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Abstract

Radial substructures in disks around young stellar objects are now routinely detected

by state-of-the-art observational facilities. There is also growing evidence that large-

scale magnetic fields threading the disks are responsible for launching wide-angle out-

flows. The magnetic fields that launch disk winds play a crucial role in the dynamics

of protoplanetary disks. In this thesis we investigate theoretically the formation of

radial structures, i.e., rings and gaps, in magnetized disks through three numerical

simulation projects of increasing complexity.

We start with two-dimensional (2D) disk simulations under the assumption of

axisymmetry, and we include the simplest of the non-ideal magnetohydrodynamic

(MHD) effects, Ohmic dissipation. We find two distinct modes of disk accretion

depending on the Ohmic resistivity and magnetic field strength. A small resistivity or

high field strength promotes the development of rapidly infalling “avalanche accretion

streams” in a vertically extended disk envelope that dominates the dynamics of the

system, especially the mass accretion. These streams are suppressed in simulations

with larger resistivities or lower field strengths, where most of the accretion instead

occurs through a laminar disk. In these simulations, the disk accretion is driven

mainly by a slow wind that is typically accelerated by the pressure gradient from a

predominantly toroidal magnetic field; however, there are lightly mass-loaded regions

that are accelerated magnetocentrifugally to speeds exceeding 100 km s−1. Both the

wind-dominated and stream-dominated modes of accretion create prominent features

in the surface density distribution of the disk, with a strong spatial variation of

the (poloidal) magnetic flux relative to the mass. Regions with low mass-to-flux

ratios accrete quickly and lead to the development of gaps, whereas regions with

higher mass-to-flux ratios accrete more slowly, allowing matter to accumulate and
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form dense rings. In some cases, avalanche accretion streams produce dense rings

directly through continuous feeding.

In the second project, we retain the simplifying assumption of axisymmetry but

focus on ambipolar diffusion (AD), the dominant non-ideal MHD effect at disk radii of

tens of au or larger (scales that are observationally accessible using current facilities).

We find that rings and gaps naturally develop in the AD-dominated disks as well.

In particular, we find that disks which are moderately well-coupled to the magnetic

field remain relatively laminar, with a radial electric current that is steepened by

AD into a thin layer near the midplane. The toroidal magnetic field sharply reverses

polarity in this layer, generating a large magnetic torque that drives fast accretion.

The poloidal magnetic field is dragged inward through this accretion layer into a

highly pinched radial configuration. The reconnection of this pinched field creates

magnetic loops where the net poloidal magnetic flux (and thus the accretion rate) is

reduced, yielding dense rings. Neighboring regions with stronger poloidal magnetic

fields accrete faster, forming gaps. In better magnetically coupled simulations, the

accretion streams develop continuously near the disk surface as before, rendering

the disk-wind system more chaotic. Nevertheless, prominent rings and gaps are still

produced by reconnection, which again enables the segregation of the poloidal field

and the disk material. However, the reconnection is now driven by the non-linear

growth of MRI channel flows.

In the last part of the thesis, we present ongoing work that extends the 2D (ax-

isymmetric) simulations of AD-dominated disks to three dimensions (3D). We find

that rings and gaps develop naturally in 3D from the same basic mechanism that

was identified in 2D: namely, the redistribution of poloidal magnetic flux (relative to

disk material) from the reconnection of sharply pinched poloidal magnetic field lines.
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There is still a clear anti-correlation between the mass surface density and the vertical

magnetic flux through the disk midplane. The formation of rings and gaps proceeds in

an axisymmetric fashion at early simulation times; non-axisymmetric variations arise

spontaneously at later times, but they do not grow to such an extent as to disrupt

the rings and gaps. These radial disk substructures persist through the full duration

of the simulations, which run for thousands of orbital periods at the innermost edge

of the simulated disks. The longevity of the azimuthally coherent rings make them

attractive sites for trapping large grains that would otherwise rapidly migrate inward

due to gas drag. We find that rings and gaps are formed over a range of ambipolar dif-

fusivities and magnetic field strengths in 3D. They are more prominent in disks that

are better coupled to the magnetic field and disks that are more strongly magnetized.
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NC of the LVC is shaded in blue, and the BC is outlined in red. Areas
shaded in green meet the criteria for HVC and the purple line shows
the sum of all fits. Figure 10 from Simon et al. (2016). . . . . . . . . 8

1.3 Figure 2 from Greenhill et al. (2013) shows the line-of-sight (below the
dashed line) and proper motion (above) of the SiO and H2O masers
from Orion Source I. For more on the possible MHD disk wind from
Orion Source I, see Matthews et al. (2010); Hirota et al. (2017). . . . 10

1.4 ALMA observations of the blue and redshifted 12CO emission from
the Class I protostar TMC1A (vsys = 6.4 km s−1). The dashed lines
show the disk plane (nearly horizontal) and the perpendicular outflow
axis. The greyscale shows the dust continuum emission. Figure 1 from
Bjerkeli et al. (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 HST observations of the HH 30 disk. Image credit: Chris Burrows
(STScI), the WFPC2 Science Team and NASA/ESA (Burrows et al.
1996). Also, see Lee et al. (2017) for the similar appearance of a dark
dust lane in HH 212 at submillimeter wavelengths. . . . . . . . . . . . 13

1.6 Top: ALMA observation of HL Tau (C. Brogan, B. Saxton, ALMA; see
also ALMA Partnership et al. 2015). Bottom: ALMA observation of
TW Hya at 870 µm(S. Andrews, B. Saxton, ALMA; see also Andrews
et al. 2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Illustration of the magnetocentrifugal disk wind. Figure 13 from Ar-
mitage (2015), adapted from Spruit (1996). . . . . . . . . . . . . . . . 19

1.8 Illustration of the magnetorotational instability. Figure 18 from Ar-
mitage (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



x

2.1 A representative (‘reference’) axisymmetric simulation of a coupled
disk-wind system. Shown is the mass volume density (logarithmically
spaced color contours in units of g cm−3), the poloidal magnetic field
lines (white), and the poloidal velocity unit vectors (gray). Panels (a)-
(d) corresponding to simulation times of 0, 150, 1200, and 1800 inner
orbital periods, respectively. (See the supplementary material of Suri-
ano et al. 2017 in the online journal for an animated version of this
figure.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 The reference simulation at time t = 1800 t0. The logarithmically
spaced color contours show (a) the plasma-β, (b) the ratio of the
toroidal to the poloidal magnetic field components, |Bφ/Bp|, (c) the
poloidal velocity (cm s−1), and (d) the ratio of poloidal to the toroidal
velocity components, |vp/vφ|. Panels (b)-(d) show poloidal velocity
unit vectors (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Mass outflow rate (M� yr−1) through hemisphere of r = 1 au as a
function of time in the reference simulation. The mass loss rate is sep-
arated into three velocity components. The fast velocity component
(vr > 100 km s−1) is shown in red, the intermediate velocity compo-
nent (10 km s−1 < vr < 100 km s−1) in green, and the slow velocity
component (1 km s−1 < vr < 10 km s−1) in blue. . . . . . . . . . . . . 51

2.4 The reference simulation at t = 1800t0. Left: The mass volume den-
sity (g cm−3) is shown in logarithmically spaced color contours. Mag-
netic field lines are shown in white and the two dashed lines show the
field lines with midplane footpoints of 0.3 and 1.0 au (along which the
quantities in Fig. 2.5 and 2.6 are plotted). The gray arrows denote the
velocity field and show that the bulk of the disk material is expand-
ing under the surface accretion stream beyond a radius of ∼ 0.7 au.
Right: The ‘face-on’ axisymmetric surface density normalized to its
initial distribution is shown in color contours for Zone I (r ≤ 0.1 au). 53

2.5 Physical quantities plotted along a poloidal magnetic field line as a
function of the distance along the line. The representative field line
has a footpoint at r = 0.3 au (Zone II) and can be seen in Fig. 2.4
(white dashed line). Yellow circles show the sonic point (vp = cs). The
panels show (a) the density distribution (solid) and the distribution
expected based on the mid-plane temperature (dashed), (b) the mag-
netic field components, (c) the radial velocity, (d) the poloidal (black)
and toroidal (red) velocities with the corresponding Keplerian velocity
(RΩK ; dashed blue line), (e) the vertical component of the Lorentz
force relative to the gravitational force, and (f) plasma-β for the to-
tal magnetic field strength (solid) and for the poloidal magnetic field
strength (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xi

2.6 Physical quantities plotted along a poloidal magnetic field line as a
function of the distance along the line. The representative field line
has a footpoint at r = 1 au (Zone II) and can be seen in Fig. 2.4 (white
dashed line). Yellow circles show the sonic point in the outflowing wind
(vp = cs). The panels show (a) the density (solid) and equilibrium den-
sity (dashed) distributions, (b) the magnetic field components, (c) the
radial velocity, and (d) the poloidal (black) and toroidal (red) velocities
with the corresponding Keplerian velocity (RΩK ; dashed blue line). . 58

2.7 Ring and gap formation in Zone I of the reference simulation at t =
1250t0. (a) The surface density, (b) the vertical magnetic field strength
at the midplane (−Bθ,mid), (c) the mass-to-flux ratio Σ/|Bθ,mid| in units
of g cm−2 G−1, and (d) the radial velocity (negative means accretion
towards the central source). The initial distribution of these quantities
are shown for comparison (dashed lines). . . . . . . . . . . . . . . . . 62

2.8 Snapshots of three simulations at t = 1650t0. The left, middle, and
right columns correspond to simulations D 4, beta 3, and t4, respec-
tively. The top row shows the mass density (g cm−3) in logarithmically
spaced color contours with magnetic field lines in white and velocity
(unit) vectors in grayscale. The middle row shows the radial mass
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Chapter 1

Introduction

Giant molecular clouds are stellar nurseries that contain enough gas and dust to

form tens of thousands of stars. When dense regions within these giant molecular

clouds, called prestellar cores, accumulate enough mass they begin a runaway collapse

under their own gravity. The process of core collapse does not happen symmetrically,

because any initial rotation in the core is amplified as the core shrinks due to the

conservation of angular momentum. The rotating material close to the central star

will be supported from further collapse perpendicular to the axis of rotation, with the

end result being the formation of a flattened, rotating disk having a radial extent on

the scale of 100 au. The formation of circumstellar disks around young protostars is

inevitable as long as the star-forming cores are rotating; likely most stars, if not all,

have had a disk around them at one point in their past. The disk material can now

evolve in one of three ways over the course of its ∼ 1 − 10 Myr lifetime: (1) slowly

accrete onto the protostar, (2) escape the system via a wind/outflow, or (3) form

a planetary system. In general, we expect all three to happen simultaneously. The

interplay between these end results is of great interest to researchers, as it provides

the link between the evolution of protoplanetary disks, the formation of planetary
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systems, and the possible development of life on habitable planets.

To understand the evolution of protoplanetary disks, we must first understand

their dynamics. Magnetic fields are widely believed to be the primary driver of disk

dynamics, either through internal angular momentum redistribution via magnetic

stresses or through external angular momentum removal via a disk wind. Magnetic

fields have been difficult to study theoretically because they are only partially coupled

to the lightly ionized disk material, which necessitates the inclusion of the so-called

“non-ideal MHD (magnetohydrodynamic) effects” in any simulation that seeks to

incorporate them. The goal of this thesis is to improve our understanding of the

dynamics of wind-driving magnetized disks through non-ideal MHD simulations. We

find that simulated disks spontaneously develop the intricate radial substructures,

such as rings and gaps, that are now routinely observed in real sources. Such sub-

structures likely have important implications for the dynamics and growth of dust

grains, the crucial first step towards the formation of planetesimals and, ultimately,

planets.

In the rest of Chapter 1 we provide background information on observations of

protoplanetary disks, some theory of disks and their associated outflows, non-ideal

MHD effects, and the numerical code used for our simulations. Chapter 2 lays the

groundwork for the formation of rings and gaps through MHD processes. We explore

these processes using two-dimensional (2D) axisymmetric simulations that include the

simplest of non-ideal MHD effects, Ohmic resistivity, which dominates the innermost

regions of the disk. Chapter 3 focuses on the outer, ambipolar diffusion-dominated

disk regions, where our 2D simulations reveal a novel mechanism for the development

of a radially varying vertical magnetic flux that leads to the formation of rings and

gaps. Chapter 4 shows that disk substructures are still formed through these MHD
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processes in three-dimensional simulations. Finally, Chapter 5 summarizes the main

results of this thesis and offers perspectives on future directions.

1.1 Disk observations

1.1.1 YSO classification

Young, pre-main sequence stars are classified according to their mass. Low-mass

(0.08 .M∗/M� . 2) pre-main sequence stars of spectral types F through M are called

“T Tauri stars” (or TTSs for short) and intermediate-mass (2 . M∗/M� . 8) pre-

main sequence stars are called Herbig Ae/Be stars1. The term “young stellar object”

(YSO) is used as a catch-all to describe young stars of all masses and all evolutionary

stages whose physical nature/observational appearance may be obfuscated by the

circumstellar environment (Strom 1972). YSOs have long been classified by the shape

of their infrared spectrum, usually from 2 to 25 µm (Williams & Cieza 2011). The

infrared spectral index is defined as (Wilking & Lada 1983; Lada 1987)

αIR ≡
d log(νSν)

d log ν
=
d log(λSλ)

d log λ
, (1.1)

where ν and λ are the frequency and wavelength of the light, respectively, and Sν

and Sλ are the observed flux density per unit frequency or wavelength. YSOs are

classified as follows (Lada 1987; Greene et al. 1994):

• Class 0: αIR is not defined – typically no observable infrared emission

• Class I: αIR > 0.3 – optically obscured by infalling envelope

1It is more difficult to quantify the early evolutionary stages of pre-main sequence A and B
stars because they evolve more quickly onto the zero-age main sequence than their lower-mass
counterparts.
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• Flat-spectrum sources: −0.3 < αIR < 0.3 – intermediate between Class I and II

• Class II: −1.6 < αIR < −0.3 – infrared excess from accreting disk

• Class III: αIR < −1.6 – SED resembles pre-main sequence stellar photosphere

The evolutionary progression of this infrared classification scheme was recognized by

Adams et al. (1987) and is illustrated in Fig. 1.1. Class 0 sources are completely

enshrouded by the envelope from which they are forming, and most of their mass is

still contained in that envelope. Class I sources still retain an envelope, but a disk has

formed and the star has a mass comparable to, or larger than, what remains in the

envelope. By Class II the envelope is gone and the disk is actively accreting onto the

star. Class III objects have passive (i.e., non-accreting) disks. Low-mass YSOs that

are not optically obscured are further classified by the strength of their Hα emission.

Classical T Tauri stars (CTTSs) have large Hα equivalent widths and strong UV

emission; weak-lined T Tauri stars (WTTSs) show no signs of active accretion onto

the stellar photosphere. As such, CTTSs and WTTSs closely correspond to Class II

and III, respectively (Williams & Cieza 2011).

1.1.2 Winds, jets, and outflows

In the 1950s, George Herbig (1951) and Guillermo Haro (1952, 1953) independently

observed two large nebulous patches in the Orion A Molecular Cloud. These struc-

tures had broad continuum emission as well as very bright Hα emission and many

forbidden transitions. It was initially assumed that the emission from these regions,

now called HH objects, were reflection nebulae associated with young stars. Although

this assumption proved to be correct in some sense, it was not until the 1980s that

HH objects were confirmed to be outflows fueled by the parent star and its disk in



5

Fig. 1.1.— Illustration of YSO classification. Note that jets are still observed to be
launched from Class 0 sources despite the top right illustration. Image credit: Isella
(2006) and https://ay201b.wordpress.com/tag/sed-modeling/.



6

the form of collimated bipolar jets (Bally et al. 2007). Over the next decade, the

Hubble Space Telescope (HST) provided wide-field optical/NIR imaging for many HH

objects, revealing their full (up to pc-sized) extent oriented perpendicular to the YSO

disks (e.g., Burrows et al. 1996; Reipurth et al. 2000).

The outflows from young stars can be separated into two categories: (1) fast

(v & 100 km s−1) collimated jets launched from the inner disk or (2) slow (v ∼

1− 30 km s−1) wide-angle outflows launched over a range of disk radii. The collision

of the supersonic jets with the ambient cloud material produces the bright shocks

observed as HH objects at distances up to several parsecs away from the protostar

where they were launched. The physical nature of how fast jets are launched from the

inner disk or star is still not well determined (see Section 1.2.2). The slow molecular

outflows are thought to be the remnant dense core material that has yet to fall into

the protostar and that is swept up by a wide-angle wind launched from the disk. The

wind carves out bipolar cavities with opening angles that increase as a function of

the YSO lifetime, eventually clearing away all the remnant core material. Both types

of outflows could be important for controlling the star formation efficiency, either by

removing the core material in which individual stars form or stripping away the core

material of other (neighboring) YSOs, especially in clustered environments.

Optical forbidden lines such as [OI] and [SII] are a hallmark of classical T Tauri

star spectra. These broad blueshifted lines2 show two distinct velocity components,

a high-velocity component (HVC) and a low-velocity component (LVC). The HVC

ranges from approximately 50 − 150 km s−1 while the LVC is closer to ∼ 5 km s−1.

The origin of the low velocity component is thought to be either a photoevaporative

(thermal) wind3 or a slow MHD disk wind. The HVC is believed to be the jet

2It is usually assumed that the flows are bipolar; however, the redshifted line is obscured at
optical wavelengths by the dusty disk.

3The photoevaporative wind will be launched where the thermal energy of the disk material
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component, produced from either the inner part of the disk, from the interaction of

the stellar magnetosphere with the disk (the so-called “x-wind,” see Section 1.2.1.1),

or from a confined stellar wind. Figure 1.2 shows the spectra of the 6300 and 5577

Å [OI] forbidden line for T Tauri stars observed with Keck/HIRES by Simon et al.

(2016) (see their figure 10). The LVC can be further separated into a broad and

narrow kinematic component. Both broad and narrow components have line widths

that correlate with disk inclination, consistent with line broadening from Keplerian

rotation at 0.05 − 0.5 au and 0.5 − 5 au, respectively. The broad component (BC),

indicated by the red line in Fig. 1.2, is likely due to an MHD disk wind as the velocity

offset is largest for face-on disks. The origin of the narrow component (NC) is less

clear.

The optical and UV excess of T Tauri stars is attributed to the magnetospheric

accretion of disk material onto the stellar photosphere (Lynden-Bell & Pringle 1974;

Koenigl 1991; Hartmann et al. 1994). The mass outflow rates can be estimated from

the strengths of the optical emission lines. The luminosity of the Hα line, for example,

is converted to an accretion luminosity (Gullbring et al. 1998; Hartmann et al. 1998;

Alcalá et al. 2014; Simon et al. 2016). The accretion luminosity is then related to the

mass accretion rate as

Lacc =
GM∗Ṁacc

2R∗
. (1.2)

Using this technique, the measured accretion rates found from classical T Tauri stars

are approximately 10−10 − 10−7 M� yr−1, with median mass accretion rates near

10−8 M� yr−1 (Hartmann et al. 2016). Hartmann et al. (1998) estimate that an

exceeds the gravitational binding energy. Equating these two energies leads to a critical disk radius
beyond which the thermal wind is launched as high-energy stellar UV and X-ray photons heat the
upper disk layers. This “gravitational radius” is thus approximately Rg ' GM∗/c

2
s. Although these

winds are important for the dispersal of protoplanetary disks (see Alexander et al. 2014 for a review),
they are not likely to be important for driving disk accretion.
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Fig. 1.2.— T Tauri star [OI] spectra. When both [OI] lines are present, the LVC
components for 6300 Å (left) and 5577 Å (right) are very similar. The NC of the
LVC is shaded in blue, and the BC is outlined in red. Areas shaded in green meet the
criteria for HVC and the purple line shows the sum of all fits. Figure 10 from Simon
et al. (2016).
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accretion rate of 10−8 M� yr−1 corresponds to an effective alpha parameter of α =

10−2 (see Section 1.2 for the definition of the α parameter). However, recent molecular

line observations from ALMA have found α . 3× 10−3 in some disks (Hughes et al.

2011; Flaherty et al. 2017).

1.1.3 Evidence for disk winds

There is growing observational evidence that wide-angle outflows launched from cir-

cumstellar disks are in fact MHD disk winds (Matthews et al. 2010; Pontoppidan

et al. 2011; Greenhill et al. 2013; Banzatti & Pontoppidan 2015; Simon et al. 2016;

Bjerkeli et al. 2016; Hirota et al. 2017; Tabone et al. 2017; Lee et al. 2018; see Sec-

tion 1.2.1.1 for more on magnetic disk wind mechanisms). Perhaps the most clear-cut

example of a disk wind is seen from the high-mass protostar Orion Source I (located

in the Orion BN/KL region), where SiO maser emission in a rotating outflow has been

observed for a decade. Figure 1.3 shows the proper motion (over a nine year span)

and line-of-sight velocities of SiO and H2O masers in the disk wind around Source I

observed with the Very Large Array (Greenhill et al. 2013). As for disk winds from

low mass protostars, ALMA observations of the Class I protostar TMC1A shows a

rotating CO outflow from the disk (see Fig. 1.4; Bjerkeli et al. 2016). This slow CO

outflow emanates directly from the disk over radii of 2 − 20 au, and it is estimated

that the wind has a specific angular momentum of ∼ 100 au km s−1. The removal of

a significant amount of angular momentum over an extended region of a disk around

a young (t . a few × 105 yr) protostar lends credence to the notion that magnetic

disk winds play an important role in protoplanetary disk evolution.
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Fig. 1.3.— Figure 2 from Greenhill et al. (2013) shows the line-of-sight (below the
dashed line) and proper motion (above) of the SiO and H2O masers from Orion Source
I. For more on the possible MHD disk wind from Orion Source I, see Matthews et al.
(2010); Hirota et al. (2017).
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Fig. 1.4.— ALMA observations of the blue and redshifted 12CO emission from the
Class I protostar TMC1A (vsys = 6.4 km s−1). The dashed lines show the disk plane
(nearly horizontal) and the perpendicular outflow axis. The greyscale shows the dust
continuum emission. Figure 1 from Bjerkeli et al. (2016).
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1.1.4 Disk imaging and substructure

Far-infrared observations from the Infrared Astronomical Satellite (IRAS) in the 1980s

all but confirmed that the excess infrared emission seen from T Tauri stars must be

from dusty circumstellar disks (Hartmann 1998). The first high-resolution images of

circumstellar disks were taken by HST towards sources in the the Orion Nebula. These

disks were either illuminated by or seen in absorption against the bright HII regions

surrounding high-mass stars (O’dell et al. 1993; O’dell & Wen 1994; McCaughrean &

O’dell 1996; O’dell 1998; Stapelfeldt et al. 1998). Figure 1.5 shows the well-known

HST image of the nearly edge-on disk HH 30 in the nearby star-forming Taurus

molecular clouds (Burrows et al. 1996). The dark dust lane of the disk midplane is

seen in contrast to the bright upper layers of the disk (produced when the light from

the central source scatters off dust grains) and the bright emission of the fast inner

(atomic) jet.

Our knowledge of circumstellar disks has come a long way since the first re-

solved disk images were taken by HST in the early 1990s. In just the past few

years, the field was once again transformed by the advent of the Atacama Large Mil-

limeter/submillimeter Array (ALMA). The high-resolution images from ALMA have

revealed that many protoplanetary disks show intricate substructures in their dust

continuum images, the first example being the disk around HL Tau (ALMA Partner-

ship et al. 2015). This image is shown in Fig. 1.6, where the appearance of concentric

bright rings and dark gaps stand out. Also shown in Fig. 1.6 is the image of the

∼10 Myr-old disk around TW Hya, the closest gas-bearing protoplanetary disk to

the Sun (Andrews et al. 2016). Because TW Hya is at a distance of only ∼54 pc,

ALMA can resolve substructure in its disk down to ∼1 au. The list of circumstellar

disks observed to have dust substructure continues to grow (e.g., Zhang et al. 2016;
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Fig. 1.5.— HST observations of the HH 30 disk. Image credit: Chris Burrows
(STScI), the WFPC2 Science Team and NASA/ESA (Burrows et al. 1996). Also,
see Lee et al. (2017) for the similar appearance of a dark dust lane in HH 212 at
submillimeter wavelengths.
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Fig. 1.6.— Top: ALMA observation of HL Tau (C. Brogan, B. Saxton, ALMA; see
also ALMA Partnership et al. 2015). Bottom: ALMA observation of TW Hya at
870 µm(S. Andrews, B. Saxton, ALMA; see also Andrews et al. 2016).
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Nomura et al. 2016; Pérez et al. 2016; Isella et al. 2016; Cieza et al. 2016; van der Plas

et al. 2017; Loomis et al. 2017; Fedele et al. 2017, 2018; Dipierro et al. 2018; Sheehan

& Eisner 2018). These disk structures, or the shadows they cast on the outer disk,

are also seen in optical and near-infrared scattered light images from instruments like

the SPHERE on the Very Large Telescope, HiCIAO and SCExAO on the Subaru

Telescope, and the Gemini Planet Imager (e.g., Momose et al. 2015; Ginski et al.

2016; Stolker et al. 2016; Benisty et al. 2017; van Boekel et al. 2017; Monnier et al.

2017; Pohl et al. 2017; Avenhaus et al. 2018).

1.2 Disk theory

The basic theory of thin accretion disks was originally developed in the 1970s by

Shakura & Sunyaev (1973) and Lynden-Bell & Pringle (1974). Lynden-Bell & Pringle

(1974) describe the time evolution of a viscous accretion disk (where the specific

angular momentum increases outward), whereby frictional torques between adjacent

differential rotating disk rings lead to the outward transfer of angular momentum

and the inward transfer of mass (as energy is dissipated in the process). The classic

diffusion-like equation for the evolution of the disk surface density, Σ ≡
∫ +∞
−∞ ρdz, is

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
νΣR1/2

)]
, (1.3)

with a radial velocity profile given by

vR = − 3

ΣR1/2

∂

∂R

(
νΣR1/2

)
, (1.4)
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where ν is the kinematic viscosity with units of cm2 s−1. The presence of viscosity

drives the spread of disk material such that all of the disk angular momentum even-

tually goes to infinity and all of the disk mass is accreted onto the central source (see

also Pringle 1981). For a disk with a constant viscosity, the mass accretion rate will

be Ṁacc = 2πRΣvR.

A main problem in such a theory was that there was no explanation for the physical

nature of the viscous processes. It was known that the microscopic molecular viscosity

would yield an accretion time that would be too long to be astrophysically interesting

(Shu 1992). For example, a molecular viscosity of the order ν ∼ vthλmfp ∼ 106 cm2 s−1,

would give an viscous accretion timescale at 1 au of tacc ∼ R2/ν ∼ 1014 yr, which is

at least 107 times larger than inferred disk lifetimes of 1− 10 Myr. Since the source

of the viscosity was uncertain, it was initially characterized by the now famous “α

parameter” defined as (Shakura & Sunyaev 1973)

ν ≡ αcsh, (1.5)

where h is the disk scale height4. Following this definition, the accretion velocity from

Eq. 1.4 is of the order (Melia 2009)

vR
cs
∼ α

(
h

R

)
. (1.6)

In the next section, we will discuss the most likely processes that could supply this

viscosity. In doing so, we will encounter a more physically relevant parametrization

4The disk scale height is defined as h ≡ cs/ΩK from vertical hydrostatic equilibrium. It
is the characteristic height over which the density drops off by half an e-folding, i.e., ρ(z) =
ρmid exp

(
−z2/2h2

)
. For thin disks, h/r = cs/vK � 1.
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of the α parameter (Shakura & Sunyaev 1973; Balbus & Hawley 1998),

Tiφ ≡ αPgas. (1.7)

Tiφ is the iφ component of the total stress tensor, including both the Reynolds (hy-

drodynamic) and Maxwell (magnetic) stresses,

Tiφ = ρviδvφ −
BiBφ

4π
, (1.8)

where i = R, z (i.e., the radial or vertical component in a cylindrical coordinate

system) and δvφ is deviation of the azimuthal velocity from the Keplerian velocity,

δvφ = vφ − vK .

1.2.1 Angular momentum transport

In the viscous disk model angular momentum is radially redistributed, allowing mass

to accrete. However, angular momentum can also be removed from the disk verti-

cally. The two most likely physical mechanisms for angular momentum transport

in circumstellar accretion disks are the magnetorotational instability (MRI) and the

magnetocentrifugal wind (MCW), or disk wind for short. The MRI redistributes an-

gular momentum in the disk radially, while disk winds extract angular momentum

from the disk vertically. Both mechanisms rely on the presence of magnetic fields in

the disks and are more efficient if the disk has a net vertical magnetic flux (Turner

et al. 2014b).
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1.2.1.1 Magnetic disk winds

Blandford & Payne (1982) showed through analytic self-similar solutions that gas

from an infinitely thin, cold disk can be centrifugally accelerated along large-scale

open magnetic field lines if they tilt away from the disk normal by 30◦ or greater.

This so-called “magnetocentrifugal wind” extracts angular momentum from the disk

via the magnetic braking torque, allowing mass to be accreted. This process removes

angular momentum without the need for disk viscosity, although the strength of the

accretion can still be characterized by an effective α parameter as defined in Eq. 1.7,

where the magnetic wind stress is Tzφ = −BzBφ/4π.

The physical picture behind the launching of the MCW is illustrated in Fig. 1.7.

The magnetic energy in the disk is less dynamically important than the gas pressure.

Moving vertically upward from the disk midplane the density falls off exponentially,

and eventually the magnetic pressure will come to dominate the total energy in the

disk “corona.” Near the transition between theses two regimes, where the magnetic

field and gas are in equipartition (plasma-β=1), the magnetic field becomes rigid.

Thus, any material lifted off the disk surface and loaded onto the rigid magnetic field

lines will be centrifugally accelerated along field lines as though they were “beads on

a wire.” The acceleration ceases when the dynamical energy of the flow, ρv2, exceeds

the magnetic energy. At this location, called the Alfvén surface (or radius) because

it is where vw = vA, the magnetic field is no longer rigid and will begin to wind up.

This leads to the collimation of the wind by the magnetic hoop stress (Heyvaerts &

Norman 1989).

In the regime where the magnetic field is rigid, it rotates with the angular velocity

of its footpoint in the disk. As the disk material moves along the field line, its angular

momentum will increase until it reaches the Alfvén radius, RA. Therefore, the angular
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Fig. 1.7.— Illustration of the magnetocentrifugal disk wind. Figure 13 from Armitage
(2015), adapted from Spruit (1996).
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momentum that is extracted from the disk by the magnetic braking torque will be

equal to the angular momentum of the wind at the Alfvén radius, or L̇w = ṀwR
2
AΩ0,

where Ω0 is the angular velocity of the magnetic field footpoint at R0. Since the

angular momentum lost from the disk is equal to that lost in the wind, the mass

accretion rate through the disk must be Ṁacc = 2L̇w/(R
2
0Ω0). Therefore, the ratio of

the mass loss rate of the MCW to the mass accretion rate in the disk is

Ṁw

Ṁacc

=
1

2

(
R0

RA

)2

. (1.9)

The ratio RA/R0 depends on many factors, including the magnetic field strength

and mass loading of the wind. A value of approximately RA/R0 = 3 is required to

match with observations where the outflow rate is often estimated to be 10% of the

accretion rate (Konigl & Pudritz 2000). The mass accretion rate can also be estimated

directly from the magnetic torque exerted on the disk, which is approximately (Bai

& Goodman 2009)

Ṁacc(R) ≈ RBzBφ

ΩK

. (1.10)

In addition to the MCW, another type of magnetic disk wind – called the “mag-

netic tower” (Lynden-Bell 1996, 2003) – is driven by the toroidal magnetic pressure

gradient from a highly wound cylinder of toroidal magnetic field loops (the height of

the cylinder increases for every turn of the field). This type of launching mechanism

would become more important when the magnetic field is dynamically less impor-

tant, so instead of having a rigid magnetic field to launch gas centrifugally the weak

magnetic field is instead wound up by the rotating disk. In this scenario the Alfvén

radius will be much closer to the disk surface, increasing the expected mass outflow

rate in the wind.
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Finally, it is thought that disk material can be accelerated along open magnetic

field lines emanating from the disk corotation radius (where the Keplerian angular

velocity of the disk is equal to the angular velocity of the star, which is close to the

radius where the inner disk is truncated by the stellar magnetosphere). This type of

outflow is called the “x-wind” (Shu et al. 1994, 2000). Although the x-wind model is

not exclusive of other disk wind models that are launched over a range of disk radii,

it has been invoked to explain the fast and narrow jets that are launched close to

the central source. Current observational evidence suggests that disk winds are likely

launched from disk radii larger than the corotation radius, as the conserved quantities

of MCW winds can be used to link the toroidal and poloidal velocities of the outflow

at large distances back to the launching radius at the disk surface (Anderson et al.

2003).

1.2.1.2 Magnetorotational instability

As described in the previous section, the molecular viscosity is too small to provide

adequate angular momentum transport in circumstellar disks. Alternative viscosities

are needed. One possibility is the effective viscosity associated with turbulence, which

is in principle possible given the large disk Reynolds numbers, Re ∼ hcs/ν ∼ 1010.

However, there is no obvious source for generating turbulence in the absence of a

magnetic field. Keplerian disks are known to be hydrodynamically stable according

to the Rayleigh criterion for stability, because their angular momentum increases

radially outward,

∂ (R2Ω)

∂R
> 0. (1.11)

The situation is drastically different in the presence of a weak vertical magnetic field.

