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Abstract

Accretion, the process by which matter collects into a central object, is ubiquitous

and often dynamically important for astrophysical objects on the scale of compact

object disks (∼ 1010 cm) up to that of galactic clusters (∼ 1024 cm). In order for

matter to accrete, it must lose angular momentum. The central issue in accretion

theory is to explain the mechanism by which angular momentum is lost at rates suffi-

cient to accord with observation, orders of magnitude beyond what may be accounted

through collisional viscosity. For a wide class of astrophysical objects, characterized

by collisional mean free paths far smaller than the system scale, the magnetorota-

tional instability (MRI), first discovered in a restricted global form by Velikhov (1959);

Chandrasekhar (1960), produces MHD turbulence and a level of angular momentum

transport sufficient to account for observed rates of disk accretion (Balbus & Hawley

1991). However, in underluminous accretion flows in massive and supermassive cen-

tral galactic black holes, the best studied example of which is Sagittarius A* at the

center of our Milky Way, the MRI is not the sole means of turbulent transport. These

flows are characterized by the radiatively inefficient accretion of a hot, dilute (mildly

collisional to highly collisionless), and optically thin plasma. In these plasmas, even

an extremely weak magnetic field can lead, in addition to the MRI, to anisotropic

heat fluxes and viscous stresses directed along field lines, resulting in new classes of

instabilities. Furthermore, in these radiatively inefficient flows, the energy generated

through gravitational infall must be transported through local thermal fluxes rather

than locally dissipated as in highly collisional systems.

We propose a model to explain how hot, dilute accretion onto compact objects

may then occur. We use both fluid and kinetic theory to examine the effects of

other instabilities, the magnetothermal instability (Balbus 2001) and magnetoviscous

instability (Balbus 2004b; Islam & Balbus 2005), that may operate within these flows.
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A more elaborate kinetic theory must be applied for those dilute systems in which

the collisional mean free path is larger than the system scale or larger than the

wavelengths of the fastest growing instabilities. Our work demonstrates that these

new modes may create sufficient angular momentum and thermal energy transport

to account for the expected rates of accretion.
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Chapter 1

Introduction

Accretion, the process by which matter collects onto a central object, may be in-

credibly efficient in converting gravitational energy into heat and radiation. Whereas

nuclear fusion of hydrogen into heavier elements converts roughly 0.7% of mass into

energy, accretion onto neutron stars or black holes may be as efficient as 15%. Active

galactic nuclei (AGNs) and quasars derive their enormous power (1042 erg s−1 <∼ L <

1048 erg s−1) from this high efficiency accretion onto massive (107M⊙ < M < 109M⊙)

and supermassive (M > 109M⊙) central galactic black holes, respectively (Lynden-Bell

1969).

Accretion typically occurs in astrophysical disks. Disks, from scales of a few thou-

sand kilometers in the case of planetary rings to the scale of hundreds of kiloparsecs

in the case of galaxies, are ubiquitous in our universe. These rotational plasmas and

gases naturally arise from the fact that it is much easier for a system to lose energy

rather than angular momentum, and also from the fact that centrifugal forces provide

a steeper repulsive potential that can overcome gravitational attraction at sufficiently

small radii.

Accretion can occur only if the angular momentum of the rotating gas is trans-
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ported outwards, allowing matter to fall inwards. Fluid viscosity in a gas can provide a

physical mechanism by which accretion can occur; however, most astrophysical disks

are so large that collisional fluid viscous diffusion of angular momentum is ignor-

able. A central problem in astrophysics, therefore, is to explain how these rotational

plasmas can transport angular momentum outwards, accreted matter inwards, and

convert gravitational energy into radiation and thermal energy at rates consistent

with the observed luminosity of accreting systems or with the expected lifetime of

protostellar and protoplanetary systems.

Hydrodynamic turbulence, in light of the well-known result that fluid shear can

become turbulent at a low enough viscosity, was proposed decades ago as a mecha-

nism to drive sufficiently fast accretion to explain the luminosity of bright compact

astrophysical objects. However, for disks in which the gravitational force originates

from a central object, the angular speed of the plasma roughly follows a Keplerian

rotation profile; strong epicycles associated with this angular speed profile result in hy-

drodynamic linear stability. Smooth profiles associated with rotationally supported,

non-self-gravitating plasmas are then expected to be stable at all Reynolds numbers.

Velikhov (1959) and Chandrasekhar (1960) were the first to publish an interesting

property of magnetized conducting fluids in a Taylor-Couette flow. A Taylor-Couette

flow is one in which the fluid is confined between two concentric rotating cylinders.

A schematic of a Taylor-Couette flow is given in Fig. (1.3.5). The fluid becomes

unstable if angular speed, rather than angular momentum, decreases radially out-

wards. Balbus & Hawley (1991) applied this to astrophysical accretion flows. They

noticed that Keplerian disks would be unstable to the magnetorotational instability

(MRI). Numerical simulations showed that the MRI destabilizes a plasma and drives

turbulence with the right (outwards) sign and magnitude of angular momentum flux

causing astrophysical accretion (Balbus & Hawley 1998). A wide spectrum of local
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and global simulations have demonstrated the efficacy of the MRI to drive accretion

in a variety of different parameter regimes, in both fully ionized and low ionized

systems.

For rotational flows in which the plasma or gas remains collisional, some form

of classical accretion disk theory holds sway. Such disks are characterized by the

following: their thermal speeds are much smaller than the orbital velocity, implying

geometrically thin disks in which the disk height is much smaller than the radius;

and the gas is maintained in virial equilibrium by radiative losses as it evolves. For

compact objects there is strong evidence of Eddington-level luminosities for AGNs,

quasars, and low-mass X-ray binaries (LMXB). In addition to lower-energy classical

disks, accretion onto compact objects is characterized by radiation pressure domina-

tion in their inner regions.

However, within the past decade, there has been mounting X-ray observational

evidence of hot, dilute, highly underluminous accretion onto central galactic black

holes. These accretion plasmas are geometrically thick, optically thin, radiatively

inefficient (only a small fraction of the energy generated through gravitational infall

is radiated), and are at best only marginally collisional at the radius at which the

accretion gas is gravitationally captured. Gas spectroscopic and stellar radial obser-

vations strongly imply the ubiquity of massive to supermassive central galactic black

holes in spiral galaxies (Richstone et al. 1998). Hot underluminous accretion, rather

than the extreme luminosity expected of AGNs and quasars, might therefore be the

overwhelmingly common state of accretion onto compact objects. Analogues of the

MRI, in which viscous rather than Lorentz forces lead to destabilizing torques (Balbus

2004b), as well as thermal instabilities that are driven by adverse temperature instead

of entropy gradients (Balbus 2001), may also operate in these dilute plasmas. This

motivates our research.
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1.1 Organization of the Thesis

In §1, we discuss the geometry of an accretion disk and the algebraic nomenclature

of equilibrium and perturbed quantities. We explain simple accretion models that

constrain the mass inflow into these compact objects. We discuss classical disk ac-

cretion, characterized by efficient radiation within a virialized and geometrically thin

disk, to demonstrate that angular momentum must be carried outward for accretion

to occur. We demonstrate the insufficiency of hydrodynamics to produce turbulence

in most accretion disks. We then discuss the observational evidence of highly under-

luminous (i.e., five orders of magnitude below what can be expected from efficient

accretion) accretion black holes, for example in the center of our galaxy, and describe

phenomenological models of underluminous accretion.

We begin in §2 with a physical model of the MRI and into a linear stability anal-

ysis. We continue with local numerical simulations of Keplerian disks, and discuss

global simulations of nonradiative magnetized accretion flows unstable to the MRI.

In §2.3, we discuss other instabilities, the magnetothermal instability (MTI) and

magnetoviscous instability (MVI), that arise in dilute magnetized plasmas. Balbus

(2001, 2004b) demonstrated that even magnetic fields too weak to provide signifi-

cant Lorentz forces allow viscous stresses and heat fluxes along magnetic field lines

to sharply destabilize the flow. We discuss the stability of systems that would be

convectively stable by the classical Schwarzchild criterion but are destabilized by the

MTI. We also show results of 3D (Parrish & Stone 2006) numerical simulations that

confirm the linear analysis.

In §3 we focus on the equilibrium structure and the nature of accretion, driven

by turbulence, of dilute magnetized accretion disks. We discuss the form of disk

equilibrium to be used in further stability analysis and in future numerical simulations.

A more detailed analysis of the local vertical profile of thin, weakly magnetized dilute
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rotating disks is discussed in Appendix B. We derive expressions for energy and

angular momentum carried by this turbulence, following a treatment described in

Balbus (2004a) for radiatively inefficient accreting magnetized plasmas.

In §4 we discuss instabilities that arise when both viscous stresses and heat fluxes

are directed along field lines. We demonstrate that the so-called magnetoviscous-

thermal instability (MVTI) has the right properties to drive accretion in dilute flows.

We also demonstrate that the effects of finite compressibility, which appear in the

limit of finite ratio of magnetic to thermal pressure, does not qualitatively alter our

results. We use a fluid theory approach to characterize the stability of these plasmas.

In §5 we recalculate the MVTI for the collisionless regime, which we denote as the

collisionless MTI. We demonstrate that the collisionless MTI behaves qualitatively the

same as the MVTI, with similar growth rates. We demonstrate that the collisionless

MTI approaches the behavior of the MVTI at sufficiently high collisional frequencies,

a property seen for the collisionless MRI and noted by Sharma et al. (2003). We

also justify and consider simplifications by neglecting electron ion dynamics. In order

to examine the behavior of the dilute plasma, we derive the collisionless Boltzmann

equation appropriate for MHD stability analyses of dilute magnetized rotationally

supported thin disks. This Boltzmann equation is referred to as the drift-kinetic

equation (Kulsrud 1983, 2005). In Appendix C we express the perturbed drift-kinetic

equation for axisymmetric modes, including noninertial forces in a rotating frame,

equilibrium pressure and temperature gradients that drive the collisionless MTI, ver-

tical equilibrium accelerations, separate ion and electron temperatures, and finite

collisionality. This is useful for thesis research, as well as for further studies of MHD

modes in dilute magnetized plasmas.

In §6 we show the modified MVTI (in the fluid plasma) and the collisionless MTI

(in the collisionless plasma) when including the effects of both ion and electron tem-



6

perature, and by examining the behavior of the plasma away from the disk midplane.

Since the plasma is dilute, ions and electrons are not explicitly thermally coupled

even when the fluid approximation can describe their dynamics. Furthermore, we

study the collisionless MTI away from the midplane due to the fact that electrons

feel an acceleration larger than that of the ions by a factor of (mp/me)
1/2. The effect

of including both ion and electron dynamics for the MVTI and the collisionless MTI

is discussed in Appendix D. The modifications to the collisionless MTI away from

the disk midplane is discussed in Appendix E. We demonstrate that for astrophysi-

cal radiatively inefficient flows, in which ion temperatures are expected to be equal

to or larger than electron temperatures, that a simplifie done-temperature plasma is

valid. Second, we show that the collisionless MTI and the MVTI are not substantially

modified away from the midplane in low-magnetized plasmas.

Finally, in §7 we summarize our results and explain modifications to numerical

codes to allow for nonlinear development of the collisionless MTI and MVTI. We

discuss the form of heat fluxes that approximately model the collisionless or mildly

collisional behavior of a plasma with equilibrium radial gradients of temperature and

pressure. We discuss the effects of beyond-MHD physics that may ensure that the

plasma viscous stress is kept from becoming too large. We suggest additional ideas to

improve nonlinear MHD modeling of this important and predominant class of nonra-

diating flow, as well as additional physical effects that can be explored analytically.

1.2 Nomenclature

Our coordinate system for the rotating disk is a cylindrical system located about

the central mass. R is the radial coordinate, φ is the azimuthal angle, and z the

vertical coordinate aligned along the axis of rotation.
(

R̂, φ̂, ẑ
)

refer to unit vectors
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in the radial, azimuthal, and vertical directions, respectively. For field variables of

temperature T , pressure p, density ρ, electric and magnetic fields E and B, and heat

flux q, we use the following notation:

• Equilibrium value of, say density: ρ0,

• Perturbed density: δρ,

• Total density (equilibrium + perturbed): ρ = ρ0 + δρ.

For velocity, we use the following notation:

• Primary equilibrium flow velocity, which is azimuthal: V0 = RΩ(R)φ̂, where

Ω(R) is the orbital angular velocity,

• Perturbed flow velocity: δu,

• Total flow velocity: V = RΩ(R)φ̂ + δu.

In our initial calculations we use a single fluid model of MHD for the plasma. The

single-fluid MHD system of equations consists of mass continuity (Eq. [1.2.1]), force

balance (Eq. [1.2.2]), energy balance (Eq. [1.2.3]), and magnetic induction (Eq. [1.2.4]).

∂ρ

∂t
+ ∇ · (ρV) = 0, (1.2.1)

ρ

(

∂V

∂t
+ V · ∇V

)

= −ρ∇Φ −∇
(

p +
B2

8π

)

+
B · ∇B

4π
−∇ · σ, (1.2.2)

3

2
p

(

∂

∂t
+ V · ∇

)

ln pρ−5/3 = ∇ · q − σ : ∇V, (1.2.3)

∂B

∂t
= ∇× (V × B) , (1.2.4)

where σ is the viscous stress tensor, q is the heat flux, and σ : ∇V =
∑

ij

σij∂iVj is the

viscous heating of the gas. If we transform to a frame comoving with the equilibrium
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rotational flow, V0 = RΩ(R, z)φ̂, Eqs. (1.2.1), (1.2.2), (1.2.3), and (1.2.4) reduce to

the following:

(

∂

∂t
+ Ω

∂

∂φ

)

ρ + u · ∇ρ + ρ (∇ · u) = 0, (1.2.5)

ρ

([

∂

∂t
+ Ω

∂

∂φ

]

u + u · ∇u + 2Ωẑ × u + Ω′RuRφ̂ + R
∂Ω

∂z
uZ ẑ

)

=

−∇
(

p +
B2

8π

)

+
B · ∇B

4π
−∇ · σ,

(1.2.6)

3

2
p

(

∂

∂t
+ Ω

∂

∂φ

)

ln pρ−5/3 +
3

2
pu · ∇ ln pρ−5/3 = ∇ · q − σ : ∇u, (1.2.7)

(

∂

∂t
+ Ω

∂

∂φ

)

B + u · ∇B = −B (∇ · u) + B · ∇u + Ω′RBRφ̂+

R
∂Ω

∂z
BZφ̂.

(1.2.8)

We have allowed for the angular velocity to vary as height; however, the analysis of an

equilibrium disk in Appendix B demonstrates that the orbital velocity is independent

of z. Except where denoted, we take Ω to be a function of R alone.

When we consider the dynamics of a dilute system, we use an electron-ion plasma.

In these systems, the ions and electrons are only very weakly coupled collisionally,

and therefore the pressure of both species may differ significantly. In an electron-ion

plasma, pi refers to ion pressure, pe to electron pressure, and ps to “species” pressure

– either ion or electron. Furthermore, quantities such as equilibrium ion pressure will

be denoted as pi0. All tables are given in Appendix A. The list of variables used in

the body of the thesis are enumerated in Table (A.1). The normalized and simplified

variables are given in Table (A.2). Important physical parameters associated with

massive and supermassive black hole accretion are given in Table (A.3).



9

Finally, we denote radial equilibrium gradients of density, temperature, and pres-

sure as the following,

∂ρ0

∂R
≡ ∂ρ0

∂R

∣

∣

∣

∣

R,z=0

, (1.2.9)

∂T0

∂R
≡ ∂T0

∂R

∣

∣

∣

∣

R,z=0

, (1.2.10)

∂p0

∂R
≡ ∂p0

∂R

∣

∣

∣

∣

R,z=0

. (1.2.11)

The variables T0(R) ≡ T0(R, z = 0), p0(R) ≡ p0(R, z = 0), and n0(R) = n0(R, z = 0).

This compact notation is used in §3 - §7, and Appendices B and C.

1.3 Classical Accretion as Applied to Compact Ob-

jects

Here we describe simple models of accretion onto massive and supermassive black

holes. The luminosity of these black holes can be estimated from their maximum

accretion rate (Eddington), or the maximum rate due to gravitational capture of the

ambient medium (Bondi rate). We describe the classical model of accretion onto

compact objects (Pringle 1981; Frank et al. 2002). This classical model of accretion

relates the rate of outward radial angular momentum flux to the luminosity and

spectrum of accreting compact objects. However, this model does not describe the

physical mechanism for outward angular momentum transport. One mechanism by

which angular momentum can be transported outwards is through a collisional vis-

cosity. However, in accretion disks we show that this mechanism is far too low to

explain observed rates of accretion into compact objects.

In Fig. (1.3.1) we show an artist’s depiction of the innermost regions of an AGN
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or a quasar. The source of accretion matter for this black hole is either the ambient

medium gravitationally captured by the black hole or winds from surrounding massive

stars.

Fig. 1.3.1.— Artist’s conception of the innermost region of an AGN, in which we have
high mass rate disk-like accretion onto a supermassive black hole, This picture is taken
from the http://chandra.harvard.edu/photo/2006/j1655/j1655 ill agn.jpg

1.3.1 Eddington and Bondi Limits to Accretion

The maximum luminosity of an object, known as the Eddington luminosity, occurs

when radiation forces balance out gravitational forces. To estimate this luminosity,

consider the simplest case of spherically symmetric accretion. The outward radiative

force per particle is FσT /c, where F = L/ (4πR2) is the radiative flux, σT = 6.65 ×

http://chandra.harvard.edu/photo/2006/j1655/j1655_ill_agn.jpg
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10−25 cm−2 is the Thomson scattering cross section, and R is the radial distance from

the central object. The gravitational force per particle is GMmp/R
2. The Eddington

luminosity is given by,

Ledd =
4πGMmpc

σT

≃ 1.3 × 1038

(

M

M⊙

)

erg s−1. (1.3.1)

The Eddington accretion rate for 10% efficiency for matter to energy conversion is,

Ṁedd = 2.3 × 10−8

(

M

M⊙

)

M⊙ yr−1. (1.3.2)

Quasars and AGNs have bolometric luminosities on the order of 1042 − 1047 erg s−1

(Richards et al. 2006). These luminosities are all consistent with Eddington accretion

rates for massive (105M⊙
<∼ M < 107M⊙) and supermassive (M >∼ 107M⊙) black

holes. Furthermore, such systems are, in their inner regions, dominated by radiation

pressure. The photon bubble instability (Arons 1992; Gammie 1998) may allow for

the advection of radiative energy through buoyant bubbles (Blaes & Socrates 2001;

Begelman 2006a) and can allow for relatively long-term super-Eddington accretion

rates (mass accretion rates larger than estimated in Eq. [1.3.2]) in ultra-luminous

X-ray sources (Turner et al. 2005; Begelman 2006b). It may also be possible that

most of the energy in optically thick, radiation pressure dominated plasmas could

be advected into the black hole (Begelman 1978; Abramowicz et al. 1988), leading to

super-Eddington accretion rates.

For central massive and supermassive black holes the primary mechanism for ac-

cretion in the outer regions is the gravitational capture of the ambient gas. Bondi

(1952) first analyzed the result of spherical accretion of gas, with a specific polytropic

equation of state, onto a central object. The general class of largely spherically sym-

metric and pressure-supported accretion or winds onto a central object is referred to
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as Bondi flow. Many elaborations of Bondi flow can be found in the literature. Most

explorations focus on either finite heating or cooling (Mestel 1954), finite thermal

conductivity or viscosity (Johnson & Quataert 2007), or on partial rotational sup-

port (Proga & Begelman 2003). However, to within an order of magnitude one can

estimate the Bondi mass accretion rate using dimensional analysis from the ambient

gas density and temperature, and the central mass of the object. At the gravitational

capture radius the escape velocity from the central object equals the local sound

speed. The mass accretion rate can be estimated by assuming that matter, at the

ambient density, flows inward through a sphere of the capture radius at the sound

speed. The actual capture radius and Bondi mass accretion rate differ from these

estimates by factors of order unity.

Consider one of the simplest types of Bondi flow: a simple ion-electron plasma in

steady state with equal ion and electron temperatures T , an adiabatic equation of

state p ∝ ργ, no fluid viscosity, and a spherically symmetric radial flow of matter. If

γ > 1, Eqs. (1.2.1) and (1.2.2) can be reduced into the following forms,

4πr2ρ(r)ur(r) = Ṁ, (1.3.3)

1

2
ur(r)

2 +
γ

γ − 1
θ∞

(

ρ

ρ∞

)γ−1

− GM

r
= B, (1.3.4)

where r is the spherical radial coordinate and ur is the spherical radial flow velocity.

B = γ
γ−1

θ∞ is the Bernoulli parameter, θ∞ = 2kBT∞/mp is the ambient isothermal

sound speed squared, and T∞ is the temperature at “infinity” (far from the gravita-

tional influence of the central object). For isothermal flow, Eq. (1.3.4) is modified in

the following manner:

1

2
ur(r)

2 + θ∞ ln

(

ρ

ρ∞

)

− GM

r
= 0 (1.3.5)
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At mass flow rates below the maximum accretion rate, Bondi flows are constrained

to be inflowing solutions, everywhere with subsonic infall velocity. One can show

that the maximum accretion rate associated with interaction of an object of mass M

residing within a medium at ρ∞ and θ∞,

Ṁ2
Bondiθ

3
∞

G4M4π2ρ2
∞

=















γ−3
(

2
5−3γ

)
5−3γ
γ−1

, 1 < γ ≤ 5/3

e3. γ = 1

(1.3.6)

ṀBondi can be expressed in terms of physical parameters convenient for our area of

interest. For a gas equation of state γ = 5/3.

ṀBondi =1.02 × 10−4

(

M

107M⊙

)2
( n∞

100 cm−3

)

(

T∞
107 K

)−3/2

M⊙ yr−1.(1.3.7)

A 10% matter-energy conversion efficiency gives Bondi accretion luminosities,

LBondi =0.1ṀBondic
2

=5.84 × 1041

(

M

107M⊙

)2
( n∞

100 cm−3

)

(

T∞
107 K

)−3/2

erg s−1.

(1.3.8)

Bondi flows in which the equation of state γ < 5/3 become transonic at the maximal

accretion rate ṀBondi. The gas falls from infinity subsonically up to the sonic point,

where the infall speed equals the local sound speed. Inside the sonic point, the gas

flows in supersonically. However, for a γ = 5/3 equation of state gas, this sonic point

is located at the origin, therefore the flow at any allowable mass rate is subsonic.

Another solution at maximum outflow rates is one of a transonic wind, in which the

gas outflow velocity is subsonic inside the sonic point and supersonic outside it. Early

models of the solar wind, for example, were fit to transonic Bondi outflow solutions

(Parker 1958b). Plots of the Bondi flow Mach number as a function of the radius are
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shown for a γ = 4/3 plasma, in Fig. (1.3.2).
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Log 10HR�RsL

-1.5

-1

-0.5

0

0.5

L
o

g
1

0
H

u
r
�

c
s
L

Fig. 1.3.2.— Plot of the Bondi Mach number (radial flow speed divided by sound
speed cs) as a function of radius (normalized by gravitational capture radius) for
physically allowable Bondi solutions. Lines in blue denote settling solutions, at ac-
cretion rates Ṁ = 3

4
ṀBondi,

1
2
ṀBondi, and 1

4
ṀBondi moving down from the sonic point.

The transonic inflow (subsonic outside a sonic point, supersonic inside) and transonic
outflow (subsonic inside the sonic point, and supersonic outside) are shown in red.

1.3.2 Classical Accretion Disk Theory

In this section, we explain the salient physical features by which matter in a rotation-

ally supported flow can accreted. We focus on classical accretion disk theory, which

is characterized by the following major simplifications. One, the disk is geometrically

thin, i.e. the disk height H is much smaller than the radius R. The gas thermal

velocities are much smaller than orbital velocities, and therefore the gas follows an

approximately Keplerian rotation profile, Ω2 ≈ GM/R3. Two, the gas is in virial

equilibrium, which implies that at least half the energy generated through gravita-
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tional infall of matter is radiated away in the accretion disk itself. This disk has an

inner radius Rin and an outer radius Rout. For a neutron star or white dwarf, Rin

may correspond to the surface of the star, while for a black hole it may correspond to

its marginally stable orbit (Rin = 6GM/c2 for a Schwarzchild black hole) or perhaps

even the event horizon (Krolik et al. 2005). A diagram of the mechanism of a classical

accretion flow is shown in Fig. (1.3.3).

Fig. 1.3.3.— Classical accretion flows in a geometrically thin (H ≪ R) and optically
thick disk. Turbulent torques arise via some physical mechanism due to nonrigid ro-
tation, d ln Ω/d ln R 6= 0. Turbulent torques transport angular momentum outwards,
resulting in matter accretion. In classical disks, energy generated through accretion
is locally radiated through the disk’s vertical surfaces.

Note that for high mass rate accretion onto compact objects, the fluid has negligi-



16

ble viscosity over most of the spatial extent of the disk. By high mass accretion rates,

we refer to infalling rates at either the Bondi or Eddington luminosities. Spectral

models of emission from high mass accretion rate supermassive black holes suggest

ion densities of the order 109 − 1012 cm−3 and ambient gas temperatures of the order

of 106 − 108 K at the gas gravitational capture radius, of size 1016 − 1018 cm. Obvi-

ously, as one moves closer to the black hole, the plasma gets hotter and denser. The

ion-ion and electron-electron collisional mean free paths are given by (Spitzer 1962),

λi = 1.5 × 1013

(

T

104 K

)2
( n

1 cm−3

)−1 1

ln Λ
cm, (1.3.9)

λe = 1.1 × 1013

(

T

104 K

)2
( n

1 cm−3

)−1 1

ln Λ
cm. (1.3.10)

Here ln Λ ∼ 20 is the Coulomb logarithm,

ln Λ = ln

(

λDe

rπ/2

)

, (1.3.11)

where λDe is the Debye length (length scale over which electric fields are screened

by the intervening plasma) and rπ/2 is the ion impact parameter for a collision in

which each particle has kinetic energy kBTi, and scatters by an angle π/2, in the

center-of-mass frame. For the same ion and electron temperatures, λDe and rπ/2 can

be expressed as,

λDe =

√

kBTi

8πe2ni

, (1.3.12)

rπ/2 =
e2

4kBTi

. (1.3.13)

The Reynolds number Re = LV/ην is the ratio of flow velocity to the collisional

viscous velocity, where L and V are the system sizes and velocities, respectively. We



17

estimate L ∼ R and the velocity as the isothermal sound speed. For these flows,

Re = R/λi is on the order of 107 − 1010. Collisional viscosity is too small to explain

the dynamics of accretion onto compact objects.

We now consider a simple model of classical accretion driven by hydrodymagnetic

turbulence to demonstrate the presence of a turbulent torque that can transport

angular momentum outwards, using arguments laid out in Balbus & Hawley (1998).

We assume a disk that is steady and spatially smooth over time and length scales

much larger than the turbulence. The fluctuation in fluid velocities (uφ, uz), magnetic

field B, and density ρ average to zero.

〈δuφ〉ρ = 〈δuz〉ρ = 0, (1.3.14)

〈δB〉ρ = 0, (1.3.15)

〈δρ〉ρ = 0.. (1.3.16)

This average, 〈〉ρ, is defined in the following manner:

〈A〉ρ =
1

2πΣ∆R∆T

∫ ∆T

0

∫ R+∆R/2

R−∆R/2

∫ 2π

φ=0

∫ ∞

z=−∞
AρdR′ dz dφ dt, (1.3.17)

where,

Σ =

∫ ∞

z=−∞
ρ dz. (1.3.18)

This average is taken over a radial slice ∆R much smaller than the disk radius but

larger than the largest scale of the turbulence and a time scale ∆T much longer

than the turnover timescale of the turbulence. The radial velocity uR consists of a

fluctuating part 〈δuR〉ρ = 0 and a nonzero mean mass flow. The mean flow velocity is

far smaller than the root mean square turbulent velocity, i.e., 〈uR〉ρ ≪
√

∣

∣

∣
〈δuRδuφ〉ρ

∣

∣

∣
.
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We consider a system without collisional viscosity or thermal conductivity in

steady state, but with a a radiative flux that can cool the gas. Equations of mass con-

tinuity (Eq. [1.2.1]), force balance (Eq. [1.2.2]), and energy (Eq. [1.2.3]), then reduces

to,

∇ · (ρV) = 0, (1.3.19)

ρV · ∇V = −ρ∇Φ −∇
(

p +
B2

8π

)

+
B · ∇B

4π
, (1.3.20)

3

2
ρV · ∇

(

p

ρ

)

+ p∇ · V = −∇ · Frad. (1.3.21)

where Frad is the radiative flux. We ignore radial pressure gradients in Eq. (1.3.20)

since the disk is thin. In a thin disk, radial force balance results in a Keplerian

rotation profile and vertical force balance results in a disk height on the order of H.

The azimuthal component of Eq. (1.3.20), multiplied by R, can be written as,

1

R

∂

∂R
R2

(

ρVφVR − BRBφ

4π

)

= 0, (1.3.22)

where R

(

ρVφVR − BRBφ

4π

)

is the total radial flux of angular momentum. It includes

terms associated with angular momentum flux carried by the radial flow as well as

angular momentum flux due to the hydromagnetic turbulence. If we take the scalar

product of Eq. (1.3.20) with V and add to Eq. (1.3.21) we then have the total energy

balance equation:

∇ ·
(

V

(

1

2
ρv2 + ρΦ

)

+
B

4π
× (V × B)

)

= −∇ · Frad, (1.3.23)

where we have ignored the enthalpy flux of a monotonic gas (5pV/2) due to the

thinness of the disk.
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For a thin disk, one may use lowest-order techniques to characterize the role that

turbulence will play in transferring mass and angular momentum in an accretion disk.

The turbulent flow speeds in a disk with subthermal magnetic fields will only reach the

local sound speed due to the fast dissipation of supersonic turbulence through shocks.

Because the turbulent flow speeds are much smaller than the orbital velocity, then to

lowest order quadratic fluctuating fluid correlations of velocity and magnetic field can

be used to characterize the accretion flow. It is the averaged quadratic correlations

between radial and azimuthal velocities, and radial and azimuthal magnetic fields,

that acts as an outward flux of angular momentum that allows accretion to occur.

First, consider mass flow. If we average Eq. (1.3.19) as described in Eq. (1.3.17),

the mass accretion rate is related to the average radial flow:

Ṁ = −2πRΣ 〈uR〉ρ . (1.3.24)

Second, consider angular momentum balance. We use the boundary conditions that

the radial flux of angular momentum is zero at Rin. If we take the average of

Eq. (1.3.22), and use the mass flow relation in Eq. (1.3.24), we get,

〈WRφ〉 =
ṀΩ

2πΣ

[

1 − (Rin/R)1/2
]

, (1.3.25)

where WRφ is the Rφ component of the stress tensor, defined by,

〈WRφ〉 =

〈

δuRδuφ − δBRδBφ

4πρ0

〉

ρ

. (1.3.26)

Rρ 〈WRφ〉 is the angular momentum radial flux carried by the turbulence. This tur-

bulence must yield 〈WRφ〉ρ > 0 in order for accretion to occur. Eqs. (1.3.24), (1.3.25),

(1.3.26) and sonic turbulence imply mass flow velocities
∣

∣

∣
〈uR〉ρ

∣

∣

∣
∼ 〈δuRδuφ〉ρ / (RΩ).
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Third, expressions for mass and angular momentum flux are used to calculate the

energy flux carried by the accretion flow. To lowest order, Eq. (1.3.23) can be written

as,

∇ ·
(

ρuRR̂

[

Φ +
1

2
R2Ω2 + RΩuφ

]

− RΩ
δBRδBφ

4π
R̂

)

= −∇ · Frad.(1.3.27)

Using the Keplerian result Φ = −R2Ω2, and averaging Eq. (1.3.23), we get,

1

R

∂

∂R
R

(

ṀRΩ2

4π
+ ΣRΩ 〈WRφ〉

)

= −∇ · Frad. (1.3.28)

FE, the energy flux carried by the accretion flow, is

FE =
ṀRΩ2

4π
+ ΣRΩ 〈WRφ〉 =

3GMṀ

4πR2

[

1 − 2

3
(Rin/R)1/2

]

. (1.3.29)

In a radiatively efficient disk, the energy flux is radiated. The accretion luminosity is

then given by:

Lacc =2π (RinFE (Rin) − RFE (Rout))

=
GMṀ

2Rin

(

1 − 3
Rin

Rout

+
3

2

(

Rin

Rout

)3/2
)

(1.3.30)

If the outer edge of the disk R ≫ Rin, then up to half the gravitational energy may

be radiated away. The other half can either be accreted on the surface of a star or,

in the case of black holes, lost as it passes through the event horizon. For a given

Ṁ , classical disk-like accretion onto a compact object can be extremely efficient.

When Ṁ is sufficiently large, the high luminosity of AGNs and quasars can be easily

explained.

Classical accretion also has a characteristic spectrum. In an optically thick disk,
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the energy generated through accretion is radiated through the outer disk surfaces as

blackbody emission. This blackbody emission at a given radius R has temperature

Teff(R), given by the relation below.

2σT 4
eff =

1

R

∂

∂R
(RFE(R)) ,

Teff =

(

3GMṀ

8πR3σ

(

1 −
√

Rin

R

))1/4 (1.3.31)

The factor of 2 arises because radiation escapes from both surfaces of the disk, and

σ = 5.67× 10−5 erg cm−2 s−1 K−4 is Stefan-Boltzmann’s constant. For R ≫ Rin, the

temperature Teff(R) = Tin (R/Rin)
−3/4, where

Tin =

(

3GMṀ

8πR3
inσ

)−1/4

(1.3.32)

The blackbody spectral radiance Bν at Teff is given by,

Bν (Teff) ∝
ν3

ehν/(kBTeff) − 1
. (1.3.33)

Where ν is the frequency of emitted radiation. The emitted spectrum of the whole

disk is,

Sν ∝
∫ Rout

Rin

Bν (Teff(R)) 2πR dR (1.3.34)

This spectrum is shown in Fig. (1.3.4).

1.3.3 The Insufficiency of Hydrodynamics

We have derived a theory of classical accretion but have not mentioned the form of

WRφ. The study of a large class of rotationally supported astrophysical systems can
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Fig. 1.3.4.— Emission spectrum from a classical accretion disk radiating as a local
blackbody at each point, where the outer radius of the disk Rout = 1000Rin. The
frequencies corresponding to emission at Tin (the temperature of the disk) and Tout

(the temperature at the disk outer edge) are shown with arrows.

be reduced to the study of what physical processes can lead to a significant positive

averaged 〈WRφ〉 to drive accretion. For several decades, hydrodynamic turbulence

was proposed as a promising mechanism to explain the necessary level of angular

momentum transport that can power classical accretion flows or that can yield the

relatively fast formation of stars from their protostellar disks. This appeared promis-

ing as flows became turbulent, for example, in rigid pipes at low Reynolds numbers

of around Re ∼ 103 (Batchelor 1967). Furthermore, numerical simulations and ex-

periment have demonstrated the existence of nonlinear hydrodynamic instability and

turbulence of a Cartesian shear flow at small Reynolds number ∼ 103 (Orszag & Kells

1980; Drazin & Reid 1981; Bayly et al. 1988).

