B.kbs;
B: gassert(S.Ts == B.Ts);
B: (B.A,B.Ta) := d[B.msg2]B.kab;
B: => A(e[B.g(B.Ta)]B.kab);
A: <-(A.msg);
A: A.Ta' := d[A.msg]A.kab;
A: assert(A.g(A.Ta) == A.Ta');
 *** End of Protocol ***
****** Simplified predicate follows.

(A.g(A.Ta) == B.g(A.Ta))
Figure 6.10
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6.4  Active Attacks on Cryptographic Protocols.

The characteristic of BAN Logic that Nessett identified in his criticism in

[NESS90] was that BAN Logic provides only a static evaluation of any protocol.  As we

briefly addressed in Chapter 2, by static evaluation we mean that the evaluation is valid

only if the steps of the protocol are accomplished in exactly the sequence and with exactly

the content of messages as specified.  Clearly, accomplishment of static evaluation of pro-

tocols by a formal method is very important, since any protocol that does not meet its

goals under static evaluation is useless in practice.  As Burrows, et.  al.  point out in their

rejoinder to Nessett [BAN90b], static evaluation is just one step in evaluating a crypto-

graphic protocol.  BAN Logic accomplishments aside, the weakness remains, i.e., the

evaluation makes no provision to consider active attacks by persistent intruders.

While a passive attack is accomplished by an intruder listening to the messages in

a communication without interfering, an active attack is characterized by the intruder

intervening in a communication by intercepting messages that may never be delivered,

copying messages for later replay either with or without modification, and generating new

messages for insertion into a communication session.  The goal of an intruder is to spoof a

valid participant.  A spoof causes a principal A to have an erroneous belief, such as A

believing that A has a established a secure communication session with another principal

B, when in fact A has not established a session with B.  One type of spoof may cause A to

have such a belief when in fact no session is established, while another spoof may have A

establish a session with a principal other than B, maybe the intruder.  Other spoofs involve

beliefs regarding the characteristics of keys or maybe the status of an expected secret.

6.4.1  Denning and Sacco Attack on Needham and Schroeder Private Key Protocol

The most difficult characteristic regarding spoofs is that they come in an infinite

assortment of types.  Regardless of how many different spoofs a protocol protects against,
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it is impossible to guarantee that an intelligent intruder will not discover a new one that

defeats the protocol.  Current verification methods center on detecting known types of

spoofs, such as the classic replay attack given by Denning and Sacco in [DS81].

The idea of a replay attack is to record a valid protocol session in order to use one

or more messages or message components in a later session.  The need to use a recorded

message stems from the nature of cryptography, i.e. that the intruder cannot generate the

value expected in a protocol without first possessing the necessary key.  In order to cir-

cumvent this problem, the intruder does not attempt to generate the necessary encrypted

value, but rather steals the value from someone that has the key and passed a suitably

structured value in a previous session.

To illustrate this point, consider the attack Denning and Sacco constructed on the

Needham and Schroeder Private Key Protocol [NS78] given in Figure 1.1 and again along

with the attack session in Figure 6.11.  The intent of this protocol is to allow two princi-

pals to utilize a trusted key server that they share separate secret keys with, to establish a

new common session key suitable for use in a secure communication session.  At the end

of the protocol, the goal is for both A and B to have the key (represented by “kab”) in their

private address space and for no one else except the trusted server to know that key (i. e.

have the key in their private address space).

Statically, the Needham and Schroeder Private Key Protocol seems to meet its

goals.  If the protocol steps are executed as written, there is no clear way that a passive

intruder could gain access to the session key for an ongoing session.  The same cannot be

said about an active intruder.

In the attack sequence given in Figure 6.11, notice that in the first session, the

intruder copies the third message in the protocol (steps 8 and 9), then lets the message pass

unchanged to its intended recipient.  The assumption is that the attacker may compromise
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key kab at some point, possibly long after the session it was used in is over.  This assump-

tion is credible in that it is recognized that keys become more vulnerable over time, partic-

ularly if a sizable amount of ciphertext is available for analysis by the intruder.  Since kab

is a session key, it is fair to assume that a large amount of ciphertext will be available.

Once the key is compromised and the intruder possesses kab, the intruder patiently waits

for principal A to attempt another session with B, which is easily detected.

The first seven steps of the second session occur as intended with kab' and na' sig-

nifying a new key and new nonce for the second session respectively.  The third message

of the attack session, the message from A to B in step 7, is intercepted by the intruder.  The

intruder then substitutes the message from the previous session in step 8 of the current ses-

Replay Attack on the Needham and Schroeder Private Key Protocol

Session 1 Session 2

1. A: =>S(<A,B,na>); A: =>S:(<A,B,na'>);
2. S: <-(msg1); S: <-(msg1‘);
3. S: (A,B,na) := msg1; S: (A,B,na’) := msg1‘;
4. S:=>A(e[<na,B,kab,e[kab,A]kbs>]kas); S:=>A(e[<na’,B,kab’,e[kab’,A]kbs>]kas);
5. A: <-(msg2); A: <-(msg2‘);
6. A: (na,B,kab,msg3) := msg2; A: (na’,B,kab’,msg3‘) := msg2‘;
7. A: ->B(msg3); A: ->B(msg3‘);
8. I: <-(msg3); I: <-(msg3‘);
9. I: =>B(msg3); I: =>B(msg3);
10. B: <-(msg3); B: <-(msg3);
11. B: (kab,A) := msg3; B: (kab,A) := msg3;
12. B: nb := new; B: nb’ := new;
13. B: =>A(e[nb]kab); B: =>A(e[nb’]kab);
14. A: <-(msg4); A: <-(msg4’);
15. A: nb := d[msg4]kab; A: nb := d[msg4’kab;
16. A: =>B:(e[nb-1]kab); A: =>B:(e[nb’-1]kab);
17. B: <-(msg5); B: <-(msg’5);
18. B: nb" := d[msg5]kab; B: nb" := d[msg5’]kab;
19. B: assert((nb-1) == nb"); B: assert((nb’-1) == nb");

Figure 6.11
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sion.  When B receives this message in step 10, there is no reason to doubt its originality.

The second session progresses to completion with B believing the old session key kab,

decrypted in step 11, is being established as the session key for the new session.  The

intruder is now in a possession to intercept all messages originating from principal A and

conduct the session with principal B as though the intruder were A himself.

6.4.2  Parallel Session Attacks

Bird, et.  al.  illustrated another method active attackers may use in [BIRD93].

They showed how an intruder may use the parallel nature of systems in order to acquire an

encrypted value they can use in a protocol attack.  Using what is called a parallel session

attack, given a suitable protocol the intruder will manipulate one or more principals so that

at least one principal is running more than one cryptographic protocol session concur-

rently.  The intruder then copies messages from one session into an appropriate place in

the other session.

The next two examples illustrate how having one principal of a protocol session

engaged in a second concurrent protocol session can allow an intruder to spoof one or both

principals.  We use the convention of indenting actions in the attack session for readability.

6.4.3  Bird et. al Attack on the ISO Protocol

 We briefly mentioned earlier that Bird et.  al, constructed an attack on the pro-

posed ISO protocol in [BIRD93].   The attack they constructed is a parallel session attack.

The complete sequence of that attack is given in Figure 6.12.  In this attack, the intruder

uses principal A to get an encrypted value to be used later to spoof A.  Recall that in the

ISO protocol, the first message contains only a nonce.  The recipient encrypts the nonce,

catenates it with a new nonce (also encrypted) and returns the final form of the message to

the session originator.
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In the attack sequence, the intruder intercepts A's originating message to B (action

4), then originates a parallel session with A using A's nonce to initiate the sequence in

action 5.   In A's response to the intruder's request for the parallel session in action 8, the

original nonce is encrypted under the key shared by A and B, kab.  The intruder then uses

that encrypted nonce to complete the original session begun by A as shown in action 10.

At the assert statement in action 15, A believes a valid session is begun with B, which is

not true.  In fact, no session is begun, because the intruder does not know the value of kab.

Nonetheless, the protocol has been defeated and A was spoofed into having a false belief.

The attack created when an intruder passes a value to a principal for the purpose of

attaining the encryption of that value under a specific secret key so that the encrypted

value may be used in a spoof is known as anoracle attack.  The duped principal effec-

tively acts as an oracle for the intruder, allowing the intruder to attain encrypted values

without knowing the encryption key.  The ISO attack in Figure 6.12 is an oracle attack

constructed using a parallel session.

Notice that in the attack sequence of Figure 6.12, the stated goals of principal A in

both protocol sessions are met in a way not intended by the protocol creator.  Principal A

is spoofed by the intruder that cleverly uses data copied from the parallel session to meet

the requirements of the protocol.  Thus, even though the message-based goals are met,

any goal based on the equivalence of these nonces, such as  “A believes that B must have

sent Nb” are not met.

In the ISO parallel session attack example, CPAL-ES quickly and reliably deter-

mined that this sequence of interactions between principals met the message based goals

specified for a given [compromised] run of a protocol.  The global assert statement in step

21 reflects one characteristic of this compromise, i.e. that I “knows” the value Na2 that is

needed to complete the protocol and that A believes only B can know Na2.  The “TRUE”

result of the evaluation reflects the fact that the specified run of the protocol meets its
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desired objectives.  Since we know the steps violate the desired results, the TRUE result

indicates we have found an attack on the protocol.

ISO Protocol Attack from [BIRD93]

(((TRUE and (unique.v0 == d[<e[unique.v1]A.k,e[unique.v0]A.k>.2]A.k)) and
(unique.v0 == d[<e[unique.v1]A.k,e[unique.v0]A.k>.2]A.k)) and (unique.v1 ==
d[<e[unique.v1]A.k,e[unique.v0]A.k>.1]A.k))

****** Simplified predicate follows.

TRUE
Figure 6.12

6.4.4  The Trivial Two-way Protocol Attack

In [BIRD92], the authors give a trivial two-way authentication protocol and an

attack against that protocol.  The protocol itself is given in Appendix D.  The attack the

1a A: =>B(k);

1b B: <-(k);

2 A: Na := new;

3 A: ->B(Na);

4 I: <-(Na);

5 I: =>A(Na); -- Intruder initiates a parallel session with A

6 A: <-(Na);

7 A: Na2 := new;

8 A: ->B(<e[Na]k,e[Na2]k>);

9 I: <-(msg1);

10 I: =>A(msg1); --I uses data from parallel session in 1st session

11 A: <-(msg);

12 A: (Nae,Nbe) := msg;

13 A: Na' := d[Nae]k;

14 A: Nb := d[Nbe]k;

15 A: assert(Na' == Na);

16 A: ->B(Nb);

17 I: <-(Na2');

18 I: =>A(Na2');

19 A: <-(Na2');

20 A: assert(Na2' == Na2);

21 x: gassert(I.Na2’ == A.Na2);
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authors construct on this protocol is a parallel session attack.   In Figure 6.13, Bird's attack

on the trivial two-way protocol illustrates how the stated message-based goal of the origi-

nal protocol may be met, but without guaranteeing the intent of the original protocol.

Attack on the BIRD Trivial Two-way Protocol

S: => A(kas);
A: <-(kas);
S: => B(kbs);
B: <-(kbs);
A: ->B(e[<A,e[N1]k>]k);
I: <-(msg1);
-- Above here is from a previous session.
-- The intruder now initiates a second session with B.

I: =>B(msg1);
B: <-(msg1);
B: (src,msg2) := d[msg1]k;
B: N1 := d[msg2]k;
B: msg3 := e[<B,e[N2]k>]k;
B: ->A(<N1,msg3>);

I: <-(msg3a);-- The intruder initiates a session with A using the
encrypted msg sent from B.

I: (N1,msg3) := msg3a;
I: =>A(msg3);
A: <-(msg3);
A: (dst,msg4) := d[msg3]k;
A: N'1 := d[msg4]k;
A: msg5 := e[<A,e[N3]k>]k;
A: ->B(<N'1,msg5>);
I: <-(msg6);

I: (N2,msg5) := msg6;-- I now uses the information decrypted by A to spoof B.
I: =>B(N2);
B: <-(N'2);
B: assert(N'2 == N2);

 *** End of Protocol ***

(TRUE and (B.N2 == <d[d[<d[d[e[<A.A,e[A.N1]A.k>]A.k]A.k.2]A.k,
e[<B.B,e[B.N2]A.k>]A.k>.2]A.k.2]A.k,e[<A.A,e[A.N3]A.k>]A.k>.1))

****** End of  verification condition.  Simplified predicate follows.******
TRUE

Figure 6.13
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6.4.5.  Abadi and Needham Attack on the Woo and Lam Protocol.

In [AN94] Abadi and Needham give an attack on the Woo and Lam protocol given

earlier in Figure 6.3.  The focus of their attack is the connection between the messages in

the protocol.  By starting two concurrent sessions with principal B and impersonating

principal A in one of the sessions, the intruder is able to substitute the final response in one

session for the final response in the other session.  The end result is to spoof B into believ-

ing B has a valid session with A, when A is not involved in the session.
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Attack on the Woo and Lam Protocol

S: => A(kas);   A: <-(kas);
S: => B(kbs);    B: <-(kbs);
S: => I(kis);      B: <-(kis);

 I: =>B(A); -- I initiates a session with B posing as A
B: <-(A);
B: ->A(Nb1); -- B's first response to first session
I: <-(Nb1); -- I intercepts B's msg

I: =>B(I); -- I initiates a second session with B on its own behalf
B: <-(I);
B: ->I(Nb2); -- B's response to second session with a new nonce
I: <-(Nb2);
I: =>B(e[Nb1]kis); -- I subsitutes B’s nonce from the first session

B: <-(msg1);-- B cannot detect whether this message is from the first or second session
I: =>B(e[Nb1]kis);
B: =>S(e[<A,msg1>]kbs);
S: <-(msg1a);
S: (A,msg1) := d[msg1a]kbs;
S: Nb1 := d[msg1]kas;

B: <-(msg2); -- msg1 from the first session is equal to msg2
B: =>S(e[<I,msg2>]kbs);
S: <-(msg2a);
S: (I,msg2) := d[msg2a]kbs;
S: Nb1' :=d[msg2]kis; --If src==I in last msg use kis
S: =>B(e[Nb1]kbs);

B: <-(msg5);-- B cannot detect whether this message is from the first or second session
B: Nb1' := d[msg5]kbs;
S: =>B(e[Nb1']kbs);

B: <-(msg6);
B: Nb1'' := d[msg6]kbs;

B: assert(Nb1' == Nb1);
-- Because msgs are async without guaranteed origin, B believes this is from A.
 *** End of Protocol ***

(TRUE and (B.Nb1==d[e[d[d[e[<I.I,e[B.Nb1]S.kis>]S.kbs]S.kbs.2]S.kis]S.kbs]S.kbs))

****** Simplified predicate follows

TRUE
Figure 6.14

The CPAL-ES evaluation given in Figure 6.14 captures the nature of the attack on

the Woo and Lam protocol.  Since the intruder actions will not complete the second ses-
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sion, no assertions are made about the second session’s validity.  The attack is successful

because the intruder is able to substitute a response intended for the attack session into the

original session.

