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Abstract

This dissertation investigates the role of productivity, model uncertainty, and home pro-

duction in macroeconomics and the housing market, focusing on the resource allocation

among different production sectors and the new home sales price.

In the first chapter, I construct sector-specific total factor productivity shocks in a two-

sector DSGE model and study to what extent that the TFP shock in housing sector accounts

for the rise and fall during the most recent housing market crisis. I solve the model using the

methodology proposed by Hansen and Sargent (1995). The discounted Linear Exponential

Quadratic Gaussian control method successfully avoids computational difficulties such as

high-dimensional state space, explosive value function, etc., and facilitates the simulation

of the worst-case model to implement the likelihood ratio tests. I calibrate the parameters

in the benchmark model by the simulated method of moments. The benchmark model,

with TFP shocks alone, does a decent job in fitting the first and second moments of real-

world data; it accounts for 32 percent of the increase and 40 percent of the decrease in

the new home sales price. The implied changes in the resource allocation between the two

sectors are also in line with data. Then I introduce model uncertainty into the benchmark

framework and dedicate to answer the question that whether the fear of model misspecifi-

cation help account for the boom-bust in the new home sales price, and I examine the first

and second moments of the worst-case distribution of the TFP shocks. I allow a one-time

temporary change in the model uncertainty level during the time span with enhanced dis-

persions of professional forecasts. The model uncertainty parameter is calibrated by the

detection error probability as in Hansen and Sargent (2007). When households hold a con-

cern for model misspecification, they are seeking robust decision rules which perform well

over a set of alternative models that are statistically indistinguishable from the not-fully-
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trusted approximating model. When model uncertainty level rises, the worst-case model

distorts the Gaussian mean of TFP shocks negatively in households’ minds but keeps the

variance-covariance matrix of the TFP shocks almost unchanged. Since the TFP shock in

housing production is more volatile, it receives a larger negative mean-shift effect than the

TFP shock in the consumption goods sector from the robust state transition law. As a re-

sult, the new home sales price is pushed up even further. Thus with the one-time change in

model uncertainty, the model is capable of accounting for 40 percent of the surge in new

home sales price. The inclusion of the fear for model misspecification improves model’s

fitting with data.

The second chapter studies the implications of introducing home production into an

otherwise standard two-sector production economy from the theoretical perspective. While

the benchmark model shows reasonable impulse responses of the key economic variables to

different productivity shocks in the two market production sectors, the existence of home

production highlights more interesting mechanisms due to the substitution incentive be-

tween market-produced and home-produced goods. When there is a positive productivity

shock in the nonhousing goods production sector, households are inclined to substitute

market consumption for home consumption as it is relatively more efficient to work in the

market. As a result, resources flow to the two market sectors as if the relative productivity

change in the nonhousing sector to the housing sector were amplified. In the case with a

positive productivity shock in the housing sector, although it is more efficient to produce

housing goods, the increment of housing stock requires more home hours to pair with it

in home production. Thus the effects on resource allocations in the market sectors driven

by this relative productivity change are tempered. This substitution mechanism can help

improve the two-sector model’s performance in fitting of the correlations between factor

inputs that observed in the data.
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Chapter 1

Productivity, Model Uncertainty, and

the New Home Sales Price in the U.S.

1.1 Introduction

The U.S. housing market experienced the unprecedented fluctuations from 2003 to

2009. Empirical data documented the most prominent boom and bust of the inflation-

adjusted median sales price for new houses sold in the U.S. as shown in Figure 1.1. The

real new home sales price surged since the second quarter of 2003, peaked in the fourth

quarter of 2006 with a sharp increase of 30 percent, and plummeted back to the pre-boom

level in the following three years.

Unlike the price index for the existing homes, the new home sales price index measures

the market value for new houses constructed.1 Davis and Heathcote (2007) decompose the

1The Case-Shiller Home Price Index (HPI) measures the repeated sales value of the existing homes. The
historical data series of the Case-Shiller HPI is shown in Appendix 1.G. The Case-Shiller HPI exhibits a
larger increase and decrease during 2003 - 2009. But this paper focuses on the new home sales price, which
co-moves very closely with the Case-Shiller HPI.
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Figure 1.1: Real Median Sales Price Index for New Houses Sold in U.S. (1975 - 2012)
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Real Median Sales Price Index for New Houses Sold in the United States.

Data source: Federal Reserve Economic Data, St. Louis Fed.

aggregate value of the housing stock into structures and land components, and they argue

that the value of new homes relies heavily on the production of new structures while the

price of land plays a more important role in the value of existing homes. This paper dedi-

cates to study the dynamics of new home sales prices with an emphasis on the productivity

shocks in both construction and non-construction sectors. The business cycle facts show

that construction output is about 8.5 times as volatile as the non-construction output. If

the variance of productivity shocks is assumed to be equal across the two sectors, the re-

sulting relative volatility will be counterfactual. Davis and Heathcote (2005) calibrate a

multi-sector model in which the price of new structures is driven by changes in relative

productivity across sectors. Their model successfully matches the U.S. housing market

data over the post-war period. I adopt the idea of sector-specific productivity shocks and

sector-specific technology (i.e. distinct capital shares, labor shares, etc.) for production.

However, I only consider two production sectors to keep the problem tractable while still
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seize the core that relative productivity changes lead to resource reallocations and drive

the dynamics of the new home sales price.2 In addition to the two-sector setup, my model

features indivisible labor in the preference which allows greater movements in labor sup-

ply along the extensive margin. Moreover, change capital or labor input is costly. I use a

quadratic function to characterize the adjustment costs associated with any resource reallo-

cation. The purpose of embedding these features is to fine-tune the model to best match the

data series of factor inputs so that it can be used to investigate the behavior of new home

prices driven by the productivity shocks. The model parameters are calibrated by matching

the first and the second business cycle moments using the pre-boom macroeconomic data.

My benchmark model with productivity shocks alone matches relatively well the scale

of new home sales price fluctuations before the housing boom. However, the sector-specific

productivity shocks only account for about 25 percent of the skyrocketing new home prices

from the year of 2003 to 2007. The main driving force underlying the boom of the new

home sales price is a decrease in the relative productivity of construction sector to non-

construction sector. This mechanism is consistent with the empirical findings shown in

Sveikauskas et al. (2014) and Galesi (2014). Productivity variations also lead to changes in

the marginal products of capital and labor input, which gives an incentive for the economy

to specialize in the sector with highest production efficiency with the resources. A rela-

tively low productivity in the construction sector discourages building more new homes

and pushes up the new home sales price.

Recently, a growing body of literature works on the profound economic decline dur-

ing 2008-2009 from the perspective of model uncertainty (uncertainty in the Knightian

sense). According to the seminal work by Knight (1921), there are two kinds of uncer-

2The multi-sector business cycle literature studying the housing market and residential investment
includes, but is not limited to, Long and Plosser (1983), Baxter (1996), Iacoviello and Neri (2010),
Dorofeenko et al. (2014), etc.
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tainty: the first, often called risk, corresponds to a situation in which a uniquely (either

objectively or subjectively) determined probability is assigned to any unrealized event; the

second, often called Knightian uncertainty, corresponds to a situation in which the prob-

ability distribution of a future event is unknown.3 Ellsberg (1961) implemented experi-

mental analysis to formally discuss the distinction between risk and uncertainty. Such a

distinction is meaningful since no probability distribution is actually given or easily com-

putable in most economic contexts where agents are facing uncertainties. As argued in

Caballero and Krishnamurthy (2008), the Knightian uncertainty is triggered by unusual

events and untested financial innovations that lead the agents to question their understand-

ing of the economic conditions and challenge their trust in the data-generating process.

Survey data on households’ expectations about future macroeconomic outcomes also re-

veal significant pessimistic biases prior to the Great Recession.4 Moreover, a number of

research papers studying the connection between the model uncertainty and the business cy-

cles find that an increase in the uncertainty level acts as a negative impact on economic pro-

ductivity. Ilut and Schneider (2014) use confidence shocks to describe model uncertainty

and claim that if model uncertainty increases, households behave as if future productivity

is expected to fall and firms set prices as if productivity is lower although the actual pro-

ductivity is higher than what they fear. Bhandari et al. (2016) conclude that an increase in

model uncertainty makes the households’ worst-case expectations much more pessimistic

and negatively distorts households’ subjective perception of productivity shocks. Produc-

tivity shock is the driving force behind the housing price dynamics in my model, and, to

the best of my knowledge, there is no previous research that studies housing prices from

the perspective of model uncertainty. With this motivation, I introduce model uncertainty

3Knightian uncertainty is now more commonly known as model uncertainty, ambiguity, robust control,
or risk sensitivity, etc.

4See Bhandari et al. (2016).
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into my benchmark model and dedicate to answer the question that whether a one-time

temporary increase in model uncertainty level, along with the sector-specific TFP shocks,

can account for a larger proportion of the changes in new home sales prices.

In the existing literature, there are three commonly used methods to characterize the

model uncertainty: multiplier (or max-min) preference, multiple-prior preference, and

smooth recursive preference. In this paper, I adopt the multiplier preference framework in-

troduced by Hansen and Sargent (2001). In the environment with model uncertainty, agents

do not know the true data-generating process (denoted the true model) and are concerned

about the possibility that the model used for making decisions (denoted the approximating

model) is misspecified. They also know that the approximating model is close enough to

the true model in that the “distance” between these two models – measured by the entropy

between the two probability distributions – has an upper bound. The agents cannot dis-

tinguish the approximating models within the entropy ball (denoted the alternative model

set) surrounding the true model from each other statistically and consequently, they choose

optimal decisions as if the worst-case model that delivers the lowest expected lifetime util-

ity (denoted the worst-case model) were the data-generating process. Formally, the fear of

model misspecification is depicted by a max-min optimal control problem where a malev-

olent agent (nature) minimizes the household’s lifetime utility by choosing the worst-case

model and simultaneously a benevolent agent maximizes his intertemporal utility by choos-

ing the optimal consumption and investment plans.5 Solving the max-min control problem

yields a log-exponential utility recursion and the value function in the Bellman equation is

modified accordingly.

I solve the model numerically using the discounted Linear Exponential Quadratic Gaus-

5Also see the max-min expected utility theory of Gilboa and Schmeidler (1989) and the applications of
robust control theory proposed by Anderson et al. (2000).
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sian (LEQG) method introduced by Hansen and Sargent (1995). The LEQG method has

many advantages over the possible alternatives. It is computationally efficient and does

not suffer from the overflow problem as the value function iteration algorithm does. More

importantly, it is very convenient to simulate the worst-case state transition processes and

compute the likelihood of a sample using the Kalman filter, which is a nice property that

facilitates the calibration of model uncertainty parameter. To study the effects of model

uncertainty on the new home sales price and other macroeconomic variables, I consider

a one-time temporary change in the fear for model misspecification of the productivity

shocks. I determine the time span of the model uncertainty variations based on the dis-

persion measurements in the Survey of Professional Forecasters. The size of the model

uncertainty level change is governed by the uncertainty parameter in households’ prefer-

ence, which is calibrated by implementing the likelihood ratio test and model selection

procedure to calculate the detection error probabilities as proposed by Hansen and Sargent

(2007).

With the one-time temporary change in model uncertainty and feeding in the actual TFP

shocks, the simulated dynamic paths of capital, labor input, and other aggregate variables

are consistent with the data. In particular, the presence of model uncertainty gives rise to the

precautionary savings motive. As a result, an increase in model uncertainty level leads to

an immediate reduction in consumption; in the meanwhile, capital stock accumulates in all

sectors and households work for more hours. Now the model can capture about 35 percent

of the new home sales price boom. However, the model does not match the behavior of

housing rental rates very well. I compare the impulse responses of the key variables to the

TFP shocks under different model uncertainty levels. The result confirms that enhanced

model uncertainty does not amplify the effects of the TFP shocks. Hence the one-time

change in model uncertainty acts more like a shift in levels of the model variables.
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Finally, I simulate for the TFP shocks under the worst-case model to investigate the

mechanism of model uncertainty for the results. Intuitively, the fear of model misspecifi-

cation skews the households’ subjective probabilities towards the bad outcomes when they

are making expectations about future utility and returns. The simulated worst-case model

displays a negative mean distortion in both TFP shocks. Moreover, since the TFP shock in

the housing sector is much more volatile, it also receives a larger negative distortion in its

mean. Therefore, the relative productivity of the construction sector to the non-construction

sector lowers further. Consequently, the economy builds even less new houses, which raises

the new home sales price further. I also compute the covariance matrix of the joint distri-

bution of the TFP shocks. However, there is no significant change in the variance nor in

the correlation between the two TFP shocks, which stands in line with the conclusion in

Hansen and Sargent (2007).

The rest of the paper proceeds as follows. Section 2 presents the model and section 3

defines the market equilibrium. In section 4, I elaborate the solution method. Section 5

describes the data used in the quantitative analysis and the calibration procedures of model

parameters. Section 6 shows the quantitative results. Section 7 discusses the worst-case

shocks under the environment with model uncertainty. Section 8 concludes. All supple-

mentary materials are included in the Appendix.

1.2 Model

I construct a dynamic stochastic model to study a perfectly competitive economy, which

consists of a continuum of households, a representative firm producing the consumption (or

investment) goods, and a representative firm that builds new home units for sale. There is

no govenment in this economy.
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1.2.1 Households and Preferences

Households are identical, infinitely lived, and of measure one. The preference of the

households is defined over consumption goods ct, housing services st, and leisure `t. Each

household is endowed with one unit of time in every period.

Labor supply is indivisible. The households cannot choose the number of hours worked;

rather, once being employed, they have to work a full amount of time, N̄ . As discussed in

Hansen (1985), the households’ decision problem will be discontinuous and the consump-

tion possibility set will be non-convex due to the discrete work-or-not-work choice. To

circumvent these technical difficulties, I adopt the “lottery” fashion over employment and

consumption that depicted by Hansen (1985) and Rogerson (1988). In detail, households

have opportunities to work in two sectors every period, a consumption sector and a housing

sector. The probability of being selected to work in either sector is nc,t or nh,t and thus the

probability of being unemployed is 1 − nc,t − nh,t. If employed, households enjoy con-

sumption level cEt ; if not, they consume cUt . There is complete unemployment insurance

provided by the firms so that every household gets paid whether it works or not.6 Thus the

consumption-leisure choice set only contains three points:

(ct, `t) =



(cEt , 1− N̄), with probability nc,t; ( employed in consumption sector)

(cEt , 1− N̄), with probability nh,t; ( employed in housing sector)

(cUt , 1), with probability 1− nc,t − nh,t. (unemployed)

6Hansen (1985) elaborates the work contract traded in the economy, which commits the household to
work a certain amount of time with certain probability. Since all households are identical, all will choose the
same contract with the same probability. And the households differ ex post depending on the outcome of the
lottery.
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Therefore, the expected utility in period t is given by

u(ct, st, `t) = (nc,t + nh,t)u(cEt , st, 1− N̄) + (1− nc,t − nh,t)u(cUt , st, 1). (1.1)

The households own ht units of housing stock. In each period, one unit of housing stock

delivers one unit of housing services, i.e. st = ht, and it depreciates at rate δh. The housing

stock is perfectly divisible and can be accumulated overtime through residential investment

Ih,t. However, changing housing stock is costly and bears a quadratic adjustment cost.

In addition, the households own the representative firms and receive all of the profits

Πt. There is no money in this economy. The price of consumption goods is normalized

to 1; the wage rate is wt per hour; the unit price of new homes is PIh,t; the price paid to

housing services can be measured by the implicit home rent to the owners, Rh,t.7

The households face the following budget constraint in period t:8

(nc,t + nh,t)cEt + (1− nc,t − nh,t)cUt +Rh,tst + PIh,tIh,t

≤ wt(nc,t + nh,t)N̄ +Rh,tht + Πt −
ω

2

(
ht+1 − ht

ht

)2

ht, (1.2)

with the law of motion for housing stock:

ht+1 = (1− δh)ht + Ih,t. (1.3)

The key feature of households’ preference is that it reflects a fear of model uncertainty.9

7I exempt the discussion of own-or-rent a home in this paper. Every household is a home owner.
8The adjustment cost of housing stock is ascribed to transaction costs like preparing relevant documents,

signing contracts, etc. Thus it is evaluated by units of consumption goods.
9Similar terminologies used in the literature are “ambiguity”, “model misspecification”, “robustness”,

“risk sensitivity”.
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Specifically, when households use some stochastic model to make expectations about future

states, they do not completely trust the information about the randomness in the economy

and fear that the probability distributions of the underlying shocks might be misspecified.

The households regard the model in hand as an approximation to the unknown data gen-

erating process. They believe that data will come from an unknown member of a set of

alternative models that closely surrounds the approximating model.10 However, there is

no way to distinguish the approximating model from the data generating process given the

available information.11 In order to induce a robust decision rule that performs well over the

set of alternative models, the households plan against the worst-case process. The worst-

case model consists of probability distributions of the shocks under which households’

discounted lifetime utility reaches the lowest level among all the other alternative mod-

els. In a sense, all probability distributions in households’ minds are subjective; only the

probability distribution of the true data generating process is objective, which is unknown.

Anderson et al. (2003) and Hansen and Sargent (2007) formally introduce model un-

certainty into household preference using a max-min multiplier optimization problem:12

V (st) = max
xt

min
{p(εt+1|εt)}∈[0,1]#ε

u(xt) + β
∑
εt+1

p(εt+1|εt)V (st+1)

 , (1.4)

s.t.
∑
εt+1

p(εt+1|εt) = 1, (1.5)

∑
εt+1

p(εt+1|εt) log
(
p(εt+1|εt)
π(εt+1|εt)

)
≤ η0, (1.6)

where st stands for all state variables including the shock(s) εt; xt stands for all con-

10The “closeness” is measured by the entropy between two probability distributions. Refer to Appendix
1.A for more details.

11This is very likely to be the case when there are many conflicting views in information and only a
moderate size of data sample can be trusted.

12Strzalecki (2011) provides the axiomatic foundations for multiplier preferences.
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trol variables; p(εt+1|εt) characterizes the subjective probability of the realization of the

shock(s) being εt+1 at period t + 1 given that the period-t realization being εt; the coun-

terpart objective probability is π(εt+1|εt). The minimization part reflects the idea that the

households guard themselves against the worst-case scenario, and the maximization part

shows households’ desire for robustness. The two constraints (1.5) and (1.6) indicate that

any subjective probability distribution must satisfy two requirements. First, it must be a

valid probability measure and sum up to one. Second, it needs to be “close enough” to the

objective probabilities so that the households cannot differentiate them. The discrepancy

between two probability specifications is measured by “entropy”, and it cannot be greater

than some positive value.13

Solving the max-min problem (1.4) - (1.6) yields the utility recursion in a log-exponential

form:

V (st) = max
xt

{
u(xt) + β

2
σ

log
(
Eπ(εt+1|εt)

[
exp

(
σV (st+1)

2

)])}
, (1.7)

where σ ≤ 0 regulates households’ fear of model misspecification.14

According to Hansen et al. (1999), a smaller absolute value of σ means that the house-

holds care less about model uncertainty.15 In an extreme case when σ = 0, the utility

recursion converges to the conventional Von Neumann-Morgenstern utility under rational

expectation.16

13See Backus et al. (2005) and Hansen and Sargent (2007) for the definition of entropy.
14The parameter σ relates to the Lagrangian multiplier in the minimization problem. Appendix 1.A shows

how this functional form is derived following the steps suggested by Young (2012).
15The parameter σ also acts as a form of risk aversion. Tallarini (2000) shows that this log-exponential

specification can be regarded as a special case of the preferences depicted in Epstein and Zin (1989) with the
intertemporal elasticity of substitution being unity. See more details in Appendix 1.A.

16Note that

lim
σ→0

log
(
Eπ
[
exp

(
σV (st+1)

2

) ∣∣∣∣εt]) = 0.

