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Abstract 

 

 

Duchenne muscular dystrophy is a devastating muscle wasting disease affecting 1 in 

3500 boys. It is caused by the lack of the dystrophin protein, which serves as a structural link to 

the muscle fiber membrane. Boys are typically diagnosed around age three to five as they 

exhibit changes in walking patterns, begin using a wheel-chair in their teens, and die due to 

respiratory or cardiac malfunction in their third decade of life. Despite extensive experimental 

research, there remains no cure for DMD. We hypothesize that one of the reasons DMD is so 

difficult to treat is that multiple mechanisms contribute to disease progression. Without the 

dystrophin protein the muscle is more susceptible to contraction-induced damage, resulting in 

chronic inflammation and fibrosis. Coupled with altered satellite stem cell (SSC) dynamics, 

these disease mechanisms lead to impaired muscle regeneration and progressive muscle 

wasting. 

 We believe this is an ideal opportunity to use computational models to help unravel the 

complex, multifaceted nature of DMD. My dissertation developed two computational models to 

investigate disease mechanisms in DMD. First, I developed a micromechanical finite element 

(FE) model that predicted that fibrosis would impair function by increasing the stiffness of the 

muscle, but protect the muscle from contraction-induced damage. This effect was dependent on 

whether the ECM was stiffer or more compliant than the skeletal muscle fibers. Then I 

developed an agent-based model (ABM) to study the cellular physiology driving disease 

progression. The model predicted muscle regeneration from injury, based on the autonomous 

actions of the different cell types in the model. The cell types included SSCs, fibroblasts, 

neutrophils, macrophages, ECM, and muscle cells. We simulated injury and regeneration in 

healthy and mdx mice (the most common animal model used in DMD). The simulations 
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predicted that suppressed SSC counts at the later stages of disease impaired regeneration. 

However, no individual factor in the model was able to predict the decreased SSC counts. 

Finally, we used the model to design an experiment to test the effect of fibrosis on muscle 

regeneration in mdx mice. While our intervention increased the area fraction of collagen in the 

muscle, the stiffness of the muscle was decreased. Given this baseline condition, both our 

model and the experiment showed no effect on regeneration. However, our model predicted that 

if the fibrosis resulted in an increased ECM stiffness, then regeneration would be impaired.  

Ultimately, the models developed in this dissertation were used to investigate the role of 

DMD disease mechanisms, both in isolation and combined in our model representations of 

dystrophic muscle. Both models predicted that the fibrotic microenvironment was a key regulator 

of function, damage susceptibility, and muscle regeneration in dystrophic muscle. Further, this 

work highlighted a key utility of this modeling framework for designing experiments, making 

predictions, and understanding the complex results of these experiments. Future development 

of the models in this dissertation could provide a platform for predicting chronic, long-term 

disease progression in DMD, and in silico therapeutic testing. 
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Chapter 1  

 

1.1 Overview 

 

  Skeletal muscle is the driving force behind all aspects of daily life, from walking to talking to 

breathing. Therefore, neuromuscular diseases that disrupt healthy muscle function can severely 

debilitate quality of life. In one of its most severe cases, Duchenne muscular dystrophy (DMD), 

the lack of a skeletal muscle protein (dystrophin) leads to devastating muscle wasting and 

premature death. Extensive experimental research is aimed at studying the healthy and 

pathological functions of skeletal muscle; however there remains no cure for the myriad of 

muscle diseases, including DMD. With experimental tools alone it is often difficult to discern 

primary disease mechanisms and causal relationships. These mechanisms are particularly hard 

to elucidate with the heterogeneity between muscles, between people, and throughout disease 

progression. As the foundation of this thesis, I posit that computational modeling is a powerful 

tool for investigating muscle function in healthy and disease populations. I believe that 

computational models can unravel the complexities of disease and reveal new hypotheses and 

avenues for research that may be difficult to discern with experimental tools alone. 

  The inherent structure of skeletal muscle lends itself to multiscale modeling. It allows us to 

build models across many scales, from whole muscle, to fascicles, to fibers, down to individual 

proteins. The protein that we are most interested in within this work is the dystrophin protein, 

which connects the interior of the muscle to the muscle fiber membrane (68). This protein is so 

important that its absence alone leads to Duchenne muscular dystrophy, or DMD (68, 79, 80, 

108, 122). 

  DMD is the most common neuromuscular disease of childhood, affecting 1 in 3500 boys. It 

is caused by the incomplete translation of the dystrophin protein, and results in progressive 

muscle wasting (68, 79, 80, 108, 127). The boys are typically first diagnosed around age three 
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to five when they have trouble rising from the floor (26). Since they are missing the dystrophin 

protein, their muscle is more susceptible to contraction induced damage (17, 52, 153, 177). 

Therefore, everyday movements, such as walking, results in cycles of degeneration and 

regeneration. This leads to a state of chronic inflammation in the muscle (28, 132, 168). As the 

disease progresses, healthy contractile muscle tissue is replaced by fibrosis and fatty infiltration, 

and the boys have changes in their walking patterns around age six to eight. The boys typically 

begin to use a wheel chair in their teens, and ultimately die due to respiratory or cardiac 

malfunction in their twenties to thirties (110). The current standard of care is corticosteroids; 

however it is merely palliative to prolong ambulation (9, 76, 96). While therapies to replace the 

missing dystrophin protein are promising, many barriers preventing successful use of this 

treatment remain. Therefore, it is critical that we develop effective therapies to treat boys living 

with DMD today. 

 We hypothesize that one of the reasons DMD is so difficult to treat is that multiple 

mechanisms contribute to the disease pathophysiology, including: an increased susceptibility to 

contraction-induced damage, chronic inflammation, fibrosis, impaired regeneration, and altered 

satellite stem cell (SSC) dynamics (41, 52, 121, 150). Since all these mechanisms and others 

likely play a role in disease progression, it is difficult to discern what the primary drivers of 

disease are, and subsequently, which would be the best targets for therapies. We believe this is 

an ideal opportunity to use computational models. 

 We can use the decades of experimental work to build and validate our computational 

models. Once developed, these models can be used to reveal causal relationships, ask “what if” 

questions, and generate new hypotheses. We can then use experiments to inform our new 

model hypotheses and test our model predictions. In this work, we have developed two models 

to probe disease mechanisms in DMD. First, in Chapter 2, we developed finite element (FE) 

micromechanical models of skeletal muscle. These models revealed the complex effects of 

disease progression on damage susceptibility and tissue function. We predicted that fibrosis 
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would impair function by increasing the stiffness of the muscle fiber, but protect the dystrophic 

muscle from contraction-induced damage. The effect of fibrosis is dependent on whether the 

ECM is stiffer or more compliant than the skeletal muscle fibers. However, it is unclear in the 

literature if the ECM or fibers are stiffer.  

 In Chapter 3, we developed an agent-based model (ABM) to study the cellular 

physiology driving disease progression in DMD. In dystrophic muscle, regeneration from injury 

is affected by all of the disease mechanisms that we are investigating in this body of work - 

damage susceptibility, fibrosis, chronic inflammation, and altered SSC dynamics. Therefore, we 

believe regeneration from injury is an ideal platform for investigating how these mechanisms 

contribute to disease pathophysiology. We developed a new ABM that predicts muscle 

regeneration from injury, based on the autonomous actions of the different cell types in the 

model. We included spatial rules for SSCs, fibroblasts, ECM, and muscle cells, and simplified 

the inflammatory cell dynamics from a previous ABM into a system of ODEs. We used the ABM 

to probe the effect of isolated mechanisms of disease on muscle regeneration in otherwise 

healthy muscle. Then we extended the model to study dystrophic muscle by generating models 

of the mdx mouse, the most commonly utilized animal model for DMD, at three ages. The 

simulations predicted that the pro-fibrotic microenvironment at the later stages of disease 

suppressed peak SSC counts, ultimately leading to impaired regeneration. 

 In Chapter 4, we used these model hypotheses to design an experiment to test the effect 

of fibrosis on muscle regeneration in mdx mice. We injected the tibialis anterior (TA) muscle of 3 

month mdx mice with TGFβ, which resulted in an increase in the area fraction of collagen. 

However, passive mechanical testing revealed that the stiffness of the muscle decreased 

significantly. Assuming that the fiber mechanical properties have not been altered, this suggests 

that the ECM stiffness was decreased with our intervention. The freeze injury and regeneration 

experiment found no significant difference in recovery between control (WT), mdx, and mdx+ 

TGFβ groups. Then we simulated the experiment with the ABM in Chapter 3 to predict the effect 
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of these injections, and the model similarly predicted no effect on regeneration. However, our 

model predicted that if the injections lead to a stiffer fibrotic microenvironment then regeneration 

would be impaired in the mdx+TGFβ group. This suggests that area fraction of collagen alone 

does not predict the regeneration in dystrophic muscle. 

Ultimately, we developed a set of models to study disease mechanisms in DMD. Both 

our mechanical and physiology models predicted that fibrosis is a key regulator of disease 

progression in dystrophic muscle. However, the effect is dependent on the stiffness of the 

fibrosis. We hypothesize that in DMD stiff fibrosis protects the muscle from contraction-induced 

damage, but impairs the function and regenerative capacity of the muscle. This body of work 

also highlighted the utility of the modeling framework for designing experiments, making 

predictions, and understanding the complex results of these experiments. 

 

1.2 Background 

 

Skeletal muscle microstructure 

 

Skeletal muscle has a hierarchical structure, where at each scale the contractile muscle 

tissue is surrounded by a network of extracellular matrix (ECM). Whole muscle is comprised of 

fascicles, fascicles are comprised of fibers, and fibers are multinucleated cells comprised of the 

fundamental force generating unit, the sarcomere. The structural link between the contractile 

muscle tissue and the muscle fiber membrane is the dystrophin glycoprotein complex, where 

the dystrophin protein resides (52, 80). Together, these microstructural properties give rise to 

muscle’s ability to generate force. Sarcomere overlap gives rise to the force-length and force- 

velocity relationships that define the force-generating capacity of the muscle (67, 70, 184). The 

muscle length determines the range of motion of the muscle, and the cross-sectional area 

(CSA) and pennation angle define the active force generating capacity (Figure 1.1). 
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Figure 1.1. The hierarchical structure of skeletal muscle, from whole muscle to individual 
proteins. 
 

The main resident cell types within skeletal muscle are the satellite stem cells (SSCs), 

connective tissue fibroblasts, and resident macrophages. SSCs are the resident skeletal muscle 

progenitor cells that are responsible for repair and maintenance of skeletal muscle. When 

quiescent the SSCs reside at the fiber membrane. Once activated from damage they divide, 

differentiate, and fuse with the myofiber to repair it. Connective tissue fibroblasts reside in the 

ECM surrounding muscle fibers and are the primary cells responsible for maintaining the ECM. 

During homeostasis, muscle remodeling is low, and these resident cell types have a decreased 

role; however, during muscle regeneration these cell type counts increase significantly and are 

critical for muscle regeneration, as described in later sections. 
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Duchenne muscular dystrophy  

 

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by a 

mutation in the dystrophin gene, resulting in incomplete translation of the transmembrane 

protein dystrophin (68, 80, 108). It affects 1 in 3500. Over time, DMD results in dramatically 

impaired muscle function and progressive muscle wasting (Figure 1.2). Boys are often first 

diagnosed around age three to five when they have trouble rising from the floor (26). They begin 

to exhibit changes in walking patterns around age six to eight and often use a wheelchair in their 

early to mid-teens. The boys typically die of cardiac or pulmonary malfunction by the third 

decade of life (110). Despite extensive experimental research, there remains no cure for DMD. 

The current standard of care is corticosteroids; however it is merely palliative to prolong 

ambulation (9, 76, 96). While new therapies to replace the missing dystrophin protein are 

promising, many barriers preventing successful use of this treatment remain. For instance, the 

drug eteplirsen has been granted approval by the FDA; however it has yet to show significant 

improvement in muscle function in treated boys (81, 104). Until therapies to replace the 

dystrophin proteins are successful, it is critical to develop therapies to treat boys living with DMD 

today. However, DMD is a complex, multifaceted disease in which multiple mechanisms are 

known to contribute to the pathophysiology. In this work, we hypothesize that the multiple 

disease mechanisms make it difficult to discern the primary drivers of DMD, and subsequently 

make it challenging to design effective therapies. 
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Figure 1.2. DMD is a degenerative, muscle-wasting disease in which increased susceptibility to 
damage, chronic inflammation, fibrosis, and fatty infiltration lead to impaired muscle function 
and loss of mobility. 

 

The multiple disease mechanisms are initiated by the lack of the dystrophin protein 

which makes the muscle more susceptible to contraction-induced damage (17, 52, 153, 177). 

Therefore, muscle contractions incurred during everyday movements can lead to muscle injury 

in dystrophic muscle. These constant cycles of degeneration and regeneration, coupled with 

altered cell signaling, lead to a state of chronic inflammation in the muscle (28, 132, 168). As the 

disease progresses, the contractile muscle tissue is replaced by fibrotic tissue and fatty infiltrate. 

Fibrosis not only affects mechanical function, but is also hypothesized to decrease the 

effectiveness of treatments (9, 95, 118). Further, recent experiments have revealed the role of 

dystrophin in regulating cell polarity during asymmetric divisions (41, 42). Without dystrophin, 
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SSCs undergo impaired asymmetric division resulting in either senescent cells or decreased 

differentiated myocytes. 

Failure to translate therapies from animal models, such as the mdx mouse, to humans is 

one of the critical barriers to developing effective treatments for DMD (61, 178). The mdx mouse 

is the most commonly used animal model to study DMD. However, the mdx mouse phenotype is 

significantly less severe than humans. The mdx mouse undergoes less fibrosis and muscle 

degeneration as compared to boys with DMD (33, 111). Additionally, there are temporal 

variations in disease phenotype as the dystrophic mouse ages, and these variations differ from 

age-associated changes in DMD patients (118, 151). Very young mdx mice (4 weeks) have a 

substantial pro-inflammatory response, with little fibrosis and markers of necrosis and 

degeneration (centrally nucleated fibers, necrotic fibers) (46, 118, 166, 167, 176). Young mdx 

mice (3 months) have a more stable inflammatory response as the inflammation shifts to a more 

regenerative phenotype (63, 166, 167, 176). Adult mdx mice (9 months +) exhibit fibrosis and 

some impaired muscle regeneration (63, 95, 103, 118).  

Since most pre-clinical testing is still completed in mice, a number of new mouse models 

have been developed to address the milder phenotype. For instance, the dystrophin-utrophin 

double knock out mice eliminate the compensatory increases in the transmembrane protein 

utrophin, leading to more substantial muscle damage and degeneration (33). The mdx/mTR 

model addresses stem cell exhaustion and telomere shortening that is not captured in the 

standard mdx mouse model (135). Despite the limitations of the mdx mouse, and recent 

advances in new mouse models, the mdx mouse remains the most commonly used animal 

model for studying DMD. 
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Skeletal muscle regeneration from injury 

Skeletal muscle regeneration following injury is a complex, dynamic process involving 

numerous cell types (Figure 1.3). Immediately following injury, neutrophils are recruited to the 

muscle, reaching maximum cell numbers approximately 24 hours after injury (43, 160). 

Neutrophils begin the process of necrosis removal by recruiting inflammatory (M1) 

macrophages, which peak approximately two days after injury. Inflammatory macrophages 

phagocytose debris and apoptotic neutrophils (24, 25, 44, 136, 140, 149, 154). This process of 

phagocytosis causes some of the inflammatory macrophages to transition into anti-inflammatory 

(M2) macrophages, while new anti-inflammatory macrophages are recruited to the muscle. Anti-

inflammatory macrophage populations peak approximately four days after injury and remain in 

the muscle for at least ten days (24, 25, 37, 44, 136, 149, 166).  

While neutrophils and inflammatory macrophages are working to clear the damage, 

SSCs are the stem cells responsible for repair and maintenance of skeletal muscle fibers. SSCs 

typically reside at the muscle fiber membrane, and remain mostly quiescent prior to injury (130). 

Following injury, SSCs are activated by damage and the presence of HGF (3, 107, 156). SSCs 

are also recruited to the site of damage by growth factors, including: HGF, IGF, FGF, MMPs, 

and deterred by TGF-B (27, 57, 74, 144). SSCs divide, both symmetrically (into two SSCs) and 

asymmetrically (into one SSC, one committed myogenic progenitor), based on growth factors, 

such as TNF-α, IL6, VEGF, and PDGF (additional details including in Chapter 3) (2, 4, 7, 51, 

105, 136, 138, 152, 181). Through this division, the SSCs reach peak cell counts approximately 

three to seven days post injury (112). Then the fibers terminally differentiate and fuse with the 

fiber to repair the muscle (2, 4, 7). Approximately 10% of the SSCs do not terminally 

differentiate and help to restore the SSC pool until returning to quiescence (54, 85).The SSCs 

also secrete growth factors such as VEGF, TNF- α, and IL-6 during regeneration (11, 20, 25, 

147). 
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Figure 1.3. Skeletal muscle regeneration from injury is a complex process involving numerous 
cell types, including fibroblasts, SSCs, neutrophils, M1 macrophages, and M2 macrophages. 
 

Connective tissue fibroblasts are also an integral part of muscle regeneration. Recent 

studies have shown that without fibroblasts, SSCs undergo premature differentiation resulting in 

impaired regeneration from injury (112). Following injury, fibroblasts are recruited to the site of 

damage based on IL-4 secreted from eosinophils (66). Population counts reach a maximum 

approximately three to seven days after injury (66, 72, 112, 162, 163). Although the mechanism 

is unclear, recent experiments with a SSC knockout mouse have shown that fibroblasts 

proliferate in the presence of SSCs (112). TNF-α induces fibroblast apoptosis, while active TGF-

β blocks the apoptosis (86). Extended exposure to TGF-β has been shown to induce fibroblast 

differentiation into myofibroblasts (30, 86). During this process, the fibroblasts secrete collagen 

to repair the ECM (137, 188). They also secrete a number of growth factors that contribute to 



11 
 

the regenerative, or pro-fibrotic microenvironment, depending on the state of the muscle, such 

as TGF- β, IGF1, and MMPs (10, 72, 98, 117, 120, 133, 146, 185).  

 

Skeletal muscle modeling 

Computational modeling is a powerful tool for simulating the complex behaviors of 

biological tissues. The models can be used to reveal cause-effect relationships, ask “what-if” 

questions, and develop new hypotheses. Computational models of skeletal muscle have 

advanced significantly over the past two decades. Initially, these models were used to represent 

the cross-bridge mechanics that gives rise to muscle contraction. The earliest models simplified 

the architecture into Hill-type, lumped, one-dimensional parameter models to probe effects such 

as the force-length and force-velocity relationships (184). Lumped parameter models assume all 

fibers generate the same amount of force and change length uniformly. This can provide a great 

deal of insight into human movement (36); however, these models do not allow us to investigate 

deformations of complex muscle geometries to gain insight into injury, disease, and muscle 

adaptations. 

More recently, a new phenomenological skeletal muscle constitutive model was 

developed that represents the muscle as a fiber-reinforced composite (15, 16). This three-

dimensional FE model was used throughout this thesis to represent the behavior of skeletal 

muscle. The model assumes the tissue is hyperelastic, transversely isotropic, and nearly 

incompressible. FE simulations are quasi-static and do not account for viscoelasticity. The 

constitutive model uses an uncoupled form of the strain energy density function that separates 

the dilatational and deviatoric portions. Physically based strain invariants were used to relate 

material parameters to experimentally quantifiable measurements (32), as shown in Figure 1.4. 

Where 𝜆 is the along fiber stretch, 𝜓 is along-fiber shear, 𝛽 is cross-fiber shear, and 𝐽 is the 

relative change in volume of the tissue. The fiber direction is assumed to run along the path of 
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the muscle for both the ECM and the muscle fibers. The along-fiber stretch parameter 

determines both the active and passive force-length properties of the muscle. 𝑊𝜆, 𝑊𝜓, 𝑊𝛽, 𝑊𝐽, 

were defined as shown in Figure 1.4, where 𝐺𝜓 is the along-fiber shear modulus, 𝐺𝛽 is cross-

fiber shear modulus, and 𝐾 is the bulk modulus (16). 
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Figure 1.4. Skeletal muscle constitutive model uses physically based strain invariants to relate 
material properties to experimentally quantifiable measurements. 
 