6.4.6  CPAL-ES and Intruder Actions

Evaluation of the replay attack in Figure 6.11 and the parallel session attacks of

Figure 6.12, 6.13, and 6.14 clearly illustrates how CPAL-ES gives explicit meaning to the

actions an intruder may take.  Represented as routine network operations, the intruder

actions shown in these attacks are straightforward and well-defined.  An intruder may

receive a message into its personal address space, modify data in the address space, and

submit messages onto the net.  With these three capabilities, which closely mirror the

capabilities intruders are routinely assumed to have, the intruder can accomplish a myriad

of attacks.  The meaning of these attacks is formally defined by CPAL-ES.

The CPAL-ES model is accurate in that it does not allow the intruder to directly

change a valid principal’s address space.  Rather, such changes are forced to occur indi-

rectly, across the network, using the normal send and receive statements.  Because the

CPAL-ES view of the intruder is  simple and intuitive, an analyst can easily utilize CPAL-

ES to speculate about possible intruder actions and quickly evaluate the results of those

actions.  Because intruder actions are explicit in this way, they are easier to estimate and

explore.

6.5  Evaluating Public-Key Protocols

The protocols and attacks we considered so far are based on symmetric key, or pri-

vate key, protocols.   CPAL-ES also allows us to evaluate asymmetric, or public, key pro-

tocols.  This is accomplished through the encrypt public (ep) and decrypt public (dp)

operators.
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The first public key protocol we look at is the Needham and Schroeder Public key

protocol [NS78].  The CPAL-ES evaluation is given in Figure 6.15.  The intent of the

Needham and Schroeder Public Key Protocol is to allow a trusted authentication server to

securely distribute the public key of two parties to each other so a secure session may be

accomplished using each participant’s public key.

Needham and Schroeder Public Key Protocol

S: assume(global.decrypt(B.ks+,S.ks-));
S: assume(global.decrypt(A.ks+,S.ks-));
A: => S(<A.A,A.B>);
S: <-(S.msg);
S: (S.A,S.B) := S.msg;
S: => A(ep[<S.kb+,S.B>]S.ks-);
A: <-(A.msg);
A: (A.kb+,A.B) := dp[A.msg]A.ks+;
A: => B(ep[<A.Na,A.A>]A.kb+);
B: <-(B.msg);
B: (B.Na,B.A) := dp[B.msg]B.kb-;
B: => S(<B.B,B.A>);
S: <-(S.msg2);
S: (S.B,S.A) := S.msg2;
S: => B(ep[<S.ka+,S.A>]S.ks-);
B: <-(B.msg2);
B: (B.ka+,B.A) := dp[B.msg2]B.ks+;
B: => A(ep[<B.Na,B.Nb>]B.ka+);
A: <-(A.msg2);
A: (A.Na',A.Nb) := dp[A.msg2]A.ka-;
A: assert((A.Na == A.Na'));
A: => B(ep[A.Nb]A.kb+);
B: <-(B.msg3);
B: B.Nb' := dp[B.msg3]B.kb-;
B: assert((B.Nb == B.Nb'));

 *** End of Protocol ***
****** Simplified predicate follows.

((not (global.decrypt(B.kb-,S.kb+)) or ((not (global.decrypt(A.ka-,S.ka+)) or
global.decrypt(B.kb-,S.kb+)) and global.decrypt(A.ka-,S.ka+))) and global.decrypt(B.kb-
,S.kb+))

Figure 6.15
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CPAL allows the normal naming convention of suffixing a plus sign to the key

name for the public key and suffixing a minus sign for the private key of the pair.  Rather

than depend on this convention to identify the public and private key pair, CPAL-ES

matches the public and private key pairs in the evaluation and shows us what the relation-

ships must be in order for the protocol to execute properly.  To illustrate the use of the

ASSUME statement with public key protocols, the run of the Needham and Schroeder

Public Key Protocol shown in Figure 6.15 was executed without two ASSUME state-

ments.  The resulting predicate illuminates the additional relationships that must hold in

order for the protocol to work as desired.  By adding the ASSUME statements:

S: assume(global.decrypt(B.kb-,S.kb+));

S: assume(global.decrypt(A.ka-,S.ka+));

the verification condition simplifies to TRUE.

The Tatebashi, Matsuzaki, and Newman (TMN) protocol  [TMN91] is another

cryptographic protocol that utilizes asymmetric key cryptography.  It is particularly inter-

esting because it uses a combination of symmetric and asymmetric key methods in order

to pass a key to be used in a symmetric key secure communication session.

In the protocol, A and B secure their messages to S using S's public key which they

are assumed to know.  S secures its message to A using the temporary symmetric key sup-

plied by A.  B generates the key to be used as the session key.  The CPAL-ES evaluation

of the TMN protocol is given in Figure 6.16.
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TMN Public Key Protocol

S: assume(global.decrypt(S.pks-,A.pks));
S: assume(global.decrypt(S.pks-,B.pks));
A: => S(<A.A,A.B,ep[A.ka]A.pks>);
S: <-(S.msg1);
S: (S.A,S.B,S.msg2) := S.msg1;
S: S.ka := dp[S.msg2]S.pks-;
S: => B(S.A);
B: <-(B.A);
B: => S(ep[B.kab]B.pks);
S: <-(S.msg3);
S: S.kab := dp[S.msg3]S.pks-;
S: => A(e[S.kab]S.ka);
A: <-(A.msg1);
A: A.kab := d[A.msg1]A.ka;
A: => B(e[A.important_data]A.kab);
B: <-(B.msg1);
B: B.important_data := d[B.msg1]B.kab;
X: gassert((A.important_data == B.important_data));

 *** End of Protocol ***

(TRUE and (A.important_data == d[e[A.important_data]d[e[dp[ep[B.kab]B.pks]S.pks-
]dp[<A.A,A.B,ep[A.ka]A.pks>.3]S.pks-]A.ka]B.kab))(((d[e[dp[ep[B.kab]B.pks]S.pks-
]dp[ep[A.ka]A.pks]S.pks-]A.ka == B.kab) imp (A.important_data == A.important_data))
and (not ((d[e[dp[ep[B.kab]B.pks]S.pks-]dp[ep[A.ka]A.pks]S.pks-]A.ka == B.kab))
 imp (A.important_data == unique.v0)))(((dp[ep[A.ka]A.pks]S.pks- == A.ka) imp (B.kab
== B.kab)) and (not ((dp[ep[A.ka]A.pks]S.pks- == A.ka))  imp (unique.v2 == B.kab)))

****** Simplified predicate follows.

TRUE

Figure 6.16

In [SIMM85], Simmons reports that there are flaws in the TMN protocol.  In

[KMM93] Kemmerer,  Meadows, and Millen illustrate their respective cryptographic pro-

tocol analysis tools by demonstrating how their respective methods would detect one of

the flaws that Simmons already discovered.  We give one attack on the TMN protocol in

Figure 6.17.  Notice that the global assert statement reflects the knowledge that the

intruder has of the “important data’.
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Attack on the TMN Protocol

S: assume(global.decrypt(S.pks-,A.pks));

S: assume(global.decrypt(S.pks-,I.pks));

A: => S(<A.A,A.B,ep[A.ka]A.pks>);

S: <-(S.msg1);

S: (S.A,S.B,S.msg2) := S.msg1;

S: S.ka := dp[S.msg2]S.pks-;

S: -> B(S.A);

I: <-(I.A);

I: I.kab := new;

I: => S(ep[I.kab]I.pks);

S: <-(S.msg3);

S: S.kab := dp[S.msg3]S.pks-;

S: => A(e[S.kab]S.ka);

A: <-(A.msg1);

A: A.kab := d[A.msg1]A.ka;

A: -> B(e[A.important_data]A.kab);

I: <-(I.msg1);

I: I.important_data := d[I.msg1]I.kab;

     X: gassert((I.important_data == A.important_data));

 *** End of Protocol ***

(TRUE and
(d[e[A.important_data]d[e[dp[ep[unique.v0]I.pks]S.pks-
dp[<A.A,A.B,ep[A.ka]A.pks>.3]S.pks-]A.ka]unique.v0 ==
A.important_data))(((d[e[dp[ep[unique.v0]I.pks]S.pks-]dp[ep[A.ka]A.pks]S.pks-]A.ka
== unique.v0) imp (A.important_data == A.important_data)) and
(not ((d[e[dp[ep[unique.v0]I.pks]S.pks-]dp[ep[A.ka]A.pks]S.pks-]A.ka == unique.v0))
 imp (unique.v1 == A.important_data)))(((dp[ep[A.ka]A.pks]S.pks- == A.ka) imp
(unique.v0 == unique.v0)) and(not ((dp[ep[A.ka]A.pks]S.pks- == A.ka))
 imp (unique.v3 == unique.v0)))

****** Simplified predicate follows.

TRUE

Figure 6.17

The CCITT protocol [CCITT], [BAN89], [GS91] exercises CPAL-ES against

another mix of cryptographic techniques used to establish a secure communication ses-
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sion.  Timestamps are used to ensure message freshness and nonces to connect messages

in the session.  Asymmetric key techniques are used to sign some message components

and to authenticate others.  The CPAL-ES evaluation of the CCITT X.509 protocol is

given in Figure 6.18.

CCITT X.509 Authentication Protocol

-- Ta and Tb are timestamps

-- Xa, Ya, Xb, and Yb are user data.

-- The protocol ensures the integrity of Xa and Xb and

--    guarantees the privacy of Ya and Yb.

A: assume(global.decrypt(B.ka+,A.ka-));

B: assume(global.decrypt(A.kb+,B.kb-));

A: => B(<A.A,ep[<A.Ta,A.Na,A.B,A.Xa,ep[A.Ya]A.kb+>]A.ka->);

B: <-(B.recd1);

B: (B.A,B.msg1) := B.recd1;

B: (B.Ta,B.Na,B.dst,B.Xa,B.msg2) := dp[B.msg1]B.ka+;

B: assert(B.time_ok(B.Ta));

B: B.Ya := dp[B.msg2]B.kb-;

B: B.Nb := new;

B: => A(<B.B,ep[<B.Tb,B.Nb,B.A,B.Na,B.Xb,ep[B.Yb]B.ka+>]B.kb->);

A: <-(A.recd1);

A: (A.dst',A.msg3) := A.recd1;

A: (A.Tb,A.Nb,A.A,A.N'a,A.Xb,A.msg4) := dp[A.msg3]A.kb+;

A: assert(A.time_ok(A.Tb));

A: A.Yb := dp[A.msg4]A.ka-;

A: assert((A.Na == A.N'a));

A: => B(ep[A.Nb]A.ka-);

B: <-(B.msg5);

B: B.N'b := dp[B.msg5]B.ka+;

B: assert((B.Nb == B.N'b));

 *** End of Protocol.   Simplified predicate follows***

(A.time_ok(B.Tb) and B.time_ok(A.Ta))

Figure 6.18
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In [BAN89] Burrows, Abadi and Needham construct an attack on the CCITT pro-

tocol.  We give the CPAL-ES evaluation of that attack in Figure 6.19.  The attack the

authors construct is a sophisticated oracle attack using a both a replay session and parallel

session.  The intruder initiates a session with principal B using the message from a previ-

ous session.  This allows B to decrypt the message under principal A’s public key and find

the destination identifier B in the message text.  B responds with the appropriate message,

which contains just enough cleartext information to allow the intruder to prompt principal

A in the attack session to generate the exact value necessary to convince B that the

intruder is principal A in the original session.

As we see, this attack illustrates many different, complex concepts surrounding

attacks on cryptographic protocols.  This one attack utilizes replay, parallel session, and

oracle attack methods; it contains timestamps and nonces; and it is a public key protocol.

Nonetheless, the CPAL-ES evaluation for this attack was easily constructed and effec-

tively illuminates each of the concepts just discussed.



Chapter 6:  Verifying Protocols Using the CPAL Evaluation System     128

Attack on the CCITT X.509 Authentication Protocol

-- Ta and Tb are timestamps.  Xa, Ya, Xb, and Yb are user data.
-- The protocol ensures the integrity of Xa and Xb and guarantees the privacy of Ya

and Yb.

A: assume(global.decrypt(B.ka+,A.ka-));
I: assume(global.decrypt(I.ki-,A.ki+));
A: assume(global.decrypt(I.ka+,A.ka-));
I: assume(global.decrypt(I.kb+,B.kb-));
A: ->B(<A,ep[<Ta,Na,B,Xa,ep[Ya]kb+>]ka->);
I: <-(msg1);

-- Above here is from a previous session
I: =>B(msg1);
B: <-(recd1);
B: (A,msg1) := recd1;
B: (Ta,Na,dst,Xa,msg2) := dp[msg1]ka+; --B does not check the timestamp Ta
B: Ya := dp[msg2]kb-;
B: ->A(<B,ep[<Tb,Nb,A,Na,Xb,ep[Yb]ka+>]kb->);
I: <-(recd1);
I: (B,msg3) := recd1;
I: (Tb,Nb,A,N'a,Xb,msg4) := dp[msg3]kb+;
A: =>I(<A,ep[<Ta2,Na2,I,Xa2,ep[Ya2]ki+>]ka->);
I: <-(recd2);
I: (A,msg5) := recd2;
I: (Ta2,Na2,B,Xa2,msg6) := dp[msg5]ka+;
I: =>A(<I,ep[<Ti,Nb,C,Na2,Xi,ep[Yi]ka+>]ki->);
A: <-(recd1);
A: (I,msg7) := recd1;
A: (Ti,Nb,A,N'a2,Xc,msg8) := dp[msg7]ki+;
A: Yb := dp[msg4]ka+;
A: assert(N'a2 == Na2);
A: =>I(ep[Nb]ka-);
I: <-(msg9);
I: =>B(msg9);
B: <-(msg5);
B: N'b := dp[msg5]ka+;
B: assert(N'b == Nb);
 *** End of Protocol.   Simplified predicate follows. ***

TRUE

Figure 6.19
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6.6  Other protocols

In [SNEK92], Snekkenes gives a straitforward variation on the Needham and

Schroeder Private Key Protocol [NEED78] that he calls KP.  KP is not vulnerable to

replay attack due to the nonce in each transmission.  As the CPAL-ES evaluation in Figure

6.20 shows, the nonces transfer as desired.  Nonetheless, the protocol is vulnerable to

attack, as we see in the Figure 6.21.