By L’Hôpital’s rule, lim
σ→0

2
σ

log
(
Eπ
[
exp

(
σV (st+1)

2

) ∣∣∣∣εt]) = Eπ[V (st+1)|εt].
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The households’ problem can be characterized by the following Bellman equation:

V (ht, zt, ξt) = max
cEt ,c

U
t ,nc,t,

nh,t,ht+1,Ih,t

{
(nc,t + nh,t)u(cEt , st, 1− N̄) + (1− nc,t − nh,t)u(cUt , st, 1)

+ β
2
σ

log
(
Eπ,t

[
exp

(
σV (ht+1, zt+1, ξt+1)

2

) ∣∣∣zt, ξt
])}

, (1.8)

s.t. (nc,t + nh,t)cEt + (1− nc,t − nh,t)cUt +Rh,tst + PIh,tIh,t

≤ wt(nc,t + nh,t)N̄ +Rh,tht + Πt −
ω

2

(
ht+1 − ht

ht

)2

ht, (1.9)

ht+1 = (1− δh)ht + Ih,t, (1.10)

where zt and ξt represent sector-specific total factor productivity (TFP) shocks. The ex-

pectation operator Eπ,t[·] is based on the information set given the objective probabilities

π(εt+1|εt).

In addition, I use the following parametric form for the single-period utility function:

u(cit, st, nit) = µc log(cit) + (1− µc) log(st) + φ log(1− nit), , i = E,U. (1.11)

1.2.2 Firms and Production Technologies

There are two representative firms in this economy. One firm produces consumption

and investment goods using capital and labor; the other firm builds new homes using capi-

tal, labor, and land. Both firms own capital; the firm in the housing construction sector also

owns land. They employ labor force, make investment decisions for physical capital, and

pay the entire profits to the households.
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The Consumption Sector

The representative firm in the consumption goods sector produces output Yc,t using a

constant-returns-to-scale technology: 17

Yc,t = exp(zt)Kα
c,tN

1−α
c,t , (1.12)

where Kc,t and Nc,t stand for capital and labor input; zt represents the TFP shock in the

consumption goods sector.

The output Yc,t is a numeraire good, whose price is normalized to 1. It can be consumed

by households, invested and installed as new capital stock, and utilized to compensate any

costs caused by economic activities.

The Housing Sector

New homes Yh,t are produced in the housing sector using capital Kh,t, labor Nh,t, and

land Lt:18

Yh,t = PIh,t exp(ξt)Kθ
h,tN

ν
h,tL

1−θ−ν
t , (1.13)

where ξt represents the TFP shock in the housing sector.

Housing construction also uses a third input, the land. Land supply is fixed and nor-

malized to one unit in every period, i.e. Lt = 1,∀t. In line with Davis and Heathcote

(2005), fixed land supply acts as an adjustment cost in residential investment. New homes

produced are sold to the households at price PIh,t per unit.

17With appropriate parameterization, the production function is increasing and concave in both arguments
Kc,t and Nc,t, and it satisfies the Inada conditions.

18The production function is increasing and concave in all arguments and satisfies the Inada conditions.
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Adjustment Costs

Firms’ decisions about how much capital to be invested and how much labor force to be

employed give rise to adjustment costs. I assume that all factor input changes are subject

to quadratic adjustment costs. Therefore, the law of motions for capital inputs are stated as

follows:

Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t, (1.14)

Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t. (1.15)

In each period, capital stocks depreciate at rates δkc and δkh in the consumption goods sector

and housing sector respectively. The parameters κc and κh control the size of adjustment

costs proportionate to the change rates in capital stocks.

The adjustment costs for altering labor inputs are given by

τ(Nc,t−1, Nc,t) = τc
2

(
Nc,t

N̄
− Nc,t−1

N̄

)2
(1.16)

and

τ(Nh,t−1, Nh,t) = τh
2

(
Nh,t

N̄
− Nh,t−1

N̄

)2
, (1.17)

where τc and τh are the adjustment cost parameters; Nc,t/N̄ and Nh,t/N̄ are the number

of workers hired in the two sectors. Note that the subscripts in the labor adjustment cost

functions are different from that in the capital adjustment cost functions. This is because

of the difference in timing: capital adjustment costs arise from the decisions in capital

investment which is to choose the future capital stock level given the current state; however,

labor cannot be stored and the relevant adjustment costs come from the gap between current

and previous labor usage.
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Sector-Specific TFP Shocks

A large portion of literature studying housing market in a multi-sector model assumes

that the housing sector shares the same TFP shock as the non-housing sectors. In contrast,

I model the TFP shocks in the consumption sector and housing sector separately. Both TFP

shocks, zt and ξt follow an mean-zero AR(1) process:

zt+1 = ρzzt + σzεz,t+1, εz,t+1 ∼ i.i.d. N (0, 1); (1.18)

ξt+1 = ρξξt + σξεξ,t+1, εξ,t+1 ∼ i.i.d. N (0, 1). (1.19)

I assume that innovations εz,t and εξ,t are uncorrelated for simplicity and tractability con-

cerns. Thus cov(εz,j, εξ,k) = 0,∀j, k. This assumption is consistent with the findings

in Davis and Heathcote (2005) that productivity shocks are only weakly correlated across

sectors, and in particular shocks to the construction sector are essentially uncorrelated with

those in the non-construction sectors.

The sector-specific TFP shocks is important to generate the key mechanism of this

model. First, this setup is in line with data showing that productivity shocks in housing and

non-housing sectors are very different in their volatilities. Second, certainty equivalence

fails when households have concerns about model misspecification. Hansen and Sargent

(2007) demonstrate that the variance of the shocks have a significant effect on the robust

decision rules. Third, the determination of new home sales price PIh,t will also depend on

the relative changes between zt and ξt. The equilibrium conditions show that

PIh,t =
exp(zt)(1− α)Kα

c,tN
−α
c,t

exp(ξt)νKθ
h,tN

ν−1
h,t

. (1.20)
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We can see that not only does the new home sales price depend on resource allocations

across the two sectors, it also depends on the relative productivity level exp(zt)/ exp(ξt).

The changes in this relative productivity level will be amplified in an environment with

model uncertainty.

Firms’ Optimization Problems

The representative firm in the consumption sector solves the following Bellman equa-

tion:

JC(Kc,t, Nc,t−1, zt, ξt) = max
Kc,t+1,Nc,t,Ikc,t

Yc,t − wtNc,t − Ikc,t −
τc
2

(
Nc,t

N̄
− Nc,t−1

N̄

)2

+ Et
[
Λt+1 · JC(Kc,t+1, Nc,t, zt+1, ξt+1)|zt, ξt

]
, (1.21)

s.t. Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t.

(1.22)

Similarly, the Bellman equation for the representative firm in the housing sector is

JH(Kh,t, Nh,t−1, zt, ξt) = max
Kh,t+1,Nh,t,Ikh,t

Yh,t − wtNh,t − Ikh,t −
τh
2

(
Nh,t

N̄
− Nh,t−1

N̄

)2

+ Et
[
Λt+1 · JH(Kh,t+1, Nh,t, zt+1, ξt+1)|zt, ξt

]
, (1.23)

s.t. Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t.

(1.24)

The firms discount the future profit flows in the same way as the households. It is easy

to prove that the discount factor Λt also has a log-exponential form as households’ discount

factor.
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1.3 Equilibrium

There are four markets in the economy: the housing market, the labor market, the

consumption market, and the implicit home rental market.

I use the uppercase letters to represent the aggregate counterparts of the individual

variables. Since the households are homogeneous and of measure 1, the aggregate variables

simply equal to the individual variables, e.g. Ht = ht, CE
t = cEt , CU

t = cUt , etc.

Definition 1. A recursive competitive equilibrium for this economy is given by the value

functions of the households and the firms {V, JC , JH}, households’ optimal choices for

{cEt , cUt , nc,t,

nh,t, ht+1, Ih,t}, firms’ decision rules for {Kc,t+1, Kh,t+1, Nc,t, Nh,t, Ikc,t, Ikh,t}, price func-

tions {PIh,t, wt, Rh,t}, and law of motions for housing stock and physical capital stocks

(2.2.6), (2.2.13) (2.2.14), such that:

(1) Given the prices, households’ decision rules derived by solving the problem (2.2.7) -

(2.2.9) maximize the lifetime utility;

(2) Given the prices, firms’ choices solve the profit maximization probelms described in

(2.2.19) - (2.2.20) and (2.2.21) - (2.2.22);

(3) All markets clear;

(i) Housing market clears,

Yh,t = PIh,tIh,t, (1.25)

(ii) Labor market clears,

Nc,t = nc,tN̄ , Nh,t = nh,tN̄ , (1.26)
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(iii) Implicit home rental market clears,

st = ht = Ht, (1.27)

(iv) Consumption market clears,

(nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t + Ikc,t + Ikh,t

= Yc,t −
ω

2

(
Ht+1 −Ht

Ht

)2
Ht −

τc
2

(
Nc,t

N̄
− Nc,t−1

N̄

)2
− τh

2

(
Nh,t

N̄
− Nh,t−1

N̄

)2

(1.28)

(4) Law of motions for the stock variables hold.

Ht+1 = (1− δh)Ht + Ih,t, (1.29)

Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t, (1.30)

Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t. (1.31)

1.4 Solution

1.4.1 Solution Method

The economy is under perfect competition with complete markets and perfect informa-

tion. The First Fundamental Theorem of Welfare Economics implies that the decentralized

equilibrium is equivalent to the Pareto optimum of a benevolent social planner’s problem. I

derive the optimality conditions of the planner’s problem and the deterministic steady state

in Appendix 1.B.
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The optimality conditions describe the robust decision rules under the approximating

model which performs well over the set of alternative models. However, there are several

difficulties in solving the model by commonly-used numerical methods . First, the model

has so many state variables and thus suffers from the curse of dimensionality. Second, the

exponential operator in the value function will frequently cause the overflow problem in

computation procedures such as the value function iteration algorithm. Third, I need to

form the worst-case shocks in the likelihood ratio tests to calibrate the model uncertainty

parameter. It is very hard to characterize the worst-case shocks base on the decision rules

obtained by the accurate solution methods.

To circumvent these obstacles, I adopt the Linear Exponential Quadratic Gaussian

(LEQG) control method proposed in Hansen and Sargent (1995) and Hansen and Sargent

(2007). This method requires taking a second-order Taylor expansion of the objective

function and linearizing the state transition laws with respect to all of the state and control

variables. The LEQG control problem can be solved analytically by iterating on a Ric-

cati equation. This procedure is computationally efficient. Moreover, the solution shows

that certainty equivalence no longer holds, for the covariance matrix of the TFP innovation

shocks will affect the robust decision rules.19

1.4.2 Computation Algorithm

I solve for the robust decision rules numerically via the following steps:

19In Appendix 1.C, I show the technical details of how to solve for a discounted LEQG control problem.
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Step 1: Define the objective function as the Lagrangian of the planner’s problem,

L = µc log(Ct) + (1− µc) log(Ht) + (nc,t + nh,t)φ log(1− N̄)

+ β
( 2
σ

)
log

(
Et
[
exp

(
σ

2V (Kc,t+1, Kh,t+1, nc,t, nh,t, Ht+1, zt+1, ξt+1)
) ∣∣∣zt, ξt])

+ λ1,t

[
exp(zt)Kα

c,t(nc,tN̄)1−α − Ct −Kc,t+1 + (1− δkc)Kc,t −Kh,t+1

+ (1− δkh)Kh,t −
κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t

− ω

2

(
Ht+1 −Ht

Ht

)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2
]

+ λ2,t

[
exp(ξt)Kθ

h,t(nh,tN̄)ν −Ht+1 + (1− δh)Ht

]
; (1.32)

Step 2: Define the vector of state variables, xt = [1, zt, ξt, Kc,t, Kh,t, Ht, nc,t−1, nh,t−1]T ;

the vector of control variables, at = [Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t, Ct, λ1,t, λ2,t]T ;

and the vector of Gaussian shocks εt = [εz,t, εξ,t]T ;

Step 3: Write out the linear state transition law and determine the coefficient matrices A,

B, C:

xt+1 = Axt +Bat +Cεt+1, εt+1 ∼ N (0, I), (1.33)
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where

A =



1 0 0 0 0 0 0 0

0 ρz 0 0 0 0 0 0

0 0 ρξ 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



,B =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0



,C =



0 0

σz 0

0 σξ

0 0

0 0

0 0

0 0

0 0



.

(1.34)

Step 4: Solve for the deterministic steady state values of {K̄c, K̄h, H̄, n̄c, n̄h, C̄} from the

equation system:

1 = β
[
αKα−1

c (ncN̄)1−α + 1− δkc
]
, (1.35)

(1− α)Kα
c (ncN̄)−α = −φ log(1− N̄)C

µcN̄
, (1.36)(

1
β
− 1 + δkh

)
νKh

θnhN̄
= −φ log(1− N̄)C

µcN̄
, (1.37)

(1− α)Kα
c (ncN̄)−α

νKθ
h(nhN̄)ν−1

= 1
1
β
− 1 + δh

(1− µc)C
µcH

, (1.38)

C + δkcKc + δkhKh = Kα
c (ncN̄)1−α, (1.39)

δhH = Kθ
h(nhN̄)ν ; (1.40)

Step 5: Around the given steady state [x̄, ā], compute the first and second numerical deriva-

tives of the Lagrangian Lwith respect to all states and controls; obtain matrices fn,
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fk, S, T , and L; then construct matricesQ,W , andR;

Step 6: Iterate on the Riccati equation until convergence,

P = Q+ βATD(P )A

−
(
W + βBTD(P )A

)T (
R+ βBTD(P )B

)−1 (
W + βBTD(P )A

)
,

(1.41)

where

D(P ) = P + σPC(I − σCTPC)−1CTP ; (1.42)

obtain the fixed point solution for P and compute D(P );

Step 7: Compute the robust decision rule

at = −
(
R+ βBTD(P )B

)−1 (
W + βBTD(P )A

)
xt ≡ Fxt, (1.43)

and the state transition law is given by

xt+1 = Axt +Bat +Cεt+1 = (A+BF )xt +Cεt+1; (1.44)

Step 8: Update the given steady state by x̄′ = (A + BF )x̄; if x̄′ = x̄, then we have

obtained the stochastic steady state; if x̄′ 6= x̄, repeat Step 5 to Step 7 until the

state variables converge to the stochastic steady state; the associated matrices P ,

D(P ) and F are what we need to construct the robust decision rules.
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1.5 Calibration

In this section, I calibrate the parameter values by matching model implications with

key moments observed in the macro economy at a quarterly frequency.20

The postwar data suggest that per-capita leisure has been approximately constant over

time in spite of the steady increase of real wages.21 In addition, the fraction of household

income spent on residential services remained roughly constant according to the Consumer

Expenditure Survey. In line with these empirical findings, I choose the following functional

form for the households’ preference:

u(ct, st, nt) = µc log(ct) + (1− µc) log(st) + φ log(1− nt), (1.45)

where µc and φ determine the weights on consumption and leisure in utility.

There are 20 parameters in my model: β, µc, φ, N̄ , α, θ, ν, δkc, δkh, δh, κc, κh, ω, τc,

τh, ρz, ρξ, σz, σξ, and σ. I divide the parameters into 4 groups and determine their val-

ues separately. The first group of parameters, {β, µc, φ, N̄ , α, θ, ν, δkc, δkh, δh}, relates to

preferences and production technologies; these parameters only depends on the long-run

relationships among the macroeconomic variables and I calibrate their values by matching

the first moments of model and data in the steady state. The second group of parameters,

{ρz, ρξ, σz, σξ}, are pined down by the autocorrelation and volatility statistics computed

from the TFP shock series directly. The third group of parameters, {κc, κh, ω, τc, τh}, gov-

erns the adjustment costs of factor inputs in the consumption sector and housing sector; I

20I follow the calibration methodologies advocated by Kydland and Prescott (1982), Prescott (1986),
Greenwood and Hercowitz (1991), Benhabib et al. (1991), Cooley and Prescott (1995), Cooley (1997),
Favero (2001) and Gomme and Rupert (2007).

21This observation implies that the income effect and the substitution effect of increases in real wages on
leisure exactly offset each other. Therefore, the elasticity of substitution between consumption and leisure
should be near unity.
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set their values to match the volatilities of the related variables. Lastly, I calibrate the model

uncertainty parameter, σ, by implementing likelihood ratio tests between the approximat-

ing model and the worst-case model; then I compute the detection error probability from

these tests and aim it to a commonly accepted value in literature.

1.5.1 Data

I use quarterly U.S. data from 1973Q1 to 2014Q4. The measurements of key macroeco-

nomic variables are constructed using data sets from Bureau of Economic Analysis (BEA)

and Federal Reserve Economic Data (FRED).22 The sample data series are segmented into

two subsets: (1) 1973Q1 - 2002Q4, the pre-boom period; (2) 2003Q1 - 2014Q4, the boom-

bust period. I assume that there is no model uncertainty before the housing market boom

and bust, i.e. σ = 0. I use the pre-boom data to decide model parameter values except for σ

by simulated method of moments. Then I calibrate the model uncertainty parameter, σ, by

computing the detection error probabilities from likelihood ratio tests. Data sample from

2003Q1 to 2014Q4 is a test set for evaluating model performance with calibrated model

uncertainty parameter value.

The key variable measurements are summarized in Table 1.1, Table 1.2, and Table 1.3.

Nominal quantities and prices are deflated by the Consumer Price Index. I use the Civilian

Noninstitutional Population to convert the quantities to per-capita terms. I then take the

natural logarithm of the data series and use the Hodrick-Prescott (HP) filter to extract the

trend components from the series at the quarterly frequency.

22I show the detailed data source for each variable in Appendix 1.D
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Table 1.1: Data Measurements – Output, Investment, and Consumption

Variable Description Measurement in Data

YT Total Output Gross Domestic Product (GDP)

Yh Value of New Housing Private Residential Fixed Investment

RhH Expenditure on Housing Services Consumption on Housing and Utilities

Yc Non-Housing Sector Output YT − Yh −RhH

IT Total Investment Gross Private Domestic Investment

+ Federal Nondefense Gross Investment

+ State and Local Investment

+ Consumer Durables

Ik Non-Residential Investment IT − Yh

C Non-Housing Consumption Yc − Ik

Ih New Home Units for Sale Units of New Houses for Sale

H Housing Stock (RhH)/Rh, Rh is described in Table 1.3
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Table 1.2: Data Measurements – Capital and Labor

Variable Description Measurement in Data

K Total Capital Stock Gross Fixed Assets + Consumer Durables

- Gross Residential Structures

Kh Capital in Housing Sector Private Fixed Assets in Construction Industry

Kc Capital in Consumption Sector K −Kh

N Total Labor Input Total Hours Worked

Nh Labor in Housing Sector Total Hours Worked in Construction Industry

Nc Labor in Consumption Sector N −Nh

1− nc − nh Unemployment Rate Civilian Unemployment Rate

Table 1.3: Data Measurements – Prices

Variable Description Measurement in Data

PIh New Home Sales Price Median Sales Price for New Houses Sold in U.S.

Rh Implicit Home Rent Consumer Price Index: Housing

rf Risk-Free Rate 3-Month Effective Federal Funds Rate

1.5.2 First Moments

I use the data measurements to compute the ratios among several variables in long-run

equilibrium. The value for landshare is set to 0.3 according to an estimate given by BEA.

Thus θ + ν = 0.7. There is no sufficient and accurate data for capital depreciations by

industry. So I simply assume that the capital depreciation rates are the same across sectors,

i.e. δkc = δkh = δk.
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Table 1.4 reports the selected first moments that are computed from the data sample

and the model steady state. The model does a good job in matching the first moments with

data.