  This continuum model of skeletal muscle has illustrated the heterogeneity in muscle 

deformations across many scales. Models of whole muscle have been used to investigate how 

strains in the biceps femoris longhead may contribute to injury (49, 129). At the fascicle level, 

micromechanical models that separate the muscle fibers and ECM have investigated how 

changes in the microstructure affect tissue level material properties (141).  While these 

micromechanical models allowed Sharafi et al. to understand how microstructural changes 

altered the fascicle and fiber level properties, they were not designed to probe how changes 

associated with disease (such as DMD) would alter the tissue level properties. Therefore, we 

used the work by Sharafi et al. to develop micromechanical models of skeletal muscle fascicles 

to probe how changes associated with DMD alter tissue level properties and damage 

susceptibility (Chapter 2).  

 

Agent-Based Modeling 

 

 Agent-based modeling is a computational modeling approach that simulates the actions 

of autonomous agents to analyze their effect on the system as a whole. ABMs stochastically 

simulate behaviors based on rule sets for each agent. Historically, ABMs have been used to 

represent ecological or social phenomenon (18, 21). More recently this computational approach 

has been extended to represent biological processes, such as microvasculature networks, 

atherogenesis, and surgical site infections (6, 13, 58). The stochastic, rules-based approach in 

agent-based modeling is a powerful tool for modeling biological processes. The agent actions 

are typically defined based on literature-derived rules that depend on the agent environment. 

This method mirrors the interactions between biological cells and the microenvironment. 
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 Previous work in our lab has developed ABMs to represent muscle adaptation from 

disuse-induced muscle atrophy and regeneration from injury (98, 99, 101). Both of these models 

spatially represented a cross-section of skeletal muscle and analyzed how the interactions of 

various growth factors and inflammatory cells contributed to muscle adaptation. The muscle 

atrophy model found that no individual parameter could predict the differential atrophy response 

across muscles (98). The acute injury and regeneration model explored how the interactions of 

skeletal muscle neutrophils and macrophages gives rise to muscle regeneration (99, 102). The 

model was then used to investigate the effect of priming the inflammatory response with a 

macrophage recruitment factor (MCSF). Ultimately, this in silico analysis was used to design 

and test the hypothesis experimentally in an in vivo rodent model. The injury and regeneration 

ABM by Martin et al. served as the foundation of the ABM in this dissertation; where additional 

complexity for the SSCs and fibroblasts was incorporated in order to study how regeneration is 

impaired in DMD. 
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Chapter 2 

 

 

Multiscale models of skeletal muscle predict the complex 
effects of tissue function and damage susceptibility in 

Duchenne muscular dystrophy 

Acknowledgements: Kyle S. Martin, Shayn Peirce, Silvia Blemker 
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2.1 Abstract 

 

Computational models have been increasingly used to study the tissue-level constitutive 

properties of muscle microstructure; however, these models were not created to study or 

incorporate the influence of disease-associated modifications in muscle. The purpose of this 

paper was to develop a novel multiscale muscle modelling framework to elucidate the 

relationship between microstructural disease adaptations and modifications in both mechanical 

properties of muscle and strain in the cell membrane. We used an agent-based model to 

randomly generate new muscle fiber geometries and mapped them into a finite-element model 

representing a cross section of a muscle fascicle. The framework enabled us to explore 

variability in the shape and arrangement of fibers, as well as to incorporate disease-related 

changes. We applied this method to reveal the trade-offs between mechanical properties and 

damage susceptibility in Duchenne muscular dystrophy (DMD). DMD is a fatal genetic disease 

caused by a lack of the transmembrane protein dystrophin, leading to muscle wasting and death 

due to cardiac or pulmonary complications. The most prevalent microstructural variations in 

DMD include: lack of transmembrane proteins, fibrosis, fatty infiltration and variation in fiber 

cross-sectional area. A parameter analysis of these variations and case study of DMD revealed 

that the nature of fibrosis and density of transmembrane proteins strongly affected the stiffness 

of the muscle and susceptibility to membrane damage. 

 

2.2 Introduction 

 

Skeletal muscle has a complex hierarchical structure consisting of long contractile muscle 

cells (fibers) embedded within a connective tissue matrix.  The importance of the interaction 

between contractile muscle cells and the extracellular matrix (ECM) has received significant 

attention over the past two decades (69, 77, 83, 90, 124).  In particular, the ECM is thought to 
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play a critical role in enabling force transmission from fibers to tendons and in the protection of 

muscle cells from excessive damage during muscle contractions.   

Muscle cells, ECM, and their transmembrane connections have all been implicated in 

muscle disease. For example, Duchenne muscular dystrophy (DMD) is an x-linked recessive 

disorder caused by a mutation in the DMD gene, resulting in the incomplete translation of the 

transmembrane protein dystrophin (68, 79, 80, 108, 127).  It is the most common neuromuscular 

disease of childhood and is responsible for dramatically impaired muscle function and progressive 

muscle wasting (45, 68). Boys born with DMD become very weak at an early age, need 

wheelchairs by their teens, and die of respiratory or cardiac failure by their third decade of life (26, 

110).  There is no cure for DMD, despite extensive experimental research regarding the 

pathophysiology of the disease. While the current standard treatment is corticosteroids, it is 

merely palliative to prolong ambulation (9, 76, 96).  Several animal models of the disease have 

been developed – including zebrafish (8, 62), mouse (38, 118), and canine (19, 164); however, 

there are still unanswered questions regarding the role of dystrophin in muscle function and how 

this leads to progressive muscle wasting in DMD.  How does the protein protect the cell membrane 

from mechanical damage?  How does the protein affect muscle properties?  How do secondary 

changes in the muscle – such as fibrosis and fatty infiltration – influence the function of the 

muscle? In this chapter, we posit that multi-scale computational models can provide a 

quantitative, mechanistic approach to investigate the influence of muscle diseases, like DMD, on 

muscle function. These scientific underpinnings provide a new framework to generate hypotheses 

regarding treatment targets moving forward. 

Computational models of skeletal muscle have advanced significantly over the last two 

decades. While historically models of muscle have simplified the architecture of muscle into a 

lumped-parameter representation (184), there has been a movement towards tissue-level models 

that represent muscle tissue as a fiber-reinforced composite.  These tissue-level models make 
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use of “phenomenological” constitutive models that do an excellent job of accounting for the 

underlying structure of muscle (16, 73).  However, muscle cells and connective tissue are not 

explicitly defined in these models, which limits their capacity to relate molecular and cellular 

underpinnings and reveal insights into disease-related muscle changes. Recently, 

micromechanical models of muscle have been developed to derive tissue-level constitutive 

properties from the muscle microstructure (141).  This work provided a framework for multi-scale 

analysis of muscle; however, the models were not created to study or incorporate the influences 

of disease-associated modifications in muscle. 

The overall goal of this chapter is to develop a multi-scale muscle modeling framework to 

elucidate the relationship between microstructural disease adaptations and modifications in both 

mechanical properties of muscle and strain in the cell membrane.  To achieve this goal we 

developed a novel approach for randomly generating muscle fascicle geometries, enabling us to 

explore disease related changes by altering muscle fiber and ECM volume fractions, variance in 

fiber cross-sectional area, amount of fat infiltration, and fiber-ECM transmembrane protein 

density.  We used the models to reveal the tradeoffs between mechanical properties and damage 

susceptibility in the context of DMD-associated changes in muscle. 

 

2.3 Materials and Methods 

 

2.3.1 Random generation of fascicle cross sections from an agent-based model 

We utilized an agent-based model of muscle to generate new fascicle cross sections with 

the agent-based modeling platform Netlogo (http://ccl.northwestern.edu/netlogo/).  A unique 

cross-section of one muscle fascicle was generated from fourteen “seed” fibers within a two-

dimensional discretized grid.  The grid dimensions were: 130 by 130 elements, with each element 

3 by 3 microns.  Fibers were grown in a stepwise function according to their defined mean and 
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variance of the fiber cross sectional area (CSA). The unused elements were prescribed as 

boundary elements.  

 

Figure 2.1 Histological comparison of healthy (a) and DMD (b) muscle reveals common 
pathological variations seen in musculoskeletal disease, including increased variation in fiber 
CSA, fibrosis and fat infiltration. Scale bar, 60 mm. (Adapted from Leiber et al. 2013) 
Immunofluorescence staining of healthy (c) and DMD (d) muscle samples show a lack of 
dystrophin expression in the DMD muscle compared with the healthy muscle. (Adapted from 
Beekman et al. 2014). 

 

In order to determine the input parameters necessary to model structural changes in 

musculoskeletal disease, we determined the most prevalent pathological variations seen in DMD 

(Fig. 2.1).  These variations include: density of transmembrane proteins, variation of fiber CSA, 

and pseudohypertrophy which manifests as an increase of fibrosis and fat infiltration within the 

muscle (45, 78).  To enable the agent-based model to simulate these pathological variations, we 

modified the mean and variance of the fiber CSA, and added additional capabilities to increase 

the amount of fibrosis or change muscle fiber into fat tissue.  In addition, by defining the variance 

of fiber CSA, we utilized the agent-based model to randomly create new fascicle cross-sections.  
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Each simulation had a unique set of muscle fiber shapes and sizes, accounting for physiologic 

variability.  Through manipulation of these input parameters we generated fascicle geometries 

that account for both structural changes seen in disease and variability inherent in muscle tissue 

(Fig. 2.2).  The generation of new fascicle geometries were completed under the assumption of 

constant physiological conditions (e.g. pH, temperature, and electrolyte-composition).    

 

 

Figure 2.2. An agent-based model (ABM) is used to generate a variety of new fascicle cross-
section geometries for different pathological variations commonly seen in musculoskeletal 
disease. The horizontal axis represents the different pathological conditions modeled, including: 
variation in fiber CSA, fibrosis and fatty infiltration. These symptoms are manifested as 
pseudohypertrophy in DMD patients where the total muscle volume increases due to increased 
fibrosis and fat infiltration. The vertical axis represents the variation in fascicle geometry created 
by the ABM’s randomized generation of fascicle cross sections with differing fiber shapes and 
sizes. Scale bar, 100 mm.  
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2.3.2 Conversion from agent-based model to micromechanical model 

We mapped the material elements from the agent-based model’s discretized grid onto an 

initialized finite element mesh that represents the cross-section of a single muscle fascicle (Fig. 

2.3).  The mesh density was increased and a smoothing algorithm was applied to eliminate any 

ill-conditioned elements in narrow portions of the extracellular matrix.  An initialized mesh, the 

size of the agent-based model grid, was created using TrueGrid (XYZ Scientific Applications).  

The hexahedral element mesh dimensions were: 390 x 390 elements in the cross-section plane 

and one element thick.  Additional simulations were completed with a three-element-thick 

hexahedral mesh and the calculated shear modulus was within 0.5% of the one-element-thick 

mesh; therefore a one-element-thick mesh was utilized to decrease computational time.    

 

Figure 2.3. Components of the finite-element micromechanical model, including material types 
for ECM (endomysium and perimysium), muscle fibers, boundary layer and springs representing 
transmembrane proteins.  

 

Since muscle fiber force is known to be transmitted laterally through shearing of the 

endomysium, we were interested in analyzing the muscle in shear (69, 141).  We assigned the 

boundary conditions to prescribe simple shear deformation, representing the shear displacement 

of muscle fibers and fascicles relative to each other. The elements on one face were constrained 

in all directions and the opposite face was displaced in the -3 direction, creating a shear 

displacement in the 1-3 direction.  All elements were constrained in the 1 and 2 directions.  

 



22 
 

2.3.3 Definition of constitutive model and material parameters 

We used a transversely isotropic, nearly incompressible, hyperelastic constitutive model to 

represent the muscle fibers, extracellular matrix, and boundary layer.  The deformation gradient 

(F) and right Cauchy-Green deformation tensor (C) are defined respectively as: 

 

𝑭 =
𝜕𝒙

𝜕𝑿
  , and 𝑪 = 𝑭𝑇𝑭 (2.1) 

 

Where x represents the deformed vector and X represents the reference vector. The stresses are 

derived from the strain energy density function (W), and the 2nd Piola-Kirchoff stress (S) is defined 

as: 

𝑺 = 2 
𝜕𝑊

𝜕𝑪
 

(2.2) 

 

This constitutive model uses an uncoupled form of the strain energy density function to enforce 

the incompressible behavior of the connective and muscle tissue.  The strain energy density 

function separates the dilatational and deviatoric response of the muscle, resulting in the following 

strain energy density function (16): 

 

𝑊(𝜆, 𝜓, 𝛽, 𝐽) = 𝑊𝜆(𝜆) + 𝑊𝜓(𝜓) +  𝑊𝛽(𝛽) +  𝑊𝐽(𝐽) (2.3) 

 

where 𝜆 is the along-fiber stretch, 𝜓 is along-fiber shear, 𝛽 is cross-fiber shear, and 𝐽 is the relative 

change in volume of the tissue.  The fiber direction is defined along the axis of transverse isotropy.  

In this model it is assumed to run along the path of the muscle for both extracellular matrix and 

muscle fibers. Physically based strain invariants were utilized to relate material parameters to 

experimentally quantifiable measurements (32). 𝑊𝜆(𝜆) is a piece-wise function representing the 
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passive material properties of the tissue, dependent on the fiber length.  𝑊𝜓, 𝑊𝛽, 𝑊𝐽, were defined 

as follows: 

𝑊𝜓 =  𝐺𝜓𝜓2,  𝑊𝛽 =  𝐺𝛽𝛽2, 𝑊𝐽 =  
𝐾

2
𝐽2 (2.4) 

 

where 𝐺𝜓 is the along-fiber shear modulus, 𝐺𝛽 is cross-fiber shear modulus, and 𝐾is the bulk 

modulus (16). Fat infiltration was modeled as a simple incompressible, hyperelastic, Neo-

Hookean material with a single material parameter representing the Young’s modulus of the 

material.  Currently, there are no known measurements for the along-fiber shear modulus of 

muscle and extracellular matrix, 𝐺𝜓
𝑓𝑖𝑏𝑒𝑟

, 𝐺𝜓
𝐸𝐶𝑀; however previous studies have shown that the ratio 

of  𝐺𝜓
𝑓𝑖𝑏𝑒𝑟

/𝐺𝜓
𝐸𝐶𝑀 is the critical factor in determining the contribution of structural variation on tissue-

level properties (141).  Furthermore, there remains a debate in the literature as to whether muscle 

fibers are more or less stiff than the ECM (69, 90, 124).  Therefore, in order to explore the 

implications of these possible scenarios, 𝐺𝜓
𝑓𝑖𝑏𝑒𝑟

 was held constant during simulations and 𝐺𝜓
𝐸𝐶𝑀 

was adjusted to be both stiffer and more compliant in shear than the muscle fibers. 

 

2.3.4 Definition of boundary material properties 

Our method requires initialization of a finite element mesh so that only the material type 

for each element needs to be defined based on the output of the agent-based model.  The 

boundary layer surrounding the muscle fascicle within the agent-based model grid allows for a 

unique opportunity to pre-allocate the mesh properties, boundary conditions, and applied 

displacements for the initialized finite element mesh (Fig. 2.4).  In order to prevent the boundary 

layer from adversely affecting the model, its material properties were adjusted so that its behavior 

simulated the macroscopic shear properties of the muscle fascicle.  Using rules of mixtures, the 

along-fiber shear properties of the boundary were defined as follows: 
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𝐺𝜓
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

=  
𝐺𝜓

𝑓𝑖𝑏𝑒𝑟
(1 + 𝑉𝑓𝑖𝑏𝑒𝑟 ) + 𝐺𝜓

𝐸𝐶𝑀(1 − 𝑉𝑓𝑖𝑏𝑒𝑟 )

𝐺𝜓
𝑓𝑖𝑏𝑒𝑟

(1 − 𝑉𝑓𝑖𝑏𝑒𝑟 ) + 𝐺𝜓
𝐸𝐶𝑀(1 + 𝑉𝑓𝑖𝑏𝑒𝑟 )

𝐺𝜓
𝐸𝐶𝑀 

(2.5) 

 

where 𝑉𝑓𝑖𝑏𝑒𝑟 is the volume fraction of fibers within the muscle fascicle. This created a 

homogenized, macroscopically representative material to which boundary conditions and 

displacements can be pre-imposed and used for all the unique fascicle geometries used in this 

study. 

 

Figure 2.4. Finite-element model in shear for healthy (a) and diseased (b) muscle fascicles 
reveals variable shear stress profiles. The boundary layer properties were defined based on 
rules of mixtures to simulate macroscopic-fascicle properties. Fascicle displacement, k, was 
calculated as the fascicle displacement in the 3 direction (l2), divided by the width of the fascicle 
(l1). The displacement, k, and the shear stress in the 1–3 direction were used to calculate the 
fascicle shear modulus. Membrane strain is the average change in length between fiber and 
ECM nodes at both proteins and inter-protein regions, normalized by k.  
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2.3.5 Inclusion of transmembrane proteins 

To analyze the effect of transmembrane proteins, such as dystrophin, we identified all 

nodes connecting the muscle fibers and ECM within the micromechanical model, added a node 

at that point, and then connected the two nodes with a spring.  The transmembrane protein was 

modeled as nonlinear elastic spring (12, 52, 186).  To represent a loss of proteins in the diseased 

state, a random number generator was used to randomly delete a specified quantity of the springs 

(ranging between 0% and 80%). 

 

2.3.6 Determination of macroscopic along-fiber shear properties 

Simulations were run using the nonlinear finite element solver, NIKE3D (126). The 

macroscopic along-fiber shear properties of the muscle fascicle were calculated based on the 

displacement and shear stress of the micromechanical model fascicle, excluding the boundary 

layer.  The average shear stress (1-3 plane) in the fascicle was calculated using the post-

processing software, Postview (94).  The shear displacement of the fascicle, k, was also 

calculated in Postview, as the maximum 3-plane displacement across the fascicle, divided by the 

width of the fascicle at that point.  The macroscopic along-fiber shear modulus was then calculated 

as follows: 

𝐺𝜓
𝑚𝑎𝑐𝑟𝑜 =

𝜎13
𝑎𝑣𝑔

2𝑘
 

(2.6) 

 

2.3.7 Analyses 

To initially validate the approach for defining geometries and boundary conditions, we 

performed simulations with a muscle to ECM shear modulus ratio ranging from 0.01 to 500 for a 

healthy muscle fascicle; the results replicated those found by Sharafi et al. (141). The 

micromechanical model was then used in a parameter analysis to test the individual effect of a 

number of variations in microstructures prevalent in musculoskeletal disease. We explored the 
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effects of volume fraction of fibers, density of transmembrane proteins, variance in fiber CSA, and 

volume fraction of fatty infiltration, all of which are structural variations that have been observed 

in DMD muscle.   The agent-based model was used to generate new fascicle cross-sections for 

each simulation so that all analyses were completed with a unique geometry, accounting for 

typical variability seen in muscle fibers. 

Because there is debate in the literature on whether muscle fibers are stiffer than the ECM 

or if the ECM is stiffer than muscle fibers, all parameter analyses were repeated at two ratios of 

𝐺𝜓
𝑓𝑖𝑏𝑒𝑟

/𝐺𝜓
𝐸𝐶𝑀: one in which the muscle is 75 times stiffer than the ECM (141), and one in which 

the ECM is 25 times stiffer than the muscle (90).  Total finite-element simulation time was eight 

minutes on 32-GB 8-processur IBM Linux workstation. 

 

2.3.8 A case study investigating muscle disease 

We performed a simulated case study of Duchenne muscular dystrophy in which the muscle 

fascicle was analyzed for healthy muscle and at three stages of disease.  The early stage of the 

disease included only a loss of dystrophin proteins, the middle stage included loss of proteins, 

fibrosis, and increase in variance of fiber CSA, and the late stage included loss of proteins, 

increased fibrosis, fatty infiltration, and large variations in fiber CSA (68, 78).  The macroscopic 

along-fiber shear moduli and ECM shear moduli were normalized by the muscle fiber modulus 

in order to simplify the presentation of the results.  A second parameter, membrane strain, was 

used to analyze the potential for damage at the membrane.  Membrane strain was calculated as 

the average change in length between fiber and ECM nodes at both proteins and inter-protein 

regions, normalized by the macro-scale shear displacement factor, k. 
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2.4 Results 

 

2.4.1 Parameter Analysis 

The effect of microstructural variations differs depending on whether the ECM is stiffer 

than the fibers or if the fibers are stiffer than the ECM. When the muscle fibers are stiffer than the 

ECM, increasing the volume fraction of fibers (Fig. 2.5A) and the density of trans-membrane 

proteins (Fig. 2.5B) both led to a significant increase in the macroscopic shear modulus of the 

fascicle.  Incorporation of fatty infiltration decreased the shear stiffness of the muscle (Fig. 2.5C), 

while variability in the fiber CSA had no effect on stiffness (Fig. 2.5D).  Conversely, when the ECM 

was stiffer than the muscle, only the volume fraction of fibers affected the tissue-level properties 

of the muscle, with an increasing volume fraction of fibers leading to a decrease in the 

macroscopic shear modulus (Fig. 2.5E).  All other parameters had minimal effect on shear 

stiffness when the ECM was stiffer.   