Although von Weizsäcker (1948) had proposed a mixing-length theory (analogous
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to that of efficient thermal transport in convectively unstable flows) of disk turbulence,

Shakura & Sunyaev (1973) proposed an ansatz of WRφ applicable to astrophysical

accretion flows:

〈WRφ〉 = αSSθ, (1.3.35)

where αSS is some dimensionless parameter. This was justified by the fact that fast

shock dissipation would constrain disk turbulence speed to be less than the sound

speed cs. An alternative ansatz is one in which there is an effective viscosity

ην,eff = α′
SScsH, (1.3.36)

where α′
SS and αSS differ by constants of order unity. Analytic or numerical models

that employ this form of the effective viscosity or azimuthal tensor are referred to

as α-viscosity accretion models. The benefit of either closure, for a turbulent an-

gular momentum flux or an effective turbulent viscosity, is that a relatively simple

dynamical model of an accretion disk can be constructed. One may calculate from

Ṁ and αSS the disk mass, density, temperature, and height. In other words, one may

calculate the mass accretion rate from the local structure of the disk and vice-versa.

Although hydrodynamic turbulence has for decades been deemed a plausible

source for enhanced transport in disks, a Keplerian disk has specific angular mo-

mentum varies as R1/2 – increasing outwards. There exist strong stable epicycles

that make the flow linearly stable to axisymmetric hydrodynamic perturbations, the

so-called Rayleigh criterion. Numerical simulations have demonstrated hydrodynamic

stability and dissipation of hydrodynamic turbulence at the limit of computationally

accessible Reynolds numbers in local Keplerian rotating systems (Balbus et al. 1996;

Hawley et al. 1998).
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A recent careful laboratory experiment by Ji et al. (2006) has demonstrated that

there is no linear or nonlinear hydrodynamic instability of a Taylor-Couette flow

up to a Reynolds number of 106. This Reynolds number is beyond the limit of

numerical simulation (Lesur & Longaretti 2005) and approximately 20 times that

previously achieved in the laboratory (Richard 2001). Ji et al. (2006) studied the

stability properties of a Taylor-Couette flow of water or a water/glycerol mixture. A

textbook example of a Taylor-Couette flow is shown in Fig. (1.3.5), and a diagram

of the setup used in Ji et al. (2006) is shown in Fig. (1.3.6). Ω1 and r1 are the

inner cylinder’s angular speed and radius, respectively, and Ω2 and r2 are the angular

speed and radius of the outer cylinder, respectively. Both cylinders rotate in the

same sense, with Ω2 < Ω1 but r2
2Ω2 > r2

1Ω1. This ensures an equilibrium rotation

profile that is Rayleigh stable. In their setup, Ji et al. (2006) suppressed Ekman

circulation by having the endcaps rotate differentially as well. For example, a cup

of water takes a few seconds rather than minutes, from viscous diffusion of angular

momentum, to lose its spin is due to an Ekman boundary layer at the cup’s surface.

They found that the angular momentum flux within this rotating system is zero

to within experimental measurement. The results of Ji et al. (2006) are shown in

Fig. (1.3.7). The Reynolds number of the flow was modified by changing the angular

velocity of the inner and outer cylinders or by choosing different mixtures of water

and glycerol. They measured a normalized averaged angular momentum flux β at

the midplane of their apparatus, defined as,

β =
〈uRuφ〉
〈

u2
φ

〉

q2
, (1.3.37)

where q = −∂ ln Ω/∂ ln R. q = 3/2 for a Keplerian flow, and 1.2 ≤ q ≤ 1.9 for their

experimental setup. Although these results do not demonstrate that hydrodynamic
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turbulence in Keplerian disks cannot transport angular momentum they appear to

imply that the level of angular momentum transport is orders of magnitude smaller

than that needed to explain astrophysical accretion.

Fig. 1.3.5.— The textbook example of
Taylor-Couette flow consists of an invis-
cid fluid spaced between two cylinders, of
infinite vertical extent. Here the cylinders
rotate in the same sense, with Ω2 < Ω1.
As long as fluid specific angular momen-
tum R2Ω increases outwards, the fluid is
linearly stable.

outer
cylinder

inner
cylinder

outer
rings

shaftspulley

seal
holders

inner
rings

fluid

Fig. 1.3.6.— The Princeton experimen-
tal setup for a Taylor-Couette flow with
water, glycerol, or a mixture of the two,
taken from Ji et al. (2006). The inner
and outer cylinders rotate in such a man-
ner that the angular speed decreases out-
wards, but the angular momentum in-
creases outwards. The endcaps also dif-
ferentially rotate in order to frustrate Ek-
man circulation.
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Fig. 1.3.7.— Normalized radial angular momentum flux in Ji et al. (2006) experi-
ment. Angular momentum carried by the this flow was found to be zero to within
experimental errors for the highest Reynolds number trials.
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One must note that hydrodynamic instabilities can act on other rotationally sup-

ported systems to cause accretion. For self-gravitating systems such as galactic or

dense protostellar disks, where the Jeans frequency
√

Gρ > Ω, coherent spiral den-

sity waves develop (Toomre 1977) that can transport angular momentum and redis-

tribute matter (Adams et al. 1989; Laughlin et al. 1997). A class of nonaxisymmetric

instabilities within toroids, first studied by Papaloizou & Pringle (1984, 1985), and

elucidated by Goldreich et al. (1986), is one in which waves on opposite sides of a

corotation (CR) point can exchange energy with each other. One side of the CR with

negative energy loses energy to the other side which has positive energy, hence the

process runs away and destabilizes the torus. However, these instabilities require a

hard wall or sharp torus edge on either side of the CR point – currently believed

unlikely to occur in nature. They also require a rotation profile d ln Ω/d ln R < −
√

3.

For relatively slender disks in which the gravity is largely due to the central object,

accretion does not occur due to hydrodynamic instabilities. Magnetic fields, however,

can play a role in destabilizing even Keplerian flows. In §2 we describe the MRI,

which has shown such promise in accretion physics.

1.4 Evidence for Underluminous Accretion

Although AGNs and quasars are some of the most powerful and most energetic com-

pact objects in the universe, at recent epochs in the history of the universe (z < 1)

they are rare. Evidence from Very Large Baseline Interferometry (VLBI) measure-

ments of water masers, from gas spectroscopy, and from stellar dynamics give strong

evidence for the existence of massive and supermassive black holes in galaxies that

possess a central bulge (see Richstone et al. (1998) for an exhaustive review on diag-

nostic tools for the detection of central galactic black holes). The bulge refers to the
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central spherical gaseous and stellar component of a spiral galaxy. However, a very

recent survey of AGNs has demonstrated that there exist ∼ 200 active black holes

within 400 million light-years (see Fig. [1.4.1]). Within this 400 million light-year

volume of space there exist ∼ 104 galaxies that possess a central bulge. Only a few

percent of central galactic black holes at the current epoch are AGNs or quasars.

Fig. 1.4.1.— This all-sky map contains all active supermassive black holes out to a
distance of 400 million light years from Earth. Scientists are convinced that no active
black hole has gone uncounted. Shown here are all high-energy X-ray sources, which
includes many star systems within our galaxy which are not part of the Swift black
hole survey. The AGN are the light blue and green dots, largely ”high” in the sky
above and below the galactic plane. Figure and publication of results are taken from
theNASA Website.

The Chandra space probe with its X-ray sensitivity and angular resolution of 1”

can resolve the inner structure of nearby underluminous galactic black holes to at

least a few times the Bondi radius. In Table (1.4.1) we show results of measured

emission from nearby galactic black holes, and compare to the expected luminosity

from Bondi capture, assuming 10% conversion of matter to energy. Here we include

http://www.nasa.gov/centers/goddard/news/topstory/2006/blackhole_headcount.html
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the Sagittarius A* black hole at the center of our Milky Way galaxy, the best studied

underluminous compact accretor to date. A false-color X-ray emission map of Sag. A*,

taken from Chandra, is shown in Fig. (1.4.2). The mass of the Sag. A* black hole

is far smaller, and its luminosity is far lower, than other nearby central galactic

black holes. However, Sag. A* is visible because it is 100 times closer than the next-

nearest central galactic black hole. The measured bolometric emission from Sag. A* is

primarily in the far infrared and radio frequencies at a luminosity of L ∼ 1036 erg s−1.

This energy is only ∼ 10−5 what would be expected from radiatively efficient Bondi

accretion (Narayan 2002; Quataert 2003).

Table 1.4.1:: Accretion Flow and X-Ray Luminosities of

Dim Galactic Black Holes

Galaxy
d

(Mpc)

MBH

(×108M⊙)

RBondi

(arcsec)

LBondi

(erg s−1)

LX

(erg s−1)

NGC 13991 20.5 10.6 0.36 2.3 × 1044 <∼ 9.7 × 1038

NGC 44721 16.7 5.65 0.24 4.5 × 1043 <∼ 6.4 × 1038

NGC 46361 15.0 0.791 0.049 4.5 × 1041 <∼ 2.7 × 1038

M 822 18.4 30 2 5 × 1044 ∼ 7 × 1040

Sag. A*3 8.5 × 10−3 0.0264 2.2 6 × 1040 2.2 × 1033

Likewise, there is strong evidence of mildly collisional to collisionless plasma at

the limits of resolution of Chandra. Using the ion-ion collisional mean free path as

1Taken from Loewenstein et al. (2001)
2Taken from Di Matteo et al. (2003)
3Taken from Baganoff et al. (2003)
4Mass measurement of Sag. A* taken from Schödel et al. (2002); Ghez et al. (2003)
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Fig. 1.4.2.— False color Chandra X ray image of 2-10 keV emission within 2
pc of the central galactic black hole Sagittarius A*. The diffuse emission is
attributed mainly to local shock heating and supernova heating, while point
sources are associated with compact stellar emission. Image source is taken from the
http://chandra.harvard.eduphoto/2001/0204flare/0204flare xray circle.jpg.

given in Eq. (1.3.9), the Bondi gravitational capture radius:

RBondi =
GMmp

2kBT
, (1.4.1)

http://chandra.harvard.eduphoto/2001/0204flare/0204flare_xray_circle.jpg
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we calculate the mean free path of the ambient medium within 1” from the central

black hole as shown in Table (1.4.2). In our estimate the density and temperature

of the ambient medium is kept constant down to the Bondi capture radius of the

black hole. We have borrowed a table from Menou (2005), with Chandra data on the

ambient electron number density n and temperature T within the inner 1“ of nearby

underluminous massive and supermassive black hole accretors.

Table 1.4.2:: Dilute Nature of Dim Accreting Galactic

Black Holes

Galaxy
n (1”)

( cm−3)

T (1”)

(107 K)

R (1”)

( cm)
λ (1”) /R (1”) λ (1”) /RBondi

Sag. A*1 100 2.3 1.3 × 1017 0.4 0.4

NGC 13992 0.3 0.9 3.1 × 1020 0.009 0.02

NGC 44722 0.2 0.9 2.5 × 1020 0.016 0.07

NGC 46362 0.07 0.7 2.2 × 1020 0.032 0.6

M 823 0.17 0.9 2.7 × 1020 0.018 0.02

M 324 0.07 0.4 1.2 × 1019 0.2 1.3

Since the mean free path varies as n−1T 2, for an adiabatic monatomic gas the

mean free path is larger at smaller radii. For a relativistic gas, where T ∝ n1/3, the

gas density must increase more steeply than R−3 in order for the plasma to become

more collisional as one moves inwards. This requires that the infall velocity decreases

faster than R for a steady inflow or wind. Such velocity profiles appear unlikely

in extended astrophysical objects, for which the infall or outflow velocity increases

1Taken from Baganoff et al. (2003)
2Taken from Baganoff et al. (2003)
3Taken from Di Matteo et al. (2003)
4Taken from Ho et al. (2003)
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inwards (for example, the solar wind). It is almost certain that the inner unresolved

portions of these black holes become collisionless.

1.5 The Nature and Models of Radiatively Ineffi-

cient Accretion Flows

Underluminous accretion in black holes has been shown to be dilute as well as to

have much lower luminosity than expected from gravitational capture of the ambient

medium. Although it is likely that accretion occurs at rates far below the Bondi

luminosity in these systems, the mildly collisional nature of the plasma also implies

that the flows are radiatively inefficient. These flows are also sufficiently dilute that

the bulk of their emission is optically thin. In these systems, the timescale over which

energy is radiated is much longer than the infall timescale. The ion-electron energy

coupling in this gas is so weak that the ions never cool, and remain at virial tempera-

tures (Ti ∼ 1012 K near the black hole event horizon). Electrons are efficient radiators.

The time scale for electron radiation is much smaller than the timescale over which

ions and electrons exchange energy, leading to much cooler electron temperatures

Te ∼ 108 − 1010 K (Esin et al. 1997; Narayan et al. 1998; Quataert 2003).

We demonstrate the essential two-temperature nature of these hot and dilute

plasmas in Fig. (1.5.1). Electrons are heated by the ions at a rate Qie, described by

Stepney & Guilbert (1983), which balances out the relatively efficient electron radia-

tive cooling Q−. The radiative electron emission rate Q− are from bremsstrahlung,

synchrotron, synchrotron self-Compton (SSC), and inverse bremsstrahlung Comp-

ton (IBC). These radiation processes are described in some detail in Narayan et al.

(1995) and references therein. We calculate the ratio of ion to electron temperature

as a function of isothermal sound speed squared, θ, and ion number density ni. We
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consider gas at a distance of ten Schwarzchild radii from the Sag. A* black hole. We

assume a density profile ρ ∝ R−3/2, which results in an optical depth to Compton

scattering,

τes = σT ni

∫ ∞

R

(R/R′)
−3/2

dR′ = 2σT Rni, (1.5.1)

The optical depth is important in characterizing the electron cooling due to SSC and

IBC. We use1 β = 200, to calculate synchrotron and SSC emission rates. We consider

only those densities for which τes < 1. We observe from our model that at relatively

small densities but large normalized mpθ/kB > 1010 K, the bulk of the thermal

energy lies in the ions. Maximum electron temperatures are of the order of 1010 K,

only a few times the rest mass energy of the electron. The two-temperature nature

of a hot and dilute plasma was first proposed by Shapiro et al. (1976) to explain

hard X-ray spectrum of Cygnus X-1. However, it was demonstrated to be thermally

unstable (Piran 1978). A thermally stable class of sub-Eddington solutions that also

leads to two-temperature plasmas was studied in some detail by Ichimaru (1977) and

Rees et al. (1982) in the context of the hot inner regions of AGNs. Self-similar models

of underluminous accretion were investigated by Narayan & Yi (1994); Narayan et al.

(1995); Narayan & Yi (1995). In such flows, known as advection dominated accretion

flows (ADAFs), only a small fraction of the gravitational energy is radiated out by

the electrons. Nearly all the energy is advected through the black hole.

The gas in an ADAF solution has positive Bernoulli parameter that increases at

small radii, therefore a gram of gas near the black hole can unbound 104 grams of

gas near the black hole’s gravitational capture radius. This property of ADAFs led

Blandford & Begelman (1999) to propose an advection-dominated inflow-outflow so-

lution (ADIOS), in which the accretion rate due to an inflow decreases as a function

1β = θ/v2

A, where vA is the Alfvén speed. See Table (A.1).
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Fig. 1.5.1.— Contour plot of log10 Ti/Te at various θ and ni at R = 10Rschw for a
2.6 × 106M⊙ black hole. The horizontal axis denotes ion density in cm−3 and the
vertical axis is the average thermal energy per particle mpθ/kB in Kelvins.

of radius. At large radii there is a relatively strong wind that carries out angular

momentum and nearly balances a large mass inflow while near the black hole there is

primarily a (small) mass inflow. Recent global MHD simulations (Hawley et al. 2001;

Hawley & Balbus 2002; De Villiers & Hawley 2003) suggest, at large radii (approxi-

mately twenty times the inner radius), relatively large mass inflows are balanced by

large mass outflows ( Fig. [2.2.9).

A third class of analytic solutions is the convection-dominated accretion flow

(CDAF). A variety of recent numerical simulations, incorporating a phenomenological
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α viscosity (Igumenshchev & Abramowicz 1999) or an MRI turbulence (Igumenshchev et al.

2003), have suggested a model in which vigorous convection in an adverse entropy

gradient disk stalls accretion by transporting angular momentum inwards. However,

one reaches a quandary in that convection must be driven against decay by finite

dissipation. In a disk, the only source of energy for convective motion is due to a

WRφ that couples to the orbital angular velocity shear. If the convection suppresses

the Rφ component of the stress tensor, it also chokes off the energy required to drive

it. The essential inconsistency in having a convective turbulence in a disk that sup-

presses WRφ, and a confirmation that linear convective instability in an MRI-unstable

magnetized disk is very inefficient in transporting angular momentum inwards (it ac-

tually transports angular momentum outwards), were discussed in Balbus & Hawley

(2002).

Finally, Bondi solutions (Johnson & Quataert 2007) and self-similar inflow-outflow

solutions (Menou 2005; Tanaka & Menou 2006) for dilute flows were constructed with

a saturated heat flux by Cowie & McKee (1977):

qsat ≃ −5csp∇T/ |∇T | . (1.5.2)

These analytic treatments with large diffusive heat fluxes efficiently transport energy

out from the hot inner regions and may yield accretion rates that are 1-3 orders of

magnitude smaller than Bondi accretion.

These phenomenological models of dilute accretion either assume an α closure in

〈WRφ〉, or a saturated conductivity that only points radially. Self-consistent prelimi-

nary numerical simulations of underluminous accretion have begun to show features,

such as coronal envelopes and centrifugally evacuated funnels, whose basic features

none of these models can predict. A class of numerical simulations (Hawley et al.
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2001; Hawley & Balbus 2002; De Villiers & Hawley 2003) have also demonstrated

that even nonradiative flows are largely Keplerian and have relatively slender disks

(thermal energy <∼ rotational kinetic energy). As a next step, a numerical code

(Athena) that accurately accounts for the total energy generated through accretion

has been developed (Gardiner & Stone 2005; Gardiner & Stone 2006). Local numer-

ical simulations of differentially rotating systems have been performed using this new

code (Simon 2007). Global simulations of these underluminous flows are currently

being developed.

This thesis is an effort to construct more accurate physical models of accretion onto

compact objects. We include anisotropic viscous stresses and thermal conductivity in

the fluid limit and in the collisionless limit, which many numerical simulations of black

hole accretion do not address. We demonstrate those instabilities that may operate

in astrophysical hot and dilute accretion flows. In this thesis we also demonstrate

additional sources of turbulent angular momentum flux and turbulent heat flux that

may operate in dilute accretion flows. This is important, since flows the energy

generated through gravitational infall in radiatively inefficient accretion flows cannot

be radiated and must be advected or locally dissipated (Balbus 2004a).
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Chapter 2

The Stability of a Rotating MHD

Plasma

In dilute astrophysical plasmas, the collisional mean free path of a particle can ex-

ceed its Larmor radius. The thermal conductivity and viscosity of the plasma, in

this case, can be dramatically altered. This causes outwardly decreasing orbital an-

gular velocity or temperature gradients to become strongly destabilizing. Magnetic

fields, even when highly subthermal, turn free energy gradients of ionized fluids into

sources of instability. There are important astrophysical consequences of this condi-

tion. First, when temperature, rather than entropy, decreases upwards or outwards,

dilute stratified plasmas become destabilized by the MTI (Balbus 2001). And second,

large viscous stresses along magnetic field lines (MVI), rather than magnetic forces

that tether fluid along field lines (MRI), destabilize the plasma. In both the MRI and

MVI, when angular velocity, rather than angular momentum, decreases outwards,

magnetized disks become turbulent.

To better understand the behavior of dilute magnetized plasmas, we first need to

understand adiabatic modes. We begin with a discussion of the MRI, since this local
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instability can destabilize even hydrodynamically stable Keplerian disks. We describe

its linear behavior, and the main results of nonlinear local and global numerical

simulations. We then justify our study of MHD instabilities in a dilute plasma, by

showing that extremely weak fields can lead to anisotropic heat fluxes and viscous

stresses. We then describe physical models of the MTI and the MVI.

2.1 Adiabatic Instability in a Rotating MHD Medium

In this section, we follow discussions as given in Balbus & Hawley (1998). Consider

the stability of a simple, adiabatic, homogeneous differentially rotating fluid in an

equilibrium magnetic field B0 = B0

(

φ̂ cos χ + ẑ sin χ
)

. We consider eigenmodes

varying as exp (ikZz − iωt), with wavenumber k = kZ ẑ and frequency ω, in the

WKB limit |kZR| ≫ 1. We use the equations of continuity (Eq. [1.2.5]), force balance

(Eq. [1.2.6]) without viscosity, and magnetic induction (Eq. [1.2.8]), all in a comoving

frame. The system of equations to leading order in the fluctuating quantities are:

−iω
δρ

ρ0

+ ikZδuZ = 0 (2.1.1)

−iωδuR − 2Ωδuφ = ikZv2
A sin χ

δBR

B0

, (2.1.2)

−iωδuφ + (2Ω + Ω′R) δuR = ikZv2
A sin χ

δBφ

B0

, (2.1.3)

−iωδuZ = −ikZ

(

δp

ρ0

+ v2
A cos χ

δBφ

B0

)

, (2.1.4)

−iωδBR = B0 sin χ (ikZδuR) , (2.1.5)

−iωδBφ − Ω′RδBR = −B0 cos χ (ikZδuZ) + B0 sin χ (ikZδuφ) , (2.1.6)

δBZ = 0, (2.1.7)

δp

p0

=
5

3

δρ

ρ0

. (2.1.8)
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We arrive at this polynomial equation in ω,

(

k2
Zv2

A sin2 χ − ω2
) (

ω4 − k2
Z

(

c2
s + v2

A

)

ω2 + k4
Zv2

Ac2
s sin2 χ

)

+
(

κ2ω4 − ω2

[

κ2k2
(

v2
A cos2 χ + c2

s

)

+ k2
Zv2

A sin2 χ
dΩ2

d ln R

])

+

k2
Zc2

s

(

k2
Zv2

A sin2 χ
) dΩ2

d ln R
= 0.

(2.1.9)

The adiabatic sound speed cs and the epicyclic frequency κ are given by,

c2
s =

5θ

3
,

κ2 =
1

R3

d (R4Ω2)

dR
.

(2.1.10)

In the nonrotating limit Ω → 0, Eq. (2.1.9) reduces to,

(

k2
Zv2

A sin2 χ − ω2
) (

ω4 − k2
Z

(

c2
s + v2

A

)

ω2 + k4
Zv2

Ac2
s sin2 χ

)

= 0. (2.1.11)

One of the roots of Eq. (2.1.9) is given by,

ω2 = k2
Zv2

A sin2 χ, (2.1.12)

which corresponds to shear-Alfvén modes. These waves propagate along magnetic

field lines with fluid and magnetic field perturbations perpendicular to the equilibrium

field, similar to a plucked string with the magnetic tension providing the restoring

force. In the limit of either v2
A ≪ c2

s, c2
s ≪ v2

A, or sin2 χ ≪ 1, then to leading order

the other two solutions correspond to the fast mode:

ω2
+ = k2

Z

(

c2
s + v2

A

)

, (2.1.13)
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and the slow mode:

ω2
− =

k2
Zv2

Ac2
s sin2 χ

c2
s + v2

A

. (2.1.14)

In the weak magnetic field limit, where c2
s/v

2
A → ∞, the slow and Alfvén modes

become degenerate and the fast mode is identified with acoustic waves. An inter-

esting effect occurs if we include rotation. In Fig. (2.1.1) we consider a Keplerian

rotational profile, with β = 3 and χ = π/4. We observe how the normalized oscil-

lation frequency ω2/ (k2
Zv2

A) of the three modes (fast, slow, and Alfvén) change with

Ω2/ (k2
Zv2

A). For Ω2 ≥ k2
Zv2

A/6, the slow mode becomes unstable. This is the essence

of MHD turbulence in a differentially rotating medium.
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Fig. 2.1.1.— Normalized oscillation frequency ω2/ (k2
Zv2

A) versus Ω2/ (k2
Zv2

A) for the
three modes of local oscillation in an adiabatic, homogeneous, rotating plasma with
a Keplerian rotational profile.
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2.2 The Magnetorotational Instability

Velikhov (1959) and Chandrasekhar (1960) studied the stability of a Taylor-Couette

flow of a plasma within a magnetized medium, and found that it becomes unstable

where the angular velocity, rather than the angular momentum, decreases outwards.

Remarkably, a magnetic field of arbitrarily small strength was found to destabilize

a Rayleigh stable flow. However, it was Balbus & Hawley (1991) who noted that

this local instability could destabilize Keplerian disks and induce the right kind of

turbulence that could drive accretion.

We can describe the MRI in the following manner: consider two points on a

magnetic field line but radially separated. A small magnetic tension acts as a weak

“spring” connecting these two points on the same field line. The outer point expe-

riences a tension along its direction of motion, resulting in a torque which increases

its angular momentum. The inner point experiences a tension opposite its direction

of motion, resulting in a torque which decreases its angular momentum. For a Ke-

plerian flow, the specific angular momentum increases with increasing radius. This

implies that as a result of the torques arising from magnetic tension, the outer mass

moves outwards while the inner mass moves inwards. Therefore, angular momen-

tum is transferred from the inner object to the outer object. The spring is further

stretched, the tension increases, and the points move further apart. The development

of the MRI ceases if the oscillation frequency of this “spring” is of the order of the an-

gular velocity; that is, if the “spring” is too rigid (many oscillations within an orbital

period), the two masses will not spread apart and the system is stable. A cartoon

demonstrating the MRI is shown in Fig. (2.2.1).
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Fig. 2.2.1.— Spring model depiction of the MRI. Two masses are connected by a
spring, with the gravitational force due to a central object (i.e., Keplerian rotation).
Tension provides a torque that speeds up the outer mass and slows down the inner
mass. Angular momentum is transferred outwards, the spring tension increases, and
the process runs away.

2.2.1 Linear Stability Analysis of the MRI

The simplest description of the MRI is one with an equilibrium vertical magnetic

field B0 = B0ẑ. Consider a Lagrangian fluid displacement ξ with spatial variation

exp (ikZz), where δu = dξ/dt. The frozen-in condition from Eq. (1.2.4) implies the

form of the perturbed magnetic field, δB = ikZB0ξ, δBz = 0, and ξz = 0. There is

no magnetic compression, B0 · δB = 0 and the flow is incompressible, δp = 0. The
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magnetic tension is given by,

ikB

4πρ
δB = − (k · vA)2

ξ. (2.2.1)

In a frame corotating with the fluid, one can then show that radial and azimuthal

force balance equations with Coriolis and tidal forces and magnetic tension are given

by,

d2ξR

dt2
+

dΩ2

d ln R
ξR − 2Ω

dξφ

dt
= − (k · vA)2 ξR, (2.2.2)

d2ξφ

dt2
+ 2Ω

dξR

dt
= − (k · vA)2 ξφ. (2.2.3)

If ξ ∝ exp (Γt), we have the following dispersion relation:

Γ4 + Γ2
[

κ2 + 2 (k · vA)2] + (k · vA)2

[

(k · vA)2 +
dΩ2

d ln R

]

= 0, (2.2.4)

For a Keplerian rotation profile, the maximum growth rate is Γmax = 3Ω/4 at

wavenumber that satisfies the equation (k · vA)2 = 15Ω2/16. Furthermore, mag-

netic tension quenches the MRI at wavenumbers satisfying (k · vA)2 = 3Ω2. Over one

orbital period, the fastest growing mode would lead to 104 amplification in modal

energy. One can demonstrate that the modal Rφ component of the stress tensor is,

〈WRφ,k〉 =Re

(

Γ2ξφξ
∗
R −

δB∗
φδBR

4πρ

)

= |ξR|2 ΓΩ
2Ω2 − 1

2
dΩ2/d ln R − 4Γ2

Γ2 + (k · vA)2 .

(2.2.5)

The normalized growth rate Γ/Ω and normalized Rφ stress tensor component 〈WRφ〉 /
(

|ξR|2 Ω2
)

as a function of normalized wavenumber x = k · vA/Ω are shown in Figs. (2.2.2) and

(2.2.3), respectively. As shown in Fig. (2.2.3), WRφ is positive for the MRI, which
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implies that the MRI not only destabilizes a plasma but can produce the right type

of turbulence that can drive accretion.
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Fig. 2.2.2.— Normalized growth rate Γ/Ω as a function of wavenumber k · vA/Ω, for
a Keplerian rotation profile and purely vertical wavenumber.

2.2.2 Nonlinear MRI

A variety of three-dimensional local simulations (Hawley et al. 1995, 1996) and global

simulations (Hawley et al. 2001; Hawley & Balbus 2002; De Villiers & Hawley 2003)

of magnetized accretion disks demonstrate the nonlinear development of the MRI and

maintenance of a significant magnetic field, at maximum magnetic pressures of order

of the initial gas pressure, against dissipation and diffusion. These simulations typi-

cally employ the ZEUS MHD algorithm (Stone & Norman 1992). These simulations

also imply an average αSS in the range of 10−3 to 10−1, consistent with astrophysical

observations. Recall that αSS is a prescription (Shakura & Sunyaev 1973) relating
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Fig. 2.2.3.— Normalized averaged Rφ component of the stress tensor, as a func-
tion of normalized wavenumber, for a Keplerian rotation profile and purely vertical
wavenumber.

the angular momentum flux carried by turbulence to the pressure, and is defined as

〈TRφ〉 = αSSp (see Eq. [1.3.35] in §1.3).

The nonlinear development of the MRI is robust to a variety of different physi-

cal systems, initial magnetic field configurations (Hawley et al. 1995), and to differ-

ent numerical MHD algorithms (Brandenburg et al. 1995). Simulations of low and

fully ionized plasmas have also demonstrated the nonlinear development and mainte-

nance of the MRI when incorporating additional physics, such as: finite Hall effects

(Wardle & Ng 1999; Sano & Stone 2002) or ambipolar diffusion (Hawley & Stone

1998) in low-ionized plasmas; finite self-gravity in massive disks (Fromang et al.

2004c,a,b); radiation pressure dominated systems (Turner et al. 2005; Begelman 2006b);

and vertical stratification to explore the effects of magnetic buoyancy (Stone et al.

1996; Miller & Stone 2000) among others.
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Local Simulations

Local simulations of a rotating fluid consist of a coordinate system with at least

relatively small radial extent, ∆R ≪ R, corotating with the fluid at a specific radius.

This system transforms to a Cartesian coordinate system (where R is identified with

x, Rφ with y, and z unchanged) with noninertial Coriolis and tidal fluid forces and an

azimuthal shear across the radial coordinate. For a Keplerian flow, the background

shear velocity relative to the x = 0 surface is uy = −3xΩ/2. To properly take

into account differential azimuthal velocity across x, one employs a periodic shearing

boundary condition in x. For a box with radial dimension LX , azimuthal dimension

LY , and vertical dimension LZ , the boundary conditions for the excess azimuthal

velocity uy are,

uy (x = 0, y, z) = uy (x = LX , y − qLXΩt, z) + qΩLX , (2.2.6)

uy (x, y = 0, z) = uy (x, y = LY , z) , (2.2.7)

uy (x, y, z = 0) = uy (x, y, z = Lz) . (2.2.8)

Boundary conditions for all other fluid quantities f are,

f (x = 0, y, z) = f (x = LX , y − qLXΩt, z) , (2.2.9)

f (x, y = 0, z) = f (x, y = LY , z) , (2.2.10)

f (x, y, z = 0) = f (x, y, z = Lz) , (2.2.11)

where q = −d ln Ω/d ln R. This treatment has been applied to local studies of other

differentially rotating systems, such as the galactic disk (Goldreich & Lynden-Bell

1965; Julian & Toomre 1966) and planetary rings (Wisdom & Tremaine 1988).

Local numerical simulations of the MRI demonstrate the maintenance of a fluc-



47

tuating magnetic field against rather strong numerical dissipation and diffusion, and

fluctuating velocity and magnetic field correlations resulting in a net outward angu-

lar momentum flux. In Figs. (2.2.4) and (2.2.5), taken from Hawley et al. (1996), we

show these effects.

Fig. 2.2.4.— Saturation of magnetic and gas pressure fluctuations in a long-term
shearing box simulation of a magnetized disk. The magnetic and gas pressures nor-
malized by the initial gas pressure are plotted as a function of time in units of orbital
periods. This figure is taken from Hawley et al. (1996).

Furthermore, Balbus et al. (1996) performed purely hydrodynamic 3D simula-

tions of a local Keplerian shearing box with size L and coarse numerical resolution of

313. They demonstrate that only systems in which the angular momentum decreases

outwards, κ2/Ω2 < 0, sustain and increase kinetic fluctuations against numerical dis-

sipation at these resolutions. This result is consistent with the fact that equilibrium
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Fig. 2.2.5.— On the left is the evolution of the magnetic contribution, and on the right
the kinetic contribution, to the box-averaged 〈ρWRφ〉 normalized by the initial gas
pressure, for a long-period shearing box simulation. One can observe a net outwards
flux of angular momentum associated with the nonlinear development of the MRI.
The time is in units of orbital period. These figures are taken from Hawley et al.
(1996).

rotating flows in which angular momentum decreases radially outwards are hydro-

dynamically unstable. In addition, the well-known nonlinear instability of a purely

Cartesian shear layer (i.e., no Coriolis force associated with a rotating system) has

been demonstrated in this simulation. These results imply that a hydrodynamic

Keplerian disk will remain stable and unable to efficiently transport angular momen-

tum outwards, even at arbitrarily small viscosities. The results of the simulations of

Balbus et al. (1996) are shown in Fig. (2.2.6). A series of recent numerical hydrody-

namic simulations of local sheared rotating boxes, at far higher Reynolds numbers

of up to 105, also confirm these results for hydrodynamic flows (Lesur & Longaretti

2005).
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Fig. 2.2.6.— The box-averaged kinetic energy, normalized in units of L2Ω2, as a
function of normalized time tΩ, in a Keplerian shearing cube of size L. The line
labeled “shr” refers to a pure shearing box. Only those simulations in which there
is pure shear or in which q > 2 demonstrate kinetic turbulence sustained against
numerical dissipation. This figure is taken from Balbus et al. (1996).

Global Simulations

The most promising global simulations are performed with radiatively inefficient plas-

mas in order to extract as much computational efficiency as possible. In these as-

trophysical systems, the disk height is not orders of magnitude smaller than the

disk radius, in contrast to classical accretion disks. The simplest MHD algorithms
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that can treat this problem do not include the effects of radiative pressure or ra-

diative transfer. As a result, nonradiative flows in the inner regions of black holes

provide a good candidate for the first treatments of the global MRI. Hawley et al.

(2001); Hawley & Balbus (2002) demonstrate that constant-angular momentum tori,

marginally stable under the Rayleigh criterion, evolve via the MRI into relatively slen-

der disks of rotating plasma with the following four main properties. First, the orbital

speed is larger than the thermal speed; consequently, these disks are relatively slender

and the orbital flow is approximately Keplerian. Second, the disk has a roughly fixed

opening angle (the ratio of disk height to radius is relatively constant). Third, there

are outflowing coronal regions, in which the magnetic pressure is larger than the gas

pressure, above and below the disk. Fourth, a funnel region about the rotation axis

is evacuated of matter due to a centrifugal barrier. These features are demonstrated

in Figs. (2.2.7). An analytic model developed by Balbus (2005) demonstrates the

gross features of these simulations. An isodensity, or isobaric or isoenergy, plot of

this analytic flow model is taken from Balbus (2005) and shown in Fig. (2.2.8).