Snekkenes’ KP Protocol
S: => A(S.kas);

A: <-(A.kas);

S: => B(S.kbs);

B: <-(B.kbs);

A: => B(<A.A,A.Na,A.B>);

B: <-(B.msg);

B: (B.A,B.Na,B.B) := B.msg;

B: => S(<B.A,B.Na,B.B,B.Nb>);

S: <-(S.msg);

S: (S.A,S.Na,S.B,S.Nb) := S.msg;

S: => B(e[<S.kab,S.A,S.Nb,e[<S.A,S.B,S.Na,S.kab>]S.kas>]S.kbs);

B: <-(B.msg2);

B: (B.kab,B.A,B.Nb',B.msg3) := d[B.msg2]B.kbs;

B: assert(B.Nb' == B.Nb);

B: => A(<B.msg3,e[<B.Na,B.Nc,B.B>]B.kab>);

A: <-(A.msg);

A: (A.msg3,A.msg4) := A.msg;

A: (A.A,A.B,A.Na',A.kab) := d[A.msg3]A.kas;

A: assert(A.Na' == A.Na);

A: (A.Na,A.Nc,A.B) := d[A.msg4]A.kab;

A: => B(e[<A.Nc,A.A>]A.kab);

B: <-(B.msg4);

B: (B.Nc',B.A) := d[B.msg4]B.kab;

B: assert(B.Nc' == B.Nc);

 *** End of Protocol ,  simplified predicate follows.

TRUE
Figure 6.20
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Due to the construction of the messages in KP and the nesting of  encrypted com-

ponents within messages, the original verification condition is complex, taking two pages

to display. CPAL-ES quickly determines the truth of the verification condition with only

two assumptions.

Snekkenes is able to compromise KP by attacking the message structure of the

protocol.  Because of the similar composition of the messages, Snekkenes is able to substi-

tute the fourth message of the original session as the third message of an attack session

without detection.  Though the attack session does not reach completion, this spoof allows

the intruder to gain access to the session key of the original session.
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Attack on the KP Protocol

S: => A(S.kas);
A: <-(A.kas);
S: => B(S.kbs);
B: <-(B.kbs);
A: -> B(<A.A,A.Na,A.B>);
I: <-(I.msg);
I: (I.A,I.Na,I.B) := I.msg;
I: => A(<I.B,I.Ni,I.A>);
A: <-(A.msg);
A: (A.B,A.Ni,A.A) := A.msg;
A: -> S(<A.B,A.Ni,A.A,A.Na2>);
I: <-(I.msg1);
I: (I.B,I.Ni,I.A,I.Na2) := I.msg1;
I: => B(<I.A,I.Na2,I.B>);
B: <-(B.msg);
B: (B.A,B.Na2,B.B) := B.msg;
B: => S(<B.A,B.Na2,B.B,B.Nb>);
S: <-(S.msg);
S: (S.A,S.Na2,S.B,S.Nb) := S.msg;
S: => B(e[<S.kab,S.A,S.Nb,e[<S.A,S.B,S.Na2,S.kab>]S.kas>]S.kbs);
B: <-(B.msg2);
B: (B.kab,B.A,B.Nb',B.ticket_for_A) := d[B.msg2]B.kbs;
B: assert((B.Nb' == B.Nb));
B: -> A(<B.ticket_for_A,e[<B.Na2,B.Nc,B.B>]B.kab>);
I: <-(I.msg2);
I: (I.ticket_for_A,I.confirmation) := I.msg2;
I: => A(I.ticket_for_A);
A: <-(A.msg2);
A: (A.kab',A.B,A.Na2',A.ticket_for_B) := d[A.msg2]A.kas;
A: assert((A.Na2' == A.Na2));
A: -> B(A.ticket_for_B);
I: <-(I.kab);
I: (I.Na2,I.Nc,I.B) := d[I.confirmation]I.kab;
I: => B(e[<I.Nc,I.A>]I.kab);
B: <-(B.msg4);
B: (B.Nc',B.A) := d[B.msg4]B.kab;
B: assert((B.Nc' == B.Nc));
 *** End of Protocol, simplified predicate follows.
TRUE

Figure 6.21

The CPAL-ES evaluation of the protocol attributed to Yahalom in [CARL94] is

given in Figure 6.22.  The Yahalom Protocol is a three party, symmetric key protocol
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whose goal is to provide two communicating principals with a symmetric key suitable for

a secure session.  The protocol requires four transmissions.

Yahalom Protocol

S: => A(S.kas);
A: <-(A.kas);
S: => B(S.kbs);
B: <-(B.kbs);
A: => B(<A.A,A.Na>);
B: <-(B.msg);
B: (B.A,B.Na) := B.msg;
B: => S(<B.B,e[<B.A,B.Na,B.Nb>]B.kbs>);
S: <-(S.msg);
S: (S.dst,S.nonces) := S.msg;
S: (S.A,S.Na,S.Nb) := d[S.nonces]S.kbs;
S:=>A(<e[<S.dst,S.kab,S.Na,S.Nb>]S.kas,e[<S.A,S.kab>]S.kbs>);
A: <-(A.msg);
A: (A.ticketa,A.ticketb) := A.msg;
A: (A.dst,A.kab,A.Na',A.Nb) := d[A.ticketa]A.kas;
A: assert(A.Na == A.Na');
A: => B(<A.ticketb,e[A.Nb]A.kab>);
B: <-(B.msg2);
B: (B.ticketb,B.nonce) := B.msg2;
B: (B.A,B.kab) := d[B.ticketb]B.kbs;
B: B.Nb' := d[B.nonce]B.kab;
B: assert(B.Nb' == B.Nb);
 *** End of Protocol,  simplified predicate follows

TRUE
Figure 6.22

The Yahalom protocol protects against replay attacks by including a nonce in each

protocol message.  Though the second component of the third message does not contain a

nonce, it is protected because the key within that component is combined with a nonce in

the other component of the message.  Once again, by assuming the equivalence of the

principal’s private keys with the authentication server, the protocol meets its goals of

nonce equivalence.

Syverson gives a two way authentication protocol (Figure 6.23) and an attack on

the protocol (Figure 6.24) in [SYV93a].
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Syverson Protocol

S: => A(S.kas);
A: <-(A.kas);
S: => B(S.kbs);
B: <-(B.kbs);
A: => B(<A.A,A.Na>);
B: <-(B.msg);
B: (B.A,B.Na) := B.msg;
B: => S(<B.B,B.Nb,e[<B.Nb,B.Na,B.A>]B.kbs>);
S: <-(S.msg9);
S: (S.B,S.Nb,S.msg1) := S.msg9;
S: (S.N'b,S.Na,S.A) := d[S.msg1]S.kbs;
S: assert(S.N'b == S.Nb);
S: => A(<S.S,S.B,S.Ns,e[<S.Na,S.Ns,S.B>]S.kas>);
A: <-(A.msgx);
A: (A.ASID,A.B,A.Ns,A.msg2) := A.msgx;
A: (A.N'a,A.N's,A.B') := d[A.msg2]A.kas;
A: assert(A.Na == A.N'a);
A: => S(<A.A,e[<A.kab,A.Ns,A.B>]A.kas>);
S: <-(S.msg7);
S: (S.A',S.msg3) := S.msg7;
S: (S.kab,S.N's,S.B') := d[S.msg3]S.kas;
S: assert(S.Ns == S.N's);
S: => B(<S.S,e[<S.Nb,S.kab,S.A>]S.kbs>);
B: <-(B.msg8);
B: (B.ASID,B.msg4) := B.msg8;
B: (B.N'b,B.kab,B.A') := d[B.msg4]B.kbs;
B: assert(B.Nb == B.N'b);
B: => A(e[B.f(B.Na)]B.kab);
A: <-(A.msg5);
A: A.N'a := d[A.msg5]A.kab;
A: assert(A.f(A.Na) == A.N'a);
X: gassert(B.kab == A.kab);
*** End of Protocol ***
****** Simplified predicate follows.

(A.f(A.Na) == B.f(A.Na))

Figure 6.23
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Syverson’s protocol is slightly more complex than previously discussed protocols.

It requires six transmissions with three to five components in each transmission.  The

strength of the authentication is increased by applying a function to principal A’s original

nonce, resulting in the final form of the verification condition shown in Figure 6.23.

The attack Syverson constructs on his own protocol exploits the similarity of mes-

sage components.  By extracting an encrypted component of principal A’s first message in

the attack session, and combining that component with information passed in the clear in

the original session, the intruder is able to construct a message that meets the form of the

protocol and spoofs both the authentication server and principal B into believing the

intruder is actually principal A.  The CPAL-ES evaluation of this attack reflects the suc-

cess of the attack as long as A and B apply the same function f to nonce Na.
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Attack On Syverson’s Protocol

S: => A(S.kas);
A: <-(A.kas);
S: => B(S.kbs);
B: <-(B.kbs);
I: => B(<I.A,I.Na>);
B: <-(B.msga);
B: (B.A,B.Na) := B.msga;
B: B.msg1 := e[<B.Nb,B.Na,B.A>]B.kbs;
B: => S(<B.B,B.Nb,B.msg1>);
S: <-(S.msga);
S: (S.B,S.Nb,S.msg1) := S.msga;
S: (S.N'b,S.Na,S.A) := d[S.msg1]S.kbs;
S: assert((S.N'b == S.Nb));
S: S.msg2 := e[<S.Na,S.Ns,S.B>]S.kas;
S: -> A(<S.S,S.B,S.Ns,S.msg2>);
I: <-(I.msgc);
I: (I.S,I.B,I.Ns,I.msg2) := I.msgc;
I: => A(<I.B,I.Ns>);
A: <-(A.msga);
A: (A.A,A.Ns) := A.msga;
A: A.msg3 := e[<A.Na,A.Ns,A.A>]A.kas;
A: -> S(<A.B,A.Na,A.msg3>);
I: <-(I.msgd);
I: (I.B,I.N'a,I.msg3) := I.msgd;
I: => S(<I.A,I.msg3>);
S: <-(S.msgb);
S: (S.A',S.msg3) := S.msgb;
S: (S.kab,S.N's,S.B') := d[S.msg3]S.kas;
S: assert((S.Ns == S.N's));
S: S.msg4 := e[<S.Nb,S.kab,S.A>]S.kbs;
S: => B(<S.S,S.msg4>);
B: <-(B.msge);
B: (B.ASID,B.msg4) := B.msge;
B: (B.N'b,B.kab,B.A') := d[B.msg4]B.kbs;
B: assert((B.Nb == B.N'b));
B: B.msg5 := e[B.f(B.Na)]B.kab;
B: -> A(B.msg5);
I: <-(I.msg5);

*** End of Protocol ***
****** Simplified predicate follows.

TRUE
Figure 6.24
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We present the Neuman and Stubblebine protocol from [NS93] in Figure 6.25  and

its attack formulated by Syverson in [SYV93b] in Figure 6.26.  The protocol is a symmet-

ric key protocol that utilizes nonces to ensure message freshness.  The protocol is struc-

tured so that several message components are forwarded between participants,

complicating the protocol and making the tracking of the components more difficult.  It is

this nesting that [at least indirectly] provides the weakness that Syverson exploits in con-

structing his attack on this protocol.

CPAL-ES handles the nesting of message components easily and displays the nec-

essary relationships automatically.  The nesting results in a very complex initial verifica-

tion condition.  However, CPAL-ES simplification reduces the final result into

manageable form.
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Neuman and Stubblebine Protocol

S: => A(S.kas);
A: <-(A.kas);
S: => B(S.kbs);
B: <-(B.kbs);
A: => B(<A.A,A.Na>);
B: <-(B.msg1);
B: (B.src,B.Na) := B.msg1;
B: => S(<B.B,e[<B.src,B.Na,B.Tb>]B.kbs,B.Nb>);
S: <-(S.msg2);
S: (S.B,S.msg3,S.Nb) := S.msg2;
S: (S.src,S.Na,S.Tb) := d[S.msg3]S.kbs;
S: => A(<e[<S.B,S.Na,S.kab,S.Tb>]S.kas,e[<S.src,S.kab,S.Tb>]S.kbs,S.Nb>);
A: <-(A.msg4);
A: (A.msg5,A.msg6,A.Nb) := A.msg4;
A: (A.B,A.N'a,A.kab,A.Tb) := d[A.msg5]A.kas;
A: assert((A.Na == A.N'a));
A: => B(<A.msg6,e[A.Nb]A.kab>);
B: <-(B.msg9);
B: (B.msg7,B.msg8) := B.msg9;
B: (B.src',B.kab,B.Tb) := d[B.msg7]B.kbs;
B: assert(B.src == B.src');
B: B.N'b := d[B.msg8]B.kab;
B: assert(B.Nb == B.N'b);

 *** End of Protocol ***
******Original verification condition omitted due to size
****** Simplified predicate follows.

TRUE
Figure 6.25

Syverson constructs his attack on Newman and Stubblebine’s protocol by recog-

nizing the similarity of a message component of the first message of the target principal

(B) and a message component of the authentication server (S).  In the B’s first message,

one component contains the encryption of the catenation of the source identifier, a nonce

(Nb), and a timestamp generated locally (Tb), all encrypted under S’s private key shared

with B (kbs).  In the message from S to the originator of the protocol, one component con-

tains the encryption of the catenation of the source identifier, the new session key, and Tb,

again encrypted under kbs.  Because B cannot distinguish a nonce from a key, Syverson is
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able to use the message component B generated to spoof B into using the nonce as the ses-

sion private key.   Since the value of Na is public, the intruder can conduct a session with

B, masquerading as A.

The CPAL-ES evaluation clearly reflects the intruder’s actions in this attack.  Mes-

sages are intercepted and the critical component for the attack is positioned to meet the

protocol goal.  The result of the evaluation reflects the substitution that Syverson con-

cocted.

Attack on the Neuman and Stubblebine Protocol
S: => B(S.kbs);
B: <-(B.kbs);
I: => B(<I.A,I.Na>);
B: <-(B.msg1);
B: (B.A,B.Na) := B.msg1;
B: -> S(<B.B,e[<B.A,B.Na,B.Tb>]B.kbs,B.Nb>);
I: <-(I.msga);
I: (I.B,I.msgb,I.Nb) := I.msga;
I: => B(<I.msgb,e[I.Nb]I.Na>);
B: <-(B.msgc);
B: (B.msg2,B.msg3) := B.msgc;
B: (B.A,B.kab,B.Tb) := d[B.msg2]B.kbs;
B: B.N'b := d[B.msg3]B.kab;
B: if ((B.Nb == B.N'b))  then
{assert(B.good(B.kab,B.A));}
   else
{assert(B.bad(B.kab));}

 *** End of Protocol ***
****** Simplified predicate follows.

B.good(I.Na,I.A)

Figure 6.26

In [BIRD93], the authors give two protocols that utilize an xor function to help

ensure the freshness of a message.  The simple protocol from their Figure 8 is given along

with its CPAL-ES evaluation in Figure 6.27.  We use the CPAL function operation to

reflect application of XOR to the nonce and the identifier in the second message.  The
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result shows that the assumption of the equivalence of the private symmetric key between

A and B is not quite strong enough to complete the proof.  The evaluation also shows that

we must assume that A and B are applying the same function for the protocol to operate

correctly.