 

Figure 2.5. Macroscopic shear modulus is affected by stiffness of ECM, volume fraction of 
fibers, density of transmembrane proteins and amount of fatty infiltration. When the muscle 
fibers are stiffer than the ECM (a–d), both increasing the volume fraction of fibers (a) and 
increasing the density of transmembrane proteins (b) increase stiffness, while increasing fatty 
infiltration (c) decreases stiffness. When ECM is stiffer than muscle fibers (e–h), only the volume 
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fraction of fibers (e) has an effect, with an increase in volume fraction of fibers leading to a 
decrease in stiffness.  
 

Regardless of the assumption of the relative stiffness of the fibers and the ECM, the 

density of transmembrane proteins had the most significant effect on membrane strain 

predictions, as compared to the other variations.  However, in the case where the fiber was stiffer 

than the ECM, the protein density had a much more dramatic effect (Fig. 2.6B).  These results 

highlight the fact that both protein density (which is decreased in DMD) and ECM properties both 

contribute to the damage susceptibly of muscle. 

 

Figure 2.6. Membrane strain in the muscle fascicle is only affected by stiffness of ECM and 
density of transmembrane proteins. When the muscle is stiffer than the ECM (a–d), increasing 
the density of transmembrane proteins (b) decreases the strain on the membrane. When the 
ECM is stiffer than the muscles (e–h), increasing the density of transmembrane proteins (f) also 
decreases the strain on the membrane, but the effect is less significant.  
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Figure 2.7. Fascicle geometries (a) for healthy, early, middle and late stage DMD muscle. 
Pseudohypertrophy of muscle is represented in the middle and late stages of DMD with fibrosis 
and fatty infiltration (a). When the muscle fiber is stiffer than the ECM (b,c), the macroscopic 
shear modulus decreases significantly during progression of disease (b) and the membrane 
strain increases significantly during the early stage, then decreases at the middle and late 
stages (c). When the ECM is stiffer than the fiber (d,e), the macroscopic shear modulus 
increases significantly in the middle stage and decreases slightly at the late stage (d), while the 
membrane strain increases less significantly throughout progression of the disease with a slight 
decrease at the late stage (e). 
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2.4.2 Case Study: Duchenne muscular dystrophy 

The case study analysis demonstrated that pathological alterations associated with DMD 

progression influences both tissue properties and damage susceptibility, and the relative stiffness 

of the fiber and ECM dramatically influence the predicted results.  In the case where the ECM 

remains more compliant than the fiber, tissue stiffness would decrease significantly over time (Fig. 

2.7B).  However, membrane strain initially increases (i.e., more damage susceptibility) but then 

decreases with fibrosis and fatty infiltration (Fig. 2.7C).  When the ECM is stiffer than the fibers, 

the stiffness increases significantly in the middle and last stages (Fig. 2.7D) while the membrane 

strain increases less dramatically but remains elevated through the middle and late stages of 

disease progression (Fig. 2.7E). 

 

 

2.5 Discussion 

   

The goal of this work was to develop a computational framework to investigate how 

disease related changes in the muscle influence the tissue-level mechanical properties and 

susceptibly to membrane damage.   By utilizing an agent-based model to generate geometries 

and mapping it to an initialized mesh, this novel modeling framework eliminates the cumbersome 

task of creating unique finite element meshes for each analysis, and allows for an unprecedented 

quantity of simulations to be run in a short amount of time. Additionally, the agent-based model 

generated new fascicle cross-section with varying muscle fiber shapes and sizes for each 

simulation, which incorporated architectural variability commonly seen in-vivo.  This automation 

enabled us to explore a wide range of pathological variations commonly seen in muscle disease 

to first understand their influence independently, and to then analyze their compounding effects 

in a case study of Duchenne muscular dystrophy.  
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Analyzing the compounding effects of microstructural variations in the DMD case study 

revealed the importance of understanding fibrosis in DMD.   The stiffness of the ECM relative to 

the fiber significantly affected the degree to which disease progression influenced the fascicle 

stiffness and membrane strain.  Interestingly, other studies focusing on fibrosis in DMD have 

asserted that fibrosis not only exacerbates disease progression, but may also prevent the success 

of many targeted gene therapies (53, 109, 118). Further, the mechanical properties of fibrosis are 

likely altered throughout the course of disease, as its stiffness has been correlated with both 

amount of collagen and number of cross-links (65, 83, 113). Together, these results emphasize 

the complexity of fibrosis, and the need to better understand its development in DMD. 

The model is also consistent with the theory that the transmembrane proteins protect the 

muscle cell from damage (17, 52, 153, 177) because deletion of membrane proteins resulted in 

increased strains in the membrane.  However, the study further reveals that the function of the 

proteins is significantly affected by the nature of fibrosis.  In the early stage DMD model, a 60% 

deletion of transmembrane proteins increased the membrane strain significantly (two-fold and 

five-fold) under both stiffness assumptions, with only a minimal effect on the stiffness of the 

muscle.  This implies that even if there is not a measurable difference in stiffness at the beginning 

of the disease, which is supported in experimental studies (180), the protein-deficient muscle 

membrane may still be withstanding considerably elevated strains.  The subsequent onset of 

fibrosis and fatty infiltration in the middle and late stages then either alleviates the membrane 

strain (muscle stiffer than ECM), or slightly increases it (ECM stiffer than muscle).  This differential 

effect of fibrosis reveals a potential trade-off between functional preservation and protection of 

the membrane.  When fibrosis decreases membrane strain the muscle stiffness also decreases, 

and when fibrosis increases membrane strain the muscle stiffness is increased.  These insights 

further support the significance of understanding the nature of fibrosis. 
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Previous studies have predicted that damage to the muscle membrane is likely to be seen 

at the inter-protein regions where the dystrophin proteins are missing (17, 52, 177).  We 

accounted for this effect in our predictions of membrane strain by determining the strain between 

the nodes across the entire border between muscle fibers and ECM, which included regions 

where dystrophin proteins existed as well as inter-protein gaps. Interestingly, when the muscle 

was stiffer than the ECM, there were higher strains at the inter-protein regions, than within the 

transmembrane proteins.  When the ECM was stiffer than the fiber, the membrane strain was 

distributed more evenly between the protein and inter-protein regions. 

Our predictions are consistent with recent studies which determined the influence of 

transmembrane protein density and stiffness on lateral force transmission (186).  Supporting that 

study, we found that the stiffness of the protein had minimal effect on the fascicle shear modulus, 

while the density of proteins significantly affected the fascicle shear modulus.  Interestingly, our 

analysis also revealed that, in the situation in which the ECM is stiffer than the fibers, the influence 

of protein density on tissue stiffness and membrane damage is diminished.  

It is important to consider a number of limitations to the models presented here.  First, the 

ECM was considered to be a continuous structure for both the endomysium and perimysium, and 

the same constitutive model was used for both components.  However, it is known that these two 

layers have distinct structural compositions, and may have different material parameters (124, 

125).  Additionally, we did not account for the varying collagen directions seen in the ECM; though 

studies have postulated that the collagen direction in the endomysium does not have an effect on 

the shear properties (124).  In our representation of fibrosis, we varied only the volume fraction of 

ECM while keeping the mechanical properties constant and homogenous across the sample.  

This simplification allowed us to focus on the effect of the volume fraction of ECM.  However, this 

approach ignores the fact that the ECM stiffness is affected by additional factors, such as the 

amount of collagen within the ECM, the number of collagen cross-links, and the architectural 
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structure of the collagen (e.g. fiber orientation) (65, 83, 113). Indeed, increasing the volume 

fraction of ECM could be paired with changes in collagen content and architecture, which would 

also influence the tissue level properties and potential damage sensitivity of the membrane. 

Further, the mechanical properties of the transmembrane proteins were represented using a 

continuous nonlinear curve (186), although physiological models often represent it as a piece-

wise function due to the unfolding of the protein (12, 52). 

The analyses presented in this chapter focused on the behavior of muscle in simple shear. 

We focused on shearing of the fascicle because it is the dominant mode of lateral force 

transmission in muscle, and the behavior in shear cannot be simply intuited from the 

microstructure (as opposed to along-fiber tensile behavior).  However, we acknowledge that 

simple shear does not fully represent physiologic loading patterns (69, 124, 142).  In the future, 

coupling these models with macro-scale tissue level models (48) would enable us to study the 

behavior of the microstructures in the context of real physiological deformations. Additionally, we 

only effectively analyzed the passive mechanics of the muscle, whereas membrane damage 

primarily occurs during active lengthening contractions (29, 119).  While the effects of activation 

on the shear properties of fibers are currently unknown, we would reason that muscle activation 

would further increase the stiffness of the muscle relative to the ECM.  Therefore, we expect that 

the membrane damage profiles would be similar to the stiff fiber results in the DMD analysis (Fig 

7C.) with potentially even greater membrane damage for a given level of shear deformation.  

One of the critical challenges in creating multi-scale muscle models is the limited 

availability of experimental data for input parameters and validation of the model predictions.  For 

this reason, the presented study focused on analyzing the effects of microstructural variations, 

given the uncertainty of specific parameters (such as the relative stiffness of the ECM and muscle 

fibers).  We therefore utilized the presented analysis as a series of in silico experiments to explore 

the mechanics of DMD-associated modifications in microstructure, and to generate hypotheses 

that drive new experiments. 
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Future research to determine the shear properties of the ECM (and effect of pathological 

changes) would allow more focused analysis of disease progression.  Additionally, correlations 

between the amount of collagen crosslinks and the stiffness of the muscle have revealed potential 

mechanisms through which disease may alter the mechanical properties of muscle, so it is critical 

to study how ECM properties differ in healthy and diseased populations.   It is also important to 

understand the structural differences between the endomysium and perimysium within the ECM.  

Recent studies have developed novel methods for imaging the perimysium structure, and could 

be utilized to highlight these differences (55).   

The modeling framework presented here can also be extended through a full coupling of 

the agent-based and micromechanical models to allow for the predictive analysis of DMD disease 

progression.  Since the components of muscle are mechanosensitive, it would be informative to 

link the strain results of the micromechanical model with the agent-based model to predict the 

progression of DMD within a mechanical environment.  Additionally, a fruitful area of future 

exploration would be to model the effects of pharmacological interventions on changes in DMD 

microstructure, such as the current standard-of-care, corticosteroids.  Corticosteroids are known 

to reduce gene expression and inhibit myofibroblast activity, which potentially suppresses 

collagen production (78).  Based on the findings in our DMD analysis, suppression of collagen 

production would have a differential effect on damage and function depending on the stiffness of 

the ECM. The integrated models would help reveal these mechanisms through which the 

corticosteroid’s decreased collagen production prolongs ambulation; likewise they could be 

extended to predict other critical structure-function relationships of muscle. 

 

 

 

 



35 
 

Chapter 3 

 

Agent-based model illustrates the role of the microenvironment in 
regeneration in healthy and mdx skeletal muscle 

 
Acknowledgements: Kyle Martin, Shayn Peirce, Silvia Blemker 

 

 

 

 

When my legs hurt, I say: “Shut up legs! Do what I tell you to do!” – Jens Voigt 

 

 

"If you try to win, you might lose, but if you don't try to win, you lose for sure!" - Jens Voigt 
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3.1 Abstract: 

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease with no effective 

treatment. Multiple mechanisms are thought to contribute to muscle wasting, including 

increased susceptibility to contraction-induced damage, chronic inflammation, fibrosis, altered 

satellite stem cell (SSC) dynamics, and impaired regenerative capacity. The goals of this project 

were to: (i) develop an agent-based model of skeletal muscle that predicts the dynamic 

regenerative response of muscle cells, fibroblasts, SSCs, and inflammatory cells as a result of 

contraction-induced injury, (ii) calibrate and validate the model parameters based on 

comparison with published experimental measurements, and (iii) use the model to investigate 

how changing isolated and combined factors known to be associated with DMD (e.g. altered 

fibroblast or SSC behaviors) influence muscle regeneration. Our predictions revealed that the 

percent of injured muscle that recovered 28 days post injury was dependent on the peak SSC 

counts following injury. In simulations with near-full CSA recovery (healthy, 4 week mdx, 3 

month mdx), the SSC counts correlated with the extent of initial injury; however, in simulations 

with impaired regeneration (9 month mdx), the peak SSC counts were suppressed relative to 

initial injury. The differences in SSC counts between these groups were emergent predictions 

dependent on altered microenvironment factors known to be associated with DMD. Multiple cell 

types influenced the peak number of SSCs, but no individual parameter predicted the 

differences in SSC counts. This finding suggests that interventions to target the 

microenvironment rather than SSCs directly, could be an effective method for improving 

regeneration in impaired muscle.  

 

3.2 Introduction 

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by a 

mutation in the dystrophin gene, resulting in incomplete translation of the transmembrane 
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protein dystrophin (68, 79, 80). The lack of dystrophin makes the muscle more susceptible to 

contraction-induced damage and alters cell signaling processes, leading to a state of chronic 

inflammation (132, 153, 168). As the disease progresses, chronic damage and impaired 

regenerative capacity lead to muscle wasting as the contractile muscle tissue is replaced by 

fibrotic tissue and fatty infiltrate (75). Recent experiments have also shown that without 

dystrophin, SSCs undergo impaired asymmetric division resulting in either senescent cells or 

decreased differentiated myocytes (41). Despite extensive experimental research, there 

remains no cure for this disease. One of the reasons DMD is so challenging to treat is that all 

these mechanisms are hypothesized to contribute to the pathophysiology of the disease. 

Therefore, it is difficult to discern which cells and mechanisms would be the best targets for 

therapies.  

Since impaired muscle regeneration is thought to drive disease progression in DMD, 

pre-clinical testing of potential treatments often utilizes a skeletal muscle injury and regeneration 

assay. Muscle regeneration, even in healthy muscle, is a complex, dynamic process involving 

numerous cell types, including SSCs, fibroblasts, and inflammatory cells. The inflammatory cell 

behaviors following injury have been well defined in the literature, and serve to breakdown 

debris and release growth factors that promote the downstream repair process (4, 25, 136, 

166). A less well defined, but critical aspect of regeneration is the co-dependent interaction of 

SSCs and fibroblasts. Work by Murphy et al. has shown that both SSCs and fibroblasts are 

necessary for complete muscle regeneration (112). Fibroblasts and SSC counts peak 

approximately three to seven days post injury (72, 112). The SSCs divide to maintain the stem 

cell pool and differentiate into myocytes to repair the injured muscle (42, 84, 183). 

Translating successful pre-clinical therapies in animal models, such as the mdx mouse, 

to humans is a critical barrier in developing effective therapies for DMD (61, 178). One 

challenge is the less severe phenotype in the mdx mouse compared to humans (111, 118). 
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Further, the temporal variations in disease phenotype as the mdx mouse ages, coupled with the 

multifaceted nature of DMD, make the results of experimental studies challenging to interpret. 

Therefore, we believe this is an opportunity to use computational models to aid experimental 

design and interpretation. We aim to develop a computational model to examine the interactions 

between these complex mechanisms of disease in a way that would be prohibitively difficult 

using experimental tools alone. 

The extensive literature on muscle disease and regeneration provides a data-rich field to 

develop and test these computational models (9, 35, 115, 116, 118, 132, 167, 168, 176).  A few 

recent computational models have made use of this wealth of information to examine specific 

aspects of disease in dystrophic muscle (34, 71, 169). We previously created micromechanical 

finite element models that examined the importance of the mechanical properties of the 

extracellular matrix (ECM) in determining the damage susceptibility of the muscle (170). Other 

studies used mathematical models to explore the extent to which the immune response in the 

mdx mouse contributes to the muscle degeneration and regeneration (34, 71). However, these 

previously published models were not developed to simulate the interactions between multiple 

mechanisms of disease in DMD.  Therefore, we developed a new computational model to study 

the cellular pathophysiology contributing to muscle damage and regeneration in mdx mice. The 

specific goals of this work were to: (i) develop a computational model to predict mouse muscle 

regeneration following injury that focuses on the dynamics of SSCs and fibroblasts, (ii) tune the 

model such that it replicates key cell population dynamics from experimental studies in the 

literature, and (iii) use this model to analyze how known changes in the microenvironment 

contribute to impaired muscle regeneration in computational models of healthy and mdx mice.   
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3.3 Methods 

3.3.1 Overview of approach to developing the ABM 

There are extensive experimental studies that investigate the roles of individual factors, 

such as signaling molecules and cell types, on muscle regeneration following injury. The 

challenge of developing this model was to synthesize all these skeletal muscle regeneration 

studies to predict how muscle regeneration emerges from the behaviors and interactions of the 

various cell types in the muscle. To simulate these behaviors we utilized an agent-based model 

(ABM). ABMs simulate the actions of autonomous agents to analyze their effects on the system 

as a whole, providing an ideal platform for studying complex cellular dynamics (14, 59, 98, 134, 

155, 158). 

To develop our model of regeneration following contraction-induced injury, we used over 

100 published experimental studies to define over 40 rules that govern the behaviors of muscle, 

SSC, fibroblast, and inflammatory cell agents. We determined that there were 13 model 

parameters that could not be determined from experimental data in the literature. To determine 

these parameters, we ran simulations and varied the unknown parameters within a physiologic 

range. The parameter values were determined based on the predictions that best replicated (i) 

cell counts and muscle fiber CSA for healthy muscle and (ii) the results of healthy muscle 

perturbation studies published in the literature. This process revealed that only a very specific 

combination of parameter values could provide predictions that met both criteria.  

 

3.3.2 ABM Design  

The ABM spatially represented a cross-section of a mouse lower limb muscle consisting 

of approximately 50 muscle fibers (Fig 3.1). We chose to model mouse muscle so that we could 

leverage the literature describing experimental studies performed in healthy and mdx mice. Our 
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ABM simulated the cellular behaviors governing muscle regeneration following an acute injury, 

as this is a common assay used to study regeneration experimentally. We defined an acute 

muscle injury as an injury induced by a single intervention (e.g. eccentric-contraction, freeze 

injury, cardiotoxin) that results in significant loss of strength that can recover within a time period 

of four-six weeks. We built the ABM in Repast, a java-based modeling platform (Argonne 

National Laboratory, Lemont, IL, USA). The spatial agents in the model included: muscle fibers, 

extracellular matrix (ECM), necrotic muscle tissue, fibroblasts, myofibroblasts, quiescent and 

activated SSCs, myoblasts, myocytes, and fused myotubes. The non-spatial agents included 

the following inflammatory cells: resident macrophages, neutrophils, three phenotypes of M1 

macrophages, and M2 macrophages.  

 

Figure 3.1. ABM simulates contraction-induced muscle damage and regeneration over 28 days. 
Histological images were imported into the ABM to define the spatial geometry. A contraction-
induced muscle injury was simulated by replacing fiber elements with necrotic elements, and 
regeneration was tracked over time by measuring cell counts and fiber CSA. 

 

The model represented 170,000 square microns with a 20-micron thickness cross-

section of muscle using 13,000 grid elements. The muscle cross-section was generated by 
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importing muscle histology, masking the image (Mathworks, Natick, MA, USA) to differentiate 

the fibers and ECM, and mapping the masked image onto the ABM grid. Initial injury was 

simulated by stochastically replacing a percentage of the fiber elements with necrotic elements, 

according to the initial damage input parameter. For our healthy muscle simulations we varied 

the level of initial damage to determine its effect on muscle regeneration. In our mdx models we 

utilized data from the literature to define the extent of initial injury. While this approach simplified 

the mechanics of contraction-induced damage, it allowed us to focus on the cellular behaviors 

that lead to regeneration following the initial damage. Simulations were run with a 1-hour time 

step for a simulated 28 days following injury. All simulations were repeated 10 times to sample 

the stochastic nature of the model. The key model outputs included the cross-sectional area 

(CSA) of the muscle fibers and the time-varying counts for each cell type in the model. Muscle 

fiber CSA was determined by summing all of the healthy muscle fiber elements in the 

simulation. CSA recovery was defined as the current fiber CSA normalized to the original fiber 

CSA (pre-injury). 