These simulations have generally been shown to result in relatively small rates

of mass accretion as well as outflowing winds as shown in Fig. (2.2.9). The mass-

averaged accretion and outflow velocities 〈|uR|〉ρ are much smaller than the orbital

velocity or what may be expected from pressure-supported flows. This feature of

preliminary global MRI simulations appears to be relatively robust, and is seen in a

variety of different numerical simulations, e.g., Hawley (2001); Igumenshchev et al.

(2003); De Villiers & Hawley (2003).
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Fig. 2.2.7.— Azimuthally averaged density of a long time snapshot of a global MRI
simulation of accretion onto a black hole, taken at 10 orbital time periods at the
outer radius of the simulation box, R = 100 Schwarzchild radii. One observes the
salient features of this simulation: a relatively slender disk (thermal velocities <∼
orbital velocities), implying Keplerian rotation profiles in the disk bulk; an outlying
coronal region of dilute, magnetic pressure dominated plasma; and a funnel outflow at
a finite opening angle (the jet is outlined by contours of positive radial momentum).
The figure is taken from De Villiers et al. (2003).

2.3 Anisotropic Viscous Stresses and Heat Fluxes

in Dilute Plasmas

Another class of magnetized instabilities can occur in dilute plasmas. Even in weak

fields, in which the Lorentz forces are negligible, a magnetic field fundamentally

changes the stability properties of a plasma. In a gas viscous stresses and heat

fluxes are isotropic and generally stabilizing. However, in a magnetized plasma these

transport processes are constrained to move along field lines and may become desta-

bilizing.
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Fig. 2.2.8.— Isobaric, or isodensity or isoenergy, contours for an adiabatic disk in
which Ω is 0.84 of its Keplerian value. This corresponds to a disk opening angle
β = 45◦, separated by the line marked OUTFLOW. Above OUTFLOW, the contours
are open and become very packed near the ρ = 0 line about the axis. H∞ refers to
the gas enthalpy at infinity. This description is taken from Balbus (2005).

For mildly collisional or collisionless systems, viscosity and thermal conductivity

may have dynamical time scale consequences, while collisional momentum transfer

effects, such as electrical resistivity, may become dynamically unimportant. If the

ion collisional mean free path is smaller than the ion gyroradius, then heat fluxes

and viscous stresses are constrained to follow magnetic field lines. This property

of dilute magnetized plasmas was noted by Chew et al. (1956) and formalized, in
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Fig. 2.2.9.— Time averaged mass accretion and outflow rates in initial global simu-
lations of the MRI (Hawley et al. 2001). The unit of accretion rate is the mass of the
initial torus divided by the orbital period at the radius where the initial torus had its
maximal pressure. The mass accretion rate is normalized in these units. The solid
line is the inflow rate, the dashed line is the outflow rate, and the dotted line is the
net accretion rate. The mass accretion and outflow rates decreases with decreasing
radius down to the marginally stable orbit.

expressions for anisotropic viscosity, thermal conductivity, electrical resistivity and

other collisional transport phenomena, by Braginskii (1965).

The ion and electron gyroradii, in astrophysical units, are given by,

rLi = 9.5 × 107

(

B

1 µG

)−1 (

T

104 K

)1/2

cm, (2.3.1)

rLe = 2.2 × 106

(

B

1 µG

)−1 (

T

104 K

)1/2

cm. (2.3.2)

From Eqs. (1.3.9) and (2.3.1), the estimated threshold magnetic field strength at
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which the ion mean free path is smaller than the ion Larmor radius,

B >∼ 6.33 × 10−12

(

T

104 K

)−3/2
( n

1 cm−3

)

G. (2.3.3)

Furthermore, from Eqs. (1.3.10) and (2.3.2), the threshold magnetic field at which

the electron mean free path is smaller than the electron Larmor radius is smaller than

the magnetic field strength for ion transport effects, given in Eq. (2.3.3), by a factor

of roughly (2mi/me)
−1/2,

B >∼ 1.05 × 10−13

(

T

104 K

)−3/2
( n

1 cm−3

)

G. (2.3.4)

Faraday polarization observed in the emission of Sag. A* at millimeter wavelengths

(Aitken et al. 2000; Bower et al. 2003; Marrone et al. 2006), at frequencies for which

Faraday polarization due to the intervening interstellar medium is negligible, implies

magnetic fields well in excess of Eq. (2.3.3). The observations of Bower et al. (2003)

is shown in Fig. (2.3.1).

In a plasma in which ion and electron temperatures are of the same order, the

viscous stress is carried by the ions and the heat flux is carried by the electrons. For

dilute plasma fluids, the smallness of the electron gyroradius relative to the ion mean

free path results in a heat flux q along the magnetic field line represented by,

q = qb. (2.3.5)

We require a viscous stress tensor that is traceless, symmetric, rotationally invariant

and results in viscous stress directed only along the direction of the magnetic field.

The stress must also be physical, since viscosity transports momentum from regions

of higher to lower momentum density. The viscous stress tensor that fulfills these
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Fig. 2.3.1.— Evidence of internal magnetic field in Sag. A* from Faraday polarization
at high radio frequencies. On the left is the unresolved 1” millimeter and far infrared
radio emission from the Sag. A* sources. On the right is difference between left
and right circularly polarized radiation from Sag. A* as a function of frequency; the
best-fit rotation measure RM = 4.3 ± 0.1 × 105 rad m−2. This plot is taken from
Bower et al. (2003).

properties is,

σ = σbb

(

bb − 1

3
I

)

, (2.3.6)

where σbb is the magnitude of the viscous stress (or pressure), specifically σbb =

−3n · σ · n, where n · b = 0 and n2 = 1. If the mean free path is smaller than the

system scale or the size of the turbulence, then fluid expressions for the viscous stress

and heat flux can be derived (Braginskii 1965):

σbb = −3ην

(

b · ∇V · b − 1

3
∇ · V

)

, (2.3.7)

q = −ηκ (nkBb · ∇Te) . (2.3.8)

In the collisionless limit, the magnitude of σbb and q depend on the specific physical

process that may drive transport and may not necessarily be diffusive in nature.
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Tab. (2.3.1), summarizes the role that magnetic fields in collisional or dilute plas-

mas may play in transporting energy or angular momentum via MHD instabilities

in non self-gravitating magnetized plasmas. The columns describe the plasma initial

state, and the rows denote the particular MHD turbulent transport phenomenon.

Entries within the grid correspond to stability criteria for either angular momentum

or energy transport. The entry on convective stability in a magnetized, collisional

plasma (row energy transfer) is described in Balbus (1995) and is not discussed

here. In §2.4 and §2.5 we describe the two important MHD instabilities relevant to

dilute magnetized plasmas.

Table 2.3.1: MHD Stability Criteria
nonmagnetized magnetized,

collisional
magnetized,
dilute

angular mo-
mentum trans-
fer

angular momen-
tum (R2Ω) in-
creases outwards

angular velocity
Ω increases out-
wards

angular velocity
Ω increases out-
wards

energy trans-
fer

entropy
ln p0ρ

−5/3
0 in-

creases upward

entropy
ln p0ρ

−5/3
0 in-

creases upward

temperature T0

increases upward

2.4 Magnetothermal Instability (MTI)

The magnetothermal instability destabilizes equilibrium systems in which the tem-

perature, rather than entropy, decreases outwards or upwards. The simplest case is

an equilibrium box in which magnetic field lines lie along isotherms. The gravita-

tional acceleration points downwards, with the bottom being hot and the top being

cold. Parrish & Stone (2005) performed a two-dimensional numerical simulation, and

Parrish & Stone (2006) performed a three-dimensional numerical simulation, of this

equilibrium box to demonstrate the nonlinear development of the MTI into bulk

isothermal layers across the direction of heat flux. Now we perturb the magnetic field
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lines so that some component of field line lies in layers that are hotter and cooler than

the equilibrium layer. High thermal conductivity along magnetic field lines ensures

efficient heat flow from the hotter fluid element at the bottom to the colder fluid ele-

ment at the top. Force balance yields pressure equilibrium at each thermal layer. For

the component of magnetic field line in the cooler (upper) region, the plasma along

the field becomes hotter and less dense than the ambient medium, so that buoyancy

forces push the fluid element upward. For the component of magnetic field line in the

hotter (lower) region, the plasma along the field line becomes cooler and more dense

than the ambient medium, so that buoyancy forces push the fluid element downwards.

The magnetic field lines stretch out further, leading to larger heat fluxes along the

direction of thermal gradient, causing the process to run away. This is demonstrated

in Fig. (2.4.1). The stability condition for this box is,

− 1

ρ0

∇p0 · ∇T0 ≥ 0. (2.4.1)

If we include the effects of rotation, the stability criterion is modified in the following

manner (Balbus 2001):

− 1

ρ0

∇p0 · ∇ ln T0 +
∂Ω2

∂ ln R
≥ 0. (2.4.2)
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Fig. 2.4.1.— Depiction of the method by which the magnetothermal instability op-
erates. Fast thermal conductivity along magnetic field lines result in heat flow from
hotter to colder regions along the deformed field. Pressure balance results in the com-
ponent of fluid along the field line in the upper region to be lighter than the ambient
medium. Similarly, the fluid element in the lower region is heavier than the ambient
medium. This leads to a runaway process as buoyant forces stretch the field lines
further, leading to larger heat fluxes along the direction of equilibrium temperature
gradient.

2.4.1 Linear Stability

Here we consider the linear stability of a convectively stable, dilute magnetized equi-

librium box. The mean free path along magnetic field lines is smaller than the size of

the box, therefore the form of the heat flux q is given by Eq. (2.3.8). Gravity points

downwards, g = −gẑ. Therefore ∂ ln p0/∂z < 0. Isotherms and isobars are on sur-

faces of constant z. The equilibrium magnetic field B0 = B0R̂, so that B0 · ∇T0 = 0.

The fluid is at rest, i.e., V0 = 0. The MHD internal energy equation Eq. (1.2.3),
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becomes,

3

2
p

d

dt
ln pρ−5/3 = ∇ · (ρηκbb · ∇θ) . (2.4.3)

We look at modes of the form δa ∝ exp (Γt + ikRR). The perturbed MHD equations

are then given by,

Γ
δρ

ρ0

+ ikRδuR + δuZ
∂ ln ρ0

∂z
= 0, (2.4.4)

ΓδuR = −ikRθ0
δp

p0

, (2.4.5)

Γδuφ =
ikRB0δBφ

4πρ0

, (2.4.6)

ΓδuZ =
ikRB0δBZ

4πρ0

+
δρ

ρ0

θ0
∂ ln p0

∂z
, (2.4.7)

Γ

(

3

2

δp

p0

− 5

2

δρ

ρ0

)

+
3

2
δuZ

∂ ln p0ρ
−5/3
0

∂z
= −ηκk

2
R

δθ

θ0

+ ikRηκδbZ
∂ ln T0

∂z
,(2.4.8)

ΓδBφ = ikRB0δuφ, (2.4.9)

ΓδBZ = ikRB0δuZ . (2.4.10)

One mode corresponds to a shear-Alfvén wave, only δuφ and δBφ are nonzero, and

Γ2 = −k2
Rv2

A. Other modes satisfy the following dispersion relation:

(

Γ +
2

5
ηκk

2
R

)

(

Γ2 + k2
Rv2

A

)

−

θ0
∂ ln p0

∂z

(

2

5
ηκk

2
R

∂ ln T0

∂z
+

3

5
Γ

∂ ln p0ρ
−5/3
0

∂z

)

+

Γ2

k2
Rθ0

(

3

5
Γ +

2

5
ηκk

2
R

)

(

θ0

[

∂ ln p0

∂z

]2

+ Γ2 + k2
Rv2

A

)

= 0.

(2.4.11)
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We consider simplifications to elucidate the plasma behavior. In the Boussinesq limit,

where β ≫ 1, Eq. (2.4.11) becomes:

(

Γ2 + k2
Rv2

A

)

(

Γ +
2

5
ηκk

2
R

)

=

θ0
∂ ln p0

∂z

(

2

5
ηκk

2
R

∂ ln T0

∂z
+

3

5
Γ

∂ ln p0ρ
−5/3
0

∂z

) (2.4.12)

In the limit of large thermal diffusivity, ηκk
2
R ≫ Γ, the growth rate of unstable modes

follows from Eq. (2.4.11),

Γ2 = θ0
∂ ln p0

∂z

∂ ln T0

∂z
− k2

Rv2
A. (2.4.13)

If ∂ ln T0/∂z < 0, then Γ2 > 0 for arbitrarily small wavenumbers in the Boussinesq

limit. This is the essence of the MTI. Furthermore, if the thermal diffusivity goes

to zero, we reproduce the criterion for convective instability within a magnetized

medium. The modes are unstable if the entropy decreases upwards, ∂ ln p0ρ
−5/3
0 /∂z <

0. The dispersion relation becomes,

Γ2 ≈ 3

5
θ0

(

∂ ln p0

∂z

)

(

∂ ln p0ρ
−5/3
0

∂z

)

− k2
Rv2

A (2.4.14)

We define natural units of growth rate Γ0 and wavenumber kR0 for the MTI in this

box as,

Γ0 =

√

θ0

(

∂ ln p0

∂z

)(

∂ ln T0

∂z

)

, (2.4.15)

kR0 =

√

β

(

∂ ln p0

∂z

)(

∂ ln T0

∂z

)

. (2.4.16)



61

In Fig. (2.4.2) we show solutions to the full dispersion relation of the MTI, given by

Eq. (2.4.11). We plot the normalized growth rate Γ/Γ0 as a function of normalized

radial wavenumber kR/kR0 for various normalized thermal diffusivities ηκΓ0/v
2
A ≥ 1.

We take β = 100 and choose ∂ ln p0/∂z = 4∂ ln T0/∂z < 0. This ensures convective

stability, ∂ ln p0ρ
−5/3
0 /∂z = −∂ ln T0/∂z > 0.
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Fig. 2.4.2.— Normalized growth rate of the MTI as a function of normalized
wavenumber for plasma β = 100 and various values of normalized thermal diffusivity,
under the condition of convective stability

2.4.2 Nonlinear Behavior

Numerical simulations have demonstrated the nonlinear development of the MTI

in a three dimensional convectively stable Cartesian box that is hot at the bottom

and cold on top (Parrish & Stone 2006). The top and bottom regions are stabilized

to the MTI, via isotropic thermal diffusivities larger than the anisotropic thermal
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diffusivity, in order to remove the effects of simulation boundary layers on the MTI.

The middle layer has a largely anisotropic thermal diffusivity and is linearly unstable

to the MTI. The initial condition is a temperature profile linear with height in the

unstable middle layer and magnetic fields that lie along isotherms. The plasma in this

box develops into a steady state with a bulk isothermal layer, shown in Fig. (2.4.3).

The magnetic field is sustained, via fluid motion driven by the boundary conditions,

against numerical resistivity. This is shown in Fig. (2.4.4).

Fig. 2.4.3.— Plot of the horizontally averaged temperature, as a function of box
height, for various times in the three-dimensional simulation. This plot is taken from
Parrish & Stone (2006). Over a period of a few dynamic timescales an isothermal
layer develops.
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Fig. 2.4.4.— The magnetic energy density at late times in a convectively stable three-
dimensional box. This plot is taken from Parrish & Stone (2006). Gravity points to
the right (-z direction) in this box. Temperature gradients point to the left.

2.5 Magnetoviscous Instability (MVI)

The MVI is an instability when torques arising from magnetic field-directed viscous

stresses, rather than Lorentz forces as in the MRI, may destabilize a rotating plasma.

Consider, from Eq. (2.3.6), a type of fluid stress directed along magnetic field lines.

This stress disappears in a rigidly rotating disk, but in the presence of angular velocity

shear it will result in torques. Consider two points connected by a magnetic field line.

This field line is perturbed slightly so that there exists some component of magnetic
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field along the radial direction. One point is located at R > R0, while the other

is located at R < R0, where R0 is the equilibrium radius. Strong viscous stresses,

along the field line, transfer angular velocity from the inner point to the outer point.

The outer point rotates faster than the ambient medium, and is pushed outwards.

The inner point rotates slower than the ambient medium, and is pushed inwards. As

these points are further separated, they experience even stronger forces pushing them

apart, and the process runs away. This is shown in Fig. (2.5.1). The first discussion

Fig. 2.5.1.— Depiction of the magnetoviscous instability. Viscosity ensures the effi-
cient transport of angular velocity from the inner point to the outer point.

of the magnetoviscous instability in a Keplerian disks was given by Balbus (2004b),

and its collisionless limit, which has been denoted as the collisionless MRI, was first

explored by Quataert et al. (2002).
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Chapter 3

Problem Setup

In this chapter, we discuss the nature of accretion within a dilute, magnetized rotating

plasma. To set up the background for the stability analysis we use the following three

preliminaries. First, we consider a local patch of a thin dilute magnetized disk. This

plasma has local radial gradients of temperature and pressure such that the system is

Schwarzchild stable, ∂ ln p0ρ
−5/3
0 /∂ ln R > 0, and has a nonradial magnetic field in the

disk midplane. For arbitrarily thin disk, H2/R2 → 0 or equivalently θ0/ (R2Ω2) → 0,

the disk has the following properties: 1) the temperature is locally constant along

field lines, hence isothermal in z; 2) the magnetic field is nonradial and constant; and

3) the angular velocity is constant along field lines, hence constant in height. The

local patch of the disk has a gaussian profile of pressure and density in height. The

equilibrium magnetic field is,

B0 = B0

(

φ̂ cos χ + ẑ sin χ
)

. (3.0.1)

Second, we derive expressions for angular momentum and energy flux carried by the

turbulence within a dilute radiatively inefficient accretion flow. Finally, we explore
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only the fastest-growing, axisymmetric, local instabilities, of the form,

δa ∝ exp (Γt + ikRR + ikZz) , (3.0.2)

where δa is some perturbed field variable. The details of our derivation of a local

disk vertical profile is discussed in Appendix B. We demonstrate expressions for

the angular momentum flux and energy flux carried in the linear stages of these

instabilities. Terms associated with finite viscosity and thermal conductivity appear

in expressions for angular momentum and thermal energy flux.

3.1 Angular Momentum and Energy Balance

As described in §1.3.2, a necessary condition for accretion flow within a disk requires

that fluctuations due to turbulence or waves must have 〈WRφ〉 > 0. This leads to a

characteristic accretion power through Rφ stress, −ρ 〈WRφ〉 dΩ/d ln R. In a classical

accretion disk this energy is locally thermalized and radiated away. In a dilute and

radiatively inefficient disk this energy cannot be radiated; hence, it must either remain

as heat, or be actively transported outwards. This suggests that we must solve

the equations of angular momentum balance and total energy balance for a dilute

nonradiating flow, in order to extract the form of WRφ and heat flux. We employ

MHD equations in a rotating frame, Eqs. (1.2.5) - (1.2.8), and in a nonrotating frame,

Eqs. (1.2.1) - (1.2.4). We follow the vocabulary and formalism of Balbus & Hawley

(1998) for classical accretion disks and continued in Balbus (2004a) for radiatively

inefficient flows. We consider fluctuating fluid parameters whose behavior is described

in §1.3.2. We study a thin disk; since we suppose velocity fluctuations are at best of

order θ
1/2
0 ≪ RΩ(R). Since the fluid fluctuations are relatively small, then quadratic

correlations of fluctuating parameters dominate in expressions for heat and angular
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momentum fluxes.

3.1.1 Angular Momentum Balance

We employ the method of angular momentum balance in an accretion disk described

in Balbus et al. (1994); Balbus & Hawley (1998) and in §1.3. The angular momentum

density Lz is given by,

Lz = ρRVφ (3.1.1)

If we multiply the azimuthal component of Eq. (1.2.2) by R we then have the following

equation,

∂Lz

∂t
+ ∇ ·

(

R

[

ρVφV − BφB

4π
+

(

p +
B2

8π

)

φ̂ + σ · φ̂
])

= 0. (3.1.2)

We take Eq. (3.1.2) and apply the velocity decomposition given in §1.2. We average

that resulting equation according to the prescription of Eq. (1.3.17). We derive the

form of the averaged angular momentum balance equation,

∂ 〈Lz〉
∂t

+
1

R

∂

∂R

(

R2 〈TRφ〉 + R3Ω 〈ρuR〉
)

= 0, (3.1.3)

where 〈TRφ〉 = ρ 〈WRφ〉 and is defined by,

〈TRφ〉 =

〈

ρδuRδuφ − δBRδBφ

4π
+ δσbbδbR cos χ

〉

ρ

. (3.1.4)

In Eq. (3.1.4), we have used the equilibrium magnetic field given in Eq. (3.0.1) and

the viscous stress tensor given in Eq. (2.3.6).
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3.1.2 Total Energy Balance

To derive the energy balance equation, we first dot the MHD comoving force balance

equation, Eq. (1.2.6), with u, and use Eq. (2.3.6), for the form of the viscous stress

tensor,

u ·
(

∂

∂t
+ Ω

∂

∂φ

)

(ρu) + u · ∇p + ui∂j (ρuiuj) +

ui∂j

(

σbb

[

bibj −
1

3
δij

])

+ Ω′RρuRuφ + R
∂Ω

∂z
ρuzuφ =

ρ

ρ0

u · ∇p0 − u · (∇× B) × B

4π

(3.1.5)

Next, we dot the MHD comoving induction equation, Eq. (1.2.8), with B to get the

magnetic energy equation,

(

∂

∂t
+ Ω

∂

∂φ

)

B2

8π
= −u · ∇

(

B2

8π

)

− B2

4π
∇ · u +

B2

4π
b · ∇u · b+

Ω′R
BRBφ

4π
+

∂Ω

∂z
R

BzBφ

4π
.

(3.1.6)

Using Eq. (2.3.6) for the viscous stress tensor and Eq. (2.3.5) for the heat flux, the

MHD comoving internal energy equation, Eq. (1.2.7), becomes,

3

2

(

∂

∂t
+ Ω

∂

∂φ

)

p + ∇ ·
(

3

2
pu

)

+ p∇ · u = −∇ · (qb)−

σbb

(

b · ∇u · b + Rb · ∇Ωbφ − 1

3
∇ · u

)

.

(3.1.7)



69

We add Eqs. (3.1.5), (3.1.6), and (3.1.7), to arrive at the total energy equation:

(

∂

∂t
+ Ω

∂

∂φ

)(

1

2
ρu2 +

3

2
p +

B2

8π

)

+

∇ ·
(

u

[

1

2
ρu2 +

5

2
p

]

+
B × (u × B)

4π
+ σbb

(

b (u · b) − 1

3
u

))

−

ρu · 1

ρ0

∇p0 = − ∂Ω

∂ ln R

(

ρuRuφ − BRBφ

4π
+ σRφ

)

−

R
∂Ω

∂z

(

ρuzuφ − BzBφ

4π
+ σzφ

)

.

(3.1.8)

Applying the prescription for the average as given by Eq. (1.3.17) to Eq. (3.1.8), we

arrive at the formula for the averaged total energy balance equation,

∂

∂t
〈E〉 +

1

R

∂

∂R
R 〈FER〉 − 〈ρuR〉

1

ρ0

∂p0

∂R
= − ∂Ω

∂ ln R
〈TRφ〉 , (3.1.9)

where,

〈E〉 =

〈

1

2
ρu2 +

3

2
p +

B2

8π

〉

ρ

, (3.1.10)

〈FER〉 =
5

2
ρ0 〈δuRδθ〉ρ + 〈δqδbR〉ρ −

1

3
〈δσbbδuR〉ρ . (3.1.11)

In Eq. (3.1.9) we have ignored the flux of gas kinetic energy since it appears as a

cubic correlation in fluctuating quantities, and the Poynting flux B × (u × B) / (4π)

since it is subdominant to the terms in the energy flux. In steady state, the energy

generated through the coupling of fluctuations to the radial angular velocity gradient

is carried out by the quadratic correlation of turbulent heat flux, 〈FER〉.

We need to estimate the angular momentum flux and heat flux carried by unstable

modes, to demonstrate that these modes allow accretion to occur. This requires

expressions for quadratic correlations in the unstable modes. We consider a cylindrical

annulus with radial extent ∆R and infinite vertical extent. We assume that in this
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annulus, the unstable modes have characteristic radial wavelength much smaller than

∆R and vertical wavelength much smaller than H. It is relatively easy to show that

the magnitude of the quadratic correlations of spatially varying modal quantities A

and B

〈AB〉
k
≡ Re (AkB

∗
k
) , (3.1.12)

〈Aê · ∇B〉 ≡ Im (Ak (ê · k) B∗
k
) . (3.1.13)
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Chapter 4

Fluid Treatment – the MVTI

In this chapter we describe stability of a rotating plasma with radial gradients of

temperature and pressure using a fluid treatment. The formal regime of validity of

the fluid treatment is that λi
<∼ R. This bound on λi breaks down in the innermost

regions of black hole accretion flows, for example in Sag. A* (Quataert 2004) or in

other underluminous objects. However, our fluid approximation is expected to be

well-satisfied within the outermost regions of this flow. The viscous stress σbb, and

the heat flux q, are given by Eqs. (2.3.7) and (2.3.8), respectively. In the outer regions

of hot dilute magnetized accretion flows, the fluid approximation is valid and ion and

electron temperatures are equal. Here the (electron) thermal diffusion coefficient is

larger than the (ion) viscous diffusion coefficient by a factor of order (mi/me)
1/2.

We analyze unstable modes in the Boussinesq limit, characterized by incompress-

ible perturbations. We calculate the dispersion relation of an idealized plasma where

both ions and electrons have the same temperature T . The temperature and pressure

decrease radially outwards such that the plasma is Schwarzchild stable. We show

that the linear stability behavior of this plasma reduces to that of the MRI, the MVI

(Balbus 2004b; Islam & Balbus 2005), and MTI in specific limiting cases. We also
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demonstrate that the quadratic heat fluxes and quadratic angular momentum fluxes

associated with the MVTI are of the right sense and magnitude to drive accretion in

radiatively inefficient astrophysical plasmas.

In §4.1 we derive the MVTI dispersion relation and show its limiting cases. In

§4.2 we discuss the main features of the MVTI dispersion relation. In §4.3 we derive

bulk fluxes for the modes of the MVTI, showing that turbulence driven by this MHD

instability can drive accretion in radiatively inefficient flows. These modes, where the

phase velocities smaller than that of the sound speed θ
1/2
0 , are almost incompressible.

We show in §4.4 that for plasmas with finite compressibility, in a weak magnetic

field, β ≫ 1, there is very little change in the the growth rate and quadratic fluxes of

angular momentum and heat.

4.1 Dispersion Relation

Assume small perturbations about the equilibrium, in which the viscous stress ten-

sor and heat flux are zero. We look at axisymmetric modes of the form given by

Eq. (3.0.2), for a plasma with nonradial magnetic field B0 = B0

(

φ̂ cos χ + ẑ sin χ
)

.

The perturbed viscous stress and heat flux magnitude are given by,

δσ = −3ρ0ην

(

b0b0 −
1

3
I

)

(

i (k · b0) (b0 · δu) + Ω′RδB̄R cos χ
)

, (4.1.1)

δq = −ηκp0δB̄R
∂ ln T0

∂R
− ηκp0 (ik · b0)

δT

T0

, (4.1.2)
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where δB̄ = δB/B0. The perturbed comoving induction equation, Eq. (1.2.8), can

be written as,

ΓδB̄R = ikZ sin χδuR,

ΓδB̄φ = ikZ sin χδuφ + Ω′RδB̄R,

ΓδB̄Z = ikZ sin χδuZ ,

(4.1.3)

where Ω′ = dΩ/dR. The nonzero components of the perturbed viscous stress tensor

are,

δσφφ = δσZZ =

(

cos2 χ − 1

3

)

δσbb, (4.1.4)

δσRR = −1

3
δσbb, (4.1.5)

δσZφ = δσφZ = (sin χ cos χ) δσbb. (4.1.6)

If we substitute Eq. (4.1.3) into Eq. (4.1.1), we get,

δσbb = −3ρ0ηνΓ

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

. (4.1.7)

The perturbed comoving energy balance equation, Eq. (1.2.7), can be written as,

Γ

(

δp

p0

− 5

3
δρ̄

)

+ δuR
∂ ln p0ρ0

−5/3

∂R
=

2

3
ηκ

(

ikZ sin χ

(

δB̄R
∂ ln T0

∂R

)

− k2
Z sin2 χ

δT

T0

)

+
2

3
p0

−1δσ : ∇
(

RΩφ̂
)

,

(4.1.8)

where δρ̄ = δρ/ρ0. For the perturbed viscous stress tensor given by Eqs. (4.1.4)

- (4.1.6), δσ : ∇
(

RΩφ̂
)

= 0. For incompressible perturbations, δp/p0 ≪ δρ/ρ0,
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Eq. (4.1.8) can be solved for the perturbed density,

δρ̄ =
3

5
× δuR∂ ln p0ρ

−5/3
0 /∂R − 2

3
iηκkZ sin χδB̄R∂ ln T0/∂R

Γ + 2
5
ηκk2

Z sin2 χ
. (4.1.9)

The perturbed form of the comoving force balance equation, Eq. (1.2.6), can be

written as,

∂δu

∂t
+ 2Ωẑ × δu + Ω′Rφ̂ = − 1

ρ0

∇
(

δp +
b0 · δB

4π

)

+
b0 · ∇δB

4πρ0

−

ρ0
−1∇ · δσ + δρ̄θ0

∂ ln p0

∂R
R̂,

(4.1.10)

whose components are,

ΓδuR − 2Ωδuφ = −ikR

(

δp

ρ0

+
B0 cos χδBφ + B0 sin χδBZ

4πρ0

)

+

ikZB0 sin χ

4πρ0

δBR + ikRρ0
−1δσRR + ikZρ0

−1δσzR + δρ̄θ0
∂ ln p0

∂R
,

(4.1.11)

Γδuφ + (2Ω + Ω′R) δuR =
ikZB0 sin χ

4πρ0

δBφ + ikRρ0
−1δσφR+

ikZρ0
−1δσφz,

(4.1.12)

ΓδuZ = −ikZ

(

δp

ρ0

+
B0 cos χδBφ + B0 sin χδBZ

4πρ0

)

+

ikZB0 sin χ

4πρ0

δBZ + ikRρ0
−1δσZR + ikZρ0

−1δσZZ .

(4.1.13)

Eq. (4.1.13) can be rearranged into,

δp

ρ0

+ v2
A cos χδB̄φ = ηνΓ

(

3 sin2 χ − 1
)

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

−

ikR

k2
Z

ΓδuR.

(4.1.14)
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Using Eq. (4.1.3) and Eqs. (4.1.11), (4.1.12), and (4.1.14), we can express radial and

azimuthal force balance equations in terms of δB̄R and δB̄φ:

(

1 +
k2

R

k2
Z

)

Γ2δB̄R − 2Ω
(

ΓδB̄φ − Ω′RδB̄R

)

=

3ηνΓkRkZ sin3 χ

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

−
(

k2
R + k2

Z

)

v2
A sin2 χδB̄R+

3

5
θ0

(

∂ ln p0

∂R

)

Γ∂ ln p0ρ0
−5/3/∂R + 2

3
ηκk

2
Z sin2 χ∂ ln T0/∂R

Γ + 2
5
ηκk2

Z sin2 χ
δB̄R,

(4.1.15)

Γ2δB̄φ + 2ΩΓδB̄R = −3ηνΓk2
Z sin2 χ cos χ

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

−

k2
Zv2

A sin2 χδB̄φ.

(4.1.16)

Eqs. (4.1.15) and (4.1.16) can be solved for the dispersion relation for the incompress-

ible MVTI,

(

k2

k2
Z

Γ2 +
dΩ2

d ln R
+ 3ηνk

2
RΓ sin4 χ + k2v2

A sin2 χ −

3

5
θ0

(

∂ ln p0

∂R

)

Γ∂ ln p0ρ0
−5/3/∂R + 2

3
ηκk

2
Z sin2 χ∂ ln T0/∂R

Γ + 2
5
ηκk2

Z sin2 χ

)

×

(

Γ2 + k2
Zv2

A sin2 χ + 3ηνk
2
ZΓ sin2 χ cos2 χ

)

+

Γ2
(

4Ω2 − 9η2
νk

2
Rk2

Z sin6 χ cos2 χ
)

= 0,

(4.1.17)

where k2 = k2
R + k2

Z . If electrons and ions have the same temperature, the Prandtl

number is given by Braginskii (1965),

Pr ≡ ην/ηκ ≈ 0.96

3.2

(

2me

mi

)1/2

≈ 1/101. (4.1.18)
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We employ normalizations of fluid variables as given in Tab. (A.2). One can write

Eq. (4.1.17) as,

(

k̂2

k̂2
Z

γ2 + 2
d ln Ω

d ln R
+ 3η̂ν k̂

2
Rγ sin4 χ + k̂2 sin2 χ −

3

5
αP

αSγ + 2
3
αT Pr−1η̂ν k̂

2
Z sin2 χ

γ + 2
5
Pr−1η̂ν k̂2

Z sin2 χ

)

×
(

γ2 + k̂2
Z sin2 χ + 3η̂ν k̂

2
Zγ sin2 χ cos2 χ

)

+

γ2
(

4 − 9η̂ν
2k̂2

Rk̂2
Z sin6 χ cos2 χ

)

= 0,

(4.1.19)

where k̂2 = k2v2
A/Ω2, αS = −H

∂ ln p0ρ
−5/3

0

∂R
, αP = −H ∂ ln p0

∂R
, and αT = −H ∂ ln T0

∂R
.

We now consider the form of Eq. (4.1.19) under the following limiting conditions.

First, if the transport coefficient and equilibrium gradients go to zero, the dispersion

relation reduces to that of the MRI,

(

k̂2

k̂2
Z

γ2 + 2
d ln Ω

d ln R
+ k̂2 sin2 χ

)

(

γ2 + k̂2
Z sin2 χ

)

+ 4γ2 = 0. (4.1.20)

Second, if the equilibrium gradients are zero and the viscosity is nonzero, we reproduce

the MVI dispersion relation (Islam & Balbus 2005),

(

k̂2

k̂2
Z

γ2 + 2
d ln Ω

d ln R
+ 3η̂ν k̂

2
Rγ sin4 χ + k̂2 sin2 χ

)

×
(

γ2 + k̂2
Z sin2 χ + 3η̂ν k̂

2
Zγ sin2 χ cos2 χ

)

+

γ2
(

4 − 9η̂2
ν k̂

2
Rk̂2

Z sin6 χ cos2 χ
)

= 0.

(4.1.21)

Third, in the limit of no viscosity but finite thermal conductivity, we reproduce the
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MTI in a differentially rotating plasma (Balbus 2001),

(

k̂2

k̂2
Z

γ2 + 2
d ln Ω

d ln R
+ k̂2 sin2 χ − 3

5
αP

αSγ + 2
3
αT Pr−1η̂ν k̂

2
Z sin2 χ

γ + 2
5
Pr−1η̂ν k̂2

Z sin2 χ

)

×
(

γ2 + k̂2
Z sin2 χ

)

+ 4γ2 = 0.