Originally realized by Velikhov (1959) and Chandrasekhar (1960, 1961), but later
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reinterpreted for its importance in accretion disks by Balbus & Hawley (1991), the

magnetorotational instability develops when

dΩ2

dR
< 0. (1.12)

This criterion is satisfied in astrophysical disks where Ω = ΩK increases with decreas-

ing radius. Remarkably, this criterion does not depend on the strength of the magnetic

field. The maximum growth rate of the instability is 3
4
Ω, with the wavelength of the

fastest growing mode being

λMRI =
4√
15

2πvA
Ω

. (1.13)

The instability is shut off when the vertical magnetic field is strong, i.e., when the

magnetic field strength is large enough to be dynamically important (β ≥ 1). In

other words, the disk is stable to the MRI if the magnetic field is large enough that

even the shortest unstable wavelength λcrit (perturbations with shorter wavelengths

are stablized by magnetic tension) exceeds the vertical thickness of the disk, i.e.,

λcrit > 2h (Hawley et al. 2015).

The physical nature of the MRI can be visualized by considering two rotating

masses along a single vertical magnetic field line. The masses are separated by half

a wavelength of the perturbed MRI mode in the vertical direction at radius r0 (see

the first box of Fig. 1.8). The upper mass is now displaced inward towards the −r

direction and the lower mass in the +r direction. The inner (outer) mass will now

be rotating faster (slower) than the Keplerian rotation speed at r0 (second box of

Fig. 1.8) and the two masses will drift relative to each other in the azimuthal φ

direction (the direction of rotation). The magnetic tension force associated with the

now-distorted vertical magnetic field points in the −φ direction for the inner mass
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Fig. 1.8.— Illustration of the magnetorotational instability. Figure 18 from Armitage
(2015).
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and the +φ direction for the outer mass (third box of Fig. 1.8). Thus, the magnetic

tension force will remove angular momentum from the inner mass, forcing it to move

further inward to a smaller radius consistent with its new angular momentum. The

angular momentum extracted from the inner mass is transferred to the outer mass,

which will move further outward (final box of Fig. 1.8). The process repeats itself in

a runaway fashion until it is saturated by non-linear effects (Balbus & Hawley 1998;

Hawley et al. 2015).

1.2.2 Substructure formation

A number of mechanisms have been proposed to explain the presence of rings and

gaps in protoplanetary disks. The mechanism that has received most attention to

date invokes planet-disk interactions. Such interactions were studied well before pro-

toplanetary disks were imaged or exoplanets were observed (Goldreich & Tremaine

1980). Planets in disks drive spiral density waves at both the inner and outer Lindblad

resonances. The inner (outer) density wave leads (trails) the planet inward (outward)

of its orbital radius. The gravitational attraction of the planet to the inner (outer)

spiral density waves exerts a positive (negative) torque on the planet. The non-zero

net torque causes the planet to drift or migrate relative to the disk material at a

rate and direction that largely depend on the physical properties of the disk. If the

planet is massive enough, however, the angular momentum imparted to the spiral

density waves is deposited locally in the disk, leading to the clearing of a gap as the

disk material is moved away from the planet’s orbital radius. The size and depth

of the gap depends on the planet’s mass and the disk model parameters, and the

planet will migrate inward on the viscous accretion timescale (type II migration; Lin

& Papaloizou 1986; see also Kley & Nelson 2012 for a review). It is thus natural to
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postulate that the concentric rings and gaps in disks observed by ALMA are formed

in the presence of planets (e.g., for the case of HL Tau, see Dong et al. 2015; Dipierro

et al. 2015). It has now been shown that multiple concentric disk gaps can be opened

by the presence of one single super-Earth of mass ∼ 10 M⊕ (Dong et al. 2017; Bae

et al. 2017).

There are non-planet mechanisms for gap opening as well. One involves the con-

densation of abundant volatile species, especially H2O, which increases the mass of

solids near the condensation front or snow line (Zhang et al. 2015). Just outside the

snow line, the higher surface density of the icy grains speeds up the growth of the

grains to larger “pebble” sizes. Such pebbles do not radiate efficiently, making the

condensation front relatively dark, and thus gap-like. Indeed, the prominent inner-

most gap at 13 au of the HL Tau disk (see Fig. 1.6) appears to coincide with the

condensation front of the most abundant volatile species, H2O, lending support to

this mechanism. However, this mechanism cannot explain all of the gaps that have

now been identified in many sources. For example, Sheehan & Eisner (2018) found

three gaps in the disk of the Class I protostar GY 91 in the nearby rho Ophiuchus

L1688 molecular cloud. Only the outermost gap roughly matches the freeze out region

of N2. There are no condensation fronts identified for the inner two gaps.

A related mechanism for forming rings (instead of gaps) was proposed by Okuzumi

et al. (2016), who showed that the process of dust grain “sintering” just below the

sublimation temperature (just outside the snow line) produces brittle grains that

fragment more readily5. The sintered grains therefore have smaller sizes, which enable

them to be better coupled to the gas and have a slower radial drift compared to the

larger grains; the slower radial drift leads to a pile up of the grains outside the

5Sintering is the processes by which dust grains are fused together at thick “necks” even at
temperatures that are lower than the sublimation temperatures of the grains or their icy mantles.
It is one of the most important processes in making ceramics.
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condensation front (or snow line), yielding a bright ring. This mechanism appears

consistent with the rings observed in the HL Tau disk. However, it cannot explain

all observed rings since not all of them are located right outside condensation fronts

of major volatile species.

The mechanisms most relevant to this thesis are those relying on the magnetic

fields in the disk to form substructure. These include abrupt changes in the effective

viscosity in magnetized disks at the boundaries between the well-ionized MRI-active

zones and “dead zones” where the ionization level is too low for the MRI to be active

(Flock et al. 2015; Ruge et al. 2016), and the so-called “zonal flows” formed from

magnetic self-organization (Béthune et al. 2016, 2017). These mechanisms will be

described in more detail later in Sections 2.5.1 and 3.5.1, where we will contrast them

with the MHD mechanisms of ring and gap formation proposed in this thesis.

1.3 Magnetohydrodynamics

1.3.1 Ideal MHD

As the name suggests, magnetohydrodynamics (MHD) describes the dynamics of

magnetized fluids. Thus, the equations are the combination of the conservation laws

of fluid dynamics with Maxwell’s equations. The fluid equations are applicable to

systems where we can define physical quantities over some length scale that is much

larger than the mean free path of any one particle, yet still smaller than the typical

macroscopic scales of the entire system. Many astrophysical fluids of interest are

sufficiently ionized and, therefore, highly conductive. The ideal MHD approximation

is that the fluid is a perfect conductor and that the fluid flow velocities are much less

than the speed of light. These assumptions imply that the electric field vanishes in a
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frame comoving with the fluid, E′ = 0. Therefore, upon Lorentz transformation, the

electric field as measured by an observer is

E = −1

c
v ×B, (1.14)

while the magnetic field is equivalent in both the comoving and the inertial frame,

B′ = B. Substituting Eq. 1.14 into Maxwell’s equation (the modified Faraday’s law

of induction) yields the induction equation of ideal MHD,

∂B

∂t
= ∇× (v ×B) . (1.15)

Since the displacement current, ∂E/∂t, of Maxwell’s modified Ampère’s law is of

order (v/c)2 compared to the curl of the magnetic field, we get that the electric

current density is

J =
c

4π
∇×B. (1.16)

This is to say that the only “source” for magnetic fields in ideal MHD are the currents.

Taking the divergence of Eq. 1.16 yields ∇ · J = 0, i.e., currents in MHD have no

sources or sinks. Finally, the Lorentz force per unit volume is

FL =
1

c
J ×B =

1

4π
(∇×B)×B. (1.17)

Note that this can be rewritten using the triple vector product as

FL =
1

4π
(B · ∇)B − 1

8π
∇
(
|B|2

)
, (1.18)



28

where the first term on the right hand side is the magnetic tension force and the

second term is the force from the gradient of the magnetic pressure, PB = B2/8π.

Combing the above equations with the mass and momentum conservation equa-

tions of fluid mechanics gives the fundamental equations of ideal MHD: the mass

continuity equation

∂ρ

∂t
+∇ · (ρv) = 0; (1.19)

the equation of motion

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇P +

1

c
J ×B − ρ∇Φg, (1.20)

where Φg is the gravitational potential; and the magnetic induction equation

∂B

∂t
= ∇× (v ×B) . (1.21)

The electric current density, J , is defined in Eq. 1.16. We also introduce the energy

equation,

∂e

∂t
+∇ · (ev) = −P∇ · v, (1.22)

with internal energy e = P/(γ − 1) and adiabatic index γ.

1.3.2 Non-ideal MHD

As mentioned in the previous section, many astrophysical systems are well ionized,

such that they are nearly perfect conductors. However, the gas in circumstellar disks

is only lightly ionized, and thus the assumptions of ideal MHD are not always valid.

There are three specific non-ideal MHD effects that are important in protoplanetary

disks: Ohmic resistivity, ambipolar diffusion, and the Hall effect. They are discussed



29

individually in the sections below.

1.3.2.1 Ohmic resistivity

First, we will discuss Ohmic resistivity or dissipation. If we assume that the fluid has

a finite electrical conductivity, σ, then in the fluid frame the electric field is non-zero

and will follow a linear Ohm’s law, J ′ = σE′. Just as the magnetic field is the same

in both the comoving and inertial frames, so is the electric current density, J ′ = J .

Therefore,

J

σ
= E′ = E +

1

c
v ×B. (1.23)

With the definition of the current (Eq. 1.16), the induction equation will now become

∂B

∂t
= ∇× [v ×B − ηO∇×B] , (1.24)

where we define the magnetic or Ohmic diffusivity as ηO ≡ c2

4πσ
with units of cm2 s−1.

The name “magnetic diffusion” is appropriate because if ηO is constant in space, the

second term on the right takes the form of the diffusion equation, where ∂B/∂t ∝

ηO∇2B. The introduction of this term in the magnetic induction equation means that

the idea of “magnetic flux-freezing” no longer applies, i.e., the magnetic field is not

directly tied to the fluid elements and the gas can diffuse through the magnetic field.

The magnetic diffusivity can be estimated numerically as (Blaes & Balbus 1994)

ηO = 230 cm2 s−1
(ne
n

)−1(T
K

)1/2

(1.25)

where xe ≡ ne/n is the ionization fraction. Ohmic dissipation dominates when neither

ions nor electrons are well tied to the magnetic field.
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1.3.2.2 Ambipolar diffusion

In the opposite limit where both ions and electrons are well tied to the magnetic

field, the magnetic field can still slip through the bulk neutral material through the

so-called “ambipolar diffusion.” This is because the magnetic forces act directly only

on charged particles, and these forces are transmitted to the bulk neutral material

through a frictional (or drag) force between the charged particles and the neutrals.

In particular, the drag force exerted by the ions on the neutrals is

Fd = γρρi(vi − v), (1.26)

where the subscript i denotes the ion species and γ = 〈σv〉i/(m+mi) is the frictional

drag coefficient with units of cm3 g−1 s−1. The difference vi − v is the drift velocity

between the ions (and the magnetic field tied to them) and the neutrals. This drag

force is equal to the Lorentz force, FL, that is transmitted to the neutrals through the

ion-neutral collisions (Shu 1992). The ideal induction equation can now be written

with the neutral velocity replaced by the ion velocity.

∂B

∂t
= ∇× (vi ×B) . (1.27)

Replacing vi with the drag in Eq. 1.26 set equal to the Lorentz force gives

∂B

∂t
= ∇×

[
v ×B +

(J ×B)×B

cγρρi

]
. (1.28)

It is common to rewrite this in terms of an equivalent ambipolar diffusion coefficient,

ηA =
B2

4πγρρi
, (1.29)
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such that the induction equation can be written, including the Ohmic term, as

∂B

∂t
= ∇× (v ×B)− 4π

c
∇× (ηOJ + ηAJ⊥) , (1.30)

where J⊥ = −(J ×B)×B/B2 is the component of the current that is perpendicular

to the magnetic field.

In accretion disks, the magnitude of the ion density, and therefore the ion-neutral

drag force Fd, can be quantified through the dimensionless ambipolar Elsasser num-

ber6 (Chiang & Murray-Clay 2007; Perez-Becker & Chiang 2011b; Bai & Stone 2011),

Λ =
γρi
Ω

=
v2A
ηAΩ

, (1.31)

where vA = B/
√

4πρ is the Alfvén velocity and Ω is the angular frequency of the disk

rotation. Physically, the Elsasser number is the collision frequency (normalized to the

Keplerian orbital frequency) of a neutral particle in a sea of ions having density ρi.

For example, the Elsasser number will be unity when the neutral particle collides with

ions 2π times in one orbital period. As the neutral-ion collision frequency increases to

infinity, so does the Elsasser number, and the bulk neutral medium becomes perfectly

coupled to the ions/magnetic field (i.e., the ideal MHD limit). Similarly, as the

Elsasser number drops to zero, the neutrals and ions no longer collide; the neutrals

are entirely decoupled from the magnetic field.

6The Ohmic Elsasser number would be ΛO = v2A/(ηOΩ).
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1.3.2.3 The Hall effect

When electrons are well tied to the magnetic field but ions are not7, the Hall effect

becomes important. Although the Hall effect is not included in the simulations in this

thesis, we will briefly describe it here for completeness. For magnetic fields well tied

to the electrons, the induction equation in Eq. 1.21 can be written with the neutral

velocity replaced by the electron velocity, ve, so that

∂B

∂t
= ∇× (ve ×B) . (1.32)

The electron velocity can be decomposed into the combination of the neutral velocity

and the Hall and ambipolar drift velocities, ve = v + (ve − vi) + (vi − v) (Bai &

Stone 2017), where the Hall drift velocity is

ve − vi = − J

ene
, (1.33)

and the ambipolar drift velocity (vi − v) is given by eq. 1.26. Replacing the elec-

tron velocity with the combination involving two drift velocities gives the induction

equation in the form (including the Ohmic term)

∂B

∂t
= ∇× (v ×B)− 4π

c
∇× (ηOJ + ηHJ ×B + ηAJ⊥) , (1.34)

where the Hall diffusivity is

ηH =
cB

4πene
. (1.35)

7Electrons are much lighter than ions and can gyrate around the field lines at a higher frequency,
making them harder to knock off the field lines by collisions.
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In summary, the induction equation of non-ideal MHD is derived from Maxwell’s

equation, ∂tB = −c∇×E, using a generalized Ohm’s law, (Armitage 2015)

E = −v ×B

c
+

4πηOJ

c
+

J ×B

enec
− (J ×B)×B

c2γρρi
. (1.36)

1.3.3 The Zeus code

In their simplest form, the equations of ideal MHD (Eq. 1.19-1.22) are a set of cou-

pled partial differential equations. They can be solved numerically using the finite

difference method. The equations are discretized on an Eulerian grid and evolved in

time. The source terms are calculated at every grid cell and the transport terms are

advected through the faces of the cell for all cells (in two or three dimensions). The

numerical MHD code used in this thesis is from the ZEUS family of codes originally

developed by Stone & Norman (1992a,b) and Stone et al. (1992). The MHD algo-

rithm uses the method of constrained transport (CT, Evans & Hawley 1988), whereby

the magnetic field transport is calculated using the loop integral of the electromotive

force (EMF), defined as E ≡ v ×B, around the edges of the cell face.8 As long as

the “no magnetic monopole” condition is satisfied initially at t = 0, the CT method

will ensure that ∇ ·B = 0 for all later times. Although the algorithms of the ZEUS

code are relatively simple compared to higher-order Godunov schemes, the ZEUS

code is known throughout the computational astrophysics community for its speed,

flexibility, and availability since its inception. It is certainly one of the most used and

well-tested MHD codes in the field today (Clarke 2010).

Specifically, we use the ZeusTW code developed by Krasnopolsky et al. (2010), in

spherical polar coordinates (r, θ, φ). The ZeusTW code is based on the ideal MHD

8Using Stokes’ theorem, the induction equation, Eq. 1.21, can be rewritten in integral form as
∂ΦB/∂t =

∮
δS

(v ×B) · d`, where ΦB is the magnetic flux through surface S.
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code, ZEUS-3D (version 3.4; Clarke 1996, 2010). The ZeusTW code can treat all the

non-ideal MHD effects. Of the three, only Ohmic resistivity and ambipolar diffusion

are explored in this thesis. Ohmic resistivity is treated using the algorithm described

in Fleming et al. (2000) and AD is implemented using the fully explicit method of Mac

Low et al. (1995). This non-ideal MHD code has been used extensively for studies

of disk formation out of lightly ionized, magnetized dense cores of molecular clouds

with good success (e.g., Krasnopolsky et al. 2011; Li et al. 2011; Zhao et al. 2018).
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Chapter 2

Axisymmetric resistive MHD

simulations

This Chapter is adapted from Suriano et al. 2017, MNRAS, 468, 3850, with minimal

modifications.

Abstract

Rings and gaps are being observed in an increasing number of disks around young

stellar objects. We illustrate the formation of such radial structures through idealized,

2D (axisymmetric) resistive MHD simulations of coupled disk-wind systems threaded

by a relatively weak poloidal magnetic field (plasma-β ∼ 103). We find two distinct

modes of accretion depending on the resistivity and field strength. A small resistivity

or high field strength promotes the development of rapidly infalling ‘avalanche accre-

tion streams’ in a vertically extended disk envelope that dominates the dynamics of

the system, especially the mass accretion. The streams are suppressed in simulations

with larger resistivities or lower field strengths, where most of the accretion instead
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occurs through a laminar disk. In these simulations, the disk accretion is driven

mainly by a slow wind that is typically accelerated by the pressure gradient from a

predominantly toroidal magnetic field. Both wind-dominated and stream-dominated

modes of accretion create prominent features in the surface density distribution of the

disk, including rings and gaps, with a strong spatial variation of the magnetic flux rel-

ative to the mass. Regions with low mass-to-flux ratios accrete quickly, leading to the

development of gaps, whereas regions with higher mass-to-flux ratios tend to accrete

more slowly, allowing matter to accumulate and form dense rings. In some cases,

avalanche accretion streams are observed to produce dense rings directly through

continuous feeding. We discuss the implications of ring and gap formation driven by

winds and streams on grain growth and planet formation.

2.1 Introduction

Disks around young stellar objects (YSOs) are the birthplaces of planets. Planet for-

mation and evolution thus depend critically on the properties of these disks. Given the

large number of super-Earths and mini-Neptunes discovered by Kepler at distances

between ∼ 0.1 and ∼ 1 au from their host stars (Winn & Fabrycky 2015), there is

strong motivation for studying the structure and evolution of the inner (. 1 au) parts

of protostellar disks. This will be the focus of our investigation.

The inner circumstellar disk plays an important role in launching outflows. Jets

and winds are ubiquitously observed in YSOs and have a long history of observational

and theoretical study (see Frank et al. 2014 for a review and references therein). It

is thought that such outflows are driven by rapidly rotating magnetic field lines,

although where the outflow-driving field lines are anchored remains unclear. One

school of thought posits that the field lines are trapped at the inner edge of the disk,



37

giving rise to so-called ‘X-winds’ (Shu et al. 2000). Another suggests that they are

distributed over a more extended region of the inner disk, driving a ‘disk wind’ (Konigl

& Pudritz 2000). Part of the outflow may also be attributed to an accretion-enhanced

stellar wind (e.g., Matt & Pudritz 2008). Some evidence favoring disk winds comes

from the observed gradients in the line-of-sight velocity measured across optical jets

(e.g., Bacciotti et al. 2000) and molecular outflows (e.g., Launhardt et al. 2009). If

such gradients arise from rotation in a magnetocentrifugal wind (Blandford & Payne

1982), the implied outflow launching region would extend to au scales or larger (e.g.,

Anderson et al. 2003; Ray et al. 2007; Bjerkeli et al. 2016; however, see Lee et al.,

submitted, for SiO observations of HH 212 that provide evidence for X-winds). The

outflow would carry angular momentum away from the disk in a launching region

that is directly relevant to the formation of the terrestrial planets in the Solar system

and a considerable fraction of the exoplanets discovered by Kepler.

The idea of magnetic wind-driven disk evolution has been discussed in the litera-

ture for a long time (e.g., Pudritz & Norman 1983; Wardle & Koenigl 1993; Combet

& Ferreira 2008; Königl et al. 2010; Bai 2016; Suzuki et al. 2016, and references

therein). One way to quantify the effects that winds have on disks is to construct

global, coupled wind-disk solutions to the MHD equations. Many of the early inves-

tigations along this line adopted simplifying self-similarity assumptions (e.g., Wardle

& Koenigl 1993; Li 1995; Ferreira 1997; Salmeron et al. 2011). These semi-analytic

treatments have been important for illuminating the basic mechanics of the coupled

system, including how a small fraction of the accreting material is peeled off of the

disk surface and ejected along the rapidly rotating field lines as a wind, how the wind

removes angular momentum from the disk and drives it to accrete, and how the accre-

tion and ejection processes depend on the non-ideal MHD effects (Ohmic dissipation,
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ambipolar diffusion, and the Hall effect) that are expected to occur in the lightly ion-

ized YSO disks. Self-similar solutions require that all physical quantities, such as the

density, magnetic field strength, and the coefficients for non-ideal MHD effects, must

scale with the radius as power-laws with specific indices. This requirement limits the

applicability of the self-similar solutions to realistic systems. We seek to relax the

self-similarity ansatz through a series of MHD simulations that incorporate non-ideal

effects.

Simulations of coupled wind-disk systems have been carried out by several groups

(e.g., Kato et al. 2002; Casse & Keppens 2002, 2004; Zanni et al. 2007; Murphy

et al. 2010; Lii et al. 2012; Sheikhnezami et al. 2012; Čemeljić et al. 2013; Stepanovs

& Fendt 2014, 2016). These simulations confirmed and extended the earlier semi-

analytic results, finding self-consistent wind-disk solutions for a wide range of disk

masses and magnetic field distributions. However, the focus of such simulations has

typically been on the launching of outflows from the disk and on their propagation to

large distances. We are thus motivated to start a long-term program to investigate

the wind-disk system that will eventually include all three non-ideal MHD effects

using the ZeusTW MHD code (Krasnopolsky et al. 2011; Li et al. 2011), focusing in

particular the structure of the disk in such a system. As a first step, we start with the

simplest case of a resistive wind-disk system under the assumptions of axisymmetry

(2D) and reflection symmetry across the disk midplane.

Resistive disk winds under such an idealized geometry have been studied by sev-

eral groups, especially Stepanovs & Fendt (2016), who were able to determine wind

properties (such as its mass loss rate, energy, and angular momentum) for disks with

a wide range of magnetic field strengths. The emphasis of such work has been on

quasi-steady state wind-disk solutions, which enable the computation of several well-
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known conserved quantities along each magnetic flux surface (e.g., Spruit 2010) that

can be checked against the semi-analytic solutions. However, a steady state can only

be obtained when outward diffusion of the magnetic field in the disk is balanced by

inward advection of the field, which occurs only under rather restrictive conditions

for the prescribed magnetic diffusivity. Under more general conditions, the magnetic

winds remain highly variable, driving non-steady disk accretion even for 2D (axisym-

metric) systems; they are likely to be exacerbated in 3D simulations. Such non-steady

state phenomena are the focus of this investigation. We find that the disk structure

can be completely reshaped from its initial state by even a weak initial magnetic field,

often with rapidly accreting streams developing near the disk surface and rings and

gaps developing near the disk midplane.

The accretion streams are a form of the magnetorotational instability (MRI) chan-

nel flows (Balbus & Hawley 1991; Goodman & Xu 1994). They are the result of the

runaway magnetic braking of an infalling stream, which is linked to more slowly rotat-

ing material at larger radii. We term them ‘avalanche accretion streams’, motivated

by the work of Kudoh et al. (1998) who find similar structures in ideal MHD simu-

lations of thick AGN disks (see also Stone & Norman 1994; Matsumoto et al. 1996;

Kudoh et al. 2002; Beckwith et al. 2009). We find that the accretion streams become

more numerous and more important dynamically as the disk material becomes better

coupled to the magnetic field. Their rapid formation and disruption forms a thick

envelope of chaotic infall and outflow motions above the disk, which is intimately

related to the so-called ‘coronal accretion’ found recently by Zhu & Stone (2018) in

global (3D) ideal MHD simulations of thin disks with net vertical magnetic flux (see

also Beckwith et al. 2009). These investigations highlight the possible importance of

vigorous accretion in a vertically extended structure outside the dense disk on disk
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evolution.

The formation of rings and gaps on sub-au scales strongly influences how dust

grains are trapped and thus affects how the grains grow into planetesimals and ul-

timately planets. Although our simulations are limited to the inner (∼ 0.01 − 1 au

scale) disk, the same mechanism of ring and gap formation through variable disk

winds and avalanche accretion streams should operate at larger radii as well, where

rings and gaps have now been observed in a number of disks (ALMA Partnership et al.

2015; Andrews et al. 2016; Zhang et al. 2016; Isella et al. 2016). The 2D simulations

presented in this study serve as an illustration of these generic mechanisms, although

they are likely to generate rings and gaps more easily than 3D simulations, because

of the assumed axisymmetry. Nevertheless, they provide a starting point for future

explorations that will include more detailed disk microphysics and less restrictive

geometry.

The rest of the Chapter is organized as follows. In Section 2.2, we describe the

simulation setup. In Section 2.3, we present the results of a reference simulation. In

Section 2.4, we analyze how the simulation outcome depends on three key dimen-

sionless parameters that control the disk magnetic field strength, resistivity and disk

thickness. In Section 2.5, we discuss this work in the context of previous studies and

examine its implications. The results are summarized in Section 2.6.

2.2 Problem setup

2.2.1 MHD equations

We use the ZeusTW code (Krasnopolsky et al. 2010) to solve the time-dependent,

resistive magnetohydrodynamic (MHD) equations in axisymmetric spherical coordi-
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nates (r, θ, φ). The equations solved are as follows:

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇p+ j ×B/c− ρ∇Φg, (2.2)

∂B

∂t
= ∇× (v ×B − η∇×B) , (2.3)

∂e

∂t
+∇ · (ev) = −p∇ · v. (2.4)

The current density is j = (c/4π)∇×B, the internal energy is e = p/(γ−1), and η is

the resistivity. The remaining parameters have their usual definitions. When referring

to cylindrical coordinates, we will use the notation (R, φ, z) such that R = r sin θ and

z = r cos θ.

2.2.2 Initial conditions

The simulation domain is separated into two regions: a thin, cold, rotating disk

orbiting a 1 M� central source at the grid origin and a stationary, hot corona above the

disk. We choose γ = 1.01 so that the disk and corona regions are locally isothermal.

2.2.2.1 Disk

The geometrically thin disk is characterized by the dimensionless parameter ε =

h/r = cs/vK � 1, where h is the disk scale height, cs is the sound speed, and vK

is the Keplerian speed. The disk is limited to the equatorial region where the polar
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angle θ ∈ [π/2− θ0, π/2], with disk (half) opening angle set to θ0 = arctan(2ε). The

disk density takes the form of a radial power law multiplied by a Gaussian function

of z/r = cos θ,

ρd(r, θ) = ρ0

(
r

r0

)−α
exp

(
−cos2 θ

2ε2

)
, (2.5)

as dictated by hydrostatic balance. The subscript ‘0’ refers to values on the disk

midplane at the inner radial boundary. For all simulations shown this paper, we

use α = 3/2. The choice of power-law exponent is consistent with sub-millimeter

observations of Class II sources that find surface density power-law exponents of

0.4− 1.1 (Andrews et al. 2010). The disk pressure is set as

pd(r, θ) = ρdc
2
s, (2.6)

with cs = εvK . The radial pressure gradient causes the equilibrium rotational velocity

vφ to be slightly sub-Keplerian as

vφ = vK
√

1− (1 + α)ε2. (2.7)

2.2.2.2 Corona

We require that the hydrostatic corona is initially in pressure balance with the disk

surface. This constraint sets the density drop from the disk surface to the corona as

(1 + α)ε2. Therefore, the coronal density and pressure are

ρc(r) = ρ0ε
2(1 + α) exp

[
−cos2 θ0

2ε2

](
r

r0

)−α
= ρc,0

(
r

r0

)−α
, (2.8)

pc(r) = ρcv
2
K/(1 + α). (2.9)
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2.2.2.3 Magnetic field

To ensure that the magnetic field is divergence-free initially, we set the magnetic field

components using the magnetic flux function Ψ as in Zanni et al. (2007),

Ψ(r, θ) =
4

3
r20Bp,0

(
r sin θ

r0

)3/4
m5/4

(m2 + cot2 θ)
5/8
, (2.10)

where the Bp,0 is the poloidal field strength on the midplane at r0, and the parameter

m controls the bending of the field. Since varying m from 0.1 to 1 has little effect

on the long-term disk or wind magnetic field structure (Stepanovs & Fendt 2014),

we use m = 0.5 for all simulations presented in this work. The initial magnetic field

components are then calculated as

Br =
1

r2 sin θ

∂Ψ

∂θ
, (2.11)

Bθ = − 1

r sin θ

∂Ψ

∂r
. (2.12)

2.2.2.4 Resistivity

For illustrative purposes in this initial study, we adopt a spatially and temporally

constant resistivity η(r, t) = η; more refined treatments, including one based on

detailed ionization calculation, are postponed to future investigations. To quantify the

relative importance of the prescribed resistivity, we define a dimensionless magnetic

diffusivity parameter D ≡ η/(hcs) (where h is the disk scale height and cs is the disk

sound speed) as in Li (1995), similar to the well-known α-parameter of Shakura &

Sunyaev (1973). This diffusivity parameter is initially proportional to r−1/2 with D0 =

0.16 at the inner edge of the disk in the reference simulation. This implementation

differs from the resistivity profile prescribed in other disk wind simulations where
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η ∝ hvA (vA is the Alfvén speed) inside the disk and η = 0 outside (e.g., Stepanovs

& Fendt 2014).

2.2.3 Grid

The equations are solved for r ∈ [0.02, 10] au and θ ∈ [0, π/2], where θ = 0 corresponds

to the polar axis and θ = π/2 to the disk midplane. We choose r0 = 0.02 au ∼ 4 R�

as the inner radius because it is approximately the inner radius of a protostellar disk

truncated by the magnetosphere of a classical T Tauri star (Hartmann et al. 2016).

It yields an inner orbital period t0 ≈ 1 d. For this initial study, we focus on only

one hemisphere and assume that the system has reflection symmetry across the disk

midplane. This assumption will be relaxed in future investigations. In the radial

direction, a ‘ratioed’ grid is used, such that dri+1/dri is constant and ri+1 = ri + dri.

The grid spacing at the inner edge is set such that dr0 = 2.3r0dθ. The grid is uniform

in the θ-coordinate for most simulations presented in the work, with a resolution of

nr × nθ = 400 × 360. This results in 32 grid cells from the disk midplane to surface

(at two disk scale heights) in the reference run.

In the simulation called x2-grid, the θ-grid is separated into two regions: a uniform

grid in the disk region (θ ∈ [π/3, π/2]), and a ratioed grid in the corona (θ ∈ [0, π/3]),

with dθ matched at the boundary and increasing towards the polar axis. The uniform

region contains 240 cells, thereby decreasing dθ by a factor of two compared to the

reference run. The non-uniform grid section has 120 cells, so the total number of cells

in the θ-direction remains 360. We decrease the value of dr0 in order to have the ratio

of dr0
r0dθ

be the same in all runs. The value of dθ increases to 1.3◦ at the polar axis for

this ratioed grid.
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2.2.4 Boundary conditions

The inner radial boundary is separated into two regions. For θ ∈ [0, π/2− arctan(4ε)],

mass is injected into the simulation domain with ρ = ρc,0 and v = 10 km s−1

(Krasnopolsky et al. 1999). The injection boundary is used to lower the Alfv́en

speed in polar region close to the inner boundary and thereby increase the simula-

tion time step, as the region would quickly be evacuated by gravitational infall if

the standard outflow boundary was used. The total mass that enters the simulation

domain through the inner boundary is small compared to both the initial mass in the

simulation and the mass that is eventually carried through the outer boundary via

the disk wind. It thus has little influence on the dynamics of the simulation. The

remaining section of the inner radial boundary, θ > π/2− arctan(4ε), and the outer

radial boundary both use the standard outflow condition, as usual in Zeus codes.

The reflection boundary condition is used on the polar axis (θ = 0) and the

equatorial plane (θ = π/2). The φ-component of the magnetic field is set to zero

on the polar axis. The assumed reflection symmetry across the midplane (θ = π/2)

demands that Bφ = 0 at this boundary. We also set Bφ to vanish on the inner radial

boundary because it is not rotating.

2.3 Reference model

We start by discussing the result of a ‘reference’ simulation. It is used to highlight the

salient features of the coupled wind-disk system, and serves as a benchmark against

which other simulations with different parameters will be compared in Section 2.4.

Of the parameters that will be changed in Section 2.4, the reference model has ε =

0.05, an initial magnetic field strength characterized by plasma-β of 103 on the disk
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midplane (corresponding to 0.27 G at 1 au), and a dimensionless magnetic diffusivity

parameter of D0 = 0.16. This simulation runs for 1820 inner orbital periods (∼

5 yr). Fig. 2.1 shows the initial conditions for the system and snapshots at three

representative times.