At each time step, literature-derived rules governed the behavior of the agents in the 

model. At model initialization, the ABM spatial representation and baseline cell (agents) 

numbers were defined. At subsequent time steps, each agent individually followed a probability-

based decision tree to determine its action (Fig 3.2). For instance, based on the magnitude of 

the differentiation signal, SSC agents may differentiate into myoblasts or remain SSC agents. 

The collective actions of all of the autonomous agents (cells) lead to emergent, system-level 

behaviors (CSA changes, cell population dynamics) that were analyzed in the simulations.  
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Figure 3.2. Flowchart of ABM rules. First the model is initialized, during each subsequent time 
step the inflammatory cells and growth factors are calculated. Then the spatial agents, 
fibroblasts, SSCs, fibers, and ECM follow a probability-based decision tree to guide their 
actions. In the flow chart, boxes represent a final action for the agent for the current time step. 
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3.3.3 Agent action overview  

The simulated behaviors of the fibroblast and SSC agents included: secretion of growth 

factors, migration, quiescence, activation, recruitment, division, differentiation, and apoptosis. 

The 31 growth factors in the model represented the change in growth factors from homeostatic 

conditions (prior to injury) to levels following an eccentric contraction injury. At each time step, 

growth factors were added based on the defined secretions for each cell type. To migrate, the 

agents moved to a neighboring element within the model. Quiescent agents did not migrate or 

secrete growth factors until they were activated. If an agent was recruited, then a new agent 

was added to the simulation. An active agent could migrate, secrete growth factors, divide, 

differentiate, and apoptose. Agent division was represented by adding an additional agent to the 

simulation, and agent differentiation was represented by changing the agent type to the 

differentiated state. If an agent apoptosed, it was removed from the simulation.  

 

3.3.4 Satellite stem cell (SSC) agents  

(Table 3.1). At model initialization, the SSC agents were spatially located at the fiber 

edge in a quiescent state (130), with approximately 1 SSC agent per 4 fibers, for a 20 micron 

thickness cross-section.  Following injury, SSC agents became activated by damage and the 

presence of HGF (3, 107, 156). Additionally, SSC agents were recruited to injured fibers based 

on a recruitment signal of growth factors (27, 57, 74, 144). SSC agents divided, both 

symmetrically (into two SSC agents) and asymmetrically (into one SSC agent, one committed 

myogenic progenitor agent), based on the microenvironmental cues and growth factors (outlined 

in Table 3.1). The probability that a SSC divided asymmetrically varied in the literature from 0.3 

to 0.6, with the remaining divisions being symmetric (41, 85, 182). While the asymmetric cell 

division parameter is important to replicate experimental observations in the model, variation 
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within the range (0.3-0.6) did not greatly influence our model predictions. Therefore we selected 

a probability of 0.5 for both asymmetric and symmetric divisions. The SSC agents terminally 

differentiated (based on a differentiation signal) and fused with the injured fiber agents to repair 

the muscle (2, 4, 7). To simulate regeneration of the fiber, fused myocytes added muscle fiber 

elements to the periphery of the fiber. Approximately 10% of the SSC agents did not terminally 

differentiate and helped to restore the SSC agent pool until returning to quiescence (54, 85).  

 

3.3.5 Fibroblast agents 

(Table 3.2) At initialization, the fibroblast agents were distributed throughout the ECM 

(112). Following injury, additional fibroblast agents were recruited at a rate that was proportional 

to the amount of IL-4 secreted by eosinophil agents (66). Recent experiments have revealed 

that connective tissue fibroblasts in the muscle proliferate in the presence of SSCs; therefore, 

we incorporated a rule that caused fibroblast agents to proliferate in the presence of activated 

SSC agents (112). The likelihood of fibroblast agent apoptosis was elevated by the presence of 

TNF-α, while active TGF-β blocked the apoptosis (86). We modeled both inactive and active 

TGF-β as growth factors, and included a period of activation for TGF-β based on experimental 

data showing a 3-4 day delay between inactive TGF-β and active-TGF-β peaks (86). However, 

myofibroblast agents were able to immediately release activated TGF-β (39, 179). Fibroblast 

agents had an increasing likelihood of differentiating into myofibroblast agents when TGF-β was 

elevated for an extended period of time. We tuned the length of time at which high TGF-β 

exposure caused myofibroblast agent differentiation so that myofibroblast agent differentiation 

did not occur in the healthy muscle, consistent with published observations (30, 86). The 

fibroblast and myofibroblast agents (Table 3.2) secreted growth factors and collagen following 

injury (72, 98, 117, 120, 133, 146, 179, 185).  
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Table 3.1. Satellite stem cell (SSC) agent behaviors are defined based on literature-derived 
rules. 

 

SSC Agent Behavior Sources 

SSC Activation 

Activation signal: Fiber damage; HGF (3, 107, 156) 

Recruitment signal:  HGF + IGF + FGF + 
MMP – TGF-β 

(2, 27, 74, 144, 172) 

Migrate if MMP’s break down dense ECM (27, 172) 

Migrate along fiber edge to damaged site (57, 144) 

SSC Division 

Enter cell cycle/divide: 3*IGF + 3*FGF + 
TNF-α + IFN + IL6 + VEGF + PDGF + GCSF 
– IL10 – TGF-β 

(2, 4, 7, 51, 105, 136, 138, 152, 181);   

50% cell divisions are symmetric, 50% 
asymmetric 

(41, 85, 182) 

10% of cells never express Myf5 and will not 
differentiate into myocytes 

(54, 85) 

Chance of division decreases with each cell 
division; 1st division 85%; 2nd 65%; 3rd 20% 

(145) 

After symmetric cell division, sister cells 
remain in contact for 3 hours  

(144, 145) 

After asymmetric cell division, sister cell 
remain in contact for 8 hours  

(144, 145) 

Time to initial division: 18-24 hours (85, 131, 145)  

Time to divide: 10 hours (131, 145) 

Decreased fibronectin = decreased chance 
of symmetric division 

(11) 

SSC Differentiation 

Exit cell cycle/terminally differentiate: 4*IL10 
+ IL4 - 2*FGF – 2*IGF – 2*HGF – IFN – 
TNF-α 

(2, 4, 7, 107)  

Activated SSCs differentiate into myoblasts; 
myoblasts differentiate into myocytes 

(20, 173) 

Differentiated myocytes fuse at damaged 
fiber edge 

(20, 173, 183) 

SSC Behaviors 

Initial count: 1 quiescent SSC per 4 fibers 
(assumes 20 micron thick slice) 

(130) 

Secretions: Fibronectin; MMPs; IL1; VEGF; 
CCL22 

(11, 25, 88) 

Inflammation dependent secretions:  TNF-α; 
IL6; IL8; MCP 

(25, 133)  

Differentiated myoblasts fuse and repair 
muscle fiber 

(91, 171) 

If M1 macrophage count > SSC count, SSCs 
are protected from apoptosis 

(25) 
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Table 3.2:  Fibroblast agent behaviors are defined based on literature-derived rules. 

 

3.3.6 ECM and muscle fiber agents  

The muscle fiber and ECM agents were comprised of multiple elements in the model. An 

average of 180 elements (2400 square microns) represented the area of a single muscle fiber. 

The ECM elements were prescribed a collagen density parameter based on literature 

measurements (118). To simulate injury, the initial damage parameter (input to the simulation) 

defined the percent of the healthy muscle fiber elements that were replaced by necrosis 

elements. The rate of necrosis element removal was dependent on the number of M1 

macrophage agents. Elements corresponding to cleared necrosis converted to a low-density 

collagen element.  Fibroblast agents secreted collagen in these locations to restore the stiffness 

of the damaged tissue (137, 188). Additionally, if areas of very low collagen remained, then two 

neighboring ECM elements with low collagen were merged into a single element (with the sum 

of both collagen density factors). This simulated behavior reduced the overall size of the muscle 

(muscle fibers and ECM) which is seen during muscle recovery (112). When myocyte agents 

Fibroblast Agent Behavior Sources 

Initial count: 1 per every 2 fibers (assumes 20 
micron thick section) 

(112) 

Recruitment signal: eosinophil secreted IL-4 (66) 

Proliferation signal: SSC proliferation (86) 

Extended TGF- β saturation causes fibroblast 
differentiation into myofibroblasts 

(39, 179) 

Secretions:  TGF- β ; IGF1; PDGF; MMPs; IL6; 
FGF; Fibronectin 

(72, 98, 117, 120, 146, 185)  

Inflammation dependent secretions:  IL1; IL8; 
MCP 

(133)  

Secrete collagen to rebuild ECM following injury (137, 188) 

Migrate towards damage/low collagen at 5-20 
microns/hour 

(40, 114) 

Myofibroblast secretions: 2x Collagen; active-
TGF-β 

(120, 179, 185) 

Apoptosis signal: TNF-α (86) 

TGF-β blocks TNF-α induced apoptosis (86) 
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fused to the fiber edge, muscle fiber elements were added at the periphery of the fiber, 

increasing the muscle fiber size  (20, 173, 183). 

 

3.3.7 Inflammatory cell ODE  

The inflammatory cell dynamics were defined based on previous work by Martin et al 

(100, 102). Our goal was to reduce the computational cost of the ABM, but still retain the 

dynamic behaviors of the inflammatory cells that were previously established. Therefore, we 

converted the rules for each of the inflammatory cells in the ABM described by Martin et al. into 

a system of seven coupled ordinary differential equations (ODEs). The seven ODEs 

represented the seven inflammatory cell phenotypes in Martin’s model, including: resident 

macrophages (RM), neutrophils (N), apoptotic neutrophils (Na), M1 macrophages (M1), 

apoptotic neutrophil phagocytosing M1 macrophages (M1ae), debris phagocytosing M1 

macrophages (M1de), and M2 macrophages (M2) (Equations 3.1-3.7). To test if our ODE was 

equivalent to the ABM by Martin et al., we ran simulations of the inflammatory cell dynamics 

following injury with both models and confirmed that the results of our ODE fell within the 95% 

confidence interval of the predictions from the Martin ABM.  

The ODE was defined by 51 parameters that represented the recruiting and deterring 

interactions between the different cells types. The interactions were determined based on the 

growth factor secretions and the response to growth factors for each cell type. Within the ABM 

simulation framework, the inflammatory cell ODEs were solved non-spatially using the Euler 

method with a 1 hour time-step. To couple the inflammatory cell ODEs with the behaviors of the 

other spatial cell agents, we included the following rules for inflammatory cell agents, based on 

the cell counts at the beginning of each time step: (i) secretion of growth factors (ii) removal of 

necrosis elements and (iii) M1 macrophage-dependent protection of SSC apoptosis. 
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Additionally, the inflammatory cell ODEs are dependent on the spatial (fibroblast and SSC) 

agent counts at each time step. Detailed descriptions of the inflammatory cell ODEs are 

included in Appendix A.  

 

3.3.8 Baseline model parameterization  

To parameterize the baseline model, we ran simulations and iteratively adjusted the 

unknown model parameters (Table 3.3), such that the model predictions (95% confidence 

intervals) were consistent with published experimental data. The published experimental data 

included: (i) fibroblast and SSC counts (112), inflammatory cell counts (4) and CSA recovery 

measurements (123) for healthy muscle regeneration following injury, and (ii) results from 

healthy muscle regeneration perturbation studies. The perturbation studies included: (i) 

fibroblast depletion (112),  (ii) SSC depletion (112), (iii) TNF-α blockade (86), and (iv) increased 

TGF-β (86). 

When comparing the cell counts with published experiments, we focused on the critical 

window of 3-7 days post-injury, since this is when SSCs and fibroblasts peak in the literature. 

Cell counts were normalized such that the peak counts were similar for all the different cells in 

the model. The growth factor secretions from each cell were then scaled to be consistent with 

literature observations. In order to confirm the validity of this normalization scheme, we 

performed simulations with both normalized and un-normalized cell counts and found no 

differences in the simulations’ predictions. The literature consistently uses percent of peak 

isometric torque as the biomarker of active muscle tissue regeneration; therefore, we tuned our 

unknown model parameters such that the fiber CSA predictions encompassed the peak torque 

measurements from the literature. Once the model parameters were tuned, we ran simulations 

to verify the models predictions. To verify the model predictions, we replicated experimental 
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perturbations in literature (Table 3.4) and compared our model predictions with the experimental 

results from the respective studies.  

 

Table 3.3. Unknown model parameters were tuned to recapitulate published literature. 

Parameter Equation Range 
Tested 

Value 

Normalization factor for 
fibroblast recruitment, x1 

Fibroblast recruitment probability = 
1/(x1-recruitment signal) 

35-120 70 

Maximum probability of 
fibroblast recruitment per hour, 
x2 

if fibroblast recruitment probability > x2, 
recruitment probability = x2 

1/50 − 
1/5 

1/15 

Normalization factor for 
fibroblast expansion, x3 

fibroblast expansion probability = 1/(x3 – 
expansion signal) 

50 − 140 90 

Maximum probability of 
fibroblast expansion per hour, x4 

if fibroblast expansion probability > x4, 
expansion probability = x4 

1/100 − 
1/10 

1/35 

Minimum required time (hours) 
in high TGF- β environment for 
fibroblasts to differentiate into 
myofibroblasts, x5 

Minimum required time (hours) in high 
TGF-β environment for fibroblasts to 
differentiate into myofibroblasts = x5 

0 − 24 12 

Normalization factor for SSC 
division, x6 

SSC division probability = 1/(x6 – 
division signal) 

150 − 
300 

220 

Maximum probability of SSC 
division per hour, x7 

if SSC division probability > x7, division 
probability = x7 

1/100 − 
1/10 

1/60 

Normalization factor for SSC 
differentiation, x8 

SSC differentiation probability = 1/(x8 – 
differentiation signal) 

−30 − 
40  

0 

Maximum probability of SSC 
differentiation per hour, x9 

if SSC differentiation probability > x9, 
differentiation probability = x9 

1/50 − 
1/2 

1/5 

Normalization factor for SSC 
migration, x10 

SSC migration probability = 1/(x10 – 
migration signal) 

100 − 
180 

150 

Maximum probability of SSC 
migration per hour, x11 

if SSC migration probability > x11, 
migration probability = x11 

1/50 − 
1/5 

1/30 

Probability of adding a fiber 
element, when SSC is fused 
with myofiber per hour, x12 

Probability of adding a fiber element, 
when SSC is fused with myofiber per 
hour = x12 

1/20 − 1 1/4 

Maximum number of fiber 
elements added per SSC, x13 

Maximum number of fiber elements 
added per SSC = x13 

5 − 200 60 
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Table 3.4: Input parameters for model verification simulations. 

Simulation Revised model input Source 

Fibroblast depletion Decreased baseline fibroblast counts by 
60%, and fibroblast recruitment by 60% 

(112) 

Macrophage decrease Decreased macrophage levels by 80% (154) 

SSC depletion Set SSC counts to 0 (112) 

No asymmetric division Set the chance of asymmetric division 
to 0 

(82) 

Block TNF-α Set TNF-α parameter to 0 (86) 

Add TGF-β Increased TGF-β 1.5x (86) 

Fibronectin knockdown Set fibronectin parameter to 0 (11) 

Block eosinophil secreted IL-4 Set eosinophil-secreted IL-4 parameter 
to 0 

(66) 

 

3.3.9 Analysis of individual mechanisms of disease  

After developing the model to replicate various experimental observations of healthy 

muscle regeneration, we modified individual cellular behaviors to examine how each 

mechanism can contribute to the disease phenotype. To do this, we independently varied the 

number of fibroblast, SSC, and inflammatory cell agents, the ability to asymmetrically divide, 

and the extent of initial damage in a range from healthy to values relevant to dystrophic muscle. 

We then simulated a muscle injury and tracked the CSA recovery over time (fiber CSA relative 

to original CSA). We examined the simulation predictions in two ways. First, we quantified the 

time-varying muscle fiber CSA (relative to original size) for 10 repeated simulations of variations 

in each input parameter. Second, we compared muscle fiber CSA (relative to original size) at 

specific time points for all simulations within a physiologic range of the input parameters.  

 

3.3.10 Analysis of mdx mouse models  

We created variations of the ABM that represented mdx mice at three stages of disease 

(Table 3.5) by altering parameters consistent with observations of muscle pathophysiology at 

different ages of mdx mice. We selected three ages of mdx mice to differentiate between three 
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phenotypes of the disease that occur at different ages. The 4 week old mdx mouse has a 

significant inflammatory response and exhibits increased markers of degeneration. The 3 month 

old mdx mouse represents a more stable phenotype, in which the inflammatory cells, SSCs, and 

fibroblast are more similar to a healthy mouse with increased damage susceptibility. The 9 

month old mdx mouse represents a more pro-fibrotic phenotype. 

Table 3.5. Model input parameters were altered to develop models of mdx mice at three 
disease stages. 

 

 The spatial representations were defined by importing histology from correspondingly 

aged mdx muscle. The histology defined the pathological variations in CSA, fibrosis, and 

collagen density  (30, 118). To capture both the increased damage susceptibility in mdx mice, 

and a significant force-loss from injury, we used work by Dellorusso et al, that analyzed the 

injury from supra-physiologic strains in different ages of mdx mice (35). Our model 

representation of damage represents the factors that recover as a result of SSC behavior and 

Parameter Healthy 
(3 
month 
old) 

4 week 
old mdx  

3 month 
old mdx 

9 month 
old mdx  

Fibrosis (% ECM above healthy) (30, 118) 0% 0% + 5% + 10% 

Relative initial fibroblast count (30) 1 1 1.5 2 

Initial damage (35, 115) 10% 35% 26% 29% 

Relative collagen density (63, 103, 118) 1 1 1.5 3 

Relative initial SSC count (130, 139) 1 1 1 1 

Relative telomere shortening (93, 135) 1 1 1 1 

Probability symmetric division (41, 60, 85, 182) 0.5 0.5 0.5 0.5 

Probability asymmetric division (41, 60, 85, 
182) 

0.5 0.1 0.1 0.1 

Probability abnormal division (41, 60, 85, 182) 0.5 0.4 0.4 0.4 

Relative resident macrophage count  (166, 
176) 

1 2 1.3 1.8 

Relative chance of secondary necrosis (166, 
167) 

1 2 1.5 1.5 

Eosinophil scalar (23) 1 1.3 1 1 

M1 macrophage scalar (166, 176) 1 1.25 1 1 

M2 macrophage scalar (165, 166) 1 0.8 1.25 2.5 

Relative initial active-TGF-B1 (97, 118) 1 1 1 1.3 
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thus does not include factors that can recover without SSCs (e.g. excitation-contraction 

uncoupling). Therefore, we aimed to exclude the contribution of excitation-contraction coupling 

in our initial damage input parameter by excluding the percent of force-loss that recovers 15 

minutes post injury, as this portion of the force deficit has been shown not to depend on SSC 

regeneration (35). We also reduced the level of initial damage, while maintaining the ratios of 

damage between the groups, based on the assumption that 50% of the torque-deficit can be 

recovered without SSCs (128). From these data, we calculated the ratio of damage between 

healthy, 3 month mdx, and 9 month mdx mice to be 10%:26%:29%. To predict the damage in 

the 4 week mdx mouse, we used a previously published finite-element model to simulate the 

contraction. The model predicted that the lack of dystrophin proteins (17, 52) and low-density 

collagen (prior to fibrosis) resulted in 35% damage. In these simulations, we have assumed that 

the mechanism of injury (damage to contractile muscle tissue) is the same between healthy and 

mdx mice. 

Baseline cell counts for fibroblasts were altered according to experimental data (30). 

Baseline SSC counts were kept the same between healthy and mdx models because many 

studies have shown that mdx mice do not show direct changes in SSC counts or regeneration 

(measured by telomere shortening) in the lower limb for the age groups modeled (135, 139). 