(4.1.22)

Finally, in the limit of zero thermal conductivity and zero viscosity, but finite equilib-

rium gradients, we reproduce the dispersion relation for convectively unstable modes

in a rotating magnetized plasma (Balbus 1995),

(

k̂2

k̂2
Z

γ2 + 2
d ln Ω

d ln R
+ k̂2 sin2 χ − 3

5
αP αS

)

(

γ2 + k̂2
Z sin2 χ

)

+

4γ2 = 0.

(4.1.23)

To better understand the stability of this dilute weakly magnetized plasma, con-

sider the limit of Eq. (4.1.19) for which the viscosity becomes dynamically important,

ηνΩ/v2
A > 1. First, the viscous force dominates so that we reproduce a dispersion

relation similar to the MVI. The fastest growing wavenumbers are those for which

ηνk
2 ∼ Ω. In the MRI, the growth rate reaches a maximum of order Ω at wavenum-

bers k ∼ Ω/vA. For the MVI, the growth rate reaches a maximum at wavenumbers

k ∼ (Ω/ην)
1/2 ≪ Ω/vA.

Second, in the limit of dynamically important viscosity, the density response sim-

plifies. We always have Pr < 1, therefore δρ̄ as given by Eq. (4.1.9) can be approxi-

mated as,

δρ̄ ≈ −δuR

Γ

(

∂ ln T0

∂R

)

, (4.1.24)
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and the following approximation occurs in Eq. (4.1.19),

3

5
αP

αSγ + 2
3
αT Pr−1η̂ν k̂

2
Z sin2 χ

γ + 2
5
Pr−1η̂ν k̂2

Z sin2 χ
→ αP αT . (4.1.25)

Furthermore, ηκ ≫ ην , so that the range of applicability of thermal effects is signifi-

cantly larger than that of viscous transport. That is, one can satisfy the condition of

dynamically important thermal conductivity, as given in Eqs. (4.1.24) and (4.1.25),

even when ηνΩ/v2
A < 1.

We can express the regime of dynamically important viscous diffusion in terms of

physical parameters appropriate to our astrophysical problem. The viscous diffusivity

and Alfvén velocity in dimensional units are given by,

ην = 1.4 × 1019

(

T

104 K

)5/2
( n

1 cm−3

)−1 1

ln Λ
cm2 s−1, (4.1.26)

vA = 2.2 × 105

(

B

1 µG

)

( n

1 cm−3

)−1/2

cm s−1. (4.1.27)

Recall that Λ is the roughly the ratio of the Debye length to the π/2 impact param-

eter or the DeBroglie wavelength, whichever is larger. Therefore the orbital angular

velocity must be,

Ω >∼ 3.5 × 10−9

(

B

1 µ G

)2 (

T

104 K

)−5/2

(ln Λ) s−1, (4.1.28)

in order for the viscosity to be dynamically important.

4.2 Growth Rate and Stability Characteristics

Here we consider two equilibrium configurations that illustrate the MVTI dispersion

relation. We only consider a physical pressure profile, αP = 10. We also consider a
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Schwarzchild stable flow, with H∂ ln Pρ−5/3/∂R > 0 or αS < 0. This implies,

0 < αT ≤ 2

5
αP , (4.2.1)

so that αT ≤ 4. We focus our analysis on purely vertical wavenumbers, kR/kZ = 0.

Then Eq. (4.1.19) reduces to the following quintic polynomial, where x = (k · vA) /Ω =

k̂Z sin χ:

([

γ2 + 2
d ln Ω

d ln R
+ x2

] [

γ +
2

5
Pr−1η̂νx

2

]

− 3

5
αP

[

αSγ +
2

3
αT Pr−1η̂νx

2

])

×

(

γ2 + x2 + 3η̂νγx2 cos2 χ
)

+ 4γ2

(

γ +
2

5
Pr−1η̂νx

2

)

= 0.

(4.2.2)

In Fig. (4.2.1), we consider both viscous diffusivity and thermal conductivity to be

dynamically significant. Dispersion relations match the salient characteristic of the

MVI, where the growth rate approaches a maximum at wavenumbers k ∼ (Ω/ην)
1/2 ≪

Ω/vA. For αP = 0 and αT = 0, the MVTI dispersion relation reduces to that of the

MVI. In Fig. (4.2.2), we consider only the thermal conductivity to be dynamically

important. The dispersion relations are similar to the MTI in a rotating frame. For

αT > 0, the growth rate and range of wavenumber of the instability are increased.

This is shown in Figs. (4.2.1) and (4.2.2). We expect that equilibrium scale heights

of temperature, pressure, and entropy are of order the radius R. Therefore, in order

to have significant magnetoviscous and magnetothermal effects one requires that αT ,

αP , and αS be of order unity. Only relatively thick disks, H <∼ R, are expected to be

significantly susceptible to these classes of instability.
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Fig. 4.2.1.— Plot of the growth rate as a function of wavenumber for various αT for
a Keplerian rotation profile and ηνΩ/v2

A = 102.

4.3 Angular Momentum Flux And Heat Flux

Here we calculate the quadratic Rφ component of the stress tensor TRφ and radial

heat flux FER associated with the incompressible MVTI, using expressions derived in

§3.1. Eqs. (3.1.4) and (3.1.11) can be rewritten as expressions for modal 〈TRφ〉 and

〈FER〉, respectively,

〈TRφ〉 = ρ0Re
(

δuφδu
∗
R − v2

AδB̄φδB
∗
R + δσbbδB̄∗

R cos χ
)

, (4.3.1)

〈FER〉 = Re

(

5

2
ρ0δθδu

∗
R + δqδB̄∗

R − 1

3
δσbbδu∗

R

)

. (4.3.2)

We express all eigenmodal fluctuations, such as δB̄R, in terms of the radial Lagrangian

displacement ξR = Γ−1δuR.
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Fig. 4.2.2.— Plot of the dispersion relation for various αT for a Keplerian rotation
profile and a small viscous diffusion coefficient ηνΩ/v2

A = 1.

The following are the modal perturbed velocities, magnetic fields, density, tem-



82

perature, viscous stress, and heat flux. We consider nonradial modes,

δuR = γΩξR

δuφ = −
(

2γ2

γ2 + x2 + 3η̂νx2γ cos2 χ
+

d ln Ω

d ln R

)

ΩξR

δB̄R = ix
(

ΩξRv−1
A

)

δB̄φ = −ix
2γ

γ2 + x2 + 3η̂νx2γ cos2 χ

(

ΩξRv−1
A

)

δρ = −3

5
× γαS + 2

3
Pr−1η̂νx

2αT

γ + 2
5
Pr−1η̂νx2

(

ρH−1ξR

)

,

δθ/θ0 =
3

5
× γαS + 2

3
Pr−1η̂νx

2αT

γ + 2
5
Pr−1η̂νx2

(

ρH−1ξR

)

,

δσbb =
6ixγ2η̂ν cos χ

γ2 + x2 + 3η̂νx2γ cos2 χ
(ρ0ΩvAξR) ,

δq =
2

5
× Pr−1η̂νγαP

γ + 2
5
Pr−1η̂νx2

(

p0ΩvAH−1ξR

)

(4.3.3)

If we substitute Eq. (4.3.3) into Eq. (4.3.1), we get,

〈TRφ〉 = γ

(

2 − d ln Ω

d ln R
− 4γ2

γ2 + x2 + 3η̂νx2γ cos2 χ

)

ρ0Ω
2 |ξR|2 . (4.3.4)

If we substitute Eq. (4.3.3) into Eq. (4.3.2), we get,

〈FER〉 =

(

3

2
γ
γαS + 2

3
η̂νPr−1x2αT

γ + 2
5
η̂νPr−1x2

)

p0Ω |ξR|2 H−1. (4.3.5)

In all the plots of quadratic flux, we keep αP = 10, choose physical αT > 0 for which

the flow is Schwarzchild stable, and use the Prandtl number Pr = 1/101. Figs. (4.3.1)

and (4.3.2) are plots of normalized heat flux 〈FER〉 and angular momentum flux

〈TRφ〉, respectively, for MVI-like dispersion modes (ηνΩ/v2
A = 102). Figs. (4.3.3) and

(4.3.4) are plots of normalized heat flux 〈FER〉 and angular momentum flux 〈TRφ〉,

respectively, for MRI-like modes (ηνΩ/v2
A = 1). From Figs. (4.3.1) and (4.3.3),
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Fig. 4.3.1.— Normalized radial flux of thermal energy for a Keplerian rotational
profile and ηνΩ/v2

A = 102.

we observe that the quadratic heat flux is outward and dynamically significant, with

〈FER〉 >∼ 〈TRφ〉 θ
1/2
0 , in the limit of large (ηνΩ/v2

A ≫ 1) and moderate (ηνΩ/v2
A ∼ 1)

viscosities. This implies that the nonlinear MVTI can play an important role in

transporting out the energy, generated via the coupling of 〈TRφ〉 with rotational shear,

in nonradiative accreting flows. From Figs. (4.3.2) and (4.3.4), we observe that the

flux of angular momentum for these modes can be either inwards or outwards.

Surprisingly, the MTI in a rigidly rotating plasma can also transport angular mo-

mentum inwards or outwards. We can rederive the dispersion relation and angular

momentum flux for the MTI in a rotating plasma by setting Pr−1 = ηκ/ην , while let-

ting ην → 0. The normalized dispersion relation, Eq. (4.2.2), and angular momentum
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Fig. 4.3.2.— Normalized angular momentum flux for a Keplerian rotational profile
and ηνΩ/v2

A = 102.

flux, Eq. (4.3.4), are given by,

([

γ2 + 2
d ln Ω

d ln R
+ x2

] [

γ +
2

5
η̂κx

2

]

− 3

5
αP

[

αSγ +
2

3
αT η̂κx

2

])

(

γ2 + x2
)

+

4γ2

(

γ +
2

5
η̂κx

2

)

= 0,

(4.3.6)

〈TRφ〉 = γ
x2 (2 − d ln Ω/d ln R) − γ2 (2 + d ln Ω/d ln R)

γ2 + x2
ρ0Ω

2 |ξR|2 . (4.3.7)

Fig. (4.3.5) demonstrates that in a rigidly rotating plasma Ω′R = 0, the magne-

tothermal instability can transport angular momentum either inwards or outwards,

depending on wavenumber. As the system approaches marginal convective stability

αS → 0 from isothermality (αT = 0), the range of wavenumbers for which the stress

is outwards decreases. However, in the absence of rotational shear no energy can be

extracted from the flow (see Eq. [3.1.9]).
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Fig. 4.3.3.— Normalized radial flux of thermal energy for a Keplerian rotational
profile and ηνΩ/v2

A = 1.

4.4 Finite Compressibility

Physical effects associated with finite plasma compressibility appear when we consider

the effects of large but finite plasma β. These MHD modes, whose phase velocities

are of order vA, become more compressible as vA → θ
1/2
0 . Therefore, for plasmas with

weak magnetic fields, β ≫ 1, the growth rates and quadratic fluxes differ little from

their Boussinesq limit approximations.

The normalized viscous diffusivity ηνΩ/θ0 ∼ Ω/νi. If the wavelength of the fastest

growing modes, of order vA/Ω, is smaller than the mean free path, λi ∼ θ
1/2
0 /νi, then

the fluid approximation breaks down. Therefore, if νi
>∼ Ωβ1/2 or equivalently if

η̂ν
<∼ β1/2, then the plasma can be described by a fluid approximation.

Here we calculate the dispersion relation with finite compressibility. From Eq. (2.3.7),
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for a rigid rotation
profile (Ω′R = 0) for the MTI in a rotating disk (see Eq. [4.3.6]). There is a much
larger range of wavenumbers for which the angular momentum angular momentum
flux is inwards, than shown in Fig. (4.3.4).

the perturbed form of the fluid viscous stress δσbb with compressibility becomes,

δσbb = −3ρ0ην

(

i (k · b0) (b0 · δu) + Ω′RδB̄R cos χ − 1

3
(∇ · δu)

)

. (4.4.1)

The perturbed induction equations, Eq. (1.2.8), can be written as,

ΓδB̄R = ikZ sin χδuR,

ΓδB̄φ = − cos χ (∇ · δu) + ikZ sin χδuφ + Ω′RδB̄R,

ΓδB̄Z = − sin χ (∇ · δu) + ikZ sin χδuz.

(4.4.2)
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The MHD continuity equation, Eq. (1.2.5), can be written as,

∇ · δu = −Γδρ̄ − δuR
∂ ln ρ0

∂R
, (4.4.3)

From Eq. (4.4.3), the perturbed vertical velocity δuZ is given by,

δuZ = −kR

kZ

δuR − Γ

ikZ

δρ̄ − δuR

ikZ

∂ ln ρ0

∂R
. (4.4.4)

If we substitute Eqs. (4.4.2) and (4.4.3) into Eq. (4.4.1), δσbb can be represented as,

δσbb = −3ρ0ηνΓ

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ − 2

3
δρ̄ −

2δB̄R

3ikZ sin χ

∂ ln ρ0

∂R

)

.

(4.4.5)

If we substitute Eq. (4.4.5) into the MHD comoving force balance equations, Eq. (1.2.5),

we are left with,

ΓδuR − 2Ωδuφ = −ikR

(

δp

ρ0

+ v2
A

[

δB̄φ cos χ − kR

kZ

δB̄R sin χ

]

+

ηνΓ

[

δB̄φ cos χ − kR

kZ

δB̄R sin χ − 2

3
δρ̄ − 2δB̄R

3ikZ sin χ

∂ ln ρ0

∂R

])

+

ikZv2
AδB̄R sin χ + δρ̄θ0

∂ ln p0

∂R

(4.4.6)

Γδuφ + (2Ω + Ω′R) ΓδuR = 3ikZην sin χ cos χ
(

δB̄φ cos χ −
kR

kZ

δB̄R sin χ − 2

3
δρ̄ − 2δB̄R

ikZ sin χ

∂ ln ρ0

∂R

)

+ ikZv2
AδB̄φ sin χ

(4.4.7)

Γδuz = −ikZ

(

δp

ρ0

+ v2
A

[

δB̄φ cos χ − kR

kZ

δB̄R sin χ

])

+

ikZηνΓ
(

3 sin2 χ − 1
)

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ − 2

3
δρ̄ −

2δB̄R

3ikZ sin χ

∂ ln ρ0

∂R

)

− ikRv2
AδB̄R sin χ

(4.4.8)
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The perturbed form of the MHD comoving internal energy balance equation, Eq. (4.1.8),

with finite pressure perturbations, yields the equation for δρ̄ as,

δρ̄ =
3

5
× δuR∂ ln p0ρ

−5/3
0 /∂R − 2

3
iηκkZ sin χδB̄R∂ ln T0/∂R

Γ + 2
5
ηκk2

Z sin2 χ
+

3δp

5p0

× Γ + 2
3
ηκk

2
Z sin2 χ

Γ + 2
5
ηκk2

Z sin2 χ

(4.4.9)

If we substitute Eq. (4.4.4) into Eq. (4.4.8) we have an expression for the perturbed

pressure,

δp

ρ0

+ v2
A

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

= ηνΓ
(

3 sin2 χ − 1
) (

δB̄φ cos χ −

kR

kZ

δB̄R sin χ − 2

3
δρ̄ − 2δB̄R

3ikZ sin χ

∂ ln ρ0

∂R

)

− kR

kZ

v2
AδB̄R sin χ−

Γ

ikZ

(

−kR

kZ

δuR − Γ

ikZ

δρ̄ − δuR

ikZ

∂ ln ρ0

∂R

)

.

(4.4.10)

If we substitute the radial component of Eq. (4.4.2) into Eq. (4.4.10), the perturbed

pressure can be written as,

δp

p0

= −δB̄R

(

ηνΓ

θ0

[

3 sin2 χ − 1
]

[

kR

kZ

sin χ +
2

3ikZ sin χ

∂ ln ρ0

∂R

]

+

Γ2

k2
Zθ0 sin χ

[

kR

kZ

+
1

ikZ

∂ ln ρ0

∂R

])

+

δB̄φ

(

ηνΓ

θ0

[

3 sin2 χ − 1
]

− β−1

)

cos χ + δρ̄

(

Γ2

k2
Zθ0

− 2ηνΓ

3θ0

[

3 sin2 χ − 1
]

)

(4.4.11)

Eqs. (4.4.9) and (4.4.11) can be combined to yield an equation for δρ̄ in terms of δB̄R
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and δB̄φ,

δρ̄ =
3δB̄R

5ikZ sin χ
× Γ

∂ ln p0ρ
−5/3

0

∂R
+ 2

3
ηκk

2
Z sin2 χ∂ ln T0

∂R
(

Γ + 2
5
ηκk2

Z sin2 χ
)

(

1 − 3Γ2

5k2

Zθ0

+ 2ηνΓ
5θ0

[

3 sin2 χ − 1
]

)−

3

5
δB̄R

(

ηνΓ

θ0

[

3 sin2 χ − 1
]

[

kR

kZ

sin χ +
2

3ikZ sin χ

∂ ln ρ0

∂R

]

+
Γ2

k2
Zθ0 sin χ

[

kR

kZ

+
1

ikZ

∂ ln ρ0

∂R

])

Γ + 2
3
ηκk

2
Z sin2 χ

(

Γ + 2
5
ηκk2

Z sin2 χ
)

(

1 − 3Γ2

5k2

Zθ0

+ 2ηνΓ
5θ0

[

3 sin2 χ − 1
]

)+

3

5
δB̄φ

(

Γ + 2
3
ηκk

2
Z sin2 χ

)

(

ηνΓ
θ0

[

3 sin2 χ − 1
]

− β−1
)

cos χ

(

Γ + 2
5
ηκk2

Z sin2 χ
)

(

1 − 3Γ2

5k2

Zθ0

+ 2ηνΓ
5θ0

[

3 sin2 χ − 1
]

) .

(4.4.12)

If we substitute Eqs. (4.4.2) and (4.4.11) into Eq. (4.4.6), then,

Γ2

(

1 +
k2

R

k2
Z

)

δB̄R − 2Ω

(

ΓδB̄φ − Ω′RδB̄R − 2

3
Γδρ̄ − 2Γ

3ikZ sin χ

∂ ln ρ0

∂R
δB̄R

)

=

3ηνkRkZΓ sin3 χ

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ − 2

3
δρ̄ −

2

3ikZ sin χ

∂ ln ρ0

∂R
δB̄R

)

−
(

k2
R + k2

Z

)

v2
A sin2 χδB̄R+

δρ̄

(

ikZ sin χθ0
∂ ln p0

∂R

)

.

(4.4.13)

If we substitute Eq. (4.4.2) into Eq. (4.4.7) then,

Γ2

(

δB̄φ − 2

3
δρ̄ − 2

3ikZ sin χ

∂ ln ρ0

∂R

)

+ 2ΩΓδB̄R =

− 3ηνk
2
ZΓ sin2 χ cos χ

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ −

2

3
δρ̄ − 2

3ikZ sin χ

∂ ln ρ0

∂R

)

− k2
Zv2

A sin2 χδB̄φ.

(4.4.14)
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Eqs. (4.4.12) - (4.4.14) are a set of eigenvector equations,
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δB̄φ






=







0

0






. (4.4.15)

The solution for the normalized growth rate γ can be found by solving the following

eigenvalue equation,

∣

∣

∣

∣

∣

∣

∣

ARR + ARρ̄Cρ̄R ARφ + ARρ̄Cρ̄φ

AφR + Aφρ̄Cρ̄R Aφφ + Aφρ̄Cρ̄φ

∣

∣

∣

∣

∣

∣

∣

= 0. (4.4.16)

We use normalizations given in Tab. (A.2) for the components of the A and C matri-

ces, given in Eqs. (4.4.15) and (4.4.16). We use expressions for radial and azimuthal

force balance in terms of δB̄R and δB̄φ, given by Eqs. (4.4.13) and (4.4.14), respec-

tively. We use the expression for the perturbed density δρ̄ in terms of δB̄R and δB̄φ,
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given in Eq. (4.4.12). Components of the A and C matrices are calculated as,

ARR = γ2

(

1 +
k̂2

R

k̂2
Z

)

+
(

k̂2
R + k̂2

Z

)

sin2 χ + 2
d ln Ω

d ln R
−

2γ

ik̂Z sin χ
(αP − αT ) β−1/2 + 3η̂ν k̂

2
Rγ sin4 χ+

2iη̂ν k̂Rγ sin2 χ (αP − αT ) β−1/2,

ARφ = −γ
(

2 + 3η̂ν k̂Rk̂Z sin3 χ cos χ
)

,

ARρ̄ =
2

3
γ

(

2 + 3η̂ν k̂Rk̂Z sin3 χ
)

+ ik̂Z sin χαP β1/2,

AφR = γ
(

2 − 3η̂ν k̂Rk̂Z sin3 χ cos χ
)

+
2γ2

3ik̂Z sin χ
(αP − αT ) β−1/2−

2iη̂νkZγ sin χ cos χ (αP − αT ) β−1/2,

Aφφ = γ2 + k̂2
Z sin2 χ + 3η̂ν k̂

2
Zγ sin2 χ cos2 χ,

Aφρ̄ = −2

3
γ

(

γ + 3η̂ν k̂
2
Z sin2 χ cos χ

)

,

(4.4.17)

and,

Cρ̄R = − 3
(

γαS + 2
3
Pr−1η̂νk

2
Z sin2 χαT

)

β−1/2

5ik̂Z sin χ
(

γ + 2
5
Pr−1η̂νk2

Z sin2 χ
)

(

1 − 3γ2

5k̂2

Z

β−1 + 2
5
η̂νγβ−1

[

3 sin2 χ − 1
]

)−

3

5
β−1

(

η̂νγ
[

3 sin2 χ − 1
]

[

k̂R

k̂Z

sin χ − 2

3ik̂Z sin χ
(αP − αT ) β−1/2

]

+

γ2

k̂2
Z

[

k̂R

k̂Z

− 1

ik̂Z

(αP − αT ) β−1/2

])

×

γ + 2
3
Pr−1η̂ν k̂

2
Z sin2 χ

(

γ + 2
5
Pr−1η̂ν k̂2

Z sin2 χ
)(

1 − 3γ2

5k̂2

Z

β−1 + 2
5
η̂νγβ−1

[

3 sin2 χ − 1
]

) ,

Cρ̄φ =
3
(

γ + 2
3
Pr−1η̂ν k̂

2
Z sin2 χ

)

(

η̂νγ
[

3 sin2 χ − 1
]

− 1
)

β−1 cos χ

5
(

γ + 2
5
Pr−1η̂νk2

Z sin2 χ
)

(

1 − 3γ2

5k̂2

Z

β−1 + 2
5
η̂νγβ−1

(

3 sin2 χ − 1
)

) .

(4.4.18)

In the limit β → ∞, the full compressive dispersion relation, Eq. (4.4.16), reduces to
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Eq. (4.1.19).

4.4.1 The Compressive MVTI Growth Rate

To observe how the MVTI changes as only the magnetic field strength increases, we

vary β but keep αP , αT , ην , and ηκ constant. We set αP = 5, αT = 1 (thus ensuring a

Schwarzchild stable disk), χ = π/4, use a Keplerian rotation profile, and set ηνΩ/θ0 =

10−3. We plot the real and imaginary parts of the normalized growth rate Γ/Ω as a

function of normalized nonradial wavenumber kZvA/Ω for various β in Figs. (4.4.1)

and (4.4.2), respectively. Collisional theory applies where β <∼ (ηνΩ/θ0)
−2 = 106. For

β > 103 the viscosity becomes dynamically important and we have MVI-like modes.

For 1 < β < 103, we reproduce the MRI-like modes.
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Fig. 4.4.1.— Real part of the growth rate for the MVTI as a function of normalized
vertical wavenumber for various β <∼ 106 and ηνΩ/θ0 = 10−3. The top line is β = 106,
the second line is β = 104, the third line is β = 102, and the bottom line is β = 1.
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Fig. 4.4.2.— Imaginary part of the growth rate for the MVTI as a function of nor-
malized vertical wavenumber for various β <∼ 106 and ηνΩ/θ0 = 10−3.

To observe MVI-like modes of varying degrees of compressibility, we fix the nor-

malized viscosity η̂ν = 10 but vary β. This corresponds to a physical system in which

νi ∝ β. We set αP = 5, αT = 1, χ = π/4, and use a Keplerian rotational profile.

For the fluid approximation to apply, we require that β ≥ 102. We plot the growth

rate as a function of normalized nonradial wavenumber kZvA/Ω for various β ≥ 102.

The real and imaginary parts of the growth rate as a function of vertical wavenumber

are shown in Figs. (4.4.3) and (4.4.4), respectively. The modes become more incom-

pressible as β increases. As β → ∞, we see the following results: first, the imaginary

part of the growth rate goes to zero (see Fig. [4.4.4]); and second, the real part of the

growth rate approaches the value as given in Eq. (4.1.19) (see Fig. [4.4.3]).
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Fig. 4.4.3.— Real part of the growth rate as a function of vertical wavenumber for the
compressive MVTI with fixed viscous diffusivity ηνΩ/v2

A = 10, for various β ≥ 102.
The line in red denotes the dispersion relation for β = 102. The line in purple denotes
the dispersion relations for β = 104, 106, and 108, which coincide at the resolution of
this graph.
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Fig. 4.4.4.— Imaginary part of the growth rate as a function of vertical wavenumber
for the compressive MVTI with fixed viscous diffusivity ηνΩ/v2

A = 10, for various
β ≥ 102. As β → ∞, Im (Γ) /Ω → 0 at all unstable wavenumbers.
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4.4.2 Quadratic Fluxes for Compressive MVTI

To calculate the quadratic fluxes of angular momentum and energy for the compressive

MVTI, we use the modal forms of 〈TRφ〉 and 〈FER〉, given in Eqs. (4.3.1) and (4.3.2),

respectively. The term −1
3
Re (δσbbδu∗

R) = 0 in 〈FER〉 in the incompressible limit, but

is nonzero if we include finite compressibility. We calculate expressions for perturbed

modal fluid quantities in terms of ξR.

The radial component of Eq. (4.4.2) can yield,

δB̄R = ik̂Z sin χ
(

Ωv−1
A ξR

)

. (4.4.19)

If we substitute Eq. (4.4.19) into Eq. (4.4.15), we get,

δB̄φ = −AφR + Aφρ̄Cρ̄R

Aφφ + Aφρ̄Cρ̄φ

ik̂Z sin χ
(

Ωv−1
A ξR

)

. (4.4.20)

δρ̄ can be found from Eqs. (4.4.18), (4.4.19), and (4.4.20),

δρ̄ =

(

Aρ̄R − Aρ̄φ
AφR + Aφρ̄Cρ̄R

Aφφ + Aφρ̄Cρ̄φ

)

ik̂Z sin χ
(

Ωv−1
A ξR

)

. (4.4.21)

If we substitute expressions for δB̄R, δB̄φ, and δρ̄ as given by Eqs. (4.4.19) - (4.4.21),

then the azimuthal component of Eq. (4.4.2) can be solved for δuφ,

δuφ =

(

γ

[

αP − αT

ik̂Zβ1/2 sin χ
+

(Cρ̄φ − 1)
AφR + Aφρ̄Cρ̄R

Aφφ + Aφρ̄Cρ̄φ

− Cρ̄R

]

− d ln Ω

d ln R

)

ΩξR.

(4.4.22)

If we substitute Eqs. (4.4.19) - (4.4.21) into Eq. (4.4.11), then,

δp

p0

= Apik̂Z sin χ
(

Ωv−1
A ξR

)

, (4.4.23)
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where,

Ap = −β−1

(

η̂νγ
(

3 sin2 χ − 1
)

(

k̂R

k̂Z

sin χ − 2 (αP − αT )

3ik̂Z sin χβ1/2

)

+

γ2

k̂2
Z sin χ

[

k̂R

k̂Z

− αP − αT

ik̂Zβ1/2

]

+ Cρ̄R

[

γ2

k̂2
Z

− 2η̂νγ

3

(

3 sin2 χ − 1
)

])

−

AφR + Aφρ̄Cρ̄R

Aφφ + Aφρ̄Cρ̄φ

(

η̂νγ
(

3 sin2 χ − 1
)

− 1 +

Cρ̄φ

[

γ2

k̂2
Z

− 2η̂νγ

3

(

3 sin2 χ − 1
)

])

β−1.

(4.4.24)

The perturbed temperature is given by,

δθ = θ0

(

δp

p0

− δρ̄

)

. (4.4.25)

If we substitute Eqs. (4.4.19) - (4.4.21) into Eq. (4.4.5), then δσbb can be represented

by,

δσbb = 3ρ0η̂νγ (ΩvAξR)

(

ik̂R sin2 χ − 2 (αP − αT )

3β1/2
+

AφR + Aφρ̄Cρ̄R

Aφφ + Aφρ̄Cρ̄φ

[

ik̂Z sin χ cos χ − 2

3
Cρ̄φ

]

+
2

3
Cρ̄R

)

.

(4.4.26)

The perturbed heat flux δq can be expressed as,

δq = η̂κp0vA

(

ik̂Z sin χαT H−1ξR − ik̂Z sin χ
δθ

θ0

)

. (4.4.27)

We plot normalized angular momentum flux, in Fig. (4.4.5), and heat flux, in Fig. (4.4.6),

as functions of nonradial wavenumber for a Keplerian rotation profile, χ = π/4,

αP = 5, αT = 1, and viscous diffusivity ηνΩ/θ0 = 10−3, for various β ≤ 106. In

Eq. (4.3.2), the dominant term in 〈FER〉, Re
(

δqδB̄∗
R

)

∝ β1/2. Therefore the quadratic

heat flux 〈FER〉 ∝ β1/2 when the viscous diffusivity and gas pressure are kept constant
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but the magnetic field strength varies. At fixed viscous diffusivity the quadratic heat

flux due to the MVTI becomes stronger as the magnetic field becomes weaker. In

Fig. (4.4.6), we plot 〈FER〉 normalized in units of p0Ω
2 |ξ|2R v−1

A . The normalization of

the flux in Fig. (4.4.6) has magnitude β1/2 times p0Ω |ξ|2R H−1, the normalization of

heat fluxes in Figs. (4.3.1) and (4.3.3).
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Fig. 4.4.5.— Normalized modal angular momentum flux as a function of vertical
wavenumber kZvA/Ω for ηνΩ/θ0 = 10−3 and β ≤ 106.
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Fig. 4.4.6.— Normalized modal heat flux as a function of vertical wavenumber kZvA/Ω
for ηνΩ/θ0 = 10−3 and β ≤ 106.

In Figs. (4.4.7) and (4.4.8) we plot normalized angular momentum flux and nor-

malized heat flux as a function of nonradial wavenumber, respectively. We take a

Keplerian rotation profile, χ = π/4, αP = 5, αT = 1, and ηνΩ/v2
A = 10, for various

β ≥ 102. At fixed normalized viscous diffusivity, as β increases we recover the incom-

pressible limits of 〈FER〉 and 〈TRφ〉, as given by Eqs. (4.3.5) and (4.3.4), respectively.
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Fig. 4.4.7.— Normalized modal angular momentum flux as a function of vertical
wavenumber kZvA/Ω for ηνΩ/v2

A = 10 and various β ≥ 102. The red line corresponds
to β = 102. Lines corresponding to β = 104, β = 106, and β = 108 coincide at the
resolution of this graph and are denoted by the purple line.
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Fig. 4.4.8.— Normalized modal heat flux as a function of vertical wavenumber kZvA/Ω
for ηνΩ/v2

A = 10 and β ≥ 102. Heat flux is especially large for β = 102. Lines
corresponding to β = 106 and β = 108, coincide at the resolution of this graph.



103

4.5 Summary of Results

We have demonstrated several important properties of the MVTI. First, we find that

both slender and thick disks with sufficiently large thermal diffusion coefficients are

susceptible to the MVTI. Second, outwardly decreasing temperature profiles increase

the range of unstable wavenumbers and growth rate of unstable modes for the MRI-

like instability and the MVI-like instability. Third, collisional viscosity and thermal

conductivity in dilute plasmas contribute significantly to quadratic modal fluxes of

angular momentum and heat in the MVTI. The MVTI can transport angular momen-

tum either outwards or inwards even when there is no orbital angular velocity shear.

Finally, we demonstrate that the MVTI become more compressible as β decreases

while the normalized viscous diffusivity ηνΩ/v2
A stays constant.
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Chapter 5

Kinetic Treatment – the

Collisionless MTI

In this chapter we formulate a model of the collisionless MTI, which is the analogue

of the MVTI in the absence of collisions. Kulsrud’s drift-kinetic approximation to

the Boltzmann equation (Kulsrud 1983, 2005) is well suited for collisionless or mildly

collisional MHD plasma equilibrium and dynamics. Dynamics only along magnetic

field lines, MHD conditions of quasineutrality and zero equilibrium current, and con-

servation of magnetic moment are the features of the lowest order particle distribution

function. In these dilute plasmas, interspecies momentum and energy transfer pro-

cesses such as temperature equilibration or electric resistivity, that cannot be mod-

eled through the Kulsrud formalism, are not physically relevant to our problem of

interest. Such effects may be modelled by a distribution function expansion in colli-

sional frequency, or by applying a more accurate collisional operator (Braginskii 1965;

Chang & Callen 1992).

The drift-kinetic equation has been used in treatments of accretion in dilute ro-

tating astrophysical plasmas (Quataert et al. 2002; Sharma et al. 2003). We derive a
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drift-kinetic equation for rotating plasmas, with a simplified collision operator, BGK

(Bhatnager et al. 1954), that reproduces the qualitative form of viscous and ther-

mal transport in magnetized plasmas in the limit of high collisionality (Snyder et al.

1997). The organization of this chapter is as follows. In §5.1, we derive the drift-

kinetic equation in a rotating frame in which the sound speed is subdominant to the

orbital speed. We derive velocity moments that reduce to the fluid equations. In §5.2

we consider the stability of hot dilute rotating plasmas to the collisionless MRI and

MTI as well as demonstrate the form of outward quadratic angular momentum and

heat fluxes. In §5.3 we consider finite collisionality. We demonstrate that for colli-

sional frequencies large enough such that the ion mean free path is longer than the

wavelength of the fastest growing modes (of order vA/Ω), we reproduce the Braginskii

fluid viscosity and thermal conductivity. Finally, in §5.4 we summarize our results.

5.1 The Drift Kinetic Equation in Rotating Frame

Let us consider the form of the electric field and the equilibrium force balance equation

in a dilute magnetized rotating disk. The structure of a thin dilute magnetized disk

is described in some detail in Appendix B. Electric fields constrain the electrons

and ions to have the same velocity and number density. The electric field is given

by Eq. (B.5), where EES = ER,ESR̂ + EZ,ESẑ is the electrostatic field that ensures

quasineutrality. E‖ is the component of the electric field parallel to the magnetic

field, and in equilibrium E‖0 = 0. The ion and electron equilibrium radial and

vertical force balance equations are given by Eqs. (B.25) - (B.28). For a mildly

collisional or collisionless plasma, the slowest and largest scale plasma dynamics may

be described by dilute MHD. This is valid if we consider the following hierarchy

of scales: 1/T < ωpi ≪ Ωci, 1/L < ωpi/c ≪ ρi, where ωpi/c is the inverse ion
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inertial depth, and L and T are the shortest length and fastest time scales associated

with this system. Particle motion along magnetic fields is unconstrained. In the

purely collisionless case a valid equilibrium is one in which pressures parallel and

perpendicular to the magnetic field may not necessarily be equal. We consider a

plasma equilibrium such that pressures parallel and perpendicular to the magnetic

field are equal.