Table 1.4: First Moments

Target Moment Data Model

3-month effective federal funds rate, rf = 1
β
− 1 1.26% 1.26%

Share of non-housing consumption in total consumption, C
C+RhH

0.8386 0.8386

Residential investment to housing stock ratio, Ih
H

0.0151 0.0151

Non-residential investment to capital stock ratio, Ik
K

0.0284 0.0284

Capital input in construction sector, Kh
K

0.0075 0.0075

Labor input in construction sector, Nh
N

0.054 0.055

Residential investment to total output ratio, Yh
YT

0.045 0.044

Total investment to total output ratio, IT
YT

0.296 0.295

Total consumption to total output ratio, C+RhH
YT

0.704 0.705

Unemployment rate, 1− nc − nh 0.0635 0.0635

Total labor input, N = (nc + nh)N̄ 0.3 0.3

Table 1.5 lists the estimated parameter values. These parameter values stand in line with

macro-housing literature. For example, in Davis and Heathcote (2005), they estimate a

housing depreciation rate of 0.0141; in Iacoviello and Pavan (2013), they estimate a capital

depreciation rate of 0.0233. Capital share is much higher in the consumption sector than in

the housing sector, which is consistent with the fact that non-housing production is capital

intensive and housing production is labor intensive.
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Table 1.5: Parameter Values Determined by Matching First Moments

Parameter Interpretation Estimated Value

β discount factor β = 0.987

µc weight of consumption in utility µc = 0.8386

φ weight of leisure in utility φ = 2

N̄ fixed labor input if employed N̄ = 0.318

α capital share in consumption sector α = 0.433

θ capital share in housing sector θ = 0.063

ν labor share in housing sector ν = 0.637

δk depreciation rate of physical capital stock δk = 0.0284

δh depreciation rate of housing stock δh = 0.0151

1.5.3 TFP Shocks

Based on the Cobb-Douglas production technologies for consumption goods and hous-

ing,

Yc,t = exp(zt)Kα
c,tN

1−α
c,t , (1.46)

Ih,t = exp(ξt)Kθ
h,tN

ν
h,tL

1−θ−ν
t , (1.47)
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and that land supply is fixed Lt ≡ 1, I use Solow residuals to construct the TFP shocks in

the two sectors, 23

zt = ln(Yc,t)− α ln(Kc,t)− (1− α) ln(Nc,t), (1.48)

ξt = ln(Ih,t)− θ ln(Kh,t)− ν ln(Nh,t). (1.49)

Figure 1.2 and Figure 1.3 show the logarithmic values of the TFP shocks zt and ξt.

We can see that there is an upward trend in zt and a downward trend in ξt. These trends

are consistent with the empirical findings in Galesi (2014), which also illustrates an in-

creasing path for non-construction TFP and a decreasing path for construction TFP using

productivity data from the EU KLEMS database.

Figure 1.2: TFP Shock in the Consumption Sector {zt}, 1975Q1 - 2012Q4.

Date
1975 1980 1985 1990 1995 2000 2005 2010

z t

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

TFP Shock Series of {z
t
}

23Note that Ih,t is the units, rather than the value, of new residential construction completed.



30

Figure 1.3: TFP Shock in the Housing Sector {ξt}, 1975Q1 - 2012Q4.

Date
1975 1980 1985 1990 1995 2000 2005 2010

ξ t

-10.5

-10

-9.5

-9
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-7.5

TFP Shock Series of {ξ
t
}

Figure 1.4 and Figure 1.5 plot the detrended TFP shocks obtained by applying the HP

filter. The volatility of the TFP shock in housing sector is much higher than that in the

consumption sector.

Figure 1.4: Cyclical Component of Shock zt, 1975Q1 - 2012Q4

Date
1975 1980 1985 1990 1995 2000 2005 2010

cy
c(

z t)

-0.04
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-0.01

0
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0.02

0.03

HP-Filtered TFP Shock {cyc(z
t
)}
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Figure 1.5: Cyclical Component of Shock ξt, 1975Q1 - 2012Q4

Date
1975 1980 1985 1990 1995 2000 2005 2010

cy
c(
ξ t)
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0.3

HP-Filtered TFP Shock {cyc(ξ
t
)}

I adopt the parametric form of an AR(1) process for both detrended shock series,

zt+1 = ρzzt + σzεz,t+1, εz,t+1 ∼ i.i.d. N (0, 1) (1.50)

ξt+1 = ρξξt + σξεξ,t+1, εξ,t+1 ∼ i.i.d. N (0, 1) (1.51)

then I estimate the autocorrelation coefficients and the standard deviations of the innova-

tions by linear regression. I examine the residuals from the regression by Ljung-Box test,

which confirms that there is no significant autocorrelations among the residuals and thus

the AR(1) model is appropriate for the TFP shocks. The estimated parameter values are

reported in Table 1.6. The productivity in the housing sector is more persistent and much

more volatile than the productivity in the consumption sector. This result stands in line

with the estimation in Davis and Heathcote (2005).
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Table 1.6: Parameters Relates to TFP Shocks

Parameter Interpretation Estimated Value

ρz autocorrelation of zt ρz = 0.8245

σz standard deviation of innovation εz,t σz = 0.0079

ρξ autocorrelation of ξt ρξ = 0.8169

σξ standard deviation of innovation εξ,t σξ = 0.0512

1.5.4 Second Moments

I choose the values for the third set of parameters {κc, κh, τc, τh, ω} by matching the

second moments of data. I use the relative volatilities of housing stock and capital and

labor inputs in two sectors to exactly identify the five parameters. Table 1.7 and Table 1.8

report the results.

Table 1.7: Second Moments

Target Moments (Relative Volatilities) Data Model

Capital input in non-housing sector relative to total output, σ(Kc)
σ(YT ) 0.590705 0.591033

Capital input in housing sector relative to total output, σ(Kh)
σ(YT ) 1.354407 1.354326

Labor input in non-housing sector relative to total output, σ(Nc)
σ(YT ) 0.745078 0.744951

Labor input in housing sector relative to total output, σ(Nh)
σ(YT ) 2.683119 2.683273

Total housing stock relative to total output, σ(H)
σ(YT ) 0.675463 0.675415
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Table 1.8: Parameter Values Determined by Matching Second Moments

Parameter Interpretation Estimated Value

κc adjustment cost parameter of Kc κc = 0.2631

κh adjustment cost parameter of Kh κh = 1.1605

τc adjustment cost parameter of Nc τc = 3.0130

τh adjustment cost parameter of Nh τh = 0.1134

ω adjustment cost parameter of H ω = 2.2343

Table 1.9: Second Moments (continued)

Second Moments (Correlations) Data Model

Consumption and non-housing output, corr(C, Yc) 0.5880 0.6915

Non-residential investment and non-housing output, corr(Ik, Yc) 0.9293 0.9843

Residential investment and non-housing output, corr(Ih, Yc) 0.0403 -0.0801

Total labor input and non-housing output, corr(N, Yc) 0.5363 0.6041

Labor input in non-housing sector and total labor input, corr(Nc, N) 0.9984 0.9967

Labor input in housing sector and total labor input, corr(Nh, N) 0.7716 0.7322

Labor input in non-housing sector and housing sector, corr(Nc, Nh) 0.5328 0.0696

Non-residential investment and residential investment, corr(Ik, Ih) 0.1193 0.0775

1.5.5 Model Uncertainty

Finally, I calibrate the model uncertainty parameter σ by likelihood ratio tests and de-

tection error probabilities.Hansen and Sargent (2007) propose the basic idea of this proce-

dure, which is to use a statistical theory of model selection to define a mapping from the
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model uncertainty parameter σ to a detection error probability for discriminating between

the approximating model and an endogenous worst-case model associated with that σ.

According to Hansen and Sargent (2007), the approximating model (i.e. an estimate of

the true model) under the linear quadratic setup takes the form of a time-invariant linear

state transition law

xt+1 = Axt +Bat +Cε̆t+1, ε̆t+1 ∼ i.i.d. N (0, I). (1.52)

where xt and at are the state and control variables in the model that defined in section

1.4.2.

The distorted model is a member of the set of alternative models that surround the

approximating model, which takes the form of

xt+1 = Axt +Bat +C(εt+1 +wt+1), εt+1 ∼ i.i.d. N (0, I), (1.53)

where εt+1 is a different white Gaussian noise from ε̆t+1. The componentwt+1 reflects the

distortion on the innovations in the approximating model, and it depends on the history of

the states. To make the approximating model a good estimate of the true model, there is a

upper bound that controls the approximating error

E0

∞∑
t=0

βt+1wT
t+1wt+1 ≤ η0. (1.54)

The robust decision rules is computed by solving a two-player zero-sum games: a maxi-

mizing decision maker chooses controls {at} and a evil agent chooses model distortions

{wt+1}.

The worst-case model is endogenous. Given the robust decision rules at = Fxt as
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obtained in section 1.4.2, the worst-case model is a distorted model in which the distortion

component assumes a specific form

xt+1 = (A+BF )xt +C(εt+1 +wt+1)

= (A+BF +Cκ)xt +Cεt+1, (1.55)

where wt+1 = κxt with κ = σ(I − σCTPC)−1CTP (A+BF ).24

Detection error probabilities can be calculated using likelihood ratio tests. Consider

two models. Model A is the approximating model described by (1.52), and model B is the

worst-case (distorted) model (1.55).25 The full calibration procedure is as follows:

Step 1: Generate a random sample of TFP shocks zt and ξt by model A. Compute the

likelihood of this sample being generated by model A, LA, and the likelihood of

this sample being generated by model B,LB. The likelihood ratio test selects model

A when log(LA) > log(LB); it selects model B when log(LB) > log(LA). The

probability of detection error is essentially the probability of choosing the wrong

model by mistake. By running the likelihood ratio test for thousands of times over

thousands of different samples, I compute the detection error probability when

model A generates the data,

pA = Prob
(

log LA
LB

< 0
∣∣∣∣A) . (1.56)

24The worst-case model is endogenous because the distortion to the shocks,wt+1 = κxt, feed back on the
history of endogenous states xt nonlinearly. Refer to Hansen and Sargent (2007) chapter 2 for more details
about the worst-case model.

25The transition densities associated with model A and model B are absolutely continuous with respect to
each other, i.e. they put positive probabilities on the same events. Hence it is difficult to distinguish these two
models empirically.
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Step 2: Similarly, use model B to generate random samples of {zt, ξt}Tt=1 and compute the

corresponding detection error probability ,

pB = Prob
(

log LA
LB

> 0
∣∣∣∣B) . (1.57)

Step 3: Compute the average of these two propabilities of detection error and denote

p(σ) = 1
2(pA + pB). (1.58)

Step 4: Adjust the value of σ and repeat the Step 1 to Step 3 until p(σ) ≈ 0.1.26

The sample size T cannot be too large. Hansen and Sargent (2007) show that when data

series is long enough, then it is very easy to distinguish between the approximating model

and the worst-case model, thus σ = 0. I choose a sample size of T = 28 (that is, seven

years of quarterly data), and set the model uncertainty parameter to a value of −17.5. In

Appendix 1.E, I show how to use Kalman filter to compute the likelihood of a given sample

under each of the models.

1.6 Quantitative Analysis

1.6.1 Impulse Response Functions

The source of uncertainty in this model is from the TFP shocks in the two production

sectors, z and ξ. The fear of model misspecification in the households’ minds is also about

these two shocks’ probability distributions. In order to understand the model mechanism,

26This value is suggested by Hansen and Sargent (2007). It is the commonly accepted value in the literature
concerning robust control problems.
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it is important to examine how the variables of interest respond to an increase (or decrease)

of the TFP shocks. In this section, I study the effects of the two TFP shocks on the key

model variables separately. Further, I explore if different model uncertainty levels would

change the pattern of these impulse responses or not.

Figure 1.6 and Figure 1.7 show the impulse responses of resource allocation, output,

consumption, labor choice, investment, new home sales price, and home rents to a one-

standard-deviation increment in the TFP shock zt in the consumption sector. Each fig-

ure plots the impulse responses of a specific variable under four model uncertainty levels,

σ = 0,−5,−10,−50. Recall that the more negative the value of σ, the less confident the

households are about the model specification.

Figure 1.6: IRF of {Kc, Nc, Yc, Kh, Nh, Ih} to a Positive Shock of zt
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Note: zt increases by one standard deviation; no change in ξt.

On one hand, an increase in productivity in the consumption sector attracts higher capi-
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tal and labor inputs thus leads to greater output of consumption (or/and investment) goods.

On the other hand, capital input in the housing sector also accumulates, though there is a

tiny decrease at the very beginning. This is because of more investment goods produced

and hence more new capital installed, which increases capital usage in both sectors. Labor

input in the housing sector jump down initially, as the marginal return of labor is lower than

that in the consumption sector due to the productivity change. However, it increases later

to catch up with the higher level of capital input. As a result, the number of new home units

built declines first then rises and eventually returns to the original level.

Figure 1.7: IRF of {N,C, Ik, H, PIh, Rh} to a Positive Shock of zt
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Note: zt increases by one standard deviation; no change in ξt.

Additionally, with a positive productivity shock in the consumption sector, households

work more hours and consume more at first. But then households choose to work less and

enjoy more leisure due to the wealth effect. There is a higher investment in the physical
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capital and the total housing stock also increases.

The dynamic response of the new home sales price mainly come from two driven forces.

First, an increase of TFP shock in the consumption sector will directly raise the new home

sales price according to the relationship shown in Equation (1.20); second, the productiv-

ity change also leads to adjustments in production factors in both sectors, which alter the

marginal products of the capital and labor and in turn affect the price of new homes indi-

rectly. It is hard to determine the net effect without numerical solutions. In Figure 1.7, the

impulse response of PIh shows that a positive shock in TFP z will increase the new home

sales price.

The home rent, Rh, is determined by the ratio of consumption to housing services

enjoyed by the households. Since both consumption and available housing units available

in the economy, the net effect depends on the numerical results and is shown in Figure 1.7.

Figure 1.8 and Figure 1.9 show the impulse responses of the variables of interest to a

one-standard-deviation increment in the TFP shock ξt in the housing sector. Again, each

figure plots the specific impulse response function under the four different model uncer-

tainty levels, σ = 0,−5,−10,−50.
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Figure 1.8: IRF of {Kc, Nc, Yc, Kh, Nh, Ih} to a Positive Shock of ξt
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Note: ξt increases by one standard deviation; no change in zt.

We can see that both capital and labor inputs increase in the housing sector to take the

advantage of higher total factor productivity. On the contrary, there are less capital and

labor inputs in the consumption/investment goods production. Capital input in the housing

sector later falls below the level of its starting point because of insufficient investment

in physical capital, Ik. This positive productivity shock leads to a higher output of new

housing units and a lower output of consumption/investment goods.
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Figure 1.9: IRF of {N,C, Ik, H, PIh, Rh} to a Positive Shock of ξt
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Note: ξt increases by one standard deviation; no change in zt.

The impulse response of total hours worked is similar to that shown in Figure 1.7.

However, both consumption and investment in physical capital decrease because of lower

output Yc. Housing stock accumulates and home rent becomes lower. New home sales

price, PIh, also decreases as a consequence of higher productivity in the housing sector.

Finally, I notice that the impulse response curves of each variable under different model

uncertainty levels almost stack on top of each other. It indicates that whether the households

fear more or less about model misspecification has nearly no effects on the aftermaths of a

positive shock of a given size in either zt or ξt. It confirms that model uncertainty does not

generate an amplification mechanism for the TFP shocks in my model.27

27I also investigated the impulse response functions of these variables to negative shocks in zt and ξt.
They are just the mirror images of the ones responding to the positive shocks. Further, changing the model
uncertainty level does not affect this symmetry at all.
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1.6.2 Implications of Model Uncertainty Changes

In this section, I study the implications of my model compared to the observed data

series. First, I feed the TFP shocks derived in section 1.5.3 into a benchmark model where

there is no model uncertainty at all, i.e. σ ≡ 0, and simulate the dynamic paths for vari-

ables of interest. The results from the benchmark model show how the TFP shocks alone

account for housing market dynamics and movements in related variables. Then I study

the contribution of a one-time change to the model uncertainty level in matching the data

paths. Time-varying model uncertainty is not computationally tractable and thus beyond

my discussion. Instead, I increase model uncertainty to a constant level only within a spe-

cific time period. The model paths with this one-time model uncertainty shock differ from

the paths under the benchmark model, which demonstrates that households’ fear of model

misspecification improves the performance of my model in matching real world data.

The sample period of consideration is from 1974Q1 to 2014Q4. I increase the model

uncertainty level to the calibrated value, -17.5, between 2004Q2 and 2010Q1.28 The model

uncertainty level is set to 0 during other time periods. I choose the second quarter of the

year 2004 as the start point of model uncertainty change because the dispersion of housing

start forecasts jumped up around that time, indicating that the information available is less

trustable than before thus the model used for decision making can be misspecified. The

end point of this increase in model uncertainty is the first quarter of the year 2010 as the

dispersion of the professional forecasts for main economic activity indicators, such as GDP,

housing starts, industrial production, etc., all drop to a relatively low level since then. The

data evidence can be found in Appendix 1.F.

28Recall that σ always takes on a negative value. The more negative the value, the higher the model un-
certainty level. This choice of the time span with elevated model uncertainty stands in line with Bloom et al.
(2014) and Bloom (2014), which use dispersion of industry-level TFP shocks.
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In the rest part of this section, I discuss the implied variable paths with and without

model uncertainty and compare them to the observed data series. In Figure 1.10 to Figure

1.22, the black solid line represents the data series; the blue dotted line plots the variable

path under the benchmark model (i.e. σ = 0, the no-model-uncertainty case); the red

dashed line shows the variable path with a one-time model uncertainty shock (i.e. σ = 0

from 1974Q1 to 2004Q1, σ = −17.5 from 2004Q2 to 2010Q1, and σ = 0 from 2010Q2 to

2014Q4). The green dashed lines mark the start point and the end point of the time span of

increased model uncertainty level. The grey bars depict the recessions in the economy.

Resource Allocations

Figure 1.10 and Figure 1.11 show the cyclical dynamics of total physical capital stock

and total employment in the economy. In general, the TFP shocks alone capture a signifi-

cant portion of the variations in line with the data series, especially for the years around the

recent business cycle.

When model uncertainty increases, or in other words, when households become less

confident about the model specifications, they save more and accumulate more capital

stock. This result is consistent with Hansen et al. (1999) and Hansen and Sargent (2007),

which argue that concern about model uncertainty introduces precautionary savings be-

cause the risk-sensitive households want to protect themselves against model specification

errors.29 In addition, households will work more hours if they are more uncertain towards

model specification. After the model uncertainty level decreases to 0 again, both capital in-

put and labor input fall. Capital stock remains at a higher level than the benchmark model,

but the total workforce drops below the benchmark level.

29“Risk-sensitive households” refers to the households who fear of model uncertainty and seek robust
decisions.
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Figure 1.10: Cyclical Dynamics of Total Capital Stock, K
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Figure 1.11: Cyclical Dynamics of Total Labor Input, N
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The plots of capital and labor in the consumption goods sector are very similar to the

plots of total capital stock and total labor input, which attributes to that the housing con-

struction sector is relatively small – it only possesses 5.5 percent of total labor and less than
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1 percent of total physical capital according to data.

From Figure 1.12 to Figure 1.15 we can see that the excess capital stock and labor input

due to the model uncertainty increase mostly flow into the consumption goods sector.

Figure 1.12: Cyclical Dynamics of Capital Input in Consumption Sector, Kc
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Figure 1.13: Cyclical Dynamics of Labor Input in Consumption Sector, Nc
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Figure 1.14: Cyclical Dynamics of Capital Input in Housing Sector, Kh
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Figure 1.15: Cyclical Dynamics of Labor Input in Housing Sector, Nh
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The model paths mimic the data series roughly well, except for the cyclical behavior

of capital input in the housing sector. The model series assume comparative volatilities as

their data counterparts. In particular, featured indivisible labor and adjustment costs, the
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model can be fine tuned to match the actual fluctuations of labor input in business cycles as

affirmed in Hansen (1985).

Output, Investment and Consumption

The model does a good job in matching with data of output and investment, even with

the TFP shocks alone. The output in the housing sector is about 10 times as volatile as

the output in the consumption sector, which results from the fact that there are much more

fluctuations in factor inputs and productivity of the housing sector.

An increase in model uncertainty level leads to higher non-housing output and more

new homes built. Moreover, the model uncertainty change favors the consumption goods

sector as we can see a greater percentage increment of consumption output in Figure 1.16

compared to Figure 1.17. This is not a surprising result since we have already seen in

previous figures that capital and labor input in the consumption sector incline to increase

by a larger amount.

Figure 1.16: Cyclical Dynamics of Output in Consumption Sector, Yc
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Figure 1.17: Cyclical Dynamics of Output in Housing Sector, Ih
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The output from the consumption goods sector can be used either as capital investment

or as personal consumption. During the periods of high model uncertainty, households

consume less and save more even though there are more consumption/investment goods

produced as shown by Figure 1.18 and Figure 1.19.
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Figure 1.18: Cyclical Dynamics of Capital Investment, Ik
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In Figure 1.19, the cutback in consumption immediately after the model uncertainty

increase partially capture the downturn in personal expenditure observed from 2004Q1 to

2006Q4.

Figure 1.19: Cyclical Dynamics of Non-Housing Consumption, C
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Figure 1.20: Cyclical Dynamics of Total Housing Stock, H

Date
1975 1980 1985 1990 1995 2000 2005 2010

cy
c(

H
)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Transition Path H

Data
No Model Uncertainty
One-Time Model Uncertainty Shock

The model does not match the dynamic behavior of total housing stock very well. There

is no measurement directly available for existing housing stock, so the data series per se

could be imprecise. The model series is able to replicate the decrease in housing stock

from 2006 to 2008 and the recovery afterward, which is consistent with the pattern shown

by data.