However, asymmetric division of SSC agents were modified according to experimental 

observations (41).  The inflammatory cell behaviors were altered to represent the significantly 

elevated pro-inflammatory environment in the 4 week mdx mouse model with increased 

cytotoxicity of macrophage agents (166, 167, 176). In the 3 month old mdx mouse model, the 

inflammatory response was elevated relative to the healthy values. In the 9 month old mdx 

mouse model, the inflammatory response was shifted to a highly anti-inflammatory phenotype 

(higher M2 macrophage agent counts relative to M1 agent counts) with a TGF- β enriched 

environment (added TGF-β) (97, 118, 166, 167). 
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3.4 Results  

3.4.1 ABM simulated healthy muscle regeneration dynamics.  

While tuning the unknown model parameters (Table 3.3), the simulations revealed 

emergent muscle regeneration behaviors that were consistent with key experimental studies in 

the field. For example, the fibroblast agents peaked between days 3 and 7 following injury (Fig 

3.3A), with fibroblast agents remaining elevated throughout most of regeneration (10, 112). The 

SSC agents peaked between days 3 and 7, and the differentiating myocyte agents appeared in 

the simulated muscle by day 4, peaking in number by day 10 (10, 112). The inflammatory cell 

ODEs also recapitulated the timing of inflammatory cell peaks, including M1 macrophages at 

day 2-3, and M2 macrophages at day 4-5 (4, 25, 136, 166) (Fig 3.3B). The simulated muscle 

fiber CSA returned to 100% of its original fiber size by 14 days post injury (Fig 3.3C) (123). 

 

Figure 3.3. ABM of healthy muscle regeneration recapitulates peak cell populations and fiber 
CSA following injury. The model recapitulated experimental data for SSCs, fibroblasts, M1 
macrophages and M2 macrophages following injury, within the models predicted 95% 
confidence interval for cell counts (4, 112) (A, B). Regeneration in the ABM is measured as a 
percent of the current fiber CSA relative to the original fiber CSA (pre-injury). The model 
recapitulated experimental regeneration data (peak isometric torque loss) for healthy muscle 
following injury (C). The day 0 time point has been excluded from this figure to reduce the 
contributions from neuromuscular failure (123). *Cell counts have been normalized for 
comparison to model results, as described in Methods section. 
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3.4.2 ABM simulations of initial damage perturbations.  

We varied the amount of initial damage and tracked the CSA recovery (defined as the 

normalized CSA) over 28 days (Fig 3.4A). The ABM predicted that the time to recovery (time for 

the fiber CSA to return to 100%) is not linearly dependent on the extent of initial damage (Fig 

3.4B). At early time points (day 7), the percent CSA recovery had a one-to-one relationship with 

the initial damage. However, at later time points (days 14 and 28), the CSA percent recovery 

was similar for the different damage levels. This implies that the magnitude of the regenerative 

response is positively correlated with the amount of muscle damage, and the timing of 

regeneration remains relatively constant across damage levels. 

 

 3.4.3 ABM simulations of fibroblast perturbations.  

We simulated the effects of varying the number of fibroblast agents in the model across 

a physiologic range (0 to 2.5 fold change in the number of fibroblast agents, relative to healthy 

controls) (Fig 3.4D). With increased numbers of fibroblast agents in the muscle, we found no 

change in muscle regeneration (fiber CSA) compared to healthy muscle (Fig 3.4D). Simulations 

with a 0-0.5 fold change in fibroblast agents (relative to healthy controls) resulted in an 11% 

decrease in fiber CSA at the end of the 28 day simulation (Fig 3.4C).  

 

3.4.4 ABM simulations of inflammation perturbations.  

We varied the number of macrophages to investigate the effects of inflammation on 

muscle regeneration in our ABM (Fig 3.4E and 3.4F). Our model predicted that a 0-0.3 fold 

change in macrophage agents (relative to healthy controls) resulted in increased fiber CSA for 

the first 6 days following injury, but ultimately resulted in a 13% decrease in fiber CSA at the end 
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of the 28 day simulation. Additionally, we found that greatly increasing the number of 

macrophage agents (2.5-3 fold increase from healthy controls) resulted in a decreased fiber 

CSA at two time periods, days 0-5 and day 10-28, with a 7% decrease in fiber CSA at day 28.  
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Figure 3.4. (From previous page). Altering initial damage, fibroblast agent counts, and 
macrophage agent counts revealed complex, temporal dynamics. We analyzed the effects of 
modifying initial damage (A, B), fibroblast agent counts (C, D), and macrophage agent counts 
(E, F) in our healthy muscle ABM. Parameters were varied in a range from healthy to expected 
values in dystrophic muscle. Output includes muscle regeneration curves for 10 repeated 
simulations with a single input parameter (A, C, E), and muscle fiber CSA (relative to original 
size) at specific time points for all simulations within a range of input parameters (B, D, F). 
Altering the initial damage revealed relatively consistent timing of recovery (A). Low fibroblast 
counts resulted in initial increased fiber CSA but ultimate impairment (C). Both high and low 
levels of macrophages were predicted to impair regeneration (E). 
 

3.4.5 ABM simulations of SSC perturbations.  

The simulations predicted that varying SSC agent counts by 0-1.5 fold (relative to 

healthy controls) affected muscle regeneration significantly (Fig 3.5A and 3.5B). Depletion of 

SSC agents (0 SSC agents) resulted in a 36% decrease (relative to healthy controls) in fiber 

CSA by day 28, while low SSC agent counts (0.1-0.4 fold change relative to healthy controls) 

resulted in a 22% decrease (relative to healthy controls) in fiber CSA by day 28. Increasing the 

SSC agent counts 1.5 fold only minimally enhanced the fiber CSA (3%) compared to the healthy 

controls. We simulated the effects of impaired SSC agent asymmetric division on the 

normalized fiber CSA. Allowing for 0% SSC agent asymmetric division (100% symmetric 

divisions) lead to impaired muscle regeneration at all time points after 7 days, with a 6% 

decrease in fiber CSA at day 28 (Fig 3.5C). 100% SSC agent asymmetric division resulted in no 

difference in fiber CSA at all time points.  
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Figure 3.5. Altering SSC agent counts and impairing SSC agent asymmetric division revealed 
complex, temporal dynamics. We analyzed the effects of modifying SSC agent counts (A, B), 
and percent of SSC agent asymmetric divisions (C, D) in our healthy muscle ABM. Parameters 
were varied in a range from healthy to expected values in dystrophic muscle. Output includes 
muscle regeneration curves for 10 repeated simulations with a single input parameter (A, C), 
and muscle fiber CSA (relative to original size) at specific time points for all simulations within a 
range of input parameters (B, D). Depleted and low levels of SSC agents impaired regeneration, 
while high levels lead to a small but significant increase in fiber CSA (A). Zero SSC agent 
asymmetric divisions resulted in impaired regeneration for all time points (C). 
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3.4.6 Comparison of ABM perturbations with the published literature.  

The results of fibroblast and inflammatory cell perturbation simulations were generally 

consistent with the available literature (Fig 3.6). For example, decreasing the number of 

fibroblast agents by 60% predicted decreased regeneration, and published experiments have 

shown that depletion of 60% of Tcf4+ fibroblasts resulted in premature differentiation of SSCs 

and impaired regeneration (47, 112). The model predicted that decreasing the number of 

macrophage agents impaired muscle regeneration, increased fibroblast agent counts, and had 

no effect on SSC agent counts. Comparable experimental studies similarly showed that 

decreased macrophage counts resulted in decreased regeneration at day 9 and 21 (4, 143, 

154). Additionally, in mice with decreased monocytes (C-C chemokine receptor type 2 (Ccr2)-/- 

mouse strain), fibro/adipogenic progenitor cell (the main source of myofibroblasts in skeletal 

muscle (87, 162)) clearance is impaired, leading to increased fibro/adipogenic progentior cell 

counts (86). Experimentally, the effect of decreased macrophage counts on SSC counts is 

difficult to interpret in the literature, as some studies have shown no effect on SSCs (154, 175), 

while others have shown delayed proliferation and differentiation of SSCs (140).  

The ABM predictions of in silico perturbations of SSC agents was also consistent with 

data in the literature. Our model predicted that decreasing the number of SSC agents resulted in 

decreased fibroblast agent counts and impaired regeneration. Similarly, experimental studies 

showed that depletion of Pax7+ SSCs resulted in decreased Tcf4+ fibroblast counts at day 5 

and 28 (Tcf4+ cell density was increased following normalization to muscle area), and impaired 

regeneration (112). The model predicted impaired regeneration and decreased SSC agent 

counts following impaired SSC agent asymmetric division. A comparable experimental study 

similarly demonstrated that impaired SSC asymmetric division resulted in lower SSC counts and 

impaired regeneration (82) 
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Figure 3.6. ABM predictions are verified through comparison with experimental results from 
published literature. Upper triangles represent a decrease (red), increase (blue), no change 
(gray), or inconclusive published data (checkered) for regeneration, SSC counts, or fibroblast 
counts. Lower triangles represent the model prediction. Inconclusive data is due to conflicting 
published data, or our inability to identify published experimental studies that recapitulated our 
ABM perturbations. Regeneration increases and decreases represent an increase or decrease 
in fiber CSA at the end of the 28 day simulation, respectively. To verify model predictions we 
simulated experiments in the literature and compared our model predictions to the experimental 
results. Experimental sources from the literature used for comparison: 1. (47, 112). 2. (4, 86, 
143, 154). 3. (112). 4. (82). 5. (86, 174). 6. (86, 118) 7. (11, 92). 8. (66). 
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Finally, we evaluated the effects of varying four individual parameters that have been 

shown in the literature to be critical regulators of muscle regeneration: levels of TNF-α, TGFβ, 

fibronectin, and eosinophil-secreted IL-4. The model predicted that blocking TNF-α resulted in 

increased fibroblast agent counts and impaired regeneration at day 14. Similarly, experimental 

studies showed that blocking TNF-α resulted in increased fibroblasts at day 7 (86), and impaired 

regeneration at day 14 (174).  Simulations with increased TGFβ expression predicted increased 

fibroblast agent counts and impaired regeneration. Comparable experimental studies showed 

increased fibroblasts at day 7 (86) and impaired regeneration, as measured by decreased force 

production one month following injury (118). The simulation of fibronectin knockdown predicted 

decreased SSC agent counts, in agreement with experimental studies (11, 92). Finally, 

simulations that blocked eosinophil-secreted IL-4 resulted in decreased regeneration and 

fibroblast agent counts. Similarly, experimental studies have shown that that blocking the IL-4 

receptor resulted in decreased fibro/adipogenic progenitor cell numbers and impaired 

regeneration (66). 

 

3.4.7 Simulated mdx mice displayed altered cell dynamics at all ages and impaired 

regeneration in 9 month old mdx mice.  

Models of the 4 week old and 3 month old mdx mouse muscle recovered to within 96% 

of original fiber CSA (Fig 3.7A), while the model of the 9 month old mdx mouse recovered to 

88% of its original size by day 28. Interestingly, although the predictions of fiber CSA 

regeneration appear similar for some of the mdx ages, the cellular dynamics driving the 

regeneration differ substantially for each mdx age. For example, following injury, the number of 

SSC agents was significantly increased (2.8x healthy controls) in the 4 week old mdx mice with 

a two-day delay in initial SSC agent differentiation (Fig 3.7B and 3.7C), while the 9 month old 

mdx mice had the highest levels of peak fibroblast agent counts (1.6x healthy controls) (Fig 
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3.7D). In the 4 week old mdx mice, the inflammatory response was dominated by pro-

inflammatory macrophage agents (M1), and the activity of M2 macrophage agents was less 

substantial (Fig 3.7E and 3.7F). By contrast, both the young and 9 month old mdx mice were 

dominated by an anti-inflammatory phenotype with higher counts of M2 macrophage agents as 

compared to M1 macrophage agents. All the macrophage counts were elevated in the mdx mice 

relative to the healthy controls.  

 

Figure 3.7. Three models of mdx mice simulate regeneration and cell counts following injury. 
Three models of mdx mice were developed for three stages of disease: 4 week old mdx, 3 
month old mdx, and 9 month old mdx. Injury and regeneration were simulated and CSA and cell 
counts were tracked over time. The 4 week old and 3 month old mdx mouse recovered to 96% 
of the original fiber CSA 28 days post injury, while 9 month old mdx mice recovered to 88% of 
its original size (A). SSC agents were significantly increased in 4 week old mdx mice with 
delayed SSC agent differentiation (B, C). 9 month old mdx mice had high levels of fibroblast 
agents and low levels of SSC agents and differentiated SSC agents (B, C, D). The 4 week old 
mdx mouse was dominated by inflammatory (M1) macrophage agents, while the young and 9 
month old mdx mice were dominated by anti-inflammatory (M2) macrophage agents. 
 

 We analyzed the relationship between the model cell counts and muscle CSA recovery 

in the healthy and mdx simulations. Peak SSC agent counts, normalized by the area of injury 
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(μm2), correlated with the percent of the injured muscle that recovered 28 days post injury (Fig 

3.8A). Since the initial SSC count parameter was not different in any of the mdx simulations, the 

predicted differences in peak SSC agent counts between the healthy and mdx mouse 

simulations were emergent model predictions that resulted from changes in the 

microenvironment. Therefore, we analyzed the relationship between SSC agent counts and 

other model predictions, to investigate how changes in individual factors associated with 

disease influence SSCs. Peak fibroblast agent and M2 macrophage agent counts, normalized 

by the area of injury, influenced the peak SSC agent counts, but no single model parameter was 

able to predict the differences in SSC counts (Fig 3.8B-D). 

 

Figure 3.8. Peak SSC agent counts correlate with percent of injured muscle area recovered by 
day 28. Peak SSC agent counts from the healthy and mdx simulations, normalized by area of 
injury, correlate with the percent of injured muscle area recovered 28 days post injury (A). 
Percent of injured muscle area recovered is calculated as the (final fiber CSA – fiber CSA 
following injury)/area of the injury. Data points represent model results from individual 
simulations with n = 10 simulations per group (healthy, 4 week old mdx, 3 month old mdx, 9 
month old mdx). Peak SSC agent counts are poorly correlated with fibroblast, M1 macrophage, 
and M2 macrophage agent counts (B, C, D).   
 

3.5 Discussion 

The goal of this study was to synthesize the available literature to develop a 

computational model that predicts muscle regeneration following injury based on the 

autonomous behaviors of skeletal muscle cells, fibroblasts, SSCs, and inflammatory cells. By 
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incorporating literature-derived rules from over 100 sources, we were able to capture behaviors 

from a wide breadth of experimental studies. We created a model that is sensitive to a broad 

range of parameters, yet able to simulate regeneration dynamics that are not explicitly defined 

in the model. We then used the model to probe disease mechanisms in insolation and within our 

models of the mdx mouse. The simulation results provided insight into the drivers of impaired 

regeneration in mdx muscle.  

The simulations of healthy and mdx mice revealed that the percent of injured muscle 

recovered by day 28 is dependent on the peak number of SSC agents following injury (Fig 

3.8A). In our healthy and mdx models with near full CSA recovery 28 days post injury, (healthy, 

4 week mdx, and 3 month mdx), the peak number of SSC agents was directly correlated with 

the extent of initial damage, where higher levels of initial damage led to higher numbers of SSC 

agents (Fig 3.7B). Comparatively, in the 9 month mdx mouse with impaired regeneration, the 

peak SSC agent counts were suppressed relative to the initial damage. Since, in our model, 

SSCs are the primary cells responsible for repair and maintenance of skeletal muscle, it is not 

surprising that regeneration would correlate with SSC counts. However, it is important to note 

that we did not explicitly alter the SSC agent counts in our different models of mdx mice. Rather, 

the pathological differences in SSC agent counts during regeneration were an emergent model 

prediction driven by other microenvironmental factors. Our model analyses predicted that 

fibroblast and M2 macrophage agents influenced peak SSC counts, but no single model 

parameter was able to predict the differences in SSC populations that ultimately led to impaired 

regeneration. Since SSC counts have been implicated in DMD and used as therapeutic targets 

(135), our model suggests that it may be beneficial to target an upstream microenvironmental 

factor driving pathological differences in SSCs.  

The model simulations also revealed that the cellular dynamics driving regeneration are 

time dependent, and that perturbing disease mechanisms often leads to temporally conflicting 
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regeneration results. For example, reducing the number of macrophage or fibroblast agents 

initially increased fiber CSA, but ultimately lead to impaired regeneration at the end of the 28 

day simulation. Since these time-dependent cell types are often therapeutic targets, it is critical 

to understand the temporal variations that may occur following experimental perturbations. 

Current experimental techniques make continuous monitoring of the cellular and regenerative 

environment very difficult; therefore, computational modeling should be used to understand the 

temporal complexities and adequately define experimental time points to capture those 

dynamics.  

The mdx simulation results compared favorably with the available published literature. 

Both our 3 month old mdx mouse simulation  (Fig 3.7A) and comparable literature showed near-

full CSA recovery by day 21 (123). The 4 week old mdx mouse simulation had 2.7 (Fig 3.7B) 

and 2.4 (Fig 3.7C) fold increases in SSC and differentiated SSC agents. Comparatively, a 

published experiment for the mdx diaphragm, a skeletal muscle that represents a more severe 

phenotype than the lower limb muscle in the model, showed similar increases in SSCs (116). 

The 4 week old mdx mouse simulation predicted a 4.8 fold increase in total macrophage agents, 

relative to healthy controls (Fig 3.7E and 3.7F), whereas an experimental study similarly showed 

a 4.5 fold increase in total macrophages between these groups (166). Additionally, the 

predictions from our healthy muscle model perturbations were similar to experimental results in 

the literature (Fig. 3.6). However, it is important to note that, while we aimed to include the most 

representative studies available in the literature, the perturbation analysis does not include the 

results of all studies. 

It is important to consider the limitations of our model. In developing the healthy model, 

we focused on the complex dynamics of a subset of cells (particularly the SSCs and fibroblasts), 

rather than aiming to recapitulate all aspects of regeneration. As a result, some aspects of 

regeneration, such as additional cell types, excitation-contraction uncoupling, neuromuscular 
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junction changes, cytoskeletal disruption, myonuclei, and microvascular network, were not 

included. Therefore, we can only draw conclusions from perturbations of our modeled cell types. 

Further, we recapitulated the impaired regeneration in mdx mice by altering specific parameters 

in our healthy model. We modified parameters to represent the key differences between healthy 

and mdx cell behaviors, such as the increased cytotoxicity of macrophages, or increased 

fibroblast numbers. For the un-altered parameters, we assumed that the cell behaviors (Table 

3.1 and 3.2), and the tuned model parameters (Table 3.3) remained constant. There were 

sufficient data to prescribe the altered input conditions; however, there was limited time-course 

data available to verify many of our mdx simulation predictions. This highlights the paucity of 

time course regeneration data in mdx mice, and future experiments could be used to verify the 

assumptions in our mdx model.   

We originally tuned our models to Tcf4+ fibroblast and Pax7+ SSC counts. However, 

many rules were defined based on studies using different markers, potentially representing 

different cell phenotypes, such as fibro-adipogenic cells (FAPs) (72, 86). To address this, the 

agents in our model do not represent a marker for a specific cell type, such as Tcf4+ fibroblasts 

or Pax7+ SSCs. Rather, the agents represent a spectrum of phenotypes for the primary cell 

types. Based on agent parameters (e.g. cell cycle state, activation, or myogenic commitment), 

we can determine which population of agents in the model would be identified by experimental 

markers. We then use these agent populations to compare our model predictions to the 

respective published literature.  

It is important to address the differences between muscle repair and regeneration, as 

well as the role of different injury mechanisms. We used published measurements of eccentric 

contractions to define our mdx model initial damage parameters to incorporate differences in 

damage susceptibility between mdx and healthy mice. However, experiments have shown that a 

significant portion of the force loss following eccentric contraction injuries can recover without 
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SSCs (128) (e.g. contributions from excitation-contraction uncoupling), and these contributions 

may be different between healthy and mdx mice. Our model does not include contributions from 

these factors, so we addressed this challenge into two ways. First, we used supra-physiologic 

strains from the literature to ensure there was sufficient damage to the contractile muscle tissue 

that required SSC regeneration. Lower strains would alter the injury mechanism to include a 

greater contribution from the factors that we have not included in our model. Second, we 

decreased the input damage parameter, while maintaining the ratio of damage between groups, 

since it has been shown that 50% of the force-deficit can be attributed to factors that do not 

require SSCs for regeneration (128). To address the uncertainty in this damage parameter we 

ran simulations at varying levels of initial damage (Fig 3.4A, 3.4B) and the model predicted that 

the magnitude of the regenerative response scaled with the input damage level. For instance, 

the peak SSCs counts increased with increasing levels of initial damage, but the time to 

recovery (in healthy muscle) was relatively conserved. This result supports our assumption that 

the most important aspect of the input damage parameter in our model was the ratio of damage 

between groups. Further, in our mdx simulation analyses we excluded the contribution of the 

initial damage parameter by normalizing the results (Fig 3.8) by the area of damage. From these 

results we drew our conclusions about the role of the SSCs. 