The Boltzmann equation governing the dynamics of a particle species s is,

∂fs

∂t
+ U · ∇fs +

Zse

ms

(

E +
1

c
U × B

)

· ∂fs

∂U
+

Fs

ms

· ∂fs

∂U
= C [fs] . (5.1.1)

Here fs is the distribution function, C [fs] is a collision operator acting on fs, Fs is

the force acting on a particle, and ms and Zs are the mass and charge of a particle.

In a dilute magnetized plasma, a natural ordering of the particle distribution

function is in powers of (ΩsT )−1 ≪ 1, where Ωs = ZseB/ (msc) is the cyclotron

frequency. The particle distribution function fs can be expanded as,

fs = f 0
s + f 1

s + . . . (5.1.2)

The first to employ this formalism was Chew et al. (1956), who studied the adiabatic

response of magnetized plasmas. However, the adiabatic approximation is relevant

only to modes with phase velocities much faster than the sound speed. This is not

the case for these MHD modes in a weakly-magnetized plasma. From Eq. (1.2.4) we

get the simplified induction equation,

ΓδB̄ = ik‖δu +
(

RδB̄ · ∇Ω
)

φ̂ − b0 (ik · δu) (5.1.3)

In §5.1.1 we derive evolution equations for the zeroth-order distribution function for
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each species. In §5.1.2 and §5.1.3 we derive the fluid equations for this plasma from

the drift-kinetic equation.

5.1.1 The Drift Kinetic Equation

To derive the drift-kinetic equation in a rotating frame from the Boltzmann equation,

Eq. (5.1.1), it is convenient to use a set of gyromotion variables centered about the

equilibrium flow. The particle velocity can then be represented as,

U = RΩ(R)φ̂ + u⊥ + v‖b +
√

2µB (x̂⊥ cos ψ + ŷ⊥ sin ψ) , (5.1.4)

where v‖ is the particle velocity parallel to the magnetic field, µ is the magnetic

moment, x̂⊥ and ŷ⊥ are mutually orthogonal vectors perpendicular to the magnetic

field, and ψ is the gyroangle. u⊥ is the the bulk flow velocity perpendicular to the

magnetic field in an MHD fluid. Thus, the gyromotion-centered variables are,

v‖ = U · b − RΩbφ, (5.1.5)

µ =

(

U − RΩφ̂ + RΩbφb − b (U · b) − u⊥

)2

2B
, (5.1.6)

tan ψ =
ŷ⊥ ·

(

U − RΩφ̂ − u⊥

)

x̂⊥ ·
(

U − RΩφ̂ − u⊥

) , (5.1.7)

The Jacobian transformations with respect to U are,

∂v‖
∂U

= b, (5.1.8)

∂µ

∂U
=

√

2µ

B
(x̂⊥ cos ψ + ŷ⊥ sin ψ) , (5.1.9)

∂ψ

∂U
= − ŷ⊥ cos ψ − x̂⊥ sin ψ√

2µB
, (5.1.10)
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If we employ the electric field (Eq. [B.5]), equilibrium force balance equations for ions

and electrons (Eqs. [B.25] - [B.28]), and the velocity transformation (Eq. [5.1.4]), the

total acceleration of a particle of species s is given by, retaining terms only to order

z2 in the force balance equation,

Zse

ms

(

E +
1

c
U × B

)

−
(

Ω2
KR

(

1 − 3z2

2R2

)

R̂ + Ω2
Kzẑ

)

=

Zse

ms

(

E‖b + δEES +
1

c
B

√

2µB (x̂⊥ cos ψ + ŷ⊥ sin ψ) × b

)

+

(

1

msns0

∇ps0 − Ω2RR̂

)

(5.1.11)

where δEES = EES − EES,0. To lowest order in ΩsT , the Boltzmann equation is,

Ωs

(

√

2µB (x̂⊥ cos ψ + ŷ⊥ sin ψ) × b
)

· ∂f 0
s

∂U
= 0. (5.1.12)

Using the velocity Jacobian transformations given by Eqs. (5.1.8) - (5.1.10), Eq. (5.1.12)

reduces to,

Ωs
∂f 0

s

∂ψ
= 0. (5.1.13)

Hence f 0
s ≡ f 0

s

(

v‖, µ
)

, i.e., the particle distribution function is only a function of the

parallel velocity and magnitude of the perpendicular velocity about the equilibrium

flow. As a consequence, the pressure tensor is P = p‖bb + p⊥ (I − bb).

Using the equilibrium force balance equation, Eqs. (B.25) - (B.28), the velocity

transformation, Eq. (5.1.4), and the zeroth-order distribution function, Eq. (5.1.13),
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the next order in the Boltzmann equation is,

∂f 0
s

∂t
+

(

RΩφ̂ + u⊥ + v‖b +
√

2µB (x̂⊥ cos ψ + ŷ⊥ sin ψ)
)

· ∇f 0
s +

(

Zse

ms

E‖b +
1

msns0

∇ps0 − Ω2RR̂ +
Zse

ms

δEES

)

·
(

b
∂f 0

s

∂v‖
+

√

2µ

B
(x̂⊥ cos ψ + ŷ⊥ sin ψ)

∂f 0
s

∂µ

)

= C
[

f 0
s

]

,

(5.1.14)

Terms with Ωs∂f 1
s /∂ψ are nonconstant functions of ψ and so cannot contribute to

expressions for f 0
s . The simplest way to keep terms constant in gyrophase angle is to

average Eq. (5.1.14) over ψ. The Jacobians of velocity with respect to time are,

∂v‖
∂t

=
(

u⊥ +
√

2µB (x̂⊥ cos ψ + ŷ⊥ sin ψ)
)

· ∂b

∂t
, (5.1.15)

∂µ

∂t
= −

√

2µ

B
(x̂⊥ cos ψ + ŷ⊥ sin ψ) ·

(

∂b

∂t
v‖ +

∂u⊥
∂t

)

− µ

B

∂B

∂t
, (5.1.16)

and the Jacobians of velocity with respect to position are,

∇v‖ = ∇b ·
(

√

2µB (x̂⊥ cos ψ + ŷ⊥ sin ψ) + u⊥

)

− b · ∇
(

RΩφ̂
)

,(5.1.17)

∇µ = −
√

2µ

B
(x̂⊥ cos ψ + ŷ⊥ sin ψ) ·

(

v‖∇b + ∇u⊥ + ∇
(

RΩφ̂
))

.(5.1.18)

We need not compute the derivatives ∂ψ/∂t and ∇ψ since f 0
s is independent of ψ.

Thus, ∂f 0
s /∂t → ∂f 0

s /∂t +
(

∂f 0
s /∂v‖

)

∂v‖/∂t + (∂f 0
s /∂µ) ∂µ/∂t and ∇f 0

s → ∇f 0
s +
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∇v‖
(

∂f 0
s /∂v‖

)

+ ∇µ
(

∂f 0
s /∂µ

)

. The gyroaveraged Eq. (5.1.14) reduces to,

∂f 0
s

∂t
+

(

RΩφ̂ + u⊥ + v‖b
)

· ∇f 0
s +

∂f 0
s

∂v‖

(

u⊥ · ∂b

∂t
+

(

RΩφ̂ + u⊥ + v‖b
)

·
(

∇b · u⊥ − b · ∇
(

RΩφ̂
))

)

+

∂f 0
s

∂v‖
2µB 〈(x̂⊥ cos ψ + ŷ⊥ sin ψ) (x̂⊥ cos ψ + ŷ⊥ sin ψ) : ∇b〉ψ −

∂f 0
s

∂µ

(

µ

B

∂B

∂t

)

− 2µ
∂f 0

s

∂µ
〈(x̂⊥ cos ψ + ŷ⊥ sin ψ)

(x̂⊥ cos ψ + ŷ⊥ sin ψ) :
(

v‖∇b + ∇u⊥ + ∇
(

RΩφ̂
))〉

ψ
+

(

Zse

ms

E‖ +
1

msns0

b · ∇ps0 − Ω2RbR

)

∂f 0
s

∂v‖
=

〈

C
[

f 0
s

]〉

ψ

(5.1.19)

The term δEES · b is absorbed into E‖, and the gyroaveraged quantity 〈F 〉ψ =

1
2π

∫ 2π

0
F dψ. From Eq. (1.2.8), the evolution of the magnetic field magnitude B = B·b

is given by,

1

B

(

∂

∂t
+ Ω

∂

∂φ

)

B = −u · ∇B

B
−∇ · u + b · ∇u · b+

Rbφb · ∇Ω.

(5.1.20)

The gyroaveraged tensor is,

〈(x̂⊥ cos ψ + ŷ⊥ sin ψ) (x̂⊥ cos ψ + ŷ⊥ sin ψ)〉ψ =
1

2
(I − bb) . (5.1.21)

We use a simplified form of the collision operator (Bhatnager et al. 1954) that can

qualitatively reproduce the collisional form of the viscous stress and conductive heat
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flux:

C
〈

f 0
s

〉

= νs

(

f 0
s − 〈fs〉

)

,

〈fs〉 =
n

(2πkBTs/ms)
3/2

exp

(

−ms

(

v‖ − u‖
)2

2kBTs

− msµB

kBTs

)

,

Ts = Ts‖/3 + 2Ts⊥/3,

(5.1.22)

where Ts‖ and Ts⊥ are defined as nkBTs‖ = ps‖ and nkBTs⊥ = ps⊥, and νs is the

collision frequency of species s. After some algebra, using Eqs. (5.1.20) - (5.1.22), we

obtain the drift-kinetic equation in covariant form:

(

∂

∂t
+ Ω

∂

∂φ

)

(

f 0
s B

)

+ ∇ ·
([

v‖b + u⊥
]

f 0
s B

)

+

∂

∂v‖

(

f 0
s B

[

Zse

ms

E‖ +
1

ns0ms

b · ∇ps0

])

+

∂

∂v‖

(

f 0
s B

[

−b ·
([

∂

∂t
+ Ω

∂

∂φ

]

u⊥ +
[

v‖b + u⊥
]

· ∇u⊥

)

+

µB∇ · b + 2Ωẑ · (b × u) − bφR
(

u⊥ + v‖b
)

· ∇Ω
])

=

− νs

(

f 0
s B − 〈fs〉B

)

,

(5.1.23)

Additional terms appear in the formulation of Eq. (5.1.23) that do not appear in

the normal drift-kinetic equation (Kulsrud 1983, 2005). It includes terms associated

with noninertial rotational accelerations along the magnetic field, 2Ωẑ · (b × u) −

bφR
(

u⊥ + v‖b
)

·∇Ω, and pressure forces along the magnetic field, 1/ (ρ0ms)b ·∇ps0.

An equilibrium particle distribution function of Eq. (5.1.23) is,

f 0
s0 =

ρ0(R, z)

(2πkBTs0(R)/ms)
3/2

exp

(

−
msv

2
‖

2kBTs0(R)
− msµB

kBTs0(R)

)

. (5.1.24)

The density profile, as described in §3, is ρ0 (R, z) = ρ0(R) exp (−z2/ (2H2)).
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5.1.2 Moments of the Drift-Kinetic Equation

We take moments of the drift-kinetic equation in order to reproduce MHD equations

for continuity, force balance, internal energy, and heat flux. We consider moments up

to third order in velocity of Eq. (5.1.23), using the formalism of Snyder et al. (1997).

We note that the velocity volume element is d3U = B dµdv‖ dψ. For a function F

independent of ψ,
∫

F d3U = 2π
∫

FB dµ dv‖. The following are the nonzero moments

used in deriving fluid evolution equations from the drift-kinetic equation:

ns = 2π

∫

f 0
s B dµdv‖,

nsu‖ = 2π

∫

f 0
s v‖

(

B dµdv‖
)

,

ps‖ = 2π

∫

ms

(

v‖ − u‖
)2

f 0
s

(

B dµdv‖
)

,

ps⊥ = 2π

∫

msµBf 0
s

(

B dµdv‖
)

,

qs‖ = 2π

∫

ms

(

v‖ − u‖
)3

f 0
s

(

B dµdv‖
)

,

qs⊥ = 2π

∫

ms

(

v‖ − u‖
)

µBf 0
s

(

B dµdv‖
)

,

rs‖ = 2π

∫

ms

(

v‖ − u‖
)4

f 0
s

(

B dµdv‖
)

,

rs× = 2π

∫

ms

(

v‖ − u‖
)2

µBf 0
s

(

B dµdv‖
)

,

rs⊥ = 2π

∫

msµ
2B2f 0

s

(

B dµdv‖
)

.

(5.1.25)
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The moments of the collision operator are,

2π

∫

msC
[

f 0
s

]

B dµdv‖ = 0,

2π

∫

msv‖C
[

f 0
s

]

B dµdv‖ = 0,

2π

∫

ms

(

v‖ − u‖
)2

C
[

f 0
s

]

B dµdv‖ = −2

3
νs

(

ps‖ − ps⊥
)

,

2π

∫

msµBC
[

f 0
s

]

B dµdv‖ = −1

3
νs

(

ps⊥ − ps‖
)

,

2π

∫

ms

(

v‖ − u‖
)3

C
[

f 0
s

]

B dµdv‖ = −νsqs‖,

2π

∫

msµB
(

v‖ − u‖
)

C
[

f 0
s

]

B dµdv‖ = −νsqs⊥.

(5.1.26)

If we take appropriate moments of Eq. (5.1.23) with moments of the collision operator,

Eq. (5.1.26), we have the fluid equations for continuity, parallel force balance, parallel
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and perpendicular pressures, and heat fluxes:

(

∂

∂t
+ Ω

∂

∂φ

)

ns + ∇ · (nsu) = 0, (5.1.27)

(

∂

∂t
+ Ω

∂

∂φ

)

v‖ + u · ∇v‖ +
1

nsms

∇ ·
(

ps‖b
)

− ps⊥
nsms

∇ · b−

2Ωẑ · (b × u) + Rbφu · ∇Ω + b ·
([

∂

∂t
+ Ω

∂

∂φ

]

u⊥ + u · ∇u⊥

)

−

Zse

ms

E‖ −
1

ρ0ms

b · ∇ps0 = 0,

(5.1.28)

(

∂

∂t
+ Ω

∂

∂φ

)

ps‖ + ∇ ·
(

ps‖u
)

+ ∇ ·
(

qs‖b
)

+

2ps‖ (b · ∇u · b + Rbφb · ∇Ω) − 2qs⊥∇ · b = −2

3

(

ps‖ − ps⊥
)

,

(5.1.29)

(

∂

∂t
+ Ω

∂

∂φ

)

ps⊥ + ps⊥ (∇ · u − b · ∇u · b − Rbφb · ∇Ω) +

∇ · (ps⊥u) + ∇ · (qs⊥b) + qs⊥∇ · b = −1

3

(

ps⊥ − ps‖
)

,

(5.1.30)

(

∂

∂t
+ Ω

∂

∂φ

)

qs‖ + ∇ ·
(

qs‖u
)

+ ∇ ·
(

brs‖
)

+

3

(

ps‖
[

ps‖ − ps⊥
]

nsms

− rs×

)

∇ · b − 3ps‖
nsms

b · ∇ps‖+

3qs‖ (b · ∇u · b + Rbφb · ∇Ω) = −νsqs‖

(5.1.31)

(

∂

∂t
+ Ω

∂

∂φ

)

qs⊥ + ∇ · (qs⊥u) + ∇ · (rs×b) +

(

ps⊥
[

ps⊥ − ps‖
]

nsms

+ rs× − rs⊥

)

∇ · b − ps⊥
nsms

b · ∇ps‖+

qs⊥∇ · u = −νsqs⊥.

(5.1.32)
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We make the following substitutions for pressures and heat fluxes,

ps =
1

3

(

ps‖ + 2ps⊥
)

,

psv = ps‖ − ps⊥,

qs = qs‖/2 + qs⊥,

qsv = qs‖ − qs⊥.

(5.1.33)

We rearrange Eqs. (5.1.29) and (5.1.30) into,

3

2

(

∂

∂t
+ Ω

∂

∂φ
+ u · ∇

)

ps +
5

2
ps∇ · u = −∇ · (qsb)−

psv

(

b · ∇u · b − 1

3
∇ · u + Rbφb · ∇Ω

) (5.1.34)

(

∂

∂t
+ Ω

∂

∂φ
+ u · ∇ +

4

3
∇ · u + [b · ∇u · b + Rbφb · ∇Ω] + νs

)

psv =

− 3ps

(

b · ∇u · b + Rbφb · ∇Ω − 1

3
∇ · u

)

−∇ · (qsvb) +

(2qs − qsv)∇ · b

(5.1.35)

If we substitute in Eqs. (5.1.20) and (5.1.27), we rearrange Eqs. (5.1.34) and (5.1.35)

into the following forms (Chew et al. 1956),

ρB

(

∂

∂t
+ Ω

∂

∂φ

)(

ps⊥
ρB

)

+ ρBu · ∇
(

ps⊥
ρB

)

= −∇ · (qs⊥b)−

qs⊥∇ · b − 1

3
νs

(

ps⊥ − ps‖
)

,

(5.1.36)

ρ3

B2

(

∂

∂t
+ Ω

∂

∂φ

)(

ps‖B
2

ρ3

)

+
ρ3

B2
u · ∇

(

ps‖B
2

ρ3

)

= −∇ ·
(

qs‖b
)

−

2qs⊥∇ · b − 2

3
νs

(

ps‖ − ps⊥
)

.

(5.1.37)
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Using Eqs. (5.1.20) and (5.1.27), Eqs. (5.1.31) and (5.1.32) can be written as,

(

d

dt
+

5

3
∇ · u + b · ∇u · b + Rbφb · ∇Ω + νs

)

qs+

(

b · ∇u · b − 1

3
∇ · u + Rbφb · ∇Ω

)

qsv =

−∇ ·
(

b

[

1

2
rs‖ + rs×

])

+

(

1

2
rs× + rs⊥

)

∇ · b+

5ps

2nsms

b · ∇ps +
5ps

3nsms

b · ∇psv +
5psv

3nsms

b · ∇
(

ps +
2

3
psv

)

−
(

ps + 8
3
psv

)

psv

2nsms

∇ · b,

(5.1.38)

(

∂

∂t
+ Ω

∂

∂φ
+ 2b · ∇u · b + 2Rbφb · ∇Ω +

1

3
∇ · u + νs

)

qsv+

2

(

b · ∇u · b + Rbφb · ∇Ω − 1

3
∇ · u

)

qs = −∇ · (qsvu)−

∇ ·
(

b
[

rs‖ − rs×
])

+ (4rs× − rs⊥)∇ · b +
2ps

nsms

b · ∇ps+

7psv

3nsms

b · ∇
(

ps +
2

3
psv

)

.

(5.1.39)

For sufficiently high collisionality, we can consider a subsidiary fluid ordering of the

plasma distribution function,

f 0
s =

ns

(2πkBTs/ms)
3/2

exp

(

−
msv

2
‖ + 2msµB

2kBTs

)

+ δ1f
0
s + . . . (5.1.40)

where Ts‖ ≈ Ts⊥ = Ts. δ1f
0
s refers to deviations of the zeroth-order distribution

function from Maxwellian of order ν−1
s . Then, to lowest order in ν−1

s , the fourth-

order moments of the distribution function are then given by,

rs‖ = 3nkBTs
kBTs

ms

, (5.1.41)

rs× = nkBTs
kBTs

ms

, (5.1.42)

rs⊥ = 2nkBTs
kBTs

ms

. (5.1.43)
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From Eqs. (5.1.35), (5.1.38), and (5.1.39), if we substitute Eqs. (5.1.41) - (5.1.43),

then to lowest order in ν−1
s , the viscous pressure psv and heat fluxes qs and qsv are

given by,

psv ≈ −3ps

νs

(

b · ∇u · b + Rbφb · ∇Ω − 1

3
∇ · u

)

, (5.1.44)

qs ≈ −5nkBTs

2msνs

b · ∇ (kBTs) , (5.1.45)

qsv ≈ −2nkBTs

msνs

b · ∇ (kBTs) , (5.1.46)

These differ from the expressions for the viscous pressure and thermal conductivity

given in Braginskii (1965) by factors of order unity.

5.1.3 Full Force Balance

We note that Eq. (5.1.23) only describes force balance parallel to the magnetic field,

Eq. (5.1.28). In order to describe total force balance, we consider Eq. (5.1.1) with the

excess electric field defined as,

∆E = E‖b + δEES, (5.1.47)

where δEES = EES − E0,ES. To first order in the distribution function we have,

∂f 0
s

∂t
+ U · ∇f 0

s +

(

Zse

ms

∆E − Ω2R +
1

msns0

b · ∇ps0

)

· ∂f 0
s

∂U
+

Zse

ms

(

−1

c
u × B − 1

c
RΩφ̂ × B +

1

c
v × B

)

· ∂f 1
s

∂U
= C

[

f 0
s

]

.

(5.1.48)

Using the velocity transformation,

U = v + RΩφ̂ + u, (5.1.49)
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we reduce Eq. (5.1.48) to,

(

∂

∂t
+ Ω

∂

∂φ

)

f 0
s + u · ∇f 0

s + v · ∇f 0
s +

Zse

msc
(v × B) · ∂f 1

s

∂v
−

∂f 0
s

∂v
·
(

∂u

∂t
+

(

RΩφ̂ + v + u
)

· ∇
(

RΩφ̂ + u
)

−

Zse

ms

∆E + Ω2RR̂ +
1

msns0

∇ps0

)

= 0,

(5.1.50)

where we use moments of the distribution function in terms of v, given by,

∫

f 0
s d3v = ns,

∫

f 0
s v d3v = 0,

ms

∫

f 0
s vv d3v = Ps = ps⊥I +

(

ps‖ − ps⊥
)

bb.

(5.1.51)

Taking the moment of Eq. (5.1.50) with respect to v, and using moments given by

Eq. (5.1.51), we arrive at the comoving species force balance equation:

msns

([

∂

∂t
+ Ω

∂

∂φ

]

u + u · ∇u − 2Ωu × ẑ + Ru · ∇Ωφ̂

)

+ ∇ · Ps =

1

c

(

Zse

∫

f 1
s v d3v

)

× B − 1

c
(u × B)

(∫

Zse

∫

f 1
s d3v

)

+

Zsens∆E +
ns

ns0

∇ps0.

(5.1.52)

Currents and charges appear at first order in the distribution function,

J = e

∫

(

f 1
i − f 1

e

)

v d3v, (5.1.53)

ρq = e

∫

(

f 1
i − f 1

e

)

d3v. (5.1.54)

If we add Eq. (5.1.52) for ions and electrons, and substitute in Eqs. (5.1.53) and

(5.1.54, we derive the MHD force balance equation in the local rotating frame,
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Eq. (1.2.6). Dotting Eq. (1.2.6) with b yields the force balance equation parallel

to the magnetic field, Eq. (5.1.28). We ignore the contribution ρqu in the above

equation since our plasma is nonrelativistic – specifically the Alfvén speed is smaller

than the speed of light.

5.2 Perturbed Axisymmetric Distribution Function

at the Midplane

Consider an equilibrium particle distribution given by Eq. (5.1.24). Assume equal

scale heights of radial ion and electron temperature gradients, so that ∂ ln Ti0/∂R =

∂ ln Te0/∂R = ∂ ln T0/∂R. For small perturbations of the particle distribution func-

tion and of the electromagnetic field, at the disk midplane Eq. (5.1.23) reduces to,

δfi =
mpv‖
kBTi0

(−ik‖µδB + eδE‖/mp

Γ + ik‖v‖
−

(2Ω + Ω′R) Γ cos χδB̄R + ik‖v‖Ω
′R cos χδB̄R

ik‖
(

Γ + ik‖v‖
)

)

f 0
i0−

f 0
i0δB̄R

ik‖

(

∂ ln ρ0

∂R
− 3

2

∂ ln T0

∂R
+

(

mpµB0

kBTi0

+
mpv

2
‖

2kBTi0

)

∂ ln T0

∂R

)

+

δB̄Rv‖∂ ln p0/∂R

Γ + ik‖v‖
f 0

i0,

(5.2.1)

δfe =
mev‖
kBTe0

(−ik‖µδB − eδE‖/me

Γ + ik‖v‖
−

(2Ω + Ω′R) Γ cos χδB̄R + ik‖v‖Ω
′R cos χδB̄R

ik‖
(

Γ + ik‖v‖
)

)

f 0
e0−

f 0
e0δB̄R

ik‖

(

∂ ln ρ0

∂R
− 3

2

∂ ln T0

∂R
+

(

meµB0

kBTe0

+
mev

2
‖

2kBTe0

)

∂ ln T0

∂R

)

+

δB̄Rv‖∂ ln p0/∂R

Γ + ik‖v‖
f 0

e0.

(5.2.2)
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Terms with Ω arise due to the fact that the plasma is rotating. Terms with equi-

librium gradients of temperature, density, or pressure may drive convective and free

energy gradient instabilities. δE‖ is the electric field that ensures quasineutrality, i.e.

ni = ne = n. In the limit Ti0 ≥ Te0, the electric field δE‖ and electron quantities

(such as δpe⊥ and δpe‖) become unimportant in the plasma dynamics. This is the

simplification employed by Quataert et al. (2002) and Sharma et al. (2003). In Ap-

pendix D.2 we see that the resulting dispersion relation calculated with equal ion and

electron temperatures is not significantly different from that where the ions are orders

of magnitude hotter than the electrons.

Using the induction equation (Eq. [5.1.3]) and the continuity equation (Eq. [5.1.27]),

the total force balance equation, Eq. (1.2.6), becomes,

γ2δB̄ − γ2b0

(

δρ̄ − αP − αT

ixβ1/2
δB̄R

)

+ 2
d ln Ω

d ln R
δB̄RR̂+

2γ cos χ

(

δρ̄ − αP − αT

ixβ1/2
δB̄R

)

R̂ + 2γẑ × δB̄ = k̂xβ
δp⊥
p0

+

x2β
δp‖ − δp⊥

p0

b0 − ixβ1/2αP δρ̄R̂ − x2δB̄ + k̂x
δB

B0

,

(5.2.3)

where δB/B0 = δB̄φ cos χ − (kR/kZ) δB̄R sin χ, δp‖ = δpi‖ + δpe‖, and δp⊥ = δpi⊥ +

δpe⊥. Contributions due to δρ̄ − (αP − αT ) /
(

ixβ1/2
)

δB̄R arise from finite plasma

compressibility. The eigenvalue problem consists of three equations: one for radial

force balance, one for azimuthal force balance, and one for force balance along the
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equilibrium magnetic field. These are,

(

γ2 + x2

[

1 +
k2

R

k2
Z

]

+ 2
d ln Ω

d ln R
− 2γ cos χ

αP − αT

ixβ1/2

)

δB̄R−
(

2γ + x2 cos χ

sin χ

kR

kZ

)

δB̄φ + δρ̄
(

2γ cos χ + ixβ1/2αP

)

=
kR

kZ sin χ
x2β

δp⊥
p0

,

(5.2.4)

(

γ2 cos χ
αP − αT

ixβ1/2
+ 2γ

)

δB̄R +
(

γ2 + x2
)

δB̄φ − γ2 cos χδρ̄ =

x2 cos χβ
δp‖ − δp⊥

p0

,

(5.2.5)

δB̄R

(

γ2αP − αT

ixβ1/2
− γ2kR

kZ

sin χ + 2γ cos χ

)

+ γ2 cos χδB̄φ−

γ2δρ̄ = x2β
δp‖
p0

,

(5.2.6)

where δp⊥ and δp‖ are linear functions of δB̄R, δB̄φ, and δρ̄. We work in the limit of

small electron thermal energies, hence θ0 → vi and δE‖ → 0, where, from Tab. (A.1),

vi =
√

kBTi0/mp is the ion isothermal sound speed. For the treatment of the colli-

sionless rotational MTI, we choose a Schwarzchild stable stratified medium, in which

αS ≤ 0 or equivalently αT ≤ 2
5
αP .

5.2.1 Dispersion Relations of the Collisionless MRI and MTI

In this section we derive the dispersion relations of the collisionless MRI (Quataert et al.

2002) and the collisionless MTI. Its dispersion relation in the fluid limit has been stud-

ied by Balbus (2001). We demonstrate the salient feature of these dispersion relations,

namely collisionless damping of long wavelength modes along the magnetic field lines,

k‖ < Ω/vi.
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From Eq. (5.2.1), δp⊥, δp‖, and δρ̄ are given by,

δp⊥
pi0

=2
δB

B0

+ 2π (pi0)
−1

∫

δf0
i µB2 dµ dv‖ =

δB̄R

ik‖

(

∂ ln p0

∂R

)

×

(R (iζi) − 1) − 2δB

B
(R (iζi) − 1) +

2ΩΓ

k2
‖v

2
i

δB̄R cos χR (iζi) ,

(5.2.7)

δp‖
pi0

= − 2δB̄R

ik‖

(

∂ ln p0

∂R

)

ζ2
i R (iζi) +

2δB

B
ζ2
i R (iζi) +

2ΩΓ

k2
‖v

2
i

δB̄R cos χ
(

1 − 2ζ2
i R (iζi)

)

,

(5.2.8)

δρ̄ = − δB

B0

(R (iζi) − 1) +
δB̄R

ik‖

(

∂ ln p0

∂R

)

R (iζi)−

δB̄R

ik‖

(

∂ ln ρ0

∂R

)

+
2ΩΓ

k2
‖v

2
i

δB̄R cos χR (iζi) .

(5.2.9)

There are terms associated with rotation (terms proportional to Ω and Ω′R) and finite

equilibrium gradients in density and temperature. The phase velocity normalized to

the ion isothermal sound speed is ζi = Γ/
(

k‖vi

√
2
)

. The plasma response function

R (ζ) is defined as,

R (ζ) =
1√
π

∫ ∞

−∞

xe−x2

x − ζ
dx, (5.2.10)

By substituting the rotational term 2ΩΓ/
(

k2
‖v

2
i

)

for δρ̄, we rearrange Eqs. (5.2.7) -

(5.2.9) into the following expressions for δp⊥ and δp‖,

δp⊥
pi0

= δρ̄ − δB

B0

(R (iζi) − 1) +
δB̄R

ik‖

(

∂ ln ρ0

∂R
− ∂ ln p0

∂R

)

, (5.2.11)

δp‖
pi0

=

(

1 − 2ζ2
i R (iζi)

R (iζi)

)

δρ̄ −
(

1 − [1 + 2ζ2
i ] R (iζi)

R (iζi)

)

δB

B0

+

δB̄R

ik‖

(

1 − 2ζ2
i R (iζi)

R (iζi)
× ∂ ln ρ0

∂R
− ∂ ln p0

∂R

)

.

(5.2.12)
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In the limit |ζi| ≫ 1,

R (iζi) =
1

2ζ2
i

− 3

4ζ4
i

+
15

8ζ6
i

+ O
(

1/ζ8
i

)

. (5.2.13)

In this limit, the pressure responses reduce to the double-adiabatic limit (Chew et al.

1956) with equilibrium pressure gradients,

δp‖
pi0

→ δB

B0

+ δρ̄ − ξR
∂ ln T0

∂R
, (5.2.14)

δp⊥
pi0

→ 3δρ̄ − 2
δB

B0

+ ξR

(

3
∂ ln ρ0

∂R
− ∂ ln p0

∂R

)

. (5.2.15)

In the limit |ζi| ≪ 1,

R (iζi) = 1 − ζi

√
π + O

(

ζ2
i

)

. (5.2.16)

The phase velocity of the collisionless MRI and MTI modes ∼ vi, i.e. |ζi| ∼ 1. These

perturbations are not adiabatic and the slow wave limit, |ζ|i ≪ 1, holds for most

unstable wavenumbers. The expressions for perturbed pressures up to first order in

ζi are,

δp‖
pi0

→ δρ̄ +
√

πζi
δB

B0

− ξR
∂ ln T0

∂R
, (5.2.17)

δp⊥
pi0

→ δρ̄ −
√

πζi
δB

B0

+ ξR

(

3
∂ ln ρ0

∂R
− ∂ ln p0

∂R

)

. (5.2.18)

Dispersion relations for the collisionless MRI and MTI are shown in Figs. (5.2.1) -

(5.2.3), The primary feature of the plasma response via the MRI and MTI is colli-

sionless damping of long wavelength modes k‖ < Ω/vi. This feature has been noted in

previous studies of the collisionless MRI (Quataert et al. 2002; Sharma et al. 2003).

This damping has the effect of suppressing pressure variations at small wavenum-
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Fig. 5.2.1.— The growth rate for nonradial wavenumbers for the collisionless MRI,
with a Keplerian-like rotation profile, χ = π/4, and varying β. We see a turnover
where the phase velocity of the wave becomes sonic at wavenumbers k‖vi ≃ Ω.

bers. Therefore, as the plasma β → 1, the anisotropic pressure becomes dynamically

unimportant,
∣

∣δp‖ − δp⊥
∣

∣ ≪ δp‖, and we reproduce purely MHD phenomena without

collisionless viscous or thermal transport. Also, as β → 1 the effects of finite com-

pressibility become dynamically important. In Figs. (5.2.4) and (5.2.5) we see that

the collisionless MTI approaches the compressible MHD limit as β → 1. We take a

Keplerian profile, αP = 5, αT = 2, and χ = π/4. The real part of the growth rate,

in Fig. (5.2.4), is suppressed as β → 1. The imaginary part of the growth rate, in

Fig. (5.2.5), becomes more compressible as β → 1.
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Fig. 5.2.2.— The real part of the growth rate for nonradial wavenumbers, with a
Keplerian-like rotation profile, β = 102, χ = π/4, and various equilibrium gradients
of pressure and temperature. We set αP = 5 and vary αT ≤ 2.
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Fig. 5.2.3.— The imaginary part of the growth rate for nonradial wavenumbers, with
a Keplerian-like rotation profile, β = 102, χ = π/4, and various equilibrium gradients
of pressure and temperature. We set αP = 5 and vary αT ≤ 2.
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Fig. 5.2.4.— The real component of the growth rate for various β, χ = π/4, and a
marginally Schwarzchild stable Keplerian-like rotating flow. For large β we reproduce
MRI-like modes.



128

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

k×vA�W

Im
G
�W

Β = 103

Β = 102

Β = 101

Β = 1

Fig. 5.2.5.— The imaginary component of the growth rate for various β, χ = π/4,
and a marginally Schwarzchild stable Keplerian-like rotating flow. For large β the
imaginary component reaches a maximum at those wavenumbers at which the growth
rate of the instability saturates. As β → 1, the imaginary component of the growth
rate increases in magnitude.
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Dispersion relations for the collisionless MRI and MTI are similar to their fluid

counterparts, the MVI and the MVTI, respectively.