New Home Sales Price and Home Rents

Figure 1.21 answers the key question asked in this paper – does an increase in model

uncertainty level help account for the boom and bust of the new home sales price? The

benchmark model with TFP shocks alone exhibits similar variations as the data, but it can

only account for about 32 percent of the price boom that peaked at 2007Q1. However, with

elevated model uncertainty, the model is able to capture 40 percent of the price surge.
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Figure 1.21: Cyclical Dynamics of New Home Sales Price, PIh
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As shown by Hansen and Sargent (2007), the robust decision rules derived from the

linear quadratic regulator problem with model uncertainty is equivalent to the solution to

an ordinary linear quadratic regulator problem under rational expectation with a distorted

transition laws of the state variables. The distorted transition law negatively distorts the

mean of the innovation. That been said, the households maximize their lifetime utility as if

they were facing a negative impact on TFP shocks at all times. From the impulse response

functions displayed in section 1.6.1, a negative shock of zt (TFP in the consumption sector)

leads to an increase in the new home sales price PIh,t, while a negative shock of ξt (TFP

in the housing sector) gives rise to a decrease in PIh,t. This result is as expected from the

pricing function

PIh,t =
exp(zt)(1− α)Kα

c,tN
−α
c,t

exp(ξt)νKθ
h,tN

ν−1
h,t

. (1.59)

Although the change in PIh,t also depends on the resource allocation, the net effect is

dominated by the change in the TFP shocks.
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Moreover, the TFP shock in the housing sector is about four times as volatile as the

TFP shock in the consumption sector. The quantitative result in section 1.7 shows that the

more volatile the TFP shock is, the larger room there is for model specification error, thus

the greater the “imaginary” negative distortion in households’ minds.

In summary, an increase in the fear for model misspecification imposes a positive effect

on the new home sales price.

Figure 1.22: Cyclical Dynamics of Home Rents, Rh
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Figure 1.22 plots the data series and the model paths of home rental rate Rh. The home

rental rate is determined by the ratio of marginal utility from housing services to marginal

utility from consumption goods. Specifically,

Rh,t = (1− µc)Ct
µcHt

. (1.60)

Holding the fear for model specification errors, the households consume less and the econ-

omy produces more housing units, as shown by Figure 1.19 and Figure 1.20, which pushes
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up the marginal utility of consumption and drags down the marginal utility of housing

services. As a result, the home rents are lower compared to the benchmark model.

1.7 The Worst-Case Shocks

In this section, I study the moments of the distributions of innovation shocks under the

worst-case model.

As discussed in section 1.5.5, the approximating model and the endogenous worst-case

model can be described by the time-invariant state transition laws (1.52) and (1.55). In the

approximating model, the TFP innovations in two sectors, εz,t and εξ,t, are assumed to be

independent, i.e. corr(εz,t, εξ,t) = 0.

Hansen and Sargent (2007) show that the transition density for the approximating model

is

fo(xt+1|xt) ∼ N ((A+BF )xt,CCT ), (1.61)

and the transition density for the worst-case model is

f(xt+1|xt) ∼ N ((A+BF +Cκ)xt, ĈĈT ), (1.62)

where κ = σ(I − σCTPC)−1CTP (A+BF ), and ĈĈT = C(I − σCTPC)CT . The

matrices A,B,C,F ,P are derived as in section 1.5.5. We can see that not only does the

model misspecification distort the Gaussian mean by Cκxt, the implied worst-case model

also distorts the covariance matrix of the innovations, as ĈĈT 6= CCT when σ < 0.

First, I examine the mean distortion effect of the worst-case model. The distortion term,

Cκxt, is endogenous and feed back on current state xt. Thus the distortion is changing

over time. But I can compute the coefficient matrix Cκ to quantify the one-period-ahead
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distortion on the state variables,

Cκxt = σC(I − σCTPC)−1CTP (A+BF )xt

=



0 0 0 0 0 0 0 0

-0.0044 -0.0019 0.0000 0.0000 0.0001 0.0000 -0.0002 0.0000

-0.0204 0.0000 -0.0102 -0.0000 -0.0037 0.0021 -0.0000 0.0000

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





1

zt

ξt

Kc,t

Kh,t

Ht

nc,t

nh,t



.

(1.63)

It shows that there are no direct distortion effects on the endogenous statesKc,t, Kh,t, Ht, nc,t

and nh,t, as all elements in the coefficient matrixCκ corresponding to these states are zero.

The worst-case model directly twists the TFP shocks zt and ξt and slant the dynamic transi-

tions of the endogenous states via the TFP shocks. The second and the third row of matrix

Cκ demonstrate the distortion effects on zt+1 and ξt+1. The coefficients on the constant

terms, -0.0044 and -0.0204, are most prominent among all elements in these two rows,

which indicate the negative mean shift effects on the TFP shocks. The second most signif-

icant coefficients are -0.0019 and -0.0102, which associate with the past state of the shock

per se. These negative values reduce the autocorrelations of the shock series and make

them less persistent. The distortion also allow future values of the TFP shocks to depend

on the endogenous states, but most of these effects are minimal.

The examine the long-run distortion effects, I compare the stochastic steady states of the

approximating model versus the worst-case model. The transition laws (1.52) and (1.55)
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specify a vector autoregressive process of order one for each of the two models respectively.

Define

DA = A+BF , DB = A+BF +Cκ (1.64)

The two VAR(1) models are stationary, as all eigenvalues ofDA andDB lie within the unit

circle (except for the eigenvalue that corresponds to the constant term). The steady states

of the approximating (or worst-case) model can be computed by multiplying matrix DA

(orDB) by itself until convergence. Table 1.10 reports the result.

Table 1.10: Stochastic Steady States

Variable Approximating Model Worst-Case Model

z 0 −0.02024

ξ 0 −0.05552

Kc 16.90 17.97

Kh 0.1769 0.1819

Nc 0.2817 0.2821

Nh 0.0227 0.0235

H 5.0555 5.4874

PIh 1.53195 1.53374

V (x) −25.29 −26.71

The worst-model represents an economy where the households hold a pessimistic view

about the productivity shocks and they behave as if the worst-case shocks were taking place.

Due to precautionary savings motive, the households save more and also work harder. Con-

sequently, the economy converges to a steady state with higher capital and labor input in

both sectors, higher housing stock, and higher new home sales price.
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Then I turn to the distortion effects on volatility and correlation in the worst-case model.

From the numerical solution of the model, with the parameter value of model uncertainty

set to -17.5, I have

CCT =

0.000063198 0

0 0.002624658

 , ĈĈT =

 0.000063341 −0.000000005

−0.000000005 0.002658685

 .
(1.65)

From the result above, we can see that the magnitude of cov(εz,t, εξ,t) is negligible and

corr(εz,t, εξ,t) ≈ 0 under the worst-case model, which means the distortion generates min-

imal correlation between the two TFP innovations. Moreover, concern for model misspec-

ification slightly increases the volatility of the TFP shocks. The standard deviation of the

innovation in zt is increased from 0.00795 to 0.00796 (by 0.11%); the standard deviation

of the innovation in ξt has a greater increment from 0.05123 to 0.05156 (by 0.65%).30 This

result is consistent with Hansen-Sargent’s argument that “the volatility covariance matrix

is slightly altered” under the worst-case model.

Next I use simulated shock series to varify the theoretical results. I simulate a very

long sample of zt and ξt under the approximating model and the worst-case model respec-

tively. Since the distortion depends on current level of the states. I assume the distortion

starts from the steady state when there is no model uncertainty. This experiment mim-

ics the responses of variables when there is a sudden increase in ambiguity level. Figure

1.23 and Figure 1.24 show the one-period-ahead distortion to the TFP shocks. I compute

corr(zt, ξt) ≈ 0, which indicates that the correlation between the productivities of two

sectors is still insignificant after the distortion under the worst-case model.

30The standard deviations of TFP innovations are computed by taking the square roots of the diagonal
elements of the variance-covariance matrices CCT and ĈĈT .
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Figure 1.23: Simulated Distribution of {zt}

Note: σ = −17.5. Detection error probability p(σ) = 0.10015.

Figure 1.24: Simulated Distribution of {ξt}

Note: σ = −17.5. Detection error probability p(σ) = 0.10015.

Figure 1.25 - Figure 1.29 plot the simulation results for resource allocations and the
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new home sales price. It is clear that the worst-case shocks, starting from the steady state

under the approximating model, slant factor inputs upward in both sectors except for capital

input in the housing sector, hence result in higher new home sales price.

Figure 1.25: Simulated Distribution of {Kc,t+1}

Note: σ = −17.5. Detection error probability p(σ) = 0.10015.
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Figure 1.26: Simulated Distribution of {Kh,t+1}

Note: σ = −17.5. Detection error probability p(σ) = 0.10015.

Figure 1.27: Simulated Distribution of {Nc,t}

Note: σ = −17.5. Detection error probability p(σ) = 0.10015.
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Figure 1.28: Simulated Distribution of {Nh,t}

Note: σ = −17.5. Detection error probability p(σ) = 0.10015.

Figure 1.29: Simulated Distribution of {PIh,t}

Note: σ = −17.5. Detection error probability p(σ) = 0.10015.

The bottom line is that the worst-case model essentially distorts the mean rather than
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the covariance matrix of the TFP shocks. Thus my result confirms that it is sufficient to

keep track of the mean distortion when solving the linear quadratic control problem, which

also reflects a form of certainty equivalence discussed in Anderson et al. (2003).

1.8 Conclusion

The U.S. housing market experienced the unprecedented fluctuation from 2002 to 2010.

The real new home sales price sky-rocketed by about 30% within only five years and plum-

meted soon after the year of 2006, leaving its net increase virtually nil. Observing that the

volatility of new housing construction is much larger than that of non-housing production,

I construct sector-specific total factor productivity shocks in a two-sector DSGE model and

study to what extent that the TFP shock in housing sector accounts for the rise and fall

during the most recent housing market crisis. Then I introduce model uncertainty into the

benchmark framework and dedicate to answer the question that whether the fear of model

misspecification help account for the boom-bust in the new home sales price. Finally, I

examine the first and second moments of the worst-case distribution of the TFP shocks.

I solve the model using the methodology proposed by Hansen and Sargent (1995).

The discounted Linear Exponential Quadratic Gaussian control method successfully avoids

computational difficulties such as high-dimensional state space, explosive value function,

etc., and facilitates the simulation of the worst-case model to implement the likelihood ratio

tests. I calibrate the parameters in the benchmark model by the simulated method of mo-

ments. The benchmark model, with TFP shocks alone, does a decent job in fitting the first

and second moments of real-world data; it accounts for 32 percent of the increase and 40

percent of the decrease in the new home sales price. The implied changes in the resource

allocation between the two sectors are also in line with data.
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Further, I allow a one-time temporary change in the model uncertainty level during the

time span with enhanced dispersions of professional forecasts. The model uncertainty pa-

rameter is calibrated by the detection error probability as in Hansen and Sargent (2007).

When households hold a concern for model misspecification, they are seeking robust de-

cision rules which perform well over a set of alternative models that are statistically in-

distinguishable from the not-fully-trusted approximating model. When model uncertainty

level rises, the worst-case model distorts the Gaussian mean of TFP shocks negatively in

households’ minds but keeps the variance-covariance matrix of the TFP shocks almost un-

changed. Since the TFP shock in housing production is more volatile, it receives a larger

negative mean-shift effect than the TFP shock in the consumption goods sector from the

robust state transition law. As a result, the new home sales price is pushed up even further.

Thus with the one-time change in model uncertainty, the model is capable of accounting

for 40 percent of the surge in new home sales price. The inclusion of the fear for model

misspecification improves model’s fitting with data.
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Appendix

1.A Utility Recursion and Epstein-Zin Preferences

First, I prove that the continuation value of the representative household who fears

model uncertainty takes a log-exponential form.31

As mentioned in section 2.2.1, the household optimizes under the worst-case scenario

and solves for the max-min problem (1.4) - (1.6).

I rewrite the objective function of the max-min problem as

V (st) = max
xt

u(xt) + β min
{p(εt+1|εt)}∈[0,1]#ε

∑
εt+1

p(εt+1|εt)V (st+1)

 , (1.A.1)

and define the continuation value given the information set at time t as

Rt(st+1) = min
{p(εt+1|εt)}∈[0,1]#ε

∑
εt+1

p(εt+1|εt)V (st+1), (1.A.2)

s.t.
∑
εt+1

p(εt+1|εt) = 1, (probability constraint) (1.A.3)

∑
εt+1

p(εt+1|εt) log
(
p(εt+1|εt)
π(εt+1|εt)

)
≤ η0, (entropy constraint) (1.A.4)

where p(εt+1|εt) is the subjective probability and π(εt+1|εt) is the objective probability.
31The proof follows Backus et al. (2005), Hansen and Sargent (2007) and Young (2012).
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Entropy measures the distance between these two probability distributions and is defined

as in Backus et al. (2005).

Proposition 1. The continuation valueRt(st+1) has a log-exponential functional form

Rt(st+1) = 2
σ

log
(
Eπ,t

[
exp

(
σV (st+1)

2

)])
. (1.A.5)

Proof. I set up the Lagrangian as follows to solve for the minimization problem,

Rt(st+1) = min
{p(εt+1|εt)}∈[0,1]#ε

∑
εt+1

p(εt+1|εt)V (st+1) + λ

∑
εt+1

p(εt+1|εt)− 1


− 2
σ

∑
εt+1

p(εt+1|εt) log
(
p(εt+1|εt)
π(εt+1|εt)

). (1.A.6)

The parameters λ > 0 and − 2
σ
> 0 are the Lagrangian multipliers corresponding to the

probability constraint and the entropy constraint, which shows the value of loosening re-

spective constraint to the household.32 The more negative the parameter σ is, the less

desirable it is to relax the entropy constraint, which means that the household prefers a

tighter model specification.

Since the objective function is convex and the constraint set is convex and compact

in p(εt+1|εt), the minimization problem is a convex programming problem. Therefore, the

Kuhn-Tucker first-order condition with respect to p(εt+1|εt) is both sufficient and necessary,

V (st+1) + λ− 2
σ

[
log

(
p(εt+1|εt)
π(εt+1|εt)

)
+ 1

]
= 0. (1.A.7)

32A constant term,
2η0

σ
, is dropped from the Lagrangian. This trick does not change the optimal solution,

but it enables me to get a closed-form expression forRt(st+1).
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Multiplying both sides by p(εt+1|εt) and summing over εt+1 yields

∑
εt+1

p(εt+1|εt)V (st+1) + λ− 2
σ

∑
εt+1

p(εt+1|εt) log
(
p(εt+1|εt)
π(εt+1|εt)

)
− 2
σ

= 0. (1.A.8)

Substituting (1.A.3) and (1.A.8) into the Lagranian (1.A.6) returns

Rt(st+1) = −λ+ 2
σ
. (1.A.9)

Then combine (1.A.7) and (1.A.9),

V (st+1)−Rt(st+1) = 2
σ

log
(
p(εt+1|εt)
π(εt+1|εt)

)
. (1.A.10)

Rearranging the terms in (1.A.10), we have

p(εt+1|εt) = π(εt+1|εt) exp
(
σ(V (st+1)−Rt(st+1))

2

)
. (1.A.11)

Summing (1.A.11) over εt+1 gives

1 = exp
(
−σRt(st+1)

2

)∑
εt+1

π(εt+1|εt) exp
(
σV (st+1)

2

) . (1.A.12)

Note thatRt(st+1) is the continuation value given the information set at time t and thus is

independent of the probability π(εt+1|εt).
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Finally, take log on both sides of (1.A.12) and rearrange terms again, we have

Rt(st+1) = 2
σ

log
∑
εt+1

π(εt+1|εt) exp
(
σV (st+1)

2

) (1.A.13)

= 2
σ

log
(
Eπ,t

[
exp

(
σV (st+1)

2

)])
. (1.A.14)

This is how we derive the utility recursion for the households

V (st) = max
xt

{
u(xt) + β

2
σ

log
(
Eπ(εt+1|εt)

[
exp

(
σV (st+1)

2

)])}
. (1.A.15)

Proposition 2. The log-exponential utility recursion (1.A.15) is a special case of the Epstein-

Zin preferences with the intertemporal elasticity of substitution being one.

Proof. The proof is based on Epstein and Zin (1989) and Tallarini (2000).

The Epstein-Zin preference is depicted by a constant-elasticity-of-substitution (CES)

utility function defined over the current consumption, ct, and the certainty equivalent of

future utility, µt(Ut+1),

Ut(ct, µ(Ut+1)) =
[
(1− β)c1−ρ

t + β(µt(Ut+1))1−ρ
] 1

1−ρ , 0 < ρ 6= 1, (1.A.16)

where the marginal rate of time preference is 1
β
− 1; the intertemporal elasticity of substi-

tution between ct and µt(Ut+1) is 1
ρ
.

In the special case where the intertemporal elasticity of substitution equals to one, i.e.

ρ = 1, the CES function degenerates to the Cobb-Douglas form,

Ut = c1−β
t [µt(Ut+1)]β . (1.A.17)
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Take log on both sides of (1.A.17), we have

log(Ut) = (1− β) log(ct) + β log(µt(Ut+1)).

Assume that the certainty equivalent takes a power functional form

µt(Ut+1) =
[
Et(U1−γ

t+1 )
] 1

1−γ , (1.A.18)

where γ is the relative risk aversion coefficient. Then

log(Ut)
1− β = log(ct) + β

1− β log
([

Et(U1−γ
t+1 )

] 1
1−γ
)

= log(ct) + β

(1− β)(1− γ) log
(
Et[U1−γ

t+1 ]
)
. (1.A.19)

Define Vt ≡
log(Ut)
1− β , hence Ut = exp((1− β)Vt). Equation (1.A.19) becomes

Vt = log(ct) + β

(1− β)(1− γ) log
(
Et[exp((1− β)(1− γ)Vt+1)]

)
.

Define σ ≡ 2(1 − β)(1 − γ). Therefore, we obatin the log-exponential form of the

utility recursion:

Vt = log(ct) + β
2
σ

log
(
Et
[
exp

(
σVt+1

2

)])
.
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1.B Planner’s Problem and Optimality Conditions

The social planner maximizes households’ lifetime utility subject to the resources con-

straints for production.

The utility function of households has the following form,

u(Ct, Ht, Nt) = (nc,t + nh,t)u(CE
t , Ht, 1− N̄) + (1− nc,t − nh,t)u(CU

t , Ht, 1). (1.B.1)

This utility function has a nice property that we will have CE = CU if (C,H) and N are

separable.

Proposition 3. If the utility function can be written as u(C,H,N) = f(C,H) + g(N)

where function f(C,H) is differentiable in C and its first partial derivative fc(C,H) is

monotone, then the optimal consumption choice guarantees that CE = CU .

Proof. Seeing that u(C,H,N) = f(C,H) + g(N), we have

u(CE
t , Ht, 1− N̄) = f(CE

t , Ht) + g(1− N̄), (1.B.2)

u(CU
t , Ht, 1) = f(CU

t , Ht) + g(1), (1.B.3)

and thus

u(Ct, Ht, Nt) = (nc,t +nh,t)[f(CE
t , Ht) + g(1− N̄)] + (1−nc,t−nh,t)[f(CU

t , Ht) + g(1)].

(1.B.4)

The optimal consumption choices, CE
t and CU

t , come from the solution to the following
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utility maximization problem,

V (st) = max
CEt ,C

U
t ,xt

{
(nc,t + nh,t)[f(CE

t , Ht) + g(1− N̄)] + (1− nc,t − nh,t)[f(CU
t , Ht) + g(1)]

+ βEt [V (st+1)] + λ
(
Πt − (nc,t + nh,t)CE

t − (1− nc,t − nh,t)CU
t

)}
,

(1.B.5)

where st represents all of the state variables; xt contains control variables other than CE
t

and CU
t ; Πt is the total disposable income; λ > 0 is the Lagrangian multiplier associated

with the budget constraint. The first order condisions with respect to CE
t and CU

t give that

(nc,t + nh,t)fc(CE
t , H) = λ(nc,t + nh,t), (1.B.6)

(1− nc,t − nh,t)fc(CU
t , H) = λ(1− nc,t − nh,t). (1.B.7)

Compare (1.B.6) and (1.B.7), we have

fc(CE
t , H) = fc(CU

t , H). (1.B.8)

Since the partial derivative fc(Ct, Ht) is monotone, hence we have CE
t = CU

t ,∀t.