Finally, to track recovery in our model, we used measurements of fiber CSA. However, 

experiments have shown that CSA does not perfectly predict muscle function, particularly 

between mdx and healthy mice where pseudohypertrophy contributes to increased muscle 

CSA, without subsequent increases in contractile fiber tissue (139). To address these factors, 

we measured CSA by summing the fiber elements and did not include ECM elements to reduce 

the contribution of pseudohypertrophic increases in CSA in the mdx models. Additionally, we 

excluded factors that contribute to force-deficits but do not require regeneration of muscle tissue 

to recover the force (e.g. excitation-contraction uncoupling and protein repair mechanisms as 

explained above). Therefore, the force deficits from eccentric contractions shown in the 
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literature are greater than the fiber CSA deficit that we have modeled, particularly in the first 24 

hours following injury (e.g., Fig. 3.3) (123). Despite the fact that CSA does not perfectly predict 

muscle function, we believe our model is useful for comparing the effect of disease mechanisms 

on muscle regeneration between our simulation groups.  

Future work aims to extend the model to represent more severe animal models and 

DMD patients, as well as incorporating chronic, long-term damage to the muscle. These models 

will be used for in silico testing to probe the effects of a wide range of potential therapies, such 

as therapies targeting upstream microenvironmental factors to alter SSC counts. The 

simulations will then be used to design insightful experiments to test those predictions. 

Ultimately, this new ABM recapitulated muscle regeneration following injury and suggested new 

hypotheses regarding the influence of the microenvironment on SSC behaviors and 

regeneration. The simulations revealed that regeneration is dependent on SSC counts, and that 

pathological differences in SSC counts may be driven by microenvironment factors. Broadly, 

this study also demonstrated the utility of computational models for providing insight into therapy 

development and experimental design for complex, multifaceted disease.  
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Chapter 4 

 

In silico and in vivo experiments reveal that area fraction of collagen 

alone does not predict the regenerative capacity of mdx muscle 

Acknowledgements: Brian Jones, Emily Miller, Elnaz Ghajar-Rahimi, Kyle Martin, Shayn 

Peirce, Silvia Blemker 

 

 

 

 

 

“At some point, everything's going to go south on you... everything's going to go south 
and you're going to say, this is it. This is how I end. Now you can either accept that, or 

you can get to work. That's all it is. You just begin. You do the math. You solve one 
problem... and you solve the next one... and then the next. And if you solve enough 

problems, you get to come home” 

 – Mark Watney, The Martian 
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4.1 Abstract 

Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by the lack of 

the dystrophin protein. Fibrosis has been implicated in DMD, and strategies to reduce fibrosis 

are potential therapeutic targets. However, the mechanisms that cause fibrosis to impair 

regeneration in DMD are not fully understood. The goals of this study were to (1) test the 

hypothesis that fibrosis impairs regeneration, and (2) simulate the experiments in silico to test 

the model predictions and gain insight into the results. The study included WT, mdx, and 

mdx+TGFβ mice. TGFβ injections increased fibrosis in the mdx mouse, as measured by the 

increased area fraction of collagen. However, the injections decreased the passive stiffness of 

the TGFβ injected muscle, relative to the mdx muscle. During recovery from injury, there was no 

difference in fiber CSA (metric for muscle regeneration) between the three groups. This showed 

that increases in area fraction alone are not sufficient to impair regeneration. A computational 

model was used to simulate the experiments and the model similarly predicted no differences in 

regeneration between the groups. To investigate how differences in the fibrotic 

microenvironment would affect regeneration, the model parameters were altered to represent an 

increased ECM stiffness in the TGFβ mice. In contrast to the model predictions with a less stiff 

ECM network, these simulations predicted impaired regeneration and decreased peak SSC 

counts. The results of our experiment and computational analyses lead us to conclude that 

factors other than area fraction of collagen alone affect the passive properties and regenerative 

capacity of the muscle. 

 

4.2 Introduction  

 Duchenne muscular dystrophy (DMD) is progressive muscle wasting disease affecting 1 

in 3500 boys (26). It is caused by the lack of the dystrophin protein at the muscle fiber 
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membrane (68, 80, 108). Without dystrophin the muscle is more susceptible to contraction-

induced damage, resulting in constant cycles of degeneration and regeneration (17, 52). This 

repetitive damage, coupled with altered cell signaling processes, leads to fibrosis and chronic 

inflammation (118, 132, 168). Despite extensive experimental research, there remains no cure 

for DMD. While therapies to replace the missing dystrophin protein are promising, there are 

many barriers to effective treatments (81, 104). Therefore, it is remains critical to develop 

effective therapies to treat symptoms of DMD. 

 Fibrosis, the excessive accumulation of collagen, impairs healthy muscle function in 

patients with DMD; therefore it is a promising potential target for therapies (187). In murine 

models, it has been shown that therapies that reduce fibrosis can dampen disease progression 

and increase the potential for therapeutics to effectively target the damaged muscle (1, 9, 109, 

157). However, the mechanisms underlying the role of fibrosis in muscle regeneration and 

disease progression in DMD remain unclear, particularly because of the limited fibrosis in the 

most commonly used experimental model for DMD, the mdx mouse (118). The mdx mouse 

does not develop significant fibrosis in the lower limb muscles until much later in the disease. 

 To investigate how disease mechanisms, such as fibrosis, affect muscle regeneration, 

previous work in our lab has developed an agent-based model (ABM) of dystrophic muscle 

(Chapter 3). An ABM is a computational tool for modeling the actions of autonomous agents 

(cells), to analyze their effect on the system as a whole (muscle regeneration) (98, 99). The 

cells in the model include satellite stem cells (SSCs), fibroblasts, macrophages, and neutrophils. 

In model simulations of regeneration following injury in healthy and mdx mice at three ages (4 

week old, 3 month old, and 9 month old +), the model predicted that regeneration (measured by 

fiber CSA) was only decreased in the 9 month+ mdx mouse. In this group, the peak number of 

SSCs were suppressed following injury, yet no individual factor in the model was able to predict 

the pathological decreases in SSCs that lead to impaired regeneration. One of the key 
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differences between the mdx models at the different ages was the increased fibrosis in the 9 

month+ mdx mouse. From this, we predicted that the pro-fibrotic microenvironment at the later 

stages of disease impaired regeneration. 

 The goals of this study were to (1) experimentally test our hypothesis that fibrosis 

impairs regeneration in mdx mice, and (2) simulate the experiment in silico to test our models 

predictive capability and gain insight into our experimental results. We utilized a published 

experimental method for inducing fibrosis in mdx mice, injured the muscle, and measured 

muscle fiber CSA and cell counts during regeneration. Then we simulated the experiments in 

silico to compare our model predictions with the experimental results. Finally, the model was 

used to investigate how different fibrotic metrics would affect muscle regeneration. 

 

4.3 Methods 

4.3.1 Animals, TGFβ injections 

All animal experiments were approved by the University of Virginia animal use and 

ethics committee. Three month old C57Bl/6J (referred to here as WT), and dystrophic 

C57Bl/10scsn-mdx male mice (Jackson Laboratories) were used in experiments. There were 4-

5 animals per group per time point. 

TGFβ mice were injected with 50 ng TGFβ (recombinant human TGFB1; R&D Systems, 

Minneapolis, MN, USA) in 50 µL PBS solution in the center of the muscle belly of the right TA 

(118). Sham injected mice were injected with 50 µL of PBS. 12 week old mice were injected two 

times (once per week), with the first injection 2 weeks prior to injury. Based on results from 

others that showed no effect of TGFβ in WT mice, WT-injected mice were not included in the 

study (118). 
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4.3.2 Injury method 

To experimentally study regeneration we used a freeze injury method as described by 

others (154, 174). This is not a physiologic method representative of damage typically seen in 

dystrophic muscle, however it was utilized for a number of reasons. First, in order to study the 

effects on regeneration we had to induce a significant injury to the muscle. As described in 

previous chapters, an acute injury is a commonly utilized method for investigating the 

regenerative response in dystrophic muscle. Due to the extensive literature using this method, 

the ABM (Chapter 3) modeled an acute injury and the subsequent regeneration. A number of 

acute injury methods have been utilized in the literature, including cardiotoxins, freeze injuries, 

and eccentric contractions (64).  

To test the regenerative response, we needed to induce a similar injury across all of the 

groups. Eccentric contractions, while physiologic, lead to differential levels of damage based on 

the disease state and the stiffness of the fibrosis (Chapter 2). Further, much of the force loss 

measured in eccentric contractions result from mechanisms such as excitation-contraction 

uncoupling that do not require regeneration to regain the force (123). Therefore a significant 

portion of the force-loss measured in eccentric contractions would not require SSCs for 

regeneration. Finally, the damage mechanisms are thought to be different between the different 

animal models, making it difficult to compare the resulting regenerative responses between the 

groups. Therefore, we chose to use a freeze injury method.  

The freeze injury was completed as described by others (154, 174). Briefly, an incision 

was made through the skin over the TA muscle. A steel probe cooled with dry ice (for at least 30 

minutes prior to injury) was held on the muscle belly of the TA muscle for 10 seconds. The 

incision was closed with silk suture. Mice were sacrificed at the defined time points by carbon 
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dioxide asphyxiation and muscles were immediately harvested, weighed, and snap frozen for 

immunohistochemistry and histological analysis. 

 

4.3.2 Passive mechanical testing 

 For muscles undergoing passive mechanical testing, muscles were rapidly dissected 

and placed in 30mM 2,3-butanedione monoxime (BDM solution) to prevent cross bridge binding. 

The proximal attachment was kept intact and the muscle was secured with a pin through the 

tibia with a custom 3d printed attachment. The distal tendon was released and secured to a 

second custom 3d printed attachment. The muscles were placed in a bath in a biaxial testing 

apparatus (CellScale, Waterloo, Ontario), using only a single axis for mechanical testing. 

Muscles were subjected to 20 preconditioning cycles and three increasing ramp-holds of 4%, 

6%, and 8% at 1%/second with 300 second hold periods. 

 

4.3.3 Immunohistochemistry and histology  

 Cryosections (10 µm thick) of cross-sections of mouse muscle were stained with 

hematoxylin and eosin (H&E) staining and picrosirius red staining. Quantification of collagen 

content was completed by thresholding five 20x images and summing the number of red pixels. 

For immunohistochemistry, cryosections were fixed in 4% PFA, permeabilized with 0.3% triton 

as needed, blocked with 10% serum, and incubated with the following primary antibodies: 

PDGFR-α (1:200, R&D systems), CD68 (1:300, Invitrogen), CD206(1:300, ABCAM), Laminin-2-

α (1:175, Sigma-Aldrich). The following secondary antibodies were incubated for 1 hour, 

followed by DAPI: Alexa fluor conjugated goat anti-rat 546, donkey anti-rabbit 647. 

CD68+/CD206- macrophages are indicative of pro-inflammatory macrophages, while CD206+ 

macrophages are indicative of anti-inflammatory macrophages (159). PDGFR-α+ cells are 
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representative of non-myogenic fibro-adipogenic progenitor cells (30, 162). Cells were counted 

manually in imageJ or through custom Matlab code to quantify the number of cells that were 

double positive for the respective marker and DAPI. Fiber CSA was calculated with custom 

Matlab code that quantified each fiber based on perimeters defined with Laminin-2-α antibody 

staining. 

 

4.3.4 ABM in silico experiments  

 A previously developed computational model was used to simulate the experiment for 

the three study groups: WT (3 month old), mdx (3 month old), mdx+ TGFβ (3 month old). The 

model is described in detail previously (Chapter 3). Briefly, the ABM predicted muscle 

regeneration following injury from the autonomous actions of the different agents in the model. 

The ABM was built in Repast, a java-based modeling platform (Argonne National Laboratory, 

Lemont, IL, USA). The model spatially represented a cross-section of a mouse lower limb 

muscle, consisting of approximately 50 muscle fibers. Simulations represented an acute muscle 

injury followed by regeneration over 28 days with a 1 hour time step. The agents in the model 

included SSCs, fibroblasts, macrophages, neutrophils, muscle fibers, ECM, and necrotic 

elements. The key model outputs included the cross-sectional area (CSA) of the muscle fibers 

and time-varying counts for each cell type in the model. Muscle fiber CSA was determined in 

two ways. First, by summing all the healthy muscle fiber elements in the simulation, normalized 

by the number of healthy muscle fiber elements prior to injury. Second, by calculating the CSA 

of each individual fiber, normalized by the average fiber CSA across the simulation. This second 

metric provides insight into the range of damage and regeneration across individual fibers. At 

each time step, agents individually followed a probability-based decision tree to determine its 

action, based on literature defined-rules, (Chapter 3, Table 3.1 and Table 3.2). 
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 The baseline experimental measurements and uninjured histology informed the baseline 

input parameters for the computational model, including the number of resident macrophages 

and fibroblasts. The histology was used to define the average fiber CSA, distribution of fiber 

sizes, and area fraction of collagen for the groups (mdx, mdx+TGFβ, WT). For the injury and 

regeneration simulations, an input damage parameter defined the percent of muscle fiber 

elements that were replaced with necrotic elements. Elements within each individual fiber were 

stochastically replaced with necrotic elements, such that the damage per fiber was between 0 

and 100% for a given simulation. However, the total percent of necrotic elements in the muscle 

was equal to the input damage parameter. To represent the TGFβ injections, the baseline level 

of active TGFβ was increased 1.4 fold, based on literature that has shown increases in TGFβ in 

the TA muscle following two weeks of injections (118).  

 

4.3.5 Statistics 

Comparisons between groups were performed using one-way ANOVAs in Matlab (The 

Mathworks Inc., Natick MA). P-values = .01 unless otherwise noted in the figure. All model 

simulation were run 10 times to sample the stochastic nature of the model, and results are 

shown as 95% confidence intervals.   

 

4.4 Results 

 

4.4.1 Baseline experimental measurements following TGFβ injections 

The percentage of Sirius red+ connective tissue was increased in TGFβ injected muscle 

compared with mdx muscle and WT controls prior to injury (Fig 4.1A). Mechanical testing 
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showed that the mdx muscles were stiffer than WT controls; however, TGFβ injections reduced 

the passive stiffness of the TA muscle, similar to WT controls (Fig 4.1B). TGFβ injections did not 

significantly alter baseline cell counts for PDGFRα+ fibroblasts, CD68+/CD206- macrophages, 

or CD206+ macrophages vs mdx mice (Fig 4.1 D, E). However, these baseline cell counts were 

increased in the TA of both mdx mice compared to WT controls.  

 

4.4.2 WT and mdx mice exhibit a robust regenerative response following injury 

Muscle fiber CSA was calculated in cross-sections of muscle prior to and following 

injury, this was used as a marker for muscle regeneration. Following injury, the muscle fiber 

CSA was reduced at day 5 relative to uninjured muscle at day 0 (Figure 4.2A). There was no 

significant difference at any of the time points between the three groups. By day 28, the muscle 

fiber CSA was not significantly different than the uninjured groups, signifying full regeneration. 

The area fraction of collagen, measured by the percentage of Sirius red+ pixels was significantly 

elevated in mdx+TGFβ baseline muscles; however, following injury there was no significant 

difference between the mdx and mdx+TGFβ groups (Figure 4.2B). During recovery, the area 

fraction of collagen was reduced in WT muscle, compared to mdx+TGFβ muscle, at day 2-14, 

but these groups were not different by day 28. The distribution of fiber sizes, in both uninjured 

groups and 28 days post injury are qualitatively skewed towards smaller fibers in mdx and 

mdx+TGFβ groups compared to WT controls with a more normal distribution (Fig 4.3).  
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Figure 4.1: The percentage of red pixels with Sirius red+ connective tissue was increased in 
TGFβ injected mice compared to WT controls and mdx mice (A). The passive stiffness of the 
mdx muscle was decreased following TGFβ injections, similar to WT controls (B). 
Representative images of Sirius red staining in mdx, TGFβ -injected, and WT mice (C). Baseline 
CD206+ and CD68+/CD206- macrophages (D) and PDGFRa+ fibroblasts (E) were increased in 
mdx and TGFβ -injected mdx mice compared to WT controls. *p = .01 and n = 4-5 per group. 
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Figure 4.2: The muscle fiber CSA was decreased 5 days post injury, but there was no 
significant difference between the three groups at any of the time points (A). The percent of 
Sirius red+ connective tissue was elevated in mdx+TGFβ prior to injury (B). Following injury the 
WT red pixel percentage was decreased at day 2-14 compared to mdx mice. H&E staining 
shows the histological changes in muscle cross-sections prior to and during muscle recovery 
from injury (C). *p = .01 and n = 4-5 per group. 
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Figure 4.3. The distribution of fiber sizes prior to injury in uninjured mice and 28 days post injury 
qualitatively illustrates the skewed distribution of fiber sizes towards smaller fibers in mdx and 
mdx+TGFβ mice. 

 

Prior to injury, the number of PDGFRα+ fibroblasts were significantly elevated in both 

mdx groups (Fig 4.4A). However, following injury the PDGFRα+ fibroblast counts were similar 

between groups until day 7 in which the counts in the WT mouse were decreased relative to 

mdx+TGFβ mice. Prior to injury, the CD68+/206- and CD206+ macrophages were increased in 

both mdx groups, compared to WT mice (Fig 4B,C). Following injury, there was no difference in 

cell counts until day 7 when the CD68+/206- cell counts were reduced in the WT mouse and 

CD206+ cell counts were increased in WT mice compared to mdx+TGFβ mice. 
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Figure 4.4: The number of PDGFRα+ fibroblasts were significantly reduced in WT uninjured 
mice (A). Following injury, the groups were not different until day 7 and 14, where counts in the 
WT mouse were decreased relative to mdx+TGFβ mice. CD68+/206- and CD206+ 
macrophages in uninjured WT mice were reduced compared to both mdx mice groups (B,C). 
Following injury, the groups were not different until day 7 when the CD68+/206- cell counts were 
reduced in the WT mouse and CD206+ cell counts were increased in WT mice compared to 
mdx+TGFβ mice. 

 

4.4.2. In silico experiment predictions 

 The ABM of muscle injury and regeneration was used to simulate the experiments. Input 

parameters for the three groups were defined in the previous model (Chapter 3), or based on 

experimental measurements of uninjured muscles in this study (Fig 4.1). The input damage 

parameter was set to 55% based on the decreased fiber CSA measurements at day 5. The 

baseline number of resident macrophages and fibroblasts in both mdx groups were increased 

2x and 3x from WT controls. Histology from the three groups was used to prescribe the initial 

fiber size, fiber size distribution, and area fraction of ECM. To account for complex differences in 

ECM structure, the ECM in the model is defined by both the area fraction of ECM elements, and 

a collagen density parameter for each ECM element. This collagen density parameter 

represents the total amount of collagen divided by the area fraction of ECM. We assume that 

the stiffness of the muscle positively correlates with the collagen density parameter, and that the 

collagen density parameter increases with DMD disease progression (5, 63, 103, 118). Based 

on these studies, the collagen density parameter was set at 1.0 for healthy WT mice, and 1.5 for 
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mdx mice. For the mdx+TGFβ muscles, the passive stiffness was decreased. We assumed that 

this decreased stiffness was a result of decreased stiffness of the ECM; therefore, we reduced 

the collagen density parameter in the model to 1.0 to match WT values. However, the area 

fraction of collagen remained elevated according to histology. 

The average muscle fiber CSA, relative to the uninjured average fiber CSA, was used as 

the model metric for regeneration. In the simulations, the fiber CSA was reduced at day 5 and 

returned to the original size by day 28 (Fig 4.5A), with no significant differences between the 

groups at these times. The model fibroblast counts peaked and remained elevated from day 5-

14 for the mdx and mdx+TGFβ simulation groups. In the WT simulation group, the model 

fibroblast counts peaked around day 5, and remained elevated until day 8 when they returned to 

basal levels. At day 14 the fibroblast counts were reduced in the WT model compared to mdx 

and mdx+TGFβ groups. 