5.2.2 Quadratic Fluxes of Collisionless MRI and MTI

Here, we determine the normalized quadratic heat and angular momentum flux as-

sociated with a given collisionless MRI or MTI mode of purely vertical wavenumber

kZ . We express these fluxes in terms of ξR. Expressions for 〈FER〉 and 〈TRφ〉 for

axisymmetric modes are given by,

〈TRφ〉 = Re
(

ρ0δu
∗
Rδuφ − v2

AδB̄∗
RδB̄φ + cos χδB̄∗

Rδpv

)

, (5.2.19)

〈FER〉 = Re

(

5

2
δu∗

Rδθ − δqδB̄∗
R − 1

3
δpvδB̄

∗
R

)

. (5.2.20)

These expressions for quadratic fluxes due to collisionless modes are obtained from

their fluid counterparts, Eqs. (4.3.1) and (4.3.2), by replacing δσbb with δpv.

From Eq. (5.2.1) and the moment equations, Eq. (5.1.25), we have,

δu‖/vi = −iζi

√
2R (iζi)

(

δB

B0

− 2ΩΓ

k2
‖v

2
i

δB̄R cos χ +
iδB̄R

k‖

(

∂ ln p0

∂R

)

)

+

iδB̄R

k‖
cos χΩ′R,

(5.2.21)

δq‖/ (pi0vi) = −3δu‖/vi +
2πmp

pi0vi

∫

v3
‖δf

0
i B dµdv‖ =

(

iζi

√
2

(

δB

B0

)

− δB̄R

k‖

(

∂ ln p0

∂R

)

ζi

√
2 − Ωζ2

i

k‖vi

iδB̄R cos χ

)

×

([

2ζ2
i + 3

]

R (iζi) − 1
)

,

(5.2.22)

δq⊥/ (pi0vi) = −δu‖/vi +
2πmp

pi0vi

∫

v‖µB2δf0
i dµ dv‖ =

− iζi

√
2

(

δB

B0

)

R (iζi) .

(5.2.23)
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We substitute variables for pressure and heat flux, given in Eq. (5.1.33). We use

expressions for the perturbed pressures, given in Eqs. (5.2.7) and (5.2.8), and heat

fluxes, given in Eqs. (5.2.22) and (5.2.23). δρ̄ and δB̄φ are described in the eigenvalue

equations (Eqs. [5.2.4] - [5.2.6]). 〈TRφ〉 is normalized in units of ρ0Ω
2 |ξR|2, and 〈FER〉

is normalized in terms of p0ΩH−1 |ξR|2. The modal expressions for δuR, δB̄R, δB̄φ,

and δuφ in terms of ξR are,

δuR = γ (ΩξR) , (5.2.24)

δB̄R = ix

(

Ω

vA

ξR

)

, (5.2.25)

δB̄φ = −ix

(

Ω

vA

ξR

)

×

2γ
(

sin2 χ + R
(

iγ
x
√

2β
cos2 χ

))

− ixβ1/2αP cos χ
[

R
(

iγ
x
√

2β

)

− 1
]

γ2
(

sin2 χ + R
(

iγ
x
√

2β

)

cos2 χ
)

+ x2 − 2x2β cos2 χ
[(

1 + γ2

2x2β

)

R
(

iγ
x
√

2β

)

− 1
]

(5.2.26)

δuφ =
γ

ix
vAδB̄φ

(

sin2 χ + R

(

iγ

x
√

2β

)

cos2 χ

)

+ ΩξR×
(∣

∣

∣

∣

d ln Ω

d ln R

∣

∣

∣

∣

− cos χ

[

2γ2

x2β
cos χ + iαP

γ

xβ1/2

]

R

(

iγ

x
√

2β

))

.

(5.2.27)

Using Eq. (5.1.33), and expressions for the perturbed heat fluxes as given in Eqs. (5.2.22)
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and (5.2.23), we have expressions for δpv, δθ, and δq:

δpv =
(

pi0H
−1ξR

)

([

γ2

x2β
− 1

]

R

(

iγ

x
√

2β

)

+ 1

)

+

2

(

pi0δB̄φ cos χ − iβ−1γ

x
pi0ξR

Ω

vA

) ([

1 +
γ2

2x2β

]

R

(

iγ

x
√

2β

)

− 1

)

,

(5.2.28)

δθ

θ0

=
δp

pi0

− δρ̄ =
(

ξRH−1
)

(

αT + αP

([

5

3
+

γ2

3x2β

]

R

(

iγ

x
√

2β

)

− 5

3

))

+

1

3
δB̄φ cos χ

([

γ2

2x2β
− 1

]

R

(

iγ

x
√

2β

)

+ 1

)

−

2

3
iβ−1γ

x
cos χ

(

Ω

vA

ξR

)([

1 +
γ2

x2β

]

R

(

iγ

x
√

2β

)

− 1

)

,

(5.2.29)

δq = (pi0ΩξR) cos χ

(

iαP
γ

xβ1/2
+

2γ2

x2β

)([

3

2
+

γ2

2x2β

]

R

(

iγ

x
√

2β

)

− 1

2

)

+

i
(

pi0viδB̄φ

) γ

2xβ1/2
cos χ

([

1 +
γ2

x2β

]

R

(

iγ

x
√

2β

)

− 1

)

,

(5.2.30)

Figs. (5.2.6) and (5.2.7) are plots of normalized 〈TRφ〉 and 〈FER〉 for the collisionless

MTI for different αT ≤ 2
5
αP .
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Fig. 5.2.6.— Normalized 〈TRφ〉 for the collisionless MTI, for a Keplerian-like rotation
profile, β = 102, χ = π/4, αP = 5, and αT ≤ 2.
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Fig. 5.2.7.— Normalized 〈FER〉 for the collisionless MTI, for a Keplerian-like rotation
profile, β = 102, and χ = π/4, for various Schwarzchild stable equilibrium profiles
with αP = 5 and αT ≤ 2.
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Fig. (5.2.8) is a plot of the normalized quadratic angular momentum flux for

the collisionless MRI for various β ≥ 1.There is no equilibrium radial gradient of

temperature or density, and the growth rate is real. For a purely unstable mode the

temperature and viscous pressure perturbations are out of phase with the perturbed

radial velocity, and the perturbed heat flux is out of phase with the perturbed radial

magnetic field. Therefore, the heat flux for the collisionless MRI is zero.

0.0 0.5 1.0 1.5
0

1

2

3

4

5

6

7

k×vA�W

<
T

R
Φ
>
�H
Ρ

0W
2 È
Ξ

R
È2
L

Β = 100

Β = 101

Β = 102

Β = 103

Β = 104

Fig. 5.2.8.— Normalized quadratic angular momentum flux for the collisionless MRI,
for a Keplerian-like rotation profile, 1 ≤ β ≤ 104, and χ = π/4.

The collisionless MTI produces outward heat and angular momentum flux that

can drive accretion in radiatively inefficient rotating plasmas. Furthermore, even in

the absence of rotational shear Ω′R = 0 the effects of a heat flux can also transport

angular momentum outwards, which is demonstrated in Fig. (5.2.9). The same qual-

itative behavior is seen for the MVTI in a rigidly rotating plasma, demonstrated in

Fig. (4.3.5).
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Fig. 5.2.9.— The normalized quadratic angular momentum flux for the collisionless
MTI and zero rotational shear. Plasma β = 102 and αP = 5. The innermost curve
has αT = 1/2, the next curve has αT = 1, the third has αT = 3/2, and the outermost
curve has αT = 2.

5.3 Finite Collisionality

We now consider the perturbed distribution functions with finite collisionality. From

Eq. (5.1.22), the perturbed collisional operator is,

δC
(

f 0
s

)

= νs

(

δfs − δ
〈

f 0
s

〉)

, (5.3.1)

where,

δ
〈

f 0
s

〉

= f 0
s0

(

δns

ns0

− δTs‖/2 + δTs⊥
Ts0

+

[

msµB0

kBTs0

+
msv

2
‖

2kBTs0

]

×
[

δTs‖/3 + 2δTs⊥/3

Ts0

]

− msµδB

kBTs0

+
msv‖δu‖
kBTs0

)

.

(5.3.2)
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If we use Eq. (5.3.2), then Eq. (5.1.23) yields expressions for the perturbed ion and

electron particle distribution functions:

δfi =
mpv‖
kBTi0

(−ik‖µδB + eδE‖/mp + δB̄Rv2
i ∂ ln pi0/∂R

Γ + ik‖v‖ + νi

−

(2Ω + Ω′R) Γ cos χδB̄R

ik‖
(

Γ + ik‖v‖ + νi

)

)

f 0
i0+

f 0
i0

νi

Γ + ik‖v‖ + νi

(

δρ̄ − δTi‖/2 + δTi⊥
Ti0

+

[

mpµB0

kBTi0

+
mpv

2
‖

2kBTi0

]

×
[

δTi‖/3 + 2δTi⊥/3

Ti0

]

− mpµδB

kBTi0

+
mpv‖δu‖
kBTi0

)

− f 0
i0δB̄R

ik‖
×

Γ + ik‖v‖
Γ + ik‖v‖ + νi

[

∂ ln ρ0

∂R
− 3

2

∂ ln Ti0

∂R
+

(

mpµB0

kBTi0

+
mpv

2
‖

2kBTi0

)

∂ ln Ti0

∂R

]

,

(5.3.3)

δfe =
mev‖
kBTe0

(−ik‖µδB − eδE‖/me + v2
eδB̄R∂ ln pe0/∂R

Γ + ik‖v‖ + νe

−

(2Ω + Ω′R) Γ cos χδB̄R

ik‖
(

Γ + ik‖v‖ + νe

)

)

f 0
e0+

f 0
e0

νe

Γ + ik‖v‖ + νe

(

δρ̄ − δTe‖/2 + δTe⊥
Te0

+

[

meµB0

kBTe0

+
mev

2
‖

2kBTe0

]

×
[

δTe‖/3 + 2δTe⊥/3

Te0

]

− meµδB

kBTe0

+
mev‖δu‖
kBTe0

)

− f 0
e0δB̄R

ik‖
×

Γ + ik‖v‖
Γ + ik‖v‖ + νe

[

∂ ln ρ0

∂R
− 3

2

∂ ln Te0

∂R
+

(

meµB0

kBTe0

+
mev

2
‖

2kBTe0

)

∂ ln Te0

∂R

]

.

(5.3.4)
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We consider negligible electron dynamics. With the perturbed ion distribution func-

tion given by Eq. (5.3.3), then δp⊥, δp‖, and δρ̄ for finite collisionality are,

δp⊥
pi0

= − 2
δB

B0

ζi

(

ν̄iR (iζ ′
i) +

1

2
iZ (iζ ′

i)

)

+
2ΩΓ

k2
‖v

2
i

R (iζ ′
i) δB̄R cos χ−

2iδB̄R

k‖

(

∂ ln p0

∂R

)

ζi

(

ν̄iR (iζ ′
i) +

1

2
iZ (iζ ′

i)

)

+

iδB̄R

k‖

(

∂ ln Ti0

∂R

)

ν̄i

(

(ζi − ν̄i) R (iζ ′
i) −

1

2
iZ (iζ ′

i)

)

+

δn

ρ0

ν̄i

(

(ζi − νi) R (iζ ′
i) −

1

2
iZ (iζ ′

i)

)

+

δp‖/3 + 2δp⊥/3

pi0

ν̄i

(

ζ ′
iR (iζ ′

i) −
1

2
iZ (iζ ′

i)

)

,

(5.3.5)

δp‖
pi0

=2
δB

B0

ζi

(

ζ ′
i

(

1 + 2ζ ′2
i

)

R (iζ ′
i) − ν̄i

)

+
2ΩΓ

k2
‖v

2
i

(

1 − 2ζ ′2
i R (iζ ′

i)
)

δB̄R cos χ+

2iδB̄R

k‖

(

∂ ln p0

∂R

)

ζi (ζ
′
i (1 + 2ν̄iζ
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i) R (iζ ′
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∂ ln Ti0
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(

2ζ2
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δn
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(

2ζ2
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R (iζ ′
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−

2ν̄iζ
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δp‖/3 + 2δp⊥/3

pi0

(

ζ ′
iR (iζ ′

i) +
1

2
iZ (iζ ′

i)

)

,

(5.3.6)

δρ̄ = − δB

B0

(R (iζ ′
i) − 1 + 2ν̄iR (iζ ′

i)) +
2ΩΓ

k2
‖v

2
i

R (iζ ′
i) δB̄R cos χ−

iδB̄R

k‖

(

∂ ln Ti0

∂R

)

(1 − 2ν̄i (ζi − ν̄i) R (iζ ′
i) + 3iν̄iZ (iζ ′

i))−

iδB̄R
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(

∂ ln p0

∂R

)

ζi (2ν̄iR (iζ ′
i) + iZ (iζ ′

i)) +

δρ̄

(

ν̄i (ζi − ν̄i) R (iζ ′
i) −

3

2
iν̄iZ (iζ ′

i)

)

,

(5.3.7)
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where ν̄i = νi/
(

k‖vi

√
2
)

. In the limit of high collisionality, νi
>∼ Ωβ1/2, the perturbed

density and pressures are given by,

δp⊥
pi0

≃δp‖/3 + 2δp⊥/3

pi0

+ ν−1
i

(

Γ
δp‖/3 + 2δp⊥/3

pi0

+ Γ
iδB̄R

k‖

∂ ln p0

∂R
+

2Γ
δB

B0

− Ω′RδB̄R cos χ − ik‖δu‖

)

,

(5.3.8)

δp‖
pi0

≃δp‖/3 + 2δp⊥/3

pi0

+ ν−1
i

(

Γ
δB

B0

− Γ
δp‖/3 + 2δp⊥/3

pi0

− 3ik‖δu‖ +

δB̄R

[

iΓ

k‖

(

∂ ln p0

∂R

)

− 3Ω′R cos χ

])

.

(5.3.9)

If we employ Eq. (5.1.3) to make simplifications, Eqs. (5.3.8) and (5.3.9) can be

arranged into an expression for the viscous stress,

δpv

p0

= −3ν−1
i

(

ik‖δu‖ + Ω′R cos χδB̄R − 1

3
ik · δu

)

(5.3.10)

For arbitrary normalized collisional frequency ν̂i = νi/Ω, the pressure response is

given by,
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, (5.3.11)



139

where,

A11 = 1 − 2νi

3x
√
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√
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√
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√
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√
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We use the force balance equation, Eq. (5.2.3), with expressions for the perturbed

pressure response given by Eq. (5.3.11), to solve for the mildly collisional MVTI

dispersion relation. The MRI dispersion relation becomes that given by Sharma et al.

(2003). In Fig. (5.3.1) we show the real and imaginary parts of the growth rate for a

Keplerian rotation profile, β = 103, χ = π/4, radial gradients αP = 3/2 and αT = 1,

for various ion collisional frequencies νi. For νi > Ωβ1/2, we reproduce the MVTI.
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Fig. 5.3.1.— Real (top) and imaginary (bottom) parts of the growth rate of the
MVTI. We reproduce the MVTI dispersion relation for νi ≥ Ωβ1/2.
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5.4 Summary of Results

We have derived the drift kinetic equation in a rotating frame with possible significant

gas pressures and only mild collisionality. There is a larger range of applicable densi-

ties and temperatures, within hot, dilute, magnetized rotating plasmas, for which this

collisionless treatment can be applied. We analyze the collisionless MTI at the disk

midplane, analogous to the MVTI for the fluid case. We reproduce the collisionless

MRI dispersion relation of Quataert et al. (2002). We demonstrate that both the

collisionless MRI and MTI agree with their fluid counterparts – the MVI and MVTI,

respectively. Heat and angular momentum fluxes associated with the collisionless

MTI have the right sign, to drive accretion in thick dilute nonradiative rotating plas-

mas, and approximately match their respective fluid counterparts. We also find the

collisionless MTI can transport angular momentum, even within a rigidly rotating

plasma.

Although we have applied the drift-kinetic equation to a single but important

class of instability in Keplerian-like rotating systems, its representation as given in

Eq. (5.1.23) lends itself to much richer studies of these types of dilute rotating plasmas.

Even if the equilibrium can be described by a fluid treatment, it may be unstable

to shorter-wavelength collisionless MHD modes. There exists a range of collision

frequencies ν < Ωβ1/2 where the MHD dynamics are collisionless. If the wavelength of

the instability, of order vA/Ω, is smaller than the ion mean free path, of order θ
1/2
0 /νi,

then collisionless physics applies. As β → 1 we reproduce compressive pure MHD

modes. The effects of collisionless momentum and energy transfer effects become

dynamically unimportant, and the imaginary part of the growth rate of these modes

becomes larger (see §4.4 for compressible MHD in the fluid limit).
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Chapter 6

Additional Physics: Electron and

Off-Plane Dynamics

In this chapter, we discuss in more detail the collisionless MTI and the MVTI by

including the effects of finite electron temperature and dynamics of the plasma away

from the midplane. The plasma is dilute enough that ions and electrons are not explic-

itly thermally coupled (see Fig. [1.5.1]). Also, the equilibrium electron acceleration,

divided by the electron thermal velocity, away from the midplane is much larger than

the growth rate or the orbital angular velocity. We perform an incompressible fluid

analysis of collisional plasmas and a kinetic analysis of collisionless plasmas. These

analyses are detailed in Appendix D and Appendix E

6.1 Finite Ion and Electron Pressure Responses

We include electron dynamics by considering finite electron temperature. In a dilute

plasma, the ion-electron collisional frequency is much smaller than the ion-ion and

electron-electron collision frequencies. Therefore, even if ion and electrons remain

collisional, the explicit thermal coupling between ions and electrons, which in a clas-
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sical fluid ensures equal ion and electron temperatures, may not exist. However, if

Ti0
>∼ Te0, the plasma dispersion relation is not substantially different from our simpli-

fied analyses. The main difference arises when Te0 ≫ Ti0. For the fluid case, we find

that the maximum growth rate occurs at wavenumbers ηκek
2
Z ∼ Ω (see Fig. [6.1.1]).

We do not find much difference in the dispersion relation between the collisionless and

collisional plasmas (see Fig. [6.1.4]). The ion and electron temperatures are given by,

Ti0 =
(mp + me) θ0

kB

cos2 ψ, (6.1.1)

Te0 =
(mp + me) θ0

kB

sin2 ψ. (6.1.2)

The fluid treatment of finite electron temperature is detailed in Appendix D.1. In

Fig. (6.1.1), we show the normalized growth rate as a function of wavenumber for a Ke-

plerian rotational profile, αP = 5, αT = 2, χ = π/4, ην0Ω/v2
A = 102, for various ratios

of Te0 to Ti0. ην0 is the Braginskii viscosity where Ti0 = Te0, and is given in Eq. (D.1).

For Ti0
>∼ Te0 we reproduce the MVTI plasma response – a maximum growth rate at

wavenumbers ην0k
2
Z ∼ Ω. For Ti0

<∼ Te0, the viscosity becomes dynamically unimpor-

tant, ηνΩ/v2
A → 0. The maximum growth rate occurs at wavenumbers 101ην0k

2
Z ∼ Ω

(see Eq. [D.6]). Furthermore, as Te0/Ti0 → ∞, for dynamically important viscosity

the density response over most of the unstable wavenumbers is approximately,

δρ̄ ≈ δB̄R

ikZ sin χ
× ∂ ln T0

∂R
. (6.1.3)

The growth rate satisfies the following polynomial equation,

(

k2

k2
Z

Γ2 +
dΩ2

d ln R
+ k2v2

A sin2 χ − θ0
∂ ln p0

∂R

∂ ln T0

∂R

)

×

(

Γ2 + k2
Zv2

A sin2 χ
)

+ 4Ω2Γ2 = 0.

(6.1.4)
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Note that for a plasma with equal ion and electron temperatures, as explained

in §4, the plasma response with dynamically unimportant viscous diffusivity (see

Figs. [4.2.1]) is not qualitatively similar to one in which ην0Ω/v2
A

>∼ 1 but with Ti0/Te0 →

0.
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Fig. 6.1.1.— Normalized growth rate as a function of normalized nonradial wavenum-
ber for the MVTI for various values of Te0/Ti0. We choose a Keplerian rotational
profile, with αP = 5, αT = 2, χ = π/4, and ην0Ω/v2

A = 102. The dashed red line
refers to the simplified plasma response, whose growth rate satisfies Eq. (6.1.4).

The kinetic treatment of finite electron temperature is detailed in Appendix D.2.

Figs. (6.1.2) and (6.1.3) are plots of the collisionless MRI and collisionless MTI,

respectively, at various Te0/Ti0. We take β = 102, a Keplerian-like rotation profile,

and χ = π/4. For the MVTI, we use a system that is Schwarzchild stable, hence

αP = 5 and αT = 1.



146

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k×vA�W

G
�W

Te0�Ti0 = 10-2

Te0�Ti0 = 10-1

Te0�Ti0 = 1

Te0�Ti0 = 10

Te0�Ti0 = 100

MRI

Fig. 6.1.2.— The growth rate as a function of wavenumber for the collisionless MRI
for both equal and negligible ion and electron temperatures.



147

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k×vA�W

R
e
G
�W

Te0�Ti0 = 0

Te0�Ti0 = 10-2

Te0�Ti0 = 10-1

Te0�Ti0 = 1

Te0�Ti0 = 10

Te0�Ti0 = 102

0.0 0.5 1.0 1.5 2.0 2.5

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

k×vA�W

Im
G
�W

Te0�Ti0 = 0

Te0�Ti0 = 0.1

Te0�Ti0 = 0.3

Te0�Ti0 = 0.5

Te0�Ti0 = 0.7

Te0�Ti0 = 1.0

Fig. 6.1.3.— The real (top) and imaginary (bottom) parts of growth rate of the
collisionless MTI. The imaginary part of the growth rates where Te0/Ti0 = 10−1

nearly coincide where Te0/Ti0 = 0. Maximal compressible effects are reached for

wavenumbers k‖ ∼ Ω/θ
1/2
0 .



148

Furthermore, unlike the MVTI, the growth rate for the collisionless MTI reaches

a maximum at wavenumbers kZθ0 ∼ Ω even when Ti0/Te0 → 0. The “knee” at which

the growth rate reaches a maximum is located at larger wavenumbers than would be

expected if only electron collisionless damping was considered. In Fig. (6.1.4) we plot

the real and imaginary parts, respectively, of the growth rate for the collisionless MTI

with Te0/Ti0 = 10 and various plasma β. Similar behavior is seen in Figs. (5.2.4) and

(5.2.5) with a simpler treatment that does not consider the electron pressure response.
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The discrepancy between fluid and kinetic results when Te0 ≫ Ti0 remains unclear.

A framework for moving between the collisionless and collisional regimes, described

in §5.3, may be necessary to examine this apparent inconsistency.

6.2 Off Plane Dynamics of the Plasma

In §3 we describe the structure of a thin dilute magnetized disk. To a good approxi-

mation only the density and pressure change significantly over the height of the disk.

In the vertical direction, the magnetic field is constant and nonradial, and the orbital

angular velocity and temperature are constant. This equilibrium thin dilute magne-

tized disk is Schwarzchild stable in the vertical direction. The entropy gradient in the

vertical direction is such that,

∂ ln p0

∂z
× ∂ ln p0ρ0

−5/3

∂z
≈ −2

3

z2

H4
< 0 (6.2.1)

The Alfvén speed relative to the midplane is,

v2
A = v2

A0 exp
(

z2/H2
)

, (6.2.2)

where vA0 is the Alfvén speed at the midplane. The wavenumber, and viscous and

thermal diffusivities are normalized in this manner,

k̂ = kvA0/Ω, (6.2.3)

η̂ν = ηνΩ/v2
A0, (6.2.4)

η̂κ = ηκΩ/v2
A0. (6.2.5)
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Here ην0 and ηκ0 are the viscous diffusivity and thermal diffusivity at the midplane,

respectively. We find that the main difference away from the midplane is the smaller

range of MVTI unstable wavenumbers.

In the collisionless plasma, we find significant accelerations experienced by elec-

trons in the perturbed electron distribution function. We calculate the growth rate

of the collisionless MRI away from the midplane. We show that the effect of finite

electron acceleration alters the growth rate of the collisionless MRI away from the

midplane beyond that of merely decreasing the range of unstable wavenumbers.

The growth rate goes to zero at k̂ = 0 and k̂ that satisfies the following,

(

αP − k̂R

k̂Z

z/H

)

αT − 2
d ln Ω

d ln R
= k̂2ez2/(2H2) sin2 χ (6.2.6)

However, the maximum growth rate occurs at the midplane for k̂max = ±k̂maxẑ. At

points away from the midplane, the maximum growth rate goes as k̂max = ±k̂maxe
−z2/(2H2)ẑ.

As one moves to positive z, the range of unstable wavenumbers increases. However,

these changes occur at wavenumbers where Γ ≪ Ω. These features are demonstrated

for a Keplerian rotation profile, χ = π/4, and a marginally Schwarzchild stable system

with αP = 5 and αT = 2, in a fluid plasma (Figs. [6.2.1] - [6.2.6]).
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The derivation of the dispersion relation for the off-plane collisionless MTI is

described in Appendix E.2. The growth rate is the solution of Eq. (E.36), with

expressions for the perturbed pressures δp‖ and δp⊥ given by Eq. (E.29). We exam-

ine the growth rate as a function of height from the midplane for three normalized

wavenumbers: k̂ZvA0/Ω = 10−1 (Fig. [6.2.7]), k̂ZvA0/Ω = 10−1/2 (Fig. [6.2.8]), and

k̂ZvA0/Ω = 1 (Fig. [6.2.9]). We take a Keplerian rotational profile, χ = π/4, and

β = 102. Here we compare the real and imaginary growth rates with Γs. Γs is also

a solution of Eq. (E.36), but with δp‖ and δp⊥ given by their forms at z/H = 0,

Eqs. (D.7) and (D.6), respectively. We find significant difference between Γ and Γs.

The physical effects due to going away from the midplane, for the collisionless plasma,

go beyond merely changing the range of unstable wavenumbers.
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Chapter 7

Conclusions

The focus of our research is on those MHD modes that can transport angular mo-

mentum and thermal energy outwards in mildly collisional and collisionless radiatively

inefficient accretion flows. We summarize the main thesis research, from §4 - §6, in

§7.1. In §7.2 we discuss local numerical simulations of astrophysical systems unsta-

ble to the collisionless MTI or MVTI. We formulate parallel and perpendicular heat

fluxes appropriate to the study of collisionless plasmas with equilibrium gradients,

and explain issues associated with gyrokinetic (phenomena on the length scales of

ion Larmor radius) instabilities that force the plasma to have a maximal pressure

anisotropy. Finally, in §7.3 we describe analytic and numerical work that can arise

from our research into collisionless and mildly collisional MHD phenomena in rota-

tionally supported dilute magnetized plasmas.

7.1 Summary of Results

We have identified local modes in dilute magnetized accretion flows that can trans-

port angular momentum and thermal energy outwards. We have demonstrated the

parameter regimes for which the viscosity or thermal conductivity can play a dynami-
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cally important role, and shown that these instabilities are not qualitatively modified

when going into the collisionless regime. The dispersion relations, quadratic angu-

lar momentum and heat fluxes for the collisionless MTI are qualitatively similar to

the MVTI. In the collisionless MTI, transit-time (or Barnes) damping of modes with

phase velocities much smaller than the ion sound speed provides a sort of “collision-

less” transport of momentum and thermal energy that behaves as a viscosity and

thermal conductivity, respectively. Next, as shown in §4.4, if we include the effects

of finite compressibility in the MVTI, the viscosity and thermal conductivity become

dynamically unimportant as the magnetic pressure increases; as β → 1 from infinity,

the MVTI reduces to the MRI. Finally, when we include the effects of finite collision-

ality we notice that the collisionless MTI reduces to the MVTI when the wavelength

of the fastest growing modes (wavelength of order vA/Ω) becomes larger than the

ion mean free path. This result has been confirmed by Sharma et al. (2003) for the

collisionless MRI.

In §6 we justify and explore the effects of considering both ion and electron dynam-

ics, and the effects of finite equilibrium vertical forces away from the disk midplane.

We validate our a posteriori assumption that we need consider only ion dynamics in

the collisionless plasma and only electron thermal conductivity and ion viscosity in

the collisional plasma. We also demonstrate new features on the growth rate of the

collisionless offplane MRI beyond that of increasing Alfvén velocity (see Figs. [6.2.7],

[6.2.8], and [6.2.9]).

7.2 Numerical Simulations

Here we describe the setup and initial issues for preliminary numerical simulations

of radiatively inefficient magnetized flows. The features of numerical simulations of
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the collisionless MTI or MVTI are the following: 1) there are momentum and ther-

mal fluxes directed along magnetic fields in the collisional and collisionless plasmas;

and 2) dilute plasmas are easily susceptible to gyrokinetic instabilities that keep the

plasma pressure from becoming too anisotropic (Gary et al. 1994). Sharma et al.

(2006); Sharma (2006) have simulated the nonlinear collisionless MRI with the ZEUS

(Stone & Norman 1992a,b) 3D MHD parallel algorithm with modifications of anisotropic

viscosity and isotropizing instabilities. Sharma et al. (2006); Sharma (2006) have em-

ployed closed-form expressions for the parallel and perpendicular heat fluxes that ap-

proximate, for small fluctuations, the linear behavior of the collisionless MRI. These

are referred to as Landau fluid closures as they “close” the fluid equations, allowing

for numerical codes that evolve magnetofluid quantities (e.g., pressure, density, mag-

netic field) with position and time rather than evolving the full six-dimensional (3 in

space + 3 in velocity) particle distribution function.

In §7.2.1 we consider fluid closures of heat flux that can model systems that are

unstable to the collisionless MTI. We solve the fluid equations up to third order in

velocity moments of the drift-kinetic equation. We demonstrate that a closure expres-

sion for heat flux in terms of lower-order fluid quantities (perturbed density, pressure)

and magnetic fields appropriate for collisionless MHD is that of Snyder et al. (1997),

but modified to include finite equilibrium gradients of pressure and temperature.

We then show the limits of this fluid closure of heat fluxes at large magnetic field

strengths, by demonstrating the discrepancy between the collisionless MTI and the

Landau-closed collisionless MTI.

In §7.2.2 we discuss the issue of pressure anisotropy in dilute MHD plasmas. We

demonstrate that pressure anisotropy at any level can destabilize a differentially ro-

tating plasma via MHD modes; this implies that even via MHD phenomena, a plasma

with no pressure anisotropy becomes destabilized. We then discuss the theoretical
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underpinnings and observational evidence of gyrokinetic instabilities that ensure a

maximum pressure anisotropy. We finish with a discussion of issues associated with

numerical simulations whose pressure anisotropies are constrained by these gyroki-

netic modes.

7.2.1 Landau Fluid Closures Appropriate to Collisionless MTI

Landau fluid closures of higher order moments of the distribution function, which

are typically expressions for the heat fluxes, are employed to model the appropriate

physics of a collisionless plasma using a fluid formalism. The fluid closure heat fluxes

q‖ and q⊥ match the collisionless heat fluxes q‖ and q⊥ to various orders in the growth

rate Γ. These closures are chosen to satisfy conservation laws, such as density, particle

momentum, and energy. They have been used in the study of ion-temperature gra-

dient modes (Lee & Diamond 1986; Waltz 1988; Hammett & Perkins 1990), gyroki-

netic plasmas (Hammett et al. 1992; Dorland 1993), and collisionless MHD plasmas

(Snyder et al. 1997).

We employ linearized forms of the continuity equation Eq. (5.1.27), the paral-

lel force balance equation Eq. (5.1.28), and parallel and perpendicular pressures in

Eqs. (5.1.29) and (5.1.30):

Γδρ̄ + (ik · δu) + δuR
∂ ln ρ0

∂R
= 0, (7.2.1)

Γδu‖ + (2Ω + Ω′R) δuR cos χ = −ik‖
δp‖
ρ

, (7.2.2)

Γδp‖ + p0 (ik · δu) + δuR
∂pi0

∂R
+ 2p0

(

ik‖δu‖ + Ω′RδB̄R cos χ
)

+

ik‖δq‖ = 0,

(7.2.3)

Γδp⊥ + p0

(

2ik · δu − ik‖δu‖ − Ω′RδB̄R cos χ
)

+

δuR
∂pi0

∂R
+ ik‖δq⊥ = 0.

(7.2.4)
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These reduce to the following,

γδρ̄ + ix

(

δu‖
vA

)

+

(

d ln Ω

d ln R
cos χ − γ

ixβ1/2
[αP − αT ]

)

δB̄R − γδB̄ = 0,

γ

(

δu‖
vA

)

+

(

2 +
d ln Ω

d ln R

)

γ cos χ

ix
δB̄R = −ixβ

(

δp‖
pi0

)

,

γ

(

δp‖
pi0

)

+

[

3ix
δu‖
vA

+ 3
d ln Ω

d ln R
δB̄R cos χ − γδB̄

]

− αP
γ

ixβ1/2
δB̄R + ixβ1/2 δq‖

pi0vi

= 0,

γ

(

δp⊥
pi0

)

+

[

ix
δu‖
vA

+
d ln Ω

d ln R
δB̄R cos χ − 2γδB̄

]

− αP
γ

ixβ1/2
δB̄R + ixβ1/2 δp⊥

pi0vi

= 0.

(7.2.5)

We choose forms of δq‖ and δq⊥ that are linear combinations of the magnetic fields

and lower order moments of the Boltzmann equation,

δq‖ = α‖
(

v3
i δρ

)

+ γ‖
(

δp‖vi

)

+ ǫ‖
(

pi0viδB̄R

)

+ ζ‖
(

pi0viδB̄
)

δq⊥ = α⊥
(

v3
i δρ

)

+ δ⊥ (δp⊥vi) + ǫ⊥
(

pi0viδB̄R

)

+ ζ⊥
(

pi0viδB̄
)

.

(7.2.6)

The following closures for parallel and perpendicular heat flux results in a δp‖ that

matches Eq. (5.2.8) up to order γ3 in δB/B and δB̄R, and results in δp⊥ that matches

Eq. (5.2.7) up to order γ in δB/B and δB̄R.

δq‖
pi0vi

= 2i

√

2

π

(

δρ̄ − δp‖
pi0

)

− 2

(

1

k‖

∂ ln Ti0

∂R

)

√

2

π
δB̄R, (7.2.7)

δq⊥
pi0vi

= i

√

2

π

(

δρ̄ − δp⊥
pi0

)

−
(

1

k‖

∂ ln Ti0

∂R

)

√

2

π
δB̄R. (7.2.8)

Eqs. (7.2.7) and (7.2.8) consists of expressions for the heat flux of parallel and per-

pendicular pressure as given in Snyder et al. (1997), but modified to include finite

equilibrium gradients of temperature and pressure. We consider modes only with

vertical wavenumbers. We solve the following equations for δB̄R and δB̄φ – the radial

and azimuthal force balance equations represented in terms of the magnetic field. We

then use the radial and azimuthal force balance equations, Eqs. (5.2.4) and (5.2.5).
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Divergence from the exact expression occurs at wavenumbers for which the modes

become supersonic, i.e. at k <∼ Ω/vi.
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Fig. 7.2.1.— Plot of the relative difference between the growth rates between the
Landau approximation and the “exact” expressions, given as 1 − ΓLandau/Γexact, for
the collisionless MRI.