Bird’s XOR Protocol

A: => B(A.kab);
B: <-(B.kab);
A: => B(A.Na);
B: <-(B.Na);
B: => A(<e[B.XOR(B.Na,B.B)]B.kab,e[B.Nb]B.kab>);
A: <-(A.msg);
A: (A.msg1,A.msg2) := A.msg;
A: A.xor_Na_b := d[A.msg1]A.kab;
A: A.tmp := A.XOR(A.Na,A.B);
A: assert(A.xor_Na_b == A.tmp);
A: A.Nb := d[A.msg2]A.kab;
A: => B(A.Nb);
B: <-(B.Nb');
B: assert(B.Nb' == B.Nb);
 *** End of Protocol ***

((TRUE and (d[<e[B.XOR(A.Na,B.B)]A.kab,e[B.Nb]B.kab>.2]A.kab == B.Nb)) and
(d[<e[B.XOR(A.Na,B.B)]A.kab,e[B.Nb]B.kab>.1]A.kab == A.XOR(A.Na,A.B)))

****** Simplified predicate follows.

(B.XOR(A.Na,B.B) == A.XOR(A.Na,A.B))

Figure 6.27

Bird et. al. also give an attack on the XOR protocol.  We give the attack and its

CPAL-ES evaluation in Figure 6.28.  The attack is based on a parallel session, or inter-

leaving attack.  With the attack on Bird’s XOR protocol, we again illustrate how CPAL-ES

can be used to investigate intruder actions relative to a specific protocol.
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 Attack on Bird’s XOR Protocol

A: => B(A.kab);    B: <-(B.kab);
A: A.N1 := new;
A: -> B(A.N1);
I: <-(I.N1);
I: => A(I.XOR(I.A,I.XOR(I.N1,I.B)));
A: <-(A.N1');
A: A.N2 := new;
A: -> B(<e[A.XOR(A.N1',A.B)]A.kab,e[A.N2]A.kab>);
I: <-(I.msg2);
I: => A(I.msg2);
A: <-(A.msg2);
A: (A.msg3,A.msg4) := A.msg2;
A: A.xor_n1_b := d[A.msg3]A.kab;
A: A.tmp := A.XOR(A.N1,A.B);
A: assert((A.xor_n1_b == A.tmp));
A: A.N2 := d[A.msg4]A.kab;
A: -> B(A.N2);
I: <-(I.N2);

 *** End of Protocol, simplified predicate follows.

(A.XOR(I.XOR(I.A,I.XOR(unique.v1,I.B)),A.B) == A.XOR(unique.v1,A.B))

Figure 6.28
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 Chapter 7
CPAL-ES and BAN Logic

As we discussed in Chapter 5 and illustrated in Chapter 6, CPAL-ES offers mes-

sage based evaluation of cryptographic protocols.  This evaluation focuses on the relation-

ships between values passed in the protocol messages and on the state of the principal’s

address spaces during and after completion of the protocol run.  As Burrows, Abadi, and

Needham so powerfully illuminated, a greater abstraction to allow the analyst to deal with

concepts such as beliefs of principals is helpful, maybe necessary, to effectively evaluate

the capabilities of a protocol.  Seemingly, it would be beneficial if we could combine

CPAL-ES evaluation with BAN Logic evaluation to yield a more powerful tool.  CPAL

was designed with this capability in mind.

7.1  Combining CPAL and BAN Logic Notation

Recall that BAN Logic is a combination of formula notation (the logical language)

and rules of inference.  The analyst expresses the assumptions and logical meaning of the

protocol steps in the BAN notation and then utilizes the rules of inference to derive logical

formulae (theorems) representing the meaning of the protocol.  While BAN notation is

highly symbolic for ease of use, the BAN concepts are easily captured in the more familiar

predicate notation.  Because a goal of CPAL is to allow the protocol analyst to encode the

logical meaning of the statements into the operational protocol itself,  CPAL was designed

to allow logical predicates to be expressed in CPAL ASSUME and ASSERT statements.

In combining the CPAL-ES and BAN Logic techniques, the actions of the princi-

pals in the protocol are expressed using the CPAL operators for send, receive, encrypt,

decrypt, etc.  The protocol assumptions, expressed as BAN Logic predicates or as opera-

tions on values, are included as CPAL ASSUME statements.  Protocol goals are captured

in CPAL ASSERT statements.  Thus, the first step in preparing a protocol for combined
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CPAL-ES and BAN Logic evaluation is to encode the protocol assumptions, steps, and

goals as though only the CPAL-ES, message based, evaluation were to be accomplished.

The second step is to determine the valid BAN Logic assumptions for the protocol.  The

assumptions are encoded in CPAL ASSUME statements using predicate notation for each

BAN Logic construct.

Next, the protocol goals are encoded as CPAL ASSERT statement also using pred-

icate notation for each BAN Logic construct.  Finally, the protocol steps are analyzed for

BAN Logic annotations.  The resulting annotations are treated as assumptions and are

encoded in CPAL ASSUME statements.

One goal of CPAL-ES is to reduce the complexity of translating protocol actions

into a logical formula.  The essence of CPAL-ES is to take a procedural specification of a

protocol an translate it into a logical definition, which we demonstrated in Chapter 6.

When CPAL-ES is combined with BAN Logic, this job becomes more difficult.

The source of the difficulty is the nature of the BAN Logic belief constructs (pred-

icates).  Of the BAN Logic constructs we described in Chapter 2, only the SEES, FRESH,

and GOODKEY predicates are of interest to us as beliefs to be associated with particular

values or actions.  Other predicates, such as the CONTROLS predicate, are used only for

expressing assumptions that are not based on a principal’s actions.  A principal either con-

trols a predicate or it does not.  Control is not gained or transferred during a protocol run.

For this type of predicate, we do not need to consider translation of principal actions into

associated beliefs.  Other BAN Logic predicates are concerned with the translation we

address, but are not applicable for the simple examples we have chosen.

First consider the SEES predicate.  Based on the CPAL operational model, we

define the SEES predicate to mean that a principal SEES every data item that exists in

their local address space.  We can state this translation as a formal rule:
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For every CPAL receive and assignment statement of the form:
"P:  X:=Y;" or
"P:  <-(X);"

generate an assume statement of the form:
"P:  assume(sees(P,X));".

Thus, CPAL receive and assignment statements are translated directly into BAN

Logic SEES predicates.  Additional items that a principal sees are identified during the

weakest precondition evaluation and reflect the construction of the messages the principal

receives.  Consider the following CPAL segment:

1.  A: =>B(<Na,Na1>);
2.  B: <-(msg);
3.  B: assume(X.sees(B.B,B.msg));

The assume statement in step 3 is manually generated directly from the receive

statement in step 2 as we just described.  Since msg will be received into B’s local address

space as B.msg, principal B is assumed to SEE msg in the BAN Logic sense.  Due to the

structure of the value “msg”, when the weakest precondition definitions are applied to the

specification, this assumption will result in the following entry in the verification condi-

tion:

sees(B.B,<A.Na,A.Na1>).

Similarly, we may define an assumption generation rule for the CPAL NEW state-

ment.  Any value generated as NEW is created in the current run of the protocol and is

considered to be a random number, and, thus, is fresh by definition.  We further define this

statement to mean that the creator of the NEW value believes that the value is fresh.  We

may then state:

For every CPAL assignment statement of the form “P: X:=new;” generate two assume

statements of the form

"P: assume(fresh(X));".
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"P: assume(believes(P,fresh(X)));".

We now see how CPAL-ES eliminates the idealization process from BAN Logic

evaluation for the standard meaning of the SEES and FRESH constructs.  We point out,

however, that the above rules may not be all inclusive.  It may be that a particular protocol

makes other assumptions about newly generated values, e.g. that the value will always be

an odd number.  We cannot hope to predict all possible intended meanings that protocol

analysts will desire for these constructs, and do not preclude use of other assume state-

ments to verbalize these assumptions.  However, the given definitions for SEES and

FRESH are sufficient for the types of protocols we have seen.

The GOODKEY predicate is essential to the BAN Logic evaluation process, and

its translation is much more complex than that of the other two predicates.  Again, CPAL-

ES is concerned with the values that principals send as messages.  On the other hand,

BAN Logic is concerned with what the belief of the principal is when they send values as

messages.  In the case of the SEES and FRESH predicates, we can mechanically extract

the meaning of the values transmitted because the model captures the essence of the pred-

icates.  The GOODKEY predicate is not captured as exactingly.

The difficulty arises because of the way the GOODKEY belief is acquired by a

principal.  In BAN Logic, there are no rules that allow one to arrive specifically at the

belief: GOODKEY(K).  GOODKEY is rather treated as an arbitrary belief.  A canonical

BAN Logic proof tree for an arbitrary belief is given in Appendix D.  As shown in the

appendix, arbitrary beliefs can only be proven in BAN Logic by beginning with the juris-

diction rule, which says that principal P can believe K is a GOODKEY if someone P trusts

to believe it actually believes it.  We must prove that the trusted principal said GOOD-

KEY(K) in the present run of the protocol.  This step is accomplished by exercising the

BAN Logic nonce verification rule.
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With the first two steps accomplished, we are unable to proceed further given only

the protocol steps and the assumptions described so far. In the first two steps, reasoning

was not based on principal actions, but rather only on the assumptions and goals expressed

before any protocol steps occurred.  In the third step, we must prove that P sees GOOD-

KEY(K) encrypted under the common key shared between P and the trusted party. The

SEES predicate is generated from a principal’s action, i.e. a CPAL receive or send state-

ment.  The root of the problem is that CPAL send and receive statements only express the

transmission and assignment of values, while what we need to SEE is a predicate (GOOD-

KEY(k)).

This fact represents the primary theme of the protocol, which becomes clear when

we state the central question as:  “What value will the trusted party say when it intends to

convey the belief GOODKEY(k)?”  Consider the example in Figure 7.2.  Notice the

assume statement:

A: assume((believes(A.A(said(A.S,S.kab)) IMPLIES

believes(A.A,said(A.S,goodkey(A.A,S.kab,A.B)))));

This says that when principal A determines that principal S (the authentication server)

“said” the message containing the value S.kab, S actually meant that kab is a good key to

be used for communication between A and B.  This assumption is sufficient to complete

the proof automatically.  A proof tree for a BAN Logic proof is provided in Appendix D.

To illustrate how interaction between CPAL-ES and BAN Logic occurs, we pro-

vide a simple protocol, encoded in CPAL with BAN Logic goals and assumptions in Fig-

ure 7.1.  As we described above, the BAN Logic assumptions and annotations are

expressed as ASSUME statements in CPAL.  The assumptions precede the first step of the

protocol and reflect the facts the author expect to be true before the protocol run begins.

Assumptions may express facts involving data across address spaces.  For example, the
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assumption in statement 4 indicates that principal B believes the value kab in principal A’s

address space is a good key between A and B.

The difference between CPAL operators and BAN Logic conventions is high-

lighted by the use of the encryption operation in the example in Figure 7.1.  In statement

CPAL-ES and BAN Logic Evaluation Example

1 A: =>B(k);

2 B: <-(k);

3 A: assume(X.believes(A.A,X.goodkey(A.A,A.kab,A.B)));

4 B: assume(X.believes(B.B,X.controls(B.A(X.goodkey(B.A,A.kab,B.B)))));

5 B: assume(X.believes(B.B,X.fresh(B.Nb)));

6 B: => A(e[<B.B,B.Nb>]B.k);

7 A: <-(A.msg1);

8 A: (A.B,A.Nb) := d[A.msg1]A.k;

9 A: assume(X.believes(A.A,X.fresh(A.Na)));

10 A: => B(e[<A.Na,A.kab>]A.k);

11 B: <-(B.msg);

12 B: assume(X.sees(B.B,B.msg));

13 B: (B.Na,B.kab) := d[B.msg]B.k;

14 B: assume(X.sees(B.B,X.e(X.cat(B.Na,B.kab),B.k)));

15 B: => A(e[B.Na]B.kab);

16 A: <-(A.msg2);

17 A: assume(X.sees(A.A,A.msg2));

18 A: A.N'a := d[A.msg2]A.kab;

19 A: assume(X.sees(A.A,A.N'a));

20 A: assume(X.sees(A.A,X.e(A.N'a,A.kab)));

21 A: assert(A.Na == A.N'a)

22 A: assert(A.believes(A.A,A.believes(A.B,A.goodkey(A.A,A.kab,A.B))));

Figure 7.1
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10, the CPAL encryption operator is utilized to indicate that principal A is performing a

computation on value “<Na,kab>”.  In statement 15, the ASSUME statement is expressing

the fact that principal B can see the value that resulted from encrypting the catenation of

the values Na and kab.Protocol goals are expressed as CPAL ASSERT statements.  The

logical goals described by Burrows, Abadi, and Needham [BAN89] are given as predi-

cates.  In Figure 7.1, statement 21 is the message based goal, and statement 22 is the BAN

Logic goal of the protocol.

7.2  Completing the BAN Logic Proof

While predicates of any form may be expressed as goals of protocols, CPAL-ES is

unable to reduce predicates other than the comparisons and simple logical reductions

described in Chapter 5.  The evaluation shown in Figure 7.2 gives the formal definition of

the Needham and Schroeder Private Key Protocol with goals and assumptions expressed

in BAN Logic notation.  In this case, the message-based goals evaluate to:

(B.f(B.Nb) == A.f(B.Nb))

as was described in the CPAL evaluation of this protocol in Figure 6.5.  The assert state-

ments representing the BAN Logic goals form the conjunction of the final verification

condition which is a definition of the protocol.

CPAL-ES does not recognize or understand the BAN Logic theorems or rules of

inference and cannot reduce the final verification further.   The proof of the final verifica-

tion condition expressed as BAN Logic statements could be accomplished by encoding

the BAN rules of inference into CPAL-ES.  However, there are many other logics that also

could be combined with CPAL-ES to extend the power of each mechanism.  Fortunately,

many people devote their main research to developing theorem proving techniques and

mechanical theorem proof systems.  There are several such systems available for accom-

plishing this final proof.  Boyer and Moore [BM79] and [BM88] developed what is now
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the ad hoc standard theorem proof system known appropriately as the Boyer/Moore Theo-

rem Prover.

The power and effectiveness of the Boyer/Moore Theorem Prover notwithstand-

ing, we chose to utilize a simpler proof system, developed by Owre, Shankar,  and Rushby

[OSR93a], [OSR93b] to prove final verification conditions produced by CPAL-ES.  The

proof system the authors call “The Prototype Verification System”  or PVS, mechanizes

proof steps such as the application of a rule of inference.  PVS is thoroughly documented

with tutorials, reference manuals, and guides for use and is available in the public domain.

To capture the BAN Logic rules of inference in the PVS language, several nota-

tional adjustments were necessary.  As with the CPAL representation of BAN Logic con-

structs,  the constructs were changed to predicate notation for PVS.  BAN Logic

predicates (SEES, GOODKEY, etc.) were declared as boolean functions and the BAN

Logic rules were encoded as PVS axioms.