2.3.1 Global evolution

The initially weak poloidal magnetic field is wound up by differential rotation between

the (nearly) Keplerian disk and the static corona, which inflates a bubble of strong

toroidal magnetic field that expands outward against the coronal material. This

winding operates fastest near the inner edge of the disk, where the orbital period is

the shortest. As a result, the outflow propagates with the highest speed near the

polar axis. By t = 150t0 (Fig. 2.1(b)), the outflow has reached the outer edge of

the computation domain along the axis, but remains confined by the initial coronal

material away from the polar region. By t = 1200t0 (Fig. 2.1(c)), most of the initial

coronal material has been completely swept out of the computational domain. Beyond

this time, the effects of the initial corona on the coupled wind-disk system should be

relatively small, and for the inner part of the system (where much of our analysis is

focused; see Section 2.3.3.3 below), the initial corona ceases to be important at an

even earlier time. The wind-disk system shows large spatial and temporal variability

throughout the simulation. This variability is reflected in Fig. 2.1(d) at t = 1800t0; its

appearance is broadly similar to that in panel (c), but there are important differences

such as the appearance of low-density wind ‘channels’ that are more prominent in the

outflow of the former than the latter. The variability of the outflow is intimately tied

to the structures that develop in the disk.
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Fig. 2.1.— A representative (‘reference’) axisymmetric simulation of a coupled disk-
wind system. Shown is the mass volume density (logarithmically spaced color contours
in units of g cm−3), the poloidal magnetic field lines (white), and the poloidal velocity
unit vectors (gray). Panels (a)-(d) corresponding to simulation times of 0, 150, 1200,
and 1800 inner orbital periods, respectively. (See the supplementary material of
Suriano et al. 2017 in the online journal for an animated version of this figure.)
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2.3.2 Outflow

Even though the initial magnetic field at the disk midplane is rather weak (β =

103), it is still able to drive a powerful outflow. Unlike in the disk, the pressure

in the outflow is dominated by the magnetic field rather than the thermal gas, as

illustrated in Fig. 2.2(a). This dominant magnetic pressure is provided mostly by the

toroidal component Bφ, as shown in panel (b) where the ratio of the toroidal and

poloidal components |Bφ/Bp| is plotted. This ratio is spatially inhomogeneous, with

a filamentary appearance. The dominance of the toroidal field component suggests

that the outflow is driven mostly by the magnetic pressure gradient, as is expected for

a relatively weak initial magnetic field (e.g., Stepanovs & Fendt (2016)) or a heavy

mass loading (e.g., Anderson et al. 2005). The exceptions are a narrow region near the

polar axis and two filaments at roughly θ = 10◦ and 80◦. The magnetic field lines that

run through the polar axis region are connected to the inner radial boundary, which

is assumed to be non-rotating; the lack of a toroidal field component here is therefore

expected. The other two filaments are physically meaningful and correspond to the

two low-density ‘channels’ that are prominent in the density map of Fig. 2.1(d).

In these channels, the thermal pressure is completely dominated by the magnetic

pressure, with a plasma β less than 10−3 (see Fig. 2.2(a)). In other words, their field

lines are much more lightly mass-loaded than in the rest of the outflow. As a result,

the magnetic field is able to accelerate the mass to a much higher speed than in the

denser surrounding regions (see Fig. 2.2(c)).

The distribution of the poloidal velocity is plotted in panel (c) of Fig. 2.2. The

outflow in the outer low-density channel reaches a speed of ∼ 50 km s−1, whereas that

in the inner channel is much faster, reaching up to 200 km s−1. The outflow close

to the axis can also reach a relatively high speed of ∼ 50 − 100 km s−1. However,
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Fig. 2.2.— The reference simulation at time t = 1800 t0. The logarithmically spaced
color contours show (a) the plasma-β, (b) the ratio of the toroidal to the poloidal
magnetic field components, |Bφ/Bp|, (c) the poloidal velocity (cm s−1), and (d) the
ratio of poloidal to the toroidal velocity components, |vp/vφ|. Panels (b)-(d) show
poloidal velocity unit vectors (black).
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over most of the simulation volume, especially to the right of the inner channel,

the poloidal outflow speed is rather low, typically a factor of two or more smaller

than the the rotation speed and well below the local free-fall speed (see Fig. 2.2(d)).

Except for the channels and polar axis region, the magnetic and velocity fields of the

slowly-expanding, low plasma-β outflow are dominated by their toroidal components.

Even though the outflow is slow in general, there is disk material that gets acceler-

ated to a high speed. In Fig. 2.3, we plot the mass flux of the outflowing material with

a radial velocity greater than 100 km s−1 as a function of time through a hemisphere

of radius of r = 1 au. It is clear that the fastest component of the outflow is highly

variable in time. The mass outflow rate routinely changes by an order of magnitude

on timescales of t . 100t0, and can sometimes drop by four orders of magnitude on

similar timescales. This variability may be essential for generating internal shocks

that are required to keep the outflow heated to a relatively high temperature and

visible through, e.g, optical forbidden lines (e.g., Shang et al. 2002). The average

mass loss rate of this fast component is approximately 5× 10−8 M� yr−1, which is at

the high end of the mass loss rate inferred in the classical T Tauri jets (e.g., Frank

et al. 2014). This fast, massive outflow component is remarkable in light of the fact

that the disk is only weakly magnetized, at least initially with a midplane plasma-β

of 103.

The fast component is only a relatively minor component of the outflow pro-

duced in the reference simulation. This is illustrated in Fig. 2.3, where the mass loss

rate is plotted as a function of time for the slow (1 km s−1< vr < 10 km s−1) and

intermediate-speed (10 km s−1< vr < 100 km s−1) components of the outflow. Both

components have mass loss rates of order 10−6 M� yr−1, which is at least an order of

magnitude higher than the mass flux of the fast component. Such a massive outflow is
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Fig. 2.3.— Mass outflow rate (M� yr−1) through hemisphere of r = 1 au as a function
of time in the reference simulation. The mass loss rate is separated into three velocity
components. The fast velocity component (vr > 100 km s−1) is shown in red, the
intermediate velocity component (10 km s−1 < vr < 100 km s−1) in green, and the
slow velocity component (1 km s−1 < vr < 10 km s−1) in blue.
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expected to strongly affect – indeed, control – the disk dynamics, as we demonstrate

in Section 2.3.3.1.

2.3.3 Disk-wind connection

Fig. 2.4 shows the density distribution and magnetic field lines for the final time frame

of the reference simulation, as in panel (d) of Fig. 2.1 and 2.2, but now zoomed in

on the inner part of disk where the disk structure is most strongly affected by the

outflow. As expected, the modification of disk structure starts near the inner edge,

where the rotation period is the shortest. By t = 1800 t0 (Fig. 2.4), three distinct

regions have been established: (1) an inner region (r < 0.1 au) with a highly variable

mass distribution that contains prominent dense rings and gaps, (2) an intermediate

radius region (0.1 au < r < 0.5 au) with a much smoother mass density distribution,

and (3) an outer region (r > 0.5 au) where the disk ‘puffs up’ due to the presence of

a dense surface layer – the ‘avalanche accretion stream.’ We label these regions Zone

I, II, and III, respectively, and discuss each in detail below. We save the discussion

of the most variable region, Zone I, until Section 2.3.3.3.

2.3.3.1 Zone II: Steady wind-driven accretion

We start our discussion with the most laminar, intermediate radius region, Zone II.

The location of this region drifts radially outward as the simulation progresses. By

t = 1800t0 (Fig. 2.4), it is located roughly between 0.1 and 0.5 au. The magnetic

field line intersecting the midplane at a radius of 0.3 au is marked by a dashed line

in Fig. 2.4 (left panel). Fig. 2.5(a) plots the density distribution along that field

line, with the location of the sonic point marked. For comparison, we also plot the

density profile expected for an isothermal (thin) disk with the temperature set to
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Fig. 2.4.— The reference simulation at t = 1800t0. Left: The mass volume density
(g cm−3) is shown in logarithmically spaced color contours. Magnetic field lines are
shown in white and the two dashed lines show the field lines with midplane footpoints
of 0.3 and 1.0 au (along which the quantities in Fig. 2.5 and 2.6 are plotted). The
gray arrows denote the velocity field and show that the bulk of the disk material is
expanding under the surface accretion stream beyond a radius of ∼ 0.7 au. Right:
The ‘face-on’ axisymmetric surface density normalized to its initial distribution is
shown in color contours for Zone I (r ≤ 0.1 au).
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that at the midplane. Clearly, the presence of the magnetic field and the launching

of a magnetized wind have significantly changed the vertical density profile of not

only the disk itself, but also the region surrounding the disk. Specifically, the vertical

density gradient is steeper near the disk surface compared to an isothermal (non-

magnetic) profile. This difference is explained by a decreasing temperature along the

path and by an increasing toroidal component of the magnetic field, Bφ, which reaches

a maximum near 0.02 au before decreasing again (Fig. 2.5(b)). Indeed, the toroidal

field becomes so strong near the disk surface that it dominates the thermal pressure

(see Fig. 2.5(f) and discussion below), and generates a downward magnetic pressure

force that compresses the disk significantly. Above the disk surface, the magnetic

pressure force has a positive radial component conducive to launching a wind.

The transition from disk to wind can be seen most clearly in the distribution of the

radial component of the velocity vr along the field line (Fig. 2.5(c)). The transition

occurs approximately ∼ 0.03 au above the disk midplane. Material below this point

moves radially inward with a speed of ∼0.2 km s−1, while material above this point

is gradually accelerated outward. Beyond the sonic point the flow speed becomes

more variable, because the wind has yet to reach a steady state. Even though the

wind speed becomes supersonic at large distances, it remains well below the rotational

speed except toward the edge of the simulation domain (see Fig. 2.5(d)). In fact, vφ is

close to the speed needed to be rotationally supported against the gravitational pull

from the central star in the cylindrical radial (R) direction (also shown in Fig. 2.5(d)

for comparison). The implication is that, just like the disk, the slowly expanding

wind is almost entirely supported in the R-direction by rotation. The difference lies

in the vertical direction; whereas the disk is supported against gravity (and magnetic

compression) mostly by the thermal pressure gradient, the wind is supported mostly
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Fig. 2.5.— Physical quantities plotted along a poloidal magnetic field line as a func-
tion of the distance along the line. The representative field line has a footpoint at
r = 0.3 au (Zone II) and can be seen in Fig. 2.4 (white dashed line). Yellow cir-
cles show the sonic point (vp = cs). The panels show (a) the density distribution
(solid) and the distribution expected based on the mid-plane temperature (dashed),
(b) the magnetic field components, (c) the radial velocity, (d) the poloidal (black)
and toroidal (red) velocities with the corresponding Keplerian velocity (RΩK ; dashed
blue line), (e) the vertical component of the Lorentz force relative to the gravita-
tional force, and (f) plasma-β for the total magnetic field strength (solid) and for the
poloidal magnetic field strength (dashed).
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by the magnetic pressure gradient. This difference is highlighted in Fig. 2.5(e), which

shows that the ratio of the vertical component of the Lorentz force to the gravitational

force changes sign at the disk surface/wind base and reaches unity just before the sonic

point. The available evidence points to a magnetically dominated wind (Fig. 2.5(f))

that is slowly lifted out of the (deep) gravitational well near the disk surface by the

magnetic pressure gradient, consistent with the ‘magnetic tower’ picture of Lynden-

Bell (1996).

Despite being much slower than the Keplerian speed at its footpoint, the wind

launched from 0.3 au strongly affects the disk structure and dynamics. First, it rapidly

depletes the disk material. To estimate a local disk mass depletion time, we define a

magnetic flux tube containing an infinitesimally small magnetic flux ∆Ψ around the

field line. The cross-sectional area of the flux tube is ∆A = ∆Ψ/Bp, where Bp is the

poloidal magnetic field. The rate of wind mass flux along the magnetic flux tube is

∆Ṁ = ρ∆A

(
vp ·Bp

Bp

)
= ρ∆Ψ

(
vp ·Bp

B2
p

)
. (2.13)

This is to be compared with the amount of mass contained inside the flux tube

∆M =

∫
ρ∆Ads = ∆Ψ

∫
(ρ/Bp)ds, (2.14)

where the integration is along the field line, and is dominated by the mass inside the

disk. The local disk mass depletion time due to wind mass loss is then

tdep =
∆M

∆Ṁ
=

∫
(ρ/Bp)ds

(
ρvp ·Bp

B2
p

)−1
. (2.15)

In a steady state, the quantity ∆Ṁ should be constant along a field line. However,
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the wind does not reach a strict steady-state, and the non-steadiness introduces some

variation to that combination, especially at large distances. We obtain a depletion

time of tdep ≈ 9.6 yr, which is 58 times the local orbital period at the footpoint. This

time scale is to be compared with the accretion time scale for the disk material, which

is roughly

tacc = r/vr. (2.16)

For an average accretion speed of ∼ 0.2 km s−1 at 0.3 au, the accretion timescale is

tacc ≈ 8.6 yr, or 52 times the local orbital period. The fact that the accretion time is

comparable to the depletion time means that a significant fraction of the disk will be

ejected in the wind.

One way to quantify the disk accretion rate is through an effective α parameter,

defined as

αeff = −vrvK/c2s, (2.17)

which, for vr ≈ 0.2 km s−1, vK = 54 km s−1, and cs = 2.3 km s−1at 0.3 au, yields

αeff ≈ 2. This is much larger than the effective α typically obtained from turbulent

MRI simulations (α ∼ 1/β, Hawley et al. 2015), which highlights the dynamical

importance of the slow disk wind launched even by a relatively weak initial poloidal

magnetic field, in that it can still drive rapid disk accretion.

2.3.3.2 Zone III: Avalanche accretion stream and slow midplane decretion

For the outer disk region (r > 0.5 au), we plot the physical properties of the gas and

magnetic field along a representative field line that starts from a radius of ∼ 1 au on

the disk midplane (Fig. 2.6). Panel (a) of Fig. 2.6 shows the density distribution as

a function of the distance along the field line. We can see that near the midplane,

the density profile is close to that expected for a (non-magnetic) isothermal disk
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Fig. 2.6.— Physical quantities plotted along a poloidal magnetic field line as a func-
tion of the distance along the line. The representative field line has a footpoint at
r = 1 au (Zone II) and can be seen in Fig. 2.4 (white dashed line). Yellow circles
show the sonic point in the outflowing wind (vp = cs). The panels show (a) the
density (solid) and equilibrium density (dashed) distributions, (b) the magnetic field
components, (c) the radial velocity, and (d) the poloidal (black) and toroidal (red)
velocities with the corresponding Keplerian velocity (RΩK ; dashed blue line).
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(dashed line), indicating that the magnetic field is not important in the vertical force

balance. Moving closer to the disk surface (where the magnetic pressure dominates

the thermal pressure), magnetic compression causes the density to drop significantly

below the isothermal value, as in Zone II. The difference is that the density in Zone III

increases sharply again before dropping off precipitously. This density spike marks

the ‘avalanche accretion stream’ that is prominent in Fig. 2.4. It is the defining

characteristic of Zone III, not only in the density structure but also in the magnetic

field structure.

From Fig. 2.4, it is clear that the dense stream occurs where the magnetic field line

pinches severely, with a sharp reversal of the radial field component across it. This

reversal shows up clearly in Fig. 2.6(b), where all components of the magnetic field

are plotted. The poloidal magnetic field line near the midplane first bows outward,

with a small but positive radial component, as in Zone II (see Fig. 2.6(b)). However,

it is forced to bend sharply inward (see Fig. 2.4) by the rapidly infalling stream,

producing a large (negative) value for Br. The toroidal field component increases

from the midplane towards the stream, dominating the other two field components

before reversing direction across the stream (Fig. 2.6(b)).

As the material in the stream falls radially inward, it is orbiting faster relative to

material both above and below it, as shown in Fig. 2.6(d), where we plot vφ along the

representative field line. Simple geometric considerations show that the faster rotation

at the tip of the sharply pinched field line will twist the inward-directing field into

a toroidal field of positive sign and the outward-directing field into a toroidal field

of the opposite sign, as shown in Fig. 2.6(b). The twisted magnetic field geometry

efficiently brakes the stream as it loses angular momentum to both the wind and

the disk material that is magnetically linked to the stream at larger radii. Both Br
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and Bφ are amplified as the fast-rotating stream accretes, which leads to a stronger

magnetic braking torque. The end result is a run-away collapse of the stream similar

to the MRI, and hence the name ‘accretion avalanche’ (Kudoh et al. 1998). At the

time shown in Fig. 2.6, the infall speed of the stream is supersonic and reaches about

2 km s−1 (only the sonic point in the wind above the the stream is shown in the

figure). The bulk of the disk material below the stream moves much more slowly and

in the opposite direction, as shown in Fig. 2.4 (left panel). The contrast between the

fast accreting stream and slowly expanding disk is quantified in the radial velocity

profile plotted in Fig. 2.6(c). This ‘decretion’ is caused by the disk material receiving

angular momentum from the infalling stream and is opposite of the disk motion in

Zone II (compare to Fig. 2.5(c)).

Although the stream infalls supersonically, its infall speed is still much smaller

than the rotation speed vφ (Fig. 2.6(d)). Indeed, the rotation speed is close to the

value needed for the centrifugal force to balance the gravity in the cylindrically radial

direction inside both the disk and the stream, indicating that both are close to being

rotationally supported. A supersonic wind is launched above the stream, reaching

speeds of∼50 km s−1, which is higher than that reached along the field line originating

from 0.3 au (see Fig. 2.5(d)). This speed difference is mainly due to lower mass

loading, which allows the wind to experience greater acceleration despite rotating

more slowly near the footpoint. Nevertheless, both the velocity and magnetic field

are still dominated by the toroidal component over a large fraction of the wind, which

is broadly similar to the wind driven from Zone II. The thermal pressure of the wind

here is also completely dominated by the magnetic pressure, again similar to the

wind from Zone II. Therefore, the formation of the stream appears to modify, but not

completely disrupt, the wind launching and acceleration.
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2.3.3.3 Zone I: Rings and gaps in inner disk

The innermost disk region (r < 0.1 au) is most strongly modified from its initial

state during the simulation because it has the shortest rotation period and is located

where the (poloidal) magnetic flux tends to accumulate through disk accretion. It is

also the most variable region of the disk-wind system. The spatial variation of mass

distribution is evident in Fig. 2.4, where the right panel shows a ‘face-on’ view of

the axisymmetric (one hemisphere) surface density normalized by the initial surface

density distribution, Σi = 810 g cm−2 (r/r0)
−1/2, to highlight features at large radii.

There is a striking contrast between the dense inner rings and their surrounding gaps;

in fact, most of the mass of the inner disk is concentrated in these rings. Through the

course of the simulation up to five rings are formed in Zone I. The first is formed just

outside of the inner boundary and is quickly accreted after 200 inner orbital periods.

The remaining rings all form in an inside-out manner; once one ring and gap are

formed (with the gap located at a larger radius than the ring), another ring develops

at a slightly larger radius than the first gap. Once formed, the multiple rings and

gaps drift slowly inward maintaining their relative order.

Although the magnetic field topology near the rings and gaps is irregular, winds

are still launched from Zone I. The winds that are launched from the gaps accelerate

material to very high velocities (vr > 100 km s−1), both because very little mass gets

loaded onto the field lines anchored in the low-density gaps and because the vertical

magnetic field strength peaks in the gaps (allowing for rigid rotation of the field lines

out to a larger radius). This is quantified in Fig.2.7(a), where the column density

as a function of radius at a representative time (t = 1250 t0) is plotted. One might

naively expect the vertical component of the magnetic field (−Bθ,mid = |Bθ,mid| at the

midplane, since Bθ,mid is negative because the initial magnetic field points upward) to
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Fig. 2.7.— Ring and gap formation in Zone I of the reference simulation at t = 1250t0.
(a) The surface density, (b) the vertical magnetic field strength at the midplane
(−Bθ,mid), (c) the mass-to-flux ratio Σ/|Bθ,mid| in units of g cm−2 G−1, and (d) the
radial velocity (negative means accretion towards the central source). The initial
distribution of these quantities are shown for comparison (dashed lines).
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be concentrated in the high density rings, because the mass-to-flux ratio, Σ/|Bθ,mid|,

would be conserved in the strict ideal MHD limit. However, there is a tendency

for the vertical field to be weaker in the dense rings than in the gaps. This anti-

correlation is shown in Fig. 2.7(b), where −Bθ,mid is plotted versus radius. It is clear

that the dense rings are less magnetized relative to both the initial disk value and the

neighboring gaps. The contrast between the rings and gaps is particularly striking

for the distribution of the mass-to-flux ratio shown in Fig. 2.7(c).

Since the innermost rings are always observed to form first, it is natural to relate

their formation to the inside-out development of the disk wind (i.e., at any given

time, the disk wind is further developed at smaller disk radii because of their shorter

dynamical times). The wind drains angular momentum from the disk, forcing the disk

material to accrete and drag magnetic flux along with it. In the ideal MHD limit,

the accumulation of mass at a given location would lead to a corresponding pile-up

of magnetic flux at the same location. But in the resistive MHD of this simulation,

the field lines diffuse away from the region of magnetic flux concentration. This leads

to two key steps in the formation of a ring and gap. First, the magnetic flux begins

to drop in the region where surface density starts to spike. The decreasing dynamical

importance of the magnetic field in this region increases the accretion timescale of the

dense ring, effectively creating a trap for mass accretion from larger radii. Second,

the magnetic flux begins to accumulate just outside the growing overdensity. Now

the low mass-to-flux region can efficiently drain disk material of angular momentum,

quickly moving any remaining mass to smaller radii where it is added to the ring. The

fast accretion of the material in the gaps onto the nearly stationary rings is shown

in Fig. 2.7(d), where the radial component of the velocity at the disk mid-plane is

plotted. This interplay of magnetic flux redistribution, angular momentum removal
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through magnetic wind, and disk accretion naturally leads to a configuration of a high

mass-to-flux region (ring) just inside of a low mass-to-flux region (gap; Fig. 2.7(c)).

Once an over-dense region is formed, its survival allows for the development of similar

patterns at larger radii.

2.3.4 Magnetic diffusivity and the disk-wind structure

To summarize, there are three distinct zones that develop in the reference simulation.

The dimensionless diffusivity parameter D = η/(hcs) decreases with radius as D ∝

r−1/2. Zone I is thus the most magnetically diffusive region initially, as measured

by D. It is also the region where the most prominent rings and gaps form, because

magnetic diffusion is needed for the redistribution of magnetic flux relative to the

matter. In Zone II the magnetic diffusion is such that the outward diffusion balances

the inward advection of the magnetic field, thereby establishing a laminar, quasi-

steady disk-wind system. The least magnetically diffusive region, Zone III, develops

a dense surface accretion stream that dominates the mass accretion in that region

and drives the disk material below it to expand. These results suggest that the level

of magnetic diffusion is a key factor in controlling the structure and dynamics of the

coupled disk-wind system.

2.4 Parameter study

In order to determine how robust the basic features of the reference simulation are,

especially the formation of rings, gaps and avalanche accretion streams, we performed

several additional simulations in which we varied three dimensionless model param-

eters: D0, β, and ε. These characterize the disk magnetic diffusivity, field strength,

and disk thickness (or temperature), respectively (see Table 2.1).
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We find that all simulations show characteristics of at least one of the three Zones

described in the reference simulation and all simulations develop variable winds (see

Fig. 2.9). Almost all simulations show enough spatial variation in the surface density

that rings and gaps are readily apparent, and many of the simulations show dense

avalanche accretion streams developing near the disk surface. In some cases the

inner disks appear to be entirely dominated by rapid formation and break-up of

short-lived accretion streams, forming a vertically extended ‘envelope’ above the disk

characterized by chaotic infall and outflow motions. In the following subsections we

discuss the effects of each of the three dimensionless parameters in turn, focusing in

particular on the lower diffusivity (D 4), stronger field (model beta 3), and higher

temperature (t4, or thicker disk) cases (illustrated in Fig. 2.8 and Fig. 2.9).

2.4.1 Resistivity

We start with model D 4, where all parameters are the same as in the reference case

except for the (constant) resistivity η, which is reduced by a factor of four (thereby

reducing D0 by the same amount). The reduction in η makes the magnetic field lines

better coupled to the material in the disk. We expect this to facilitate the formation

of avalanche accretion streams, as in Zone III of the reference simulation, and this

is indeed the case. Movies of simulation D 4 (see the supplementary material of

Suriano et al. 2017 in the online journal for animated versions of Fig. 2.8) show that

avalanche accretion streams form continuously, starting as early as ∼ 10 inner orbital

periods. Many of the streams are pushed up high into the disk corona by the growing

toroidal magnetic fields beneath them (as in the case of the stream in Zone III of

the reference simulation, see Fig. 2.6(b)). They are eventually disrupted as they fall

radially inward and towards the midplane. The constant formation and disruption
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of the (often elevated) avalanche accretion streams leads to a thick, clumpy envelope

above the disk that is highly inhomogeneous in density, velocity, and magnetic field.

This stream-produced envelope can be seen clearly in Fig. 2.8(a), where its maximum

vertical extent is comparable to the cylindrical radius and is positioned between the

denser equatorial disk and the more tenuous polar wind region. While the (poloidal)

field lines in the polar wind region are well organized, those in the envelope are

disordered with severe bunching of field lines in some places and looping (due to

reconnection) in others. The disordered field is a reflection of the chaotic motions

inside the envelope characterized by simultaneous infall and outflow. The motion of

the envelope is best seen in Fig. 2.8(b), where the spatial distribution of mass flux

per unit polar angle, dṀ/dθ = 2πr2ρvr sin θ, is plotted. The mass accretion in the

envelope is dominated by the fragments of disrupted avalanche accretion streams (blue

in middle row of Fig. 2.8). They are mixed together with packets of outflow (red)

that sometimes extend to the disk midplane. The picture is reminiscent of the MRI-

driven channel flows that are seen, e.g., in the thick disk simulations of Kudoh et al.

(2002), and they share the same physical origin – the exchange of angular momentum

between magnetically connected material located at different radii. In our thin-disk

case, the difference is that the alternating pattern of inflow and outflow occurs mostly

in the envelope above the disk rather than inside the disk. This dynamic envelope is

a new feature that formally does not exist in the reference simulation, although it is

intimately related to the avalanche accreting stream of Zone III.

In addition to the envelope, a wind is also launched in the low-resistivity case

(model D 4). The wind can be seen in Fig. 2.8(a), especially in (but not limited

to) the polar region. The wind is highly variable, as illustrated in Fig. 2.9 (blue

line), where the mass loss rate for the fastest wind component (vr > 100 km/s)
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Fig. 2.8.— Snapshots of three simulations at t = 1650t0. The left, middle, and
right columns correspond to simulations D 4, beta 3, and t4, respectively. The top
row shows the mass density (g cm−3) in logarithmically spaced color contours with
magnetic field lines in white and velocity (unit) vectors in grayscale. The middle
row shows the radial mass flux per unit polar angle dṀ/dθ = 2πr2ρvr sin θ where
negative (blue) values correspond to infall and positive (red) to outflow. The bottom
row shows the ‘face-on’ view of the axisymmetric surface density normalized to its
initial distribution for r ≤ 1 au. (See the supplementary material of Suriano et al.
2017 in the online journal for animated versions of this figure, including the reference
simulation.)
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is plotted as a function of time. The mass loss rate is comparable to that in the

reference case, especially in the second half of the simulation. The highly variable

wind and the chaotic envelope create radial structures in the disk. Fig. 2.8(c) shows

a face-on view of the surface density normalized by its initial distribution. Several

rings and gaps are clearly visible, and they are quantified in Fig. 2.10(b), where the

surface density is plotted as a function of radius. The development of rings and gaps

starts at small radii, and gradually spreads to large radii, because the dynamical time

increases with radius. Some of the rings appear to change quickly, while others are

more stationary. These features are present throughout the simulation, suggesting

that they are a robust characteristic of the coupled disk-envelope-wind system. We

find that the surface density anti-correlates with the poloidal field strength on the

disk, with the dense rings typically less magnetized than the gaps, as in Zone I of the

reference simulation. This indicates that magnetic flux redistribution through either

the relatively small resistivity or turbulent reconnection, is playing a role in creating

the rings and gaps. Since the disk is tightly connected to the stream-dominated

envelope, the streams are also expected to play an important role in gap and ring

formation. This role is difficult to quantify precisely, however, because of the chaotic

flow pattern in the disk and envelope. A cleaner case of stream-induced ring formation

will be presented in the higher-temperature case below (see Section 2.4.3). We have

also carried out an ideal MHD simulation with the same parameters except for η = 0,

and found results broadly similar to this low-resistivity case.

In contrast to D 4, the more resistive model D4 is much more laminar. A wind is

launched steadily throughout the run over most of the disk radii that have had time

for at least one orbit to take place, as in the smooth Zone II of the reference run.

There are no avalanche accretion streams in the simulation. A new feature of model
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Table 2.1: Model parameters for all simulation runs. Note: the diffusivity parameters
D0 and Dm,0 are measured at the inner edge of the disk, and the simulation ref-x2grid
has a higher resolution in the disk region (see Section 2.2.3).

ε β η [cm2 s−1] D0 Dm,0

reference 0.05 103 2.5× 1015 0.16 3.6
D 4 0.05 103 6.25× 1014 0.04 0.89
D4 0.05 103 1016 0.64 14
beta 3 0.05 3.33× 102 2.5× 1015 0.16 2.1
beta3 0.05 3.0× 103 2.5× 1015 0.16 6.2
beta100 0.05 105 2.5× 1015 0.16 36
t4 0.1 103 1016 0.16 3.6
ref-x2grid 0.05 103 2.5× 1015 0.16 3.6
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Fig. 2.9.— Mass outflow rate (M� yr−1) through a hemisphere of r = 1 au as a
function of time for three simulations (reference, beta 3, and D 4). Only the mass
outflow rate of the fast velocity component (vr > 100 km s−1) is shown.
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D4 is that, because of its high resistivity, the wind from the innermost part of the

disk becomes weaker with time as the magnetic flux in the region diffuses to larger

radii. By t = 1800t0, the region of weakened wind launching extends to a radius

∼ 0.2 au (Fig. 2.10(e)). In this region, the rate of angular momentum removal by

the wind is significantly reduced, allowing mass to accumulate there. This results

in a large plateau in the surface density profile followed immediately by a gap at

0.2 au, with a drop in surface density of one order of magnitude. Model D4 therefore

provides another example of gap formation through a wind of varying strength at

different radii, in addition to Zone I of the reference simulation. At 2200 inner orbital

periods, the mass in the disk within r < 0.2 au has doubled, and the magnetic flux

has dropped well below its initial value. The magnetic field remaining in the dense

plateau is too weak to break the surface density into rings and gaps, unlike Zone I

of the reference case. The drastically different behaviors of models D 4, D4, and the

reference model underscores the key role of the magnetic diffusivity in determining

the structure and dynamics of the coupled disk-wind system.

2.4.2 Magnetic field strength

We will focus first on model beta 3, where the (vertical) magnetic field is
√

3 times

stronger than that of the reference case at the disk midplane (i.e., β is decreased by

a factor of three). One expects a stronger magnetic field to drive a more powerful

disk wind, and this is indeed the case. Fig. 2.9 shows that the wind mass loss rate

is typically well above that of the reference case. It is also clear from Fig. 2.9 that

the disk wind in this case is just as variable as, if not more variable than, that in the

reference case.

The flow pattern in and around the disk in model beta 3 is more similar to that in
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the least resistive model D 4 than to the reference case. Specifically, it is dominated by

the constant formation and disruption of dense avalanche accretion streams (like that

seen in Zone III of the reference case); the quasi-laminar region (Zone II) has all but

disappeared. These changes are expected because the magnetic torque exerted by a

stronger field removes angular momentum from the disk more efficiently, allowing the

accreting streams to develop earlier and at smaller radii. The first prominent stream

develops within 150 inner orbital periods (earlier than the reference run but later than

model D 4) and terminates near r = 0.2 au. By 500 inner orbital periods the inner disk

is almost completely restructured by the interaction of multiple avalanche streams,

as in model D 4, again leading to the formation of a thick envelope where matter

moves rather chaotically both inward and outward (see Fig. 2.8(d)). Compared with

model D 4 at similar times, the number of avalanche streams is smaller, the stream-

dominated envelope is thinner (typically reaching only z ∼ 0.5R compared to ∼ R),

and the wind above the envelope is more massive (compare Fig. 2.8(e) and (b)). In

addition, the expansion of disk material near the midplane is more clearly visible

in model beta 3; for example, about half of the disk inside 0.6 au is decreting at

the time shown in Fig. 2.8(e). Nevertheless, the flow patterns in the two cases are

fundamentally similar: both are dominated by the avalanche accretion streams, as

they are not suppressed by a large enough magnetic diffusivity. We will return to this

important point toward the end of the subsection.

The strong, highly variable wind and the stream-dominated envelope create struc-

tures in the disk surface density distribution, which can be seen in Fig. 2.8(f) and

Fig. 2.10(c). There are numerous rings and gaps at the time shown (t = 1650t0).

Their development starts near the inner boundary and spreads outward with time, as

the disk material at an increasingly larger radius becomes affected by the magnetic
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wind launching and the formation of streams. We find an anti-correlation between the

surface density and vertical magnetic field strength in the midplane (as in model D 4

and Zone I of the reference case), although the interpretation of the anti-correlation

is again complicated by the chaotic motions in the disk and envelope.

The weaker field model, beta3, is dominated by a quasi-laminar region beyond

0.1 au (similar to Zone II of the reference run), and lacks a region with avalanche

streams. In fact, not a single stream is formed throughout the duration of the simula-

tion. Within a radius of 0.1 au, a wind appears only intermittently and is less efficient

in carrying away angular momentum compared to the wind launched beyond this ra-

dius. This allows mass accumulation at small radii, forming the high surface density

plateau, as in model D4 (Fig. 2.10(f)). This plateau is adjacent to a prominent gap

at r = 0.1 au, which separates the variable inner and steady outer wind launching

region, similar to the boundary between Zone I and Zone II in the reference case.

This difference is further illustrated by the weakest magnetic field model, beta100. In

this case, an outflow is still launched, but is unable to escape the simulation domain;

instead, it inflates a bubble up to z ∼ 1 au that is dominated by the toroidal magnetic

field with β ≈ 5 × 10−2. The disk remains laminar and mostly unchanged from its

initial state.

Taken together, the four models with different field strengths but the same resistiv-

ity (beta100, beta3, reference, and beta 3) show a clear trend: as the field becomes

stronger, the disk-wind system becomes less laminar, with the avalanche accretion

streams becoming increasingly more important. This is the same trend that we see

in Section 2.4.1, where the importance of the avalanche accretion streams increases

as the resistivity decreases for a given field strength. The similarity indicates a deep

connection between the effects of a stronger magnetic field and a lower resistivity.