Given the specific functional form of the utility function,

u(Ci
t , Ht, N

i
t ) = µc log(Ci

t) + (1− µc) log(Ht) + φ log(1−N i
t ), i = E,U, (1.B.9)

and use the property that CE
t = CU

t = Ct, we can write down the social planner’s utility
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function as

u(Ct, Ht, Nt) = (nc,t + nh,t)u(CE
t , Ht, 1− N̄) + (1− nc,t − nh,t)u(CU

t , Ht, 1)

= (nc,t + nh,t)
[
µc log(CE

t ) + (1− µc) log(Ht) + φ log(1− N̄)
]

+ (1− nc,t − nh,t)
[
µc log(CU

t ) + (1− µc) log(Ht) + φ log(1)
]

= µc log(Ct) + (1− µc) log(Ht) + (nc,t + nh,t)φ log(1− N̄). (1.B.10)
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1.B.1 Planner’s Problem

The Bellman equation of the planner’s optimization problem can be written as follows:

V (zt, ξt, Kc,t, Kh,t, Ht, nc,t−1, nh,t−1)

= max
Kc,t+1,Kh,t+1,Ht+1,nc,t,nh,t,

Ct,Ikc,t,Ikh,t,Ih,t

µc log(Ct) + (1− µc) log(Ht) + (nc,t + nh,t)φ log(1− N̄)

+ β
( 2
σ

)
log

(
Et
[
exp

(
σ

2V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t)
) ∣∣∣zt, ξt])

,
(1.B.11)

s.t. Ct + Ikc,t + Ikh,t ≤ Yc,t −
ω

2

(
Ht+1 −Ht

Ht

)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2 ,

(1.B.12)

Ih,t ≤ Yh,t, (1.B.13)

Ht+1 ≤ (1− δh)Ht + Ih,t, (1.B.14)

Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t, (1.B.15)

Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t, (1.B.16)

Yc,t = exp(zt)Kα
c,t(nc,tN̄)1−α, (1.B.17)

Yh,t = exp(ξt)Kθ
h,t(nh,tN̄)νL1−θ−ν

t , Lt = 1,∀t. (1.B.18)
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Simplify the constraints and construct the Lagrangian:

L = µc log(Ct) + (1− µc) log(Ht) + (nc,t + nh,t)φ log(1− N̄)

+ β
( 2
σ

)
log

(
Et
[
exp

(
σ

2V (Kc,t+1, Kh,t+1, nc,t, nh,t, Ht+1, zt+1, ξt+1)
) ∣∣∣zt, ξt])

+ λ1,t

[
exp(zt)Kα

c,t(nc,tN̄)1−α − Ct −Kc,t+1 + (1− δkc)Kc,t −Kh,t+1 + (1− δkh)Kh,t

− κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t −
ω

2

(
Ht+1 −Ht

Ht

)2
Ht

− τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2
]

+ λ2,t

[
exp(ξt)Kθ

h,t(nh,tN̄)ν −Ht+1 + (1− δh)Ht

]
(1.B.19)

To make notations clearer, denote V (t) ≡ V (zt, ξt, Kc,t, Kh,t, Ht, nc,t−1, nh,t−1) and

V (t + 1) ≡ V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t). Take the first order conditions
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with respect to the choice variables:

Kc,t+1 : βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]V ′Kc(t+ 1)
 = λ1,t

[
1 + κc

(
Kc,t+1 −Kc,t

Kc,t

)]
,

(1.B.20)

Kh,t+1 : βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]V ′Kh(t+ 1)
 = λ1,t

[
1 + κh

(
Kh,t+1 −Kh,t

Kh,t

)]
,

(1.B.21)

Ht+1 : βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]V ′H(t+ 1)
 = λ1,t ω

(
Ht+1 −Ht

Ht

)
+ λ2,t,

(1.B.22)

nc,t : φ log(1− N̄) + βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]V ′nc(t+ 1)


+ λ1,t
[
exp(zt)(1− α)Kα

c,t(nc,tN̄)−αN̄ − τc(nc,t − nc,t−1)
]

= 0, (1.B.23)

nh,t : φ log(1− N̄) + βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]V ′nh(t+ 1)


− λ1,t τh(nh,t − nh,t−1) + λ2,t exp(ξt)νKθ
h,t(nh,tN̄)ν−1N̄ = 0, (1.B.24)

Ct : µc
Ct

= λ1,t, (1.B.25)

λ1,t : Ct +Kc,t+1 − (1− δkc)Kc,t +Kh,t+1 − (1− δkh)Kh,t

= exp(zt)Kα
c,t(nc,tN̄)1−α − κc

2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t

− ω

2

(
Ht+1 −Ht

Ht

)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2, (1.B.26)

λ2,t : Ht+1 − (1− δh)Ht = exp(ξt)Kθ
h,t(nh,tN̄)ν . (1.B.27)
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Applying the Envelope theorem to the value function yields

V ′Kc(t) = λ1,t

exp(zt)αKα−1
c,t (nc,tN̄)1−α + 1− δkc + κc

2

(Kc,t+1

Kc,t

)2

− 1
 ,

(1.B.28)

V ′Kh(t) = λ1,t

1− δkh + κh
2

(Kh,t+1

Kh,t

)2

− 1
+ λ2,t exp(ξt)θKθ−1

h,t (nh,tN̄)ν ,

(1.B.29)

V ′H(t) = 1− µc
Ht

+ λ1,t
ω

2

((
Ht+1

Ht

)2
− 1

)
+ λ2,t(1− δh), (1.B.30)

V ′nc(t) = λ1,t τc(nc,t − nc,t−1), (1.B.31)

V ′nh(t) = λ1,t τh(nh,t − nh,t−1). (1.B.32)

1.B.2 Optimality Conditions

Combining the first order conditions (1.B.20) - (1.B.27) and the Envelope theorem con-

ditions (1.B.28) - (1.B.32), we obtain the following optimality conditions from which the
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robust decision rules can be solved.

(1) λ1,t

[
1 + κc

(
Kc,t+1 −Kc,t

Kc,t

)]
= βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]λ1,t+1

{
(1− δkc)

+ κc
2

((
Kc,t+2

Kc,t+1

)2
− 1

)
+ exp(zt+1)αKα−1

c,t+1(nc,t+1N̄)1−α
}, (1.B.33)

(2) λ1,t

[
1 + κh

(
Kh,t+1 −Kh,t

Kh,t

)]
= βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]{λ1,t+1

[
(1− δkh)

+ κh
2

((
Kh,t+2

Kh,t+1

)2
− 1

)]
+ λ2,t+1 exp(ξt+1)θKθ−1

h,t+1(nh,t+1N̄)ν
}, (1.B.34)

(3) λ1,t ω
(
Ht+1 −Ht

Ht

)
+ λ2,t

= βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ]{1− µc
Ht+1

+ λ1,t+1
ω

2

((
Ht+1

Ht

)2
− 1

)
+ λ2,t+1(1− δh)

} ,
(1.B.35)

(4) − φ log(1− N̄) + λ1,t
[
τc(nc,t − nc,t−1)− exp(zt)(1− α)Kα

c,t(nc,tN̄)−αN̄
]

= βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ] · λ1,t+1 τc(nc,t+1 − nc,t)
 , (1.B.36)

(5) − φ log(1− N̄) + λ1,t τh(nh,t − nh,t−1)− λ2,t exp(ξt)νKθ
h,t(nh,tN̄)ν−1N̄

= βEt

 exp
(
σ
2V (t+ 1)

)
Et
[

exp
(
σ
2V (t+ 1)

) ] · λ1,t+1 τh(nh,t+1 − nh,t)
 , (1.B.37)

(6) µc
Ct

= λ1,t, (1.B.38)

(7) Ct +Kc,t+1 − (1− δkc)Kc,t +Kh,t+1 − (1− δkh)Kh,t

= exp(zt)Kα
c,t(nc,tN̄)1−α − κc

2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t

− ω

2

(
Ht+1 −Ht

Ht

)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2, (1.B.39)

(8) Ht+1 − (1− δh)Ht = exp(ξt)Kθ
h,t(nh,tN̄)ν . (1.B.40)
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These optimality conditions characterize the equilibrium in the economy.

1.B.3 Steady State

In steady state, all variables do not evolve over time. In particular,

exp
(
σ
2V (t+ 1)

)
Et
[
exp

(
σ
2V (t+ 1)

)] = 1. (1.B.41)

Therefore, we can compute the deterministic steady state values of {Kc, Kh, H, nc, nh, C}

in the economy from the equation system:

1 = β
[
αKα−1

c (ncN̄)1−α + 1− δkc
]
, (1.B.42)

(1− α)Kα
c (ncN̄)−α = −φ log(1− N̄)C

µcN̄
, (1.B.43)(

1
β
− 1 + δkh

)
νKh

θnhN̄
= −φ log(1− N̄)C

µcN̄
, (1.B.44)

(1− α)Kα
c (ncN̄)−α

νKθ
h(nhN̄)ν−1

= 1
1
β
− 1 + δh

(1− µc)C
µcH

, (1.B.45)

C + δkcKc + δkhKh = Kα
c (ncN̄)1−α, (1.B.46)

δhH = Kθ
h(nhN̄)ν . (1.B.47)

1.B.4 Price Functions

Although prices do not exist in a centralized economy, we can back up the prices in the

competitive equilibrium from the planner’s policy function.

The optimal resource allocation equalizes the marginal product of labor (or capital)
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across the two sectors. Based on this relationship, the new home sales price must satisfy

PIh,t =
exp(zt)(1− α)Kα

c,t(nc,tN̄)−α

exp(ξt)νKθ
h,t(nh,tN̄)ν−1

. (1.B.48)

The home rents must equal to the ratio of marginal utility of housing services to con-

sumption goods, thus

Rh,t = (1− µc)Ct
µcHt

. (1.B.49)

Finally, the wage rate equals to the marginal product of labor in either sector.

wt = exp(zt)(1− α)Kα
c,t(nc,tN̄)−αN̄ . (1.B.50)

1.C Linear Exponential Quadratic Gaussian Control Prob-

lem with Model Uncertainty

A Linear Quadratic Gaussian (LQG) control problem has a format in which the utility

function is quadratic in the state vector xt and the control vector at,

V (xt) = max
at,xt+1

{u(xt,at) + βEt [V (xt+1)]} ,

u(xt,at) =xTt Qxt + aTt Rat + 2aTtWxt; (1.C.1)

the state transition function is linear,

xt+1 = Axt +Bat +Cεt+1; (1.C.2)
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and the uncertainty comes from white Gaussian noises,

εt+1 ∼ i.i.d. N (0, I). (1.C.3)

The matrix Q is negative semidefinite, and the matrix R is negative definite. The solution

to this problem consists of a quadratic value function and a time-invariant optimal linear

control law. This type of problems have a property called Certainty Equivalence – the

optimal control law is independent of the uncertainty and we will obtain exactly the same

control law as in a deterministic environment.

Hansen and Sargent (1995) introduce the discounted Linear Exponential Quadratic Gaus-

sian (LEQG) method to solve for a generalized LQG control problem embedded with model

uncertainty. The most intriguing result is that the certainty equivalence no longer holds

when the agent fears about model misspecification. In this section, I elaborate this method-

ology which is the footstone of the solution algorithm of my model.

Consider the following problem:

V (xt) = max
at,xt+1

{
xTt Qxt + aTt Rat + 2aTtWxt + β

( 2
σ

)
log

(
Et
[

exp
(
σ

2V (xt+1)
)
|xt
])}

,

(1.C.4)

s.t. xt+1 = Axt +Bat +Cεt+1, εt+1 ∼ i.i.d. N (0, I). (1.C.5)

It can be solved via guess and verify. Guess that value function is quadratic and con-

cave, i.e. V (xt) = xTt Pxt + d and P is negative definite, then

V (xt+1) =xTt+1Pxt+1 + d

=(Axt +Bat +Cεt+1)TP (Axt +Bat +Cεt+1) + d. (1.C.6)
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Substituting (1.C.6) into the Bellman equation (1.C.4) and using the moment generating

function of the Gaussian random variable, εt ∼ N (0, I), we have

xTt Pxt + d = max
at

{
xTt Qxt + aTt Rat + 2aTtWxt + β(Axt +Bat)TD(P )(Axt +Bat)

+ U(P , d)
}
, (1.C.7)

where D(P ) = P + σPC(I − σCTPC)−1CTP , matrix (I − σCTPC) is positive

definite, and U(P , d) is some constant term.33

Maximizing with respect to the control vector at yields the decision rule

at = −
(
R+ βBTD(P )B

)−1 (
W + βBTD(P )A

)
xt. (1.C.8)

Substituting (1.C.8) back into (1.C.7) and matching coefficients yields the matrix Ric-

cati equation:

xTt Pxt + d

= xt

[
Q+ βATD(P )A−

(
W + βBTD(P )A

)T (
R+ βBTD(P )B

)−1 (
W + βBTD(P )A

)]
xt

+ U(P , d). (1.C.9)

Therefore, the solution matrix P can be obtained by iterating on the recursive equation

P = Q+βATD(P )A−
(
W + βBTD(P )A

)T (
R+ βBTD(P )B

)−1 (
W + βBTD(P )A

)
,

(1.C.10)
33I use the results from Jacobson (1973). The detailed algebraic derivation is ommited here.
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with that

D(P ) = P + σPC(I − σCTPC)−1CTP . (1.C.11)

In addition, d = U(P , d).

After solving for P , the decision rule for at is determined by (1.C.8). Denote

at =Fxt,

F :=−
(
R+ βBTD(P )B

)−1 (
W + βBTD(P )A

)
. (1.C.12)

The system also needs to be saddle-stable, which requires that the matrix A + BF have

eigenvalues within the unit circle.

From (1.C.10) - (1.C.12) we can see that D(P ) depends on the volatility matrix C

and the model uncertainty parameter σ. Hence certainty equivalence property fails in this

model, and model uncertainty plays a role in the control law.

Notice that the solution of the LEQG problem is a function of the matrices A, B, C,

Q, R, and W . In order to compute the numerical solution, we must compute the matrices

Q,R, andW first. That is, we need to derive the quadratic form for the utility function

u(xt,at) = xTt Qxt + aTt Rat + 2aTtWxt =
(
xTt aTt

)Q W T

W R


︸ ︷︷ ︸

Θ

xt
at

 . (1.C.13)

In a problem where the utility function is not quadratic, we can use the second order multi-

variate Taylor expansion of u(·) around the stochastic steady state as the approximation. I

omit the subscript t henceforth.

Suppose that y is a vector containing all of the states and all of the controls as well as
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the constant 1:

y =

x
a

 =


1

x̂
n×1

a
k×1

 , x =

1

x̂

 . (1.C.14)

Partitioning the matrix Θ according to the dimensions of x and a, we can write

u(x,a) =
(

1 x̂T
1×n

aT
1×k

)


Θ11
1×1

Θ12
1×n

Θ13
1×k

Θ21
n×1

Θ22
n×n

Θ23
n×k

Θ31
k×1

Θ32
k×n

Θ33
k×k




1

x̂T
n×1

a
k×1


=Θ11 + x̂TΘ21 + aTΘ31 + Θ12x̂+ x̂TΘ22x̂+ aTΘ32x̂+ Θ13a+ x̂TΘ23a+ aTΘ33a.

(1.C.15)

Denote ȳ = (1, ¯̂x, ā)T as the point around which the utility function is expanded. Then

the second order Taylor approximation gives

u(y) ≈ u(ȳ) +Du(ȳ)T (y − ȳ) + 1
2(y − ȳ)TD2

u(ȳ)(y − ȳ), (1.C.16)

where Du(ȳ) and D2
u(ȳ) are the gradient vector and the Hessian matrix of function u(·)

respectively. Denote34

Du(ȳ) := f =


0

fn
n×1

fk
k×1

 , D2
u(ȳ) := V ,

1
2V

:=


0

1×1
0

1×n
0

1×k

0
n×1

S
n×n

T T

n×k

0
k×1

T
k×n

L
k×k

 . (1.C.17)

34Note that the first and second partial derivative of u(·) with respect to the constant state 1 is always 0.
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Since D2
u(·) is symmetric, so S and L are also symmetric. The Taylor expansion becomes

u(y) =u(ȳ) + fT (y − ȳ) + (y − ȳ)T
(1

2V
)

(y − ȳ)

=u(ȳ)− fT ȳ + ȳT
(1

2V
)
ȳ + fTy + yT

(1
2V

)
y − ȳT

(1
2V

)
y − yT

(1
2V

)
ȳ.

(1.C.18)

LetG ≡ u(ȳ)−fT ȳ+ȳT
(

1
2V

)
ȳ be the constant term, substituting (1.C.14) and (1.C.17)

into (1.C.18) yields

u(y) =G+
(
fTn fTk

)x̂
a

+
(
x̂T aT

)S T T

T L


x̂
a



−
(

¯̂xT āT
)S T T

T L


x̂
a

− (x̂T aT
)S T T

T L


 ¯̂x

ā


=G+ x̂TSx̂+ aTLa+ aTT x̂+ x̂TT Ta+ fTn x̂+ fTk a+

( ¯̂xTS + āTT
)
x̂

−x̂T
(
S ¯̂x+ T T ā

)
−
( ¯̂xTT T + āTL

)
a− aT

(
T ¯̂x+Lā

)
(1.C.19)

Since Θ is symmetric, so is Θ12, Θ13, and Θ23.
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Comparing (1.C.15) with (1.C.19) and matching the coefficients, we have

Θ11 = G, (1.C.20)

Θ22 = S, (1.C.21)

Θ33 = L, (1.C.22)

Θ32 = T , Θ23 = T T , (1.C.23)

Θ12 = 1
2f

T
n − ¯̂xTS − āTT , Θ21 = ΘT

12, (1.C.24)

Θ13 = 1
2f

T
k − ¯̂xTT T − āTL, Θ31 = ΘT

13. (1.C.25)

Finally,

Q =

Θ11 Θ12

Θ21 Θ22

 , R = Θ33, W =
(

Θ31 Θ32

)
. (1.C.26)

Hence we have obtained the quadratic approximation of utility function u(·) using the

numerical first and second order partial derivative matrices fn, fk, S, T , and L.
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1.D Data Source

Table 1.D.1: Data Source Description

Data Source

Gross Domestic Product BEA NIPA Table 1.1.5

Private Residential Fixed Investment FRED series PRFI

Consumption on Housing and Utilities BEA NIPA Table 2.3.5

Gross Private Domestic Investment BEA NIPA Table 1.1.5

Federal Nondefense Gross Investment BEA NIPA Table 3.9.5

State and Local Investment BEA NIPA Table 3.9.5

Consumer Durables BEA FA Table 1.1.5

Units of New Houses for Sale FRED series NHFSEPC

Gross Fixed Assets BEA FA Table 1.1

Gross Residential Structures BEA FA Table 1.1

Private Fixed Assets in Construction Industry BEA FA Table 3.1ESI

Total Hours Worked BEA NIPA Table 6.9B - 6.9D

Total Hours Worked in Construction Industry BEA NIPA Table 6.9B - 6.9D

Median Sales Price for New Houses Sold in U.S. FRED series MSPNHSUS

Consumer Price Index: Housing FRED series CPIHOSSL, 2000Q1 = 100

Consumer Price Index FRED series CPIAUCSL, 2000Q1 = 100

Civilian Noninstitutional Population FRED series CNP16OV

3-Month Effective Federal Funds Rate FRED series FEDFUNDS

Civilian Unemployment Rate FRED series UNRATE

BEA: Bureau of Economic Analysis; NIPA: National Income and Product Accounts; FA: Fixed Assets;

FRED: Federal Reserve Economic Data
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1.E Kalman Filter

A nice property of the Linear Quadratic Gaussian problem is that it is very easy to apply

the Kalman filter to compute the likelihood of a sample generated by the Linear Quadratic

model.

Consider the state space representation of a model, which consists of

State equation: ut+1 = Dut + vt+1, vt ∼ i.i.d. (0,Σv), (1.E.1)

Observation equation: yt = GTst +HTut + ηt, ηt ∼ i.i.d. (0,Ση), (1.E.2)

where ut is the vector of unobserved states; yt is the n × 1 vector of observed variables

and st is the k × 1 vector of exogenous/predetermined variables; the error terms vt and ηt

are both mean-zero and uncorrelated with each other.