The PVS representation of BAN Logic is given in Figure 7.3.  There are twelve

rules in the description.  In most cases, the rule name reflects the BAN Logic formula they

represent, i.e. SEES, MSG_MEANING, etc.  The declarations are shown in two parts, the

first being the function identifiers that are needed in the BAN Logic rules definitions them-

selves.  The second part contains the declarations of identifiers that are expected to be

used in the PVS representation of the protocol, i. e. the verification condition.  The decla-

rations shown in Figure 7.3 are the identifiers used for evaluation of the Needham and

Schroeder Private Key protocol, discussed and given later in this chapter.
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CPAL-ES BAN Logic Evaluation of  the Needham and Schroeder Protocol
S: => A(S.kas);  A: <-(A.kas);    S: => B(S.kbs);   B: <-(B.kbs);
A: assume(believes(A.A,goodkey(A.A,S.kas,A.S)));
B: assume(believes(B.B,goodkey(B.B,S.kbs,B.S)));
A: assume(believes(A.A,controls(A.S,goodkey(A.A,S.kab,A.B))));
B: assume(believes(B.B,controls(B.S,goodkey(B.A,S.kab,B.B))));
A: assume(believes(A.A,fresh(A.Na)));
B: assume(believes(B.B,fresh(B.Nb)));
B: assume(believes(B.B,fresh(B.A)));
A: assume(believes(A.A,said(A.S,goodkey(A.A,S.kab,A.B))));
A: assume((believes(A.A,said(A.S,S.kab)) IMPLIES believes(A.A,said(A.S,goodkey(A.A,S.kab,A.B)))));
B: assume((believes(B.B,said(B.S,S.kab)) IMPLIES believes(B.B,said(B.S,goodkey(B.A,S.kab,B.B)))));
A: assume((believes(A.A,said(A.B,A.Nb)) IMPLIES believes(A.A,said(A.B,goodkey(A.A,S.kab,A.B)))));
B: assume((believes(B.B,said(B.A,B.f(B.Nb))) IMPLIES believes(B.B,said(B.A,good-
key(B.A,S.kab,B.B)))));
A: => S(e[<A.A,A.B,A.Na>]A.kas);   S: <-(S.msg);
S: (S.A,S.B,S.Na) := d[S.msg]S.kas;
S: => A(e[<S.Na,S.B,S.kab,e[<S.kab,S.A>]S.kbs>]S.kas);   A: <-(A.msg3);
A: assume(sees(A.A,A.msg3));
A: (A.N'a,A.B',A.kab,A.ticket) := d[A.msg3]A.kas;
A: assume(sees(A.A,cat(A.N'a,A.kab)));
A: assume(sees(A.A,A.ticket));
A: assert((A.Na == A.N'a));
A: => B(A.ticket);     B: <-(B.ticket);
B: assume(sees(B.B,B.ticket));
B: (B.kab,B.A') := d[B.ticket]B.kbs;
B: assume(sees(B.B,cat(B.A,B.kab)));
B: => A(e[B.Nb]B.kab);    A: <-(A.msg4);
A: assume(sees(A.A,A.msg4));
A: A.Nb := d[A.msg4]A.kab;
A: assume(sees(A.A,A.Nb));
A: assert(A.believes(A.A,A.believes(A.B,A.goodkey(A.A,A.kab,A.B))));
A: => B(e[A.f(A.Nb)]A.kab);   B: <-(B.msg5);
B: assume(sees(B.B,B.msg5));
B: B.N'b := d[B.msg5]B.kab;
B: assert((B.f(B.Nb) == B.N'b));
B: assert(B.believes(B.B,B.believes(B.A,B.goodkey(B.A,B.kab,B.B))));
 ** End of Protocol.  Simplified predicate follows. **
((((((((((((((((((((((B.believes(B.B,B.believes(B.A,B.goodkey(B.A,S.kab,B.B))) and (B.f(B.Nb) ==
A.f(B.Nb))) or not (sees(B.B,e[A.f(B.Nb)]S.kab))) and A.believes(A.A,A.believes(A.B,A.good-
key(A.A,S.kab,A.B)))) or not (sees(A.A,B.Nb))) or not (sees(A.A,e[B.Nb]S.kab))) or not
(sees(B.B,cat(B.A,S.kab)))) or not (sees(B.B,e[<S.kab,A.A>]S.kbs))) or not
(sees(A.A,e[<S.kab,A.A>]S.kbs))) or not (sees(A.A,cat(A.Na,S.kab)))) or not
(sees(A.A,e[<A.Na,A.B,S.kab,e[<S.kab,A.A>]S.kbs>]S.kas))) or not ((not
(believes(B.B,said(B.A,B.f(B.Nb))))or believes(B.B,said(B.A,goodkey(B.A,S.kab,B.B)))))) or not ((not
(believes(A.A,said(A.B,A.Nb))) or believes(A.A,said(A.B,goodkey(A.A,S.kab,A.B)))))) or not ((not
(believes(B.B,said(B.S,S.kab))) or believes(B.B,said(B.S,goodkey(B.A,S.kab,B.B)))))) or not ((not
(believes(A.A,said(A.S,S.kab))) or believes(A.A,said(A.S,goodkey(A.A,S.kab,A.B))))))or not
(believes(A.A,said(A.S,goodkey(A.A,S.kab,A.B))))) or not (believes(B.B,fresh(B.A)))) or not
(believes(B.B,fresh(B.Nb)))) or not (believes(A.A,fresh(A.Na))))or not (believes(B.B,controls(B.S,good-
key(B.A,S.kab,B.B))))) or not (believes(A.A,controls(A.S,goodkey(A.A,S.kab,A.B))))) or not
(believes(B.B,goodkey(B.B,S.kbs,B.S)))) or not (believes(A.A,goodkey(A.A,S.kas,A.S))))

Figure 7.2
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We found that while BAN Logic contains sufficient power to allow evaluation of

protocols manually, addition of a few simple AXIOMS greatly simplifies formal applica-

tion.  Mostly, these supplemental rules allow easy extracting of components of an

encrypted message (SEES_ENC) and reordering of identifiers in predicates whose argu-

ments are symmetrical (BELIEVES_SYM, etc.).  The supplemental rules we used are

shown in Figure 7.4.

PVS Entries for BAN Logic Rules

BAN : THEORY   BEGIN
e,d,ep,dp,signature,cat: PRED[[bool,bool]]
believes ,sees,said,controls,fresh,goodkey,pubkey,secret: PRED[[bool,bool]]
A,B,S,S_kas,S_kbs,S_A,S_B,A_kab,B_kab,B_A,B_B,S_S,B_S,B_kbs:bool
A_Na,A_Nc,B_Nb,B_Nc,A_A,A_B,S_kab,A_S,A_kas: bool
B_Nb1,B_Nc1, A_Na1,B_msg4,A_msg,B_msg2,B_src: bool
 % Ban Rules of inference
msg_meaning1: AXIOM FORALL (P,Q,KPQ,X: bool):

believes(P,(goodkey(P,KPQ,Q))) AND sees(P,e(X,KPQ)) IMPLIES
believes(P,said(Q,X))

msg_meaning2:  AXIOM  FORALL (P,Q,PUB_Q,X:bool): %     For  public keys
believes(P,pubkey(Q,PUB_Q)) and sees(P,e(X,PUB_Q))  IMPLIES

believes(P,said(Q,X))
msg_meaning3:  AXIOM  FORALL (P,Q,Y,X:bool):    %     For shared  secrets

believes(P,secret(Q,Y,P)) and sees(P,signature(X,Y)) IMPLIES
believes(P,said(Q,X))

nonce_verification:  AXIOM  FORALL (P,Q,X: bool):
believes(P,fresh(X)) and believes(P,said(Q,X)) IMPLIES

believes(P,believes(Q,X))
jurisdiction:  AXIOM  FORALL (P,Q,X: bool):

believes(P,controls(Q,X)) and believes(P,believes(Q,X))  IMPLIES believes(P,X)
sees1: AXIOM  FORALL (P,X,Y: bool): sees(P,cat(X,Y)) IMPLIES

sees(P,X) and sees(P,Y)
sees2: AXIOM FORALL (P,X,Y: bool): sees(P,signature(X,Y))  IMPLIES sees(P,X)
sees3: AXIOM FORALL (P,Q,PUB_P,X: bool):

believes(P,pubkey(P,PUB_P)) and sees(P,e(X,PUB_P))  IMPLIES  sees(P,X)
sees4: AXIOM FORALL (P,Q,X,KPQ: bool):

believes(P,goodkey(P,KPQ,Q)) and sees(P,e(X,KPQ)) IMPLIES sees(P,X)
sees5: AXIOM FORALL (P,Q,PUB_Q,PUB_Q_INV,X: bool):

believes(P,pubkey(Q,PUB_Q)) and sees(P,e(X,PUB_Q_INV))  IMPLIES
sees(P,X)

freshness1:  AXIOM FORALL (P,X,Y: bool):
believes(P,fresh(X)) AND sees(P,cat(X,Y)) IMPLIES believes(P,fresh(cat(X,Y)))

Figure 7.3
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Some notational adjustments are necessary to merge BAN and PVS representa-

tions of the logical notions.  For example, we forgo the BAN symbolic notation in lieu of

predicate notation for standard concepts such as “goodkey” and “sees”.

PVS Supplement for BAN Logic Rules

freshness2b: AXIOM FORALL (P,X,Y: bool):
believes(P,fresh(cat(X,Y))) IMPLIES believes(P,fresh(Y))

freshness1b: AXIOM FORALL (P,X,Y: bool):
believes(P,fresh(Y)) IMPLIES believes(P,fresh(cat(X,Y)))

freshness2:  AXIOM     FORALL (P, X, Y: bool):
      believes(P, fresh(cat(X, Y))) IMPLIES believes(P, fresh(Y)) AND

believes(P, fresh(X))
freshness3: AXIOM FORALL (P,Q,kpq: bool):

believes(P,fresh(kpq)) IMPLIES
believes(P,fresh(goodkey(P,kpq,Q))) AND
believes(P,fresh(goodkey(Q,kpq,P)))

sees_enc: AXIOM  FORALL (P,X,Y,K: bool):
sees(P,e(cat(X,Y),K)) IMPLIES sees(P,e(X,K)) and sees(P,e(Y,K))

believes_sym: AXIOM  FORALL (P,Q,k: bool):
believes(P,goodkey(Q,k,P)) IMPLIES believes(P,goodkey(P,k,Q))

said_sym:  AXIOM FORALL (P,Q,R,T,k:bool):
believes(P,said(Q,goodkey(R,k,T))) IMPLIES believes(P,said(Q,goodkey(T,k,R)))

controls_sym: AXIOM  FORALL (P,Q,R,k: bool):
believes(P,controls(Q,goodkey(P,k,R))) IMPLIES

believes(P,controls(Q,goodkey(R,k,P)))

Figure 7.4

The above description addresses translation of the BAN Logic constructs and rules

of inference into PVS notation.  We now turn our attention into utilizing the output from

CPAL-ES in PVS where several additional adjustments are necessary.  Because the dot

notation used in CPAL to reflect an identifier prefix has a different meaning in PVS, we

replace the periods in the CPAL identifier names with underscores.  We must also replace

the angle brackets which CPAL recognizes as the catenation operator with the predicate

cat().  Similarly, the encryption operator is translated from e[X]k to its predicate equiva-

lent e(X,k).

  Another adjustment involves the prefix to BAN Logic predicate identifiers.
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CPAL forcesevery identifier to be coupled to an acting principal.  Since we routinely

assume that every principal’s version of the BAN Logic predicates are the same,  we uti-

lize principal X as the acting ID prefix for the BAN Logic predicates.  Since these predi-

cates are globally identical, we can omit the prefix for these identifiers in the PVS version

of the protocol.

The final PVS file used to complete the proof of the verification condition is

attained by combining the PVS representation of the BAN Logic rules given in Figure 7.3

and 7.4, with the translated verification condition produced by CPAL-ES.  As we describe

above, there are several steps necessary to prepare the input for  PVS from CPAL-ES com-

bined with BAN Logic.  We list the necessary steps in Figure 7.5.  The axioms and conjec-

ture for the Needham and Schroeder protocol are given in Figure 7.6.

Steps For Creating The CPAL-ES/BAN Logic/ PVS File

1.  Encode the protocol steps, assumptions, and goals in CPAL
2.  Generate the appropriate assume statements from the receive, assignment and
     “new” statements in the specification.
3.  Execute CPAL-ES against the specification
4.  Extract the simplified verification from the file “protocol.out”
5.  Find/replace all occurrences of:

"." to " _"
"e[" to "e("
"]keyid" to ",keyid)"
"<" to "cat("
">" to ")"
"X." to ""

6.  Delete all remaining prefixes to BAN Logic predicates.
7.  Scan the verification condition to ensure there are no more than two arguments for
     any “cat” operator.
8.  Combine the PVS file for BAN Logic with the verification condition.
9.  Add any necessary declarations for identifiers in the verification condition.
10.  Construct the CONJECTURE declaration for the verification condition.

Figure 7.5

In PVS, the proof is completed by an analyst interacting with the system to derive

a set of steps that prove the theorem or theorems that represent the protocol goals.  The
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PVS commands to accomplish these proofs are documented in [OSR93a], [OSR93b],

[SOR93b] and illustrated in [SOR93a], and [CORSS95].  The technique required for the

two proofs we accomplished involves simple deductive reasoning.

Utilizing the conjecture statement in the proof file, PVS automatically produces a

sub-goal to be proven, in our case, representing the message-based and BAN Logic goals

for the protocol.  We first analyze the sub-goal to identify an axiom we may apply to move

closer to a final proof of the conjecture.  The axiom is applied by use of the PVS LEMMA

rule.  For example, if we have the following sub-goal:

believes(A_A,goodkey(A_A,S_kab,A_B))

we may elect to apply the jurisdiction axiom:

jurisdiction:  AXIOM  FORALL (P,Q,X: bool):

believes(P,controls(Q,X)) and  believes(P,believes(Q,X))  IMPLIES  believes(P,X)

by invoking the LEMMA rule as:

(lemma "jurisdiction" ("P" "A_A" "Q" "A_S" "X" "goodkey(A_A,S_kab,A_B)"))

The LEMMA rule tells PVS to apply the jurisdiction axiom, replacing the univer-

sal variables P and Q with the constant variables A_A and A_S, and X with the predicate

“goodkey(A_A,S_kab,A_B)”.  The result of the application of this rule would be to gener-

ate a sub-goal requiring the proof of the antecedent of the jurisdiction rule, i.e. that:

believes(A_A,controls(A_S,goodkey(A_A,S_kab,A_B))) and

believes(A_A,believes(A_S,goodkey(A_A,S_kab,A_B)))

At this point, we would apply the PVS rule SPLIT to split the conjunction and

allow us to focus on one part of this goal, either attempting to prove that A actually does

believe that S controls kab, or that A believes that S believes kab is a good key.  Both of
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these must be proven to complete the proof.

Ultimately, the proof of a sub-goal is accomplished when a sub-goal reduces to one

of the assumed predicates.  In the above sequence the first sub-goal

(A_A believes A_S controls S_kab)

is identical to an assumed predicate in Figure 7.6.  This sub-goal is automatically reduced

by PVS.