73

10−1 100
100

101

102

103

104

Σ
[g

cm
−

2
]

(a)

10−1 100
100

101

102

103

104

Σ
[g

cm
−

2
]

(b)

10−1 100

R [au]

100

101

102

103

104

Σ
[g

cm
−

2
]

(c)

10−1 100
100

101

102

103

104

Σ
[g

cm
−

2
]

(d)

10−1 100
100

101

102

103

104

Σ
[g

cm
−

2
]

(e)

10−1 100

R [au]

100

101

102

103

104

Σ
[g

cm
−

2
]

(f)

Fig. 2.10.— Surface density profiles. Both columns compare the reference simulation
(top row) to two simulations below it at a given simulation time. The initial surface
density profile is shown for comparison (dashed). (a) reference, (b) D 4, and (c)
beta 3 at t = 1650t0, and (d) reference, (e) D4, and (f) beta3 at t = 1800t0.
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The connection can be understood with the help of a second diffusivity param-

eter Dm ≡ η/(hvA), where vA is the Alfvén speed; it is the inverse of the standard

Lundquist number in plasma physics, S ≡ hvA/η, and is related to the first diffusivity

parameter as Dm =
√
β/2 D. It measures the importance of the resistive magnetic

diffusion on magnetically induced motions. Obviously, a lower resistivity would lead

to a better coupling between the magnetic field and the matter. Perhaps less obvious

is that a stronger magnetic field would also lead to a better field-matter coupling.

This is because a stronger field induces a faster motion over a given length-scale,

which leaves less time for the field lines to diffuse resistively relative to the matter. In

this sense, the diffusivity parameter Dm provides a better indicator for how the cou-

pled disk-wind system behaves: the smaller Dm is, the more important the avalanche

accretion streams would become. Conversely, the streams are suppressed by a large

enough Dm (analogous to the suppression of the MRI). This explanation applies not

only to models with different parameters, but also across different regions of the ref-

erence model. For example, it naturally explains why an avalanche accretion stream

develops only at the largest radius (Zone III) of the reference simulation, where the

parameter Dm is the lowest because it initially decreases with radius as r−1/2.

2.4.3 Disk thickness/temperature

In the simulation t4, the disk aspect ratio ε is increased by a factor of two, thereby

increasing the initial disk temperature by a factor of four (see Table 2.1). To keep

β and D0 (and Dm,0) the same as the reference run, we increase the initial poloidal

field strength Bp,0 by a factor of two and the resistivity η by a factor of four. In this

simulation, there is an extended period of time where a stable disk wind is launched

within a radius of r < 0.5 au. Immediately outside of this is an avalanche accretion
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stream that terminates at r ≈ 0.5 au. The mass deposited by the stream grows

fast enough to form a ring (see Fig. 2.8(g) and (i)), while the disk region beneath the

stream moves radially outward (Fig. 2.8(h)). This provides the cleanest evidence that

a ring can be formed directly from a stream. This ring formation process was also

present in the reference model, where it increased the surface density at r = 0.5 au

by a factor of five relative to its neighboring gap (at a slightly larger radius). The

effect is even more noticeable in model t4, with the surface density contrast between

the ring and gap increased to a factor of 40. We again see an anti-correlation between

the surface density and magnetic flux for the rings and gaps created via an avalanche

accretion stream. Naturally, material being deposited at the end of the accretion

stream will increase the disk mass locally, but the magnetic flux will not increase

here because the mass accretion through the stream is nearly parallel to the field that

confines the flow. The magnetic flux is reduced in the region under the stream that

has been moving radially outward.

2.4.4 Resolution

In order to study the effects of the grid resolution on the simulations, we increase the

disk resolution by a factor of two in the θ-coordinate direction in model ref-x2grid.

The grid now contains 240 uniformly-spaced cells from θ = π/3 to π/2 and 120

non-uniform cells from θ = π/3 to the polar axis (θ = 0) with a constant ratio for

the widths of adjacent cells (see Section 2.2.3). In order to match the cell aspect

ratio with all previous simulations, we also decrease the value of dr0 by two (dr0 is

the width of the first cell on the r-grid). This simulation has the same qualitative

evolution as the reference run, and we can separate the disk evolution into three zones

with radial delineations matching those described for the reference run. The primary
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difference seen between the reference run and the high resolution run is in the number

of rings/gaps formed in Zone I. There are up to three rings at any one time in the high

resolution run, but by t = 1650t0 they have accreted to form one large ring outside

the inner boundary at r = 0.03 au. The remaining zones follow similar behavior to

the reference run, indicating that the qualitative behavior of the disk-wind system

– especially the disk-wind variability and the ring, gap, and stream formation – are

independent of the simulation resolution.

2.5 Discussion

2.5.1 Comparison with other work

2.5.1.1 Steady disk-wind

Although one of the focuses of this work is on the variability of winds and their

impact on forming radial structures in disks, previous studies have focused largely

on steady winds such as those seen in Zone II of the reference simulation. Many

authors aim to explore the parameter space of disk properties in an effort to connect

them to properties of the wind (e.g., Tzeferacos et al. 2009; Murphy et al. 2010;

Sheikhnezami et al. 2012; Stepanovs & Fendt 2014; Stepanovs & Fendt (2016)). In

these works, the resistivity often takes the form η ∝ hvA inside the disk and zero

outside. The scaling of this expression is chosen such that the inward accretion and

outward diffusion of magnetic flux are able to reach a quasi-steady state, with a

fraction of the disk material getting launched into the wind, thereby driving disk

evolution through angular momentum removal. Such steady-state solutions, while

important for illuminating the physics of wind-launching and for making connection

with analytic work, are not guaranteed in nature. There is no apriori reason why
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the Lundquist number S ≡ η/(hvA) should be spatially constant or of order unity,

especially in the inner disks where the electron number density varies rapidly with

radius (caused by collisional ionization of the alkali metals and/or thermionic emission

from dust grains; Umebayashi & Nakano 1981; Desch & Turner 2015). We have shown

that, in the simplest illustrative case of a constant resistivity, a steady-state is not

reached in general.

Stepanovs & Fendt (2016) have shown that winds can be launched for disks with

plasma-β from 100.7 to 103.5. They have also confirmed that there is a critical magne-

tization below which the launching mechanism transitions from the classical magneto-

centrifugal mechanism of Blandford & Payne (1982) to the magnetic tower mechanism

driven by the toroidal magnetic pressure gradient (Lynden-Bell 1996). This transition

occurs near β ≈ 30. Our simulations typically have β ≈ 103 (specifically in Zone II

of the reference simulation, β = 102.36 at r = 0.3 au after t = 1800t0), so our finding

that the wind is in the magnetic tower regime (see Section 2.3.3.1) is consistent with

previous work. This is also consistent with the 1D analytic model of Bai et al. (2016),

who found that the disk wind tends to be driven by a magnetic pressure gradient

unless the Alfvén speed near the disk surface is much larger than the local Keplerian

speed. Given the small magnetic lever arm in this regime, the mass loading rate is

high and the wind speed remains low in the steady part of the wind.

2.5.1.2 Rings and gaps

In the era of ALMA, rings and gaps are being observed in an increasing number of

disks, including, e.g., HL Tau (ALMA Partnership et al. 2015), TW Hya (Andrews

et al. 2016), and HD 163269 (Isella et al. 2016). The most commonly invoked expla-

nations for such features are that they are cleared by planets (Dong et al. 2015) or
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are the result of the condensation of abundant volatile compounds (i.e., snowlines;

Zhang et al. 2016). In almost all of the disks simulated in this work, gaps are opened

with surface density contrast ratios of at least one order of magnitude. The fact that

gaps can be created purely through MHD processes is interesting in its simplicity.

The mechanism requires only a magnetized disk with an accretion rate that varies as

a function of radius. In our simulations, one way to achieve this variation is through

an MHD disk wind that carries away differing amounts of angular momentum from

different radial locations in the disk. The magnetic torque acting on the surface of

the disk then results in a mass accretion rate of Ṁacc(R) ≈ RBθBφ/ΩK (Bai et al.

2016, see their equation 19). Therefore, a magnetic disk wind can open a gap (or

create a ring) so long as BθBφ reaches a local maximum (or minimum) somewhere

in the disk. In our particular problem setup, the rings and gaps are formed within a

few au of the central mass because only such inner regions have short enough orbital

periods to evolve through multiple orbits in the duration of the simulation. However,

this mechanism should operate at larger disk radii as long as the magnetic disk wind

is able to redistribute angular momentum on these scales as well (Bjerkeli et al. 2016).

Several other MHD mechanisms have been proposed for the creation of radial

surface density maxima in disks. For example, the simulations of Flock et al. (2015)

and Ruge et al. (2016) have shown that a surface density bump is formed inside the

MRI dead zone of a disk, while a gap is opened up outside the dead zone due to MRI-

driven mass accretion. The authors find an anti-correlation between the magnetic

field and surface density (similar to that shown in Fig. 2.7) as the magnetic field

accumulates in the MRI-active gap outside the dead zone. A related phenomenon

are the so-called ‘zonal flows’ (Johansen et al. 2009). Zonal flows occur when a radial

pressure gradient is balanced by the Coriolis force, leading to alternating radial bands
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of sub and super-Keplerian flows (see Armitage 2015 for a recent review). These flows

develop in MRI disk simulations from large-scale variations in the Maxwell stress

(BrBφ) and result in an anti-correlation between the magnetic pressure and the mass

density (Johansen et al. 2009; Kunz & Lesur 2013; Bai & Stone 2014). In global

disk simulations, zonal flows and zonal (magnetic) fields can be generated by the Hall

effect because the additional Hall term in the induction equation can act to radially

confine the vertical magnetic flux (Béthune et al. 2017, 2016). The rings and gaps

that form in our simulations share some characteristics with the zonal flows (e.g.,

both show an anti-correlation between surface density and magnetic pressure), but

their formation mechanisms are quite distinct.

In addition to variable magnetic winds, our simulations show that rings can also

form directly out of rapidly accreting streams. This ring formation mechanism is

observed most clearly in the simulation with a larger initial disk thickness (or tem-

perature; model t4, Section 2.4.3), and to a lesser extent in the reference simulation

(Zone III; Section 2.3.3.2). The streams most likely play a role in forming the rings

and gaps observed in several other simulations as well, especially in the lower resistiv-

ity (D 4) and stronger field (beta 3) cases, where the disk evolution is dominated by

a stream-induced envelope. The concept of avalanche accretion streams itself is not

new; Kudoh et al. (1998) found such streams in their 2D simulations of thick AGN

accretion disks (where the streams were termed ‘accretion avalanches’; see also Stone

& Norman 1994; Matsumoto et al. 1996; Beckwith et al. 2009). What we have shown

here is that such avalanche streams tend to develop in regions of low dimensionless

magnetic diffusivity Dm (or high Lundquist number S = 1/Dm) and that they can

deposit material at fixed locations quickly enough to form rings in some cases or gen-

erate enough spatial variation in mass accretion to produce multiple rings and gaps
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in others.

2.5.2 Magnetic diffusion and wind-dominated vs. stream-

dominated accretion

We found two distinct modes of accretion in coupled disk-wind systems initially

threaded by a relatively weak, ordered poloidal magnetic field. They are controlled

by the dimensionless magnetic diffusivity parameter Dm (or the Lundquist number

S = 1/Dm). Low values of Dm promote the formation of avalanche accretion streams,

leading to a ‘stream-dominated’ mode of accretion. Higher values of Dm suppress

stream formation, leading to a more steady wind that drives accretion in a more

laminar disk, i.e., a ‘wind-dominated’ mode of accretion. If Dm becomes too large,

the strong wind dies out quickly as the wind-launching magnetic field weakens due

to diffusion.

The zero diffusivity limit has recently been explored in the 3D ideal MHD simu-

lations of Zhu & Stone (2018) that came to our attention near the conclusion of this

investigation. Their study has several aspects in common with the work presented

here; for example, both concentrate on relatively thin disks (disk thickness 5 − 10

per cent of the radius), both adopt a large-scale poloidal magnetic field initially cor-

responding to a typical plasma-β of 103 on the disk midplane, and both employ a

spherical-polar coordinate system. The main differences are that (1) their simula-

tions are fully 3D, whereas ours are 2D axisymmetric, and (2) their simulations are

formally ideal MHD, whereas we included explicit resistivity. Despite these differ-

ences, there is qualitative agreement regarding some key features of the simulations.

One of the most intriguing features of our 2D simulations is the development of fast

accreting avalanche streams near the disk surface. Zhu & Stone (2018) also observes
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the simultaneous fast accretion at high altitudes and slow expansion on the mid-

plane, where the fast accretion occurs in a thick layer above the disk extending up to

∼ 1−1.5 times the local radius (which they term ‘disk corona’). We believe that their

disk corona is physically equivalent to the thick envelope found in our low diffusivity

(Dm,0) cases. In our case, the thick envelope is produced by the repeated formation

and disruption of multiple avalanche accretion streams, as can be seen in Fig. 2.8 (also

see movies in the online journal). Although it is not discussed explicitly in their work,

we suspect that a similar mechanism is responsible for forming the corona in their

simulations as well, although it may be harder to identify rapidly infalling streams in

3D simulations than in 2D ones. The avalanche streams tend to drag the field lines

into a radial configuration, which are then wound up by differential rotation. This

naturally produces the r − φ magnetic stress that is found by Zhu & Stone (2018)

to dominate the coronal accretion. In any case, our simulations add weight to the

emerging picture that a chaotic, fast accreting ‘corona’ or envelope plays a crucial

role in shaping the structure and evolution of thin disks threaded by relatively weak

(β ∼ 103), open magnetic field lines, especially when the magnetic diffusivity is low.

In more magnetically diffusive disks with larger values of Dm, the situation can be

quite different. On one hand, the explicit diffusivity can enable outward field diffusion

by itself, allowing for the possibility of a steady-state balance between the outward

diffusion and the inward advection of field lines by mass accretion. On the other hand,

it can suppress the MRI in the disk and thus remove the turbulent diffusivity that

could also enable such a state. This field advection-diffusion balance is illustrated

in Zone II of the reference run (Fig. 2.5), where the disk connects smoothly to the

wind. One might be tempted to identify the subsonic region at the base of the wind

as the ‘corona’, which has a similar height (z ∼ R) in the simulations of Zhu & Stone
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(2018). However, this subsonic wind base is expanding slowly, and the fast accretion

(with an effective α parameter of ∼ 2) is limited to the high density disk proper (see

Fig. 2.5(c)). Most of the accretion in the more diffusive cases is through the disk

and is driven by the magnetic torque from the wind; this is in contrast to the ideal

MHD simulations of Zhu & Stone (2018), where the wind plays only a minor role in

driving the accretion. Wind-driven accretion appears to hold for other 2D non-ideal

MHD simulations of coupled disk-wind systems that include either resistivity (e.g.,

Stepanovs & Fendt (2016)) or ambipolar diffusion and the Hall effect (Bai & Stone

2017). Whether it stays true in 3D or not remains to be determined. In any case, our

results, together with those of Zhu & Stone (2018) and others, suggest that explicit

magnetic diffusion from non-ideal MHD effects plays a key role in determining the

extent to which the accretion is dominated by a wind or by a thick ‘corona’/stream-

induced envelope.

We speculate that the two modes of accretion may be unified in the following

sense. For a thin disk magnetized with a relatively weak poloidal magnetic field, a

toroidal magnetic field is quickly generated. This would naturally ‘puff up’ the disk

in the vertical direction, creating a thick envelope that is supported by the magnetic

pressure gradient vertically (see also Hirose & Turner 2011) and by rotation in the

cylindrical R-direction. This rotationally supported envelope can become unstable to

the MRI, just as the disk, especially when the dimensionless magnetic diffusivity Dm

is low. Indeed, its larger vertical extent makes the envelope more prone to the MRI

than the thin disk itself. When the diffusivity Dm is high, the MRI is suppressed

in the envelope, which allows the magnetic pressure gradient-driven expansion that

produced the envelope to continue smoothly to larger distances, forming a slow wind.
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2.5.3 Implications of ring and gap formation on dust dynam-

ics and planet formation

It is well-understood that an outward radial pressure gradient in a disk causes the

gas to rotate at a sub-Keplerian velocity. Consequently, grains that orbit at the

Keplerian speed would experience a headwind, lose angular momentum, and migrate

inward (Weidenschilling 1977a). If, however, the radial pressure gradient is reversed

due to a ‘bump’ in the disk surface density, this local maximum is able to halt the

inward radial drift of particles and trap them there. In 3D, these radial bumps in

the disk surface density can lead to the growth of the Rossby wave instability (RWI),

whereby a high pressure nonaxisymmetric vortex grows exponentially, creating an

azimuthal dust trap (Lovelace et al. 1999). Azimuthally asymmetric features are

observed in disks and can be explained by azimuthal variations in the gas-to-dust

ratio and grain size segregation (Casassus et al. 2013). The formation of radial and

azimuthal pressure traps are critical for stopping solid particles from spiraling into the

star on rapid timescales, thereby allowing the onset of grain growth and the eventual

formation of planetesimals.

The emergence of multiple radial density maxima in the simulations presented

here shows the potential importance that MHD disk winds and avalanche streams

can have on growing the seeds of planet formation. This is especially true in the

inner (. 1 au) regions of the disks, where jets and winds of young stellar objects are

most likely launched and where the most common type of planets (super-Earths/mini-

Neptunes) are located. Indeed, Sun-like stars have a 50 per cent chance of having a

compact system of small (non-giant) planets within 1 au (Winn & Fabrycky 2015).

While the importance of migration for this population of planets is still unknown, it

seems plausible that many of these planets may have formed at their current loca-
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tions. If this is the case, an efficient mechanism is needed for trapping dust grains

on sub-au scales, especially during the relatively early phases of star formation when

most of the mass is processed through the inner disk. Rings and gaps produced by

variable magnetic winds and avalanche streams that drive rapid accretion potentially

provide an opportunity for grains to accumulate and grow early in the disk’s life.

This mechanism will likely not be as efficient at later times when YSO jets and winds

are observed to be less powerful and the accretion rate is lower. More work is needed

to quantify the effects that the disk structures created by magnetically driven winds

and avalanche streams have on the dynamics and growth of dust grains.

2.5.4 Future directions

The initial set of idealized simulations presented in this work is aimed at illustrating

the basic processes through which rings and gaps are produced by variable winds

and avalanche accretion streams. In future refinements we will extend the simula-

tions to a less restrictive geometry. Preliminary 2D (axisymmetric) simulations with

two hemispheres show qualitatively similar results to those presented here. Full 3D

simulations, such as those of Zhu & Stone (2018) but with non-ideal MHD effects,

will be needed to determine whether the formation of rings and gaps is artificially

enhanced by the axisymmetric geometry and whether the rings formed in 2D sim-

ulations are unstable to the Rossby wave instability. Just as important, there is a

need to include a detailed calculation of the ionization structure of the disk and the

non-ideal MHD effects. Post-processing the simulations through radiative transfer

calculations is needed to make predictions for observable quantities (e.g., variability

in near infrared emission and profiles of optical forbidden lines) that can be compared

directly with observations (e.g., Cody et al. 2014; Simon et al. 2016). The long term



85

goal is to include a self-consistent treatment of dust grains in the full 3D non-ideal

MHD coupled disk-wind simulations. This would allow us to quantify the effects that

wind and stream-induced disk structures have on grain trapping and growth, as well

as any potential back-reaction that the grains might have on the gas dynamics of

disk accretion, stream formation, and wind launching. The rings and gaps found in

our starting simulations provide added impetus to explore the interplay between dust

dynamics and winds and streams in greater depth.

2.6 Conclusions

We have presented the results of 2D (axisymmetric) resistive MHD simulations of

coupled disk-wind systems with a range of disk parameters (resistivity, magnetic field

strength, and temperature), focusing on geometrically thin disks. We find that the

structure and dynamics of the disk-wind system strongly depend on the dimensionless

magnetic diffusivity parameter Dm ≡ η/(hvA) and that interesting disk features,

including rings and gaps, are naturally produced. Specifically, we find that:

1. There are two distinct modes of accretion depending on the dimensionless pa-

rameter Dm. Disks with low values of Dm, from either a small resistivity or high

field strength, tend to develop fast ‘avalanche accretion streams’. The rapid for-

mation and disruption of such streams often leads to a clumpy, thick envelope

above the disk that dominates the dynamics of the system (e.g., models beta 3

and D 4; see Fig. 2.8), although a highly variable wind is still launched above

the envelope. This envelope appears equivalent to the thick disk ‘corona’ found

independently by Zhu & Stone (2018) in their 3D ideal MHD simulations. In

both cases, the disk below the corona/envelope is often expanding radially out-

ward. The streams (and the thick clumpy envelope they produce) are suppressed
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in simulations with larger values of Dm (from either a large resistivity or low

field strength, e.g., models beta3 and D4). In these more diffusive (larger Dm)

simulations, most of the accretion occurs through a laminar thin disk rather

than the thick clumpy envelope, and the disk accretion is driven mainly by a

magnetic wind.

2. Both wind-dominated and stream-dominated accretion create prominent fea-

tures in the surface density distribution, especially rings and gaps. The wind-

driven ring and gap formation is illustrated most clearly in the innermost region

(Zone I) of the reference simulation, where there is substantial redistribution of

magnetic flux relative to the mass in the disk that is enabled by the resistivity

(Fig. 2.7). Regions with lower mass-to-flux ratios tend to drive stronger winds

and accrete faster, producing gaps; those with higher mass-to-flux ratios tend

to accrete more slowly, allowing matter to accumulate and form dense rings.

Another clear illustration of wind-driven gap formation can be found in models

D4 and beta3, where a strong wind is driven from the outer part of the disk

but not from the more magnetically diffusive inner part, creating a deep gap

between them (Fig. 2.10(e) and (f)). The stream-driven ring formation is il-

lustrated most clearly in the thicker disk model (t4), where a stream feeds a

prominent ring at a roughly constant radius (Fig. 2.8, right column). Rings

formed this way also have high mass-to-flux ratios. Multiple rings and gaps are

formed in other, more complicated cases, especially those with stream-induced

envelopes (model D 4 and beta 3). It is likely that both magnetic winds and

avalanche accretion streams play a role in their formation, although the relative

importance of the two mechanisms is hard to quantify due to the complexity of

the flow pattern inside and above the disk.
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3. Powerful winds are launched despite the fact that the magnetic field in the disk

is rather weak initially (corresponding to a typical plasma-β ∼ 103). In the

reference simulation where the wind is analyzed in detail, we find that the bulk

of the wind is heavily mass-loaded and accelerated by the magnetic pressure

gradient to relatively low speeds (a few ×10 km s−1). There are, however,

lightly mass-loaded regions that are accelerated magnetocentrifugally to speeds

exceeding 100 km s−1, comparable to the jet speeds observed in young stellar

objects. The magnetic wind can remove angular momentum from the disk

efficiently, leading to disk accretion with an effective α parameter up to order

unity. Our simulations add weight to the notion of wind-driven disk evolution,

especially in the presence of a suitable level of magnetic diffusivity.

Rings and gaps produced in circumstellar disks by magnetic winds and avalanche

accretion streams have important implications on the dynamics and growth of dust

grains and ultimately planet formation. The local pressure maxima associated with

the rings would act to stop the radial drift of solid particles, possibly trapping them

long enough to enable enhanced grain growth that facilitates planetesimal formation.

This may be especially important in the inner (i.e., few tenths of an au) disk regions

where the largest population of planets reside, as seen by Kepler. The simulations

presented in this work lay the foundation for future explorations of these and other

aspects of the coupled disk-wind systems.
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Chapter 3

Ambipolar diffusion and

reconnection

This Chapter is adapted from Suriano et al. 2018, MNRAS, 477, 1239, with minimal

modifications.

Abstract

Radial substructures in circumstellar disks are now routinely observed by ALMA.

There is also growing evidence that disk winds drive accretion in such disks. We

show through 2D (axisymmetric) simulations that rings and gaps develop naturally in

magnetically coupled disk-wind systems on the scale of tens of au, where ambipolar

diffusion (AD) is the dominant non-ideal MHD effect. In simulations where the

magnetic field and matter are moderately coupled, the disk remains relatively laminar

with the radial electric current steepened by AD into a thin layer near the midplane.

The toroidal magnetic field sharply reverses polarity in this layer, generating a large

magnetic torque that drives fast accretion, which drags the poloidal field into a highly
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pinched radial configuration. The reconnection of this pinched field creates magnetic

loops where the net poloidal magnetic flux (and thus the accretion rate) is reduced,

yielding dense rings. Neighbouring regions with stronger poloidal magnetic fields

accrete faster, forming gaps. In better magnetically coupled simulations, the so-called

‘avalanche accretion streams’ develop continuously near the disk surface, rendering

the disk-wind system more chaotic. Nevertheless, prominent rings and gaps are still

produced, at least in part, by reconnection, which again enables the segregation of

the poloidal field and the disk material similar to the more diffusive disks. However,

the reconnection is now driven by the non-linear growth of MRI channel flows. The

formation of rings and gaps in rapidly accreting yet laminar disks has interesting

implications for dust settling and trapping, grain growth, and planet formation.

3.1 Introduction

Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) have

revealed that many circumstellar disks contain intricate radial substructures (ALMA

Partnership et al. 2015; Andrews et al. 2016; Zhang et al. 2016; Nomura et al. 2016;

Pérez et al. 2016; Isella et al. 2016; Cieza et al. 2016; van der Plas et al. 2017; Fedele

et al. 2017), opening the door for previously inaccessible studies of the physical nature

of disks. A number of physical processes have been proposed to explain the formation

of rings and gaps in disks, including gap clearing by planets (Dong et al. 2015; Dipierro

et al. 2015; Dong et al. 2017; Bae et al. 2017), rapid pebble growth at the condensation

fronts of abundant volatile species (Zhang et al. 2015), the pileup of volatile ices in

sintering zones just outside snow lines (Okuzumi et al. 2016), sharp changes in the

disk viscosity at the boundaries of non-turbulent ‘dead zones’ (Flock et al. 2015; Ruge

et al. 2016), magnetic self-organization through zonal flows (Béthune et al. 2017), and
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the secular gravitational instability (Takahashi & Inutsuka 2014).

We presented, in Suriano et al. (2017), a novel mechanism for forming rings and

gaps in magnetically coupled disk-wind systems in the presence of Ohmic resistivity,

which is the dominant non-ideal magnetohydrodynamic (MHD) effect in the inner

(sub-au) part of the disk (Wardle 2007; Turner et al. 2014b). It relies on a magnetically

driven disk wind (Blandford & Payne 1982) to remove angular momentum from the

disk at a rate that varies strongly with radius, leading to a large spatial variation

in accretion rate and thus the disk surface density. Observationally, there is now

growing evidence for rotating winds removing angular momentum from disks (Simon

et al. 2016; Hirota et al. 2017; Tabone et al. 2017; Lee et al. 2018). Theoretically,

a picture of wind-driven disk evolution is also beginning to emerge, with non-ideal

MHD effects (Ohmic resistivity, ambipolar diffusion, and the Hall effect) suppressing

MHD turbulence from the magnetorotational instability (MRI; Balbus & Hawley

1991) over a wide range of radii, which leaves MHD disk winds as the primary driver

of disk accretion in these regions (Fleming et al. 2000; Fleming & Stone 2003; Bai &

Stone 2011, 2013; Kunz & Lesur 2013; Gressel et al. 2015).

In this follow-up work, we focus on the intermediate radii of young star disks (a few

to tens of au) where ambipolar diffusion (AD) starts to become the most important

non-ideal MHD effect, especially in the upper layers of the disk (Wardle 2007; Turner

et al. 2014b). We find that rings and gaps are naturally produced in the presence of

a significant poloidal magnetic field, just as in the resistive case studied in Suriano

et al. (2017). We show that a relatively laminar disk-wind system develops in the

presence of a relatively strong ambipolar diffusion, which makes it easier to analyse

the simulation results and identify a new mechanism for ring and gap formation. The

mechanism is driven by reconnection of the highly pinched poloidal magnetic field in
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a midplane current sheet steepened by ambipolar diffusion (Brandenburg & Zweibel

1994), in a manner that is reminiscent of the tearing mode (Furth et al. 1963) or

the pinch-tearing mode (Latter et al. 2009). We show that the reconnection leads to

weakening of the poloidal field in some regions, which accrete more slowly and form

rings, and field concentration in others, where accretion is more efficient creating

gaps.

The rest of the Chapter is organized as follows. In Section 3.2 we describe the sim-

ulation setup, including the equations solved, the initial disk model, and the boundary

conditions. Section 3.3 analyses the results of a reference simulation in detail and ex-

plains how rings and gaps are formed in the coupled disk-wind system in the presence

of relatively strong ambipolar diffusion. In Section 3.4 we explore how changes in the

magnetic field and ambipolar diffusion strength modify the picture of the reference

run. In Section 3.5 we compare to other similar works in the field and discuss the

implications of our work on dust settling, growth, and trapping that are important to

the formation of planetesimals and planets. Finally, Section 3.6 concludes with the

main results of this study.

3.2 Problem setup

3.2.1 MHD equations

We use the ZeusTW code (Krasnopolsky et al. 2010) to solve the time-dependent mag-

netohydrodynamic (MHD) equations in axisymmetric spherical coordinates (r, θ, φ).

The ZeusTW code is based on the ideal MHD code, ZEUS-3D (version 3.4; Clarke

1996, 2010), which is itself developed from ZEUS-2D (Stone & Norman 1992a,b).

In the ZeusTW code, Ohmic resistivity is treated using the algorithm described in



92

Fleming et al. (2000) and AD is implemented using the fully explicit method of Mac

Low et al. (1995) (see also Li et al. 2011). The equations solved are

∂ρ

∂t
+∇ · (ρv) = 0, (3.1)

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇P + J ×B/c− ρ∇Φg, (3.2)

∂B

∂t
= ∇× (v ×B)− 4π

c
∇× (ηOJ + ηAJ⊥) , (3.3)

∂e

∂t
+∇ · (ev) = −P∇ · v, (3.4)

where the internal energy is e = P/(Γ− 1) and Γ is the adiabatic index. The current

density is J = (c/4π)∇×B and the current density perpendicular to the magnetic

field is J⊥ = −(J × B) × B/B2. The Ohmic resistivity is ηO and the effective

ambipolar diffusivity ηA is defined as

ηA =
B2

4πγρρi
, (3.5)

where ρi is the ion density and γ = 〈σv〉i/(m + mi) is the frictional drag coefficient

with units of cm3 g−1 s−1. The remaining parameters have their usual definitions.

When referring to cylindrical coordinates, we will use the notation (R, φ, z) such that

R = r sin θ and z = r cos θ.

3.2.2 Initial conditions

The initial conditions are similar to those in Suriano et al. (2017). We describe them

here in detail for completeness. Specifically, the simulation domain is separated into

two regions: a thin, cold, rotating disk orbiting a 1 M� central source at the grid origin
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and an initially non-rotating, hot corona above the disk that is quickly replaced by a

magnetic wind driven from the disk. We choose the adiabatic index to be Γ = 1.01

so that the material in the simulation domain is locally isothermal in the sense that

any parcel of disk material nearly retains its initial temperature no matter where it

moves. The initial temperature distribution is assumed to decrease with radius as a

power-law T ∝ r−1, so that the sound speed is proportional to the local Keplerian

speed.

3.2.2.1 Disk

The geometrically thin disk is characterized by the dimensionless parameter ε =

h/r = cs/vK � 1, where h is the disk scale height, cs is the isothermal sound speed,

and vK is the Keplerian speed. The initial value of ε is set to 0.05 for all simulations

in this work. The disk is limited to the equatorial region where the polar angle

θ ∈ [π/2− θ0, π/2 + θ0], with disk (half) opening angle set to θ0 = arctan(2ε), i.e.,

the initial disk half-thickness is set to twice the scale height. This choice is somewhat

arbitrary, but a more elaborate treatment of the initial disk surface is not warranted

because the structure of the disk surface is quickly modified by a magnetic wind. The

disk density takes the form of a radial power law multiplied by a Gaussian function

of z/r = cos θ,

ρd(r, θ) = ρ0

(
r

r0

)−α
exp

(
−cos2 θ

2ε2

)
, (3.6)

as determined by hydrostatic balance. The subscript ‘0’ refers to values on the disk

midplane at the inner radial boundary. For all simulations shown in this paper, we

use α = 3/2. The disk pressure is set as

Pd(r, θ) = ρdc
2
s, (3.7)
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with cs = εvK . The radial pressure gradient causes the equilibrium rotational velocity

vφ to be slightly sub-Keplerian,

vφ = vK
√

1− (1 + α)ε2. (3.8)

3.2.2.2 Corona

We require that the hydrostatic corona is initially in pressure balance with the disk

surface. This constraint sets the density drop from the disk surface to the corona

by 1/[(1 + α)ε2] = 160, and a corresponding increase in temperature from the disk

surface to the corona by the same factor. Therefore, the coronal density and pressure

are

ρc(r) = ρ0ε
2(1 + α) exp

[
−cos2 θ0

2ε2

](
r

r0

)−α
≡ ρc,0

(
r

r0

)−α
, (3.9)

Pc(r) = ρcv
2
K/(1 + α). (3.10)

It is, however, important to note that the initial hot coronal material is quickly

replaced by the colder disk material that remains nearly isothermal as it is launched

from the disk surface into a wind.