 

Figure 4.5. Simulation predictions for the in silico experiment with mdx, mdx+TGFβ, and WT 
mice. The model predicted that the fiber CSA would not be different for the three groups at all 
time points (A). The fibroblast counts peaked between day 5-10 in the mdx and mdx+TGFβ 
groups, but began to decrease at day 8 in the WT group (B). 
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The model predictions of fiber CSA were within one standard deviation of the 

experimental fiber CSA measurements for all groups and time points except the WT mouse at 

day 14 (Fig 4.6). The computational model also included a range of fiber CSAs based on 

representative histology from each group (Fig 4.6B). Qualitatively, the distributions were skewed 

towards smaller fibers in the mdx and mdx+TGFβ models, compared to the WT model both prior 

to injury and 28 days following injury. As explained in the methods section, the amount of 

damage is stochastically prescribed to each fiber, such that each fiber has a varying level of 

initial damage, but the total sum of the damage is equal to the input damage parameter. Due to 

this stochasticity, and the variability in fiber size (Fig 4.6B), there is a wide range of average 

fiber CSAs across the simulations. To represent this, Fig 4.6A includes the standard deviation 

from all the individual fibers (normalized by the average uninjured fiber CSA).  

 

 

Figure 4.6. The average and standard deviation of each individual fiber CSA, normalized by the 
average uninjured fiber CSA, across all fibers in each group (n = 500-600 fibers/group) (A). 
Qualitatively, the distribution of fiber CSAs is skewed to the smaller fiber sizes in the mdx and 
mdx+TGFβ groups compared to WT controls. 
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 Since the baseline experimental measurements of uninjured TAs showed that the 

stiffness of the TA in mdx+TGFβ muscle was decreased, the collagen density parameter was 

decreased in the simulation, as described above. However, in contrast to our results, it is 

expected that fibrosis which arises from aging in dystrophic muscle would increase the stiffness 

of the muscle (63). To probe how this difference would affect our predictions, we increased the 

collagen density parameter and ran the same set of simulations (Fig 4.7). The model predicted 

that with the increased collagen density parameter normalized fiber CSA would be reduced from 

95% to 84%. Further, peak SSC counts would be decreased, but there would not be a 

significant decrease in the number of fibroblasts following injury. 

 

 

Figure 4.7. Model predicted that if the collagen density is increased in the mdx+TGFβ model 
(mdx+TGFβ-stiff), then fiber CSA would be decreased at day 28 (A), SSC counts would be 
decreased (B), but there would be no significant effect on fibroblast counts (C). 

 

 

4.5 Discussion  

 The goal of this study was to test our hypothesis that increased fibrosis in the mdx 

mouse would impair regeneration. TGFβ injections were utilized to induce fibrosis in the muscle, 

which resulted in an increase in the area of collagen but a decrease in the stiffness of the 

muscle. While there were differences in macrophages and fibroblasts between our WT and mdx 
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muscles, our experimental measurements of fiber CSA showed no difference in regeneration in 

the three groups. To understand our experimental results, we simulated this experiment in silico 

with a previously published ABM of muscle injury and regeneration and similarly predicted no 

significant difference in regeneration. However, by altering input parameters to represent a stiff 

fibrotic microenvironment, our model predicted that peak SSC counts would be decreased and 

regeneration would be impaired. 

 We utilized a published experimental model for inducing fibrosis in skeletal muscle with 

TGFβ injections (22, 89, 118). TGFβ is potent stimulator of collagen production in fibroblasts, 

and intramuscular injections of TGFβ have been shown to increase signaling of fibrotic target 

genes such as CTGF and TIMP-1 (118, 137, 188). In agreement with these results, the TGFβ 

injections in this study, increased the area fraction of ECM. However, the passive stiffness of 

the muscle was reduced. In skeletal muscle, the passive stiffness is thought to be largely 

dependent on the ECM collagen (56, 106, 170), suggesting that the reduced stiffness following 

TGFβ injections was a consequence of the reduced stiffness of the ECM. Interestingly, across 

our three groups, the passive stiffness of the muscle was not correlated with the area fraction of 

collagen. Similarly, a study analyzing the passive properties of different mdx skeletal muscles 

found no correlation between the collagen area fraction (which was shown to strongly correlate 

with collagen content) and the passive stiffness of the muscle (148).  From these results, we 

hypothesize that other factors in this study, such as collagen cross-linking, which is a post-

translational modification to the collagen, or density of collagen, determines the passive 

stiffness of the ECM. 

 In our injury study, we aimed to analyze how the change in area fraction of collagen 

would affect regeneration, and found no difference between the mdx+TGFβ and mdx muscles. 

However, other studies in the literature have shown that reducing fibrosis improves muscle 

function (1, 161). This suggests that fibrosis affects regeneration, but that factors other than just 



85 
 

an increase in area fraction of collagen determine this effect. To investigate this we utilized an 

ABM of muscle injury and regeneration. Our ABM predictions of muscle fiber CSA following 

injury compared favorably to the experiments and similarly predicted no difference in fiber CSA 

across the three groups. The model also similarly predicted the timing of fibroblast peaks in the 

three groups, but it did not predict significant decreases in fibroblast counts until day 9, where 

they were significantly decreased at day 7 in the experiments. With confidence in the models 

predictive capability, we altered parameters associated with pathological changes in ECM 

properties to represent increased collagen density and re-simulated the same set of 

experiments with the altered input parameters. The model predicted decreased peak SSC 

counts and impaired regeneration following injury, predominantly due to impaired SSC migration 

to the site of damage. Similar to the conclusions from the passive mechanical testing, this 

suggests that the properties of the fibrosis, rather than just the area fraction of collagen, is a 

critical factor in determining its effect on muscle function and regeneration. 

 It is important to consider a number of limitations to the study. First, our study utilized 

TGFβ injection to induce fibrosis. While this lead to increased area fraction of collage, there was 

also reduced passive stiffness of the injected muscles. With our experimental measurements 

from this study, we were only able to determine the area fraction of collagen, and we found no 

correlation between the area fraction and the passive stiffness of the muscle. This is in 

agreement with results by Smith et al. that found no correlation between collagen content and 

stiffness. However, other groups have shown correlations between these two parameters (50, 

63). We expect that this arises from differences in experimental design. In the work by Smith et 

al, the collagen content and passive properties were compared between different muscles, while 

the other studies analyzed progression of fibrotic muscle and scar tissue across time. In this 

study, collagen area was compared across two different animal models (mdx and WT controls). 

In addition, fibrosis was induced by cytokine injections which likely altered multiple factors 
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associated with the ECM. In a study describing this method there was a 40% increase in the 

collagen content, measured through biochemical quantification. However, if the area fraction of 

collagen increased similarly to our study (60%), then the collagen content per area would be 

decreased. Further, if the injections stimulated fibroblasts to secrete collagen, then this new 

ECM network may have both degraded and synthesized new collagen, without sufficient time to 

form cross-links and increase the collagen packing density. This means that our fibrosis 

induction method may not be akin to fibrosis seen in aged mdx mice or DMD patients. However, 

this provides a unique opportunity for probing the effect of a specific aspect of fibrosis (area 

fraction of collagen) on passive properties and muscle regeneration. Ultimately this lead us to 

conclude that area fraction alone is not a predictor of passive mechanical properties or muscle 

regeneration. 

Another limitation is the use of fiber CSA as the metric for regeneration. Immediately 

following injury, fiber CSA does not scale well with muscle function (active force) due to 

neuromuscular changes (123); however for the time points analyzed in this study we believe 

that fiber CSA is a robust marker of regeneration. Since it is impossible to track muscle fiber 

CSA over time (all timepoints are terminal), fiber CSA introduces additional variability to the 

data. To illustrate this, the standard deviation in Figure 4.6A represents the variability in model 

fiber CSAs when normalized to average fiber CSA of an entire group. This normalization 

scheme is akin to normalizing average fiber CSA at each time point to the average fiber CSA of 

an uninjured group in an experiment. 

 Ultimately the study tested the hypothesis that fibrosis impairs regeneration in dystrophic 

muscle following injury. The experiments showed that increases in area fraction alone were not 

sufficient to impair regeneration. Interestingly, this increase in area fraction of collagen also 

resulted in decreased passive stiffness of the muscle, suggesting that the ECM stiffness was 

decreased. However, the area fraction of collagen across our three groups did not correlate with 
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muscle stiffness. We also utilized a computational model of the mdx mouse to simulate the 

experiments and similarly found no decrease in regeneration. Conversely, with an increased 

collagen density parameter, the model predicted decreased SSC counts and impaired 

regeneration. The results of our experiment and computational analyses lead us to conclude 

that factors other than area fraction of collagen affect the passive properties and regenerative 

capacity of the muscle. 
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Chapter 5 

 

5.1 Overview 

 

 This dissertation was motivated by my desire to understand the role of different disease 

mechanisms on disease pathology in DMD. In this work, I posit that one of the reasons DMD is 

so challenging to treat is that DMD is a complex, multifaceted disease, in which multiple 

mechanisms contribute to the disease pathophysiology. I believe that computational models can 

help us unravel these complexities to answer a number of critical questions, such as: how does 

the nature of the fibrosis affect the damage susceptibility and function of the tissue, and how do 

changes in the microenvironment alter muscle regeneration? We believe the answers to these 

questions will help us answer our ultimate question: What are the best targets for therapies, and 

how can we design experiments to test their effectiveness? 

 From the motivation to develop my original micromechanical models to my final 

experiments, my dissertation work has had two key themes. The first theme, investigating how 

disease mechanisms contribute to disease pathology in DMD, was a primary goal defined within 

each aim. However, the second theme, the role of the ECM in function, damage susceptibility, 

and regeneration organically emerged at each stage of my research. Originally, I was fascinated 

by how the ECM, which only comprises 5-10% of the muscle volume fraction, can play such a 

significant role in force transmission. I was also intrigued by the ongoing debate in the literature 

about whether the ECM was stiffer or more compliant than the skeletal muscle fibers. I 

hypothesized that the ECM is more compliant than the fiber in healthy muscle, particularly in 

shear displacements, and stiffer than the fiber in fibrotic disease. The role of the ECM was 

paramount in the micromechanical finite element models developed in Chapter 2. We 

developed models of cross-sections of muscle fascicles to investigate how changes in the 
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microstructure during DMD affect function and damage susceptibility. The models predicted a 

trade-off between function and damage susceptibility that was dependent on the relative 

stiffness of the ECM.  

 During my literature review to build and validate our micromechanical models, it became 

readily apparent that I would be remiss to not investigate how pathological changes in cell 

physiology affect disease progression in DMD. Therefore, in Chapter 3, I developed an ABM of 

the key cells involved in muscle regeneration following injury. Ultimately, this avenue of 

research seeks to understand how chronic, low level damage, from activities such as walking 

and breathing, leads to muscle degeneration in DMD. However, the limited experimental data 

from chronic damage made it prohibitively difficult to initially develop chronic computational 

models. Therefore, the first step for this long-term project was to develop an ABM that 

incorporated the cell types implicated in DMD and also replicated an experimental assay with 

sufficient literature. Regeneration from injury is impaired in DMD, and is affected by all the 

disease mechanisms that we were interested in studying –increased susceptibility to damage, 

chronic inflammation, fibrosis, and altered SSC dynamics. Additionally, there is extensive data 

in the literature for acute muscle injuries and regeneration in healthy and dystrophic muscle. 

Therefore, we developed an ABM of muscle injury and regeneration in healthy and mdx mice, 

the most commonly utilized animal model of DMD. 

 Developing an ABM that predicts muscle regeneration from the autonomous actions of 

agents in our model (neutrophils, macrophages, SSCs, fibroblasts, muscle cells, ECM, necrotic 

elements) is not a trivial process. To build the ABM, I iteratively incorporated rules, ran repeated 

simulations to sample the stochastic results, and then compared the results to the literature. If 

the simulation results did not match the literature, I incorporated additional literature-based rules 

until our model was able to replicate results from both healthy muscle regeneration and 

perturbation studies.  
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We used the model to understand how isolated mechanisms of disease altered healthy 

muscle regeneration. While experimental studies aim to test isolated disease mechanisms, it is 

very difficult to control and analyze all variables in an experiment. However, our ABM is a 

powerful tool for isolating the effect of single disease mechanisms to determine how they affect 

regeneration in healthy and dystrophic muscle. The simulations revealed that the cellular 

dynamics driving regeneration are time dependent, and that perturbing disease mechanisms 

often leads to temporally conflicting results. For example, reducing the number of macrophage 

or fibroblast agents initially increased fiber CSA, but ultimately lead to impaired regeneration at 

the end of the 28 day simulation. Since these time-dependent cell types are often therapeutic 

targets, it is critical to understand the temporal variations that may occur following experimental 

perturbations. Computational models can be used to understand these temporal complexities 

and adequately define experimental time points to capture the dynamics.  

After analyzing the effect of isolated disease mechanisms, we extended the models by 

altering parameters to replicate three different ages of mdx mice. Our ABM predicted that in the 

late stages of disease, there were pathological decreases in the number of SSCs following 

injury which ultimately lead to impaired regeneration. Even with the same number of baseline 

SSCs prior to injury, our model predicted varied peak SSCs counts for the different ages of mdx 

mice. No individual model factor was able to predict these differences in SSC counts. Rather, a 

combination of factors at the late stages of disease lead to a pro-fibrotic microenvironment that 

resulted in suppressed SSC counts and impaired regeneration. This emergent model result 

once again aligns with the second theme of this dissertation – the critical role of the ECM.  

 As a final component of this dissertation work, we used the ABM to design an 

experiment to test the effect of fibrosis on muscle regeneration in mdx mice. We used a known 

experimental intervention (TGFβ) to induce fibrosis in the tibialis anterior muscle of the mdx 

mouse and then measured the effect two weeks later. Similar to the literature, the muscle had 
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increased area fraction of collagen; however passive testing showed that the stiffness of the 

muscle was significantly decreased compared to mdx mice. This suggested that the ECM 

stiffness was decreased in our mdx+TGFβ mouse. We induced an injury in the muscle and 

measured regeneration with muscle fiber CSA measurements. The experiment showed no 

significant difference between our three groups (WT, mdx, and mdx+TGFβ) at all time points 

measured. Then we simulated these experiments in our ABM of muscle regeneration and 

similarly found no difference in regeneration between the three groups in the model. Although 

there were differences in cell counts between the mdx and WT muscles. Since we assumed that 

the stiffness of the ECM was decreased following TGFβ injections, we altered a model 

parameter that represented collagen density (assumed to correlate with stiffness), to be similar 

to healthy values, in our original simulations. To investigate the effect of this parameter, we 

increased the collagen density parameter in the model to be more similar to values expected in 

aged mdx muscle and DMD patients. These simulations predicted that the stiff fibrotic 

microenvironment would impair regeneration. Together, our experimental and computational 

analyses predicted that the area fraction of collagen alone was not able to predict the passive 

properties and regenerative capacity of dystrophic muscle. 

 Ultimately, I developed two computational models to study how mechanics and 

physiology affect disease pathology in DMD. The models highlighted how the complex 

dystrophic microenvironment alters muscle function, damage susceptibility, and regeneration 

from injury. Throughout this dissertation our models elucidated the complex role of the ECM, 

and how different pathological factors associated with the ECM alter its effects. The models 

were then used to design an experiment to test our model predictions and inform our model 

hypotheses. Given the opportunity to revisit this work, we would have included an aged, fibrotic 

mdx mouse to test our hypothesis that the fibrotic microenvironment at the late stages of 

disease results in increased muscle stiffness and impaired regeneration. Moving forward, this 

modeling framework provides the groundwork to develop long-term, chronic DMD models to 
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predict muscle degeneration and in silico therapeutic testing to discern the best targets for 

therapies. 

 

5.2 Contributions 

 

Micromechanical models of dystrophic skeletal muscle 

 I have developed the first micromechanical models of skeletal muscle to understand how 

disease adaptations affect tissue level function and fiber level damage. Previous models had 

been developed to derive tissue level constitutive properties from the muscle microstructure, but 

these models did not probe the effect of disease. Our model simulations revealed that the 

volume fraction and stiffness of the fibrosis significantly altered function and damage 

susceptibility. From the model results, we predicted that the fibrosis protected the muscle from 

contraction induced damage but impaired function by increasing the stiffness of the muscle. 

This prediction aligns with observations in the literature where at the early stages of disease the 

measurements of damage are significantly elevated, prior to the onset of fibrosis. Then at the 

later stages of disease, there is decreased function but the measurements of acute damage are 

suppressed. These models additionally highlighted the importance of understanding the material 

properties of the ECM and the muscle fibers. 

 Another key contribution was our novel method for generating these micromechanical 

models. In order to study the effect of microstructural changes, we needed to generate a 

significant number of fascicle cross-sections to build our models. Therefore, we used an ABM to 

generate new, stochastic fascicle cross-sections, and mapped them onto a discretized FE 

mesh. By using an ABM to generate the muscle cross-sections, we were able to rapidly 

generate FE meshes of muscle fibers, ECM, and dystrophin proteins, which incorporated both 

variability commonly seen in vivo and microstructural disease modifications. 
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SSC and fibroblast focused ABM of muscle regeneration 

 I have developed the first cell physiology based model of muscle regeneration to study 

disease mechanisms in DMD. While previous models in the lab focused on inflammatory cells 

during healthy muscle regeneration, this model probed the complex relationships of SSCs and 

fibroblasts, and then adapted the model to study disease. I have extended the field by 

developing a model that is able to analyze the effect of altering isolated, pathological changes 

associated with DMD, a task that is prohibitively difficult with experimental tools alone. I then 

used the model to reveal how the microenvironment alters SSC dynamics during regeneration. 

The model predicted that the pro-fibrotic environment at the late stages of disease in the mdx 

mouse resulted in suppressed SSC counts and impaired regeneration. This model has 

developed the framework for modeling more severe phenotypes in DMD patients, and in silico 

therapeutic testing. 

 Another key contribution of this model is its utility for simulating experiments to test 

model predictions and gain insight into experimental results. Based on the ABM predictions, we 

designed an experiment to test the role of fibrosis on muscle regeneration and then used the 

model for in silico simulation of these experiments. Our experiments showed no significant 

difference in regeneration between our two mdx groups. However, we were able to use the 

model to predict that the decreased stiffness of the muscle with our fibrosis intervention enabled 

full regeneration of the muscle; while a simulated stiff fibrotic ECM network did not fully repair. 

Without our model, it would have been difficult to interpret the results of these experiments, and 

we may not have gained insight following our extensive experimental study.    

 

Converting previous ABM to a system of ODEs 

 One of the most useful contributions of this body of work is the method of simplifying a 

previous ABM into a system of ODEs. A significant challenge of developing a complex model is 

being able to extend it to study new behaviors or incorporate additional complexity. This is 
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particularly true for ABMs, where it is extremely challenging to replicate system-level, emergent 

behaviors from the stochastic actions of autonomous agents. Therefore, it is often prohibitively 

difficult and computationally expensive to incorporate additional rules into an ABM to study a 

new phenomenon. When I was building off work from a previous model by Kyle Martin, I 

addressed this challenge by developing a method for converting the former ABM into a system 

of seven coupled ODEs. I determined the cumulative effect of one cell on another cell by 

calculating the growth factor secretions from each cell type and the effect of the growth factors 

on each cell type. This calculation defined the 51 model parameters for the system of ODEs that 

were solved non-spatially in the background of the ABM. This method allowed me to develop an 

entirely new ABM of muscle regeneration based on the behaviors of fibroblasts and SSCs, but 

still determine the cell counts and growth factors from the inflammatory cells at each time step. I 

believe this method could be utilized to simplify the ABM presented in this work, so that it can be 

extended to predict long-term chronic changes in the muscle. 

 

5.3 Current and future applications 

 

5.3.1 Future modeling work to study DMD 

The long term goal of the modeling framework developed in this dissertation is to predict 

degeneration from chronic, repetitive damage in DMD patients. With these models we aim to 

predict selective degeneration across muscles to discern the primary mechanisms contributing 

to disease progression. Then the models can be used for in silico therapeutic testing, and to 

design experiments to test these potential therapies. The work presented in this dissertation has 

developed the foundation for this avenue of research. The next steps include (1) modeling more 

severe disease phenotype in DMD patients, (2) developing a coupled FE-ABM framework for 

predicting chronic damage, and (3) in silico therapeutic testing. Details for how to address these 

future directions are included herein. 
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Model more severe phenotypes in DMD patients 

 The ABM (Chapter 3) developed in this work was developed from available data in the 

literature; therefore, we used the most common experimental model of DMD, the mdx mouse. 

However, the disease pathology in the mdx mouse is significantly less severe than human 

patients. We believe this contributes to the failure to translate successful therapies in the mouse 

to DMD patients. Computational models can help bridge this gap by incorporating these 

differences in order to elucidate which treatments have the greatest translational potential. The 

work in this dissertation developed the mdx models through a combination of literature-derived 

and experimentally-tested data. To build models of the more severe DMD phenotype, key 

parameters can be altered to represent the differences between the mdx mouse and humans. 