PVS File Entries for the Needham and Schroeder Private Key Protocol

gnsgoal: CONJECTURE ((((((((((((((((((((((
believes(B_B,believes(B_A,goodkey(B_A,S_kab,B_B)))
and (B_f(B_Nb) == A_f(B_Nb))) or not (sees(B_B,e(B_f(B_Nb),S_kab)))) and
believes(A_A,believes(A_B,goodkey(A_A,S_kab,A_B)))) or
not (sees(A_A,B_Nb))) or not (sees(A_A,e(A_Nb,S_kab)))) or
not (sees(B_B,cat(B_A,S_kab)))) or not (sees(B_B,e(cat(S_kab,B_A),S_kbs)))) or
not (sees(A_A,e(cat(S_kab,A_A),S_kbs)))) or
not (sees(A_A,cat(A_Na,S_kab)))) or not
(sees(A_A,e(cat(cat(A_Na,S_kab),e(cat(S_kab,A_A),S_kbs)),S_kas))))
or not ((not (believes(B_B,said(B_A,B_f(B_Nb)))) or
believes(B_B,said(B_A,goodkey(B_A,S_kab,B_B)))))) or
not ((not (believes(A_A,said(A_B,A_Nb))) or
believes(A_A,said(A_B,goodkey(A_A,S_kab,A_B)))))) or
not ((not (believes(B_B,said(B_S,S_kab))) or
believes(B_B,said(B_S,goodkey(B_A,S_kab,B_B)))))) or
not ((not (believes(A_A,said(A_S,S_kab))) or
believes(A_A,said(A_S,goodkey(A_A,S_kab,A_B)))))) or
not (believes(A_A,said(A_S,goodkey(A_A,S_kab,A_B))))) or
not (believes(B_B,fresh(B_A)))) or not (believes(B_B,fresh(B_Nb)))) or
not (believes(A_A,fresh(A_Na)))) or
not (believes(B_B,controls(B_S,goodkey(B_B,S_kab,B_A))))) or
not (believes(A_A,controls(A_S,goodkey(A_A,S_kab,A_B))))) or
not (believes(B_B,goodkey(B_B,S_kbs,B_S)))) or
not (believes(A_A,goodkey(A_A,S_kas,A_S))))

  END gnsban
Figure 7.6

A sample of the PVS proof for the Needham and Schroeder protocol is given in

Figure 7.7 and the complete PVS proof is given in Appendix E.
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PVS Proof for the Needham and Schroeder Private Key Protocol

(|gnsban|
 (|gnsgoal| "" (FLATTEN)
  (("" (SPLIT +)
    (("1" (FLATTEN)
      (("1" (SPLIT +) (("1" (LEMMA "nonce_verification"
           ("P" "B_B" "Q" "B_A" "X" "goodkey(B_A,S_kab,B_B)"))
          (("1" (SPLIT -1)
            (("1" (PROPAX) NIL)
             ("2" (LEMMA "freshness3" ("P" "B_B" "Q" "B_A" "kpq" "S_kab"))
              (("2" (SPLIT -1)
                (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                 ("2" (LEMMA "freshness2" ("P" "B_B" "Y" "B_A" "X" "S_kab"))
                  (("2" (SPLIT -1)
                    (("1" (FLATTEN) (("1" (PROPAX) NIL))) ("2"
                      (LEMMA "freshness1b" ("P" "B_B" "Y" "B_A" "X" "S_kab"))
                      (("2" (SPLIT -1)
                        (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)))))))))))))
             ("3" (SPLIT -9)  (("1"
                (LEMMA "msg_meaning1"
                 ("P" "B_B" "Q" "B_A" "KPQ" "S_kab" "X" "B_f(B_Nb)"))
                (("1" (SPLIT -1)
                  (("1" (PROPAX) NIL)  ("2"
                    (LEMMA "jurisdiction"
                     ("P" "B_B" "Q" "B_S" "X" "goodkey(B_B,S_kab,B_A)"))
                    (("2" (SPLIT -1)
                      (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)

***** The majority of the proof is omitted due to space. *****

                       (LEMMA "freshness3"
                         ("P" "A_A" "Q" "A_B" "kpq" "S_kab"))
                        (("2" (SPLIT -1)
                          (("1" (FLATTEN) (("1" (PROPAX) NIL))) ("2"
                            (LEMMA "freshness2"
                             ("P" "A_A" "X" "A_Na" "Y" "S_kab")) (("2" (SPLIT -1)
                              (("1" (FLATTEN) (("1" (PROPAX) NIL))) ("2"
                                (LEMMA "freshness1"
                                 ("P" "A_A" "X" "A_Na" "Y" "S_kab")) (("2" (SPLIT -1)
                                  (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)))))))))))))
                       ("3" (PROPAX) NIL)))))))))
               ("3" (POSTPONE) NIL)))))
           ("2" (POSTPONE) NIL))))))))))))

Figure 7.7
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For emphasis and illustration we also evaluated Snekkenes KP protocol from

[SNEK92] using CPAL-ES, BAN Logic and PVS.  The CPAL-ES evaluation of the KP

protocol without BAN Logic constructs was given in Figure 6.19.  The CPAL-ES defini-

tion of the protocol with BAN Logic goals and assumptions is given in Figure 7.8 and the

PVS file entries for proof of the verification condition are in Figure 7.9.  The PVS proof of

the verification condition for the KP protocol is provided in Appendix F.
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Combining CPAL-ES and BAN Logic on Snekkenes’ KP Protocol
S: => A(S.kas); A: <-(A.kas);
S: => B(S.kbs); B: <-(B.kbs);
A: assume(X.believes(A.A,X.goodkey(A.A,S.kas,A.S)));
B: assume(X.believes(B.B,X.goodkey(B.B,S.kbs,B.S)));
A: assume(X.believes(A.A,X.fresh(A.Na)));
S: assume(X.believes(S.S,X.goodkey(S.A,S.kab,S.B)));
S: assume(X.said(S.S,X.goodkey(S.A,S.kab,S.B)));
B: assume(X.believes(B.B,X.controls(B.S,X.fresh(S.kab))));
B: assume(X.believes(B.B,X.controls(B.S,X.goodkey(B.B,S.kab,B.A))));
B: assume(X.believes(B.B,X.fresh(B.Nb)));
B: assume(X.believes(B.B,X.controls(B.S,S.kab)));
A: assume((X.believes(A.A,X.said(A.S,S.kab)) IMPLIES X.believes(A.A,X.said(A.S,X.good-
key(A.A,S.kab,A.B)))));
B: assume((X.believes(B.B,X.said(B.S,S.kab)) IMPLIES X.believes(B.B,X.said(B.S,X.good-
key(B.A,S.kab,B.B)))));
A: assume((X.believes(A.A,X.said(A.B,A.Na)) IMPLIES X.believes(A.A,X.said(A.B,X.good-
key(A.A,S.kab,A.B)))));
B: assume((X.believes(B.B,X.said(B.A,B.Nc)) IMPLIES X.believes(B.B,X.said(B.A,X.good-
key(B.A,S.kab,B.B)))));
A: assume(X.believes(A.A,X.controls(A.S,X.goodkey(A.A,S.kab,A.B))));
A: assume(X.believes(A.A,X.fresh(A.Na)));
A: assume(X.believes(A.A,X.controls(A.S,S.kab)));
B: assume(X.believes(B.B,X.fresh(B.Nc)));
A: => B(<A.A,A.Na,A.B>);
B: <-(B.msg);
B: assume(X.sees(B.B,B.msg));
B: (B.A',B.Na,B.B') := B.msg;
B: assume(X.sees(B.B,B.Na));
B: => S(<B.A',B.Na,B.B,B.Nb>);  S: <-(S.msg);
S: (S.A,S.Na,S.B,S.Nb) := S.msg;
S: => B(e[<S.kab,S.A,S.Nb,e[<S.A,S.B,S.Na,S.kab>]S.kas>]S.kbs);
B: <-(B.msg2);
B: assume(X.sees(B.B,B.msg2));
B: (B.kab,B.A'',B.Nb',B.msg3) := d[B.msg2]B.kbs;
B: assert((B.A'' == B.A'));
B: assume(X.sees(B.B,B.msg3));
B: assume(X.sees(B.B,X.cat(B.kab,B.Nb')));
B: assert((B.Nb == B.Nb'));
B: => A(<B.msg3,e[<B.Na,B.Nc,B.B>]B.kab>);   A: <-(A.msg);
A: assume(X.sees(A.A,A.msg));
A: (A.msg3,A.msg4) := A.msg;
A: assume(X.sees(A.A,A.msg3));
A: assume(X.sees(A.A,A.msg4));
A: (A.A',A.B',A.Na',A.kab) := d[A.msg3]A.kas;
A: assume(X.sees(A.A,X.cat(A.Na',A.kab)));
A: assert((A.Na == A.Na'));
A: (A.Na'',A.Nc,A.B'') := d[A.msg4]A.kab;
A: assume(X.sees(A.A,X.cat(A.Na'',A.Nc)));
A: assert((A.Na == A.Na''));
A: => B(e[<A.Nc,A.A>]A.kab);  B: <-(B.msg4);
B: assume(X.sees(B.B,B.msg4));
B: (B.Nc',B.A'') := d[B.msg4]B.kab;
B: assume(X.sees(B.B,X.cat(B.Nc,B.A')));
B: assert((B.Nc == B.Nc'));
A: assert(A.believes(A.A,A.believes(A.B,A.goodkey(A.A,A.kab,A.B))));
B: assert(B.believes(B.B,B.believes(B.A,B.goodkey(B.A,B.kab,B.B))));
 *** End of Protocol ***

Figure 7.8
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The KP protocol is very similar to the Needham and Schroeder protocol.  There

are ten more assumptions, though the proofs of the protocols are of similar complexity.

PVS Definition of Snekkenes’ KP Protocol

gkpgoal: CONJECTURE
((((((((((((((((((((((((((((((believes(B_B,believes(B_A,goodkey(B_A,S_kab,B_B)))
and believes(A_A,believes(A_B,goodkey(A_A,S_kab,A_B)))) or
not (sees(B_B,cat(B_Nc,A_A)))) or
not (sees(B_B,e(cat(B_Nc,A_A),S_kab)))) or
not (sees(A_A,cat(A_Na,B_Nc)))) or
not (sees(A_A,cat(A_Na,S_kab))))  or
not (sees(A_A,e(cat(A_Na,B_Nc),S_kab)))) or
not (sees(A_A,e(cat(A_Na,S_kab),S_kas)))) or
not(sees(A_A,cat(e(cat(A_Na,S_kab),S_kas),e(cat(A_Na,B_Nc),S_kab))))) or not
(sees(B_B,cat(S_kab,B_Nb))))   or
not (sees(B_B,e(cat(A_Na,S_kab),S_kas)))) or not
(sees(B_B,e(cat(cat(S_kab,A_A),cat(B_Nb,e(cat(A_Na,S_kab),S_kas))),S_kbs)))) or
not (sees(B_B,A_Na)))or
not (sees(B_B,cat(A_A,A_Na))))or
not (believes(B_B,fresh(B_Nc))))or
not (believes(A_A,controls(A_S,S_kab))))or
not (believes(A_A,fresh(A_Na))))or
not (believes(A_A,controls(A_S,goodkey(A_A,S_kab,A_B)))))or
not ((not (believes(B_B,said(B_A,B_Nc)))or
believes(B_B,said(B_A,goodkey(B_A,S_kab,B_B))))))or
not ((not (believes(A_A,said(A_B,A_Na)))or
believes(A_A,said(A_B,goodkey(A_A,S_kab,A_B))))))or
not ((not (believes(B_B,said(B_S,S_kab)))or
believes(B_B,said(B_S,goodkey(B_A,S_kab,B_B))))))or
not ((not (believes(A_A,said(A_S,S_kab)))or
believes(A_A,said(A_S,goodkey(A_A,S_kab,A_B))))))or
not (believes(B_B,controls(B_S,S_kab))))or
not (believes(B_B,fresh(B_Nb))))or
not (believes(B_B,controls(B_S,goodkey(B_B,S_kab,B_A)))))or
not (believes(B_B,controls(B_S,fresh(S_kab)))))or
not (said(S_S,goodkey(S_A,S_kab,S_B))))or
not (believes(S_S,goodkey(S_A,S_kab,S_B))))or
not (believes(A_A,fresh(A_Na))))or
not (believes(B_B,goodkey(B_B,S_kbs,B_S))))or
not (believes(A_A,goodkey(A_A,S_kas,A_S))))

END gkpban
Figure 7.9
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7.3.  Chapter Summary

In chapter 6 we demonstrate how CPAL-ES is utilized to atomically determine a

formal definition for a wide variety of protocols.  In this chapter we show how CPAL-ES

can be combined with BAN Logic to provide a consolidated definition and evaluation of

cryptographic protocols, reaching beyond the values passed in the protocol messages and

actions of the protocol and assessing the intent of the actions.  BAN Logic goals and

assumptions are encoded in CPAL ASSUME and ASSERT statements to formalize the

meaning of the protocol step and also of the intended meaning behind the steps and princi-

pal’s actions.

We showed in this chapter how CPAL made the idealization process more formal

by allowing mechanical evaluation of the BAN SEES and FRESH predicates.  We illus-

trate these concepts through the actual evaluation of real protocols and show how the sys-

tem effectively illuminates the classic Needham and Schroeder protocol flaw.

We also show how CPAL-ES can easily interact with a formal theorem proving

system to evaluate assumptions and goals expressed in an epistemic logic.  The same

assumption mechanism CPAL-ES uses to simplify formulas based on message-based

goals is used to formally specify goals and assumptions peculiar to any number of logics.

CPAL-ES produces output that may be utilized as input to a mechanical proof process.
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Chapter 8
Summary

Electronic communication is expanding exponentially and systems utilizing cryp-

tographic protocols are the predominant option used to secure the information being

passed, and to authenticate principals.  New protocols are generated frequently.  These

cryptographic protocols, designed to ensure the security of encrypted messages or for

authentication, may be themselves vulnerable to compromise by persistent intruders, even

if the cryptographic algorithm they use is strong.  Based on the seminal papers by

Needham and Schroeder [NS78] and Burrows, Abadi, and Needham [BAN89] a new

research area  emerged focused on providing mechanisms to evaluate the ability of crypto-

graphic protocols to meet their stated goals.

8.1  Review of the Research

The research presented in this dissertation represents a new approach to crypto-

graphic protocol verification.  Because of the similarity between cryptographic protocols

and computer programs, we were lead to research surrounding developing formal methods

for program verification.  We were particularly interested in the precondition/postcondi-

tion reasoning of C. A. R. Hoare [HOAR69] and the weakest precondition predicate trans-

former of Edsger Dijkstra [DIJK76].

The first task was to develop a formal language that was sufficiently simple to

allow a compact formal semantics, yet expressive enough to allow specification of most

cryptographic protocols.  We developed the language CPAL for this purpose and wrote a

supporting syntax checker.

We developed a formal semantics for CPAL using Weakest Preconditions (WP).

We began this stage of research by defining the model of computation to represent the fun-

damental concepts of the system.  We identified secure, local address spaces for each prin-
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cipal with input and output queues representing the communications medium for

transmission of information between principals.  We borrowed concepts from Abadi and

Tuttle [AT91] and placed an all powerful intruder at the center of the communications hub,

thus requiring the cryptographic system to provide all elements of security.

Once a verification condition generator was in place, it soon became evident that

the size of the verification conditions would quickly become a limiting factor in utilizing

CPAL as an effective protocol verification tool.  Using logical reduction techniques in an

automated VC simplification routine, we were able to reduce even the longest verification

conditions to manageable size.