3.2.2.3 Magnetic field

To ensure that the magnetic field is divergence-free initially, we set the magnetic field

components using the magnetic flux function Ψ as in Zanni et al. (2007),

Ψ(r, θ) =
4

3
r20Bp,0

(
r sin θ

r0

)3/4
m5/4

(m2 + cot2 θ)
5/8
, (3.11)

where Bp,0 sets the scale for the poloidal field strength and the parameter m controls

the bending of the field. The value of Bp,0 is set by the initial plasma-β, the ratio of
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the thermal to magnetic pressure, on the disk midplane, which is approximately 103

(0.922× 103 to be more exact) for most of the simulations. Since varying m from 0.1

to 1 has little effect on the long-term disk or wind magnetic field structure (Stepanovs

& Fendt 2014), we use m = 0.5 for all simulations presented in this work. The initial

magnetic field components are then calculated as

Br =
1

r2 sin θ

∂Ψ

∂θ
, (3.12)

Bθ = − 1

r sin θ

∂Ψ

∂r
. (3.13)

3.2.3 Ambipolar diffusion

The magnetic diffusivities associated with non-ideal MHD effects, including ambipolar

diffusion, depend on the densities of charged particles, which can in principle be

computed through detailed chemical networks (e.g., Bai & Goodman 2009). Here, as

a first step toward a comprehensive model, we will simply parametrize the density of

ions as

ρi = ρi,0f(θ)

(
ρ

ρ0

)αAD
, (3.14)

where

f(θ) =


exp

(
cos2(θ+θ0)

2ε2

)
θ < π/2− θ0

1 π/2− θ0 ≤ θ ≤ π/2 + θ0

exp
(

cos2(θ−θ0)
2ε2

)
θ > π/2 + θ0.

(3.15)

The angular dependence f(θ) is chosen such that, at a given radius, the ion density

increases rapidly in the tenuous disk atmosphere, to mimic the ionization by high

energy photons (UV and X-rays) from the central young star in addition to cosmic

rays (e.g., Umebayashi & Nakano 1981; Perez-Becker & Chiang 2011a; Glassgold et al.
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2017). In the simulations presented in this work, we take αAD = 0.5. This power-

law dependence for the ion density is roughly what is expected when the volumetric

cosmic ray ionization rate is balanced by the recombination rate of ions and electrons,

under the constraint of charge neutrality (i.e., ζn ∝ neni ∝ n2
i , where ζ is the cosmic

ray ionization rate per hydrogen nucleus; see page 362 of Shu 1992).

The magnitude of the ion density, and therefore the ion-neutral drag force, Fd =

γρρi(vi − v), is sometimes quantified through the dimensionless ambipolar Elsasser

number (Chiang & Murray-Clay 2007; Perez-Becker & Chiang 2011b; Bai & Stone

2011),

Λ =
γρi
Ω

=
v2A
ηAΩ

, (3.16)

where γ is the frictional drag coefficient. Physically, the Elsasser number is the

collision frequency of a neutral particle in a sea of ions of density ρi, normalized

to the Keplerian orbital frequency. For example, the Elsasser number will be unity

when the neutral particle collides 2π times in one orbital period. As the neutral-ion

collision frequency increases to infinity, so does the Elsasser number, and the bulk

neutral medium becomes perfectly coupled to the ions/magnetic field (i.e., the ideal

MHD limit). Similarly, as the Elsasser number drops to zero, the neutrals and ions

no longer collide; the neutrals are entirely decoupled from the magnetic field. For

our reference simulation, we choose the Elsasser number to be Λ0 = 0.25 at the inner

boundary on the disk midplane, but will vary this parameter to gauge its effects on

the coupled disk-wind system. The choice of αAD = 0.5, assuming that the drag

coefficient γ is constant, implies that the Elsasser number is proportional to r3/4,

thus larger radii are better coupled than smaller radii in the reference simulation.

In some cases, we have considered an explicit Ohmic resistivity ηO in addition to

ambipolar diffusion. In these cases, it is useful to compute the effective ambipolar
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diffusivity ηA according to equation (3.5), to facilitate the comparison of the two

effects.

3.2.4 Grid

The equations are solved for r ∈ [1, 100] au and θ ∈ [0, π]. The radial grid limits

are chosen such that they encompass the anticipated disk region where ambipolar

diffusion is the most important non-ideal effect, especially in the upper layers of

the disk (Turner et al. 2014b). A ‘ratioed’ grid is used in the radial direction such

that dri+1/dri = 1.012 is constant and ri+1 = ri + dri. The grid spacing at the

inner edge is set as dr0 = 2.3r0dθ. The grid is uniform in θ with a resolution of

nr × nθ = 400 × 720. This results in 24 grid cells from the disk midplane to surface

(at two disk scale heights) in the reference run.

3.2.5 Boundary conditions

Both the inner and outer radial boundaries use the standard outflow condition in

Zeus codes, where the flow quantities in the first active zone are copied into the ghost

zones except for the radial component of the velocity, vr, which is set to zero in the

ghost zones if it points into the computation domain in the first active zone (i.e., if

vr > 0 in the first active zone at the inner radial boundary or vr < 0 in the first active

zone at outer radial boundary). The standard axial reflection boundary condition is

used on the polar axis (θ = 0 and π), where the density and radial components of

the velocity and magnetic field (vr and Br) in the ghost zones take their values in the

corresponding active zones while the polar and azimuthal components (vθ, Bθ, and

vφ) take the negative of their values in the corresponding active zones. We set Bφ

to vanish on the polar axis and on the inner radial boundary, since it is taken to be
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non-rotating.

3.3 Reference model and the formation of rings

and gaps through reconnection

We will first discuss in detail a reference simulation to which other simulations with

different parameters can be compared. The parameters used in all simulations are

listed in Table 3.1. The initial density at r0 on the disk midplane is ρ0 = 1.3 ×

10−10 g cm−3. Of the parameters to be changed in later simulations, this ‘reference’

simulation uses β0 ∼ 103 and Λ0 = 0.25. Note that the radial power-law dependence

of the ambipolar Elsasser number is Λ ∝ r3/4, whereas the initial distribution of

plasma-β is constant with radius.

3.3.1 Global picture

The overall global evolution of the disk is seen in Fig. 3.1. The frames show the

simulation at times of 0, 200, 1000, and 2500t0 (left to right), where t0 = 1 yr is

the orbital period at the inner edge of the simulation domain (r0 = 1 au). The

disk wind launching proceeds in an inside-out fashion, i.e, the wind is launched from

larger disk radii as the simulation progresses. By 1000t0 (one orbit at the outer radius

r = 100 au), the simulation appears to have no memory of the initial simulation setup

and the magnetic field geometry is conducive to launching an MHD disk wind at all

radii. From initial inspection, the disk wind that is launched is very steady in time

(see the supplementary material of Suriano et al. 2018 online for an animated version

of Fig. 3.1). The magnetic flux is also very much fixed in time following an initial

adjustment period of approximately t/t0 = 100. From this point on, the poloidal
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Fig. 3.1.— A representative (‘reference’) axisymmetric simulation. Shown is the
mass volume density (logarithmically spaced colour contours in units of g cm−3),
the poloidal magnetic field lines (magenta), and the poloidal velocity unit vectors
(black). Panels (a)-(d) corresponding to simulation times of 0, 200, 1000, and 2500
inner orbital periods, respectively. (See the supplementary material of Suriano et al.
2018 in the online journal for an animated version of this figure.)
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magnetic field lines stay in close proximity to their equilibrium footpoint in the disk

(magenta lines in Fig. 3.1). However, there is persistent laminar accretion radially

inward through the disk and across magnetic field lines.

A relatively massive and steady wind is launched from the disk surface for almost

the entire simulation. Figure 3.2 plots the mass outflow rate for the wind through

a sphere of radius r = 10 au, excluding the disk region (|π/2 − θ| < 2ε; black

line). The mass outflow rate slowly decreases for times t/t0 & 300 from a value of

Ṁw ≈ 7 × 10−7 M� yr−1 down to approximately 3 × 10−7 M� yr−1 by t/t0 = 5000.

Most of the mass lost in the wind moves rather slowly, with a radial expansion speed

less than the local Keplerian rotation speed at r = 10 au for a one solar-mass star

(vr < 10 km s−1; blue line). This picture is reminiscent of Suriano et al. (2017),

where a weak initial magnetic field (again, β ∼ 103) is able to drive slow and massive

outflow. There is, however, a substantial mass loss from a relatively fast outflow

(vr > 10 km s−1) as well (red line). Note that the mass infall rate in the low-density

polar region is of the order 10−13 M� yr−1, which is much smaller than the total mass

outflow rate. The mass accretion rate through the disk at this same radius (r = 10 au)

is of the same order as the total outflow rate (green line). It stays relatively constant

at Ṁacc ≈ 8× 10−7 M� yr−1, even as the outflow rate decreases slowly at later times.

3.3.2 Disk-wind connection

Figure 3.3 plots various physical quantities of the reference simulation at t/t0 = 2500

up to a radius of r = 20 au. Panel (a) shows the poloidal velocity as the accreting

disk material is peeled off the disk surface and launched in a wind. The velocity of

the disk accretion is of the order 1 m s−1, while in the wind, material is accelerated up

to velocities of vp & 10 km s−1. The disk and wind regions are easily distinguishable
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Fig. 3.2.— The mass outflow rates (M� yr−1) as a function of time in the reference
simulation through a sphere of radius r = 10 au. The total mass outflow rate both
above and below the disk (|π/2− θ| > 2ε) is shown in black. It is separated into two
velocity components, with the fast component (vr > 10 km s−1) shown in red and the
slow component (vr ≤ 10 km s−1) in blue. The green line shows the mass accretion
rate through the disk (|π/2− θ| < 2ε).



102

Fig. 3.3.— The reference simulation at time t/t0 = 2500. The colour contours show
(a) the logarithm of poloidal velocity (cm s−1), (b) the logarithm of plasma-β, (c) the
ratio of the toroidal to the poloidal magnetic field components, Bφ/Bp, (d) the loga-
rithm of density (g cm−3), (e) an axisymmetric, face-on view of the disk surface den-
sity distribution normalized to the initial power-law distribution, Σi = Σ0(r/r0)

−1/2,
and (f) the mass flux per unit polar angle, dṀ/dθ = 2πr2ρvr sin θ, normalized to
Ṁ0 = r20ρ0cs,0. Poloidal magnetic field lines (i.e., magnetic flux contours) are shown
in grey in panel (c). Panel (d) shows two specific poloidal magnetic field lines with
midplane footpoints at r = 8 au (magneta; see Fig. 3.4) and r = 7 au (black; see
Fig. 3.5). Poloidal velocity unit vectors are plotted in black in panels (a), (c), (d),
and (f). (See the supplementary material of Suriano et al. 2018 in the online journal
for an animated version of this figure.)



103

in this plot. They are also quite distinct in panel (b), where the ratio of the thermal

pressure to the magnetic pressure, i.e., plasma-β, is plotted. The initial β at the disk

midplane is ∼ 103 and it is constant as a function of radius. At the time shown,

the thermal and magnetic pressures become approximately equal at the base of the

wind (β ∼ 1), while β decreases to 10−2 or less in the wind zone. The bulk of the

disk has plasma-β of approximately 10, although there remains a thin layer where

the plasma-β peaks at a value slightly larger than the initial β0. This thin layer is

where the toroidal magnetic field goes to zero as it reverses direction; it is therefore

a current layer (see also the simulations of Bai & Stone 2013; Bai 2013; Gressel et al.

2015; Bai & Stone 2017; Béthune et al. 2017; Bai 2017). This can be seen in panel

(c), which plots the ratio of the toroidal magnetic field to the poloidal magnetic field,

Bφ/Bp. The white regions are where Bφ > 0 in the disk and the black regions have

Bφ < 0. The poloidal magnetic field lines (i.e., constant magnetic flux contours) are

shown in grey. Note that the toroidal field greatly dominates the poloidal field in

distinct radial locations, while the poloidal field is stronger (with a smaller |Bφ/Bp|)

in adjacent regions. These regions with less twisted field lines correspond to regions

with lower densities in the disk, as shown in panel (d). They will be referred to as

‘gaps.’ The neighbouring regions, where the field lines are more twisted, have higher

densities; they will be referred to as ‘rings.’ The rings and gaps are shown more

clearly in the face-on view of the disk in panel (e), where the distribution of the

surface density (normalized to the initial distribution) is plotted. How such rings and

gaps form will be discussed in detail in Section 3.3.3. Here, we would like to point

out that there is vigorous accretion (and some expansion) in both types of regions,

as shown in panel (f), which plots the spatial distribution of the radial mass flux per

unit polar angle, dṀ/dθ = 2πr2ρvr sin θ. The blue cells show negative mass flux or
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inward accretion and the red cells represent positive mass flux or outward expansion.

We see that most of the accretion in the disk occurs along the thin current sheet

previously mentioned. In disk regions above and below this layer, there is a strong

variation in mass flux, with larger outward mass flux from rings compared to those

from the adjacent gaps, although this strong variation does not appear to extend into

the (faster) wind zone.

To understand the connection between the disk region and wind region more

quantitatively, we plot various physical quantities along two representative field lines.

In Fig. 3.4, we show plots along a magnetic field line that passes through a gap at

a radius of 8 au on the midplane (see the magenta magnetic field line plotted in

Fig. 3.3d). Panel (a) of Fig. 3.4 shows that the density peaks near the midplane, at a

value of approximately 10−12 g cm−3. It drops off quick inside the disk (the vertical

dashed lines mark the initial disk surface at two scale heights). Beyond the sonic

point (marked by a yellow circle on the curve), the decrease in density becomes less

steep, transitioning from an exponential drop-off to a power-law decline, as expected

as the approximately hydrostatic disk transitions to a supersonic wind. Even in this

low density gap region, the disk is still dominated by the thermal pressure, with a

plasma-β of order 10 near the midplane (panel b). The plasma-β decreases rapidly

away from the midplane, reaching a value of order 0.1 at the sonic point; beyond the

sonic point, the supersonic wind is completely magnetically dominated. This magnetic

field, specifically its pressure gradient, is responsible for accelerating the outermost

layer of the disk through the sonic point to produce the wind. The wind acceleration

along this particular field line is illustrated in panel (c), which shows clearly the

transition from slow inward motion near the disk midplane (vr < 0, i.e., accretion)

to fast outflow through the sonic point at approximately three disk scale heights.
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Fig. 3.4.— Physical quantities plotted along a poloidal magnetic field line as a func-
tion of the vertical height z. This representative field line passes through a low-density
gap at r = 8 au. The panels show (a) the density distribution, (b) plasma-β for the to-
tal magnetic field strength (black) and for the poloidal magnetic field strength (red),
(c) the poloidal components of the neutral (solid lines) and ion velocities (dashed
lines), and the adiabatic sound speed (dash-dotted line), and (d) the magnetic field
components. The yellow circles show the sonic point (where the poloidal velocity is
equal to the adiabatic sound speed) and the vertical dashed lines show the initial disk
height of z = ±2h0.
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Fig. 3.5.— Physical quantities plotted along a poloidal magnetic field line as a func-
tion of the vertical height z. This representative field line passes through a dense ring
at r = 7 au. The panels show (a) the density distribution, (b) plasma-β for the total
magnetic field strength (black) and for the poloidal magnetic field strength (red), (c)
the poloidal components of the neutral (solid lines) and ion velocities (dashed lines),
and the adiabatic sound speed (dash-dotted line), and (d) the magnetic field compo-
nents. The yellow circles show the sonic point (where the poloidal velocity is equal to
the adiabatic sound speed) and the vertical dashed lines show the initial disk height
of z = ±2h0.
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The sound speed remains nearly constant along the field line, which is indicative of a

‘cold’ wind with a temperature comparable to that of the disk. Note that the outflow

acceleration beyond the sonic point is rather gradual, with the velocity increasing

over many disk scale heights. This is consistent with magnetically driven winds with

heavy mass loading (Anderson et al. 2005).

In panel (c), we have plotted ion speeds together with the speeds for the bulk

neutral material. The largest difference is between the velocity component vθ and

vi,θ, especially in the wind zone. In particular, vi,θ is more positive than vθ below the

disk (negative z), indicating that the ions are moving faster than the neutrals away

from the disk. There must be a magnetic force pointing away from the disk which

drives the ion-neutral drift through ambipolar diffusion; it is the same force that

accelerates the wind in the first place. The situation is similar above the disk as the

magnetic force that drives the wind also moves the ions away from the disk faster than

the neutrals in the negative θ direction. This force comes mostly from the toroidal

component of the magnetic field, which dominates the poloidal component in the wind

zone, as shown in panel (d). The gradual decrease of the toroidal component, evident

in panel (d), yields a magnetic pressure gradient along the poloidal field line that

lifts up the material near the disk surface against gravity and slowly accelerates it to

produce a wind. Closer to the midplane, the poloidal field component (particularly

Bθ) becomes more dominant, indicating that the field line passes through the gap

region of the disk with relatively little bending in the r direction or twisting in the φ

direction.

The situation is quite different along the field line that passes through a dense

ring at a radius of 7 au (Fig. 3.5). Here, the density at the midplane is an order

of magnitude higher than that of the neighbouring gap (see Fig. 3.4a). It decreases
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rapidly away from the midplane and the decrease becomes slower beyond the sonic

point, signalling the transition from the disk to a wind. The plasma-β through the

ring is more than 103 near the disk midplane, more than two orders of magnitude

larger than that in the gap. In other words, as measured by β, the ring is much less

magnetized than the gap. The difference is even larger when only the poloidal field

component is considered. From the red curve in Fig. 3.5(b), which plots the ratio

of the thermal pressure to the magnetic pressure due to the poloidal field only, it

is clear that the poloidal field in the ring is not only weak (and much weaker than

the toroidal component) but also highly variable as a function of z. Nevertheless,

the basic disk-wind structure is preserved, as shown in panel (c), where the poloidal

components of the ion and neutral velocities are plotted. Again, the transition from

a slowly moving disk (in the poloidal plane) to a faster expanding supersonic wind

is evident. Compared to the relatively smooth accretion in the gap, which has a

single negative peak in vr(z) (see red line in Fig. 3.4c), the radial flow in the ring

is much more complex: it has six negative peaks and at least three positive peaks,

indicating the coexistence of multiple channels of accretion and expansion in the ring.

These channels are reflected in the magnetic structure (panel d), particularly in the

vertical distribution of the radial component, Br(z), which has several sign reversals

consistent with channel flows in the weakly magnetized ring. As alluded to earlier,

the most striking difference in the magnetic field between the ring and the gap is the

strength of the poloidal magnetic field, especially the polar component, Bθ, which is

much lower in the ring than in the gap (compare Fig. 3.4d and 3.5d). In the ring, the

magnetic field is completely dominated by the toroidal component, except near the

midplane where Bφ changes direction.
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3.3.3 Formation of rings and gaps

In this subsection, we will demonstrate that the formation of rings and gaps in the

reference simulation is closely related to the magnetic structure that develops in the

disk, particularly the sharp pinching of the poloidal field line near the midplane that

leads to magnetic reconnection. This field pinching is caused by the development of

a current sheet near the midplane, as we show next.

3.3.3.1 Midplane current sheet

We start by reminding the reader of the simulation setup, where the disk is rotating

slightly sub-Keplerian for |π/2 − θ| < 2ε, the coronal regions above and below the

disk are not rotating, and the magnetic field has no φ component initially. As the

simulation begins to run, a toroidal magnetic field is quickly generated near the

boundary between the rotating disk and the stationary corona due to differential

rotation. This can been seen in the left panel of Fig. 3.6, which plots the toroidal

component of the magnetic field as a function of θ at a representative disk radius

r = 20 au. At t/t0 = 10, the solid black line shows that a toroidal magnetic field has

already been generated near the disk surface, but has yet to penetrate into the bulk

of the disk. Associated with the variation of Bφ with polar angle θ is a radial current,

Jr =
c

4π

1

r sin θ

∂(Bφ sin θ)

∂θ
≈ c

4π

dBφ

rdθ
, (3.17)

where sin θ ≈ 1 in the thin disk. This current is plotted in the right panel of Fig. 3.6,

which shows two positive peaks near 5◦ above and below the disk midplane at time

t/t0 = 10, corresponding to the sharp drop of |Bφ| going from the corona into the

disk. At later times, the region of high toroidal field, |Bφ|, above and below the
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Fig. 3.6.— The toroidal magnetic field Bφ (left) and the radial current density Jr
(right) plotted versus 90◦ − θ (zero at the midplane and negative below it) at radius
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period t0.
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midplane expands both outward into the corona and, more importantly, toward the

disk midplane. The latter drives the two current layers (one on each side of the

midplane) towards the midplane, until they merge together into a single, thin, current

sheet, as shown in Fig. 3.6 (right).

Ambipolar diffusion plays a key role producing the thin midplane current sheet.

First, were it not for the presence of AD (or some other magnetic diffusivity, such as

resistivity), prominent avalanche streams would have developed near the disk surface,

which would drive the entire disk and its envelope into an unsteady state and make the

formation of a laminar midplane current sheet impossible (see Suriano et al. 2017 and

Section 3.4.1 below)1. Second, as first stressed by Brandenburg & Zweibel (1994),

AD tends to steepen the magnetic gradient near a magnetic null, i.e., where the

magnetic field changes polarity. The reason is that the Lorentz force associated with

the magnetic pressure gradient drives the ions (relative to the neutrals) toward the

null from both sides. Since the field lines (of opposite polarity across the null) are tied

to the ions, they are dragged towards the null as well, leading to a steepening of the

magnetic gradient, which in turn yields a stronger magnetic force that drives the ions

and the field lines even closer to the null. Since the ambipolar magnetic diffusivity, ηA,

is proportional to the field strength (see equation 3.5) and thus vanishes at the null,

this steepening would result in an infinitely thin, singular, current sheet in principle.

In practice, the thickness of the current sheet is limited by the grid resolution.

Sharp magnetic field reversals that give rise to thin current sheets are prone to

reconnection. However, this is not the case for the midplane current sheet shown

in Fig. 3.6, because it is produced by the reversal of the toroidal field component

Bφ and it is impossible to reconnect oppositely directing toroidal fields under the

1In this reference run, AD does not appear to suppress the development of the MRI completely.
Channel-like features are evident at large radii where the disk is better coupled to the magnetic field
as measured by the Elsasser number (see Fig. 3.1c).
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adopted axisymmetry2. Nevertheless, this primary current sheet leads to another

current component that does allow for reconnection.

3.3.3.2 Reconnection of pinched radial magnetic field

The secondary component of the midplane current sheet develops as a result of mass

accretion in the disk, which is concentrated in the primary radial current (Jr) sheet

near the midplane (see Fig. 3.6). The mass accretion is driven by the removal of

angular momentum due to the Lorentz force (∝ JrBθ) in the azimuthal direction,

which peaks in the radial current sheet where the toroidal magnetic field changes

sign. Pictorially, as the φ component of the magnetic field changes from the +φ

direction below the disk to the −φ direction above the disk in a thin midplane layer,

the magnetic field lines become severely kinked in the azimuthal direction. The sharp

field kink generates a magnetic tension force in the −φ direction that exerts a braking

torque and drives the disk accretion in the current sheet.

The accretion through the midplane current sheet now drags the poloidal magnetic

field lines inward with the flow. This results in a pronounced radial pinch of the

poloidal magnetic field, which transports the poloidal magnetic flux inward and yields

another current component in the azimuthal direction, Jφ. Eventually, the radial

pinch becomes so severe that the magnetic field reconnects, forming poloidal magnetic

field loops that are reminiscent of the tearing mode instability (Furth et al. 1963; see

also Zweibel & Yamada 2009). An example of the reconnection process is shown in

Fig. 3.7, which plots lines of constant poloidal magnetic flux, i.e. poloidal magnetic

field lines, along with the ratio of the toroidal to poloidal magnetic field, Bφ/Bp

(colour contours), at a radius centred on r = 6.5 au from time t/t0 = 200 to 230. At

2Reconnection of the highly pinched toroidal field is expected in 3D, and will be explored in a
future investigation.
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the first frame shown, the poloidal magnetic field highlighted in bold already has a

kink across the midplane. The pinch grows with time until the field line is stretched

almost parallel to the midplane over approximately four radial grid cells at t/t0 = 210.

By the next frame shown at t/t0 = 220, the field has reconnected, forming a loop

near r = 6.4 au. In the last frame the loop has disappeared, however, the process

of its formation has left a lasting mark on the magnetic field structure. The region

now has a much larger toroidal magnetic field component compared to its poloidal

component. The now weaker poloidal field strength can be seen clearly in the last

panel from the lack of field lines in the post-reconnection region.

3.3.3.3 Reconnection-driven ring and gap formation

The general picture for the reconnection-driven ring and gap formation is as follows. A

poloidal magnetic field line that initially threads the disk rather smoothly is dragged

by preferential accretion near the midplane into a highly pinched radial configuration

(see upper-right panel of Fig. 3.7 for an illustration). Reconnection of the highly

pinched field line produces a poloidal magnetic loop next to a poloidal field line

that still threads the disk more smoothly (see lower-left panel of Fig. 3.7). After

reconnection, the material trapped on the magnetic loop is detached from the original

(pre-reconnection) poloidal field line, which results in the separation of matter and

(poloidal) magnetic flux. Specifically, there is no net poloidal magnetic flux passing

through the matter on the loop and there is less matter remaining on the original

poloidal field line (since some of the matter on the original field line is now on the

detached magnetic loop). The net effect is a redistribution of the poloidal magnetic

flux away from the loop-forming region into an adjacent region where the poloidal

flux accumulates. Since mass accretion tends to be faster in regions with stronger
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Fig. 3.7.— Poloidal magnetic field lines at four different times are shown in grey,
with a reconnecting field line highlighted in black. The colours show the ratio of the
toroidal to poloidal magnetic field, Bφ/Bp.
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poloidal magnetic fields, it is not surprising that the reconnection-induced variation

of the poloidal field strength with radius would lead to a spatial variation in the

mass accretion rate that would in turn lead to spatial variation in the mass (surface)

density, i.e., the formation of rings and gaps. 3

The preferential concentration of poloidal field lines inside the low-density gaps of

the disk is illustrated pictorially in Fig. 3.8(a), which is a snapshot of the inner part

of the reference simulation (up to 15 au) at a representative time when the simulation

has reached a quasi-steady state, t/t0 = 2500. The field concentration is quantified in

panel (b), which plots the vertical component of the magnetic field (Bz, in red) at the

midplane and surface density of the disk (in black), both relative to their initial values

at t = 0. Two features stand out: (1) there is a strong anti-correlation between the

surface density and vertical field strength, as expected in the reconnection-induced

scenario of ring and gap formation, and (2) the poloidal magnetic field is typically

much weaker in the high-density ring regions (where Bz is close to zero) than in the

low-density gap regions (where Bz is increased over its initial value by a factor of

2− 4). This drastic segregation of poloidal magnetic flux relative to matter appears

to be quite stable with time (persisting for thousands of inner orbits), despite the fact

that there is continued mass accretion through both the rings and gaps.

For our reference run, we believe that the key to maintaining the concentration

of poloidal magnetic flux in the gap regions is ambipolar diffusion: it allows the bulk

neutral material to accrete radially inward through the gaps without dragging the

ions (and the magnetic field lines tied to them) with it. This is illustrated in panel

(c) of Fig. 3.8, which plots the radial component of the ion (red line) and neutral

(black line) velocity at the midplane. As expected, the neutrals accrete faster in the

3The stronger poloidal field in a gap can also lead to a faster depletion of the local disk material
via a stronger magnetically driven wind (e.g., Casse & Ferreira 2000). However, this effect is less
important compared to the faster accretion in the gap in general.
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Fig. 3.8.— The density, magnetic field strength, and velocities plotted up to r = 15 au
at t/t0 = 2500. The panels show (a) the logarithm of the density (g cm−3) in colour
and the poloidal magnetic field lines (i.e., magnetic flux contours) in black, (b) the
surface density normalized to the initial radial distribution, Σi ∝ r−1/2, and the
vertical magnetic field strength at the midplane normalized to its initial distribution,
Bz,i ∝ r−5/4, (c) the radial velocity (km s−1) of neutrals (black) and ions (red) at
the midplane, and (d) the density-weighted vertical average of the radial velocity
(km s−1) of neutrals (black) and ions (red) over z = ±2h. (See the supplementary
material of Suriano et al. 2018 in the online journal for an animated version of this
figure.)
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Fig. 3.9.— The surface density of the disk (normalized to its initial radial distribution)
as a function of radius and time, showing that most of rings and gaps created in the
reference run remain stable for thousands of inner orbital periods.
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low-density gaps than in the high-density rings. One may naively expect the same

trend for the ions but, in the presence of significant ambipolar diffusion, this is not

necessarily the case. Indeed, at the time shown in Fig. 3.8, the ions are moving

outward in several of the gaps, especially the two near r = 5 and 6.5 au. The ions

are forced to expand against the infalling neutrals by an outward Lorentz force due

to either a temporary poloidal flux concentration near the inner edge of the gap (in

a manner that is reminiscent of the forced ion-neutral separation in the AD-shock in

magnetized accretion onto low-mass protostars first described in Li & McKee 1996)

or an outward magnetic pressure gradient from the toroidal field component. In any

case, the radially outward Lorentz force in the gap appears strong enough to keep

the ions (and the poloidal field lines) in a state of dynamic equilibrium against the

rapid infall of neutrals, at least under the assumption of (2D) axisymmetry. The

dynamic equilibrium of the ions (and the field lines attached to them) is shown more

clearly in Fig. 3.8(d), which plots the vertically averaged radial velocity weighted by

density. The average ion speed fluctuates around zero as the neutrals accrete inward,

especially in the gap regions. Whether this remains true in full 3D simulations is

unclear and will be explored in future investigations.

The rings and gaps, once fully developed, remain remarkably stable over time.

This is illustrated in Fig. 3.9, where the surface density (relative to its initial distri-

bution) is plotted at each radius as a function of time, as done in Béthune et al. (2017)

for plasma-β (see their Fig. 30). Note that most of the rings and gaps are stable for

at least 4000 inner orbital periods. There are a few exceptions. For example, the two

rings near 10 au appear to merge together around t/t0 = 5000, whereas the ring at

6 au starts to fade away at later times. It would be interesting to determine whether

these rings and gaps remain stable for long periods of time in full 3D simulations.
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3.4 Effects of magnetic coupling and field strength

on ring and gap formation

The most important features in the reference simulation are the rings and gaps that

develop spontaneously in the disk. In this section, we will explore how their formation

is affected by how well the ions (and therefore the magnetic field) are coupled to

the bulk neutral fluid. The magnetic field coupling is changed by varying the AD

Elsasser number at r0 and θ = π/2, Λ0, which sets the scale for the Elsasser number

everywhere; the ion density profile is unchanged. The AD Elsasser number controls

the coupling between the ions and the bulk neutral fluid, as Λ ∝ γρi, where γρi is

the collision frequency between the neutrals and ions. When Λ is small, so is the

collision frequency, and, therefore, the ions/magnetic field are poorly coupled to the

neutral fluid. As Λ increases, the magnetic field becomes increasingly coupled to

the motions of the bulk neutral fluid. The ideal MHD limit is reached as the AD

Elsasser number approaches infinity, Λ → ∞. In Table 3.1, we list the simulation

runs performed to examine the effect that the magnetic coupling strength has on

the ring and gap formation mechanism described in the previous section. First, we

will present the results of the simulations as the Elsasser number increases from

0.01 to 2 (in the simulations named ad-els0.01, ad-els0.05, ad-els0.1, ad-els0.5, ad-

els1.0, and ad-els2.0), as well as the ideal MHD case (Section 3.4.1). Next, we show

the effects of introducing an explicit Ohmic resistivity into the reference simulation,

where the Ohmic resistivity, ηO, is constant everywhere and is equal to 0.26, 2.6, and

26 times the initial effective ambipolar resistivity, ηA,0, at r0 on the disk midplane

(θ = π/2). These simulations are named oh0.26, oh2.6, and oh26 respectively. They

are discussed in Section 3.4.2 together with simulations that have different initial
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magnetic field strengths, with the midplane plasma-β approximately ten times higher

(model beta1e4) and lower (beta1e2) than that of the reference run. We conclude

this section with an analysis of the magnetic stresses in the disk (Section 3.4.3).