The largest discrepancy in the Landau approximation to the heat fluxes appears at

wavenumbers for which the phase velocity is of the order sound speed, at wavenumbers

k <∼ Ω/θ
1/2
0 . However, when putting in a system that is unstable to free thermal energy

gradients, i.e. αP αT > 0 and yet is convectively stable αS < 0, we find that the

Landau approximation does not accurately model the imaginary part of the growth

rate. This is not a severe issue as, for a plasma with subthermal magnetic fields, the

imaginary part of the growth rate goes as β−1/2 that of the real part. These aspects

of the Landau fluid approximation with finite equilibrium gradients are demonstrated

in Figs. (7.2.2) and (7.2.3). In these figures we choose a Schwarzchild stable system

with αP = 5 and αT = 1. In Fig. (7.2.2), for all βi = v2
i /v

2
A, we find that the sign
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of the imaginary component of the Landau growth rate differs from that of the exact

growth rate. Furthermore, in Fig. (7.2.3), we see that the magnitude of the “Landau”

growth rate is not substantially different from the “exact” growth rate.
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Fig. 7.2.2.— Comparison of the relative difference between the imaginary portion of
the “Landau” and “exact” expressions, defined as 1 − Im (ΓLandau) /Im (Γexact).
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Fig. 7.2.3.— Comparison of the relative difference between the real part of
the “Landau” and “exact” expressions for the growth rate, defined as 1 −
Re (ΓLandau) /Re (Γexact).

7.2.2 Pressure Anisotropy in Collisionless Plasmas

A collisionless or mildly collisional plasma can easily support equilibrium pressure

anisotropy, and instabilities can lead to anisotropic pressures. If one looks at physi-

cal processes whose phase velocity is much faster than the sound speed, the energy

balance equations are given by Chew et al. (1956):

d

dt

(

p⊥
ρB

)

= 0, (7.2.9)

d

dt

(

p‖B
2

ρ3

)

= 0. (7.2.10)

Increasing the magnetic field, while keeping the density constant, leads to an increase

in perpendicular pressure while a decrease in parallel pressure. Likewise, in the oppo-



168

site limit of modes far slower than the sound speed, the evolution equations of parallel

and perpendicular pressure are given in Eqs. (5.2.14) and (5.2.15). If δB/B0 > 0,

then δp⊥/p0 > 0 and δp‖/p0 < 0.

MHD Unstable Modes in Anisotropic Plasma

We consider a Bimaxwellian plasma, p‖0 6= p⊥0. The force balance equations can

be represented in the following form useful in studies of solar wind physics (Parker

1958a). Terms in purple denoting anisotropic pressure forces that drive mirror modes,

and terms in blue drive firehose modes.

ρ
∂V

∂t
= −∇

(

p +
B2

8π

)

+
B · ∇B

4π
+

1

3
∇

(

p‖ − p⊥
)

−

B · ∇B

4π
× p‖ − p⊥

B2
.

(7.2.11)

If p‖ > p⊥ becomes sufficiently large, the magnetic tension coefficient associated with

B · ∇B becomes negative leading to firehose instability. Likewise, if p⊥ > p‖ becomes

sufficiently large then the pressure response ∇p is no longer restoring leading to mirror

instabilities.

Here we derive the ion density and pressure response, where Ti⊥0 and Ti‖0 are the

ion perpendicular and parallel temperatures, respectively. The equilibrium pressure

tensor is given by,

P0 = p⊥0I + b0b0

(

p‖0 − p⊥0

)

. (7.2.12)

The radial component of the divergence of the equilibrium pressure tensor is given

by,

(∇ · P0)R =
∂p⊥0

∂R
+

∂bR0

∂z
bZ0

(

p‖0 − p⊥0

)

− cos2 χ

R

(

p‖0 − p⊥0

)

. (7.2.13)



169

The perturbed distribution function is given by,

δfi =
mpu‖
kBTi‖

(−ik‖µδB + eδE‖/mp + [kBTi⊥/mp] B̄R∂ ln pi⊥0/∂R

Γ + ik‖u‖
−

2ΩΓ cos χB̄R

ik‖
(

Γ + ik‖u‖
) − Ω′R cos χB̄R

ik‖

)

f 0
i0 −

B̄R

ik‖

(

∂ ln n0

∂R
− ∂ ln Ti⊥

∂R
−

1

2

∂ ln Ti‖
∂R

+

[

mpµB0

kBTi⊥
× ∂ ln Ti⊥

∂R
+

mpu
2
‖

2kBTi‖
× ∂ ln Ti‖

∂R

])

f 0
i0.

(7.2.14)

This implies the forms of δρ, δpi⊥, and δpi‖,

δρ̄ =
δB

B

(

1 − Ti⊥
Ti‖

R
(

iζi‖
)

)

+
iB̄R

k‖

(

∂ ln ρ

∂R

)

−

iB̄R

k‖

(

Ti⊥
Ti‖

)

∂ ln pi⊥0

∂R
R

(

iζi‖
)

+
2ΩΓ

k2
‖v

2
i‖

R
(

iζi‖
)

B̄R cos χ,

(7.2.15)

δpi⊥
pi⊥0

=2
δB

B

(

1 − Ti⊥
Ti‖

R
(

iζi‖
)

)

+
iB̄R

k‖

(

∂ ln pi⊥0

∂R

)

×
(

1 − Ti⊥
Ti‖

R
(

iζi‖
)

)

+
2ΩΓ

k2
‖v

2
i‖

R
(

iζi‖
)

B̄R cos χ,

(7.2.16)

δpi‖
pi‖0

=
δB

B

(

1 − Ti⊥
Ti‖

[

1 − 2ζ2
i‖R

(

iζi‖
)]

)

+

iB̄R

k‖

(

Ti⊥
Ti‖

)

∂ ln pi⊥0

∂R

(

1 − Ti⊥
Ti‖

[

1 − 2ζ2
i‖R

(

iζi‖
)]

)

+

2ΩΓ

k2
‖v

2
i‖

(

1 − 2ζ2
i‖R

(

iζi‖
))

B̄R cos χ.

(7.2.17)

In this case,

ζi‖ =
Γ

k‖vi‖
√

2
. (7.2.18)

When Ti⊥ = Ti‖ we reproduce δp⊥, δp‖, and δρ given by Eqs. (5.2.7), (5.2.8), and

(5.2.9), respectively. The force balance equation for an equilibrium anisotropic plasma
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is,

ρ

([

∂

∂t
+ Ω

∂

∂φ

]

u + u · ∇u − 2Ωẑ × u + Ω′RuRφ̂

)

+

∇ ·
(

p⊥ + bb
[

p‖ − p⊥
])

=
1

c
J × B+

ρ

ρ0

(

∇p⊥0 + ∇ ·
[

b0b0

(

p‖0 − p⊥0

)])

,

(7.2.19)

so that we have the following expression for the perturbed force balance equation,

γ2B̄ − γ2

(

δρ̄ − αP − αT

ixβ
1/2
‖

B̄R

)

b + 2γẑ × B̄ + 2
d ln Ω

d ln R
B̄RR̂−

2γẑ × b

(

δρ̄ − αP − αT

ixβ
1/2
‖

B̄R

)

= k̂xβ‖∆i
δp⊥
p⊥0

+ x2β‖
(

δp‖/p‖0 −

∆iδp⊥/p⊥0)b + x2β‖

(

B̄ − 2
δB

B
b

)

(1 − ∆i) +

ixβ
1/2
‖ αP (1 − ∆i) B̄Rb − ixβ

1/2
‖ αP ∆iδρ̄R̂ − x2B̄ + k̂x

δB

B
,

(7.2.20)

where ∆i = pi⊥0/pi‖0 is the anisotropy parameter and β‖ = 4πp‖0/B
2
0 . The equations

of radial, azimuthal, and magnetic-field directed components of the force balance
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equation are,

B̄R

(

γ2 + x2

[

1 +
k2

R

k2
Z

]

+ 2
d ln Ω

d ln R
− 2γ cos χ

αP − αT

ixβ
1/2
‖

−

x2β‖ [1 − ∆i]
)

− 2γB̄φ + δρ̄
(

2γ cos χ + ixβ
1/2
‖ αP ∆i

)

=

kR

kZ sin χ
x2β‖∆iδp⊥/p⊥,

(7.2.21)

B̄R

(

γ2 cos χ
αP − αT

ixβ
1/2
‖

+ 2γ − ixβ
1/2
‖ cos χ [1 − ∆i] αP−

2x2β‖
kR

kZ

cos χ

sin χ

)

+
(

γ2 + x2 − x2β‖ [1 − ∆i]
[

1 − 2 cos2 χ
])

B̄φ−

γ2 cos χδρ̄ = x2 cos χβ‖
(

δp‖/p‖ − ∆iδp⊥/p⊥
)

,

(7.2.22)

B̄R

(

γ2αP − αT

ixβ
1/2
‖

− γ2kR

kZ

sin χ + 2γ cos χ − ixβ1/2αP (1 − ∆i) −

x2β‖
kR

kZ

sin χ (1 − ∆i)

)

+
(

γ2 + x2β‖ (1 − ∆i)
)

cos χB̄φ−

γ2δρ̄ = x2β‖δp‖/p‖

(7.2.23)

The growth rate as a function of anisotropy parameter ∆i − 1 is shown below, for the

collisionless MRI, in Fig. (7.2.4). This leads to the following complicated branches

of solution arising from MHD pressure anisotropy. In red we denote the equilibrium

magnetic field being purely vertical. In this instance, for zero equilibrium pressure

anisotropy p⊥0 = p‖0, there exist no viscous forces and the MRI dispersion relation

is reproduced. In this instance, the primary upper solution “(U)” becomes MHD

stabilized at finite pressure anisotropies
∣

∣p⊥0/p‖0 − 1
∣

∣ ∼ β−1. In blue we denote a

χ = π/3 magnetic field equilibrium. The “(U)” branch refers to the MRI solution

destabilized in the regime p⊥0 < p‖0 but stabilized for p⊥0/p‖0 − 1 ∼ β−1. The

“(L)” branch refers to slower MHD firehose modes that are excited at a threshold

p⊥0 < p‖0. At a critical level of anisotropy the “(U)” and “(L)” branches join to a
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“(C)” (complex) branch of this solution at smaller p⊥0/p‖0. In green we denote that

χ = π/4 equilibrium magnetic field, with its corresponding “(U)” and “(L)” branches.
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Fig. 7.2.4.— Demonstration of additional instabilities arising from pressure
anisotropy. We take β = 10 and k‖vA/Ω =

√

15/16, with wavenumber being purely
vertical, and plot the real part of the growth rate, Re (Γ/Ω). Note that for the
MRI, all solutions of equilibrium magnetic fields that are not purely vertical χ < π/2
become stabilized at p⊥0/p‖0 − 1 ∼ β−1.

Gyrokinetic Instabilities in Anisotropic Plasmas

Although a differentially rotating plasma is unstable to anisotropizing MHD instabil-

ities, if
∣

∣p⊥/p‖ − 1
∣

∣ then we can excite gyrokinetic instabilities, with growth rates

of order the ion gyrofrequency, that can isotropize the plasma. For plasmas in

which pi⊥0/pi‖0 > 1, the gyrokinetic proton cyclotron (Gary et al. 1994) or mirror

(Southwood & Kivelson 1993) instabilities may operate. For p‖0/p⊥0 > 1 the gyroki-
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netic firehose instability (Kennel & Sagdeev 1967) or the oblique firehose instability

(Hellinger & Matsumoto 2000) may operate. Furthermore, as well as operating within

collisionless plasmas, these instabilities may operate in high-β magnetized but col-

lisional astrophysical plasmas, such as within galactic clusters (Schekochihin et al.

2005a,b).

Numerical 2D kinetic simulations of anisotropic magnetized plasmas (Gary et al.

1996, 1997) demonstrate the threshold pressure anisotropies that can drive fast ion cy-

clotron instabilities, in which the growth rate is of order the ion cyclotron frequency.

They have found thresholds for fast growth where pi⊥0/pi‖0 − 1 ≥ S‖/β
α‖

i‖ , where

βi‖ = 8πpi‖0/B
2
0 , S‖ and α‖ are fitting parameters, and 0.4 <∼ α‖

<∼ 0.5. These same

simulations demonstrate instability to the fast mirror instability where pi⊥0/pi‖0−1 ≥

S⊥/βα⊥
i⊥ , where βi⊥ = 8πpi⊥0/B

2
0 , and S⊥ and α⊥ are fitting parameters. These simu-

lations also demonstrate that relatively little energy from the pressure anisotropy goes

into magnetic energy. Numerical simulations of the gyrokinetic and oblique firehose

instability (Gary et al. 1998) also show a lower threshold to firehose instabilities, of

the form pi‖0/pi⊥0 − 1 < Sp/β
αP

i‖ , where Sp and αP are fitting parameters, and with

relatively weak magnetic fields excited by these instabilities. This implies that nu-

merical simulations of collisionless MHD can treat the effect of these instabilities as

a “hard wall” on pressure anisotropy.

There is also strong evidence that, for example, the solar wind is kept marginally

stable to these fast gyrokinetic instabilities, as demonstrated by Hellinger et al. (2006)

in Fig. (7.2.5). Research of collisionless and mildly collisional MHD turbulence within

an astrophysical context have been constructed (Schekochihin & Cowley 2005, 2006;

Schekochihin et al. 2007; Howes et al. 2007a,b), that build upon previous treatments

of weak (Sridhar & Goldreich 1994) and strong (Goldreich & Sridhar 1995) MHD

turbulence. However, these treatments of MHD turbulence in collisionless plasmas
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Fig. 7.2.5.— Relative frequency of measured proton parallel plasma β‖p = 8πp/B2
‖

and relative proton temperature anisotropy T⊥p/T‖p from the WIND/SWE data
(1995-2001) for the slow solar wind (v < 600 km s−1). The solar wind remains
marginally stable to gyrokinetic instabilities – for the case T⊥p > T‖p it is the oblique
firehose instability (on right), and for the case that an observed T⊥p < T‖p it may be
the proton cyclotron or mirror instabilities (left and right). This figure is taken from
Hellinger et al. (2006).

consider weak turbulence supporting a power-law cascade of turbulent spectrum, cut

off on the shortest length scales by dissipative gyrokinetic modes. These theoretical

models treat the effects of fast gyrokinetic instabilities that isotropize the particle

distribution as either a source of enhanced effective scattering by short-wavelength

magnetic field structure (Schekochihin & Cowley 2006; Schekochihin et al. 2007) or

posit secondary roles that do not qualitatively alter a picture of weak power-law

turbulence (Howes et al. 2007a,b). Schekochihin et al. (2005b) has proposed physical

effects that these gyrokinetic isotropic instabilities might play if the turbulence is

either strong or weak. Further work should focus on the possibly important role
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that the mirror/ion cyclotron and parallel/gyrokinetic firehose might play in, for

instance, the spectrum of turbulence and critical anisotropy seen in the solar wind

(Kasper et al. 2002; Hellinger et al. 2006).

7.3 Further Work

The research described in this thesis lies clearly on the path for further studies of

underluminous accretion. We now describe directions for further work that will help

to make predictive models of underluminous accretion. We describe further analytic

models of local instabilities in accretion flows, which allows for more physics to be

explored, but not with great depth. We then describe further numerical work, which

allows for the detailed behavior of specific physical processes.

Further Analytic Work

In §6 we demonstrated additional physics that may occur when studying dilute rota-

tionally supported plasmas. We may explore in what manner the collisional regime

connects to the collisionless regime where the electron thermal energy is dominant, .

We can also explore in more detail the effects of the collisionless MRI and MTI away

from the midplane. In order to be analyzed more thoroughly, we need a more effi-

cient method to calculate modified plasma response functions Zn (ζ, ẑ) and Znc (ζ, ẑ).

Second, recent work by Ferraro & Jardin (2006) demonstrates the gyroviscous sta-

bilization, due to off-diagonal components of the Braginskii viscous stress tensor,

of the Rayleigh-Taylor instability at relatively small values of the ion cyclotron fre-

quency and small magnetic field strength. Off diagonal components of the viscous

stress tensor may allow for new instabilities to operate in the physical parameter

space of RIAFs, and may modify the collisionless MTI and MVTI. Finally, some
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short-time-scale variability of fully ionized astrophysical plasmas may be due to the

abrupt reconnection of magnetic fields as evidenced by sawteeth modes in magneti-

cally confined plasmas. Whereas sawteeth instabilities are localized among the toka-

mak field’s rational surfaces, in astrophysical disks these would be located at the

sonic and magnetosonic resonances of corotating modes (Coppi & Coppi 1997, 1998).

Unfortunately, nonlinear isotropic thermal, magnetic, and viscous diffusive operators,

whose form and existence were hard to justify, were required to excite these modes

(Coppi & Coppi 1997, 2001a,b). It may be possible, however, that an anisotropic

viscous stress or collisionless viscous and thermal transport can excite these modes.

Further Numerical Work

First, we can consider phenomenological local models of the MVTI and collisionless

MTI, in order to explore the role this type of turbulence plays in the transport of

angular momentum. For instance, Fig. (4.3.5) demonstrates that the MVTI, and

presumably the collisionless MTI, are able to transport angular momentum outwards

or inwards, depending on wavenumber, for a rigidly rotating plasma. Balbus et al.

(1996) and Lesur & Longaretti (2005) have analyzed the nature of turbulence and

angular momentum transport in local numerical simulations of differentially rotating

hydrodynamic flows, for rotational profiles near marginal hydrodynamic stability.

Similar work may be done for the MVTI or collisionless MTI for rigidly rotating

flows; this may begin to resolve the question of whether there naturally exists angular

momentum transport in an MVTI-unstable, rigidly rotating fluid.

Second, for the nonlinear development of the collisionless MTI or the MVTI in

an accreting system, one cannot extract the necessary physics within a local sim-

ulation. Local simulations, through terms associated with energy generation via

a (quasi-steady) azimuthal stress (− (∂Ω/∂ ln R) TRφ) lead to a secular increase in
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thermal energy within the computational domain (see Fig. [7.3.1]). Global simula-

tions using the ZEUS 3D MHD algorithms only approximately conserve total energy

(De Villiers & Hawley 2003). For simulations of nonradiative accretion, we require

numerical MHD codes that automatically conserve mechanical, magnetic, and ther-

mal energy, such as Athena (Gardiner & Stone 2005; Gardiner & Stone 2006).

0 20 40 60 80 100
time

0
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15
<E + ρΦ>/P

0
<ε>/P

0 

Total & Thermal Energy Evolution

Fig. 7.3.1.— Evolution of the total energy within a local MRI simulation, using the
Athena 3D MHD numerical algorithm. Total energy is accounted for naturally with
Athena, and the box is “heated” due to the energy injected by the average positive
azimuthal stress TRφ. This figure is taken from Gardiner & Stone (2005).

However, Sharma et al. (2006); Sharma (2006) show that the levels of saturated

magnetic and gas turbulence, and fluxes of angular momentum, in a local simulation

of the collisionless MRI is not qualitatively different from numerical simulations of
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the MRI. Therefore it is plausible that global simulations of the collisionless MRI and

MTI using the Athena 3D MHD code will not differ from global simulations of the

MRI as done by De Villiers & Hawley (2003).

Finally, even the most computationally expensive global numerical simulations

of radiatively inefficient flows will have a spatial range of at most a few hundred

Schwarzchild radii and a temporal range of at most a few weeks for radiatively inef-

ficient supermassive black hole accretion. Therefore, local simulations of radiatively

inefficient flows may be necessary in order to characterize “local” rates of at least

angular momentum flux carried by the turbulence, despite the fact that in local sim-

ulations the energy within the computational domain increases in time. Numerical re-

sults of the local MRI by Pessah et al. (2006a,b); Pessah (2007); Pessah et al. (2007),

have demonstrated a nonlinear relation between turbulent angular momentum flux

and gas pressure. The issue of energy transport in local simulations of RIAFs may

therefore be ignored by including dissipation of the accretion energy, or by setting

boundary conditions on the flux of heat or temperature as done by Parrish & Stone

(2005); Parrish & Stone (2006).



179

Fig. 7.3.2.— The dynamic spatial and temporal ranges of observations and numerical
simulations of central galactic supermassive black hole accretion processes. Even with
state-of-the-art computational facilities, there is significant disjoint between phenom-
ena that can be explored through global numerical simulations and those that can be
observed. This requires that the nature of local turbulence in RIAFs be explored in
detail, in order to characterize the nature of angular momentum and heat flux due to
turbulence due to the collisionless MTI and MVTI. This figure is taken from Pessah
(2007).
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Appendix A

Variables

Here we define the vocabulary of the variables, the convenient variable simplifications

and normalizations, and convenient physical parameters used in the body of the thesis.

Table A.1:: Table of Variables

Name Variable

M mass of central object

Ṁ mass accretion rate

L luminosity of accreting source

Φ = −GM/
√

R2 + z2 central object gravitational potential

Rschw = 2GM/c2 black hole Schwarzchild radius – radius of event

horizon

Ti/e ion/electron temperature

pi/e ion/electron pressure

qi/e ion/electron heat flux along magnetic field lines

q = qi + qe total heat flux along magnetic field lines

p = pi + pe total pressure
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σ viscous stress tensor

n (ion/electron) number density

ρ = (mp + me) n mass density

vi =
√

kBTi0/mp ion isothermal sound speed

ve =
√

kBTe0/me electron isothermal sound speed

θ0 = kB (Ti0 + Te0) / (mp + me) isothermal sound speed squared

β = θ0/v
2
A plasma ratio of thermal speed to sound speed1

τi,e ion/electron collisional time scale2

λi = vi/τi, λe = ve/τe ion/electron collisional mean free paths2

ηκ (electron) thermal diffusivity2

ην (ion) viscous diffusivity2

Ω̂(R, z) orbital angular velocity

ΩK =
√

GM/R3 Keplerian orbital angular velocity

H = θ
1/2
0 /ΩK phenomenogical disk height

B magnetic field

E electric field

J current density

V flow velocity

k wavenumber of unstable mode

Γ growth rate of unstable mode (imaginary terms

correspond to oscillations)

u = V − RΩ(R, z)φ̂ net flow velocity

B =
√

B · B magnetic field magnitude

1In the plasma physics literature, βlit = 8πp/B2 is the ratio of gas pressure to magnetic pressure.
Our definition is one in which our β = βlit/2.

2Fluid expressions are valid only if the mean free paths are smaller than the system scale, and
if the wavelength of instability is smaller than the mean free path. This treatment is described in
Chap. (4).
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b = B/B magnetic field unit vector

vA = B/
√

4πρ Alfvén speed

ωpi =
√

4πe2n/mp ion plasma frequency

Ωci = eB/ (mpc) ion gyrofrequency

ρi = vi/Ωci ion gyroradius

p‖/⊥ pressure component parallel/perpendicular to

the magnetic field3

q‖/⊥ heat flux of parallel/perpendicular pressure

field3

r‖,×,⊥ fourth-order velocity moments of distribution

function, parallel/cross/perpendicular fluxes of

heat3

Table A.2:: Table of Normalized and Simplified Variables

γ = Γ/Ω normalized growth rate

a‖ = a · b component of vector quantity a (for example, wavenum-

ber k or electric field E) along the magnetic field

k̂ = kvA/Ω normalized wavenumber

x = k · b0vA/Ω normalized parallel wavenumber

αP = −H ∂ ln p0

∂R
> 0 pressure normalized scale height

αT = −H ∂ ln T0

∂R
> 0 temperature normalized scale height

αS = −H
∂ ln p0ρ

−5/3

0

∂R
entropy normalized scale height

= 5
3
αT − 2

3
αP normalized entropy scale height4

3See Chap. (5), which enumerates a kinetic description of a dilute plasma, for the form of these
p‖,⊥, q‖,⊥, and r‖,×,⊥. Furthermore, the expression for equilibrium parallel ion pressure is given by
p0‖i.

4Convective stability in the absence of rotation requires that αS < 0
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η̂ν = ηνΩ/v2
A normalized viscosity

η̂κ = ηκΩ/v2
A normalized thermal conductivity

Table A.3:: Physical Parameters Associated With Black

Hole Accretion

mass of black holes 106 − 1010M⊙

Scwharzchild radius 3 × 105 (M/M⊙) cm = 3 × 1011 − 3 × 1015 cm

ion number density of ambient gas 1 − 100 cm−3

temperature of ambient gas 106 − 108 K

ion temperature in flow 106 − 1012 K

electron temperature in flow 106 − 1010 K
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Appendix B

Plasma Equilibrium Disk

Here we calculate the equilibrium profile of a slender magnetized rotating plasma

disk. We consider an axisymmetric equilibrium in which the magnetic thermal en-

ergy is highly subthermal, hence Lorentz forces do not play a role in describing the

equilibrium. In the MHD limit strong radial and vertical electric fields are induced

that lead to quasineutrality and single flow velocity in the plasma. For simplicity, we

consider an electron-ion plasma, where the ratio of ion to electron temperatures is

kept constant. We define the temperature T as the sum of ion and electron temper-

atures, T = Ti + Te. We express the z-dependence of equilibrium angular velocity,

density, temperature, and magnetic field by,

Ω(R, z) = Ω(R, 0) + ∆Ω(z), (B.1)

ρ0(R, z) = ρ0(R, 0) + ∆ρ0(z), (B.2)

T0(R, z) = T0(R, 0) + ∆T0(z), (B.3)

B0(R, z) = B0(R, 0) + ∆B0(z). (B.4)
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The equilibrium temperatures T0(R, z) = Ti0(R, z)+Te0(R, z). To get the solution of

the vertical disk profile, we must solve the leading-order polynomial expansions in z

of ∆Ω(z), ∆ρ0(z), ∆B0(z), and ∆T0(z). At the disk midplane, ∆Ω(z = 0)/Ω(R) = 0,

∆ρ0(z = 0)/ρ0(R) = 0, ∆T0(z = 0)/T0(R) = 0, and |∆B0(z = 0)| /B0(R) = 0. The

total electric field is defined as,

E = −1

c
RΩφ̂ × B − 1

c
δu × B + E‖b + ER,ESR̂ + EZ,ESẑ, (B.5)

where ER,ES and EZ,ES are the radial and vertical components of the electrostatic

field, respectively, and E‖ is a component of electric field parallel to the magnetic

field (E‖ = 0 in equilibrium). The equilibrium electric field is given by,

E0 = −1

c
RΩ(R, z)φ̂ × B0 + Ê0R,ESR̂ + Ê0Z,ESẑ, (B.6)

where Ê0R,ES and Ê0Z,ES are equilibrium electrostatic fields that ensure quasineutral-

ity. The magnitude of these electrostatic fields is roughly of order Ω/Ωi (≪ 1) relative

to that of the primary electric field −c−1RΩφ̂×B0, where Ωi = eB/ (mpc) is the ion

cyclotron frequency. Equivalently, the E × B plasma drift velocity associated with

the electrostatic field is of order Ω/Ωi ≪ 1 relative to the orbital velocity.

To lowest order in z, the equilibrium nonradial magnetic field is constant. To

next-lowest order in z, it has the following form:

B̂0Z = B0Z +
1

2
α′′

B0Zz2, (B.7)

B̂0φ = B0φ. (B.8)
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The gravitational acceleration experienced by species s, to second order in z, is,

Fs

ms

= −Ω2
K

(

1 − 3z2

2R2

)

R̂ − Ω2
Kzẑ, (B.9)

where Ω2
K = GM/R3 is the Keplerian orbital angular velocity. Eq. (B.9) implies that

the angular velocity has the form:

Ω(R, z) = Ω(R) − 1

2
αΩz2. (B.10)

Since ∇× E0 = 0, the radial magnetic field is,

B̂0R =
αΩz

∂Ω/∂R
B0Z . (B.11)

In equilibrium the magnetic field line must lie along isotherms, i.e. B0 · ∇T0 = 0,

therefore:

T0(R, z) = T0(R)

(

1 − αΩz2/2

∂Ω/∂R

(

∂ ln T0

∂R

))

, (B.12)

The vertical force balance condition,

−∂p̂0

∂z
− (mp + me) n̂0Ω

2
Kz = 0, (B.13)

implies that pressure and density profiles, up to second order in z, are,

p̂0(R, z) = p0(R) − 1

2
(mp + me) n0(R)Ω2

Kz2, (B.14)

n̂0(R, z) = n0(R)

(

1 − Ω2
Kz2

2θ
+

αΩz2/2

∂Ω/∂R

(

∂ ln T0

∂R

))

. (B.15)
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The radial force balance condition is given by,

(

Ω2 − ΩαΩz2
)

R − Ω2
K

(

1 − 3z2

2R2

)

R =
1

n̂0 (mp + me)

∂p̂0

∂R
. (B.16)

Using Eqs. (B.14), (B.15), and (B.16), we solve for Ω and αΩ to arrive at,

Ω =

√

Ω2
K +

θ

R2

(

∂ ln p0

∂ ln R

)

, (B.17)

αΩ =
Ω2

K

2R2Ω
×

∂ ln p0

∂ ln R
+ ∂ ln n0

∂ ln R

1 + θ
R2

(

∂ ln p0

∂ ln R

) (

∂ ln T0

∂ ln R

) (

∂Ω2

∂ ln R

)−1 . (B.18)

Now let us assume that midplane temperature and pressures are power laws of radius

R, so that ∂ ln p0/∂ ln R and ∂ ln T0/∂ ln R are constants. Using Eqs. (B.17) and

(B.18), the equilibrium radial magnetic field, Eq. (B.11), is written as,

B̂0R = −H

R

( z

H

) 2∂ ln p0

∂ ln R
− ∂ ln T0

∂ ln R

3 + 2H2/R2
(

1 − ∂ ln T0

∂ ln R

)

∂ ln p0

∂ ln R

B0Z . (B.19)

The disk scale height is H = θ1/2/ΩK . Since ∇ · B0 = 0 the vertical magnetic field,

given in Eq. (B.7), is,

B̂0Z = B0Z

(

1 −
∂ ln p0

∂ ln R

(

2∂ ln p0

∂ ln R
− ∂ ln T0

∂ ln R

) (

1 − ∂ ln T0

∂ ln R

) (

2 − ∂ ln T0

∂ ln R

)

(

3 + 2H2/R2 ∂ ln p0

∂ ln R

(

1 − ∂ ln T0

∂ ln R

))2

(

H

R

)4
( z

H

)2
)

.

(B.20)
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Likewise, the equilibrium pressure, density, and angular velocity profiles are,

p̂0 = p0

(

1 − z2

2H2

)

, (B.21)

ρ0 = ρ0

(

1 − 3 + 2H2/R2
(

∂ ln p0

∂ ln R

(

2 − ∂ ln T0

∂ ln R

)

− 1
2

∂ ln T0

∂ ln R

)

6 + 4H2/R2 ∂ ln p0

∂ ln R

(

1 − ∂ ln T0

∂ ln R

)

( z

H

)2
)

, (B.22)

T0 = T0

(

1 +
∂ ln T0

∂ ln R

(

∂ ln p0

∂ ln R
− 1

2
∂ ln T0

∂ ln R

)

3 + 2H2/R2 ∂ ln p0

∂ ln R

(

1 − ∂ ln T0

∂ ln R

)

(

H

R

)2
( z

H

)2
)

, (B.23)

Ω = ΩK

√

1 + H2/R2
∂ ln p0

∂ ln R



1 −
(

H

R

)2
( z

H

)2

×

∂ ln p0

∂ ln R
− 1

2
∂ ln T0

∂ ln R

2
(

1 + H2/R2 ∂ ln p0

∂ ln R

)

(

1 − H2/R2( ∂ ln p0

∂ ln R )( ∂ ln T0

∂ ln R )
9+H2/R2(2− ∂ ln T0

∂ ln R ) ∂ ln p0

∂ ln R

)









.

(B.24)

Expressions for Ê0R,ES and Ê0Z,ES can be derived from the following radial and vertical

force balance equations for the ions and electrons,

e

mp

E0R,ES − Ω2
KR

(

1 − 3z2

2R2

)

=
1

mpn̂0

∂p̂i0

∂R
− Ω2R, (B.25)

− e

me

E0R,ES − Ω2
KR

(

1 − 3z2

2R2

)

=
1

men̂0

∂p̂e0

∂R
− Ω2R, (B.26)

e

mp

E0Z,ES − Ω2
Kz =

1

mpn̂0

∂p̂i0

∂z
, (B.27)

− e

me

E0Z,ES − Ω2
Kz =

1

men̂0

∂p̂e0

∂z
. (B.28)

The entropy gradient in the vertical direction is,

∂ ln p̂0

∂z

∂ ln p̂0ρ0
−5/3

∂z
≈ −2

3

z2

H4
< 0 (B.29)

Hence this equilibrium disk is Schwarzchild stable.

Since equilibrium radial gradients have scale heights ∼ R, we conclude that from
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Eqs. (B.19), (B.23), and (B.24) for thin disks, the orbital velocity Ω ≈ ΩK , the radial

magnetic field is negligible, and isotherms to a good approximation lie along surfaces

of constant R. For thick disks, H <∼ R or equivalently θ <∼ Ω2
KR2 hold. Therefore,

the orbital angular velocity is significantly sub-Keplerian, there is a significant radial

magnetic field, and isotherms no longer lie along surfaces of constant R.

For a thin disk, from Eqs. (B.19) - (B.24), the equilibrium densities, magnetic

fields, and pressures, are modfied as,

ρ0 ≈ ρ0(R)

(

1 − z2

2H2

)

,

p̂0 ≈ p0(R)

(

1 − z2

2H2

)

,

Ω ≈ ΩK ,

B0 ≈ B0φφ̂ + B0Z ẑ.

(B.30)

In addition, isothermality in z implies Ti0(R, z) = Ti0(R), and Te0(R, z) = Te0(R).

In a thin disk, from Eqs. (B.25) - (B.28), the electrostatic radial Ê0R,ES and vertical

Ê0Z,ES fields are,

Ê0Z,ES ≈ −Ω2
Kz

mpTe0 − meTi0

Te0 + Ti0

, (B.31)

Ê0R,ES ≈ − 1

n0

(

mpTe0 − meTi0

mp + me

)

∂ ln p0

∂R
. (B.32)

Ion and electron force balance, in the radial and vertical directions, is shown in

Fig. (B.1). Fe = FeRR̂ + FeZ ẑ and Fi = FiRR̂ + FiZ ẑ are the electron and ion

gravitational forces, respectively; FES
e = FES

eR R̂ + FES
eZ ẑ and FES

i = FES
iR R̂ + FES

iZ ẑ are

the electron and ion electrostatic forces, respectively; and Fp
e = F p

eRR̂ + F p
eZ ẑ and

Fp
i = F p

iRR̂ + F p
iZ ẑ are the electron and ion pressure forces, respectively.