CPAL-ES, the result of our research, is a complete, fully functional cryptographic

protocol evaluation system.  CPAL-ES includes a syntax checker for CPAL, a verification

condition generator that translates a protocol specified in CPAL into a verification condi-

tion expressed in predicate calculus, and a simplification component that reduces common

tautologies.  CPAL-ES is unique in that it is formal, providing concise definitions for a

broad class of protocols based on the syntax of the protocol specification.

8.2  Dissertation Review

In this dissertation, we described the need for communication security founded on

cryptography and cryptographic protocols.   We gave numerous protocols that illustrate

the purpose of cryptographic protocols and that highlight the subtle nature of protocol

flaws.

We then reviewed the literature regarding cryptographic protocols, gave and dis-

sected the classic replay flaw detected in the Needham and Schroeder Private Key Proto-

col [NS78], and reviewed the current research in cryptographic protocol verification.  We

discussed the differences in the methods of Kemmerer, Meadows, and Millen [KMM93]

and reviewed a number of different logics developed to pinpoint weakness in protocols.
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As the focus of the dissertation, we describe CPAL-ES as a new tool for analyzing

cryptographic protocols based on previous research regarding formal methods of com-

puter program verification.  We proposed a new language for cryptographic protocol spec-

ification and demonstrated the syntax checker developed for the language.  We illustrated

the features and expressiveness of the language in a large number of protocols of all types.

At the heart of the research, we described the technique we used for establishing

the formal semantics  of CPAL.  We defined and illustrated the Weakest Precondition defi-

nitions for each statement type in the language and provided supporting definitions for the

ENCRYPT, DECRYPT, CATENATION, and NEW operators.  We showed how the tech-

nique works on simple examples and on complex protocols of different types.

Later in the dissertation, we illustrated the applicability of CPAL-ES to a broad

class of protocols.  We addressed one-way and two-way authentication protocols and the

more common, key distribution protocols.  We considered protocols using private key

cryptography, public key cryptography and others using a combination of the two.  In

every case, CPAL-ES provided a definition for the protocol meaningful in terms of the

protocol assumptions, principal’s actions, and protocol goals within the operating environ-

ment.

In Chapter 7, we extended the use of CPAL-ES by the illustrating the use of CPAL-

ES in combination with an epistemic logic.  We showed how we can use the CPAL

ASSERT and ASSUME statements to reflect concepts in a wide variety of logics using

predicate notation.  We then showed how CPAL-ES output could be received as input to a

formal theorem prover, thereby providing a complete protocol definition system.

8.3  Conclusion

There are many potential extensions to this research.  A highly practical tool, for

example, would be a translator that takes the CPAL specification of the protocol and pro-
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duces the C (or other common language) code to implement the specified protocol.  This

would provide the protocol designer with a complete protocol implementation system that

would take their protocol from a pseudocode version, evaluate it with regard to its envi-

ronment and goals, and mechanically produce executable code that exactly implements

the design.

It may also be useful to provide an interface from this tool to other existing tools

for protocol evaluation.  Potentially, this tool could one day be part of a protocol evalua-

tion workbench which includes our specification/verification system, a testing system

(such as Interrogator [MCF87]), a BAN implementation (such as [CHEN90]), etc.

Another sub-component of such a system would be a language translator to take a protocol

specified in CPAL and convert it to the language used by Interrogator to provide a fully

integrated environment.  For now, CPAL-ES is a fully functional system written in C, and

executing in the Sparc 4 and Windows 3.1 environments.

As we described above, CPAL-ES provides  the cryptographic protocol analyst a

complete protocol verification system.  As an analyst’s tool, it is fast and easy to use, giv-

ing immediate feedback and allowing the analyst to quickly compose “what if” scenarios

with protocols to determine the impact of friendly or unfriendly actions on the message-

based goals.

Because of the nature of CPAL-ES, we believe it resolves many of the weaknesses

of the current ad hoc standard tools for protocol evaluation.  CPAL-ES replaces the vague

and error-prone idealization process of BAN Logic-type approaches by automatically

translating the procedural description of the protocol given in CPAL into a logical defini-

tion in a simple predicate logic.  The WP definition of statement catenation allows CPAL-

ES to force sequencing on the steps in each protocol, resolving the step permutation prob-

lem of BAN Logic [SNEK91].  Moreover, CPAL-ES does not attempt to replace BAN

Logic, but complements BAN Logic by analyzing protocols using BAN Logic constructs
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and rules of inference.

CPAL-ES provides a formal definition for any combination of protocol steps.

Because it is formal and automated, this method can be used to model active attacks by

systematically attempting attacks against protocols.  In this way, CPAL-ES formalizes the

notion of intruder actions in formulating a wide variety of attacks against cryptographic

protocols.

Finally, CPAL-ES is easily combined with the many epistemic logics proposed in

recent literature and a formal theorem prover to form a complete protocol verification sys-

tem at a greater abstraction level than CPAL-ES alone.
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Appendix A
Operational Model for CPAL

Value.  A value is a bit stream that may be represented in a computer.  There are  five

value types in this model which may be recursively defined: Named values, encrypted/

decrypted values, catenated values, dot values, and function values

Message.  A message is a value that is sent or received across the network.

Principal .  A principal is a process.  Principals are assumed to know protocol steps.  Prin-

cipals are identified by a bit stream (name) unique to that principal.  Resources available

to principals are:

- Substantial, but not unlimited, processing power,

- Substantial, but not unlimited, private memory

- Transmission medium for sending messages bit by bit

- Message queue for receiving and temporarily storing messages

Intruder .  The intruder is a principal that may receive messages sent by other principals.

The intruder may be thought of as an all-powerful intruder if all messages are sent using

the insecure send operator.  Otherwise, the intruder has no greater power than any other

principal and cannot see into any other principal’s private address space.  The intruder

may be used by the analyst to model a wide variety of attacks by copying messages from

valid sessions for later replay, starting sessions erroneously, intercepting messages, and

modifying messages.

Private memory.  Private memory may also be considered to be a private address space.

No other principal can detect the contents of this memory.  In this large memory space,

principals may store, modify, and retrieve values represented as bit streams such as:

- Independently created messages,

- Copies of messages received from another principal,
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- Edited messages

- State information related to the protocol

- Identifiers of other principals

- Any other bit stream the principal desires to store

Catenate.  The value catenation operator is the infixed comma, e.g. M1,M2.  The result of

catenating values is to combine two or more values into one value. The original values

may be recreated by any principal having the catenated value in their address space.

Encryption .  Encryption is performed on a value.  The value to be encrypted may be the

catenation of two or more values.  The result of encrypting a value is to produce another

value, with the characteristic that decryption of the encryption using the same key will

reproduce the value that was originally encrypted.

Decryption.  The result of decrypting a value is to produce another value.  The result of

decrypting a value which was previously encrypted under the same key is to reproduce the

value that was originally encrypted.

Assignment.  Simple assignment, with a single destination (left side) identifier, is nonde-

structive, pass by value assignment.  If the source (right side) also contains a single identi-

fier, the source value is considered copied into the memory location identified by the

destination identifier.  If the source contains multiple identifiers separated by the catena-

tion operator, the values are catenated and the resulting value is stored in the destination

memory location.  For compound assignment (two or more destination identifiers), the

assignment operation must "uncatenate" or separate catenated values.  Each catenated

source value is copied into the memory location designated by the destination identifiers.

Source values are bound to destination names by order, with the first value in the catena-

tion copied into the location designated by the first (leftmost) destination identifier.  The

number of catenated values must equal the number of destination identifiers or the opera-

tion will fail.
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Send.  Principals may (nondestructively) transmit messages stored in their private mem-

ory to other principals.  A principal's identifier is synonymous with their address.  The

result of a normal send operation is that the message will be appended to the message

queue of the intended recipient and the corresponding queue counter will be incremented.

The result of an insecure send operation is that the message will be appended to the mes-

sage queue of the intruder and the corresponding queue counter will be incremented.  Cat-

enated messages are transmitted, and will arrive in the appropriate queue, as a single

message.

Receive.  Principals may receive messages which have been appended to their message

queue.  Receive is a blocking operation.  If a message is in the queue when a receive oper-

ation is executed, the message is copied to the principal's private memory and deleted

from the queue, and the queue counter is decremented.  If the message queue counter is

zero when a receive is executed, block will occur until a message is appended to the

queue.

Transmission medium.  Principals send all outgoing messages, bit by bit, via a single

output channel.  No assumptions are made regarding the privacy of messages on the trans-

mission medium or the message queues.

Message Queue.  Principals can only receive messages that are stored on their [FIFO]

message queue.  The intruder can place messages on other principals message queue at

any time.  Other principals may update queues using the secure send operations.  Valid

queue operations are push and pop.  The push operation will append a message to the

queue and increment the message counter, while the pop operation will copy the next mes-

sage to be read to the private memory of the principal, delete the entry from the queue and

decrement the message counter.

End of Appendix A
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Appendix B

CPAL Syntax

%token  DIGIT LETTER ID NUMBER IF THEN ELSE ASSERT ACCEPT RJECT
NEW CHAR CAT VC SND SSND REC SREC EQ NE AND OR NOT IMP CO LITER
ASSIGN MINUS ENC DEC COMPASSIGN FUNC LT GT UD COMP STR COND VA
BOOL VALUE DOT SPECIAL GASSERT ASSUME ENC_P DEC_P

%left   '|'
%left   '&'
%left   '+'  '-'
%left   '*'  '/'
%left UMINUS    /* supplies precedence for unary minus */

%%   /* beginning of rules section  */

protocol:       actions ;
actions :       action

|       actions
  action;

action  :       ID  ':' stmt ;
stmt    :       error ';'

|       ASSERT cond ';'
|       GASSERT gcond ';'
|       ASSUME gcond ';'
|       RJECT ';'
|       SND ID  '(' value ')' ';'
|       SSND ID '(' value ')' ';'
|       REC  '(' value ')' ';'
|       SREC  ID '>' ID  '(' value ')' ';'
|       IF '(' cond ')' THEN '{' stmts '}'  else_part
|       ID ASSIGN value ';'
|       '('  ids ')' ASSIGN  value ';' /*compound assignment*/
|       '{' stmts  '}' ;

 stmts   :       stmt
|       stmts  stmt ;

 else_part:
|       ELSE '{'  stmts  '}' ;

value   :       ID
|       ENC value ']' ID    /*encryption of messages*/
|       DEC value ']' ID
|       ENC_P value ']' ID    /*Public key encryption of messages*/
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|       DEC_P value ']' ID
|       ID   '(' values ')'
|       NEW
|       '<' values '>'  ;

values  :       value
|       values ',' value;

ids     :       ID
|       ids  ',' ID;

cond    :      ID  parameters   /* cond returns a predicate */
|       LITER
|       value comp value
|       neg cond
|       '(' cond ')'
|       cond oper cond;

parameters:
|       '(' parms ')';

parms   :       parm
|       parms ',' parm;

parm    :       cond ;
gcond    :      gid comp gid

|       gid gparameters
|       LITER
|       neg gcond
|       '(' gcond ')'
|       gcond oper gcond ;

gid:            ID '.'  ID;
gparameters:

|       '(' gparms ')';
gparms  :       gparm

|       gparms ',' gparm;
gparm   :       gcond;
oper    :       AND

|       OR
|       IMP;

neg     :       NOT ;
comp    :       EQ

|       NE
|       LT
|       GT;
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Appendix C

Cryptographic Protocols Expressed in CPAL

 Needham and Schroeder Private Key Protocol  [NEED78]

S: =>A(S.kas);

A: <-(A.kas);

S: =>B(S.kbs);

B: <-(B.kbs);

A: =>S(e[<A,B,Na>]kas);

S: <-(msg);

S: (A,B,Na) := d[msg]kas;

S: =>A(e[<Na,B,kab,e[<kab,A>]kbs>]kas);

A: <-(msg3);

A: temp2 := d[msg3]kas;

A: (N'a,B,kab,ticket) := temp2;

A: assert(N'a==Na);

A: =>B(ticket);

B: <-(ticket);

B: (kab,A) := d[ticket]kbs;

B: =>A(e[Nb]kab);

A: <-(msg4);

A: Nb := d[msg4]kab;

A: =>B(e[f(Nb)]kab);

B: <-(msg5);

B: N'b := d[msg5]kab;

B: assert(N'b == f(Nb));
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DENNING & SACCO PRIVATE KEY PROTOCOL [DS81]

S: =>A(S.kas);

A: <-(A.kas);

S: =>B(S.kbs);

B: <-(B.kbs);

A: =>S(<A,B>);

S: <-(msg);

S: (A,B) := msg;

S: kab := new;

S: T1 := new;

S: =>A(e[<B,kab,T1,e[<T1,kab,A>]kbs>]kas);

A: <-(Msg1);

A:  tmp := d[Msg1]kas;

A: (dst,kab,T1,Ticket) := tmp;

A: assert(dst == B);

--A: assert(sent(S,kab));

A: =>B(Ticket);

B: <-(Ticket);

B: tmp1 := d[Ticket]kbs;

B: (T1,kab,A) := tmp1;

B: gassert(B.T1 == S.T1);

B: =>A(e[N1]kab);

A: <-(Msg2);

A: N1 := d[Msg2]kab;

A: =>B(e[f(N1)]kab);

B: <-(Msg3);

B: N1' := d[Msg3]kab;

B: assert(N1' == f(N1));
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OTWAY AND REES PRIVATE KEY PROTOCOL [OTWY87]

S: =>A(S.kas);
A: <-(A.kas);
S: =>B(S.kbs);
B: <-(B.kbs);
A: =>B(<C,A,B,e[<Na,C,A,B>]kas>);
B: <-(msg1);
B: (C,src,dst,Ticket1) := msg1;
B: Ticket2 := e[<Nb,C,A,B>]kbs;
B: =>S(<C,src,dst,Ticket1,Ticket2>);
S: <-(msg2);
S: (C,src,dst,Ticket1,Ticket2) := msg2;
S: (Na,Ca,srca,dstA) := d[Ticket1]kas;
S: assert(C == Ca);
S: (Nb,Cb,srcb,dstB) := d[Ticket2]kbs;
S: assert(C == Cb);
S: passa := e[<Na,kab>]kas;
S: passb := e[<Nb,kab>]kbs;
S: =>B(<C, passa, passb>);
B: <-(msg3);
B: (C',passa, passb) := msg3;
B: assert(C' == C);
B: (Nb',kab) := d[passb]kbs;
B: assert(Nb' == Nb);
B: =>A(<C, passa>);
A: <-(msg4);
A: (C', passa) := msg4;
A: assert(C' == C);
A: (Na',kab) := d[passa]kas;
A: assert(Na' == Na);

End of Appendix C
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Appendix D

BAN Logic Canonical Proof Tree

believes(A,X)

believes(A,controls(S,(X)) and believes(A,believes(S,(X))
|-

believes(A,said(S,X)       and          believes(A,fresh(X))
   |-

sees(A,e[X]kas)      and believes(A,goodkey(A,kas,S))
|- |-
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Appendix E