3.4.1 AD Elsasser number

Before describing the results of the simulations, we will briefly describe our expec-

tations as the AD Elsasser number is varied in the disk. In the reference run, we

see a rather steady disk wind launched as disk material concentrates into rings and

poloidal magnetic flux concentrates into gaps. The region demagnetized of poloidal

field (where the density will grow to form a ring) develops as the radial magnetic field

is stretched towards the −r direction due to rapid accretion in the primary midplane

current layer (Jr). As discussed in Section 3.3.3.1, the development of a strong mid-

plane current layer where Bφ = 0 is a direct result of ambipolar diffusion because it

is formed as the ions and toroidal magnetic field lines drift towards the magnetic null

(Bφ = 0) relative to the bulk neutral material. In the limiting case that the Elsasser

number goes to infinity, i.e., the ideal MHD case, the AD-enabled midplane current

layer is not expected to develop and this ring and gap formation mechanism would

be turned off. Instead, the so-called ‘avalanche’ accretion streams are expected to

develop near the disk surface, which may form rings and gaps through another mech-

anism (see Suriano et al. 2017). In the other limiting case where the Elsasser number

approaches zero, the ions have no knowledge of the bulk fluid and the magnetic field

will straighten out vertically without any effect on the disk at all. In particular, the

field will neither launch a disk wind nor create any disk substructure. Therefore,

there must be a minimum Elsasser number below which the formation of rings and

gaps is expected to be suppressed.
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Fig. 3.10.— Snapshots at t/t0 = 2000 of the eight simulations where the AD Elsasser
number is varied. Shown is the mass volume density (logarithmically spaced colour
contours in units of g cm−3), the poloidal magnetic field lines (magenta), and the
poloidal velocity unit vectors (black). The AD Elsasser number increases sequentially
from panels (a)-(h). The reference simulation (ad-els0.25) is shown in panel (d).
The simulation panels in alphabetical order are: (a) ad-els0.01; (b) ad-els0.05; (c)
ad-els0.1; (d) ad-els0.25; (e) ad-els0.5; (f) ad-els1.0; (g) ad-els2.0; (h) ideal. See
Table 3.1 for details. (See the supplementary material of Suriano et al. 2018 in the
online journal for an animated version of this figure.)
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Fig. 3.11.— Face-on surface density profiles (up to a radius of 20 au) of the eight
simulations where the AD Elsasser number is varied at t/t0 = 2000. The AD Elsasser
number increases sequentially from panels (a)-(h). The reference simulation (ad-
els0.25) is shown in panel (d). The simulation panels in alphabetical order are: (a)
ad-els0.01; (b) ad-els0.05; (c) ad-els0.1; (d) ad-els0.25; (e) ad-els0.5; (f) ad-els1.0; (g)
ad-els2.0; (h) ideal. See Table 3.1 for details. (See the supplementary material of
Suriano et al. 2018 in the online journal for an animated version of this figure.)
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Table 3.1: Model parameters for all simulation runs.
β/103 γ/10−3 Λ0 = γρi,0/Ω0 ηA,0/1014 ηO/1014

[cm3 g−1 s−1] [cm2 s−1] [cm2 s−1]
ad-els0.01 0.922 0.1763 0.01 243 –
ad-els0.05 0.922 0.8816 0.05 48.6 –
ad-els0.1 0.922 1.763 0.1 24.3 –
ad-els0.25 (ref) 0.922 4.408 0.25 9.71 –
ad-els0.5 0.922 8.816 0.5 4.86 –
ad-els1.0 0.922 17.63 1.0 2.43 –
ad-els2.0 0.922 35.26 2.0 1.21 –
ideal 0.922 – – – –
oh0.26 0.922 4.408 0.25 9.71 2.5
oh2.6 0.922 4.408 0.25 9.71 25
oh26 0.922 4.408 0.25 9.71 250
beta1e2 0.0922 4.408 0.25 97.1 –
beta1e4 9.22 4.408 0.25 0.971 –
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These expectations are borne out by the simulations. Figures 3.10 and 3.11

show, respectively, the edge-on and face-on view of simulations at a common time

t/t0 = 2000 with increasing AD Elsasser numbers from panel (a) to (h). In the most

magnetically diffusive case (Λ0 = 0.01), a wind is launched steadily from the disk,

removes angular momentum from the disk and drives disk accretion that is rather

laminar (Fig. 3.10a), but there is little evidence for the development of rings and

gaps (Fig. 3.11a). Specifically, there is little evidence for the sharp radial pinching

of poloidal magnetic field lines near the midplane that is conducive to reconnection,

which is the driver of the redistribution of the poloidal magnetic flux relative to

matter and is crucial to the ring and gap formation in the scenario discussed in Sec-

tion 3.3.3. The lack of sharp radial pinching is to be expected, because it would be

smoothed out quickly by the large magnetic diffusivity. As the diffusivity decreases

(i.e., the magnetic field becomes better coupled to the bulk disk material), it becomes

easier for the midplane mass accretion to drag the poloidal field lines into a radially

pinched configuration that is prone to reconnection. Indeed, this occurs over at least

one decade in the AD Elsasser number, from Λ0 = 0.05 to 0.5, where the disk wind

remains rather steady (see Fig. 3.10b-e), but repeated field pinching and reconnection

have created multiple rings and gaps in the disk (Fig. 3.11b-e).

In the intermediate parameter regime between AD Elsasser number Λ0 = 0.05 and

0.5, rings and gaps are more prominent in the inner part of the disk than in the outer

part. This is quantified in Fig. 3.12, where the surface density of the disk (normalized

to its initial value) is plotted as a function of radius. It is clear from panels (b)-(e)

that most of the rings and gaps of high contrast are confined to a radius of order

10 au. One reason may be that the inner part of the disk has had more time (relative

to its orbital period) for the substructures to develop. Another is that mass accretion,
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Fig. 3.12.— Surface density profiles at time t/t0 = 2000 for simulations with differ-
ent AD Elsasser numbers. The surface density profiles are normalized to the initial
surface density distribution, Σi = Σ0(r/r0)

−1/2. The AD Elsasser number increases
sequentially from the top panel to the bottom panel: (a) ad-els0.01; (b) ad-els0.05;
(c) ad-els0.1; (d) ad-els0.25 (ref); (e) ad-els0.5; (f) ad-els1.0; (g) ad-els2.0; (h) ideal.
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especially during the initial adjustment before a quasi-steady state is reached, may

have redistributed some poloidal magnetic flux from the outer part of the disk to

the inner part, making it easier to form rings and gaps there (the effects of magnetic

field strength will be discussed in the next subsection). As the disk becomes better

magnetically coupled (going from panel b to e), the number of rings and gaps in the

inner 10 au region appears to decrease somewhat and the contrast between adjacent

rings and gaps tends to increase on average. The higher contrast may be related to

the fact that a better magnetic coupling would allow more poloidal magnetic flux to

be trapped in the inner disk region.

As the AD Elsasser number increases further (to Λ0 = 1.0 and larger), another

feature starts to become important. It is the development of the classical ‘channel

flows’ of the magnetorotational instability. The channels flows are already present in

the intermediate regime for Λ0, especially in the outer part of the disk (see panels c

and d of Fig. 3.1 for the reference run), where the magnetic field is better coupled

to the disk compared to the inner part as measured by the Elsasser number, which

scales with radius as Λ ∝ r3/4. Their growth was kept in check by ambipolar diffusion

in relatively diffusive models with Λ0 up to 0.5 (panel e in Fig. 3.10, 3.11, and 3.12).

For better magnetically coupled disks, these channel flows run away, especially near

the disk surface, forming the so-called avalanche accretion streams (see Matsumoto

et al. 1996; Kudoh et al. 1998 and Suriano et al. 2017). When fully developed, they

dominate the dynamics of both the disk and the wind, driving both to an unsteady

state (see panels f-h of Fig. 3.10).

Despite the transition to a more chaotic dynamical state, prominent rings and gaps

are still formed, especially in the outer part of the disk (see panels f-h of Fig. 3.11).

Part of the reason is that the strong variability of the clumpy wind is able to create
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variation in the disk surface density. Another, perhaps more important, reason is that

the distribution of the poloidal magnetic flux is highly inhomogeneous in the disk

and regions with concentrated magnetic flux tend to accrete faster leading to lower

surface densities (i.e., gaps), similar to the more magnetically diffusive cases (e.g., the

reference run and Fig. 3.8). Since the poloidal field bunching is present even in the

ideal MHD case,4 its formation does not require ambipolar diffusion, which is formally

different from the more diffusive reference case5 (see discussion in Section 3.3.3.3).

Nevertheless, there is widespread reconnection in these better coupled cases as well

(this is best seen in the movie version of Fig. 3.10 available online). The reconnection

is still driven by sharp radial pinching of the poloidal field lines. The difference is

that here the pinching is caused by the non-linear development of unstable channel

flows (Bai & Stone 2014) rather than the AD-driven midplane current sheet. As a

result, the reconnection occurs more sporadically and is less confined to the midplane.

The net result is the same: a redistribution of poloidal magnetic flux relative to

the matter, creating regions of stronger (poloidal) magnetization that tend to form

gaps and regions of weaker (poloidal) magnetization that tend to form rings. These

considerations strengthen the case for reconnection as a key to ring and gap formation

in a coupled, magnetized disk-wind system, either through an AD-driven midplane

4In the ideal MHD case, the wind is significantly stronger in the upper hemisphere than in the
lower hemisphere (see Fig. 3.10h). Such an asymmetry has been observed in the non-ideal shearing
box simulations of Lesur et al. (2014) and Bai (2015), and in the global non-ideal MHD simulations
of Béthune et al. (2017). The fact that it shows up in global ideal MHD simulations as well indicates
that it may be a general feature of magnetically coupled disk-wind systems that should be examined
more closely.

5Poloidal field bunching in the ideal MHD limit has been observed in the shearing box simulations
of Moll (2012) in the case of strong disk magnetization corresponding to plasma-β of order unity,
however, artificial injection of matter onto the field lines (to prevent rapid depletion of disk material)
complicates the interpretation of the result. Current global 3D ideal MHD simulations of weak field
cases of β ∼ 103 or larger (e.g., Zhu & Stone 2018) do not appear to show as prominent poloidal
field bunching as our 2D (axisymmetric) case. Whether this difference is due to the difference
in dimensionality of the simulations or some other aspects (e.g., initial and boundary conditions)
remains to be determined.
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current sheet in relatively diffusive disks, the non-linear development of MRI channel

flows in better coupled disks, or some other means.

3.4.2 Explicit resistivity and magnetic field strength

The introduction of explicit Ohmic resistivity into the reference simulation can give

us some important insights on the ring and gap formation mechanism. We add an

Ohmic resistivity, ηO, that is constant in both space and time (as in Suriano et al.

2017). Specifically, three values of η0 are considered corresponding to 0.26, 2.6, and 26

times the effective ambipolar resistivity at the inner edge of the disk at the midplane,

ηA,0 = 9.71 × 1014 cm2s−1; they are named oh0.26, oh2.6, and oh26, respectively.

These simulations are plotted in panels (a)-(c) of Fig. 3.13 and 3.14. In the most

diffusive case with ηO = 26 ηA,0, there is some concentration of mass at small radii,

indicating that there is still mass accretion. However, there is little evidence for rings

and gaps with the formation mechanism apparently turned off by the addition of

a large resistivity. This strengthens the case for reconnection-driven ring and gap

formation, because the large resistivity erases the sharp magnetic field geometries

needed for reconnection. As the resistivity decreases, rings and gaps start to appear.

In particular, when the resistivity ηO drops below the characteristic AD resistivity

ηA,0 (model oh0.26), the simulation looks very similar to the reference run that does

not have any explicit resistivity. Their similarity, particularly in the location and

structure of the rings and gaps, is quantified in Fig. 3.15(a).

Besides magnetic diffusivity, the magnetic field strength also strongly affects the

ring and gap formation. The second column of Fig. 3.13 and 3.14 (panels d-f) shows

the effects of varying the initial magnetic field strength, as characterized by the mid-

plane plasma-β, keeping everything else the same as in the reference run (panel e).
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Fig. 3.13.— Snapshots of simulations where the explicit Ohmic resistivity and plasma-
β are varied at t/t0 = 2000. Shown is the mass volume density (logarithmically spaced
colour contours in units of g cm−3), the poloidal magnetic field lines (magenta), and
the poloidal velocity unit vectors (black). In the top row, the explicit resistivity is
decreased from panels (a)-(c). Plasma-β varies from high to low across the bottom
row in panels (d)-(f). The reference simulation (ad-els0.25) is shown in panel (e).
The simulation panels in alphabetical order are: (a) oh26; (b) oh2.6; (c) oh0.26; (d)
beta1e4; (e) ad-els0.25; (f) beta1e2. See Table 3.1 for details. (See the supplementary
material of Suriano et al. 2018 in the online journal for an animated version of this
figure.)
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Fig. 3.14.— Face-on surface density profiles (up to a radius of 20 au) of the simulations
where the explicit Ohmic resistivity and plasma-β are varied at t/t0 = 2000. In the
top row, the explicit resistivity is decreased from panels (a)-(c). Plasma-β varies
from high to low across the bottom row in panels (d)-(f). The reference simulation
(ad-els0.25) is shown in panel (e). The simulation panels in alphabetical order are:
(a) oh26; (b) oh2.6; (c) oh0.26; (d) beta1e4; (e) ad-els0.25; (f) beta1e2. (See the
supplementary material of Suriano et al. 2018 in the online journal for an animated
version of this figure.)
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These simulations are quantitatively similar, in that a wind is launched from the

disk and rings and gaps are formed in all three cases. However, it takes longer for the

weaker magnetic field case to produce a well-developed wind. Specifically, in the most

weakly magnetized case (model beta1e4), it takes approximately 700 inner orbital pe-

riods for the disk wind from the inner part of the disk to become fully developed.

This is because it takes longer to generate a strong enough toroidal field out of the

weaker initial poloidal field to push the outer layers of the disk to large distances.

The weakest field case should be the most prone to the MRI, however, there is no

evidence for accretion streams developing near the disk surface.

As in the reference run, the ambipolar diffusion is able to concentrate the radial

current (Jr) into a thin sheet near the midplane, where preferential accretion leads to

severe radial pinching of the poloidal field, eventually leading to reconnection-driven

ring and gap formation. The rings and gaps formed in this simulation have a relatively

low contrast, however. This is because, with a weak initial field, there is less poloidal

magnetic flux concentrated in the gaps after reconnection making the accretion of

disk material from the gaps into the neighbouring rings less efficient.

In the stronger magnetic field case (model beta1e2), a quasi-steady wind is quickly

established (see panel f of Fig. 3.13). It drives fast disk accretion, especially near the

midplane, where reconnection of the sharply pinched poloidal field leads to demag-

netization in some regions (creating rings) and bunching of poloidal field lines in

others (creating gaps). The stronger poloidal field drives a more complete depletion

of disk material, creating wider gaps with lower column densities, as illustrated in

Fig. 3.14(f) and quantified in Fig. 3.15(b). In addition, the stronger overall field al-

lows more material to be moved from the outer part of the disk to smaller disk radii,

where several rings have much higher surface densities than their counterparts in the
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weaker field cases. The most massive inner ring at r = 3 au has a contrast ratio of

∼ 102. In any case, in the presence of the reference level of ambipolar diffusion, the

same reconnection-driven ring and gap formation mechanism appears to operate over

a range of disk plasma-β with more strongly magnetized disks forming rings and gaps

with higher surface density contrast.

3.4.3 Magnetic stresses and two modes of accretion

We have shown in Section 3.4.1 and 3.4.2 that the level of magnetic diffusivity, par-

ticularly ambipolar diffusion, plays a key role in determining the structure of the

magnetically coupled disk-wind system. Specifically, more magnetically diffusive sys-

tems tend to be more laminar, with a well-developed wind that is expected to play

a dominant role in driving disk accretion. Better magnetically coupled systems are

more prone to MRI channel flows, which drive the system to a chaotic state. Although

a wind is still developed, it may not play as important a role in disk accretion. In

this subsection, we will try to quantify this expectation.

We do this through the dimensionless α parameters (Shakura & Sunyaev 1973),

corresponding to the rφ and zφ components of the Maxwell stress, Trφ = −BrBφ
4π

and

Tθφ = −BθBφ
4π

, respectively, defined as:

αrφ ≡
∫
Trφdz∫
Pdz

, (3.18)

αθφ ≡
Tθφ

∣∣∣π/2+θ0
π/2−θ0
Pmid

, (3.19)

where P is the thermal pressure and Pmid is the pressure on the disk midplane. In

the first term, the integration is between the lower and upper surfaces of the initial
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Fig. 3.16.— The α parameter from the vertical wind stress, αθφ (see equation 3.18;
solid blue line), and the radial shear stress, αrφ (see equation 3.19; dashed red line).
The vertical wind stress is calculated at the surface θ = π/2± 2ε and the radial shear
stress is integrated between these surfaces. The dotted lines show where the effective
α is negative. The AD Elsasser number increases sequentially from the top panel to
the bottom panel: (a) ad-els0.01; (b) ad-els0.05; (c) ad-els0.1; (d) ad-els0.25 (ref); (e)
ad-els0.5; (f) ad-els1.0; (g) ad-els2.0; (h) ideal.
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disk, θ = π/2 ± θ0. The second term is evaluated at these surfaces. Since the polar

shear stress Tθφ is the magnetic stress that moves angular momentum across the disk

surface (at a constant polar angle θ), we will refer it to as the ‘wind stress.’ The other

component, Trφ, will be referred to as the ‘radial shear stress.’

Figure 3.16 compares these two α parameters for the set of simulations where the

AD Elsasser number is varied. In the least coupled simulation, the wind stress is larger

than the radial shear stress by a factor of a few. As the Elsasser number increases,

the radial shear stress begins to grow until it is approximately equal to the wind

stress by the simulation where the AD Elsasser number is Λ0 = 0.5 (see Fig. 3.16e).

In the intermediate parameter regime (Λ0 between 0.05 and 0.5), where the wind

remains relatively laminar and the rings and gaps are rather steady, the two stresses

are strongly correlated with both peaking in low-density gaps where the poloidal

magnetic field lines are concentrated (compare, for example, panel d of Fig. 3.16 to

panel d of Fig. 3.12, which shows that both stresses peak in the low-density gaps for

the reference run). As the Elsasser number increases further, the avalanche accretion

streams become prevalent, driving the atmosphere of disk and the base of the wind to

be chaotic. This transition to a more chaotic disk-wind system is already present in

the outer part of the disk in the Λ0 = 0.5 case beyond ∼ 50 au (see panel e), where the

avalanche accretion flows have reversed the direction of the polar shear stress Tθφ at

the initial surface of the disk (θ = π/2± θ0). For the cases with higher Λ0 = 1.0, 2.0,

and∞ (ideal MHD), the effective α parameter for Tθφ becomes highly variable in both

space and time and is often negative. However, Trφ stays mostly positive, indicating

that angular momentum in the disk is more persistently transported radially outward

by avalanche accretion streams rather than vertically across the initial disk surface.
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3.5 Discussion

3.5.1 Comparison to other works

This work examines how radial substructure can be created in a circumstellar disk

in the presence of ambipolar diffusion on the scale of a few to tens of au, as part

of a magnetically coupled disk-wind system. In Suriano et al. (2017), a similar phe-

nomenon was observed to operate near the innermost disk radii (∼ 0.1 au), where

Ohmic resistivity dominates. As in Suriano et al. (2017), we again find that rings

and gaps are formed solely from MHD processes. Here, the effects of AD have a clear

and physically motivated interpretation as to how radial substructure is formed in

simulations where the ions and neutrals are moderately coupled. The mechanism,

described in Section 3.3.3, relies on mass accretion through an AD-induced, midplane

(Jr) current layer, where the poloidal magnetic field is dragged radially inward until

it reconnects. The reconnection creates regions with magnetic loops where the net

poloidal flux is decreased and mass accretion is less efficient, allowing matter to pile

up into rings. It also enables the post-reconnection poloidal field to bunch up in

localized regions, where mass accretion is more efficient, creating gaps.

The formation of radial disk substructures in MHD simulations (besides those

formed by planets) has been seen at the boundaries of dead zones (Dzyurkevich

et al. 2010; Flock et al. 2015; Ruge et al. 2016) and in the context of zonal flows

(Johansen et al. 2009; Kunz & Lesur 2013; Dittrich et al. 2013; Simon & Armitage

2014; Bai & Stone 2014; Bai 2015; Béthune et al. 2016, 2017). The concentration of

poloidal magnetic field lines specifically in the presence of AD was observed in the

disk simulations of Bai & Stone (2014) and Béthune et al. (2017). This has been
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interpreted through the following form of the induction equation:

dΦB(R, z)

dt
= −2πREφ, (3.20)

where ΦB is the vertical magnetic flux, and Eφ is the φ component of the electromo-

tive force (EMF; equation 8 of Bai & Stone 2017; see also equation 23 of Béthune

et al. 2017). The EMF induced by AD is equal to EA = ηAJ⊥, where J⊥ is the

component of the current perpendicular to the magnetic field (as defined in equation

3.3). When the azimuthal component of this perpendicular current, J⊥,φ, has a sign

opposite to that of Jφ, the AD EMF becomes anti-diffusive in nature, which would

lead to the concentration of poloidal magnetic field lines. We have examined J⊥,φ and

Jφ in our reference run (where there is large spatial variation of the poloidal magnetic

field strength, see Fig. 3.8b), and found that they have opposite signs in some regions

but the same sign in others, which makes it hard to establish unambiguously the

extent to which this mechanism may be operating in our simulations. In any case, we

find that our results can be explained by a more pictorial mechanism: reconnection

of sharply pinched poloidal field lines (e.g., Fig. 3.7) that drives the segregation of

poloidal magnetic flux relative to matter, which in turn leads to the formation of

radial substructure. We note that Bai & Stone (2014) also considered the possibil-

ity of reconnection playing a role in concentrating magnetic flux in the zonal flows

found in their shearing box simulations (see their Fig. 9 for a cartoon illustrating the

possibility). The relatively laminar nature of the disk accretion in the presence of a

moderately strong ambipolar diffusion allowed us to isolate the reconnection events

more clearly in our (2D) global simulations (see Fig. 3.7). Whether it has a deeper

physical connection with the mechanism that relies on J⊥,φ and Jφ having opposite

signs remains to be ascertained.
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Although rings and gaps are prominent in most of our simulations, they are not

a common feature of previous simulations. For example, the recent global accretion

disk simulations of Bai & Stone (2017) and Bai (2017) do not seem to show such

radial substructure. This is likely due to the fact that a weaker initial poloidal field

strength is used (however, see the shearing box simulations of Bai 2015 where zonal

flows develop with β = 105). Specifically, in the simulations of Bai (2017) the initial

magnetic field in the disk is characterized by β = 105, which is higher than the largest

initial value of plasma-β used in our simulations. In our β ∼ 104 simulation, rings

and gaps are still present. However, the surface density contrast is reduced compared

to the reference run of β ∼ 103 (see Fig. 3.15). Although the same magnetic field

variations and midplane pinching still occur in the weaker magnetic field simulation

of β ∼ 104 (see Fig. 3.13c), the magnetic field is less able to move matter around to

form rings and gaps and the timescale for the magnetic field to dynamically influence

the matter will be longer compared to the stronger field case. As such, we expect the

formation of rings and gaps to become increasingly less efficient as the magnetic field

strength is reduced towards the purely hydrodynamic limit.

The initial field strengths in the ideal simulations of Zhu & Stone (2018) are

similar to those adopted here (β0 ∼ 103). They show that most of the accretion

occurs in a vertically extended disk ‘envelope,’ with radial (as opposed to vertical)

transport of angular momentum playing a dominant role in driving disk accretion. As

discussed extensively in Suriano et al. (2017), this is consistent with the development

of avalanche accretions streams as the Ohmic resistivity is reduced. It is also in

agreement with the simulations in this work as we move towards the ideal MHD

regime of large Elsasser numbers (see Fig. 3.16). This agreement strengthens the

case for the transition from a laminar disk-wind system to a more chaotic system
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dominated by the rapid formation and break up of accretion streams as the magnetic

diffusivity (either Ohmic or ambipolar) is reduced.

3.5.2 Dust dynamics and grain growth

Wind-driven laminar disk accretion is an important feature of the moderately well

magnetically coupled disks studied both in this paper (from AD) and in Suriano et al.

(2017) (due to Ohmic dissipation). There is some evidence that such a laminar accre-

tion may be required for the HL Tau disk. As stressed by Pinte et al. (2016), there

is tension between the small scale height of (sub)millimeter-emitting dust grains (in-

ferred from the lack of azimuthal variation in the gap widths for the inclined HL disk,

indicating strong dust settling) and the substantial ongoing mass accretion observed

in the system, which, if driven by turbulence, would require a turbulence too strong

to allow for the inferred degree of dust settling. This tension can be removed if the

accretion is driven by ordered magnetic stresses rather than MRI-induced turbulence

(Hasegawa et al. 2017), as in our simulations with high to moderate levels of AD

(such as the reference run), since dust grains can still settle to the midplane even

with strong accretion. Furthermore, rings and gaps are naturally produced in these

laminarly accreting disk-wind systems through the AD-aided magnetic reconnection;

this mechanism can in principle produce the rings and gaps observed in the HL Tau

disk. In practice, our model parameters are chosen for the purposes of illustrating

the basic principles of ring and gap formation in the presence of ambipolar diffusion

rather than for comparison with any specific object. Taken at the face value, the

typical mass accretion rate of 10−6 M� yr−1 found in the reference simulation is at

least an order of magnitude larger than that inferred for classical T Tauri stars (Hart-

mann et al. 2016). However, it is more consistent with the accretion rates inferred
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for younger protostellar disks (e.g., Yen et al. 2017), although, it is possible to reduce

the mass accretion rates in these simulations through rescaling (e.g., by adopting a

lower initial disk density, ρ0; see Appendix of Stepanovs & Fendt 2014).

The formation of rings and gaps in a relatively laminar disk has important im-

plications for the dynamics of dust grains. Pressure maxima, such as those formed

from dense gas rings, are known sites of dust trapping (Whipple 1972; Chiang &

Youdin 2010). Without such traps, large millimeter-sized grains would migrate in-

ward quickly as they lose angular momentum to the more slowly rotating gas that

is partially supported by the radial pressure gradient (Weidenschilling 1977a). This

rapid radial drift is particularly problematic for low-mass disks around brown dwarfs

(Pinilla et al. 2013). For example, in the case of 2M0444, Ricci et al. (2017) has shown

explicitly that, without any dust trap, millimeter-sized grains would be quickly de-

pleted from the outer part of this disk (on the scale of tens to a hundred au; see the

upper-left panel of their Fig. 3), in direct contradiction to observations. They also

demonstrated that this fundamental problem can be resolved if there are multiple

pressure peaks in the outer disk (see the lower-right panel of their Fig. 3). Such

pressure peaks are naturally produced in our simulations (see, e.g., Fig. 3.8 of the

reference run).

Our mechanism of producing rings has two strengths. First, it takes into account

ambipolar diffusion, which is the dominant non-ideal MHD effect in the outer disk

where dust trapping is needed to be consistent with dust continuum observations.

Second, it can in principle operate not only in relatively evolved protoplanetary disks

but also younger protostellar disks as long as such disks are significantly magnetized

with a poloidal field. Indeed, our mechanism is likely to work more efficiently in

the earlier phases of disk evolution where the disk is expected to be threaded by a
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strong poloidal magnetic field, perhaps inherited from the collapse of dense cores,

which are known to be magnetized with rather ordered magnetic fields (e.g., Troland

& Crutcher 2008; Li et al. 2014a,b). Such ordered poloidal fields can drive fast disk

accretion expected in the early phases without generating a high level of turbulence

in the outer (AD-dominated) region, which should make it easier for the dust to settle

vertically and grow near the midplane, even during the early, perhaps Class 0, phase

of star formation. In other words, strong accretion does not necessarily mean strong

turbulence. Even in the earliest, Class 0 phase of star formation, large grains (if they

are present) can be trapped in principle by the pressure bumps that naturally develop

in the magnetically coupled disk-wind systems. Observationally, whether rings and

gaps are prevalent in Class 0 disks is unknown at the present time, because they are

more difficult to observe in the presence of a massive protostellar envelope, however,

there is some evidence that rings and gaps are already present in at least the Class I

phase (see observations of IRS 63 in ρ Oph by Segura-Cox et al., in prep.).

Lastly, we note that the laminar disk wind in our reference and related simulations

can preferentially remove gas from the disk, if the dust has settled to the midplane (or

perhaps been trapped near the rings). As discussed by Suzuki et al. (2010), this could

lead to an increase in the dust-to-gas mass ratio (see also Gorti et al. 2015; Bai et al.

2016), conducive to the development of the streaming instability (Youdin & Goodman

2005; Squire & Hopkins 2018), which may facilitate the formation of planetesimals

and eventually planets (e.g., Chiang & Youdin 2010). This process of grain settling,

growth, and trapping may be as efficient, in not more, in the early, protostellar phase

of star formation compared to the later, protoplanetary phase. We will postpone a

quantitative exploration of this interesting topic to a future investigation.
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3.6 Conclusion

We have carried out 2D (axisymmetric) simulations of magnetically coupled disk-wind

systems in the presence of a poloidal magnetic field and ambipolar diffusion (AD).

The field strength is characterized by the plasma-β and AD by the dimensionless

Elsasser number Λ0. We focused on β ∼ 103 and explored a wide range of values for

Λ0, from 0.01 to ∞ (ideal MHD). Our main conclusions are as follows:

1. In moderately well coupled systems with Λ0 between 0.05 and 0.5, including

the reference simulation (ad-els0.25), we find that prominent rings and gaps are

formed in the disk through a novel mechanism, AD-assisted reconnection. This

mechanism starts with the twisting of the initial poloidal magnetic field into a

toroidal field that reverses polarity across the disk midplane. Ambipolar diffu-

sion enables the Lorentz force from the toroidal field pressure gradient to drive

the ions (and the toroidal field lines tied to them) towards the magnetic null

near the midplane, which steepens the radial (Jr) current sheet in a run-away

process first described in Brandenburg & Zweibel (1994). The field kink gen-

erates a toroidal Lorentz force that removes angular momentum from the thin

radial current sheet, forcing it to accrete preferentially relative to the rest of the

disk. The preferential midplane accretion drags the poloidal field lines into a

sharply pinched configuration, where the radial component of the magnetic field

reverses polarity over a thin, secondary azimuthal (Jφ) current sheet. Reconnec-

tion of the radial pinch produces two types of regions with distinct poloidal field

topologies: one occupied by magnetic loops and another that remains threaded

by ordered poloidal fields. The weakening of the net poloidal field in the for-

mer makes angular momentum removal less efficient, allowing disk material to

accumulate to form dense rings. Conversely, those regions that gained poloidal
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flux after reconnection are magnetically braked more strongly, with a faster

draining of disk material that leads to gap formation. In addition, AD allows

for a quasi-steady state of the ring and gap structure, where the field lines can

stay more or less fixed in place despite rapid mass accretion in gaps because

of the ion-neutral drift. We find little evidence for the formation of prominent

rings and gaps in the case of the highest ambipolar diffusion considered in this

work (Λ = 0.01) and cases with large, additional Ohmic diffusivities. This

finding is consistent with the above scenario because the radial pinching of the

poloidal field is smoothed out by the excessive magnetic diffusivity, suppressing

the reconnection that lies at the heart of the mechanism.

2. In better magnetically coupled disk-wind systems with larger Λ0, as well as

the ideal MHD limit, we find that avalanche accretion streams develop sponta-

neously near the disk surface. The accretion streams lead to unsteady/chaotic

disk accretion and outflow, as found previously in Suriano et al. (2017) for cases

of low or zero Ohmic resistivities (see also Zhu & Stone 2018). Prominent rings

and gaps are still formed in the disk. Part of the reason is the large tempo-

ral and spatial variations induced by the constant formation and destruction

of the streams will inevitably produce spatial variation in the mass accretion

rate and thus the surface density. Perhaps more importantly, the poloidal field

lines are concentrated in some regions and excluded from others, with the more

strongly magnetized regions producing gaps and the less magnetized regions

forming rings, just as in the more magnetically diffusive reference case. We

suggest that this segregation of poloidal magnetic flux and matter is also due

to reconnection of highly pinched poloidal fields. In this case, the pinching is

caused by the avalanche accretion streams (a form of MRI channel flows) rather
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than the midplane current sheet steepened by AD. The fact that rings and gaps

are formed in both laminar and chaotic disk-wind systems over a wide range of

magnetic diffusivities suggests that they are a robust feature of such systems,

at least when the initial poloidal magnetic field is relatively strong. For more

weakly magnetized systems, reconnection may still occur but the resulting re-

distribution of poloidal magnetic flux would have less of a dynamical effect on

the gas, making ring and gap formation less efficient.

3. If young star disks are threaded by a significant poloidal magnetic field, espe-

cially during the early phases of star formation, it may drive rapid disk accretion

through a magnetic wind without necessarily generating strong turbulence in

the disk, particularly in the outer parts of the disk that are only moderately

well coupled to the magnetic field. The lack of a strong turbulence despite

rapid accretion may allow dust to settle early in the process of star formation,

facilitating early grain growth. Large grains may be trapped in the rings that

are naturally produced in the system, which may promote the formation of

planetesimals and eventually planets.
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Chapter 4

The formation of rings and gaps in

three dimensions

This Chapter is based on ongoing work to be submitted to MNRAS for publication

(Suriano et al. 2018, in preparation).

Abstract

Previous 2D (axisymmetric) investigations have shown that rings and gaps develop

naturally in magnetically coupled disk-wind systems in the presence of Ohmic dissi-

pation and especially ambipolar diffusion (AD). Here we extend the 2D simulations

with AD to fully three dimensions (3D). We find that rings and gaps develop natu-

rally in 3D as well, from the same basic mechanism that was identified for the 2D

simulations, namely, redistribution of the poloidal magnetic flux relative to the disk

material resulted from reconnection of a sharp pinching of the magnetic field lines,

with the gaps typically more strongly magnetized poloidally than the (denser) rings.

The rings and gaps start out rather smoothly in our 3D simulations that have ax-
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isymmetric initial conditions. Non-axisymmetric variations arise spontaneously at

later times, but they do not grow to such an extent as to disrupt the rings and gaps.

These disk substructures persist to the end of the simulations, lasting up to 3000

times the orbital period at the inner edge of the simulated disk. The longevity of the

perturbed but still coherent rings make them attractive sites for trapping large grains

that would otherwise be lost to rapid radial migration due to gas drag. We find that

rings and gaps are formed for a range of ambipolar diffusivities and magnetic field

strengths. They are more prominent in disks that are better coupled to the magnetic

field and are more strongly magnetized for the parameter range explored.

4.1 Introduction

We are now entering an era where state-of-the-art observational facilities are pro-

viding increasingly stringent constraints on the physical properties of circumstellar

disks. Specifically, the Atacama Large Millimeter/submillimeter Array (ALMA) has

shown that a large number of circumstellar disks have detailed radial and azimuthal

substructures (ALMA Partnership et al. 2015; Andrews et al. 2016; Zhang et al.

2016; Nomura et al. 2016; Pérez et al. 2016; Isella et al. 2016; Cieza et al. 2016; van

der Plas et al. 2017; Fedele et al. 2017, 2018; Dipierro et al. 2018). How the vari-

ous observed structures form remains undetermined, though a number of promising

physical mechanisms have been proposed, including planet-disk interactions (Dong

et al. 2017; Bae et al. 2017), rapid pebble growth at the condensation fronts of abun-

dant volatile species (Zhang et al. 2015), the pileup of volatile ices in sintering zones

just outside snow lines (Okuzumi et al. 2016), sharp changes in the disk viscosity at

the boundaries of non-turbulent ‘dead zones’ (Flock et al. 2015; Ruge et al. 2016),

magnetic self-organization through zonal flows (Béthune et al. 2017), and variable
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magnetic disk winds (Suriano et al. 2017, 2018). Disk substructures (i.e., rings and

gaps, spirals, vortices) have an undoubtedly important influence on the concentration

and growth of dust grains in the disks around young stars. They could, for example,

prevent fast radial migration of large grains through disks by trapping the grains in

the pressure maxima they create possibly even early in the disk lifetime.