The Kalman filter produces an forecast of the unobseved state of the system as an

weighted average of the predicted state and the new measurement. The weights are cal-

culated from the mean squared error (MSE) of the forecast so that higher weights are given

to the more confident forecasts. Specifically, the recursive formula of the forecast given by

Kalman filter is

ût+1|t = Dût|t−1 + Kt(yt −GTst −HT ût|t−1), (1.E.3)

where Kt ≡DPt|t−1H(HTPt|t−1H+Ση)−1 is the Kalman gain, and the associated MSE

of the forecast ût+1|t is

Pt+1|t = D
[
Pt|t−1 − Pt|t−1H(HPt|t−1H + Ση)−1HTPt|t−1

]
DT + Σv. (1.E.4)
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The following proposition in Hamilton (1994) shows how to compute the likelihood of

a sample of the observed variables, {y1,y2, ...,yT}, being generated by this model.

Proposition 4. If u1 and {vt,ηt}Tt=1 are multivariate Gaussian, and with the given infor-

mation set It := {st, st−1, ..., s1;yt−1,yt−2, ...,y1}, then

(i) Kalman filter gives the optimal forecast of ût|t−1 and ŷt|t−1;

(ii) The conditional distribution of yt is Gaussian:

yt|It ∼ N (GTst +HT ût|t−1,H
TPt|t−1H + Ση); (1.E.5)

(iii) The likelihood of a sample point yt is given by

Prob(yt|It) =fYt|It(yt|It)

=(2π)−n2 |HTPt|t−1H + Ση|−
1
2 exp

{
− 1

2(yt −GTst −HT ût|t−1)T

(HTPt|t−1H + Ση)−1(yt −GTst −HT ût|t−1)
}
, (1.E.6)

thus the log-likelihood of the whole sample {y1,y2, ...,yT} is given by

T∑
t=1

log fYt|It(yt|It). (1.E.7)

In order to apply the proposition to compute the likelihood, first, I need to write down

the approximating model and the worst-case model in the state space representation. For

the approximating model, the state equation is simply the transition law:

xt+1 = (A+BF )xt + ε̃t+1, ε̃t+1 = Cεt+1, (1.E.8)
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and since all states are observable, the observation equation is

yt = xt. (1.E.9)

SoD = A+BF ,G = 0,H = I , Ση = 0, and Σv = Σε̃.

However, to avoid a singularity problem in the matrix computation, I should only in-

clude the stochastic components of the system in the state vector. Therefore, I modify the

state equation and the observation equation as follows:

zt+1

ξt+1

 =

ρz 0

0 ρξ


zt
ξt

+

 ˜εz,t+1

˜εξ,t+1

 ,
 ˜εz,t+1

˜εξ,t+1

 ∼ N

0

0

 ,
σ2

z 0

0 σ2
ξ


 ,
(1.E.10)

yt =

zt
ξt

 . (1.E.11)

Similarly, for the worst-case model, I use the transition law

xt+1 = (A+BF +Cκ)xt +Cεt+1, (1.E.12)

where κ = σ(I − σCTPC)−1CTP (A + BF ). Then I select the rows and columns in

the coefficient matrix (A+BF +Cκ) that correspond to zt and ξt to construct the matrix

D in the state equation appropriately.

The rest part of the computation is straight forward. I use the formula of Kalman

filter to compute the forecast ε̂t|t−1 = {ẑt|t−1, ξ̂t|t−1} and its associated MSE Pt|t−1, for

t = 1, 2, ..., T . Then I use the Proposition 4-(iii) to compute the likelihood of sample
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{z1, ξ1, z2, ξ2, ..., zT , ξT} being generated by model A and model B respectively.35

1.F Dispersion of Professional Forecasts

Figure 1.F.1: Measures of Dispersion for Quarterly Forecasts for New Private Housing

Starts
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Measures of Dispersion for Quarterly Forecasts for New Private Housing Starts

Data source: Survey of Professional Forecasters database provided by Philadelphia FED.

Figure 1.F.2: Measures of Dispersion for Quarterly Forecasts for Gross Domestic Product
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Data source: Survey of Professional Forecasters database provided by Philadelphia FED.

35The choice of initial value of ε̂1|0 is trivial. So I choose the steady state of (z, ξ).
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Figure 1.F.3: Measures of Dispersion for Quarterly Forecasts for Industrial Production
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Data source: Survey of Professional Forecasters database provided by Philadelphia FED.

1.G Other Figures

Figure 1.G.1: Real Case-Shiller National Home Price Index in U.S. (1975 - 2014)
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Real Case-Shiller National Home Price Index. 1975Q1 - 2014Q4. Year-2000 = 100.
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Chapter 2

Productivity, Home Production, and the

New Home Sales Price in the U.S.

2.1 Introduction

In the macroeconomic literature, the private economic activities take place in two sec-

tors, the business sector and the private sector. There is no need to reemphasize the impor-

tance of the business sectors. However, much less effort has gone into modeling the private

sector (i.e. the home production sector), especially in the literature related to housing pro-

duction and the new home sales price.

The home production sector is large. The Michigan Time Use Survey indicates that

a typical marries couple spend 25 percent of their discretionary time on unpaid work in

the home, such as houseworks and child care, compared to 33 percent on paid jobs in the

market.1 The postwar U.S. national income and product accounts indicate that home in-

vestment (purchase of consumer durables and residential structures, e.g. housing) exceeds

1See Hill (1984) and Juster and Stafford (1991).
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market investment (purchase of producer durables and nonresidential structures, e.g. equip-

ment) by about 15 percent. Additionally, Greenwood and Hercowitz (1991) report that the

household capital stock actually exceeds market capital stock, and Benhabib et al. (1991)

estimate that the size of the household sector’s output is almost one half as large as that of

the market output. Further, Benhabib et al. (1990) and Rios-Rull (1993) show the empiri-

cal evidence that individuals employed in the market sector spend much less time working

in the home than unemployed individuals and also that employed individuals with higher

wages substitute out of home and into market production. These findings suggest that not

only is the home sector large, but that there is a significant amount of substitutability be-

tween it and the market, and thus lead us believe that accounting for home production and

its interaction with market production may be important for understanding many macroe-

conomic phenomena.

In terms of literature, Greenwood and Hercowitz (1991) and Benhabib et al. (1991)

show that real business cycle models with explicit household production sectors perform

better than the standard business cycle model along several dimensions, especially in the

aspects of better matching the fluctuations of output, labor hours, consumption and invest-

ment, and the comovements between productivity and output or labor hours observed in the

data. However, to the best of my knowledge, all of the studies regarding home production

only consider one production sector in the market. This paper explores the implications of

introducing the home sector into a two-sector production economy as in Chapter 1 from a

theoretical perspective.

In the standard two-sector economy, the relative productivity changes lead to resource

reallocation and drive the dynamics of the new home sales price. Including home pro-

duction enriches the choice set facing the households: in the standard model, households

can only allocate their time between leisure and work in the market; with home production,
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they can divide their time among leisure, business work, and home work. The investment in

housing goods now becomes the investment in the input of home production. More impor-

tantly, the relative productivity changes also give incentive for the households to substitute

between market-produced goods and home-produced goods, which affects the demand for

the housing goods and in turn influences the resource allocation between the two market

sectors. This substitution effect generates very different responses of the economic vari-

ables to productivity shocks than that in an economy without home production. Compared

with the benchmark model in which there is no home production, variables in the model

with home production have amplified impulse responses to productivity shocks in the non-

housing sector; and they exhibit mitigated impulse responses to productivity shocks in the

housing sector.

The rest of the paper is organized as follows: Section 2 presents the model, Section 3

describes the market equilibrium, Section 4 discusses the quantitative results of the model.

Finally, Section 5 concludes and provides comments.

2.2 Model

I build a dynamic stochastic model to study a perfectly competitive economy, which

consists of a continuum of households that work both in the market and at home, a repre-

sentative firm producing the consumption and investment goods, and a representative firm

that builds new home units for sale. There is no government in this economy.
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2.2.1 Households and Home Production

There are measure one of perpetual and identical households. The household’s prefer-

ence is defined over leisure `t, and the composite of market-produced consumption goods

ct and home-produced consumption goods st:

u(ct, st, `t) = ln (C(ct, st)) + φ ln(`t), (2.2.1)

where the consumption composite takes a CES functional form

C(ct, st) = [µccηt + (1− µc)sηt ]
1
η . (2.2.2)

The elasticity of substitution between market- and home-consumption is 1
1−η . According

to Benhabib et al. (1991), the CES form with η 6= 0 is necessary to assure the substantive

effects from introducing home production. Otherwise, if η = 0 (i.e. Coubb-Douglas func-

tion), the model will generate the same outcome for market quantities as the case without

home production.

The total time endowment for each household is one unit in every period, and it is

distributed among market production Nt, home production Ns,t, and leisure time `t.

Market labor supply is indivisible. The households cannot choose the number of hours

worked; rather, once being employed, they have to work a full amount of time, N̄ . I adopt

the “lottery” fashion over employment and consumption that depicted by Hansen (1985)

and Rogerson (1988). In each time period, the households have a probability of nc,t to

work in the consumption goods sector and a probability of nh,t to work in the housing goods

sector. Thus the probability of being unemployed is 1−nc,t−nh,t. If employed, households

enjoy consumption level cEt ; if not, they consume cUt . There is complete unemployment
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insurance provided by the firms so that every household gets paid whether it works or not.

The households own ht units of housing stock and combine it with home labor Ns,t

(which equals to NE
s,t if employed, or NU

s,t if unemployed) to produce home consumptions

st. The home production function assumes the Cobb-Douglas form:

st = hγtN
1−γ
s,t . (2.2.3)

The productivity in home production is normalized to 1. This assumption is legitimate be-

cause Benhabib et al. (1991) showed that it is the relative productivity variation that matters

for the implications on market variables.

Thus the consumption-leisure choice set only contains three points,

(C(ct, st), `t) =



(C(cEt , sEt ), 1− N̄ −NE
s,t), with prob. nc,t; (employed in C sector)

(C(cEt , sEt ), 1− N̄ −NE
s,t), with prob. nh,t; (employed in H sector)

(C(cUt , sUt ), 1−NU
s,t), with prob. 1− nc,t − nh,t. (unemployed)

and the households’ expected utility in period t is given by

u(ct, st, `t) = (nc,t + nh,t)u(cEt , sEt , 1− N̄ −NE
s,t) + (1− nc,t − nh,t)u(cUt , sUt , 1−NU

s,t)

(2.2.4)

combined with the detailed specifications (2.2.1), (2.2.2), and (2.2.3).

The housing stock is perfectly divisible and can be accumulated overtime through res-

idential investment Ih,t. However, changing housing stock is costly and bears a quadratic

adjustment cost. The housing stock depreciates at a constant rate of δh per period. In addi-

tion, the households own the representative firms and receive all of the profits Πt. There is
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no money in this economy. The price of consumption goods is normalized to 1; the wage

rate is wt per hour; the unit price of new homes is PIh,t; the price paid to housing services

can be measured by the implicit home rent to the owners, Rh,t.2

The households face the following budget constraint in period t:3

(nc,t + nh,t)cEt + (1− nc,t − nh,t)cUt +Rh,tst + PIh,tIh,t

≤ wt(nc,t + nh,t)N̄ +Rh,tht + Πt −
ω

2

(
ht+1 − ht

ht

)2

ht, (2.2.5)

with the law of motion for housing stock accumulation,

ht+1 = (1− δh)ht + Ih,t. (2.2.6)

The households’ problem can be characterized by the following Bellman equation:

V (ht, zt, ξt) = max
cEt ,c

U
t ,N

E
s,t,N

U
s,t,

nc,t,nh,t,ht+1,Ih,t

{
(nc,t + nh,t)u(cEt , sEt , 1− N̄ −NE

s,t)

+ (1− nc,t − nh,t)u(cUt , sUt , 1−NU
s,t) + βEt

[
V (ht+1, zt+1, ξt+1

∣∣∣zt, ξt]
}
,

(2.2.7)

s.t. (nc,t + nh,t)cEt + (1− nc,t − nh,t)cUt +Rh,tst + PIh,tIh,t

≤ wt(nc,t + nh,t)N̄ +Rh,tht + Πt −
ω

2

(
ht+1 − ht

ht

)2

ht, (2.2.8)

ht+1 = (1− δh)ht + Ih,t, (2.2.9)

sit = hγt (N i
s,t)1−γ, i ∈ {E,U} (2.2.10)

2I exempt the discussion of own-or-rent a home in this paper. Every household is a home owner.
3The adjustment cost of housing stock is ascribed to transaction costs like preparing relevant documents,

signing contracts, etc. Thus it is evaluated by units of consumption goods.
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where zt and ξt represent sector-specific total factor productivity (TFP) shocks.

2.2.2 Firms and Production Technologies

The characterizations of representative firms are the same as in Chapter 1. I just briefly

restate the key functions here.

The Consumption Sector

The representative firm in the consumption goods sector produces output Yc,t using a

constant-returns-to-scale technology:

Yc,t = exp(zt)Kα
c,tN

1−α
c,t . (2.2.11)

The output Yc,t is a numeraire good, whose price is normalized to 1. It can be consumed

by households, invested and installed as new capital stock, and utilized to compensate any

costs caused by economic activities.

The Housing Sector

New homes Yh,t are produced in the housing sector using capital Kh,t, labor Nh,t, and

land Lt:

Yh,t = PIh,t exp(ξt)Kθ
h,tN

ν
h,tL

1−θ−ν
t . (2.2.12)

The housing construction also uses land as an input, which has fixed supply of one unit in

every period. New homes produced are sold to the households at price PIh,t per unit.
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Adjustment Costs

I assume quadratic adjustment costs as before. The law of motions for capital inputs

are:

Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t, (2.2.13)

Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t. (2.2.14)

where δkc and δkh stand for capital depreciation rates; κc and κh are the parameters in the

capital adjustment cost functions.

The adjustment costs for altering labor inputs are given by

τ(Nc,t−1, Nc,t) = τc
2

(
Nc,t

N̄
− Nc,t−1

N̄

)2
(2.2.15)

and

τ(Nh,t−1, Nh,t) = τh
2

(
Nh,t

N̄
− Nh,t−1

N̄

)2
, (2.2.16)

where τc and τh are the adjustment cost parameters; Nc,t/N̄ and Nh,t/N̄ are the number of

workers hired in the two sectors.

Sector-Specific TFP Shocks

I model the TFP shocks in the consumption sector and housing sector separately. Both

TFP shocks, zt and ξt follow an mean-zero AR(1) process:

zt+1 = ρzzt + σzεz,t+1, εz,t+1 ∼ i.i.d. N (0, 1); (2.2.17)

ξt+1 = ρξξt + σξεξ,t+1, εξ,t+1 ∼ i.i.d. N (0, 1). (2.2.18)
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I assume that innovations εz,t and εξ,t are uncorrelated for simplicity and tractability con-

cerns. Thus cov(εz,j, εξ,k) = 0,∀j, k.4

Firms’ Optimization Problems

The representative firm in the consumption sector solves the following Bellman equa-

tion:

JC(Kc,t, Nc,t−1, zt, ξt) = max
Kc,t+1,Nc,t,Ikc,t

Yc,t − wtNc,t − Ikc,t −
τc
2

(
Nc,t

N̄
− Nc,t−1

N̄

)2

+ βEt
[
JC(Kc,t+1, Nc,t, zt+1, ξt+1)|zt, ξt

]
, (2.2.19)

s.t. Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t.

(2.2.20)

Similarly, the Bellman equation for the representative firm in the housing sector is

JH(Kh,t, Nh,t−1, zt, ξt) = max
Kh,t+1,Nh,t,Ikh,t

Yh,t − wtNh,t − Ikh,t −
τh
2

(
Nh,t

N̄
− Nh,t−1

N̄

)2

+ βEt
[
JH(Kh,t+1, Nh,t, zt+1, ξt+1)|zt, ξt

]
, (2.2.21)

s.t. Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t.

(2.2.22)

2.3 Equilibrium

There are four markets in the economy: the housing market, the labor market, the

consumption market, and the implicit home rental market.
4This assumption is consistent with the findings in Davis and Heathcote (2005) that productivity shocks

are only weakly correlated across sectors, and in particular shocks to the construction sector are essentially
uncorrelated with those in the non-construction sectors.
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I use the uppercase letters to represent the aggregate counterparts of the individual

variables. Since the households are homogeneous and of measure 1, the aggregate variables

simply equal to the individual variables, e.g. Ht = ht, CE
t = cEt , CU

t = cUt , etc.

Definition 2. A recursive competitive equilibrium for this economy is given by the value

functions of the households and the firms {V, JC , JH}, households’ optimal choices

{cEt , cUt , NE
s,t, N

U
s,t, nc,t, nh,t, ht+1, Ih,t}, firms’ decision rules {Kc,t+1, Kh,t+1, Nc,t, Nh,t, Ikc,t, Ikh,t},

price functions {PIh,t, wt, Rh,t}, and law of motions for housing stock and physical capital

stocks (2.2.6), (2.2.13) (2.2.14), such that:

(1) Given the prices, households’ decision rules derived by solving the problem (2.2.7) -

(2.2.10) maximize the lifetime utility;

(2) Given the prices, firms’ choices solve the profit maximization probelms described in

(2.2.19) - (2.2.20) and (2.2.21) - (2.2.22);

(3) All markets clear;

(i) Housing market clears,

Yh,t = PIh,tIh,t, (2.3.1)

(ii) Labor market clears,

Nc,t = nc,tN̄ , Nh,t = nh,tN̄ , (2.3.2)

(iii) Implicit home rental market clears,

ht = Ht, (2.3.3)
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(iv) Consumption market clears,

(nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t + Ikc,t + Ikh,t

= Yc,t −
ω

2

(
Ht+1 −Ht

Ht

)2
Ht −

τc
2

(
Nc,t

N̄
− Nc,t−1

N̄

)2
− τh

2

(
Nh,t

N̄
− Nh,t−1

N̄

)2

(2.3.4)

(4) Law of motions for the stock variables hold.

Ht+1 = (1− δh)Ht + Ih,t, (2.3.5)

Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1 −Kc,t

Kc,t

)2

Kc,t, (2.3.6)

Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1 −Kh,t

Kh,t

)2

Kh,t. (2.3.7)

2.4 Quantitative Analysis

2.4.1 Solution Method and Computation Algorithm

The economy is under perfect competition with complete markets and perfect informa-

tion. According to the First Fundamental Theorem of Welfare Economics, the decentral-

ized market equilibrium is equivalent to the Pareto optimum of the corresponding social

planner’s problem. I derive the optimality conditions characterizing the decision rules and

the steady states in Appendix 2.A and 2.B. The benchmark model is the situation with-

out home production, which can be regarded as a special case that γ = 1 in the home

production function and that NE
s,t = NU

s,t = 0.

The computation method is the same as that described in Section 1.4.2 in Chapter 1.
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I adopt the Linear Exponential Quadratic Gaussian (LEQG) control method proposed in

Hansen and Sargent (1995) and Hansen and Sargent (2007). This method requires taking a

second-order Taylor expansion of the objective function and linearizing the state transition

laws with respect to all of the state and control variables. The LEQG control problem can

be solved analytically by iterating on a Riccati equation. This procedure is computationally

efficient.

2.4.2 Calibration

The parameters to be calibrated in this model are β, φ, µc, η, γ, N̄ , α, θ, ν, δkc, δkh, δh,

κc, κh, ω, τc, τh, ρz, ρξ, σz and σξ. I divide these 21 parameters into 3 groups and calibrate

their values separately. The first group of parameters, {β, φ, µc, η, γ, N̄ , α, θ, ν, δkc, δkh, δh},

relates to preferences and production technologies; these parameters only depends on the

long-run relationships among the macroeconomic variables and I calibrate their values by

matching the first moments of model and data in the steady state. The second group of

parameters, {ρz, ρξ, σz, σξ}, are pined down by the autocorrelation and volatility statistics

computed from the TFP shock series directly. The third group of parameters, {κc, κh, ω, τc, τh},

governs the adjustment costs of factor inputs in the consumption sector and housing sector;

I set their values to match the volatilities of the related variables.