We next demonstrate that an invisced, insulating, nonmagnetized, and incom-
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Fig. B.1.— MHD equilib-
rium in a thin disk H/R ≪
1, mediated by electrostatic
and pressure forces. In con-
sidering vertical force bal-
ance (see top), electrons
experience a large electro-
static force downwards and
a very small gravitational
force, while the ions expe-
rience an electrostatic force
upwards that is approxi-
mately half as strong as the
gravitational force.
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pressible fluid with ∂Ω/∂z 6= 0, and with outwardly increasing specific angular mo-

mentum (Chandrasekhar 1961), is hydrodynamically stable within the plane of the

disk. For thin disks, the pressure and density vary significantly over a vertical scale

height. However, over the disk scale height the vertical angular velocity gradient is

subdominant to the radial gradient of angular velocity,

∣

∣

∣

∣

∂Ω/∂z

∂Ω/∂R

∣

∣

∣

∣

∼ H/R. (B.33)

The comoving MHD equations of force balance, Eq. (1.2.2), reduce to,

∂u

∂t
+ 2Ωẑ × u + Ω′RuRφ̂ + R

∂Ω

∂z
φ̂ = −∇p, (B.34)

We examine axisymmetric modes of the form δa ∝ exp (Γt + ikRR + ikZz). Eq. (B.34)

and the incompressibility condition, ∇·u = 0, in perturbed, component form are given

by,

ΓδuR − 2Ωδuφ = −ikRθ0
δp

p0

, (B.35)

Γδuφ + (2Ω + Ω′R) δuR + R
∂Ω

∂z
δuZ = 0, (B.36)

ΓδuZ = −ikZθ0
δp

p0

, (B.37)

ikRδuR + ikZδuZ = 0. (B.38)

Eqs. (B.35) - (B.38) can be solved to yield the dispersion relation,

Γ2 + κ2 − kR/kZ

1 + k2
R/k2

Z

2ΩR
∂Ω

∂z
= 0 (B.39)
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For z > 0, then ∂Ω/∂z > 0. At kR = kZ , Γ2 is a maximum given by,

Γ2
max = −κ2 + RΩ

∂Ω

∂z
(B.40)

For a Keplerian disk, κ2 = Ω2, and from Eq. (B.33),

∣

∣

∣

∣

RΩ
∂Ω

∂z

∣

∣

∣

∣

∼ Ω2H/R within the

disk. This results in Γ2
max < 0 and so the disk remains hydrodynamically stable.



193

Appendix C

Full Perturbed Axisymetric

Distribution Function

Here we calculate out the perturbed ion and electron axisymmetric distribution func-

tion. We take our dilute, magnetized disk to be thin, therefore its structure is

described in §3. The equilibrium parallel and perpendicular temperatures of each

species are equal, Ts‖0 = Ts⊥0 = Ts0. We employ the perturbed collisional operator,

Eq. (5.3.2). We begin with Eq. (5.1.23). If we employ Eq. (5.1.20), then we derive

the Boltzmann equation in non-covariant form,

(

∂

∂t
+ Ω

∂

∂φ

)

f 0
s +

(

v‖b + u⊥
)

· ∇f 0
s +

∂f 0
s

∂v‖

(

Zse

ms

E‖ +
1

ns0ms

b · ∇ps0

)

+

∂f 0
s

∂v‖

(

−b ·
([

∂

∂t
+ Ω

∂

∂φ

]

u⊥ +
[

v‖b + u⊥
]

· ∇u⊥

)

+

µB∇ · b + 2Ωẑ · (b × u) − bφR∇Ω ·
(

u⊥ + v‖b
))

=

− νs

(

f 0
s −

〈

f 0
s

〉)

(C.1)



194

To lowest order in small perturbed quantities, Eq. (C.1) for each species is,

(

Γ + ik‖v‖ + νi

)

δfi −
∂δfi

∂v‖

(

kBTi0

mp

× z

H2
sin χ

)

=
mpv‖
kBTi0

(

−ik‖µδB +
eδE‖
mp

−

z

H2
v2

i v‖δbZ + v2
i

∂ ln pi0

∂R
δB̄R − cos χδB̄R

ik‖

(

Ω′R
[

Γ + ik‖v‖
]

+ 2ΩΓ
)

)

f 0
i0+

νif
0
i0

(

δρ̄ − δTi‖/2 + δTi⊥
Ti0

+

[

mpµB0

kBTi0

+
mpv

2
‖

2kBTi0

]

[

δTi‖/3 + 2δTi⊥/3

Ti0

]

−

mpµδB

kBTi0

+
mpv‖δu‖
kBTi0

)

− f 0
i0

(

v‖δb + δu⊥
)

·
(

∂ ln ρ0

∂R
R̂ − zẑ

H2
− 3

2

∂ ln Ti0

∂R
R̂ +

(

mpµB0

kBTi0

+
mpv

2
‖

2kBTi0

)

∂ ln Ti0

∂R
R̂

)

,

(C.2)

(

Γ + ik‖v‖ + νe

)

δfe −
∂δfe

∂v‖

(

kBTe0

me

× z

H2
sin χ

)

=
mev‖
kBTe0

(

−ik‖µδB − eδE‖
me

−

z

H2
v2

ev‖δbZ + v2
e

∂ ln pe0

∂R
δB̄R − cos χδB̄R

ik‖

(

Ω′R
[

Γ + ik‖v‖
]

+ 2ΩΓ
)

)

f 0
e0+

νef
0
e0

(

δρ̄ − δTe‖/2 + δTe⊥
Te0

+

[

meµB0

kBTe0

+
mev

2
‖

2kBTe0

]

[

δTe‖/3 + 2δTe⊥/3

Te0

]

−

meµδB

kBTe0

+
mev‖δu‖
kBTe0

)

− f 0
e0

(

v‖δb + δu⊥
)

·
(

∂ ln ρ0

∂R
R̂ − zẑ

H2
− 3

2

∂ ln Te0

∂R
R̂ +

(

meµB0

kBTe0

+
mev

2
‖

2kBTe0

)

∂ ln Te0

∂R
R̂

)

.

(C.3)

Here, we denote terms in dark red with finite collisionality; terms in dark green with

points away from the midplane; terms in purple with differential rotation; and terms

in dark blue with radial equilibrium gradients in pressure and temperature. If we

employ Eq. (5.1.3), then,

δuR⊥ =
Γ

ik‖
δB̄R, (C.4)

δuZ⊥ = − Γ

ik‖
cos χ

(

δB̄φ sin χ +
kR

kZ

δB̄R cos χ

)

− Ω′RδB̄R

ik‖
sin χ cos χ. (C.5)
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If we substitute Eqs. (C.4) and (C.5) into Eqs. (C.2) and (C.3), then we have,

(

Γ + ik‖v‖ + νi

)

δfi −
∂δfi

∂v‖

(

kBTi0

mp

× z

H2
sin χ

)

=
mpv‖
kBTi0

(

−ik‖µδB +
eδE‖
mp

+

v2
i

∂ ln pi0

∂R
δB̄R − cos χδB̄R

ik‖

(

Ω′R
[

Γ + ik‖v‖
]

+ 2ΩΓ
)

)

f 0
i0+

νif
0
i0

(

δρ̄ − δTi‖/2 + δTi⊥
Ti0

+

[

mpµB0

kBTi0

+
mpv

2
‖

2kBTi0

]

[

δTi‖/3 + 2δTi⊥/3

Ti0

]

−

mpµδB

kBTi0

+
mpv‖δu‖
kBTi0

)

− f 0
i0

Γ + ik‖v‖
ik‖

(

∂ ln ρ0

∂R
− 3

2

∂ ln Ti0

∂R
+

(

mpµB0

kBTi0

+
mpv

2
‖

2kBTi0

)

∂ ln Ti0

∂R

)

−

f 0
i0

z

H2

cos χ

ik‖

(

Γ

[

δB̄φ sin χ +
kR

kZ

δB̄R cos χ

]

+ Ω′RδB̄R sin χ

)

.

(C.6)

(

Γ + ik‖v‖ + νe

)

δfe −
∂δfe

∂v‖

(

kBTe0

me

× z

H2
sin χ

)

=
mev‖
kBTe0

(

−ik‖µδB − eδE‖
me

+

v2
e

∂ ln pe0

∂R
δB̄R − cos χδB̄R

ik‖

(

Ω′R
[

Γ + ik‖v‖
]

+ 2ΩΓ
)

)

f 0
e0+

νef
0
e0

(

δρ̄ − δTe‖/2 + δTe⊥
Te0

+

[

meµB0

kBTe0

+
mev

2
‖

2kBTe0

]

[

δTe‖/3 + 2δTe⊥/3

Te0

]

−

meµδB

kBTe0

+
mev‖δu‖
kBTe0

)

− f 0
e0

Γ + ik‖v‖
ik‖

(

∂ ln ρ0

∂R
− 3

2

∂ ln Te0

∂R
+

(

meµB0

kBTe0

+
mev

2
‖

2kBTe0

)

∂ ln Te0

∂R

)

−

f 0
e0

z

H2

cos χ

ik‖

(

Γ

[

δB̄φ sin χ +
kR

kZ

δB̄R cos χ

]

+ Ω′RδB̄R sin χ

)

.

(C.7)

In §5.2 we consider only differential rotation and equilibrium gradients in pressure and

temperature. In §5.3 we consider differential rotation, radial equilibrium gradients in

pressure and temperature, and dark red. In Appendix E.2, we consider differential

rotation, radial equilibrium gradients in pressure and temperature, and points away

from the midplane. Finally, in Appendix D.2, we consider differential rotation and

radial equilibrium gradients in pressure and temperature but do not ignore electron
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dynamics.
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Appendix D

Finite Ion and Electron Pressure

Responses

In this appendix we detail the fluid and collisionless plasma response when includ-

ing finite electron temperature. The ion and electron temperatures are given by

Eqs. (6.1.1) and (6.1.2), respectively.

D.1 Fluid Treatment

From Braginskii (1965), the (ion) viscosity and ion and electron thermal diffusivities

are,

ην = ην0 (Ti0/T0)
5/2 , (D.1)

ηκi = ηκ0 (Te0/T0)
5/2 , (D.2)

ηκe = 1.22 (me/mi)
1/2 ηκ0 (Ti0/T0)

5/2 . (D.3)

Here, ην0 and ηκ0 are the viscous and thermal diffusivities, respectively, for Ti0 =

Te0 = T0. ην0 is given in Eq. (4.1.26), and ηκ0 = 101ην0 (see Eq. [4.1.18]). If we
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substitute in Eqs. (6.1.1) and (6.1.2), the viscous and thermal diffusivities are,

ην = ην0

(√
2 cos ψ

)5

, (D.4)

ηκe = 101ην0

(√
2 sin ψ

)5

, (D.5)

ηκi = 2.88ην0

(√
2 cos ψ

)5

. (D.6)

Equations for the perturbed ion and electron comoving internal energy balance are,

Γ

(

δpi

pi0

− 5

3
δρ̄

)

+ δuR
∂ ln p0ρ

−5/3
0

∂R
=

2

3
ηκi

(

ikZ sin χ

(

δB̄R
∂ ln T0

∂R

)

−

k2
Z sin2 χ

δTi

Ti0

)

,

(D.7)

Γ

(

δpe

pi0

− 5

3
δρ̄

)

+ δuR
∂ ln p0ρ

−5/3
0

∂R
=

2

3
ηκi

(

ikZ sin χ

(

δB̄R
∂ ln T0

∂R

)

−

k2
Z sin2 χ

δTi

Ti0

)

.

(D.8)

If we use the perturbed comoving induction equation, Eq. (4.1.3), and use Eqs. (D.5)

and (D.6) for ion and electron thermal diffusivities, respectively, the ion and electron

pressures are related to δρ̄ and δB̄R by,

δρ̄ =
3δB̄R

5ikZ sin χ
× Γ∂ ln p0ρ

−5/3
0 /∂R + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ∂ ln T0/∂R

Γ + 1.15ην0

(√
2 cos ψ

)5
k2

Z sin2 χ
+

3δpi

5pi0

× Γ + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ

Γ + 1.15ην0

(√
2 cos ψ

)5
k2

Z sin2 χ

(D.9)

δρ̄ =
3δB̄R

5ikZ sin χ
× Γ∂ ln p0ρ

−5/3
0 /∂R + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ∂ ln T0/∂R

Γ + 40.4ην0

(√
2 sin ψ

)5
k2

Z sin2 χ
+

3δpe

5pe0

× Γ + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ

Γ + 40.4ην0

(√
2 sin ψ

)5
k2

Z sin2 χ

(D.10)
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In the Boussinesq limit, perturbations are nearly isobaric, (δpi + δpe) /p0 ≪ δρ/ρ0.

Using Eqs. (D.9) and (D.10), δρ̄ is given by,

δρ̄ =
3δB̄R

5ikZ sin χ
×

(

Γ∂ ln p0ρ
−5/3
0 /∂R + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ∂ ln T0/∂R

Γ + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ
cos2 ψ+

Γ∂ ln p0ρ
−5/3
0 /∂R + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ∂ ln T0/∂R

Γ + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ
sin2 ψ

)/

(

Γ + 1.15ην0

(√
2 cos ψ

)5
k2

Z sin2 χ

Γ + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ
cos2 ψ+

Γ + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ

Γ + 40.4ην0

(√
2 sin ψ

)5
k2

Z sin2 χ
sin2 ψ

)

.

(D.11)

From Eq. (4.1.17), the dispersion relation with finite electron temperatures is given

by,

(

k2

k2
Z

Γ2 +
dΩ2

d ln R
+ 3ην0

(√
2 cos ψ

)5

k2
RΓ sin4 χ + k2v2

A sin2 χ − θ0
∂ ln p0

∂R
Aρ

)

×
(

Γ2 + k2
Zv2

A sin2 χ + 3ην0

(√
2 cos ψ

)5

k2
ZΓ sin2 χ cos2 χ

)

+

Γ2
(

4Ω2 − 9η2
ν0

(

2 cos2 ψ
)5

k2
Rk2

Z sin6 χ cos2 χ
)

= 0,

(D.12)
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where,

Aρ =
3

5

(

Γ∂ ln p0ρ
−5/3
0 /∂R + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ∂ ln T0/∂R

Γ + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ
cos2 ψ+

Γ∂ ln p0ρ
−5/3
0 /∂R + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ∂ ln T0/∂R

Γ + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ
sin2 ψ

)/

(

Γ + 1.15ην0

(√
2 cos ψ

)5
k2

Z sin2 χ

Γ + 1.92ην0

(√
2 cos ψ

)5
k2

Z sin2 χ
cos2 ψ+

Γ + 40.4ην0

(√
2 sin ψ

)5
k2

Z sin2 χ

Γ + 67.3ην0

(√
2 sin ψ

)5
k2

Z sin2 χ
sin2 ψ

)

.

(D.13)

D.2 Kinetic Treatment

Here we examine the response of a collisionless plasma when considering the dynamics

of both ions and electrons. One can demonstrate that the ion and electron perturbed

density are given by,

δni

n0

= 2πn−1
0

∫

δfiB dµdu‖ +
δB

B
= − ieδE‖

k‖kBTi0

R (iζi) −
δB

B
(R (iζi) − 1) +

2ΩΓ

k2
‖v

2
i

R (iζi) cos χδB̄R +
iδB̄R

k‖

(

∂ ln n0

∂R

)

− iδB̄R

k‖

(

∂ ln p0
i

∂R

)

R (iζi) ,

(D.1)

δne

n0

= 2πn−1
0

∫

δfeB dµdu‖ +
δB

B
=

ieδE‖
k‖kBTe0

R (iζe) −
δB

B
(R (iζe) − 1) +

2ΩΓ

k2
‖v

2
e

R (iζe) cos χδB̄R +
iδB̄R

k‖

(

∂ ln n0

∂R

)

− iδB̄R

k‖

(

∂ ln p0
e

∂R

)

R (iζe) ,

(D.2)

From Tab. (A.2), Eqs. (6.1.1) and (6.1.2), expressions for ζi and ζe are,

ζi =
γ

x
√

2β
sec ψ

(

mp

mp + me

)1/2

, (D.3)

ζe =
γ

x
√

2β
csc ψ

(

me

mp + me

)1/2

, (D.4)
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With quasineutrality δni = δne one can demonstrate that the electric field is given

by the following:

ieδE‖
k‖ (mp + me) θ0

= − δB

B
sin2 ψ cos2 ψ

R (iζi) − R (iζe)

R (iζi) sin2 ψ + R (iζe) cos2 ψ
−

δB̄R

ik‖
sin2 ψ cos2 ψ

αP (R (iζi) − R (iζe))

R (iζi) sin2 ψ + R (iζe) cos2 ψ
+

2ΩΓ

k2
‖θ0

δB̄R

R (iζi)
mp

mp+me
sin2 ψ − R (iζe)

me

mp+me
cos2 ψ

R (iζi) sin2 ψ + R (iζe) cos2 ψ
,

(D.5)

The total perturbed parallel and perpendicular pressures are then,

δp⊥
p0

=
iδB̄R

xβ1/2
αP

(

R (iζi) cos2 ψ + R (iζe) sin2 ψ − 1
)

−

2δB

B

(

R (iζi) cos2 ψ + R (iζe) sin2 ψ − 1
)

+

2γ

x2β
δB̄R cos χ

mpR (iζi) + meR (iζe)

mp + me

+
2ieδE‖

k‖ (mp + me) θ0

(R (iζi) − R (iζe)) ,

(D.6)

δp‖
p0

= − 2iδB̄R

xβ1/2
αP

(

ζ2
i R (iζi) cos2 ψ + ζ2

e R (iζe) sin2 ψ
)

+

2δB

B

(

ζ2
i R (iζi) cos2 ψ + ζ2

e R (iζe) sin2 ψ
)

+

2γ

x2β
δB̄R cos χ

(

1 − 2ζ2
i mpR (iζi) + 2ζ2

e meR (iζe)

mp + me

)

+

2ieδE‖
k‖ (mp + me) θ0

(

ζ2
i R (iζi) − ζ2

e R (iζe)
)

.

(D.7)
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Appendix E

Off Plane Plasma Dynamics

In this appendix, we detail the derivation of the dispersion relation for the MVTI and

collisionless MTI away from the disk midplane. Most of our analysis will focus on the

kinetic treatment of a collisionless plasma. We consider a plasma with Ti0 = Te0 and

∂Ti0/∂R = ∂Te0/∂R. We explore the parallel and perpendicular pressure responses

of the plasma, as a function of perturbed radial and azimuthal magnetic fields, away

from the midplane at a specific growth rate and vertical wavenumber. The parallel

and perpendicular pressure responses are shown in Figs. (E.1) - (E.4).

E.1 Fluid Treatment

We follow a treatment of dilute magnetized disk stability away from the midplane that

is given by Balbus (2001). The perturbed viscous stress δσ is given by Eq. (4.1.1).

The perturbed heat flux δq away from the midplane is given by Eq. (4.1.2). The
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perturbed comoving internal energy balance, Eq. (1.2.7), away from the midplane,

Γ

(

δp

p0

− 5

3

δρ

ρ0

)

+ δuR

(

∂ ln p0ρ
−5/3
0

∂R
− kR

kZ

∂ ln p0ρ
−5/3
0

∂z

)

=

2

3
ηκ

(

ikZ sin χ

(

δB̄R
∂ ln T0

∂R

)

− k2
Z sin2 χ

δθ0

θ0

)

,

(E.1)

In the Boussinesq limit, terms with δp/p0 are dynamically unimportant. Eq. (E.1)

can be solved to yield an equation for δρ̄,

δρ

ρ0

=
3

5
×

δuR

(

∂ ln p0ρ
−5/3

0

∂R
− kR

kZ

∂ ln p0ρ
−5/3

0

∂z

)

− 2
3
iηκkZ sin χ∂ ln T0

∂R
δB̄R

Γ + 2
5
ηκk2

Z sin2 χ
. (E.2)

The perturbed form of the comoving MHD force balance equations, Eq. (1.2.6), can

be rewritten as,

Γδu + 2Ωẑ × δu + Ω′RδuRφ̂ =
δρ

ρ0

θ0

(

∂ ln p0

∂R
R̂ +

∂ ln p0

∂z
ẑ

)

−

ik

ρ0

(

δp +
B0 · δB

4π

)

+ ikZ sin χv2
AδB̄ −∇ · δσ,

(E.3)

If we substitute in Eqs. (4.1.3) and (4.1.7), then the vertical component of Eq. (E.3)

can be represented as,

δp

ρ0

+ v2
A cos χδB̄φ = ηνΓ

(

3 sin2 χ − 1
)

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

−

ikR

k2
Z

ΓδuR + θ0
1

ikZ

∂ ln p0

∂z

δρ

ρ0

.

(E.4)
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If we employ Eqs. (4.1.3), (4.1.7), and (E.4), then the radial and azimuthal compo-

nents of Eq. (E.3) reduce to,

(

1 +
k2

R

k2
Z

)

Γ2δB̄R − 2Ω
(

ΓδB̄φ − Ω′RδB̄R

)

=

3ηνΓkRkZ sin3 χ

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

−

(

k2
R + k2

Z

)

v2
A sin2 χδB̄R +

3

5
θ0

(

∂ ln p0

∂R
− kR

kZ

∂ ln p0

∂z

)

×

Γ

(

∂ ln p0ρ
−5/3

0

∂R
− kR

kZ

∂ ln p0ρ
−5/3

0

∂z

)

+ 2
3
ηκk

2
Z sin2 χ∂ ln T0/∂R

Γ + 2
5
ηκk2

Z sin2 χ
δB̄R,

(E.5)

Γ2δB̄φ + 2ΩΓδB̄R = −3ηνΓk2
Z sin2 χ cos χ×

(

δB̄φ cos χ − kR

kZ

δB̄R sin χ

)

− k2
Zv2

A sin2 χδB̄φ.
(E.6)

Terms explicitly due to the vertical structure of the disk appear only with nonzero

kR. Eqs. (E.5) and (E.6) can be rearranged into this dispersion relation,

(

k2

k2
Z

Γ2 +
dΩ2

d ln R
+ 3ηνk

2
RΓ sin4 χ + k2v2

A sin2 χ − 3

5
θ0

(

∂ ln p0

∂R
− kR

kZ

∂ ln p0

∂z

)

×

Γ

(

∂ ln p0ρ
−5/3

0

∂R
− kR

kZ

∂ ln p0ρ
−5/3

0

∂z

)

+ 2
3
ηκk

2
Z sin2 χ∂ ln T0/∂R

Γ + 2
5
ηκk2

Z sin2 χ









×

(

Γ2 + k2
Zv2

A sin2 χ + 3ηνk
2
ZΓ sin2 χ cos2 χ

)

+

Γ2
(

4Ω2 − 9η2
νk

2
Rk2

Z sin6 χ cos2 χ
)

= 0,

(E.7)

From Eqs. (1.3.9) and (1.3.10), ην ∝ T 5/2n−1 and ηκ ∝ T 5/2n−1. For our disk,

ην = ην0e
z2/(2H2), (E.8)

ηκ = ηκ0e
z2/(2H2). (E.9)
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This implies,

η̂ν = η̂ν0e
z2/(2H2), (E.10)

η̂κ = Pr−1η̂ν0e
z2/(2H2). (E.11)

If we apply the normalizations given by Tab. (A.2), and employ Eqs. (6.2.2) - (E.11),

then Eq. (E.7) reduces to,

(

k̂2

k̂2
Z

γ2 + 2
d ln Ω

d ln R
+ 3η̂ν0k̂

2
Rγez2/(2H2) sin4 χ + k̂2ez2/(2H2) sin2 χ −

3

5

(

αP − k̂R

k̂Z

z/H

)

[

αS + 2k̂R

3k̂Z
z/H

]

γ + 2
3
αT Pr−1η̂ν0e

z2/(2H2)k̂2
Z sin2 χ

γ + 2
5
Pr−1η̂ν0ez2/(2H2)k̂2

Z sin2 χ



×

(

γ2 + k̂2
Zez2/(2H2) sin2 χ + 3η̂ν0e

z2/(2H2)k̂2
Zγ sin2 χ cos2 χ

)

+

γ2
(

4 − 9η̂2
ν0e

z2/H2

k̂2
Rk̂2

Z sin6 χ cos2 χ
)

= 0.

(E.12)
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E.2 Kinetic Treatment

The perturbed distribution function for ions and electrons away from the midplane

is given by,

(

Γ + ik‖v‖
)

δfi −
∂δfi

∂v‖

(

kBT0

mp

× z

H2
sin χ

)

=
mpv‖
kBT0

(

−ik‖µδB+

eδE‖
mp

+ v2
i

∂ ln pi0

∂R
δB̄R − cos χδB̄R

ik‖

(

Ω′R
[

Γ + ik‖v‖
]

+ 2ΩΓ
)

)

f 0
i0−

f 0
i0

Γ + ik‖v‖
ik‖

(

∂ ln ρ0

∂R
− 3

2

∂ ln T0

∂R
+

(

mpµB0

kBT0

+
mpv

2
‖

2kBT0

)

∂ ln T0

∂R

)

−

f 0
i0

z

H2

cos χ

ik‖

(

Γ

[

δB̄φ sin χ +
kR

kZ

δB̄R cos χ

]

+ Ω′RδB̄R sin χ

)

.

(E.1)

(
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e
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.

(E.2)
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If we make the following normalizations we then have that the ion and electron

perturbed velocity profiles in terms δE‖, δB̄φ, and δB̄R are given by the following:

(y − iζi) δfi(y, µ) +
iz/H sin χ

2xβ1/2

∂δfi

∂y
= y

(
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v2
i
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ieδE‖
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− 1

ixβ1/2
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√
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mp + me
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(2π)3/2 v3
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v2
i

)

+
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2
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y2 +
µB0

v2
i

]

αT

)

n0
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i
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(

−y2 − µB0

v2
i

)

+

([

ζiδB̄φ +
d ln Ω

d ln R

1

xβ1/2

√

mp

mp + me

δB̄R

]

sin χ +
kR

kZ

ζiδB̄R cos χ

)

z/H cos χ

xβ1/2
×
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(2π)3/2 v3
i
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(
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(E.3)

(y − iζe) δfe(y, µ) +
iz/H sin χ

2xβ1/2

∂δfe

∂y
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v2
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1
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sin χ +
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(E.4)

where y = v‖/
(

vs

√
2
)

. Although the WKB approximation implies k‖H > 1, one can

have situations under which ζi <
(

k‖H
)−1

and ζe <
(

k‖H
)−1

. Therefore, we need

to consider electron dynamics and cannot ignore δE‖. To calculate moments of the

perturbed ion and electron particle distribution function, we introduce new functions
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given by,

(y − iζ) fn + iẑ
dfn

dy
= π−1/2yne−y2

, (E.5)

(y − iζ) fnc + iẑ
dfn

dy
= π−1/2yn (y − iζ) yne−y2

. (E.6)

fn and fnc have the asymptotic behavior for large y,

lim
|y|→∞

fn = π−1/2 yn

y − iζ
e−y2

, (E.7)

lim
|y|→∞

fnc = π−1/2yne−y2

. (E.8)

Plasma moment functions Zn and Znc are given by,

Zn (ζ, ẑ) =

∫ ∞

−∞
fn (y, ζ, ẑ) dy, (E.9)

Znc (ζ, ẑ) =

∫ ∞

−∞
fnc (y, ζ, ẑ) dy. (E.10)
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The limits of Zn and Znc at ẑ = 0 up to n = 4, for Re (ζ) > 0, are given in Eqs. (E.11)

- (E.20).

Z0 (ζ, 0) = iπ1/2 exp
(

ζ2
)

Erfc (ζ) , (E.11)

Z0c (ζ, 0) = 1, (E.12)

Z1 (ζ, 0) = 1 − π1/2ζ exp
(

ζ2
)

Erfc (ζ) , (E.13)

Z1c (ζ, 0) = 0, (E.14)

Z2 (ζ, 0) = iζ
(

1 − π1/2 exp
(

ζ2
)

Erfc (ζ)
)

, (E.15)

Z2c (ζ, 0) =
1

2
, (E.16)

Z3 (ζ, 0) =
1

2
− ζ2

(

1 − π1/2ζ exp
(

ζ2
)

Erfc (ζ)
)

, (E.17)

Z3c (ζ, 0) = 0, (E.18)

Z4 (ζ, 0) = iζ

(

1

2
− ζ2

[

1 − π1/2ζ exp
(

ζ2
)

Erfc (ζ)
]

)

, (E.19)

Z4c (ζ, 0) =
3

4
. (E.20)
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From Eq. (E.3) and (E.4), the ion and electron density responses in terms of δB̄R,

δB̄φ, and δE‖ are,

δni
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(E.21)
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=
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(E.22)

Here β = θ0/v
2
A0. Furthermore, recall that,

ζi =
Γ

k‖vi

√
2

=
γ

xβ1/2

√

mp

mp + me

, (E.23)

ζe =
Γ

k‖ve

√
2

=
γ

xβ1/2

√

me

mp + me

. (E.24)
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We solve for δE‖ by noting δni = δne. From Eq. (5.1.25), the parallel ion and electron

pressures are,
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(E.25)
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(E.26)
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and the ion and electron perpendicular pressures are,
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(E.28)

Therefore, the parallel and perpendicular pressures are defined in this manner,







δp⊥/p0

δp‖/p0






=







AR⊥ Aφ⊥

Aφ⊥ Aφ‖













δB̄R

δB̄φ






. (E.29)

Recall that pi0 = pe0, therefore p0 = 2pi0 = 2pe0. We plot the normalized pressure

response functions – AR⊥, Aφ⊥, AR‖, and Aφ‖ – given in Eq. (E.29) as a function

of normalized height z/H for various β ≥ 1, in Figs. (E.1) - (E.4). We choose a
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Keplerian rotational profile, αP = αT = 0, χ = π/4, Γ/Ω = 1, and kZvA0/Ω = 1.

The real and imaginary parts of the normalized AR⊥ are shown in Fig. (E.1). The

real and imaginary parts of the normalized Aφ⊥ are shown in Fig. (E.2). The real

and imaginary parts of the normalized AR‖ are shown in Fig. (E.3). The real and

imaginary parts of the normalized Aφ‖ are shown in Fig. (E.4). The pressure response

values at the midplane for various β ≥ 1 are shown in Tab. (E.1),

Table E.1: Pressure Response Functions at Midplane For Various β
function β = 102.5 β = 102 β = 101.5 β = 101 β = 100.5

AR⊥ (z = 0) 8.314 × 10−3 2.481 × 10−2 7.065 × 10−2 1.848 × 10−1 4.183 × 10−1

Aφ⊥ (z = 0) 9.663 × 10−2 1.650 × 10−1 2.735 × 10−1 4.319 × 10−1 6.324 × 10−1

AR‖ (z = 0) 8.892 × 10−3 2.779 × 10−2 8.497 × 10−2 2.459 × 10−1 6.299 × 10−1

Aφ‖ (z = 0) 4.157 × 10−3 1.241 × 10−2 3.532 × 10−2 9.242 × 10−2 2.092 × 10−1
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Fig. E.1.— Offplane normalized perpendicular pressure response function
Re (AR⊥(z/H)) /Re (AR⊥(z = 0)) (on top) and Im (AR⊥) /Re (AR⊥(z = 0)) (on bot-
tom) for the collisionless MRI as a function of z/H, for various β ≥ 1.
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Fig. E.2.— Offplane normalized perpendicular pressure
Re (Aφ⊥(z/H)) /Re (Aφ⊥(z = 0)) (on top) and Im (Aφ⊥(z/H)) /Re (Aφ⊥(z = 0)) (on
bottom) for the collisionless MRI as a function of z/H, for various β ≥ 1.
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If we employ Eqs. (1.2.6), the perturbed equation of force balance away from the

midplane is given by,

Γδu + 2Ωẑ × δu + Ω′RδuRφ̂ = δρ̄θ0

(

−αP H−1R̂ − z

H2
ẑ
)

−

ik

(

δp⊥
p0

θ0 + b0 · δB̄v2
A0e

z2/H2

)

+ ik‖v
2
A0e

z2/H2

δB̄−

ik‖b0θ0

δp‖ − δp⊥
p0

,

(E.30)

The MHD continuity equation away from the midplane, Eq. (1.2.5), yields,

ik · δu = −Γδρ̄ +
ΓδB̄R

ixβ1/2

(

αP − αT − kR

kZ

z/H

)

(E.31)

Therefore, Eq. (5.1.3) results in the MHD induction equation away from the midplane,

ik‖δu = ΓδB̄ − Ω′RδB̄Rφ̂−

Γ

(

δρ̄ − αP − αT − kR/kZ × z/H

ixβ1/2
δB̄R

)

b0.
(E.32)

If we substitute Eq. (E.32) into Eq. (E.30), we then have,

Γ2δB̄ + 2ΩΓ cos χ

(

δρ̄ − αP − αT − kR/kZ × z/H

ixβ1/2
δB̄R

)

R̂+

2ΩΩ′RδB̄RR̂ − Γ2

(

δρ̄ − αP − αT − kR/kZ × z/H

ixβ1/2
δB̄R

)

b0+

2ΩΓẑ × δB̄ = −ixβ1/2Ω2
(

αP R̂ +
z

H
ẑ
)

δρ̄+

kk‖

(

δp⊥
p0

θ0 + b0 · δB̄v2
A0e

z2/H2

)

− k2
‖v

2
A0e

z/H2

δB̄ + k2
‖θ0b0

δp‖ − δp⊥
p0

.

(E.33)

In terms of normalized variables, the radial, azimuthal, and equilibrium magnetic-
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field-directed components of Eq. (E.33) are,

(

γ2 + x2

[

1 +
k̂2

R

k̂2
Z

]

ez2/H2

+ 2
d ln Ω

d ln R
− 2γ cos χ

αP − αT − k̂R/k̂Z × z/H

ixβ1/2

)

δB̄R−
(

2γ + x2 cot χ
k̂R

k̂Z

)

δB̄φ + δρ̄
(

2γ cos χ + ixβ1/2αP

)

= k̂Rxβ
δp⊥
p0

,

(E.34)

(

γ2 cos χ
αP − αT − k̂R/k̂Z × z/H

ixβ1/2
+ 2γ

)

δB̄R +
(

γ2 + x2ez2/H2

)

δB̄φ−

γ2δρ̄ = x2β cos χ
δp‖ − δp⊥

p0

,

(E.35)

δB̄R

(

γ2αP − αT − k̂R/k̂Z × z/H

ixβ1/2
− k̂R

k̂Z

γ2 sin χ + 2γ cos χ

)

+ γ2 cos χδB̄φ+

(

ixβ1/2 sin χ
z

H
− γ2

)

δρ̄ = x2β
δp‖
p0

.

(E.36)
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Kleinman, S. J., Krzesiński, J., Long, D. C., Lupton, R. H., Nash, T., Neilsen, Jr.,

E. H., Nitta, A., Schlegel, D. J., & Snedden, S. A. 2006, AJ, 131, 2766

Richstone, D., Ajhar, E. A., Bender, R., Bower, G., Dressler, A., Faber, S. M.,

Filippenko, A. V., Gebhardt, K., Green, R., Ho, L. C., Kormendy, J., Lauer,

T. R., Magorrian, J., & Tremaine, S. 1998, Nature, 395, A14+



228

Sano, T. & Stone, J. M. 2002, ApJ, 570, 314

Schekochihin, A., Cowley, S., Kulsrud, R., Hammett, G., & Sharma, P. 2005a, in The

Magnetized Plasma in Galaxy Evolution, ed. K. T. Chyzy, K. Otmianowska-Mazur,

M. Soida, & R.-J. Dettmar, 86–92

Schekochihin, A. A. & Cowley, S. C. 2005, ArXiv Astrophysics e-prints

—. 2006, Physics of Plasmas, 13, 6501

Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G.,

Quataert, E., & Tatsuno, T. 2007, ArXiv e-prints, 704

Schekochihin, A. A., Cowley, S. C., Kulsrud, R. M., Hammett, G. W., & Sharma, P.

2005b, ApJ, 629, 139
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