So far, the formation of radial substructures via MHD disk winds have only been

explored in two dimensions (2D), which necessitates that the structures be axisym-

metric (Suriano et al. 2017, 2018). In 2D, the formation of rings and gaps on observ-

able scales (r ∼ 10 au or larger) results from the effects of ambipolar diffusion (AD;

Suriano et al. 2018), where AD is the most important non-ideal MHD effect. Suriano

et al. (2018) finds that rings and gaps are naturally produced in the presence of a

significant poloidal magnetic field and a relatively strong ambipolar diffusion, from

which a relatively laminar disk-wind system develops. The mechanism is driven by

reconnection of the highly pinched poloidal magnetic field in a thin midplane current

sheet where the reconnection leads to the weakening of the poloidal field in some

regions, which accrete more slowly and form rings, and field concentration in others,

which accrete efficiently and open up gaps.

This work explores the formation of rings and gaps in circumstellar disks by mag-

netic disk winds in the presence of ambipolar diffusion in three dimensions (3D), a

logical next step to fully determine whether, and if so, how substructures develop in

magnetically coupled disk-wind systems. We find that prominent rings and gaps are

still formed in 3D, and that the same mechanism of a thin midplane current sheet

leading to reconnection and, therefore, the redistribution of the poloidal magnetic

flux relative to disk matter, seems to be at work. In addition, we find interesting

non-axisymmetric structures that are absent from the previous 2D (axisymmetric)
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simulations.

The rest of the Chapter is organized as follows. In Section 4.2, we describe the

simulation setup, including the initial and boundary conditions. The results of the

simulations are presented in Section 4.3, with a focus on a reference simulation where

the AD Elsasser number at the inner edge of the disk is Λ0 = 0.25 (see Section 4.2.3

for the description of this quantity). Other simulations with different AD Elsasser

numbers, magnetic field strengths, and numerical resolution are discussed in Sec-

tion 4.4. Finally, in Section 4.5 we summarize the main results and make concluding

remarks.

4.2 Simulation setup

4.2.1 MHD equations

We use the ZeusTW code (Krasnopolsky et al. 2010) to solve the time-dependent

magnetohydrodynamic (MHD) equations in spherical polar coordinates (r, θ, φ). The

equations solved are

∂ρ

∂t
+∇ · (ρv) = 0, (4.1)

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇P + J ×B/c− ρ∇Φg, (4.2)

∂B

∂t
= ∇× (v ×B)− 4π

c
∇× (ηOJ + ηAJ⊥) , (4.3)

∂e

∂t
+∇ · (ev) = −P∇ · v, (4.4)

where the internal energy is e = P/(Γ− 1) and Γ is the adiabatic index. The current

density is J = (c/4π)∇×B and the current density perpendicular to the magnetic

field is J⊥ = −J×B×B/B2. The Ohmic resistivity is ηO and the effective ambipolar
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diffusivity ηA is defined as

ηA =
B2

4πγρρi
, (4.5)

where ρi is the ion density and γ = 〈σv〉i/(m + mi) is the frictional drag coefficient

with units of cm3 g−1 s−1. The remaining parameters have their usual definitions.

When referring to cylindrical coordinates, we will use the notation (R, φ, z) such that

R = r sin θ and z = r cos θ.

4.2.2 Initial conditions

The initial conditions are similar to those in Suriano et al. (2018). We describe them

here in detail for completeness. Specifically, the simulation domain is separated into

two regions: a thin, cold, rotating disk orbiting a 1 M� central source at the grid origin

and an initially non-rotating, hot corona above the disk that is quickly replaced by a

magnetic wind driven from the disk. We choose the adiabatic index to be Γ = 1.01

so that each parcel of material remains nearly isothermal as it moves around in the

computation domain. All simulations are initialized to be axisymmetric, although

non-axisymetric structures develop naturally at later times.

4.2.2.1 Disk

The geometrically thin disk is characterized by the dimensionless parameter ε = h/r =

cs/vK � 1, where h is the disk scale height, cs is the isothermal sound speed, and vK is

the Keplerian speed. The disk is limited to the equatorial region where the polar angle

θ ∈ [π/2− θ0, π/2 + θ0], with disk (half) opening angle set to θ0 = arctan(2ε). The

disk density takes the form of a radial power law multiplied by a Gaussian function

of z/r = cos θ,

ρd(r, θ, φ) = ρ0

(
r

r0

)−α
exp

(
−cos2 θ

2ε2

)
, (4.6)
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as determined by hydrostatic balance. The subscript ‘0’ refers to values on the disk

midplane at the inner radial boundary. For all simulations shown in this Chapter, we

use α = 3/2. The disk pressure is set as

Pd(r, θ, φ) = ρdc
2
s, (4.7)

with cs = εvK . The radial pressure gradient causes the equilibrium rotational velocity

vφ to be slightly sub-Keplerian,

vφ = vK
√

1− (1 + α)ε2. (4.8)

4.2.2.2 Corona

We require that the hydrostatic corona is initially in pressure balance with the disk

surface. This constraint sets the density drop from the disk surface to the corona as

(1 + α)ε2. Therefore, the coronal density and pressure are

ρc(r) = ρ0ε
2(1 + α) exp

[
−cos2 θ0

2ε2

](
r

r0

)−α
≡ ρc,0

(
r

r0

)−α
, (4.9)

Pc(r) = ρcv
2
K/(1 + α). (4.10)

4.2.2.3 Magnetic field

To ensure that the magnetic field is divergence-free initially, we set the magnetic field

components using the magnetic flux function Ψ as in Zanni et al. (2007),

Ψ(r, θ) =
4

3
r20Bp,0

(
r sin θ

r0

)3/4
m5/4

(m2 + cot2 θ)
5/8
, (4.11)
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where Bp,0 sets the scale for the poloidal field strength and the parameter m controls

the bending of the field. The value of Bp,0 is set by the initial plasma-β, the ratio

of the thermal to magnetic pressure, on the disk midplane, which is 103 for most of

the simulations. Since varying m from 0.1 to 1 has little effect on the long-term disk

or wind magnetic field structure (Stepanovs & Fendt 2014), we use m = 0.5 for all

simulations presented in this work. The initial magnetic field components are then

calculated as

Br =
1

r2 sin θ

∂Ψ

∂θ
, (4.12)

Bθ = − 1

r sin θ

∂Ψ

∂r
. (4.13)

4.2.3 Ambipolar diffusion

The magnetic diffusivities associated with non-ideal MHD effects, including ambipolar

diffusion, depend on the densities of charged particles, which can in principle be

computed through detailed chemical networks (e.g., Bai & Goodman 2009). Here, as

a first step toward a comprehensive model, we will simply parametrize the density of

ions as

ρi = ρi,0f(θ)

(
ρ

ρ0

)αAD
, (4.14)

where

f(θ) =


exp

(
cos2(θ+θ0)

2ε2

)
θ < π/2− θ0

1 π/2− θ0 ≤ θ ≤ π/2 + θ0

exp
(

cos2(θ−θ0)
2ε2

)
θ > π/2 + θ0.

(4.15)

The angular dependence f(θ) is chosen such that, at a given radius, the ion density

increases rapidly in the tenuous disk atmosphere, to mimic the ionization by high

energy photons (UV and X-rays) from the central young star in addition to cosmic
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rays (e.g., Umebayashi & Nakano 1981; Perez-Becker & Chiang 2011a; Glassgold et al.

2017). In the simulations presented in this work, we take αAD = 0.5. This power-

law dependence for the ion density is roughly what is expected when the volumetric

cosmic ray ionization rate is balanced by the recombination rate of ions and electrons,

under the constraint of charge neutrality (i.e., ζn ∝ neni ∝ n2
i , where ζ is the cosmic

ray ionization rate per hydrogen nucleus; see page 362 of Shu 1992).

The magnitude of the ion density, and therefore the ion-neutral drag force, Fd =

γρρi(vi − v), is sometimes quantified through the dimensionless ambipolar Elsasser

number,

Λ =
γρi
Ω

=
v2A
ηAΩ

, (4.16)

where γ is the frictional drag coefficient. Physically, the Elsasser number is the

collision frequency of a neutral particle in a sea of ions of density ρi, normalized to

the Keplerian orbital frequency. The Elsasser number will be unity when the neutral

particle collides 2π times with ions in one orbital period. As the neutral-ion collision

frequency increases to infinity, so does the Elsasser number, and the bulk neutral

medium becomes perfectly coupled to the ions/magnetic field (i.e., the ideal MHD

limit). Similarly, as the Elsasser number drops to zero, the neutrals and ions no longer

collide; the neutrals are entirely decoupled from the magnetic field. For our reference

simulation, we choose the Elsasser number to be Λ0 = 0.25 at the inner boundary on

the disk midplane, but will vary this parameter to gauge its effects on the coupled

disk-wind system. The choice of αAD = 0.5, assuming that the drag coefficient γ is

constant, implies that the Elsasser number is proportional to r3/4, thus larger radii are

better coupled than smaller radii when measured by this parameter in the reference

simulation.
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4.2.4 Grid

The equations are solved for r ∈ [1, 100] au, θ ∈ [0, π], and φ ∈ [0, 2π] with a resolution

of nr × nθ × nφ = 200× 180× 180 typically (although a higher resolution simulation

is also performed for a shorter time). A ‘ratioed’ grid is used in the radial direction

such that dri+1/dri is constant and ri+1 = ri + dri. The grid spacing at the inner

edge is set as dr0 = 2.3r0dθmid. The θ grid is separated into three 60◦ blocks, the

middle of which, from θ = 60◦ to 120◦, is uniform with 120 cells for a resolution of

0.5◦ per cell or 12 cells from the disk midplane to the initial disk surface at two scale

heights. The first and last θ grid blocks are ratioed grids with the cell size matched

to the resolution of the middle block at their boundary and increasing towards the

poles where the width of the cells at the poles reaches 5.1◦. The φ grid is uniform

with 180 cells. This results in the cells at the inner boundary on the midplane being

a box with dimensions of approximately 2:1:4 in the r : θ : φ directions.

4.2.5 Boundary conditions

Both the inner and outer radial boundaries use the standard outflow condition, as

usual in Zeus codes. The reflection boundary condition is used on the polar axis

(θ = 0 and π). The φ component of the magnetic field is set to zero on the polar

axis. We also set Bφ to vanish on the inner radial boundary since it is taken to be

non-rotating.

4.3 Reference Simulation

We run a small suite of simulations to examine the formation of substructure in disks

that are threaded by an ordered poloidal magnetic field. The simulations differ in
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either the Elsasser number (i.e., the degree of magnetic coupling), the magnetic field

strength, or the grid resolution (see Table 4.1 for a list of models). We run all of the

simulations, except for the high resolution simulation, for at least 2000 times the inner

orbital period t0, or t/t0 = 2000. This section will focus on a reference run where the

Elsasser number at the inner edge of the disk is Λ0 = 0.25 and the midplane plasma-β

is 103.

Table 4.1: Model Parameters
β Λ0 Resolution

ad-els0.05 103 0.05 200×180×180
reference 103 0.25 200×180×180
ad-els1.25 103 1.25 200×180×180
beta1e4 104 0.25 200×180×180
ref-hires 103 0.25 300×270×270

4.3.1 Global view

Fig. 4.1 gives a global perspective on the reference simulation. This figure shows

azimuthally averaged snapshots of the density (colour map), poloidal magnetic flux

contours 1 (white), and poloidal velocity unit vectors (black) out to R = 70 au at

four times (t/t0 = 0, 500, 1000, 2500). Upon first inspection, the magnetic field in

the disk has two distinct modes of evolution separated at about r ∼ 30 au in the

second frame shown in Fig. 4.1 (at t/t0 = 500). Within this radius (except for the

inner most region that is threaded by a dipole-like field), the magnetic field is dragged

1At any given point in a meridian plane (such as that shown in Fig. 4.1), the poloidal magnetic
flux Ψpol is defined as the total magnetic flux enclosed by a circle centered on the axis that passes
through that point. The contours of constant Ψpol in a meridian plane (shown as white lines in the
figure) are ‘effective’ poloidal magnetic field lines. It can be shown that the effective poloidal field
lines defined in this way for 3D simulations have the same mathematical properties as the actual
poloidal field lines in 2D (axisymmetric) simulations. In particular, if we replace the magnetic flux
function Ψ in equations (4.12) and (4.13) for the 2D systems by Ψpol/(2π), we obtain the radial and
polar components of the ‘effective’ poloidal magnetic field plotted in Fig. 4.1. Each of the ‘effective’
field lines is unique and does not begin or end inside the simulation domain, just as in the 2D case.
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Fig. 4.1.— A representative (‘reference’) 3D simulation of φ-averaged quantities.
Shown is the mass volume density (logarithmically spaced colour contours in units of
g cm−3), the ‘effective’ poloidal magnetic field lines (white), and the poloidal velocity
unit vectors (black). Panels (a)-(d) corresponding to simulation times of 0, 500, 1000,
and 2500 inner orbital periods, respectively.
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radially inward through the midplane leading to a sharp radial pinch. This is caused

by the vertical steepening of a midplane current sheet due to AD as described in

detail in Suriano et al. (2018) (see their Section 3.3.1). The current peaks where the

toroidal magnetic field changes sign from positive below the disk to negative above

the disk and the effects of AD further steepen the magnetic gradient near a magnetic

null (Brandenburg & Zweibel 1994). This is the same phenomenon that leads to the

magnetic reconnection of the poloidal magnetic field in 2D. Outside of r ∼ 30 au,

‘channel-flow like’ structures are evident. This is because the disk material at a larger

radius is better coupled to the magnetic field than at a smaller radius, since the radial

dependence of the Elsasser number goes as Λ ∝ r3/4. The demarcation radius between

these two types of disk accretion moves outward with time, because it takes time for

the current layers created at the disk surfaces to migrate towards and converge at the

disk midplane as the induced toroidal magnetic pressure gradient from the winding of

the initially poloidal field grows. By the last frame shown in Fig. 4.1 at t/t0 = 2500,

the magnetic field lines are radially pinched from the midplane accretion layer out to

approximately 50 au.

Fig. 4.1 shows clearly that a wind is launched over most of the disk surface, except

close to the inner edge where the field configuration is affected by the boundary con-

dition. Figure 4.2 shows both the mass accretion through the disk at a representative

radius r = 20 au (|π/2 − θ| < θd; black line) and the mass outflow rate through a

sphere of the same radius excluding the disk region (green line). The mass accretion

rate is approximately 10−6 M� yr−1, while the mass outflow rate is approximately

3× 10−7 M� yr−1. Therefore, more mass is accreted inward through the disk than is

ejected away in the wind at this radius.

To further illustrate the overall evolution of the disk, Fig. 4.3 shows several φ-
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Fig. 4.2.— The mass accretion and outflow rates (M� yr−1) as a function of time
in the 3D reference simulation through a sphere of radius r = 20 au. The mass
accretion rate through the disk (|π/2 − θ| < 2ε) is shown in black and that for the
corresponding 2D simulation is shown in red for comparison. The total mass outflow
rate both above and below the disk (|π/2− θ| > 2ε) is shown in blue.
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Fig. 4.3.— The reference simulation at a representative time t/t0 = 2500. The
panels show the following φ-averaged quantities: (a) the logarithm of the poloidal
speed (cm s−1) with poloidal velocity unit vectors; (b) the logarithm of plasma-β; (c)
the ratio of the toroidal to the poloidal magnetic field strength with magnetic flux
contours (gray lines); (d) the differential mass accretion rate integrated over φ, i.e.,

dṀacc/dθ =
∫ 2π

0
ρvrr

2 sin θdφ, normalized to Ṁ0 = r20ρ0cs,0.
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averaged disk quantities. Panel (a) shows the distribution of poloidal speed where the

fastest accretion through the disk is limited to a thin current layer near the midplane

with accretion speeds on the order of 10 m s−1. Above and below this accretion layer,

the poloidal velocity is directed outward and the speed is approximately one order of

magnitude less than in the accretion layer. Also in the thin accretion layer, the value

of plasma-β peaks at values approaching 104 (panel b). Similarly, the mass accretion

rate is largest in this thin layer as shown in Fig. 4.3(d), which plots the φ-integrated

radial mass accretion rate per unit polar angle, dṀacc/dθ =
∫ 2π

0
ρvrr

2 sin θdφ. Again,

the disk mass moves outward above the midplane accretion layer and further extends

to a tenuous disk wind beyond the disk surfaces. Despite the disk excretion above the

midplane layer, there is still a large net mass accretion rate when averaged over the

disk (see Fig. 4.2). The accretion takes place through a strong current layer, which

is where the φ component of the magnetic field changes sign. The field reversal leads

to a low value of Bφ in the accretion layer, which is the reason why its plasma-β is

high. It can also be seen in panel (c) of Fig. 4.3, which plots the ratio of the toroidal

to the poloidal magnetic field. We see that the magnetic field is pinched radially

inward where the toroidal magnetic field changes sign from positive below the disk to

negative above the disk. Also, we see a variation in Bφ/Bp as a function of radius,

where poloidal magnetic field lines concentrate in some regions while the toroidal

magnetic field dominates in other, the cause of which will be discussed in the next

section.

4.3.2 The formation of rings and gaps

As previously mentioned, the accretion layer is also the location of a thin current

sheet. The creation of the current sheet starts at the disk surfaces as the differential
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rotation between the disk and the initially static disk corona rapidly induces a toroidal

magnetic field outside of the disk. The toroidal magnetic field is responsible for

driving an outward radial current Jr ≈ c
4π

dBφ
rdθ

since Bφ changes from positive below

the disk to negative above. As the magnetic field is continually wound up, a large

toroidal magnetic gradient is generated outside of the disk, with a corresponding

Lorentz force pushing the ions (and the toroidal magnetic field lines tied to the ions)

towards the midplane, thus moving the surface current layers closer together until

they combine at the disk midplane to form a single current sheet where Bφ reverses

polarity. The magnetic pressure gradient is further steepened at the magnetic null due

to the effects of AD (Brandenburg & Zweibel 1994), creating a thin midplane current

layer. Finally, the Lorentz force exerted due to the radial current (FL,φ ∝ JrBz)

is in the −φ direction, draining angular momentum in the current layer leading to

strong accretion and the inward pinch of the poloidal magnetic field there. The

eventual reconnection of the radial magnetic field as it is dragged inward leads to the

creation of a poloidal magnetic field loop, thereby leaving the region that it encloses

devoid of vertical (or poloidal) magnetic flux. In neighboring regions, however, the

poloidal magnetic field concentrates. The disk mass then grows in the regions where

the vertical magnetic flux is lowest (rings) and the neighboring regions with larger

poloidal magnetic flux can drive faster accretion though them. This phenomenon is

essence of the reconnection-driven ring and gap formation mechanism described in

Section 3.3 of Suriano et al. (2018) (see their figures 6 and 7). Again, Fig. 4.3(c) shows

the eventual magnetic field configuration of alternating bands of toroidal and poloidal

magnetic field concentrations and the radial pinch in the magnetic flux contours at

the current layer where Bφ = 0.

As described in Suriano et al. (2018) and above, the end result of the ring and
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Fig. 4.4.— The reference simulation at a representative time t/t0 = 2500. The top
panel plots the logarithm of the density (colour map) and the φ integrated magnetic
flux contours (or effective poloidal field lines, black lines). The bottom panel shows
the φ averaged surface density (black) and vertical magnetic field at the disk midplane
(red) normalized respectively by their initial distribution.
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gap formation through the reconnection of a radial magnetic field is the redistri-

bution of the poloidal magnetic flux relative to the disk material, as illustrated in

Figure 4.4. The top panel shows the φ-averaged density distribution (colour map)

and the effective poloidal field lines (black lines). It is clear that the poloidal field

lines are distributed very unevenly, especially inside the disk. Specifically, the field

lines bunch up in some regions but spread out in others. The corresponding strong

variation of the vertical magnetic field strength at the disk midplane is quantified

in the panel (b) (red line). For comparison, the surface density distribution is also

plotted in the same panel (black line). It is clear that the surface density is strongly

anti-correlated with the vertical field strength, especially in the region around 10 au,

where the contrast between the dense, weakly magnetized rings and the more diffuse

but more strongly magnetized gaps is the largest. This anti-correlation starts at early

times when the rings and gaps are still nearly axisymmetric, so it is likely created by

the same mechanism as in the 2D (axisymmetric) simulations, namely, the redistri-

bution of poloidal magnetic flux relative to disk material through reconnection. The

anti-correlation persists to later times (such as that shown in Fig. 4.4) when the rings

and gaps become more non-axisymmetric (see the next subsection). As this 3D simu-

lation is approximately half of the resolution of the similar 2D simulations in Suriano

et al. (2018), and the effective poloidal magnetic field lines are drawn by integrating

over the azimuthal angle, it is more difficult to observe the field lines in the act of

reconnecting (as in figure 7 of Suriano et al. 2018). Nonetheless, the close similarity

between the 2D and 3D simulations, especially in the severe radial pinching of the

poloidal magnetic field in a thin fast-accreting layer and the anti-correlation between

the disk surface density and poloidal field strength, leaves little doubt that the same

mechanism is at work in both 2D and 3D. It strengthens the case that the mecha-
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nism, first identified in more restrictive but conceptually simpler 2D (axisymmetric)

systems, is robust in full three dimensions.

As mentioned in Suriano et al. (2018), a major concern as to whether the ring

and gap formation mechanism found in 2D could still work in 3D is that, in 3D,

the highly azimuthally pinched toroidal magnetic field across the midplane current

sheet (where Bφ reverses direction sharply) can also, in principle, reconnect. If this

happens, it may weaken the magnetic torque that drives the accretion through the

midplane current layer, which may, in turn, weaken the radial pinching of the poloidal

field that lies at the heart of the mechanism: the reconnection-enabled redistribution

of matter relative to the poloidal magnetic flux. Although it is difficult to directly

prove or disprove the occurrence of reconnection of oppositely directing Bφ in the 3D

reference simulation, there are indications that, if it does occur, its dynamical effects

are relatively modest. First, it has a relatively moderate effect on the disk mass

accretion rate, as illustrated in Fig. 4.2, which shows the time averaged accretion rate

at a representative radius as a function of time for both the 3D and a corresponding

2D simulation. If reconnection of the azimuthal field component in 3D had erased

the sharp field pinch in the azimuthal direction, it would have greatly reduced the

magnetic braking torque and thus the accretion rate compared to the 2D simulation,

which is not the case. In fact, the accretion rate at the representative radius of

20 au is somewhat higher in 3D than in 2D over the last 1000 t0. The similarity

in disk mass accretion rate is not limited to that radius. Fig. 4.5 shows that the

time-averaged mass accretion rates over the last 1000 t0 are comparable at most radii

for the 3D and corresponding 2D simulations. Even more directly, we have examined

the vertical distribution of Bφ in both 2D and 3D simulations, and found that the

sharp transition from a positive to a negative Bφ going vertically up through the disk



164

remains ubiquitous in 3D, with gradients comparable to those in 2D (see Fig. 4.6 for

an example).

It is not clear why there is no widespread field reconnection in the azimuthal

direction that drastically reduces the concentrated mass accretion in the Jr current

layer and weakens the ring and gap formation mechanism. One possibility is that

differential rotation in the disk would rapidly regenerate the azimuthal field pinch

out of the global, ordered poloidal field that threads the disk, even if the pinch is

smoothed out sporadically by reconnection. This is different from the field pinch in

the radial direction, which is created by differential radial accretion on a longer time

scale and thus harder to regenerate once smoothed out by reconnection. We believe

that the fact that the rotational speed vφ is much higher than the radial accretion

speed vr is ultimately responsible for the different behavior in the field pinch and

reconnection in the azimuthal and radial direction. In any case, the 2D and 3D

simulations appear fundamentally similar, especially at early times when the rings

and gaps in the 3D simulations remain nearly axisymmetric, however, there are some

differences between them. The most important is the azimuthal variation of the disk

substructures that can only be studied in 3D.

4.3.3 Azimuthal variations

The disk quantity that has the most prominent radial substructure is the vertical

magnetic field strength at the midplane, Bz,mid, as illustrated in Fig. 4.4(b). Sub-

stantial substructure in Bz,mid develops in the azimuthal direction as well, as shown

in Fig. 4.7. As an example, we will focus on the prominent peak in the normalized

vertical field strength around r = 40 au. This peak starts to stand out from the

background around t/t0 = 1000, as shown in the first panel (a). At this time, the
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Fig. 4.5.— The time averaged mass accretion rate from t/t0 = 2000 to 3000 as a
function of disk radius for both the reference 3D simulation and its 2D counterpart.
The broad similarity between the two means that the pinching of the magnetic field
lines in the azimuthal direction that drives the mass accretion is not significantly
reduced, if at all, by reconnection.
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Fig. 4.6.— The variation of the toroidal component of the magnetic field Bφ as a
function of 90 − θ (degrees; negative is below the midplane and positive is above
the midplane) at a representative radius r = 30 au in the reference 3D simulation
(φ-averaged) and the corresponding 2D simulation at t/t0 = 2500. The two dashed
vertical lines mark the disk surfaces at θ = 90◦ ± 2ε.
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Fig. 4.7.— Spatial variation of the vertical magnetic field strength at the midplane
normalized to its initial value for the reference simulation at four representative times:
(a) t/t0 = 1000, (b) 1500, (c) 2000, and (d) 3000. They show clearly that the initially
axisymmetric rings of enhanced vertical field are perturbed but not disrupted in 3D.
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Fig. 4.8.— Spatial variation of the disk surface density normalized to its initial value
for the reference simulation at 4 representative times: (a) t/t0 = 1000, (b) 1500,
(c) 2000, and (d) 3000. They show clearly that the initially axisymmetric rings of
enhanced surface density are perturbed but not disrupted in 3D.
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structure remains highly axisymmetric. The lack of significant azimuthal variation up

to this time means that this structure must be formed from the initially axisymmetric

conditions in the same way as the structures in Bz,mid formed in the corresponding 2D

(axisymmetric) simulation. Significant azimuthal variations start to develop around

t/t0 = 1500, with some azimuthal regions having significantly stronger vertical fields

than others. Presumably the variation develops from the numerical noise associated

with the finite simulation grid since the initial conditions are axisymmetric and there

is no explicit perturbation added. It may be amplified by potential instabilities in the

system, both inside the disk (such as the MRI) and in the wind, which is dominated

by a toroidal magnetic field that is prone to kink instabilities (e.g., Anderson et al.

2006). It could also be driven by sporadic reconnection of the highly pinched field

lines in the azimuthal direction, but it is hard to find direct evidence of this process, as

mentioned earlier. Although exactly how and why the azimuthal variations develop is

unclear, they do not grow to such an extent as to disrupt the ring-like structure com-

pletely. This is illustrated in panels (c) and (d) of the Fig. 4.7, which show the spatial

distributions of the normalized Bz,mid at t/t0 = 2000 and 3000, respectively. Around

t/t0 = 2000, the ring-like structure becomes rather clumpy. It consists of several dis-

tinct strands of partial ringlets. Importantly, these strands do not evolve separately,

which would have led to the disintegration of the ring-like structure. Rather, they

stay close together and sometimes merge into structures that are even more axisym-

metric at later times, as seen in panel (d). This apparent stability is not unique to

the ring formed originally near r = 40 au. It appears to be a general property of the

ring-like features in the vertical magnetic field distribution.

Azimuthal variation develops in the surface density distribution as well, although

it is less prominent than that in the vertical field strength, as illustrated in Fig. 4.8.
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As before, we again focus on the outer disk region near r ∼ 40 au. At the time

t/t0 = 1000, when a prominent axisymmetric ring develops in the vertical field at

∼ 40 au (panel a of Fig. 4.7), an axisymmetric (dark) gap with a depressed surface

density (Fig. 4.8a) is present at the same location, sandwiched by two (bright) rings

of enhanced surface densities. As the system evolves further, mild inhomogeneities

start to develop along the rings, as shown in panel (b), when t/t0 = 1500. This is

particularly clear for the interior of the two aforementioned rings, where a bright arc

forms near φ = 60◦, the angle corresponding to 1 o’clock. A local depression of the

vertical field strength occurs at this same location along the high surface density ring

(see panel b of Fig. 4.7). Conversely, the depressions near the two ends of this bright

surface density arc correspond to two local enhancements in Bz,mid. Nevertheless,

the surface density varies azimuthally less than the vertical magnetic field. This is

perhaps to be expected, because the magnetic energy density is much less than the

thermal energy density, especially in the rings. Another interesting feature that is

obvious from comparing panel (b) of Fig. 4.7 and 4.8 is that there are more fine radial

structures for the vertical field strength than for the surface density. In particular,

the second outermost low-surface density gap contains at least two rings of enhanced

Bz,mid. The bright clump near 2 o’clock at t/t0 = 1500 gradually spreads out along the

ring (presumably from the shearing in the disk) and becomes less prominent (although

does not disappear completely) over the next one or two (local) orbits. By the time

t/t0 = 2000 shown in panel (c), it was superseded by another bright clump (around

12 o’clock) that grew out of a fainter arc along the ring. Although exactly why that

particular arc grows to be become more prominent in time is unclear, it could be

related to the Rossby wave instability (e.g., Lovelace et al. 1999; Armitage 2015). In

any case, despite the formation and growth of the azimuthal inhomogeneities, they



171

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Σ/Σi

−1

0

1

2

3

4

5

6

B
z
/B

z
,i

t/t0 = 2500

Fig. 4.9.— Scatter diagram showing the anti-correlation between the normalized
surface density and vertical field strength within ±2ε of the disk midplane (φ = π/2)
for a range of radius between 10 and 50 au at t/t0 = 2500.
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appear to become saturated at a relatively low amplitude and do not disrupt the

rings completely. Indeed, by the end of the simulation (t/t0 = 3000, panel d), the 12

o’clock bright arc is still there, but there are two other bright arcs that have since

grown, giving the ring a fragmented appearance. The ring just to larger radii is fainter

and part of it (near 11 o’clock) is missing; the missing part corresponds to a region

where the vertical magnetic field is enhanced (see panel d of Fig. 4.7). The general

anti-correlation between the surface density and the vertical field strength is shown in

Fig. 4.9, which plots the two quantities against each other between r = 10 and 50 au

in the disk (one pair for each cell within ±2ε of the midplane) at the representative

time t/t0 = 2500.

Our discussion so far has been focused on the outer region of the disk where the

rings and gaps are less crowded. The general behavior is similar in the inner disk,

where the substructures have a longer time to grow and saturate relative to the local

orbital period. One difference is that some of the narrow, faint rings in the Bz,mid

map which formed early in the simulation appear to merge together to form thicker

and brighter rings at later times. By the end of the simulation at t/t0 = 3000, high-

contrast rings and gaps are established in the inner disk for both the vertical magnetic

field (panel d of Fig. 4.7) and the surface density (panel d of Fig. 4.8). The fact that

they last for hundreds of local orbital periods is strong evidence for the stability of

such substructures in 3D.

4.4 Parameter survey

We have carried out four simulations in addition to the reference run (Table 4.1).

Model ad-els0.05 is 5 times more diffusive than the reference run (with a characteristic

AD Elsasser number Λ0 = 0.05 instead of 0.25) and Model ad-els1.25 is 5 times less
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Fig. 4.10.— The simulations ad-els0.05 (left) and ad-els1.25 (middle) at time t/t0 =
2500 and beta1e4 (right) at t/t0 = 2350. The top panel plots the logarithm of the
density (colour map) and the φ integrated magnetic flux contours (or effective poloidal
field lines, black lines). The bottom panel shows the φ averaged surface density (black)
and vertical magnetic field at the disk midplane (red) normalized respectively by their
initial distribution.
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diffusive (or better magnetically coupled) than the reference run. Model beta1e4 has

a weaker initial magnetic field than the reference run, with a plasma-β of 104 rather

than 103. These three models are shown in Fig. 4.10 through Fig. 4.13, and discussed

one by one in Section 4.4.1 below. Model ref-hires is a higher resolution version of the

reference run, with the number of cells increased by 50 per cent in each of the three

dimensions (though the resolution of the non-uniform θ grid at the disk is doubled).

It is discussed separately in Section 4.4.2.

4.4.1 Ambipolar diffusion and field strength

In Fig. 4.10, we compare the azimuthally averaged density distribution (colour map)

and effective poloidal magnetic field lines (black lines) in the top panels and the

azimuthally averaged distributions of the normalized surface density and vertical field

strength at the midplane in the bottom panels for the three variants of the reference

simulation. These panels are to be compared with Fig. 4.4 for the reference run.

A general trend is that the disk atmosphere and wind are more laminar in the more

magnetically diffusive case, with the sharply pinched poloidal field lines confined closer

to the disk midplane (Fig. 4.10a). As the magnetic field becomes better coupled to

the disk material, the so-called ‘avalanche’ accretion streams start to develop near

the disk surface, driving the atmosphere and wind to be more chaotic (Fig. 4.10c),

consistent with the 2D simulations of Suriano et al. (2018). Despite a factor of 25

difference between the most diffusive and the least diffusive models, prominent rings

and gaps with strong radial variation in surface density develop in all three β = 103

cases. In the more weakly magnetized case of β = 104, rings and gaps are still

formed, but they are less prominent with lower amplitudes of radial variation in both

the surface density and the vertical field strength compared to the more strongly
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magnetized reference simulation. Nevertheless, in all three variants of the reference

simulation, the gaps tend to have a stronger vertical field than the rings, just as in

the reference case. This broad similarity indicates that the same mechanism is at

work in creating disk substructures over a range of conditions.