Examples of known differences include (1) impaired regenerative potential of SSCs in DMD 

patients, (2) increased fibrosis in DMD patients, and (3) increased in vivo strains in DMD 

patients. To capture these differences, rules or input parameters would be altered. For instance, 

the rules for SSC division in DMD patients could be altered to represent the decreased 

regenerative potential of SSCs following repetitive divisions. Second, patient (rather than 

mouse) histology could be used to define the baseline spatial geometry that defines the amount 

of fibrosis in the muscle cross-section. Further, the in vivo loads from DMD patients could be 

used to prescribe the input strain for predicting damage with a coupled FE-ABM model.  

 

Develop coupled FE-ABM framework for chronic damage  

After developing the model of DMD patients, a logical next step is to use a coupled FE-

ABM framework to predict the effect of chronic, repetitive damage in dystrophic muscle 

(modeling framework outlined in Figure 5.1). The work in this thesis coupled the FE and ABM 

models in Repast; however, only a single acute injury at different stages of disease was used to 

predict the input level of damage. For the chronic model, repetitive activities such as walking or 

breathing would be used as the input deformations to the FE model. FE meshes would be 
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generated of the ABM cross-sections with fibers, ECM, and dystrophin proteins (Chapter 2). To 

account for changes in the muscle microstructure over time, new FE models would be built from 

the updated muscle cross-sections every 7-30 days, based on a sensitivity analysis to 

determine how frequently the FE model should be updated. Each time the FE model is updated, 

the eccentric contraction simulations would be repeated and the calculated membrane strains 

would be spatially mapped to the ABM. 

 

Figure 5.1. FE-ABM framework for predicting long-term chronic damage in dystrophic muscle. 

 

In order to finalize the coupled modeling framework two key modeling parameters must 

be determined, (1) the relationship between the membrane strain and the amount of muscle 

damage, and (2) the passive material properties of the ECM and muscle fibers. The quantity of 

muscle damage that results from different strain levels is currently unknown in the field. Ongoing 
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work with Kate Bukovec and Robert Grange at Virginia Tech is exploring this relationship by 

inducing eccentric contractions at different strain levels and then submerging the muscle in 

procion orange dye. Muscle cross-sections are imaged and the area of procion orange dye is 

quantified as a metric of damage to the fiber. These experiments can be used to define the 

model parameter that prescribes the quantity of muscle damage based on the amount of 

membrane strain. To determine this parameter (or equation), eccentric contractions would be 

simulated in the model at the same length changes as the experiment, and the associated 

membrane strain would be calculated. Then an equation or parameter would be tuned that 

relates the membrane strain with the predicted amount of damage (corresponding with the 

amount of procion orange dye uptake).  

The second unknown for the coupled models is how the collagen density parameter in 

the ABM relates to the ECM stiffness in the FE model. In this work, we assumed that the along 

fiber shear stiffness of the ECM linearly increases with the collagen density model parameter (in 

the fibrotic, dystrophic muscle). Since the micromechanical models apply an along-fiber shear 

displacement, it is important to determine the stiffness of the ECM in shear, and how this 

parameter depends on the collagen density. Biaxial mechanical testing experiments to 

determine the shear passive properties of the tissue are outlined in section 5.3.3. By using the 

protocol outlined in that section, and altering the collagen density (by aging mice or digesting 

collagen), the relationship between the collagen density and stiffness of the tissue can be 

determined. 

 

Use coupled modeling framework to predict selective degeneration 

Once this coupled modeling framework is finalized, an ideal avenue for testing and 

tuning the chronic model simulations is to predict selective degeneration in dystrophic muscle. 

In DMD, all muscles are missing the dystrophin protein, yet some muscles degenerate faster 

than others. To investigate this, literature and experimental data could be used to define the 
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altered factors in the ABM and FE models to represent specific muscles. In the ABM, 

differences in fiber type distribution and the number of SSCs would alter the baseline model 

parameters. In the FE model, the prescribed boundary conditions for the eccentric contraction 

simulations would be adjusted based on the magnitude and frequency of the repetitive damage 

for that specific muscle. For instance, the diaphragm muscle would have lower strains but 

increased frequency of repetitive damage, while a lower limb muscle would have a lower 

frequency of use but higher magnitude of strain. Simulations for specific muscles could be run 

for 90-120 days in mdx mice, and 6 months-3 years in DMD patients to predict the selective 

degeneration across muscles. Initial simulations of repetitive injuries are shown in Figure 5.2, 

where the model predicts that the fibrosis and fiber CSA are sensitive to the level and frequency 

of damage. We believe that if we can develop a modeling framework to predict why some 

muscles degenerate faster than others, we can gain critical insight into the mechanisms driving 

disease progression.  

 

 

Figure 5.2. Simulations of repetitive acute-injuries predict that the fibrosis (A) and fiber CSA (B) 
are sensitive to level and frequency of damage. 
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In silico therapeutic testing 

This coupled FE-ABM framework is a powerful tool for in silico therapeutic testing. 

Computational models allow us to simulate an extensive number of therapies and combinations 

of therapies that would be impossible with experiments alone. Therapeutics would be modeled 

by altering baseline parameters and specific rules to match the effects of the drugs. Then either 

an acute or chronic injury model could be used to test the therapy’s effectiveness for improving 

regeneration or preventing degeneration. For instance, in Figure 5.3, we have simulated the 

effect of membrane protection, anti-inflammatory, and anti-fibrotic therapies in the mdx mouse. 

Future work would simulate these therapies in more severe phenotypes or DMD muscle 

models. By using computational models of DMD muscle, we can understand why a therapy may 

appear effective in the mouse but not the human. Simulations in the mdx and DMD models 

would enable researchers to design in vivo experiments that best test therapeutics in the mdx 

mouse that would successfully translate to DMD patients. 

 

 

Figure 5.3. Simulations of potential therapies for membrane protection (A), anti-inflammatory 
(B), and anti-fibrotic (C) treatments at three ages of disease in the mdx mouse. 
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5.3.2 Modeling extensions for other applications 

 

Use ABM to test therapies for volumetric muscle loss recovery and cerebral palsy 

Both the ABM (Chapter 3) and FE micromechanical models (Chapter 2) were developed 

to represent muscle injury and regeneration in healthy muscle. Therefore, the models are not 

specific to DMD, and could be extended to study other skeletal muscle diseases or injuries. For 

instance, one application is to simulate recovery from volumetric muscle loss (VML). Volumetric 

muscle loss is defined as the “traumatic or surgical loss of skeletal muscle with resultant 

functional impairment”  (31). Current work at UVA aims to improve recovery from these 

extensive injuries, and we believe that computational models can be used to investigate what 

factors would aid in the recovery process. The ABM could be used to simulate the border 

between the healthy and injured tissue. For the injured tissue, both the fibers and ECM structure 

would be eliminated or disrupted, and the resident cells would be seeded. While many of the 

rules would be altered to replicate the lack of functional recovery and chronic inflammation in 

VML, many of the cellular behaviors for inflammatory cells, SSCs, or fibroblasts would be 

similar. The model could be used to investigate what factors would best improve the recovery in 

this region.  

 

Figure 5.4. Representative images of simulations of volumetric muscle loss at the border 
between healthy and damaged muscle. 

 

This modeling framework could also be used to model diseases in which healthy muscle 

function is impaired, such as cerebral palsy (CP). In CP, it has been shown that the number of 

SSCs in muscles of children with contractures is significantly decreased. Current work with 
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Geoff Handsfield and Stephanie Khuu is using the ABM in this dissertation as the foundation for 

modeling contracture in CP patients. By altering the microenvironment (e.g. decreasing the 

number of SSCs), the ABM could be used to predict how these factors could lead to impaired 

muscle function.  

 

Predict how accumulated microtears can lead to acute muscle injury 

The micromechanical models developed in Chapter 2 could also be used to investigate 

new hypotheses for muscle injury in healthy muscle. In a previous application of this model, we 

proposed a new mechanism in which transmembrane proteins, such as dystrophin, are 

damaged during high-strain eccentric contractions. The protein damage creates a cascade 

effect of accumulated damage and ultimately results in an acute muscle injury. To analyze this 

hypothesis we first determined the along-fiber shear strain from tissue level simulations of 

sprinting (48). Then the tissue level output was used to apply boundary conditions to the 

micromechanical FE model (Chapter 2). We ran micro-level eccentric contraction simulations 

and calculated the membrane strain for each protein. Any proteins strained above the 

prescribed threshold had a probability of breaking. If the proteins broke, they were deleted from 

the micro-model and simulations were re-run. This process was repeated for a number of 

simulated contractions. Our initial analysis revealed that this mechanism stochastically predicted 

large membrane damage for both different fascicle geometries and within the same fascicle 

geometries. 



102 
 

 

Figure 5.5. Iterations of the model analyses illustrate how small losses in membrane proteins 
could instantaneously lead to an acute muscle injury during eccentric contraction. After each 
simulation, proteins above the threshold for protein damage were deleted and a simulation with 
the remaining proteins was re-run. Model iterations represent the progressive increase in 
maximum membrane strain as proteins are deleted. 
 
 
5.3.3 Experimental testing of the role of fibrosis  

 In Chapter 4, we aimed to test the role of fibrosis on muscle regeneration from injury 

through injections of TGFβ in 3 month mdx mice. These injections have been shown to increase 

both the mass and area fraction of collagen in the literature. While our injections increased the 

area fraction of collagen, the stiffness of the muscle was decreased, suggesting that the 

increased ECM was more compliant than the ECM in the mdx muscle. Both the experimental 

results, and the model predictions based on the baseline parameters showed no effect on 

regeneration between these two groups. We then used the model to predict that if the fibrosis 

leads to a stiffer ECM network, which we hypothesize occurs at the late stages of disease, then 

regeneration is impaired. Therefore, the next step experimentally is to test this prediction in a 

dystrophic muscle with a stiff fibrotic microenvironment, such as the 12 month mdx mouse. By 

using an older mdx mouse an intervention can be used to reduce fibrosis, rather than induce 
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fibrosis. Then regeneration from injury can be compared between the two groups to test our 

hypothesis of the role of the ECM on muscle regeneration in dystrophic muscle. 

 

Passive testing of skeletal muscle to determine along-fiber and cross-fiber shear and 

properties of muscle 

A key conclusion from our micromechanical models is that the muscle function and 

damage susceptibility is dependent on the tissue microenvironment, particularly the relative 

stiffness between the muscle fibers and the ECM. In our mdx mouse experiments (Chapter 4) 

we developed a system for testing the passive properties of whole muscles. However, due to 

the complex architecture of the TA muscle, we were unable to experimentally determine the 

specific contributions from along-fiber stretch, along-fiber shear, and cross-fiber shear 

properties. Therefore, an extension of this work would be to use biaxial mechanical testing to 

determine the material properties of the muscle. 

The mouse diaphragm is an ideal muscle for biaxial testing since the muscle tissue is 

thin and there is a known fiber direction (Figure 5.6). Assuming that the two halves of the 

diaphragm are symmetrical in microstructure, one side can be used for mechanical testing and 

one for histological analysis. The half used for mechanical testing can be divided into four 

samples. The samples would be cut such that the fibers are 1) aligned with the edge 2) at a 22 

degree angle or 3) at a 45 degree angle. The samples would be marked for speckle tracking 

and placed in a muscle bath. 
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Figure 5.6. Schematic for how to use the mouse diaphragm to determine the passive 
mechanical properties of the muscle. 

 

The skeletal muscle constitutive model used in this work is based on physically based 

strain invariants. Therefore, the sample protocol outlined in Figure 5.7 could be used to isolate 

the along-fiber stretch and cross-fiber shear strain invariants. The sample data would be 

averaged to fit parameters to the stress-deformation data. Additional test protocols could be 

used to validate the parameter fits. With this set up, the along-fiber shear strain parameter 

cannot be isolated. However, if the fiber direction is rotated, it will induce shear in the sample. In 

these protocols, there is a linear relationship between the along-fiber shear modulus and the 

stress in x and y direction (Figure 5.7). Therefore, the along-fiber shear modulus can be 

determined by fitting the along-fiber shear strain and test axis stress data.  
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Figure 5.7: Biaxial testing protocol to isolate three physically-based strain invariants (A), such 
as the along-fiber stretch (B). An indirect method utilizing the relationship between along-fiber 
shear modulus and test axis stress will be used to determine the along-fiber shear modulus (C-
E). 

 

This protocol can be used to determine the four unknown parameters for our skeletal 

muscle constitutive model. Further, through testing of the diaphragm at different stages of 

disease or with altered fibrotic levels, we can infer the individual parameters for the muscle 

fibers and the ECM. This analysis assumes that the changes in the mechanical properties with 

disease result from changes to the ECM. By comparing the relative stiffness and volume 

fraction of fibrosis (as measured by picrosirius red staining) of different tissues, we can 

determine if the ECM is stiffer or more compliant than the muscle in all modes of deformation. 

 

 

5.4 Final Remarks 

  In the past three decades since the cause of DMD was discovered, the rapidly 

advancing experimental tools have provided extensive experimental data and insight into this 

complex, multifaceted disease. However, there remains no effective treatment for DMD. I 
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believe that computational models can be a powerful tool for synthesizing the extensive 

experimental results to elucidate how the multiple disease mechanisms – damage susceptibility, 

fibrosis, chronic inflammation, impaired regeneration, and altered SSC dynamics – contribute to 

the progression of DMD. In this dissertation, I have developed mechanics and physiology-based 

computational models to probe the effect of these disease mechanisms on function, 

susceptibility to damage, and regeneration. The models revealed new hypotheses about the 

role of the fibrotic microenvironment, and provided insight into our experimental results. These 

models can serve as the foundation for future work to predict degeneration from chronic, 

repetitive injuries and for in silico therapeutic testing in DMD muscle. I believe that 

computational models can help us unravel the complexity of DMD to provide insight into the 

best therapies to treat boys living with DMD today. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 
 

Appendix: Converting the inflammatory cell ABM into a system of ODEs 

 

 One of the significant contributions of this body of work was the method of simplifying a 

complex ABM (99, 102) into a system of ODEs in order to focus on different cell types and 

applications. The complex rule sets and stochasticity of an ABM often makes it prohibitively 

difficult to incorporate new agents and rule sets. Additionally, new applications often require the 

use of different spatial or temporal constraints. However, as we continue to develop and extend 

our models, it is important to retain the insight and information from former models. Therefore, a 

method to simplify the predictions and relationships determined in an ABM is a critical step in 

the advancement of new models. To address this for our research aims, we developed a 

method to simplify a former ABM into a system of ODEs that incorporated the physiologic 

relationships between the different cell types. 

 We determined that the growth factors in the ABM by Martin et al. best characterized the 

relationships between the different cell types; therefore, we used these growth factors to 

calculate the relationships between the cells. First, we determined the amount of growth factors 

secreted from each cell type in the model (at each 1 hour time step) as shown in Figure A.1. 

Then we determined the effect each of those growth factors had on the different cell types. We 

did this for the 32 growth factors and 9 agents in the model: neutrophils (N), apoptotic 

neutrophils (Na), resident macrophages (RM), M1 inflammatory macrophages (M1), M1 

inflammatory debris-phagocytosing macrophages (M1de), M1 inflammatory apoptotic-neutrophil 

phagocytosing macrophages (M1ae), M2 anti-inflammatory macrophages (M2), fibroblasts (F), 

and SSCs. Then we calculated the product of the growth factors to define parameters that 

represented the effect of each cell type on the other cell types in the model. The data is 

represented as a heat map in Figure A.2. The red, negative values represent a cell that induces 

an inhibitory response on a specific cell type through their growth factor secretions (e.g. M2 

macrophages secrete growth factors that cause M1 macrophages to apoptose). The blue, 
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positive values represent a cell that induces a proliferative response on a specific cell type (e.g. 

neutrophil secretions lead to M1 macrophage proliferation).  

 

Figure A.1. Growth factor secretions from the different cell types in the ABM by Martin et al, and 
the effect of the growth factors on the different cell types in the model. A positive cell response 
represents a growth factor that causes the cell to proliferate, while a negative value represents a 
growth factor that leads to cell death, or differentiation to a new phenotype. 

 

 The calculated values (Fig A.2) were used as the initial predictions for the ODE model 

parameters for the 9 cell types in the model. To incorporate behaviors that were not captured 

directly by the growth factors, we incorporated additional parameters to represent cell death and 

phenotypic transition to different cell types. For instance, based on the microenvironment, 

neutrophils could transition to apoptotic neutrophils or M1 macrophages could transition to M2 

anti-inflammatory macrophages. Many of the cell counts that initiated the inflammatory and 

regenerative response were also dependent on the amount of damage in the muscle. The initial 

set of ODEs was defined by 51 different modeling parameters. Once this initial set of ODEs was 

defined, we ran simulations (in Matlab with the Euler method) to predict the number of cells and 
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the timing of the cell peaks. We then incorporated and tuned a scaling factor until the ODE 

model predictions replicated the ABM model predictions. ODEs are shown in equation A.1-A.7 

and Figure A.3, where %necrotic is the current percent of the muscle that is necrotic, and RM0 is 

the starting number of resident macrophages.

 

Figure A.2. Heat map represents the effect a cell type (rows) has on the other cell types 
(columns). 

 

 

𝑑𝑅𝑀

𝑑𝑡
= 1.054𝑅𝑀0 − 0.18𝑅𝑀 

(A.1) 

𝑑𝑁

𝑑𝑡
= 2.40𝑅𝑀 ∗ %𝑛𝑒𝑐𝑟𝑜𝑡𝑖𝑐 + 0.00033𝐹𝑏 + .016𝑁 − .024𝑁𝑎 − 0.082𝑀1 − 0.020𝑀1𝑎𝑒

− 0.0019𝑀1𝑑𝑒 − 0.045𝑀2 + 0.0023𝑆𝑆𝐶 − 0.13𝑁 ∗ %𝑛𝑒𝑐𝑟𝑜𝑡𝑖𝑐 

(A.2) 

𝑑𝑁𝑎

𝑑𝑡
= 0.13𝑁 ∗ %𝑛𝑒𝑐𝑟𝑜𝑡𝑖𝑐 − 0.0058𝑀1 ∗ 𝑁𝑎 − 0.0058𝑁𝑎 

(A.3) 
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𝑑𝑀1

𝑑𝑡
= 0.0046𝑅𝑀 ∗ %𝑛𝑒𝑐𝑟𝑜𝑡𝑖𝑐 − 0.0018𝐹𝑏 + 0.033𝑁 − 0.0018𝑁𝑎 + 0.0058𝑀1

− 0.0054𝑀1𝑎𝑒 + 0.0096𝑀1𝑑𝑒 − 0.0092𝑀2 + 0.0017𝑆𝑆𝐶 − 0.0011𝑀1 ∗ 𝑁𝑎

− 0.0046𝑀1 ∗ %𝑛𝑒𝑐𝑟𝑜𝑡𝑖𝑐 

(A.4) 

𝑑𝑀1𝑎𝑒

𝑑𝑡
= 0.003𝑀1 ∗ 𝑁 − 0.018𝑀1𝑎𝑒 

(A.5) 

𝑑𝑀1𝑑𝑒

𝑑𝑡
= 0.012𝑀1 ∗ %𝑛𝑒𝑐𝑟𝑜𝑡𝑖𝑐 − 0.012𝑀1𝑑𝑒 

(A.6) 

𝑑𝑀2

𝑑𝑡
= 0.0054𝑅𝑀 ∗ %𝑛𝑒𝑐𝑟𝑜𝑡𝑖𝑐 − 0.0026𝐹𝑏 − 0.019𝑁 − 0.00079𝑁𝑎 + 0.043𝑀1

+ 0.0053𝑀1𝑎𝑒 + 0.015𝑀1𝑑𝑒 − 0.0096𝑀2 + 0.0026𝑆𝑆𝐶 

(A.7) 

 

 

Figure A.3 Inflammatory cell counts predicted from ODEs 
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 We incorporated the system of ODEs for the inflammatory cells (not including the 

fibroblasts and SSCs) non-spatially in the ABM. At each time step, the ABM used the Euler 

method to calculate the number of inflammatory cells in the model. Based on the number of 

cells, growth factors were secreted (non-spatially) at each time step, and a second set of ODEs 

defined the amount of growth factors in the model at each time step. The behaviors of the sptail 

agents (fibers, ECM, fibroblasts, and SSCs) were dependent on these growth factor secretions, 

as well as the number of inflammatory cells in the model.  
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