Attack on a trivial 2 way protocol [BIRD92]

X: assume(B.k == A.k);

A: ->B(e[<A,e[N1]k>]k);

I: <-(msg1);

I: =>B(msg1);

B: <-(msg1);

B: (src,msg2) := d[msg1]k;

B: N1 := d[msg2]k;

B: N2 := new;

B: msg3 := e[<B,e[N2]k>]k;

B: ->src(<N1,msg3>);

I: <-(msg3a);

I: (N1,msg3) := msg3a;

I: =>A(msg3);

A: <-(msg3);

A: (dst,msg4) := d[msg3]k;

A: N'1 := d[msg4]k;

A: msg5 := e[<A,e[N3]k>]k;

A: ->dst(<N'1,msg5>);

I: <-(msg6);

I: (N2,msg5) := msg6;

I: =>B(N2);

B: <-(N'2);

B: assert(N'2 == N2);

End of Appendix E
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Appendix F

PVS Proof of the Needham and Schroeder Private Key Protocol
(|gnsban|
 (|gnsgoal| "" (FLATTEN)
  (("" (SPLIT +)
    (("1" (FLATTEN)
      (("1" (SPLIT +)
        (("1"
          (LEMMA "nonce_verification"
           ("P" "B_B" "Q" "B_A" "X" "goodkey(B_A,S_kab,B_B)"))
          (("1" (SPLIT -1)
            (("1" (PROPAX) NIL)
             ("2" (LEMMA "freshness3" ("P" "B_B" "Q" "B_A" "kpq" "S_kab"))
              (("2" (SPLIT -1)
                (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                 ("2" (LEMMA "freshness2" ("P" "B_B" "Y" "B_A" "X" "S_kab"))
                  (("2" (SPLIT -1)
                    (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                     ("2"
                      (LEMMA "freshness1b" ("P" "B_B" "Y" "B_A" "X" "S_kab"))
                      (("2" (SPLIT -1)
                        (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)))))))))))))
             ("3" (SPLIT -9)
              (("1"
                (LEMMA "msg_meaning1"
                 ("P" "B_B" "Q" "B_A" "KPQ" "S_kab" "X" "B_f(B_Nb)"))
                (("1" (SPLIT -1)
                  (("1" (PROPAX) NIL)
                   ("2"
                    (LEMMA "jurisdiction"
                     ("P" "B_B" "Q" "B_S" "X" "goodkey(B_B,S_kab,B_A)"))
                    (("2" (SPLIT -1)
                      (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)
                       ("3"
                        (LEMMA "nonce_verification"
                         ("P" "B_B" "Q" "B_S" "X" "goodkey(B_B,S_kab,B_A)"))
                        (("3" (SPLIT -1)
                          (("1" (PROPAX) NIL)
                           ("2"
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                            (LEMMA "freshness3"
                             ("P" "B_B" "Q" "B_A" "kpq" "S_kab"))
                            (("2" (SPLIT -1)
                              (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                               ("2"
                                (LEMMA "freshness2"
                                 ("P" "B_B" "Y" "B_A" "X" "S_kab"))
                                (("2" (SPLIT -1)
                                  (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                                   ("2"
                                    (LEMMA "freshness1b"
                                     ("P" "B_B" "Y" "B_A" "X" "S_kab"))
                                    (("2" (SPLIT -1)
                                      (("1" (PROPAX) NIL)
                                       ("2" (PROPAX) NIL)))))))))))))
                           ("3" (SPLIT -10)
                            (("1"
                              (LEMMA "msg_meaning1"
                               ("P" "B_B" "Q" "B_S" "KPQ" "S_kbs" "X"
                                "S_kab"))
                              (("1" (SPLIT -1)
                                (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)
                                 ("3"
                                  (LEMMA "sees_enc"
                                   ("P" "B_B" "Y" "B_A" "X" "S_kab" "K"
                                    "S_kbs"))
                                  (("3" (SPLIT -1)
                                    (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                                     ("2" (PROPAX) NIL)))))))))
                             ("2"
                              (LEMMA "said_sym"
                               ("P" "B_B" "Q" "B_S" "T" "B_B" "R" "B_A" "k"
                                "S_kab"))
                              (("2" (SPLIT -1)
                                (("1" (PROPAX) NIL)
                                 ("2" (PROPAX) NIL)))))))))))))))
                   ("3" (PROPAX) NIL)))))
               ("2" (PROPAX) NIL)))))))
         ("2" (POSTPONE) NIL)))))
     ("2"
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      (LEMMA "nonce_verification"
       ("P" "A_A" "Q" "A_B" "X" "goodkey(A_A,S_kab,A_B)"))
      (("2" (SPLIT -1)
        (("1" (PROPAX) NIL)
         ("2" (LEMMA "freshness3" ("P" "A_A" "Q" "A_B" "kpq" "S_kab"))
          (("2" (SPLIT -1)
            (("1" (FLATTEN) (("1" (PROPAX) NIL)))
             ("2" (LEMMA "freshness2" ("P" "A_A" "X" "A_Na" "Y" "S_kab"))
              (("2" (SPLIT -1)
                (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                 ("2" (LEMMA "freshness1" ("P" "A_A" "X" "A_Na" "Y" "S_kab"))
                  (("2" (SPLIT -1)
                    (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)))))))))))))
         ("3" (SPLIT -9)
          (("1"
            (LEMMA "msg_meaning1"
             ("P" "A_A" "Q" "A_B" "KPQ" "S_kab" "X" "A_Nb"))
            (("1" (SPLIT -1)
              (("1" (PROPAX) NIL)
               ("2"
                (LEMMA "jurisdiction"
                 ("P" "A_A" "Q" "A_S" "X" "goodkey(A_A,S_kab,A_B)"))
                (("2" (SPLIT -1)
                  (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)
                   ("3"
                    (LEMMA "nonce_verification"
                     ("P" "A_A" "Q" "A_S" "X" "goodkey(A_A,S_kab,A_B)"))
                    (("3" (SPLIT -1)
                      (("1" (PROPAX) NIL)
                       ("2"
                        (LEMMA "freshness3"
                         ("P" "A_A" "Q" "A_B" "kpq" "S_kab"))
                        (("2" (SPLIT -1)
                          (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                           ("2"
                            (LEMMA "freshness2"
                             ("P" "A_A" "X" "A_Na" "Y" "S_kab"))
                            (("2" (SPLIT -1)
                              (("1" (FLATTEN) (("1" (PROPAX) NIL)))
                               ("2"
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                                (LEMMA "freshness1"
                                 ("P" "A_A" "X" "A_Na" "Y" "S_kab"))
                                (("2" (SPLIT -1)
                                  (("1" (PROPAX) NIL)
                                   ("2" (PROPAX) NIL)))))))))))))
                       ("3" (PROPAX) NIL)))))))))
               ("3" (POSTPONE) NIL)))))
           ("2" (POSTPONE) NIL))))))))))))

End of Appendix F
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Appendix G

PVS Proof of Snekkenes KP Protocol

(|gkpban2|

 (|gkpgoal| "" (FLATTEN)

  (("" (SPLIT 1)

    (("1"

      (LEMMA "nonce_verification"

       ("P" "B_B" "Q" "B_A" "X" "goodkey(B_A,S_kab,B_B)"))

      (("1" (SPLIT -1)

        (("1" (PROPAX) NIL)

         ("2" (LEMMA "freshness3" ("P" "B_B" "Q" "B_A" "kpq" "S_kab"))

          (("2" (SPLIT -1)

            (("1" (FLATTEN) (("1" (PROPAX) NIL)))

             ("2" (LEMMA "freshness2" ("P" "B_B" "Y" "B_Nb" "X" "S_kab"))

              (("2" (SPLIT -1)

                (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                 ("2" (LEMMA "freshness1b" ("P" "B_B" "Y" "B_Nb" "X" "S_kab"))

                  (("2" (SPLIT -1)

                    (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)))))))))))))

         ("3" (SPLIT -19)

          (("1"

            (LEMMA "msg_meaning1"

             ("P" "B_B" "Q" "B_S" "KPQ" "S_kbs" "X" "S_kab"))

            (("1" (SPLIT -1)

              (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)

               ("3" (LEMMA "sees_enc"

                 ("P" "B_B" "X" "cat(S_kab,A_A)" "Y"

                  "cat(B_Nb,e(cat(A_Na,S_kab),S_kas))" "K" "S_kbs"))

                (("3" (SPLIT -1)

                  (("1" (FLATTEN)

                    (("1" (LEMMA "sees_enc"

                       ("P" "B_B" "X" "S_kab" "Y" "A_A" "K" "S_kbs"))
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                      (("1" (SPLIT -1)

                        (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                         ("2" (PROPAX) NIL)))))))

                   ("2" (PROPAX) NIL)))))))))

           ("2" (SPLIT -18)

            (("1"

              (LEMMA "msg_meaning1"

               ("P" "B_B" "Q" "B_A" "KPQ" "S_kab" "X" "B_Nc"))

              (("1" (SPLIT -1)

                (("1" (PROPAX) NIL)

                 ("2"

                  (LEMMA "jurisdiction"

                   ("P" "B_B" "Q" "B_S" "X" "goodkey(B_B,S_kab,B_A)"))

                  (("2" (SPLIT -1)

                    (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)

                     ("3"

                      (LEMMA "nonce_verification"

                       ("P" "B_B" "Q" "B_S" "X" "goodkey(B_B,S_kab,B_A)"))

                      (("3" (SPLIT -1)

                        (("1" (PROPAX) NIL)

                         ("2"

                          (LEMMA "freshness3"

                           ("P" "B_B" "Q" "B_A" "kpq" "S_kab"))

                          (("2" (SPLIT -1)

                            (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                             ("2"

                              (LEMMA "freshness2"

                               ("P" "B_B" "Y" "B_Nb" "X" "S_kab"))

                              (("2" (SPLIT -1)

                                (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                                 ("2"

                                  (LEMMA "freshness1b"

                                   ("P" "B_B" "Y" "B_Nb" "X" "S_kab"))

                                  (("2" (SPLIT -1)



Appendix G:  PVS Proof of Snekkenes KP Protocol      183

                                    (("1" (PROPAX) NIL)

                                     ("2" (PROPAX) NIL)))))))))))))

                         ("3"

                          (LEMMA "said_sym"

                           ("P" "B_B" "Q" "B_S" "T" "B_B" "R" "B_A" "k"

                            "S_kab"))

                          (("3" (SPLIT -1)

                            (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)))))))))))))

                 ("3"

                  (LEMMA "sees_enc"

                   ("P" "B_B" "Y" "A_A" "X" "B_Nc" "K" "S_kab"))

                  (("3" (SPLIT -1)

                    (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                     ("2" (PROPAX) NIL)))))))))

             ("2" (PROPAX) NIL)))))))))

     ("2"

      (LEMMA "nonce_verification"

       ("P" "A_A" "Q" "A_B" "X" "goodkey(A_A,S_kab,A_B)"))

      (("2" (SPLIT -1)

        (("1" (PROPAX) NIL)

         ("2" (LEMMA "freshness3" ("P" "A_A" "Q" "A_B" "kpq" "S_kab"))

          (("2" (SPLIT -1)

            (("1" (FLATTEN) (("1" (PROPAX) NIL)))

             ("2" (LEMMA "freshness2" ("P" "A_A" "X" "A_Na" "Y" "S_kab"))

              (("2" (SPLIT -1)

                (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                 ("2" (LEMMA "freshness1" ("P" "A_A" "X" "A_Na" "Y" "S_kab"))

                  (("2" (SPLIT -1)

                    (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)))))))))))))

         ("3" (SPLIT -18)

          (("1"

            (LEMMA "msg_meaning1"

             ("P" "A_A" "Q" "A_B" "KPQ" "S_kab" "X" "A_Na"))

            (("1" (SPLIT -1)
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              (("1" (PROPAX) NIL)

               ("2"

                (LEMMA "jurisdiction"

                 ("P" "A_A" "Q" "A_S" "X" "goodkey(A_A,S_kab,A_B)"))

                (("2" (SPLIT -1)

                  (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)

                   ("3"

                    (LEMMA "nonce_verification"

                     ("P" "A_A" "Q" "A_S" "X" "goodkey(A_A,S_kab,A_B)"))

                    (("3" (SPLIT -1)

                      (("1" (PROPAX) NIL)

                       ("2"

                        (LEMMA "freshness3"

                         ("P" "A_A" "Q" "A_B" "kpq" "S_kab"))

                        (("2" (SPLIT -1)

                          (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                           ("2"

                            (LEMMA "freshness2"

                             ("P" "A_A" "X" "A_Na" "Y" "S_kab"))

                            (("2" (SPLIT -1)

                              (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                               ("2"

                                (LEMMA "freshness1"

                                 ("P" "A_A" "X" "A_Na" "Y" "S_kab"))

                                (("2" (SPLIT -1)

                                  (("1" (PROPAX) NIL)

                                   ("2" (PROPAX) NIL)))))))))))))

                       ("3" (SPLIT -19)

                        (("1"

                          (LEMMA "msg_meaning1"

                           ("P" "A_A" "Q" "A_S" "KPQ" "S_kas" "X" "S_kab"))

                          (("1" (SPLIT -1)

                            (("1" (PROPAX) NIL) ("2" (PROPAX) NIL)

                             ("3"
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                              (LEMMA "sees1"

                               ("P" "A_A" "X" "e(cat(A_Na,S_kab),S_kas)" "Y"

                                "e(cat(A_Na,B_Nc),S_kab)"))

                              (("3" (SPLIT -1)

                                (("1" (FLATTEN)

                                  (("1"

                                    (LEMMA "sees_enc"

                                     ("P" "A_A" "X" "A_Na" "Y" "S_kab" "K"

                                      "S_kas"))

                                    (("1" (SPLIT -1)

                                      (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                                       ("2" (PROPAX) NIL)))))))

                                 ("2" (PROPAX) NIL)))))))))

                         ("2" (PROPAX) NIL)))))))))))

               ("3" (LEMMA "sees1"

                 ("P" "A_A" "X" "e(cat(A_Na,S_kab),S_kas)" "Y"

                  "e(cat(A_Na,B_Nc),S_kab)"))

                (("3" (SPLIT -1)

                  (("1" (FLATTEN)

                    (("1"

                      (LEMMA "sees1"

                       ("P" "A_A" "X" "e(cat(A_Na,S_kab),S_kas)" "Y"

                        "e(cat(A_Na,B_Nc),S_kab)"))

                      (("1" (SPLIT -1)

                        (("1" (FLATTEN)

                          (("1"

                            (LEMMA "sees_enc"

                             ("P" "A_A" "X" "A_Na" "Y" "B_Nc" "K" "S_kab"))

                            (("1" (SPLIT -1)

                              (("1" (FLATTEN) (("1" (PROPAX) NIL)))

                               ("2" (PROPAX) NIL)))))))

                         ("2" (PROPAX) NIL)))))))

                   ("2" (PROPAX) NIL)))))))))

           ("2" (PROPAX) NIL))))))))))))
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