The ambipolar diffusivity has a strong effect on the degree of azimuthal varia-

tion in the rings and gaps. The effect is particularly striking on the vertical field

strength Bz,mid at the midplane. In the most diffusive model (ad-els0.05), rings of

enhanced Bz,mid start out as axisymmetric structures (see panel a of Fig. 4.11), as

in the reference case. They stay largely axisymmetric at later times. In contrast,

in the least diffusive model (ad-els1.25), the rings develop large azimuthal variations

and become rather clumpy in appearance. The variations do not disrupt the rings

completely, however. Why the azimuthal variation of Bz,mid is so strongly affected

by the ambipolar diffusivity is uncertain. One possibility is that the better coupled

case is more unstable to MRI, especially the surface ‘avalanche’ accretion streams,

which are intrinsically non-axisymmetric. Such (non-axisymmetric) instabilities are

weakened or even suppressed if the ambipolar diffusivity is large enough. Another

possibility is that the poloidal magnetic field lines are expected to be wrapped more

strongly by the vertical differential rotation in a better coupled disk, creating a more

severe pinching of the field lines in the azimuthal direction that is more prone to

reconnection. Reconnection of a sharply reversed φ component of the magnetic field

will necessarily introduce an azimuthal variation to the vertical field strength.

The difference in the azimuthal variation of Bz,mid shows up in the surface density

as well. A comparison of panels (e)-(h) of Fig. 4.11 to those of Fig. 4.12 shows

that rings of enhanced surface density are much more perturbed in the least diffusive

model than in the most diffusive model. In addition, the disk material at large radii
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Fig. 4.11.— Spatial variation of the vertical magnetic field strength at the midplane
(top) and the disk surface density (bottom) normalized to their initial values for the
most diffusive simulation with Λ0 = 0.05 (model ad-els0.05) at four representative
times: (a/e) t/t0 = 1000, (b/f) 1500, (c/g) 2000, and (d/h) 3000. They show clearly
that the initially axisymmetric rings of enhanced surface density remain more or less
axisymmetric in 3D.
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Fig. 4.12.— Spatial variation of the vertical magnetic field strength at the midplane
(top) and the disk surface density (bottom) normalized to their initial values for
the least diffusive simulation with Λ0 = 1.25 (model ad-els1.25) at four representa-
tive times: (a/e) t/t0 = 1000, (b/f) 1500, (c/g) 2000, and (d/h) 2500. They show
clearly that the initially axisymmetric rings of enhanced surface density are strongly
perturbed but not disrupted in 3D.
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(beyond ∼ 40 au) is more depleted in the former than in the later, especially at late

times. Apparently, the better magnetic coupling has allowed more efficient angular

momentum transport in the outer part of the disk.

When the initial magnetic field strength is reduced by a factor of
√

10 compared

to the reference simulation (model beta1e4), rings and gaps are still formed, but they

are much less prominent than those formed in the more strongly magnetized reference

case (see Fig. 4.13), in both vertical field strength and surface density. The former

is likely because the field is too weak to drive a fast enough midplane accretion to

pinch the poloidal field lines radially enough for frequent reconnection. The latter

comes about because it is harder for a weaker field to move the gas around to form

prominent substructures.

4.4.2 Spatial resolution

Because of computational constraints, we are able to run just one higher resolution

simulation and only for a much shorter time. The simulation (model ref-hires in

Table 4.1) has parameters identical to the reference run, except that the number of

cells is increased by a factor of 1.5 in each of the three directions. The same type

of non-uniform θ grid is used as in the previous simulations. Although the total θ

resolution is increased by 1.5, the middle θ grid block has twice the number of cells

compared to the other simulations, thus doubling the vertical disk resolution. The

results are shown in Fig. 4.14 and 4.15 for a representative time t/t0 = 1200. The

top panel of Fig. 4.14 shows clearly the localized bunching of the effective poloidal

magnetic field lines, which is quantified in the bottom panel. Also evident in the

bottom panel is the characteristic anti-correlation between the distributions of the

vertical field strength and the surface density. The increase in spatial resolution does
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Fig. 4.13.— Spatial variation of the vertical magnetic field strength at the midplane
(top) and the disk surface density (bottom) normalized to their initial values for the
most weakly magnetized simulation with β = 104 (model beta1e4) at four represen-
tative times: (a/e) t/t0 = 1000, (b/f) 1500, (c/g) 2000, and (d/h) 2350. Although
rings and gaps are still formed, they are much less prominent than those created in
the more strongly magnetized reference case.
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Fig. 4.14.— The high resolution simulation (model ref-hires) at a representative time
t/t0 = 1200. The top panel plots the logarithm of the density (colour map) and the
φ integrated magnetic flux contours (or effective poloidal field lines, black lines). The
bottom panel shows the φ averaged surface density (black) and vertical magnetic field
at the disk midplane (red) normalized respectively by their initial distribution.
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Fig. 4.15.— Spatial variation of the vertical magnetic field strength at the midplane
(top row) and the disk surface density (bottom row) normalized to their respective
initial distribution for the high resolution simulation (left column) and the reference
simulation (right column) at a representative time t/t0 = 1200. The disk substruc-
tures are just as prominent, if not more so, as in the reference simulation.
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not weaken the disk substructures. In fact, there are more rings and gaps in both

the vertical field strength and the surface density, and such radial substructures are

more prominent in the higher resolution simulation compared to the reference sim-

ulation, especially in the outer regions of the disk. The substructures can be seen

more clearly in Fig. 4.14, which shows the face-on view of the vertical magnetic field

distribution and the surface density distribution for the high resolution simulation

(left column) compared to the reference simulation (right column). We are confi-

dent that the prominent disk substructures are not an artifact of the relatively low

resolution of the reference simulation, although their detailed properties could be

resolution-dependent.

4.5 Conclusion

We have carried out a set of 3D simulations of magnetically coupled disk-wind systems

including ambipolar diffusion for different values of the ambipolar diffusivity and

the magnetic field strength, as well as two different spatial resolutions. Our main

conclusions are as follows.

1. Prominent rings and gaps are formed in the disk in 3D simulations, as in previ-

ous 2D (axisymmetric) simulations. They are formed through the same mecha-

nism identified previously in the 2D case, the redistribution of the poloidal mag-

netic flux relative to the disk material via the reconnection of highly pinched

poloidal field lines in the radial direction. The redistribution is shown clearly

in the anti-correlation of the distributions of the disk surface density and the

vertical magnetic field strength at the midplane, with rings of enhanced surface

density less strongly magnetized compared to the gaps.
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2. The rings and gaps that develop from the axisymmetric initial conditions adopted

in the 3D simulations are relatively axisymmetric at early times. They are dis-

torted by azimuthal variations at later times. The variations do not grow to

such an extent as to disrupt the rings and gaps completely. The mostly axisym-

metric rings of enhanced surface density persist to the end of the simulation in

all cases, which lasts up to 3000 orbits at the inner disk edge.

3. The rings and gaps are more prominent when the magnetic field is better coupled

to the bulk disk material and when the (poloidal) magnetic field is stronger.

Better magnetically coupled disks tend to have stronger azimuthal variations in

the disk substructures.

4. Disk substructures are just as prominent, if not more so, in the higher resolution

simulation compared to the lower resolution simulations.
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Chapter 5

Conclusion

5.1 Summary

This thesis has explored the formation of radial substructure in magnetized proto-

planetary disks (PPDs) using the ZeusTW MHD code. The work is motivated by

(1) the need to understand non-ideal MHD effects on the connection of magnetized

disk winds to the global evolution of PPDs, and (2) the rings and gaps detected in an

increasing number of disks through millimeter and near infrared (NIR) scattered light

observations. In Chapter 2, we have found that in 2D-axisymmetric MHD simulations

that include Ohmic resistivity, rings and gaps can be formed in disks through purely

MHD processes in one of two ways. First, from the removal of angular momentum via

a disk wind if the wind torque (and, therefore, the wind driven mass accretion rate)

varies as a function of disk radius. Second, via the transport of mass through the

so-called “avalanche accretion streams,” which are a manifestation of the magnetoro-

tational instability (MRI) channel flows in two dimensions. These two mechanisms

operate at two different regimes determined by the Lundquist number, S ≡ hvA/η,

where h is the disk scale height, vA the Alfvén velocity, and η the Ohmic resistivity.
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When S is large, the avalanche accretion streams dominate the disk dynamics and

the accretion rate is set by a vertically-extended envelope (z ∼ R) produced from

the repeated formation and disruption of the streams. However, if S becomes small

enough to suppress the streams, the accretion is laminar through the disk midplane

and the formation of rings and gaps is driven by the disk wind. The ability of a

laminar (non-turbulent) disk to spontaneously form rings and gaps via an MHD disk

wind is important because it allows dust to settle in an actively accreting disk, which

appears to be the case for HL Tau (Hasegawa et al. 2017).

Chapter 3 focuses on the ambipolar diffusion-dominated outer regions of proto-

planetary disks (r = 1 − 100 au). Again, we found that a nearly steady disk wind

is driven from the disk surface mainly by the magnetic pressure gradient from the

toroidal field, while the bulk of the accretion is concentrated in a thin current layer

near the midplane (where the toroidal magnetic field changes sign). We outline a

mechanism where the reconnection of the highly pinched radial magnetic field in the

midplane current layer creates a strong variation in the vertical magnetic flux through

the disk as a function of radius. Prominent rings and gaps form in the disk as a result

of this mechanism with the surface density correlating inversely with magnetic flux

(as in Chapter 2). In the gaps, the relatively large poloidal magnetic field leads to

the rapid accretion of the bulk (neutral) material as angular momentum is removed

by the disk wind. Ions and magnetic field lines that are tied to them are not accreted

rapidly, however, because the strong field drives a large ion-neutral drift velocity.

Inside dense rings, the poloidal field is much weaker and is dominated by a strong

toroidal component. The overall ring/gap pattern is considerably more stable than

the case with Ohmic resistivity. It not only provides a plausible explanation for the

rings and gaps observed on the tens of au scale (where AD is important) in several
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disks, but can also potentially prevent large grains from migrating too quickly from

the outer disk (where they are often observed) through rapid radial drift.

Finally, Chapter 4 extends the 2D simulations with AD performed in Chapter

3 to three dimensions. Rings and gaps are still formed, just as the 2D case. In

particular, there is still a clear anti-correlation between the mass surface density

and the vertical magnetic flux through the disk midplane. The same mechanism

of the AD-assisted reconnection of a pinched radial magnetic field creating a radial

variation of the vertical magnetic flux is likely still at work, especially given that the

rings and gaps are axisymmetric at early simulation times. The reconnection of the

magnetic field at the midplane current layer is not restricted to the poloidal plane

in 3D; reconnection in the azimuthal direction could seed the non-axisymmetric disk

substructure, which is most noticeable in the vertical magnetic field strength than in

the surface density. Less diffusive (better magnetically coupled) disks develop more

prominent and smaller scale non-axisymmetric structures, while weaker magnetic field

strengths lead to smaller contrast ratios in the surface density rings and gaps. A higher

resolution simulation confirms that the existence of rings and gaps does not depend

on the resolution, but their detailed properties could be resolution-dependent.

In what follows, we will provide a more detailed (and more technical) summary

of the thesis, based on the summaries at the end of Chapters 2− 4. This is followed

by an outlook on future directions in Section 5.2.

5.1.1 Resistive axisymmetric simulations

Chapter 2 presents the results of 2D (axisymmetric) resistive MHD simulations of

coupled disk-wind systems with a range of disk parameters (resistivity, magnetic field

strength, and temperature), focusing on geometrically thin disks. We find that the
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structure and dynamics of the disk-wind system strongly depend on the dimensionless

magnetic diffusivity parameter Dm ≡ η/(hvA) and that interesting disk features,

including rings and gaps, are naturally produced. Specifically, we find that:

1. There are two distinct modes of accretion depending on the dimensionless pa-

rameter Dm. Disks with low values of Dm, from either a small resistivity or high

field strength, tend to develop fast ‘avalanche accretion streams’. The rapid for-

mation and disruption of such streams often leads to a clumpy, thick envelope

above the disk that dominates the dynamics of the system, although a highly

variable wind is still launched above the envelope. The streams (and the thick

clumpy envelope they produce) are suppressed in simulations with larger values

of Dm (from either a large resistivity or low field strength, e.g., models beta3

and D4). In these more diffusive (larger Dm) simulations, most of the accretion

occurs through a laminar thin disk rather than the thick clumpy envelope, and

the disk accretion is driven mainly by a magnetic wind.

2. Both wind-dominated and stream-dominated accretion create prominent fea-

tures in the surface density distribution, especially rings and gaps. The wind-

driven ring and gap formation is illustrated most clearly in the innermost region

(Zone I) of the reference simulation, where there is substantial redistribution

of magnetic flux relative to the mass in the disk that is enabled by the re-

sistivity. Regions with lower mass-to-flux ratios tend to drive stronger winds

and accrete faster, producing gaps; those with higher mass-to-flux ratios tend

to accrete more slowly, allowing matter to accumulate and form dense rings.

Another stream-driven ring formation mechanism is illustrated most clearly in

the thicker disk model (t4), where a stream feeds a prominent ring at a roughly

constant radius. Multiple rings and gaps are formed in other, more complicated
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cases, especially those with stream-induced envelopes (model D 4 and beta 3).

It is likely that both magnetic winds and avalanche accretion streams play a

role in the formation of rings and gaps, although the relative importance of the

two mechanisms is hard to quantify due to the complexity of the flow pattern

inside and above the disk.

3. Powerful winds are launched despite the fact that the magnetic field in the disk

is rather weak initially (corresponding to a typical plasma-β ∼ 103). In the

reference simulation where the wind is analyzed in detail, we find that the bulk

of the wind is heavily mass-loaded and accelerated by the magnetic pressure

gradient to relatively low speeds (a few ×10 km s−1). There are, however,

lightly mass-loaded regions that are accelerated magnetocentrifugally to speeds

exceeding 100 km s−1, comparable to the jet speeds observed in young stellar

objects. The magnetic wind can remove angular momentum from the disk

efficiently, leading to disk accretion with an effective α parameter up to order

unity. Our simulations add weight to the notion of wind-driven disk evolution,

especially in the presence of a suitable level of magnetic diffusivity.

4. Rings and gaps produced in circumstellar disks by magnetic winds and avalanche

accretion streams have important implications on the dynamics and growth of

dust grains and ultimately planet formation. The local pressure maxima associ-

ated with the rings would act to stop the radial drift of solid particles, possibly

trapping them long enough to enable enhanced grain growth that facilitates

planetesimal formation. This may be especially important in the inner (i.e.,

few tenths of an au) disk regions where the largest population of planets reside,

as seen by Kepler.
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5.1.2 Ambipolar diffusion and reconnection

In Chapter 3, we have carried out 2D (axisymmetric) simulations of magnetically

coupled disk-wind systems in the presence of a poloidal magnetic field and ambipolar

diffusion (AD). The field strength is characterized by the plasma-β and AD by the

dimensionless Elsasser number Λ0. We focused on β ∼ 103 and explored a wide range

of values for Λ0, from 0.01 to ∞ (ideal MHD). Our main conclusions from Chapter 3

are as follows:

1. In moderately well coupled systems with Λ0 between 0.05 and 0.5, including

the reference simulation (ad-els0.25), we find that prominent rings and gaps

are formed in the disk through a novel mechanism, AD-assisted reconnection.

This mechanism starts with the twisting of the initial poloidal magnetic field

into a toroidal field that reverses polarity across the disk midplane. Ambipolar

diffusion enables the Lorentz force from the toroidal field pressure gradient to

drive the ions (and the toroidal field lines tied to them) towards the magnetic

null near the midplane, which steepens the radial (Jr) current sheet in a run-

away process first described in Brandenburg & Zweibel (1994). The field kink

generates a toroidal Lorentz force that removes angular momentum from the

thin radial current sheet, forcing it to accrete preferentially relative to the rest

of the disk. The preferential midplane accretion drags the poloidal field lines

into a sharply pinched configuration, where the radial component of the mag-

netic field reverses polarity over a thin, secondary azimuthal (Jφ) current sheet.

Reconnection of the radial pinch produces two types of regions with distinct

poloidal field topologies: one occupied by magnetic loops and another that re-

mains threaded by ordered poloidal fields. The weakening of the net poloidal

field in the former makes angular momentum removal less efficient, allowing
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disk material to accumulate to form dense rings. Conversely, those regions that

gained poloidal flux after reconnection are magnetically braked more strongly,

with a faster draining of disk material that leads to gap formation. In addition,

AD allows for a quasi-steady state of the ring and gap structure, where the field

lines can stay more or less fixed in place despite rapid mass accretion in gaps

because of the ion-neutral drift.

2. In better magnetically coupled disk-wind systems with larger Λ0, as well as

the ideal MHD limit, we find that avalanche accretion streams develop sponta-

neously near the disk surface. The accretion streams lead to unsteady/chaotic

disk accretion and outflow, as found previously in Chapter 2 for cases of low or

zero Ohmic resistivities (see also Zhu & Stone 2018). Prominent rings and gaps

are still formed in the disk; the poloidal field lines are concentrated in some

regions and excluded from others, with the more strongly magnetized regions

producing gaps and the less magnetized regions forming rings, just as in the

more magnetically diffusive reference case. We suggest that this segregation of

poloidal magnetic flux and matter is also due to reconnection of highly pinched

poloidal fields. In this case, the pinching is caused by the avalanche accretion

streams (a form of MRI channel flows) rather than the midplane current sheet

steepened by AD. The fact that rings and gaps are formed in both laminar and

chaotic disk-wind systems over a wide range of magnetic diffusivities suggests

that they are a robust feature of such systems, at least when the initial poloidal

magnetic field is relatively strong. For more weakly magnetized systems, recon-

nection may still occur but the resulting redistribution of poloidal magnetic flux

would have less of a dynamical effect on the gas, making ring and gap formation

less efficient.



191

3. If young star disks are threaded by a significant poloidal magnetic field, espe-

cially during the early phases of star formation, it may drive rapid disk accretion

through a magnetic wind without necessarily generating strong turbulence in

the disk, particularly in the outer parts of the disk that are only moderately

well coupled to the magnetic field. The lack of a strong turbulence despite

rapid accretion may allow dust to settle early in the process of star formation,

facilitating early grain growth. Large grains may be trapped in the rings that

are naturally produced in the system, which may promote the formation of

planetesimals and eventually planets.

5.1.3 Three-dimensional simulations

In Chapter 4, we carried out a set of 3D simulations of magnetically coupled disk-wind

systems including ambipolar diffusion for different values of the ambipolar diffusiv-

ity and the magnetic field strength and two different spatial resolutions. The main

conclusions are as follows.

1. Rings and gaps are formed in disks in 3D simulations, as in previous 2D (ax-

isymmetric) simulations. They are formed through the same mechanism iden-

tified previously in the 2D case, the redistribution of the poloidal magnetic flux

relative to the disk material via the reconnection of highly pinched poloidal

field lines in the radial direction. This redistribution is seen clearly in the

anti-correlation of the distributions of the disk surface density and the vertical

magnetic field strength at the midplane, with rings of enhanced surface density

less strongly magnetized compared to the gaps.

2. The rings and gaps that develop from the axisymmetric initial conditions adopted

in the 3D simulations are relatively axisymmetric at early times. They are dis-
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torted by azimuthal variations at later times. The variations do not grow to

such an extent as to disrupt the rings and gaps completely. The mostly axisym-

metric rings of enhanced surface density persist to the end of the simulation in

all cases (up to 3000 orbits at the inner disk edge).

3. The rings and gaps are more prominent when the magnetic field is better coupled

to the bulk disk material and when the (poloidal) magnetic field is stronger.

Better magnetically coupled disks tend to have stronger azimuthal variations in

the disk substructure.

4. Disk substructures are just as prominent (more so in the outer disk), for a higher

resolution simulation compared to the lower resolution simulations.

5.2 Future Outlook

5.2.1 The Hall effect

The simulations discussed in this thesis explored the impact of two non-ideal MHD

effects, Ohmic resistivity and ambipolar diffusion, on the formation of disk substruc-

ture. The logical next step would be to include the third non-ideal effect, the Hall

effect (HE), first in axisymmetric 2D simulations, and then in global 3D simulations

as in Chapter 4. The HE is known to be important in controlling the dynamics of

magnetized protoplanetary disks (e.g., Kunz & Lesur 2013; Bai 2014, 2015; Béthune

et al. 2016; Bai & Stone 2017; Bai 2017), especially at disk radii from 1−10 au where

it is likely the dominant non-ideal MHD effect (see Turner et al. 2014b; Armitage

2015 for review).

A unique feature of the HE is that it depends on the polarity of the magnetic
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field, unlikely the other two non-ideal MHD effects. This can be seen from the fact

that the Hall diffusivity depends linearly on the magnetic field (i.e., ηH ∝ B), and

thus changes sign when the field polarity is reversed. This dependence is illustrated,

for example, by Bai & Stone (2017), who demonstrated that the magnetic flux is

transported through the disk differently in the presence of the HE when the magnetic

field direction is aligned or anti-aligned with the angular velocity. When the magnetic

field is aligned with the disk rotation, the vertical gradient of the toroidal magnetic

field generates an outward-directing radial current density, which leads to an inward

radial drift of the electrons (and the magnetic field lines tied to them) relative to the

ions (and the bulk neutral material to which the ions are tied collisionally), since such

a drift is required to generate the outward-directing electric current. In contrast, when

the magnetic field flips its polarity so that it is anti-aligned with the disk rotation,

the same vertical gradient of the toroidal magnetic field generates an inward- rather

than outward-directing radial current density, which drives the electrons (and the

magnetic field lines tied to them) to drift outward, instead of inward, relative to the

ions (and neutrals). This same line of reasoning could be important for solving the

so-called “magnetic braking catastrophe,” (see Li et al. 2014b) in which rotationally

supported disks are difficult to form without the removal of a significant amount of

magnetic flux; the flux removal will depend on the orientation of the magnetic field

relative to the rotation axis where the Hall effect is important.

5.2.2 Disk chemistry and ionization

Whether non-ideal MHD effects are important to the disk dynamics or not depends

critically on the disk ionization. As a first step, we have adopted in this thesis

a simple, parametrized approach to treat the coefficients for the non-ideal MHD
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effects. Specifically, the resistivity is taken to be constant throughout the simulations

in Chapter 2 and a simple power-law dependence of the ion density on the bulk neutral

density is adopted to treat the ambipolar diffusion inside the disk in Chapter 3 & 4;

above the disk, the ionization is assumed to increase rapidly so that the ambipolar

diffusion quickly becomes inefficient above two disk scale heights. In a more complete

model, there is obviously a strong need to compute the disk ionization and thus

non-ideal MHD coefficients self-consistently.

Protoplanetary disks have several sources of ionization with their relative impor-

tance depending on the location in the disk. The sources of disk ionization include:

1. Thermal ionization of alkali metals (i.e., potassium with χ = 4.34 eV) in warm

inner disk regions

2. Cosmic rays with a canonical ionization rate of ζCR = 10−17 s−1

3. Ultraviolet photons from the central star or cluster environment

4. Stellar X-ray photons

5. Decay of radionuclides (i.e., 26Al)

Ideally, these ionization sources should be included to compute the disk ionization

self-consistently everywhere in the disk at all simulation times. This requires the

implementation of a chemical network as formulated, e.g., by Umebayashi & Nakano

(1990) (see also Ilgner & Nelson 2006; Bai & Goodman 2009; Padovani et al. 2014).

These simplified equilibrium chemical networks contain ∼10 chemical species, includ-

ing free electrons and protons, the neutral hydrogen molecule H2, the hydrogen ion

H+
3 , a neutral and +1e-charged heavy molecule species, a heavy metal atom and its

+1e-charged ion, and neutral or singly (±1e) charged dust grains with various sizes
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according to the MRN size distribution (Mathis et al. 1977). This has already been

implemented into the ZeusTW code (Zhao et al. 2016) and was used in the context

of disk formation from prestellar cores. We plan to extend this capability to our

protoplanetary disk simulations in the future.

5.2.3 Dust grain dynamics

So far, our simulations included gas only. An important next step is to treat dust

grain dynamics, through either post-processing or direct inclusion of the grains into

the MHD simulations. This step is crucial for at least two reasons: (1) it allows for the

direct comparison between simulations and observations of disk substructures, which

are usually traced observationally through either direct dust emission at (sub)mm-

wavelengths by relatively large grains or scattered light at NIR by relatively small

grains; (2) provide insights into how the disk dynamics (such as the level of turbulence,

which may be low for the wind-driven disk accretion) and radial structures (such as

rings and gaps) affect the grain growth, vertical settling, and radial drift, all of which

are currently uncertain but crucial to the formation of planetesimals and, eventually,

planets.

The dynamics of dust particles relative to the gas in protoplanetary disks is most

often characterized by the stopping time of a dust particle (Whipple 1972; Weiden-

schilling 1977a),

ts =
m∆v

Fdrag

, (5.1)

where m is the mass of the particle, ∆v is the velocity difference between the particle

and the gas ∆v = vdust − vgas, and Fdrag is the drag force acting on the particle. In

the well-known Epstein regime that is generally applicable in disks for millimeter- or

centimeter-sized grains that are directly accessible to radio observations, i.e., where
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the particle size is small compared to the mean free path of the gas and the gas

particles hit the dust particle individually rather than acting on it as a fluid, the

stopping time can be written independent of ∆v as (assuming the gas thermal velocity

is roughly the same as the gas sound speed)

ts =
ρ̄solida

ρgascs
. (5.2)

where ρ̄solid is solid density of the particle (approximately 3 g cm−3) and a is the

radius of the particle. The dimensionless stopping time, or the Stokes number, is

then defined as

St ≡ tsΩK . (5.3)

Particles with a Stokes number of order unity are special in the disk in that they

are expected to drift radially inward the fastest. This is because smaller particles

with a Stokes number much less than unity are well coupled to the gas, which orbits

the central star at a sub-Keplerian speed because of the partial support provided

to the gas by the pressure gradient in a (smooth) disk. The tight coupling of the

small particles to the gas means that they must orbit the central star at roughly

the same sub-Keplerian speed as well. Since these sub-Keplerian particles do not

experience the gas pressure gradient directly, they would be pulled inward by the

unbalanced gravitational force (i.e., excess over the centrifugal force from the sub-

Keplerian rotation), until a terminal infall (or inward drift) speed is reached where the

unbalanced gravitational pull is balanced by the outward drag force on the particles

from their inward drift through the gas. Since smaller particles have a larger surface

area relative to their mass, they are better coupled to the gas through collisions, with

a smaller drift speed needed to generate the same amount of drag force per unit mass
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to balance the excess gravitational acceleration due to sub-Keplerian rotation. This is

the reason why, in the limit of St� 1, smaller particles tend to drift slower radially,

with the drift speed increasing with the particle size.

In the opposite limit of St � 1, the trend is reversed. This is because large

particles in this regime are poorly coupled to the gas through collisions. They orbit

the central star at an essentially Keplerian speed, and experience a “head wind” from

the more slowly rotating (sub-Keplerian) gas that reduces their orbital energy (and

angular momentum). The reduction forces the particles to drift radially inward, with

smaller particles drifting inward more quickly because they are better coupled to the

gas and thus experience an effectively stronger “head wind” (relative to their mass)

that reduces their orbital energy (and angular momentum) more efficiently. The end

result is that the drift speed peaks for particles with St ∼ 1.

One consequence of the above result is the well-known “meter size barrier” in

planetesimal formation. Objects of approximately a ∼ 1 m have a Stokes number of

order unity at r ∼ 1 au in the MMSN1 and are expected to drift rapidly inward on a

timescale of less than 100 yr, much shorter than the expected lifetime of protoplane-

tary disks, thus limiting the maximum size to which dust grains could grow. In the

simulations presented in this thesis, the particle size which yields a Stokes number of

unity at a radius of 10 au is around a = 10 cm.

Despite this theoretical meter size barrier, we know that grains must be able

to overcome the barrier and grow to bigger sizes in order to form kilometer-sized

1The minimum mass solar nebula (MMSN; Weidenschilling 1977b; Hayashi 1981) is the minimum
amount of mass required to form the planets in the solar system in situ. The radial mass distribution
of the MMSN is found by spreading the mass of each planet in the solar system over an annulus
centered on their orbital radii and adding back the appropriate amount of gas that would have
been present in the young disk. The resulting mass surface density distribution is found to be

Σ ' 1700 g cm−2 (R/au)
−3/2

with a total disk mass of the order 10−2 M�. Similarly, one can
construct the MMEN (where the “E” is for extrasolar) from all known exoplanets to a similar mass
surface density distribution but with the scaling increased by a factor of five (Chiang & Laughlin
2013).



198

planetesimals and eventually planets on appropriate timescales in disks. One possible

way to circumvent this problem is that the inward migration of large solid particles is

halted by pressure maxima in disks. Particles drift through the disk in the direction of

the positive radial pressure gradient, i.e., towards pressure maxima. For this reason,

pressure maxima in disks are often referred to as dust traps as they will attract

solids particles from both sides of a pressure maximum. At the peak of the pressure

distribution, where dP/dr = 0, the gas will orbit at the Keplerian speed; there will

be no difference in orbital speed between the gas and the dust and, therefore, no

drag force acting on the dust to force it to migrate inward. Such pressure bumps are

needed to stop the fast migration of large grains through the disk; they are potential

sites of rapid grain growth.

The simulations presented in thesis provided a natural mechanism for the for-

mation of such sites in magnetized accretion disks. Such dust traps would be espe-

cially important in low-mass disks around brown dwarfs where millimeter-sized grains

are inferred on the 100 au scale from observations, especially with ALMA (Pinilla

et al. 2013). Dust grains are well-coupled to the gas for relatively massive disks with

mass greater than the MMSN (10−2 M�); for example, they have a Stokes number

St ∼ 0.03� 1 at 100 au of our reference models (that are not far from MMSN). Since

the Stokes number for grains of a given size is inversely proportional to the surface

density of the gas, lowering the surface density by a factor of 10, for example, would

increase the Stokes number of those grains by a corresponding factor from 0.03 to

0.3 (i.e., much closer to the St ∼ 1 regime where the grains drift radially inward the

fastest). Indeed, in the specific case of the young brown dwarf 2M0444, Ricci et al.

(2017) showed that the observationally inferred millimeter-sized grains in the outer

part of the disk would disappear quickly through radial migration if they were not
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trapped. They showed further that the observations could be explained by having

multiple pressure peaks in the outer disk, like those that form in our simulations.

The potential for disk substructures to slow down the rapid radial migration of large

particles and facilitate the formation of planetesimals and planets provides a strong

motivation for future investigations of their effects on grain dynamics and growth.

In addition, the ability of a laminar disk to spontaneously form rings and gaps via

an MHD disk wind is important because it allows dust to settle vertically in an actively

accreting disk, which appears to be the case for HL Tau (Pinte et al. 2016; Hasegawa

et al. 2017). From the simulation results in Chapter 3, we speculated that the AD-

enhanced midplane accretion could account for such large accretion rates despite a

high degree of dust settling, and, therefore, a lack of disk turbulence. This idea has

since been corroborated by the simulations of Riols & Lesur (2018), which included

dust grains in (shearing-box) MHD simulations of protoplanetary disks. Furthermore,

small grains, depending on how well coupled they are to the gas flow, may be swept

up in disk winds or vertically suspended in the disk atmosphere (Turner et al. 2014a;

Miyake et al. 2016). This could potentially be responsible for the IR variability

observed in many young stars. If gas is removed preferentially by the disk winds

relative to dust grains (especially large grains that are not well coupled to the gas),

the local dust-to-gas ratio in the wind-launching region of the disk is expected to

increase with time, with interesting implications for the grain dynamics and growth

that are important for planet formation (Suzuki et al. 2010; Gorti et al. 2015; Bai

et al. 2016).

For these reasons, it is important and compelling to continue the investigation

of the formation of substructures in magnetized protoplanetary disk simulations by

including more detailed microscopic physics and the dynamics of dust grains, which
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are more directly tied to observations and planet formation.
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Dipierro, G., Ricci, L., Pérez, L., Lodato, G., Alexander, R. D., Laibe, G., Andrews,

S., Carpenter, J. M., Chandler, C. J., Greaves, J. A., Hall, C., Henning, T., Kwon,

W., Linz, H., Mundy, L., Sargent, A., Tazzari, M., Testi, L., & Wilner, D. 2018,

MNRAS, 475, 5296

Dittrich, K., Klahr, H., & Johansen, A. 2013, ApJ, 763, 117

Dong, R., Li, S., Chiang, E., & Li, H. 2017, ApJ, 843, 127

Dong, R., Zhu, Z., & Whitney, B. 2015, ApJ, 809, 93

Dzyurkevich, N., Flock, M., Turner, N. J., Klahr, H., & Henning, T. 2010, A&A, 515,

A70

Evans, C. R. & Hawley, J. F. 1988, ApJ, 332, 659

Fedele, D., Carney, M., Hogerheijde, M. R., Walsh, C., Miotello, A., Klaassen, P.,

Bruderer, S., Henning, T., & van Dishoeck, E. F. 2017, A&A, 600, A72

Fedele, D., Tazzari, M., Booth, R., Testi, L., Clarke, C. J., Pascucci, I., Kospal, A.,

Semenov, D., Bruderer, S., Henning, T., & Teague, R. 2018, A&A, 610, A24

Ferreira, J. 1997, A&A, 319, 340

Flaherty, K. M., Hughes, A. M., Rose, S. C., Simon, J. B., Qi, C., Andrews, S. M.,
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Gusdorf, A., Gueth, F., Podio, L., & Chapillon, E. 2017, A&A, 607, L6

Takahashi, S. Z. & Inutsuka, S.-i. 2014, ApJ, 794, 55

Troland, T. H. & Crutcher, R. M. 2008, ApJ, 680, 457

Turner, N. J., Benisty, M., Dullemond, C. P., & Hirose, S. 2014a, ApJ, 780, 42

Turner, N. J., Fromang, S., Gammie, C., Klahr, H., Lesur, G., Wardle, M., & Bai,

X.-N. 2014b, Protostars and Planets VI, 411

Tzeferacos, P., Ferrari, A., Mignone, A., Zanni, C., Bodo, G., & Massaglia, S. 2009,

MNRAS, 400, 820

Umebayashi, T. & Nakano, T. 1981, PASJ, 33, 617

—. 1990, MNRAS, 243, 103
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