I use quarterly U.S. data from 1973Q1 to 2014Q4. The measurements of key macroeco-

nomic variables are constructed using data sets from Bureau of Economic Analysis (BEA)

and Federal Reserve Economic Data (FRED).5. The key variable measurements are sum-

marized in Table 1.1, Table 1.2, and Table 1.3. Nominal quantities and prices are deflated

by the Consumer Price Index. I use the Civilian Noninstitutional Population to convert the

5I show the detailed data source for each variable in Appendix 1.D
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quantities to per-capita terms. I then take the natural logarithm of the data series and use the

Hodrick-Prescott (HP) filter to extract the trend components from the series at the quarterly

frequency.

First, I use the data measurements to compute the ratios among several variables in

long-run equilibrium. I matched the same first moment targets as reported in Table 1.4 to

calibrate the parameters {β, φ, µc, N̄ , α, θ, ν, δkc, δkh, δh}. The additional parameter γ in the

home production function is calibrated the time allocation between market jobs and work-

ing at home. According to the data from the Michigan Time Use Survey, it indicate that an

average household spends 33 percent of time working for the paid jobs in the market and

28 percent working in the home. I calibrate the parameter γ = 0.4 in the home production

function to match this fact. As for the parameter η, which relates to the elasticity of sub-

stitution between market-produced consumption goods and home-produced consumption

goods,6 is set to 0.8. This follows the guidelines suggested in Benhabib et al. (1991).7

The calibrated parameter values are listed in Table 2.4.1. These parameter values stand

in line with macro-housing literature.

6The elasticity of substitution is 1
1−η , based on the CES form of the consumption composite function.

7In Benhabib et al. (1991), they discussed two sources for this parameter value: one is based on
Eichenbaum and Hansen (1990), using aggregate data to estimate a model in which individuals value both
the services of market consumption goods and the flow of services from consumer durables such as the
output of a home production, and set η = 1; the other method is to estimate a reduced-form regression de-
picted in Benhabib et al. (1991) using the pooled data from the Panel Study of Income Dynamics described
in Rios-Rull (1993), which derives a value of η = 0.6. In the paper Benhabib et al. (1991), they suggest use
η = 0.8, the mean value of the two estimates obtained from the macro-data based model and the micro-data
based model.
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Table 2.4.1: Parameter Values Determined by Matching First Moments

Parameter Interpretation Estimated Value

β discount factor β = 0.987

φ weight of leisure in utility φ = 1.5

µc weight of market consumption goods in consumption composite µc = 0.6231

η elasticity between market consumption and home consumption η = 0.8

γ housing stock share in home production γ = 0.4

N̄ fixed labor input if employed N̄ = 0.318

α capital share in consumption sector α = 0.433

θ capital share in housing sector θ = 0.063

ν labor share in housing sector ν = 0.637

δk depreciation rate of physical capital stock δk = 0.0284

δh depreciation rate of housing stock δh = 0.0151

The parameters that govern the TFP shocks are estimated based on the calculation of

Solow residuals based on the Cobb-Douglas production functions and some of the param-

eter values in the first group. The estimated parameter values are the same as reported in

Table 1.6.

Finally, I choose the values for the third set of parameters {κc, κh, τc, τh, ω} by match-

ing the second moments of data. I use the relative volatilities of housing stock and capital

and labor inputs in two sectors to exactly identify the five parameters and get κc = 0.2368,

κh = 2.16, ω = 2.2343, τc = 2.591, τh = 10.115.
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2.4.3 Impulse Response Functions

In order to understand the model mechanism, I study the effects of the two TFP shocks

on the key model variables separately.

Figure 2.1, Figure 2.2 and Figure 2.3 show the impulse responses of resource allocation,

output, consumption, labor choice, investment, new home sales price, and home rents to a

one-standard-deviation increment in the TFP shock zt in the non-housing production sector.

Each figure plots the impulse responses of a specific variable under two cases: with home

production and without the home production (the benchmark model).

Figure 2.1: IRF of {Kc, Nc, Yc, Kh, Nh, Ih} to a Positive Shock of zt
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Note: zt increases by one standard deviation; no change in ξt.

As shown in Figure 2.1, an increase in productivity in the consumption goods sector

attracts more capital and labor inputs thus leads to greater output of consumption (or/and
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investment) goods. Capital input in the housing sector also accumulates because of more

investment goods produced and hence more new capital installed in both sectors. Labor

input in the housing sector jump down initially, as the marginal return of labor is lower

than that in the consumption sector due to the productivity change. However, it increases

later to catch up with the higher level of capital input.

With home production, these impulse responses exhibit similar patterns but with very

different magnitudes. When there is a productivity increase in the consumption goods sec-

tor, it is relatively more efficient to work in the market and it gives incentive to the house-

holds for substituting market-produced consumption goods for home-produced consump-

tion goods. As a result, capital input, labor input and output all increase in the consumption

goods market. On the other hand, since the demand for home-produced consumption is

lower, the incentive to work in the housing sector and produce housing goods (which is an

input for home-produced consumption) is also lower, which leads to less capital and labor

input and lower output in the housing sector. It is intriguing to notice that this substitu-

tion effect between market-produced and home-produced goods, due to the existence of

home production, affects the resource allocations as if the relative productivity change in

the consumption goods sector to the housing sector were amplified.
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Figure 2.2: IRF of {C, Ik, H,N,Ns} to a Positive Shock of zt
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Note: zt increases by one standard deviation; no change in ξt.

Additionally, as shown in Figure 2.2, with a positive productivity shock in the con-

sumption sector, households work more hours and consume more at first. But then house-

holds choose to work less and enjoy more leisure due to the wealth effect. There is a

higher investment in the physical capital and the total housing stock also increases. In the

case with home production, as discussed above, the households intend to consume more

market-produced consumption goods and produce less housing goods. Investment in phys-

ical capital is also higher as total non-housing output increases. Total hours worked in the

market rises and home working time declines.
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Figure 2.3: IRF of {PIh, Rh} to a Positive Shock of zt
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Note: zt increases by one standard deviation; no change in ξt.

As derived in Appendix 2.B.4, the pricing function of new home units and implied

home rents are

PIh,t =
exp(zt)(1− α)Kα

c,t(nc,tN̄)−α

exp(ξt)νKθ
h,t(nh,tN̄)ν−1

. (2.4.1)

and

Rh,t =
φγ

(1−γ)Ht

[
(nc,t + nh,t)

NE
s,t

1−N̄−NE
s,t

+ (1− nc,t − nh,t)
NU
s,t

1−NU
s,t

]
µc(CEt )η−1

µc(CEt )η+(1−µc)Hγη
t (NE

s,t)(1−γ)η

. (2.4.2)

The dynamic response of the new home sales price is driven by two forces: (1) the

relative productivity between the consumption goods sector and the housing sector; (2)

the marginal products of capital and labor implied by the resource allocation. The home

rent, Rh, is determined by the ratio of marginal utility gained from housing services to the

market consumption goods. Figure 2.3 shows the effects of a positive shock in TFP z on
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the new home sales price and home rents. When home production is in place, the same

positive productivity shock in the consumption sector generate smaller increment in the

new home sales price compared with the case without home production. This is consistent

with the fact that the substitution incentive towards more market-produced consumption

goods suppresses the demand for housing goods. Due to the similar reason, home rent also

has dampened response to the positive productivity shock.

Figure 2.4, Figure 2.5 and Figure 2.6 show the impulse responses of the variables of

interest to a one-standard-deviation increment in the TFP shock ξt in the housing sector.

Figure 2.4: IRF of {Kc, Nc, Yc, Kh, Nh, Ih} to a Positive Shock of ξt
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Note: ξt increases by one standard deviation; no change in zt.

In Figure 2.4, we can see that both capital and labor inputs increase in the housing

sector to take the advantage of higher efficiency of new home production. On the contrary,

there are less capital and labor inputs in the consumption/investment goods production.
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Capital input in the housing sector later falls below the level of its starting point because of

insufficient investment in physical capital, Ik. This positive productivity shock leads to a

higher output of new housing units and a lower output of consumption/investment goods.

In the case with home production, higher output of new housing units needs more home

working hours to pair with this increment of asset to produce home goods. Consequently,

total market labor input declines, which leads to decreases in the factor inputs both market

sectors. In this case, as opposed to the case with positive TFP shock in the consumption

sector, the home production mechanism affects the resource allocations as if the relative

productivity change in the housing goods sector to the consumption goods sector were

tempered.

Figure 2.5: IRF of {C, Ik, H,N,Ns} to a Positive Shock of ξt
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Note: ξt increases by one standard deviation; no change in zt.

Additionally, as shown in Figure 2.5, with a positive productivity shock in the housing
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sector, both consumption and investment in physical capital decrease because of lower

output Yc. Total labor input in the market increases because higher productivity leads to

higher labor input in the housing sector. Housing stock also accumulates. When there is

opportunity to produce home goods, higher housing stock means higher marginal product

of one unit of housing in the home goods production. Thus the households would work

more at home and reduce working hours in the market sectors. As a result, the market

produces less consumption/investment goods and less new home units as well.

Figure 2.6: IRF of {PIh, Rh} to a Positive Shock of ξt
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Note: ξt increases by one standard deviation; no change in zt.

Finally, Figure 2.6 shows the effects of a positive shock in the housing sector on the

new home sales price and home rents. On the one hand, abundant supply of new home

units lowers the sales price, which also lowers the home rent; on the other hand, the need

for home production increases the demand for housing stock, so we can see that the neg-



111

ative effects on the new home sales price and home rent diminish in the case with home

production.

2.5 Conclusion

Home production is not new to the macroeconomic literature. A number of existing

papers studies the interaction between home production and market production and show

their success in accounting for business cycle phenomena such as volatilities and correla-

tions of key economic variables. But very few dedicated in investigating the relationship

between home production and the housing market, as the housing sector has not been ex-

plicitly modeled in the home production literature. This paper studies the implications of

introducing home production into an otherwise standard two-sector production economy

from the theoretical perspective.

I solve the model using the methodology proposed by Hansen and Sargent (1995). The

discounted Linear Exponential Quadratic Gaussian control method effectively avoids com-

putational difficulties such as high-dimensional state space, explosive value function, etc..

Then I calibrate the parameters in the benchmark model (without home production) by the

simulated method of moments.

While the benchmark model shows reasonable impulse responses of the key economic

variables to different productivity shocks in the two market production sectors, the exis-

tence of home production highlights more interesting mechanisms due to the substitution

incentive between market-produced and home-produced goods. When there is a positive

productivity shock in the nonhousing goods production sector, households are inclined to

substitute market consumption for home consumption as it is relatively more efficient to

work in the market. As a result, resources flow to the two market sectors as if the relative
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productivity change in the nonhousing sector to the housing sector were amplified. In the

case with a positive productivity shock in the housing sector, although it is more efficient

to produce housing goods, the increment of housing stock requires more home hours to

pair with it in home production. Thus the effects on resource allocations in the market sec-

tors driven by this relative productivity change are tempered. This substitution mechanism

can help improve the two-sector model’s performance in fitting of the correlations between

factor inputs that observed in the data.
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Appendix

2.A Solve the Benchmark Model: No Home Production

2.A.1 Planner’s Problem

The social planner maximizes households’ lifetime utility subject to the resources con-

straints for production.

The utility function of all households aggregates the utility of the employed and unem-

ployed individuals,

U(Ct, Ht, Nt) = (nc,t + nh,t)u(CE
t , Ht, N

E
t ) + (1− nc,t − nh,t)u(CU

t , Ht, N
U
t ), (2.A.1)

in which the momentary utility function has the following form

u(Ci
t , Ht, N

i
t ) = 1

η
ln
[
µc(Ci

t)η + (1− µc)Hη
t

]
+ φ ln(1−N i

t −N i
s,t), i ∈ {E,U}.

(2.A.2)
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According to the model assumptions, we have

N i
t =


N̄ , i = E,

0, i = U.

(2.A.3)

Therefore,

U(Ct, Ht, Nt) = (nc,t + nh,t)u(CE
t , Ht, N̄) + (1− nc,t − nh,t)u(CU

t , Ht, 0)

= (nc,t + nh,t)
1
η

ln
[
µc(CE

t )η + (1− µc)Hη
t

]
+ (nc,t + nh,t)φ ln(1− N̄)

+ (1− nc,t − nh,t)
1
η

ln
[
µc(CU

t )η + (1− µc)Hη
t

]
. (2.A.4)
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The Bellman equation of the planner’s optimization problem can be written as follows:

V (zt, ξt, Kc,t, Kh,t, Ht, nc,t−1, nh,t−1)

= max
Kc,t+1,Kh,t+1,Ht+1,nc,t,nh,t,

CEt ,C
U
t ,Ikc,t,Ikh,t,Ih,t

{
(nc,t + nh,t)u(CE

t , Ht, N̄) + (1− nc,t − nh,t)u(CU
t , Ht, 0)

+ βEt
[
V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t)

∣∣∣zt, ξt] }, (2.A.5)

s.t. (nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t + Ikc,t + Ikh,t

≤ Yc,t −
ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2 , (2.A.6)

Ih,t ≤ Yh,t, (2.A.7)

Ht+1 = (1− δh)Ht + Ih,t, (2.A.8)

Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t, (2.A.9)

Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t, (2.A.10)

Yc,t = exp(zt)Kα
c,t(nc,tN̄)1−α, (2.A.11)

Yh,t = exp(ξt)Kθ
h,t(nh,tN̄)νL1−θ−ν

t , (2.A.12)

Lt = 1, ∀t. (2.A.13)
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Simplify the constraints and construct the Lagrangian:

L = (nc,t + nh,t)
1
η

ln
[
µc(CE

t )η + (1− µc)Hη
t

]
+ (nc,t + nh,t)φ ln(1− N̄)

+ (1− nc,t − nh,t)
1
η

ln
[
µc(CU

t )η + (1− µc)Hη
t

]
+ βEt

[
V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t)

∣∣∣zt, ξt]
+ λ1,t

[
exp(zt)Kα

c,t(nc,tN̄)1−α − (nc,t + nh,t)CE
t − (1− nc,t − nh,t)CU

t

− Kc,t+1 + (1− δkc)Kc,t −Kh,t+1 + (1− δkh)Kh,t −
κc
2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t

− κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t −
ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2

− τh
2 (nh,t − nh,t−1)2

]
+ λ2,t

[
exp(ξt)Kθ

h,t(nh,tN̄)ν −Ht+1 + (1− δh)Ht

]
. (2.A.14)

2.A.2 Optimality Conditions

To simplify notations, I denote V (t) ≡ V (zt, ξt, Kc,t, Kh,t, Ht, nc,t−1, nh,t−1).

Take the first order conditions with respect to the choice variables:

Kc,t+1 : βEt [V ′Kc(t+ 1)] =λ1,t

[
1 + κc

(
Kc,t+1

Kc,t

− 1
)]

, (2.A.15)

Kh,t+1 : βEt [V ′Kh(t+ 1)] =λ1,t

[
1 + κh

(
Kh,t+1

Kh,t

− 1
)]

, (2.A.16)

Ht+1 : βEt [V ′H(t+ 1)] =λ1,t ω
(
Ht+1

Ht

− 1
)

+ λ2,t, (2.A.17)

nc,t : βEt [V ′nc(t+ 1)] =1
η

ln
[
µc(CU

t )η + (1− µc)Hη
t

µc(CE
t )η + (1− µc)Hη

t

]
− φ ln(1− N̄)

+λ1,t

[
CE
t − CU

t + τc(nc,t − nc,t−1)

− exp(zt)(1− α)Kα
c,t(nc,tN̄)−αN̄

]
, (2.A.18)
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nh,t : βEt [V ′nh(t+ 1)] =1
η

ln
[
µc(CU

t )η + (1− µc)Hη
t

µc(CE
t )η + (1− µc)Hη

t

]
− φ ln(1− N̄)

+λ1,t
[
CE
t − CU

t + τh(nh,t − nh,t−1)
]

− λ2,t exp(ξt)νKθ
h,t(nh,tN̄)ν−1N̄ , (2.A.19)

CE
t : µc(CE

t )η−1

µc(CE
t )η + (1− µc)Hη

t

=λ1,t, (2.A.20)

CU
t : µc(CU

t )η−1

µc(CU
t )η + (1− µc)Hη

t

=λ1,t, (2.A.21)

λ1,t : (nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t +Kc,t+1 − (1− δkc)Kc,t +Kh,t+1 − (1− δkh)Kh,t

= exp(zt)Kα
c,t(nc,tN̄)1−α − κc

2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t −
κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t

− ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2, (2.A.22)

λ2,t : Ht+1 − (1− δh)Ht = exp(ξt)Kθ
h,t(nh,tN̄)ν . (2.A.23)

Applying the Envelope theorem to the value function yields

V ′Kc(t) = λ1,t

1− δkc + κc
2

(Kc,t+1

Kc,t

)2

− 1
+ exp(zt)αKα−1

c,t (nc,tN̄)1−α

 ,
(2.A.24)

V ′Kh(t) = λ1,t

1− δkh + κh
2

(Kh,t+1

Kh,t

)2

− 1
+ λ2,t exp(ξt)θKθ−1

h,t (nh,tN̄)ν ,

(2.A.25)
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V ′H(t) = (nc,t + nh,t)(1− µc)Hη−1
t

µc(CE
t )η + (1− µc)Hη

t

+ (1− nc,t − nh,t)(1− µc)Hη−1
t

µc(CU
t )η + (1− µc)Hη

t

+ λ1,t
ω

2

((
Ht+1

Ht

)2
− 1

)
+ λ2,t(1− δh), (2.A.26)

V ′nc(t) = λ1,tτc(nc,t − nc,t−1), (2.A.27)

V ′nh(t) = λ1,tτh(nh,t − nh,t−1). (2.A.28)

Combining the first order conditions (2.A.15) - (2.A.23) and the Envelope theorem

conditions (2.A.24) - (2.A.28), I construct the following conditions to solve for optimal

decision rules.

λ1,t

[
1 + κc

(
Kc,t+1

Kc,t

− 1
)]

= βEt

λ1,t+1

(
(1− δkc) + κc

2

((
Kc,t+2

Kc,t+1

)2
− 1

)

+ exp(zt+1)αKα−1
c,t+1(nc,t+1N̄)1−α

), (2.A.29)

λ1,t

[
1 + κh

(
Kh,t+1

Kh,t

− 1
)]

= βEt

λ1,t+1

(1− δkh) + κh
2

(Kh,t+2

Kh,t+1

)2

− 1


+ λ2,t+1 exp(ξt+1)θKθ−1
h,t+1(nh,t+1N̄)ν

, (2.A.30)

λ1,tω
(
Ht+1

Ht

− 1
)

+ λ2,t

= βEt

(nc,t+1 + nh,t+1)(1− µc)Hη−1
t+1

µc(CE
t+1)η + (1− µc)Hη

t+1
+ (1− nc,t+1 − nh,t+1)(1− µc)Hη−1

t+1
µc(CU

t+1)η + (1− µc)Hη
t+1

+ λ1,t+1
ω

2

(Ht+2

Ht+1

)2

− 1
+ λ2,t+1(1− δh)

, (2.A.31)
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βEt [λ1,t+1τc(nc,t+1 − nc,t)] = 1
η

ln
[
µc(CU

t )η + (1− µc)Hη
t

µc(CE
t )η + (1− µc)Hη

t

]
− φ ln(1− N̄)

+ λ1,t
[
CE
t − CU

t + τc(nc,t − nc,t−1)− exp(zt)(1− α)Kα
c,t(nc,tN̄)−αN̄

]
,

(2.A.32)

βEt [λ1,t+1 τh(nh,t+1 − nh,t)] = 1
η

ln
[
µc(CU

t )η + (1− µc)Hη
t

µc(CE
t )η + (1− µc)Hη

t

]
− φ ln(1− N̄)

+ λ1,t
[
CE
t − CU

t + τh(nh,t − nh,t−1)
]
− λ2,t exp(ξt)νKθ

h,t(nh,tN̄)ν−1N̄ ,

(2.A.33)

λ1,t = µc(CE
t )η−1

µc(CE
t )η + (1− µc)Hη

t

, (2.A.34)

λ1,t = µc(CU
t )η−1

µc(CU
t )η + (1− µc)Hη

t

, (2.A.35)

(nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t +Kc,t+1 − (1− δkc)Kc,t +Kh,t+1 − (1− δkh)Kh,t

= exp(zt)Kα
c,t(nc,tN̄)1−α − κc

2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t −
κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t

− ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2, (2.A.36)

Ht+1 − (1− δh)Ht = exp(ξt)Kθ
h,t(nh,tN̄)ν . (2.A.37)

These optimality conditions characterize the equilibrium in the economy.

2.A.3 Steady State

In steady state, all variables do not evolve over time. In addition, the stochastic shock

variables are in their mean values, zt = zt+1 = 0, ξt = ξt+1 = 0. Therefore the optimal

conditions (2.A.29) - (2.A.37) can be simplified to the following equation system:
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1 = β
[
αKα−1

c (ncN̄)1−α + 1− δkc
]
, (2.A.38)

λ1 = β
[
λ1(1− δkh) + λ2θK

θ−1
h (nhN̄)ν

]
, (2.A.39)

λ2 = β

[
(nc + nh)(1− µc)Hη−1

µc(CE)η + (1− µc)Hη
+ (1− nc − nh)(1− µc)Hη−1

µc(CU)η + (1− µc)Hη
+ λ2(1− δh)

]

λ1
[
(1− α)Kα

c (ncN̄)−αN̄ − CE + CU
]

= 1
η

ln
[
µc(CU)η + (1− µc)Hη

µc(CE)η + (1− µc)Hη

]
− φ ln(1− N̄),

(2.A.40)

λ2νK
θ
h(nhN̄)ν−1N̄ − λ1(CE − CU) = 1

η
ln
[
µc(CU)η + (1− µc)Hη

µc(CE)η + (1− µc)Hη

]
− φ ln(1− N̄),

(2.A.41)

λ1 = µc(CE)η−1

µc(CE)η + (1− µc)Hη
, (2.A.42)

λ1 = µc(CU)η−1

µc(CU)η + (1− µc)Hη
, (2.A.43)

(nc + nh)CE + (1− nc − nh)CU + δkcKc + δkhKh = Kα
c (ncN̄)1−α (2.A.44)

δhH = Kθ
h(nhN̄)ν . (2.A.45)

2.A.4 Price Functions

Although prices do not exist in a centralized economy, we can back up the prices from

the competitive equilibrium of the corresponding decentralized economy.

The optimal resource allocation equalizes the marginal product of labor (or capital)

across the two sectors. Based on this relationship, the new home sales price must satisfy

the following condition:

PIh,t =
exp(zt)(1− α)Kα

c,t(nc,tN̄)−α

exp(ξt)νKθ
h,t(nh,tN̄)ν−1

. (2.A.46)
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The home rents must solve the following optimal consumption choice problem in the

decentralized economy:

max
CEt ,C

U
t ,Ht

(nc,t + nh,t)
1
η

ln
[
µc(CE

t )η + (1− µc)Hη
t

]
+ (nc,t + nh,t)φ ln(1− N̄)

+ (1− nc,t − nh,t)
1
η

ln
[
µc(CU

t )η + (1− µc)Hη
t

]

+ βEt
[
V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t)

∣∣∣zt, ξt]
 (2.A.47)

s.t. (nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t +Rh,tHt ≤ (nc,t + nh,t)wt + Non-Labor Income.

(2.A.48)

The first-order conditions with respect to CE
t , CU

t , and Ht are:

CE
t : µc(CE

t )η−1

µc(CE
t )η + (1− µc)Hη

t

= λt, (2.A.49)

CU
t : µc(CU

t )η−1

µc(CU
t )η + (1− µc)Hη

t

= λt, (2.A.50)

Ht : (nc,t + nh,t)(1− µc)Hη−1
t

µc(CE
t )η + (1− µc)Hη

t

+ (1− nc,t − nh,t)(1− µc)Hη−1
t

µc(CU
t )η + (1− µc)Hη

t

= λtRh,t. (2.A.51)

It’s easy to derive that

Rh,t =
(nc,t + nh,t) + (1− nc,t − nh,t)

(
CE
t

CU
t

)η−1
(1− µc

µc

)(
Ht

CE
t

)η−1

. (2.A.52)
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2.B Solve the Model with Home Production

2.B.1 Planner’s Problem

The utility function of all households aggregates the utility of the employed and unem-

ployed individuals. With home production,

U(Ct, St, Nt, Ns,t) = (nc,t+nh,t)u(CE
t , S

E
t , N

E
t , N

E
s,t)+(1−nc,t−nh,t)u(CU

t , S
U
t , N

U
t , N

U
s,t).

(2.B.1)

in which the momentary utility function has the following form

u(Ci
t , S

i
t , N

i
t , N

i
s,t) = 1

η
ln
[
µc(Ci

t)η + (1− µc)(Sit)η
]
+φ ln(1−N i

t −N i
s,t), i ∈ {E,U},

(2.B.2)

and the market labor is indivisible in that

N i
t =


N̄ , i = E,

0, i = U.

(2.B.3)

The home production assumes the Cobb-Douglas form,

Sit = Hγ
t (N i

s,t)1−γ, i ∈ {E,U}. (2.B.4)
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Therefore I can write the social planner’s utility function as

U(Ct, St, Nt, Ns,t)

= (nc,t + nh,t)u(CE
t , H

γ
t (NE

s,t)1−γ, N̄ , NE
s,t) + (1− nc,t − nh,t)u(CU

t , H
γ
t (NU

s,t)1−γ, 0, NU
s,t)

= (nc,t + nh,t)
1
η

ln
[
µc(CE

t )η + (1− µc)(Hγ
t (NE

s,t)1−γ)η
]

+ (nc,t + nh,t)φ ln(1− N̄ −NE
s,t)

+ (1− nc,t − nh,t)
1
η

ln
[
µc(CU

t )η + (1− µc)(Hγ
t (NU

s,t)1−γ)η
]

+ (1− nc,t − nh,t)φ ln(1−NU
s,t).

(2.B.5)

The social planner maximizes households’ lifetime utility subject to the resources con-

straints for production.
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V (zt, ξt, Kc,t, Kh,t, Ht, nc,t−1, nh,t−1)

= max
Kc,t+1,Kh,t+1,Ht+1,nc,t,nh,t,

CEt ,C
U
t ,Ikc,t,Ikh,t,Ih,t,N

E
s,t,N

U
s,t

{
(nc,t + nh,t)u(CE

t , H
γ
t (NE

s,t)1−γ, N̄ , NE
s,t)

+ (1− nc,t − nh,t)u(CU
t , H

γ
t (NU

s,t)1−γ, 0, NU
s,t)

+ βEt
[
V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t)

∣∣∣zt, ξt] }, (2.B.6)

s.t. (nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t + Ikc,t + Ikh,t

≤ Yc,t −
ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2 , (2.B.7)

Ih,t ≤ Yh,t, (2.B.8)

Ht+1 = (1− δh)Ht + Ih,t, (2.B.9)

Kc,t+1 = (1− δkc)Kc,t + Ikc,t −
κc
2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t, (2.B.10)

Kh,t+1 = (1− δkh)Kh,t + Ikh,t −
κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t, (2.B.11)

Yc,t = exp(zt)Kα
c,t(nc,tN̄)1−α, (2.B.12)

Yh,t = exp(ξt)Kθ
h,t(nh,tN̄)νL1−θ−ν

t , (2.B.13)

Lt = 1, ∀t. (2.B.14)
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Simplify the constraints and construct the Lagrangian:

L = (nc,t + nh,t)
1
η

ln
[
µc(CE

t )η + (1− µc)(Hγ(NE
s,t)1−γ)η

]
+ (nc,t + nh,t)φ ln(1− N̄ −NE

s,t)

+ (1− nc,t − nh,t)
1
η

ln
[
µc(CU

t )η + (1− µc)(Hγ(NU
s,t)1−γ)η

]
+ (1− nc,t − nh,t)φ ln(1−NU

s,t)

+ βEt
[
V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t)

∣∣∣zt, ξt]
+ λ1,t

[
exp(zt)Kα

c,t(nc,tN̄)1−α − (nc,t + nh,t)CE
t − (1− nc,t − nh,t)CU

t

− Kc,t+1 + (1− δkc)Kc,t −Kh,t+1 + (1− δkh)Kh,t −
κc
2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t

− κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t −
ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2

− τh
2 (nh,t − nh,t−1)2

]
+ λ2,t

[
exp(ξt)Kθ

h,t(nh,tN̄)ν −Ht+1 + (1− δh)Ht

]
. (2.B.15)

2.B.2 Optimality Conditions

I denote V (t) ≡ V (zt, ξt, Kc,t, Kh,t, Ht, nc,t−1, nh,t−1) as before.

The first-order conditions with respect to the choice variables are:

Kc,t+1 : βEt [V ′Kc(t+ 1)] = λ1,t

[
1 + κc

(
Kc,t+1

Kc,t

− 1
)]

, (2.B.16)

Kh,t+1 : βEt [V ′Kh(t+ 1)] = λ1,t

[
1 + κh

(
Kh,t+1

Kh,t

− 1
)]

, (2.B.17)

Ht+1 : βEt [V ′H(t+ 1)] = λ1,t ω
(
Ht+1

Ht

− 1
)

+ λ2,t, (2.B.18)

nc,t : βEt [V ′nc(t+ 1)] = 1
η

ln
[
µc(CU

t )η + (1− µc)Hγη
t (NU

s,t)(1−γ)η

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η

]
+ φ ln

(
1−NU

s,t

1− N̄ −NE
s,t

)

+λ1,t
[
CE
t − CU

t + τc(nc,t − nc,t−1)− exp(zt)(1− α)Kα
c,t(nc,tN̄)−αN̄

]
, (2.B.19)
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nh,t : βEt [V ′nh(t+ 1)] = 1
η

ln
[
µc(CU

t )η + (1− µc)Hγη
t (NU

s,t)(1−γ)η

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η

]
+ φ ln

(
1−NU

s,t

1− N̄ −NE
s,t

)

+λ1,t
[
CE
t − CU

t + τh(nh,t − nh,t−1)
]
− λ2,t exp(ξt)νKθ

h,t(nh,tN̄)ν−1N̄ , (2.B.20)

CE
t : µc(CE

t )η−1

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η = λ1,t, (2.B.21)

CU
t : µc(CU

t )η−1

µc(CU
t )η + (1− µc)Hγη

t (NU
s,t)(1−γ)η = λ1,t, (2.B.22)

NE
s,t :

(1− µc)(1− γ)Hγη
t (NE

s,t)(1−γ)η−1

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η = φ

1− N̄ −NE
s,t

, (2.B.23)

NU
s,t :

(1− µc)(1− γ)Hγη
t (NU

s,t)(1−γ)η−1

µc(CU
t )η + (1− µc)Hγη

t (NU
s,t)(1−γ)η = φ

1−NU
s,t

, (2.B.24)

λ1,t : (nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t +Kc,t+1 − (1− δkc)Kc,t +Kh,t+1 − (1− δkh)Kh,t

= exp(zt)Kα
c,t(nc,tN̄)1−α − κc

2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t −
κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t

− ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2, (2.B.25)

λ2,t : Ht+1 − (1− δh)Ht = exp(ξt)Kθ
h,t(nh,tN̄)ν . (2.B.26)

Applying the Envelope theorem to the value function yields

V ′Kc(t) = λ1,t

1− δkc + κc
2

(Kc,t+1

Kc,t

)2

− 1
+ exp(zt)αKα−1

c,t (nc,tN̄)1−α

 ,
(2.B.27)

V ′Kh(t) = λ1,t

1− δkh + κh
2

(Kh,t+1

Kh,t

)2

− 1
+ λ2,t exp(ξt)θKθ−1

h,t (nh,tN̄)ν ,

(2.B.28)
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V ′H(t) =
(nc,t + nh,t)(1− µc)γHγη−1

t (NE
s,t)(1−γ)η

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η

+
(1− nc,t − nh,t)(1− µc)γHγη−1

t (NU
s,t)(1−γ)η

µc(CU
t )η + (1− µc)Hγη

t (NU
s,t)(1−γ)η

+ λ1,t
ω

2

((
Ht+1

Ht

)2
− 1

)
+ λ2,t(1− δh), (2.B.29)

V ′nc(t) = λ1,t τc(nc,t − nc,t−1), (2.B.30)

V ′nh(t) = λ1,t τh(nh,t − nh,t−1). (2.B.31)

Combining the first order conditions (2.B.16) - (2.B.26) and the Envelope theorem con-

ditions (2.B.27) - (2.B.31), we obtain the following conditions from which the optimal

decision rules can be solved.

λ1,t

[
1 + κc

(
Kc,t+1

Kc,t

− 1
)]

= βEt

λ1,t+1

(
(1− δkc) + κc

2

((
Kc,t+2

Kc,t+1

)2
− 1

)

+ exp(zt+1)αKα−1
c,t+1(nc,t+1N̄)1−α

), (2.B.32)

λ1,t

[
1 + κh

(
Kh,t+1

Kh,t

− 1
)]

= βEt

λ1,t+1

(
(1− δkh) + κh

2

((
Kh,t+2

Kh,t+1

)2
− 1

))

+ λ2,t+1 exp(ξt+1)θKθ−1
h,t+1(nh,t+1N̄)ν

, (2.B.33)
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λ1,tω
(
Ht+1

Ht

− 1
)

+ λ2,t

= βEt

(nc,t+1 + nh,t+1)(1− µc)γHγη−1
t+1 (NE

s,t+1)(1−γ)η

µc(CE
t+1)η + (1− µc)Hγη

t+1(NE
s,t+1)(1−γ)η

+
(1− nc,t+1 − nh,t+1)(1− µc)γHγη−1

t+1 (NU
s,t+1)(1−γ)η

µc(CU
t+1)η + (1− µc)Hγη

t+1(NU
s,t+1)(1−γ)η

+ λ1,t+1
ω

2

(Ht+2

Ht+1

)2

− 1
+ λ2,t+1(1− δh)

, (2.B.34)

βEt [λ1,t+1τc(nc,t+1 − nc,t)]

= 1
η

ln
[
µc(CU

t )η + (1− µc)Hγη
t (NU

s,t)(1−γ)η

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η

]
+ φ ln

(
1−NU

s,t

1− N̄ −NE
s,t

)

+ λ1,t
[
CE
t − CU

t + τc(nc,t − nc,t−1)− exp(zt)(1− α)Kα
c,t(nc,tN̄)−αN̄

]
, (2.B.35)

βEt [λ1,t+1 τh(nh,t+1 − nh,t)]

= 1
η

ln
[
µc(CU

t )η + (1− µc)Hγη
t (NU

s,t)(1−γ)η

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η

]
+ φ ln

(
1−NU

s,t

1− N̄ −NE
s,t

)

+ λ1,t
[
CE
t − CU

t + τh(nh,t − nh,t−1)
]
− λ2,t exp(ξt)νKθ

h,t(nh,tN̄)ν−1N̄ , (2.B.36)

λ1,t = µc(CE
t )η−1

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η , (2.B.37)

λ1,t = µc(CU
t )η−1

µc(CU
t )η + (1− µc)Hγη

t (NU
s,t)(1−γ)η , (2.B.38)

φ

1− N̄ −NE
s,t

=
(1− µc)(1− γ)Hγη

t (NE
s,t)(1−γ)η−1

µc(CE
t )η + (1− µc)Hγη

t (NE
s,t)(1−γ)η , (2.B.39)

φ

1−NU
s,t

=
(1− µc)(1− γ)Hγη

t (NU
s,t)(1−γ)η−1

µc(CU
t )η + (1− µc)Hγη

t (NU
s,t)(1−γ)η , (2.B.40)

(nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t +Kc,t+1 − (1− δkc)Kc,t +Kh,t+1 − (1− δkh)Kh,t

= exp(zt)Kα
c,t(nc,tN̄)1−α − κc

2

(
Kc,t+1

Kc,t

− 1
)2

Kc,t −
κh
2

(
Kh,t+1

Kh,t

− 1
)2

Kh,t

− ω

2

(
Ht+1

Ht

− 1
)2
Ht −

τc
2 (nc,t − nc,t−1)2 − τh

2 (nh,t − nh,t−1)2, (2.B.41)

Ht+1 − (1− δh)Ht = exp(ξt)Kθ
h,t(nh,tN̄)ν . (2.B.42)
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These optimality conditions characterize the equilibrium in the economy.

2.B.3 Steady State

In steady state, all variables do not evolve over time. In addition, the stochastic shock

variables are in their mean values, zt = zt+1 = 0, ξt = ξt+1 = 0. Therefore the optimal

conditions (2.B.32) - (2.B.42) can be simplified to the following equation system:

1 = β
[
αKα−1

c (ncN̄)1−α + 1− δkc
]
, (2.B.43)

λ1 = β
[
λ1(1− δkh) + λ2θK

θ−1
h (nhN̄)ν

]
, (2.B.44)

λ2 = β

(nc + nh)(1− µc)γHγη−1(NE
s )(1−γ)η

µc(CE)η + (1− µc)Hγη(NE
s )(1−γ)η

+ (1− nc − nh)(1− µc)γHγη−1(NU
s )(1−γ)η

µc(CU)η + (1− µc)Hγη(NU
s )(1−γ)η + λ2(1− δh)

, (2.B.45)

λ1
[
(1− α)Kα

c (ncN̄)−αN̄ − CE + CU
]

= 1
η

ln
[
µc(CU)η + (1− µc)Hγη(NU

s )(1−γ)η

µc(CE)η + (1− µc)Hγη(NE
s )(1−γ)η

]

+ φ ln
(

1−NU
s

1− N̄ −NE
s

)
, (2.B.46)

λ2νK
θ
h(nhN̄)ν−1N̄ − λ1(CE − CU) = 1

η
ln
[
µc(CU)η + (1− µc)Hγη(NU

s )(1−γ)η

µc(CE)η + (1− µc)Hγη(NE
s )(1−γ)η

]

+ φ ln
(

1−NU
s

1− N̄ −NE
s

)
, (2.B.47)

λ1 = µc(CE)η−1

µc(CE)η + (1− µc)Hγη(NE
s )(1−γ)η , (2.B.48)

λ1 = µc(CU)η−1

µc(CU)η + (1− µc)Hγη(NU
s )(1−γ)η , (2.B.49)

φ

1− N̄ −NE
s

= (1− µc)(1− γ)Hγη(NE
s )(1−γ)η−1

µc(CE)η + (1− µc)Hγη(NE
s )(1−γ)η , (2.B.50)
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φ

1−NU
s

= (1− µc)(1− γ)Hγη(NU
s )(1−γ)η−1

µc(CU)η + (1− µc)Hγη(NU
s )(1−γ)η , (2.B.51)

(nc + nh)CE + (1− nc − nh)CU + δkcKc + δkhKh = Kα
c (ncN̄)1−α (2.B.52)

δhH = Kθ
h(nhN̄)ν . (2.B.53)

2.B.4 Price Functions

The optimal resource allocation equalizes the marginal product of labor (or capital)

across the two sectors. Based on this relationship, the new home sales price must satisfy

PIh,t =
exp(zt)(1− α)Kα

c,t(nc,tN̄)−α

exp(ξt)νKθ
h,t(nh,tN̄)ν−1

. (2.B.54)

The home rents must solve the following optimal consumption choice problem in the

decentralized economy:

max
CEt ,C

U
t ,Ht

(nc,t + nh,t)
1
η

ln
[
µc(CE

t )η + (1− µc)(Hγ(NE
s,t)1−γ)η

]
+ (nc,t + nh,t)φ ln(1− N̄ −NE

s,t)

+ (1− nc,t − nh,t)
1
η

ln
[
µc(CU

t )η + (1− µc)(Hγ(NU
s,t)1−γ)η

]
+ (1− nc,t − nh,t)φ ln(1−NU

s,t)

+ βEt
[
V (zt+1, ξt+1, Kc,t+1, Kh,t+1, Ht+1, nc,t, nh,t)

∣∣∣zt, ξt]
 (2.B.55)

s.t. (nc,t + nh,t)CE
t + (1− nc,t − nh,t)CU

t +Rh,tHt ≤ (nc,t + nh,t)wt + Non-Labor Income

(2.B.56)

According to the first-order conditions, it’s easy to compute the home rents as

Rh,t =
φγ

(1−γ)Ht

[
(nc,t + nh,t)

NE
s,t

1−N̄−NE
s,t

+ (1− nc,t − nh,t)
NU
s,t

1−NU
s,t

]
µc(CEt )η−1

µc(CEt )η+(1−µc)Hγη
t (NE

s,t)(1−γ)η

. (2.B.57)
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